Comprehensive Physiology Wiley Online Library

Gas Exchange in Exercise

Full Article on Wiley Online Library



Abstract

The sections in this article are:

1 Steady State
1.1 External Gas Exchange
1.2 Alveolar Gas Exchange
1.3 Blood O2‐Carrying Capacity
1.4 Energy Cost of Blood Pumping
1.5 Cardiovascular Adjustments
1.6 Oxygen Utilization and its Limiting Factors
1.7 Comparative Aspects of Gas Exchange
2 Unsteady State
2.1 Pulmonary Gas‐Exchange Transients
2.2 Cardiovascular Transients
2.3 Control and Kinetics of Gas Exchange in Muscle
3 Conclusions
Figure 1. Figure 1.

Increase of overall O2 uptake per unit increase of expired minute ventilation (, kJ/liter) in normoxia (N, •, –) and in chronic hypoxia (H, ○, –––; 5,800 m).

Data from Pugh et al. 390. O2 cost of ventilation (Δ /η Δ ) in normoxia (N, ‐, ▪, ▴) and in chronic hypoxia (H, ‐ ‐ ‐), as calculated on the basis of efficiency values (η) of 0.25 (lower curves) and 0.1 (upper curves). [Data from Cruz 114, Margaria et al. 336, and Thoden et al. 470.] Pulmonary ventilation expressed at body temperature, ambient pressure, saturated with water vapor in liters per minute. “Critical level” for exercise ventilation is ∼15 liters/min lower in hypoxia (A' and B') than in normoxia (A and B). This indicates that in hypoxia the fraction of absolute utilized by respiratory muscles is necessarily greater than in normoxia
Figure 2. Figure 2.

Mean arterial O2 partial pressure (Pao2, •) and (○) values (±SD) as a function of O2 consumption (). Thin lines, calculated alveolar values. Shaded areas, alveolar‐arterial difference in partial pressure of O2 () and CO2 () *, P < 0.05. **, P < 0.01. ***, P < 0.001.

Data from Table 1 (ref. 133a not included)
Figure 3. Figure 3.

Mean (±SD) diffusing capacity for O2 (Do2; 44 subj.) and Dco (318 subj.) as a function of by various methods. *, P < 0.05. **, P < 0.01. ***, P < 0.001. (Data from refs. 13,35,48,55,75,119,149,169,199,265,269,326,337,359,363,387,392,402,415,461,478,511.)

Figure 4. Figure 4.

Myocardial O2 consumption (Mo2) per 100 g left ventricular tissue as a function of overall O2 consumption (), cardiac output (), and left ventricular blood flow (LV) at rest (•) and exercise (○). (a ‐ v)o2, Arteriovenous O2 difference in milliliters of O2 per 100 ml of blood. (Data from refs. 52,241,280,346,347,397.)

Figure 5. Figure 5.

Cardiac output () as a function of O2 uptake () for different groups of subjects: • boys (11‐14 yr); O, girls (11‐14 yr); ⋄, adult males; ⋄, adult females; +, male athletes; x, female athletes. Group Vmaxo2 values shown by ↑. Isopleths showing arterial‐mixed‐venous O2 difference in milli‐liters of O2 per 100 ml of blood, ()ov are also drawn. (Data from refs. 26,36,86,155,161,201,217,227,430.)

Figure 6. Figure 6.

A: heart rate (HR) as a function of . B: relationship between stroke volume (qst) and cardiac output (). Isopleth HR lines: 50, 100, 200/min. C: cardiac output as a function of . Isopleths show arterial‐mixed‐venous O2 difference: 5, 10, 15 ml/100 ml. • Walking and running (P. Cerretelli, unpublished observations); ▪, during aquatic activity 400; x, in hot environments 419; ⋄, during arm exercise 51; ○, during arm and leg exercise 51; o, during isometric (I) exercise (148; P. Cerretelli, unpublished observations).

Figure 7. Figure 7.

Maximum O2 consumption [maxo2 (ml·kg−1·min−1), lower panel] and ratio of maxo2 to resting O2 consumption (resto2, upper panel) as a function of body mass [M (g, log scale)] for various mammals. U, untrained; T, trained; S, sedentary; A, athlete.

Data for small rodents 312,358,370,413,414,438; data for average‐size mammals (springhares, pigs, baby lions: 100, 437, 438, 467); data for the dog 32,90,101,145,253,325,357,368,379,410,437,438,484,510; data for trained horses (G. Cortili, unpublished observations); data for untrained horses 471; data for humans 303
Figure 8. Figure 8.

Breath‐by‐breath O2 uptake (Vo2, Δ) and CO2 output (Vco2, ○) as a function of time during very strenuous exercise (treadmill running at 18 km/h, on a +15% incline, exhaustion time = 22 s) and in recovery period. Exhausting exercise was preceded by ∼10‐min walk at 4.5 km/h on a +15% incline. (Note 3 different time scales.)

Figure 9. Figure 9.

Output of CO2 in excess of O2 uptake (excess Vco2) as a function of peak blood lactate concentration above resting (Δab) in recovery after very strenuous exercise (treadmill running at 18 km/h; +10%, +15%, and +20% incline; exhaustion time 14‐50 s) in 4 subjects. Excess Vco2 was calculated as Vco2 · dt Vo2 · dt, where t1 is the time at which Vco2 = Vo2, usually ∼10 min (see Fig. 8).

Figure 10. Figure 10.

Excess Vco2 as a function of corresponding PAco2 in 4 subjects (○, x, ○, ⋄). Excess Vco2 is here the amount of CO2 eliminated in excess of O2 uptake, up to the moment at which PAco2 was as indicated. Thus, as recovery proceeds, the subjects' respiratory conditions move toward the left, along the curve; points to the extreme left correspond to ∼10 min in all subjects. Three subjects are characterized by the same function; 4th subject (⋄) follows a markedly different pattern. For a given excess Vco2, drop in [] can be considered equal in all subjects (see Fig. 9). Therefore, this last subject (⋄), having a higher PAco2 for a given excess Vco2, is presumably characterized by a lesser sensitivity to CO2.

Figure 11. Figure 11.

Time course of energetic processes at onset of exercise in humans. Ordinate in arbitrary units: 1 = Vmaxo2. Top: energy requirement of exercise (E) is 0.8 Vmaxo2. Curve 1, time course of energy yield at muscle level, resulting from sum of Vo2 through the mouth (curve 3, t1/2 = 40 s), early lactate production, and O2‐stores depletion. Amount of energy contributed by latter 2 factors is indicated by areas labeled VeLao2 and ΔVsto2, respectively. Area labeled Vo2, amount of O2 taken in through the mouth during exercise. (For mild aerobic exercise eLa = 0, so that curve 3 overlaps curve 2.) Difference between energy requirement of exercise (constant from time 0) and curve 1 must be supplied by net PC breakdown. Alactic O2 debt (VPCo2), amount of phosphocreatine (PC) split in O2 equivalents. Curve 1, time course of VPCo2 contraction; curve 1′, time course of VPCo2 payment; t1/2 of curves 1 and 1' = 15 s. No La production occurs in recovery; thus curves 2' and 3' coincide (t1/2 of curves 2 and 2' = 25 s). Bottom: energy requirement of exercise is 2.33 Vmaxo2; duration of exercise to exhaustion is 1.15 min. Curve 1, time course of energy yield at muscle level, resulting from sum of Vo2 through the mouth (curve 2) and O2‐stores depletion. Lactate production (——) begins when Vo2 at muscle level has reached its maximum value (areas La, amount of energy supplied by lactic sources). (Time course of La production, as well as time at which glycolysis begins, is hypothetical.) After exercise, VPCo2 is paid by the oxidative processes that remain at maximum level for ∼25 s; t1/2 of curves 1 and 1' = 15 s (asymptote of curve 1 = energy requirement); t1/2 of curve 2 = 30 s (asymptote = energy requirement); t1/2 of curve 2' = 25 s.

Adapted from di Prampero 137
Figure 12. Figure 12.

Model for control of muscle via mitochondrial creatinephosphokinase (CPK). Subscripts: e, extramitochondrial; i, intramitochondrial; m, mitochondrial. Glyc., glycogen.

Adapted from Mahler (329,528)


Figure 1.

Increase of overall O2 uptake per unit increase of expired minute ventilation (, kJ/liter) in normoxia (N, •, –) and in chronic hypoxia (H, ○, –––; 5,800 m).

Data from Pugh et al. 390. O2 cost of ventilation (Δ /η Δ ) in normoxia (N, ‐, ▪, ▴) and in chronic hypoxia (H, ‐ ‐ ‐), as calculated on the basis of efficiency values (η) of 0.25 (lower curves) and 0.1 (upper curves). [Data from Cruz 114, Margaria et al. 336, and Thoden et al. 470.] Pulmonary ventilation expressed at body temperature, ambient pressure, saturated with water vapor in liters per minute. “Critical level” for exercise ventilation is ∼15 liters/min lower in hypoxia (A' and B') than in normoxia (A and B). This indicates that in hypoxia the fraction of absolute utilized by respiratory muscles is necessarily greater than in normoxia


Figure 2.

Mean arterial O2 partial pressure (Pao2, •) and (○) values (±SD) as a function of O2 consumption (). Thin lines, calculated alveolar values. Shaded areas, alveolar‐arterial difference in partial pressure of O2 () and CO2 () *, P < 0.05. **, P < 0.01. ***, P < 0.001.

Data from Table 1 (ref. 133a not included)


Figure 3.

Mean (±SD) diffusing capacity for O2 (Do2; 44 subj.) and Dco (318 subj.) as a function of by various methods. *, P < 0.05. **, P < 0.01. ***, P < 0.001. (Data from refs. 13,35,48,55,75,119,149,169,199,265,269,326,337,359,363,387,392,402,415,461,478,511.)



Figure 4.

Myocardial O2 consumption (Mo2) per 100 g left ventricular tissue as a function of overall O2 consumption (), cardiac output (), and left ventricular blood flow (LV) at rest (•) and exercise (○). (a ‐ v)o2, Arteriovenous O2 difference in milliliters of O2 per 100 ml of blood. (Data from refs. 52,241,280,346,347,397.)



Figure 5.

Cardiac output () as a function of O2 uptake () for different groups of subjects: • boys (11‐14 yr); O, girls (11‐14 yr); ⋄, adult males; ⋄, adult females; +, male athletes; x, female athletes. Group Vmaxo2 values shown by ↑. Isopleths showing arterial‐mixed‐venous O2 difference in milli‐liters of O2 per 100 ml of blood, ()ov are also drawn. (Data from refs. 26,36,86,155,161,201,217,227,430.)



Figure 6.

A: heart rate (HR) as a function of . B: relationship between stroke volume (qst) and cardiac output (). Isopleth HR lines: 50, 100, 200/min. C: cardiac output as a function of . Isopleths show arterial‐mixed‐venous O2 difference: 5, 10, 15 ml/100 ml. • Walking and running (P. Cerretelli, unpublished observations); ▪, during aquatic activity 400; x, in hot environments 419; ⋄, during arm exercise 51; ○, during arm and leg exercise 51; o, during isometric (I) exercise (148; P. Cerretelli, unpublished observations).



Figure 7.

Maximum O2 consumption [maxo2 (ml·kg−1·min−1), lower panel] and ratio of maxo2 to resting O2 consumption (resto2, upper panel) as a function of body mass [M (g, log scale)] for various mammals. U, untrained; T, trained; S, sedentary; A, athlete.

Data for small rodents 312,358,370,413,414,438; data for average‐size mammals (springhares, pigs, baby lions: 100, 437, 438, 467); data for the dog 32,90,101,145,253,325,357,368,379,410,437,438,484,510; data for trained horses (G. Cortili, unpublished observations); data for untrained horses 471; data for humans 303


Figure 8.

Breath‐by‐breath O2 uptake (Vo2, Δ) and CO2 output (Vco2, ○) as a function of time during very strenuous exercise (treadmill running at 18 km/h, on a +15% incline, exhaustion time = 22 s) and in recovery period. Exhausting exercise was preceded by ∼10‐min walk at 4.5 km/h on a +15% incline. (Note 3 different time scales.)



Figure 9.

Output of CO2 in excess of O2 uptake (excess Vco2) as a function of peak blood lactate concentration above resting (Δab) in recovery after very strenuous exercise (treadmill running at 18 km/h; +10%, +15%, and +20% incline; exhaustion time 14‐50 s) in 4 subjects. Excess Vco2 was calculated as Vco2 · dt Vo2 · dt, where t1 is the time at which Vco2 = Vo2, usually ∼10 min (see Fig. 8).



Figure 10.

Excess Vco2 as a function of corresponding PAco2 in 4 subjects (○, x, ○, ⋄). Excess Vco2 is here the amount of CO2 eliminated in excess of O2 uptake, up to the moment at which PAco2 was as indicated. Thus, as recovery proceeds, the subjects' respiratory conditions move toward the left, along the curve; points to the extreme left correspond to ∼10 min in all subjects. Three subjects are characterized by the same function; 4th subject (⋄) follows a markedly different pattern. For a given excess Vco2, drop in [] can be considered equal in all subjects (see Fig. 9). Therefore, this last subject (⋄), having a higher PAco2 for a given excess Vco2, is presumably characterized by a lesser sensitivity to CO2.



Figure 11.

Time course of energetic processes at onset of exercise in humans. Ordinate in arbitrary units: 1 = Vmaxo2. Top: energy requirement of exercise (E) is 0.8 Vmaxo2. Curve 1, time course of energy yield at muscle level, resulting from sum of Vo2 through the mouth (curve 3, t1/2 = 40 s), early lactate production, and O2‐stores depletion. Amount of energy contributed by latter 2 factors is indicated by areas labeled VeLao2 and ΔVsto2, respectively. Area labeled Vo2, amount of O2 taken in through the mouth during exercise. (For mild aerobic exercise eLa = 0, so that curve 3 overlaps curve 2.) Difference between energy requirement of exercise (constant from time 0) and curve 1 must be supplied by net PC breakdown. Alactic O2 debt (VPCo2), amount of phosphocreatine (PC) split in O2 equivalents. Curve 1, time course of VPCo2 contraction; curve 1′, time course of VPCo2 payment; t1/2 of curves 1 and 1' = 15 s. No La production occurs in recovery; thus curves 2' and 3' coincide (t1/2 of curves 2 and 2' = 25 s). Bottom: energy requirement of exercise is 2.33 Vmaxo2; duration of exercise to exhaustion is 1.15 min. Curve 1, time course of energy yield at muscle level, resulting from sum of Vo2 through the mouth (curve 2) and O2‐stores depletion. Lactate production (——) begins when Vo2 at muscle level has reached its maximum value (areas La, amount of energy supplied by lactic sources). (Time course of La production, as well as time at which glycolysis begins, is hypothetical.) After exercise, VPCo2 is paid by the oxidative processes that remain at maximum level for ∼25 s; t1/2 of curves 1 and 1' = 15 s (asymptote of curve 1 = energy requirement); t1/2 of curve 2 = 30 s (asymptote = energy requirement); t1/2 of curve 2' = 25 s.

Adapted from di Prampero 137


Figure 12.

Model for control of muscle via mitochondrial creatinephosphokinase (CPK). Subscripts: e, extramitochondrial; i, intramitochondrial; m, mitochondrial. Glyc., glycogen.

Adapted from Mahler (329,528)
References
 1. Achar, M. V. S. Effects of injection of Locke solution with higher concentration of potassium on blood pressure in cats. J. Physiol. Lond. 198: 115–116, 1968.
 2. Adaro, F., M. Meyer, and R. S. Sikand. Rebreathing and single breath pulmonary CO diffusing capacity in man at rest and exercise studied by C18O isotope. Bull. Eur. Physiopathol. Respir. 12: 747–756, 1976.
 3. Addanki, S., F. D. Cahill, and J. F. Sotos. Determination of intramitochondrial pH and intramitochondrial‐extramitochondrial pH gradient of isolated heart mitochondria by the use of 5,5‐dimethyl‐2,4‐oxazolidinedione. I. Changes during respiration and adenosine triphosphate‐dependent transport of Ca2+, Mg2+, and Zn2+. J. Biol. Chem. 243: 2337–2348, 1968.
 4. Aghemo, P., F. Piñera‐Limas, and G. Sassi. Maximal aerobic power in primitive Indians. Int. Z. Angew. Physiol. Einschl. Arbeitsphysiol. 29: 337–342, 1971.
 5. Agostoni, E., E. J. M. Campbell, and S. Freedman. The mechanical work of breathing. In: Respiratory Muscles: Mechanics and Neural Control (2nd ed.), edited by E. J. M. Campbell, E. Agostoni, and J. Newsom Davis. London: Lloyd‐Luke, 1970, p. 115–137.
 6. Alam, M., and F. H. Smirk. Observations in man upon a blood pressure raising reflex arising from the voluntary muscles. J. Physiol. Lond. 89: 372–383, 1937.
 7. Altschuld, R. A., A. J. Merola, and G. P. Brierley. The permeability of heart mitochondria to creatine. J. Mol. Cell. Cardiol. 7: 451–462, 1975.
 8. Ambrosoli, G., P. Cerretelli, P. Magrassi, and E. Respighi. II bilancio energetico del miocardio durante ischemia. Rend. Accad. Naz. Lincei (Ser. VIII) 46: 619–626, 1969.
 9. Andersen, K. L. Respiration recovery from muscular exercise of short duration. Acta Physiol. Scand. Suppl. 168: 1–102, 1960.
 10. Andersen, K. L., A. Bolstad, Y. Løyning, and L. Irving. Physical fitness of Artic Indians. J. Appl. Physiol. 15: 645–648, 1960.
 11. Andersen, P., and J. Henriksson. Capillary supply of the quadriceps femoris muscle of man: adaptive response to exercise. J. Physiol. Lond. 270: 677–690, 1977.
 12. Anderson, T. W., and R. J. Shephard. The effects of hyperventilation and exercise upon the pulmonary diffusing capacity. Respiration 25: 465–484, 1968.
 13. Anderson, T. W., and R. J. Shephard. Physical training and exercise diffusing capacity. Int. Z. Angew. Physiol. Einschl. Arbeitsphysiol. 25: 198–209, 1968.
 14. Andrew, G. M., and L. Baines. Relationship of pulmonary diffusing capacity (Dl) and cardiac output (Qc) in exercise. Eur. J. Appl. Physiol. Occup. Physiol. 33: 127–137, 1974.
 15. Apthorp, G. H., and R. Marshall. Pulmonary diffusing capacity, a comparison of breath‐holding and steady state methods using carbon monoxide. J. Clin. Invest. 40: 1775–1784, 1961.
 16. Armstrong, R. B., M. D. Delp, and M. H. Laughlin. Cardiac output distribution in miniature swine during locomotory exercise to VO2 (Abstract). Federation Proc. 45: 282, 1986.
 17. Asmussen, E. Ventilation at transition from rest to exercise. Acta Physiol. Scand. 89: 68–78, 1973.
 18. Asmussen, E., and E. H. Christensen. Die Mittelkapazität der Lungen bei erhöhtem O2‐Bedarf. Skand. Arch. Physiol. 82: 201–211, 1939.
 19. Asmussen, E., S. H. Johansen, H. Jorgensen, and M. Nielsen. On the nervous factors controlling respiration and circulation during exercise. Acta Physiol. Scand. 63: 343–350, 1965.
 20. Asmussen, E., and M. Nielsen. Studies on the initial changes in respiration at the transition from rest to work and from work to rest. Acta Physiol. Scand. 16: 270–285, 1948.
 21. Asmussen, E., and M. Nielsen. Physiological dead space and alveolar gas pressures at rest and during muscular exercise. Acta Physiol. Scand. 38: 1–21, 1956.
 22. Asmussen, E., and M. Nielsen. Alveolo‐arterial gas exchange at rest and during work at different O2 tensions. Acta Physiol. Scand. 50: 153–166, 1960.
 23. Asmussen, E., M. Nielsen, and G. Wieth‐Pedersen. On the regulation of circulation during muscular work. Acta Physiol. Scand. 6: 353–358, 1943.
 24. åstrand, I. Aerobic work capacity in men and women with special reference to age. Acta Physiol. Scand. Suppl. 169: 1–92, 1960.
 25. åstrand, I. Circulatory responses to arm exercise in different work positions. Scand. J. Clin. Lab. Invest. 27: 293–297, 1971.
 26. åstrand, P.‐O. Experimental Studies of Physical Working Capacity in Relation to Sex and Age. Copenhagen: Munksgaard, 1952.
 27. åstrand, P.‐O. Human physical fitness with special reference to sex and age. Physiol. Rev. 36: 307–335, 1956.
 28. åstrand, P.‐O., T. E*. Cuddy, B. Saltin, and J. Stenberg. Cardiac output during submaximal and maximal work. J. Appl. Physiol. 19: 268–274, 1964.
 29. åstrand, P.‐O., and B. Saltin. Oxygen uptake during the first minutes of heavy muscular exercise. J. Appl. Physiol*. 16: 971–976, 1961.
 30. åstrand, P.‐O., and B. Saltin. Plasma and red cell volume after prolonged severe exercise. J. Appl. Physiol. 19: 829–832, 1964.
 31. Atkinson, D. E. The energy charge of the adenylate pool as regulatory parameter. Interaction with feedback modifiers. Biochemistry 7: 4030–4034, 1968.
 32. Auchincloss, J. H., Jr., R. Gilbert, and G. H. Baule. Effect of ventilation on oxygen transfer during early exercise. J. Appl. Physiol. 21: 810–818, 1966.
 33. Bachofen, H., H. J. Hobi, and M. Scherrer. Alveolararterial N2 gradients at rest and during exercise in healthy men of different ages. J. Appl. Physiol. 34: 137–142, 1973.
 34. Bailie, M. D., S. Robinson, H. H. Rostorfer, and J. L. Newton. Effects of exercise on heart output of the dog. J. Appl. Physiol. 16: 107–111, 1961.
 35. Bannister, R. G., J. E. Cotes, R. S. Jones, and F. Meade. Pulmonary diffusing capacity on exercise in athletes and nonathletic subjects (Abstract). J. Physiol. Lond. 152: 66P–67P, 1960.
 36. Bannister, R. G., and D. J. C. Cunningham. The effects on the respiration and performance during exercise of adding oxygen to the inspired air. J. Physiol. Lond. 125: 118–137, 1954.
 37. Barlett, H. L., J. Kollias, J. L. Hodgson, and E. R. Buskirk. A possible explanation for exercise Dlco based on estimations of SAL and τh. Respir. Physiol. 19: 333–343, 1973.
 38. Bar‐Or, O., R. J. Shephard, and C. L. Allen. Cardiac output of 10‐ to 13‐year‐old boys and girls during submaximal exercise. J. Appl. Physiol. 30: 219–223, 1971.
 39. Barr, P. O., M. Beckman, J. Bjurstedt, J. Brismar, C. M. Hesser, and G. Matell. Time courses of blood gas changes provoked by light and moderate exercise in man. Acta Physiol. Scand. 60: 1–17, 1964.
 40. Bartels, H., R. Beer, E. Fleischer, H. J. Hoffheinz, J. Krall, G. Rodewald, J. Wenner, and I. Witt. Bestimmung von Kurzschlussdurchblutung und Diffusionskapazität der Lunge bei Gesunden und Lungenkranken. Pfluegers Arch. 261: 99–132, 1955.
 41. Bartels, H., R. Beer, H. P. Koepchen, J. Wenner, and I. Witt. Messung der alveolär‐arteriellen O2‐Druckdifferenz mit verschiedenen Methoden am Menschen bei Ruhe und Arbeit. Pfluegers Arch. 261: 133–151, 1955.
 42. Bartlett, R. G., Jr., H. F. Brubach, and H. Specht. Oxygen cost of breathing. J. Appl. Physiol. 12: 413–424, 1958.
 43. Bates, D. V., N. G. Boucot, and A. E. Dormer. The pulmonary diffusing capacity in normal subjects. J. Physiol. Lond. 129: 237–252, 1955.
 44. Bates, D. V., and J. F. Pearce. The pulmonary diffusing capacity: a comparison of methods of measurement and a study of the effect of body position. J. Physiol. Lond. 132: 232–238, 1956.
 45. Bates, D. V., C. J. Varvis, R. E. Donevan, and R. V. Christie. Variations in the pulmonary capillary blood volume and membrane diffusion component in health and disease. J. Clin. Invest. 39: 1401–1412, 1960.
 46. Beaumont, W. van Red cell volume with changes in plasma osmolarity during maximal exercise. J. Appl. Physiol. 35: 47–50, 1973.
 47. Beaumont, W. van, J. C. Strand, J. S. Petrofsky, S. G. Hipskind, and J. E. Greenleaf. Changes in total plasma content of electrolytes and proteins with maximal exercise. J. Appl. Physiol. 34: 102–106, 1973.
 48. Beaumont, W. van, S. Underkofler, and S. van Beaumont. Erythrocyte volume, plasma volume, and acid‐base changes in exercise and heat dehydration. J. Appl. Physiol. 50: 1255–1262, 1981.
 49. Beaver, W. L., N. Lamarra, and K. Wasserman. Breath‐by‐breath measurement of true alveolar gas exchange. J. Appl. Physiol. 51: 1662–1675, 1981.
 50. Beaver, W. L., and K. Wasserman. Transients in ventilation at start and end of exercise. J. Appl. Physiol. 25: 390–399, 1968.
 51. Bedell, G. N., and R. W. Adams. Pulmonary diffusing capacity during rest and exercise. A study of normal persons and persons with atrial septal defect, pregnancy, and pulmonary disease. J. Clin. Invest. 41: 1908–1914, 1962.
 52. Bennett, F. M., P. Reischl, F. S. Grodins, S. M. Yamashiro, and W. E. Fordyce. Dynamics of ventilatory response to exercise in humans. J. Appl. Physiol. 51: 194–203, 1981.
 53. Berg, W. E. Individual differences in respiratory gas exchange during recovery from moderate exercise. Am. J. Physiol. 149: 597–610, 1947.
 54. Bessman, S. P., and P. G. Geiger. Transport of energy in muscle: the phosphorylcreatine shuttle. Science Wash. DC 211: 448–452, 1981.
 55. Bevegård, S., U. Freyschuss, and T. Strandell. Circulatory adaptation to arm and leg exercise in supine and sitting position. J. Appl. Physiol. 21: 37–46, 1966.
 56. Binak, K., N. Harmanci, N. Sirmaci, N. Ataman, and H. Ogan. Oxygen extraction rate of the myocardium at rest and on exercise in various conditions. Br. Heart J. 29: 422–427, 1966.
 57. Bing, R. J. The coronary circulation in health and disease as studied by coronary sinus catheterization. Bull. NY Acad. Med. 27: 407–424, 1951.
 58. Bitterli, J., H. Bachofen, K. Kyd, and M. Scherrer. Repeated measurements of pulmonary O2‐diffusing capacity in man during graded exercise. In: Pulmonary Diffusing Capacity on Exercise, edited by M. Scherrer. Bern: Huber, 1971, p. 139–149.
 59. Bjure, J. Pulmonary diffusing capacity for carbon monoxide in relation to cardiac output in man. Scand. J. Clin. Lab. Invest. Suppl. 81: 1–113, 1965.
 60. Bjure, J., G. Grimby, and N. J. Nilsson. Pulmonary gas exchange during submaximal and maximal exercise in healthy middle‐aged men. In: Pulmonary Diffusing Capacity on Exercise, edited by M. Scherrer. Bern: Huber, 1971, p. 107–131.
 61. Bjurstedt, H., C. M. Hesser, G. Liljestrand, and G. Matell. Effects of posture on alveolar‐arterial CO2 and O2 differences and on alveolar dead space in man. Acta Physiol. Scand. 54: 65–82, 1962.
 62. Blair, D. A., W. E. Glover, and I. C. Roddie. Vasomotor responses in the human arm during leg exercise. Circ. Res. 9: 264–274, 1961.
 63. Blomqvist, G., R. L. Johnson, Jr., and B. Saltin. Pulmonary diffusing capacity limiting human performance at altitude. Acta Physiol. Scand. 76: 284–287, 1969.
 64. Bohr, C. Über die spezifische Tätigkeit der Lungen bei der respiratorischen Gasaufnahme und ihr Verhalten zu der durch die Alveolarwand stattfindenden Gasdiffusion. Skand. Arch. Physiol. 22: 221–280, 1909.
 65. Bøje, O. Uber die Grösse der Lungendiffusion des Menschen während Ruhe und körperlicher Arbeit. Arbeitsphysiologie 7: 157–166, 1933.
 66. Bonde‐Petersen, F., A. L. Mork, and E. Nielsen. Local muscle blood flow and sustained contractions of human arm and back muscles. Eur. J. Appl. Physiol. Occup. Physiol. 34: 43–50, 1975.
 67. Borst, C., A. P. Hollander, and L. N. Bouman. Cardiac acceleration elicited by voluntary muscle contractions of minimal duration. J. Appl. Physiol. 32: 70–77, 1972.
 68. Bradley, J., C. Bye, S. P. Hayden, and D. T. Hughes. Normal values of transfer factor and transfer coefficients in healthy males and females. Respiration 38: 221–226, 1979.
 69. Bradley, S. E. Hepatic blood flow. Effect of posture and exercise upon blood flow through the liver. In: Trans. Conf. Liver Injury, 7th, edited by F. W. Hoffbauer. New York: Josiah Macy, Jr. Found., 1948, p. 53–56.
 70. Braumann, K. M., D. Böning, and F. Trost. Oxygen dissociation curves in trained and untrained subjects. Eur. J. Appl. Physiol. Occup. Physiol. 42: 51–60, 1979.
 71. Braunwald, E. Control of myocardial oxygen consumption. Physiological and clinical considerations. Am. J. Cardiol. 27: 416–432, 1971.
 72. Braunwald, E., J. Ross, Jr., and E. H. Sonnenblick. Myocardial energetics. In: Mechanisms of Contraction of the Normal and Failing Heart (2nd ed.). Boston, MA: Little, Brown, 1976, p. 166–199.
 73. Broman, S., and O. Wigertz. Transient dynamics of ventilation and heart rate with step changes in work load from different load levels. Acta Physiol. Scand. 81: 54–74, 1971.
 74. Brooks, G. A., K. J. Hittelman, J. A. Faulkner, and R. E. Beyer. Temperature, skeletal muscle mitochondrial functions, and oxygen debt. Am. J. Physiol. 220: 1053–1059, 1971.
 75. Brotherhood, J., B. Brozović, and L. G. C. E. Pugh. Haematological status of middle‐ and long‐distance runners. Clin. Sci. Mol. Med. 48: 139–145, 1975.
 76. Bryan, A. C., L. G. Bentivoglio, F. Beerel, H. MacLeish, A. Zidulka, and D. V. Bates. Factors affecting regional distribution of ventilation and perfusion in the lung. J. Appl. Physiol. 19: 395–402, 1964.
 77. Buick, F. J., N. Gledhill, A. B. Froese, L. Spriet, and E. C. Meyers. Effect of induced erythrocythemia on aerobic work capacity. J. Appl. Physiol. 48: 636–642, 1980.
 78. Burrows, B., J. E. Kasik, A. H. Niden, and W. R. Barcley. Clinical usefulness of the single‐breath pulmonary diffusing capacity test. Am. Rev. Respir. Dis. 84: 789–806, 1961.
 79. Cander, L., and E. G. Hanowell. Effects of fever on pulmonary diffusing capacity and pulmonary mechanics in man. J. Appl. Physiol. 18: 1065–1070, 1963.
 80. Canfield, R. E., and H. Rahn. Arterial‐alveolar N2 gas pressure differences due to ventilation‐perfusion variations. J. Appl. Physiol. 10: 165–172, 1957.
 81. Casaburi, R., M. L. Weissman, D. J. Huntsman, B. J. Whipp, and K. Wasserman. Determinants of gas exchange kinetics during exercise in the dog. J. Appl. Physiol. 46: 1054–1060, 1979.
 82. Casaburi, R., B. J. Whipp, K. Wasserman, W. L. Beaver, and S. N. Koyal. Ventilatory and gas exchange dynamics in response to sinusoidal work. J. Appl. Physiol. 42: 300–311, 1977.
 83. Cerretelli, P. Limiting factors to oxygen transport on Mount Everest. J. Appl. Physiol. 40: 658–667, 1976.
 84. Cerretelli, P. Metabolismo ossidativo ed anaerobico nel soggetto acclimatato all'altitudine. Minerva Aerosp. 67: 11–26, 1976.
 85. Cerretelli, P. Gas exchange at altitude. In: Pulmonary Gas Exchange. Organism and Environment, edited by J. B. West. New York: Academic, 1980, vol. II, p. 97–147.
 86. Cerretelli, P. Energy metabolism during exercise at altitude. In: Medicine and Sport. Physiological Chemistry of Exercise and Training, edited by P. E. di Prampero and J. R. Poortmans. Basel: Karger, 1981, vol. 13, p. 175–190.
 87. Cerretelli, P., P. Aghemo, and E. Rovelli. Aspetti fisio‐logici dell'adolescente in relazione alla pratica dell'esercizio fisico. Med. Sport Turin 21: 400–406, 1968.
 88. Cerretelli, P., M. Blau, D. Pendergast, C. Eisenhardt, D. W. Rennie, J. Steinbach, and G. Entine. Cadmium telluride 133Xe clearance detector for muscle flow studies. IEEE Trans. Nucl. Sci. NS‐25: 620–623, 1978.
 89. Cerretelli, P., and I. Brambilla. Cinetica della contrazione di un debito di O2 nell'uomo. Boll. Soc. Ital. Biol. Sper. 34: 679–682, 1958.
 90. Cerretelli, P., J. C. Cruz, L. E. Farhi, and H. Rahn. Determination of mixed venous O2 and CO2 tensions and cardiac output by a rebreathing method. Respir. Physiol. 1: 258–264, 1966.
 91. Cerretelli, P., P. E. di Prampero, and D. W. Rennie. Measurement of mixed venous oxygen tension by a modified rebreathing procedure. J. Appl. Physiol. 28: 707–711, 1970.
 92. Cerretelli, P., C. Marconi, D. Pendergast, M. Meyer, N. Heisler, and J. Piiper. Blood flow in exercising muscles by xenon clearance and by microsphere trapping. J. Appl. Physiol. 56: 24–30, 1984.
 93. Cerretelli, P., D. Pendergast, W. C. Paganelli, and D. W. Rennie. Effects of specific muscle training on Vo2 on‐response and early blood lactate. J. Appl. Physiol. 47: 761–769, 1979.
 94. Cerretelli, P., J. Piiper, F. Mangili, F. Cuttica, and B. Ricci. Circulation in exercising dogs. J. Appl. Physiol. 19: 29–32, 1964.
 95. Cerretelli, P., J. Piiper, F. Mangili, and B. Ricci. Aerobic and anaerobic metabolism in exercising dogs. J. Appl. Physiol. 19: 25–28, 1964.
 96. Cerretelli, P., and P. Radovani. Il massimo consumo di O2 in atleti olimpionici di varie specialità. Boll. Soc. Ital. Biol. Sper. 36: 1871–1872, 1960.
 97. Cerretelli, P., D. Shindell, D. P. Pendergast, P. E. di Prampero, and D. W. Rennie. Oxygen uptake transients at the onset and offset of arm and leg work. Respir. Physiol. 30: 81–97, 1977.
 98. Cerretelli, P., R. Sikand, and L. E. Farhi. Readjustments in cardiac output and gas exchange during onset of exercise and recovery. J. Appl. Physiol. 21: 1345–1350, 1966.
 99. Cerretelli, P., R. S. Sikand, and L. E. Farhi. Effect of increased airway resistance on ventilation and gas exchange during exercise. J. Appl. Physiol. 27: 597–600, 1969.
 100. Cerretelli, P., A. Veicsteinas, M. Fumagalli, and L. Dell'Orto. Energetics of isometric exercise in man. J. Appl. Physiol. 41: 136–141, 1976.
 101. Cerretelli, P., A. Veicsteinas, M. Samaja, and E. Rovelli. Effets de l'entraînement physique sur la courbe de dissociation de l'oxyhémoglobine (CDO) (Abstract). J. Physiol. Paris 76: 45A, 1980.
 102. Cerretelli, P., A. Veicsteinas, J. Teichmann, H. Magnussen, and J. Piiper. Estimation by a rebreathing method of pulmonary O2 diffusing capacity in man. J. Appl. Physiol. 37: 526–532, 1974.
 103. Chance, B., G. Mauriello, and X. Aubert. ADP arrival at muscle mitochondria following a twitch. In: Muscle as a Tissue, edited by K. Rodahl and S. M. Horvath. New York: McGraw‐Hill, 1962, p. 128–145.
 104. Chassin, P. S., C. R. Taylor, N. C. Heglund, and H. J. Seeherman. Locomotion in lions: energetic cost and maximum aerobic capacity. Physiol. Zool. 49: 1–10, 1976.
 105. Chatonnet, J., and Y. Minaire. Comparison of energy expenditure during exercise and cold exposure in the dog. Federation Proc. 25: 1348–1350, 1966.
 106. Clausen, J. P. Effect of physical training on cardiovascular adjustments to exercise in man. Physiol. Rev. 57: 779–815, 1977.
 107. Clausen, J. P., K. Klausen, B. Rasmussen, and J. Trap‐Jensen. Central and peripheral circulatory changes after training of the arms or legs. Am. J. Physiol. 225: 675–682, 1973.
 108. Clausen, J. P., and N. A. Lassen. Muscle blood flow during exercise in normal man studied by the 133Xenon clearance method. Cardiovasc. Res. 5: 245–254, 1971.
 109. Coffman, J. D., and D. E. Gregg. Blood flow and oxygen debt from coronary artery occlusion. Clin. Res. 8: 179, 1960.
 110. Cohn, J. E., D. G. Carroll, B. W. Armstrong, R. H. Shepard, and R. L. Riley. Maximal diffusing capacity of the lung in normal male subjects of different ages. J. Appl. Physiol. 6: 588–597, 1954.
 111. Convertino, V. A., P. J. Brock, L. C. Keil, E. M. Bernauer, and J. E. Greenleaf. Exercise training‐induced hypervolemia: role of plasma albumin, renin, and vasopressin. J. Appl. Physiol. 48: 665–669, 1980.
 112. Coote, J. H., and J. F. Pérez‐Gonzáles. The response of some sympathetic neurones to volleys in various afferent nerves. J. Physiol. Lond. 208: 261–278, 1970.
 113. Costill, D. L., L. Branam, D. Eddy, and W. Fink. Alterations in red cell volume following exercise and dehydration. J. Appl. Physiol. 37: 912–916, 1974U.
 114. Coyle, E. F., W. H. Martin III, D. R. Sinacore, M. J. Joyner, J. M. Hagberg, and J. O. Holloszy. Time course of loss of adaptations after stopping prolonged intense endurance training. J. Appl. Physiol. 57: 1857–1864, 1984.
 115. Craig, F. N. Oxygen uptake at the beginning of work. J. Appl. Physiol. 33: 611–615, 1972.
 116. Crayton, S. C., R. Aung‐Din, D. E. Fixler, and J. H. Mitchell. Distribution of cardiac output during induced isometric exercise in dogs. Am. J. Physiol 236 (Heart Circ. Physiol. 5): H218–H224, 1979.
 117. Cropp, G. J. A., and J. H. Comroe, Jr Role of mixed venous blood Pco2 in respiratory control. J. Appl. Physiol. 16: 1029–1033, 1961.
 118. Cross, C. E., H. Gong, C. J. Kurpershoek, J. R. Gillespie, and R. W. Hyde. Alterations in distribution of blood flow te the lung's diffusion surfaces during exercise. J. Clin. Invest. 52: 414–421, 1973.
 119. Cruz, J. C. Mechanics of breathing in high altitude and sea level subjects. Respir. Physiol. 17: 146–161, 1973.
 120. Cugell, D. W., A. Marks, M. F. Ellicott, T. L. Badger, and E. A. Gaensler. Carbon monoxide diffusing capacity during steady exercise. Comparison of physiological and histological findings in patients with pulmonary fibrosis and granulomatosis. Am. Rev. Tuberc. Pulm. Dis. 74: 317–342, 1956.
 121. Daly, W. J. Pulmonary diffusing capacity for carbon monoxide and topography of perfusion during changes in alveolar pressure in man. Am. Rev. Respir. Dis. 99: 548–553, 1969.
 122. Daly W. J., and J. W. Roe. The effect of a Valsalva manoeuvre on the pulmonary diffusing capacity for carbon monoxide in man. Clin. Sci. Lond. 23: 405–409, 1962.
 123. D'Angelo, E., and G. Torelli. Neural stimuli increasing respiration during different types of exercise. J. Appl. Physiol. 30: 116–121, 1971.
 124. Danzer, L. A., J. E. Cohn, and F. W. Zechman. Relationship of Dm and Vc to pulmonary diffusing capacity during exercise. Respir. Physiol. 5: 250–258, 1968.
 125. Davies, C. T. M., C. Barnes, R. H. Fox, R. O. Ojikutu, and A. S. Samueloff. Ethnic differences in physical working capacity. J. Appl. Physiol. 33: 726–732, 1972.
 126. Davies, C. T. M., P. E. di Prampero, and P. Cerretelli. Kinetics of cardiac output and respiratory gas exchange during exercise and recovery. J. Appl. Physiol. 32: 618–625, 1972.
 127. Davies, C. T. M., and A. J. Sargeant. Indirect determination of maximal aerobic power output during work with one or two limbs. Eur. J. Appl. Physiol. Occup. Physiol. 32: 207–215, 1974.
 128. Davies, C. T. M., and J. P. M. Van Haaren. Maximum aerobic power and body composition in healthy East African older male and female subjects. Am. J. Phys. Anthropol. 39: 395–401, 1973.
 129. Davis, J. A., M. H. Frank, B. J. Whipp, and K. Wasserman. Anaerobic threshold alterations caused by endurance training in middle‐aged men. J. Appl. Physiol. 46: 1039–1046, 1979.
 130. Dawson, M. J., D. G. Gadian, and D. R. Wilkie. Studies of the biochemistry of contracting and relaxing muscle by the use of 31P n.m.r. cin conjunction with other techniques. Philos. Trans. R. Soc. Lond. B Biol. Sci. 289: 445–455, 1980.
 131. Dechoux, J., and C. Pivoteau. La capacité de diffusion alvéolo‐capillaire. Sa mesure chez le sujet normal et le silicotique. Rev. Tuberc. Pneumol. 24: 267–282, 1960.
 132. De Graff, A. C., Jr., R. F. Grover, R. L. Johnson, Jr., J. W. Hammond, Jr., and J. M. Miller. Diffusing capacity of the lung in Caucasians native to 3,100 m. J. Appl. Physiol. 29: 71–76, 1970.
 133. Dejours, P. La régulation de la ventilation au cours de l'exercice musculaire chez l'homme. J. Physiol. Paris 51: 163–261, 1959.
 134. Dejours, P. The regulation of breathing during muscular exercise in man—a neuro‐humoral theory. In: The Regulation of Human Respiration, edited by D. J. C. Cunningham and B. B. Lloyd. Oxford: Blackwell, 1963, p. 335–347.
 135. Dejours, P. Neurogenic factors in the control of ventilation during exercise. Circ. Res. 20: 146–153, 1967.
 136. Dejours, P., R. Flandrois, R. Lefrançois, and A. Teillac. Etude de la régulation de la ventilation au cours de l'exercice musculaire chez l'homme (Abstract). J. Physiol. Paris 53: 321, 1961.
 137. Dejours, P., J. Raynaud, C. L. Cuenod, and Y. Labrousse. Modifications instantanées de la ventilation au début et à l'arrět de l'exercice musculaire. Interprétation. J. Physiol. Paris 47: 155–159, 1955.
 138. Demedts, M., and N. R. Anthonisen. Effects of increased external airway resistance during steady‐state exercise. J. Appl. Physiol. 35: 361–366, 1973.
 139. De Moor, J. C. Individual differences in oxygen debt curves related to mechanical efficiency and sex. J. Appl. Physiol. 6: 460–466, 1954.
 140. Dempsey, J. A., P. G. Hanson, and K. S. Henderson. Exercise‐induced arterial hypoxaemia in healthy human subjects at sea level. J. Physiol. Lond. 355: 161–175, 1984.
 141. Dempsey, J. A., W. G. Reddan, M. L. Birnbaum, H. V. Forster, J. S. Thoden, R. F. Grover, and J. Rankin. Effects of acute through life‐long hypoxic exposure on exercise pulmonary gas exchange. Respir. Physiol. 13: 62–89, 1971.
 142. Dempsey, J. A., J. M. Thomson, H. V. Forster, F. C. Cerny, and L. W. Chosey. Hb02 dissociation in man during prolonged work in chronic hypoxia. J. Appl. Physiol. 38: 1022–1029, 1975.
 143. Diamond, L. B., R. Casaburi, K. Wasserman, and B. J. Whipp. Kinetics of gas exchange and ventilation in transitions from rest or prior exercise. J. Appl. Physiol. 43: 704–708, 1977.
 144. Di Prampero, P. E. Energetics of muscular exercise. Rev. Physiol. Biochem. Pharmacol. 89: 143–222, 1981.
 145. Di Prampero, P. E. The control of muscle oxygen consumption after heavy exercise. Boll. Soc. Ital. Biol. Sper. 40 Suppl. 3: 80–81, 1984.
 146. Di Prampero, P. E. Metabolic and circulatory limitations to Vo2max at the whole animal level. J. Exp. Biol. 115: 319–331, 1985.
 147. Di Prampero, P. E., and P. Cerretelli. Maximal muscular power (aerobic and anaerobic) in African natives. Ergonomics 12: 51–59, 1969.
 148. Di Prampero, P. E., C. T. M. Davies, P. Cerretelli, and R. Margaria. An analysis of O2 debt contracted in submaximal exercise. J. Appl. Physiol. 29: 547–551, 1970.
 149. Di Prampero, P. E., and R. Margaria. Relationship between O2 consumption, high energy phosphates and the kinetics of O2 debt in exercise. Pfluegers Arch. 304: 11–19, 1968.
 150. Di Prampero, P. E., and R. Margaria. Mechanical efficiency of phosphagen (ATP + CP) splitting and its speed of resynthesis. Pfluegers Arch. 308: 197–202, 1969.
 151. Di Prampero, P. E., L. Peeters, and R. Margaria. Alactic O2 debt and lactic acid production after exhausting exercise in man. J. Appl. Physiol. 34: 628–632, 1973.
 152. Di Prampero, P. E., F. Piñera‐Limas, and G. Sassi. Maximal muscular power, aerobic and anaerobic, in 116 athletes performing at the XIXth Olympic Games in Mexico. Ergonomics 13: 665–674, 1970.
 153. Doll, E. J., J. Keul, C. Maiwald, and H. Reindell. Das Verhalten von Sauerstoffdruck, Kohlensäuredruck, pH, Standardbicarbonat und Base Excess im arteriellen Blut bei verschiedenen Belastungsformen. Int. Z. Angew. Physiol. Einschl. Arbeitsphysiol. 22: 327–355, 1966.
 154. Donald, D. E., and D. Ferguson. Response of heart rate, oxygen consumption and arterial blood pressure to graded exercise in dogs. Proc. Soc. Exp. Biol. Med. 121: 626–630, 1966.
 155. Donald, D. E., S. E. Milburn, and J. T. Shepherd. Effect of cardiac denervation on the maximal capacity for exercise in the racing greyhound. J. Appl. Physiol. 19: 849–852, 1964.
 156. Donald, D. E., and J. T. Shepherd. Initial cardiovascular adjustment to exercise in dogs with chronic cardiac denervåtion. Am. J. Physiol. 207: 1325–1329, 1964.
 157. Donald, K. W., A. R. Lind, G. W. McNicol, P. W. Humphreys, S. H. Taylor, and H. P. Staunton. Cardiovascular response to sustained (static) contractions. Circ. Res. 20: 15–30, 1967.
 158. Donevan, R. E., W. H. Palmer, C. J. Varvis, and D. V. Bates. Influence of age on pulmonary diffusing capacity. J. Appl. Physiol. 14: 483–492, 1959.
 159. Donovan, C. M., and G. A. Brooks. Endurance training affects lactate clearance, not lactate production. Am. J. Physiol 244 (Endocrinol. Metab. 7): E83–E92, 1983.
 160. Eaton, J. W., J. A. Faulkner, and G. J. Brewer. Increased 2,3‐diphosphoglycerate (DPG) in the human red blood cell during muscular exercise (Abstract). Physiologist 12: 212, 1969.
 161. Ekblom, B. Effect of physical training on oxygen transport system in man. Acta Physiol. Scand. Suppl. 328: 1–45, 1969.
 162. Ekblom, B., P.‐O. Åstrand, B. Saltin, J. Stenberg, and B. Wallström. Effect of training on circulatory response to exercise. J. Appl. Physiol. 24: 518–528, 1968.
 163. Ekblom, B., A. N. Goldbarg, and B. Gullbring. Response to exercise after blood loss and reinfusion. J. Appl. Physiol. 33: 175–180, 1972.
 164. Ekblom, B., A. N. Goldbarg, A. Kilbom, and P.‐O. Åstrand. Effects of atropine and propranolol on the oxygen transport system during exercise in man. Scand. J. Clin. Lab. Invest. 30: 35–42, 1972.
 165. Ekblom, B., and L. Hermansen. Cardiac output in athletes. J. Appl. Physiol. 25: 619–625, 1968.
 166. Ekblom, B., and R. Huot. Response to submaximal exercise at different levels of carboxyhemoglobin. Acta Physiol. Scand. 86: 474–482, 1972.
 167. Ekblom, B., R. Huot, E. M. Stein, and A. T. Thorstensson. Effect of changes in arterial oxygen content on circulation and physical performance. J. Appl. Physiol. 39: 71–75, 1975.
 168. Ekblom, B., G. Wilson, and P.‐O. Åstrand. Central circulation during exercise after venesection and reinfusion of red blood cells. J. Appl. Physiol. 40: 379–383, 1976.
 169. Ekelund, L. G. Circulatory and respiratory adaptation during prolonged exercise in the supine position. Acta Physiol. Scand. 68: 382–396, 1966.
 170. Epstein, S. E., B. F. Robinson, R. L. Kahler, and E. Braunwald. Effects of beta‐adrenergic blockade on cardiac response to maximal and submaximal exercise in man. J. Clin. Invest. 44: 1745–1753, 1965.
 171. Erickson‐Viitanen, S., P. J. Geiger, P. Viitanen, and S. P. Bessman. Compartmentation of mitochondrial creatine phosphokinase. II. The importance of the outer mitochondrial membrane for mitochondrial compartmentation. J. Biol. Chem. 257: 14405–14411, 1982.
 172. Erickson‐Viitanen, S., P. Viitanen, P. J. Geiger, W. C. T. Yang, and S. P. Bessman. Compartmentation of mitochondrial creatine phosphokinase. I. Direct demonstration of compartmentation with the use of labeled precursors. J. Biol. Chem. 257: 14395–14404, 1982.
 173. Eriksson, B. O., G. Grimby, and B. Saltin. Cardiac output and arterial blood gases during exercise in pubertal boys. J. Appl. Physiol. 31: 348–352, 1971.
 174. Fagraeus, L., J. Karlsson, D. Linnarsson, and B. Saltin. Oxygen uptake during maximal work at lowered and raised ambient air pressures. Acta Physiol. Scand. 87: 411–421, 1973.
 175. Fagraeus, L., and D. Linnarsson. Autonomic origin of heart rate fluctuations at the onset of muscular exercise. J. Appl. Physiol. 40: 679–682, 1976.
 176. Farhi, L. E. Ventilation‐perfusion relationship and its role in alveolar gas exchange. In: Advances in Respiratory Physiology, edited by C. G. Caro. London: Arnold, 1966, p. 148–197.
 177. Farhi, L. E., and H. Rahn. A theoretical analysis of the alveolar‐arterial O2 difference with special reference to the distribution effect. J. Appl. Physiol. 7: 699–703, 1955.
 178. Farney, R. J., A. H. Morris, R. M. Gardner, and J. D. Armstrong, Jr. Rebreathing pulmonary capillary and tissue volume in normals after saline infusion. J. Appl. Physiol. 43: 246–253, 1977.
 179. Faulkner, J. A., G. J. Brewer, and J. W. Eaton. Adaptation of the red blood cell to muscular exercise. Adv. Exp. Med. Biol. 6: 213–217, 1970.
 180. Filley, G. F., F. Gregoire, and G. W. Wright. Alveolar and arterial oxygen tension and the significance of the alveolar‐arterial oxygen tension difference in normal man. J. Clin. Invest. 33: 517–529, 1954.
 181. Filley, G. F., D. J. MacIntosh, and G. W. Wright. Carbon monoxide uptake and pulmonary diffusing capacity in normal subjects at rest and during exercise. J. Clin. Invest. 33: 530–539, 1954.
 182. Fixler, D. E., J. M. Atkins, J. H. Mitchell, and L. D. Horwitz. Blood flow to respiratory, cardiac, and limb muscles in dogs during graded exercise. Am. J. Physiol. 231: 1515–1519, 1976.
 183. Flandrois, R., J. R. Lacour, J. P. Charbonnier, M. Gressier, and J. Genety. Capacité aérobie chez l'athlète français. Med. Sport Paris 47: 186–189, 1973.
 184. Flandrois, R., R. Puccinelli, Y. Houdas, and R. Lefrançois. Comparison des consommations maximales d'oxygène mesurée et théorique d'une population française. J. Physiol. Paris 54: 301–302, 1962.
 185. Flatley, F. J., H. Constantine, R. M. McCredie, and P. N. Yu. Pulmonary diffusing capacity and pulmonary capillary blood volume in normal subjects and in cardiac patients. Am. Heart J. 64: 159–168, 1962.
 186. Forsberg, A., P. Tesch, B. Sjödin, A. Thorstensson, and J. Karlsson. Skeletal muscle fibers and athletic performance. In: Biomechanics V, edited by P. V. Komi. Baltimore, MD: University Park, 1976, vol. A, p. 112–117. (Int. Ser. Biomech.)
 187. Forster, R. E. Can alveolar Pco2 exceed pulmonary endcapillary CO2? No. J. Appl. Physiol. 42: 323–328, 1977.
 188. Forster, R. E., F. J. W. Roughton, L. Cander, W. A. Briscoe, and F. Kreuzer. Apparent pulmonary diffusing capacity for CO at varying alveolar O2 tensions. J. Appl. Physiol. 11: 277–289, 1957.
 189. Frayser, R., J. C. Ross, H. S. Levin, J. V. Messer, and J. Pines. Effect of increased environmental temperature on pulmonary diffusing capacity. J. Appl. Physiol. 21: 147–150, 1966.
 190. Freedman, S. Sustained maximum voluntary ventilation. Respir. Physiol. 8: 230–244, 1970.
 191. Freyschuss, U. Cardiovascular adjustment to somatomotor activation. Acta Physiol. Scand. Suppl. 342: 1–63, 1970.
 192. Freyschuss, U., and A. Holmgren. On the variation of DLco with increasing oxygen uptake during exercise in healthy ordinarily trained young men and women. Acta Physiol. Scand. 65: 193–206, 1965.
 193. Freyschuss, U., and T. Strandell. Limb circulation during arm and leg exercise in supine position. J. Appl. Physiol. 23: 163–170, 1967.
 194. Freyschuss, U., and T. Strandell. Circulatory adaptation to one‐ and two‐leg exercise in supine position. J. Appl. Physiol. 25: 511–515, 1968.
 195. Gaensler, E. A., and A. A. Smith. Attachment for automated single breath diffusing capacity measurement. Chest 63: 136–145, 1973.
 196. Garman, R. F., R. W. Hyde, A. B. Fischer, and R. E. Forster. The single breath O2 diffusing capacity (Dlo2) at rest and exercise; its use in determining pulmonary diffusion/perfusion relationships (Abstract). Physiologist 13: 200, 1970.
 197. Gebert, G. Messung der K+‐ und Na+‐Aktivität mit Mikroglaselektroden im Extrazellulärraum des Kaninchenskelettmuskels bei Muskelarbeit. Pfluegers Arch. 331: 204–214, 1972.
 198. Georges, R., G. Saumon, and A. Loiseau. The relationship of age to pulmonary membrane conductance and capillary blood volume. Am. Rev. Respir. Dis. 117: 1069–1078, 1978.
 199. Gerlach, E. Stoffwechsel der Skelettmuskulatur. Wien. Klin. Wochenschr. 13: 229–234, 1967.
 200. Geyssant, A., J. Denis, J. Coudert, J. Riffat, D. Dormois, and J. R. Lacour. Effet de l'entraînement à l'exercice de longue durée sur l'affinité de l'hémoglobine pour l'oxygène (Abstract). J. Physiol. Paris 75: 54A, 1979.
 201. Gibbs, C. L., and J. B. Chapman. Cardiac energetics. In: Handbook of Physiology. The Cardiovascular System. The Heart, edited by R. M. Berne and N. Sperelakis. Bethesda, MD: Am. Physiol. Soc., 1979, sect. 2, vol. I, chapt. 22, p. 775–804.
 202. Giezendanner, D., P. Cerretelli, and P. E. Di Prampero. Breath‐by‐breath alveolar gas exchange. J. Appl. Physiol. 55: 583–590, 1983.
 203. Gilbert, R., J. H. Auchinoloss, Jr., and G. H. Baule. Metabolic and circulatory adjustments to unsteady‐state exercise. J. Appl. Physiol. 22: 905–912, 1967.
 204. Gledhill, N., A. B. Froese, F. J. Buick, and A. C. Bryan. Va/Q inhomogeneity and AaDo2 in man during exercise: effect of SF6 breathing. J. Appl. Physiol. 45: 512–515, 1978.
 205. Glick, Z., and E. Shvartz. Physical working capacity of young men of different ethnic groups in Israel. J. Appl. Physiol. 37: 22–26, 1974.
 206. Gollnick, P. D., R. B. Armstrong, B. Saltin, C. W. Saubert IV, W. L. Sembrowich, and R. E. Shepherd. Effect of training on enzyme activity and fiber composition of human skeletal muscle. J. Appl. Physiol. 34: 107–111, 1973.
 207. Gollnick, P. D., P. J. Struck, R. G. Soule, and J. R. Heinrick. Effect of exercise and training on the blood of normal and splenectomized rats. Int. Z. Angew. Physiol. Einschl. Arbeitsphysiol. 21: 169–178, 1965.
 208. Gong, H., C. J. Kurpershoek, and C. E. Cross. 18O2 diffusing capacity measured by a rebreathing method in normal man (Abstract). Clin. Res. 20: 195, 1972.
 209. Gong, H., C. J. Kurpershoek, D. B. Meyer, and C. E. Cross. Effects of cardiac output on 18O2 lung diffusion in normal resting man. Respir. Physiol. 16: 313–316, 1972.
 210. Gong, H., D. Meyer, R. Hyde, J. Gillespie, and C. E. Cross. 18O2 diffusing capacity at rest and during exercise in normal man (Abstract). Clin. Res. 18: 484, 1970.
 211. Goodwin, G. M., D. I. McCloskey, and J. H. Mitchell. Cardiovascular and respiratory responses to changes in central command during isometric exercise at constant muscle tension. J. Physiol. Lond. 226: 173–190, 1972.
 212. Goresky, C. A., J. W. Warnica, J. H. Burgess, and B. E. Nadeau. Effect of exercise on dilution estimates of extravascular lung water and on carbon monoxide diffusing capacity in normal adults. Circ. Res. 37: 379–389, 1975.
 213. Graham, T. P., J. W. Covell, E. H. Sonnenblick, J. Ross, and E. Braunwald. Control of myocardial oxygen consumption: relative influence of contractile state and tension development. J. Clin. Invest. 47: 375–385, 1968.
 214. Granath, A., B. Jonsson, and T. Strandell. Circulation in healthy old men, studied by right heart catheterization at rest and during exercise in supine and sitting position. Acta Med. Scand. 176: 425–446, 1964.
 215. Grimby, G. Renal clearances during prolonged supine exercise at different loads. J. Appl. Physiol. 20: 1294–1298, 1965.
 216. Grimby, G., E. Häggendal, and B. Saltin. Local xenon 133 clearance from the quadriceps muscle during exercise in man. J. Appl. Physiol. 22: 305–310, 1967.
 217. Guleria, J. S., J. N. Pande, P. K. Sethi, and S. B. Roy. Pulmonary diffusing capacity at high altitude. J. Appl. Physiol. 31: 536–543, 1971.
 218. Gurtner, G. H. Can alveolar Pco2 exceed pulmonary endcapillary CO2? Yes. J. Appl. Physiol. 42: 323–328, 1977.
 219. Guyton, A. C., C. E. Jones, and T. G. Coleman. Cardiac output in muscular exercise. In: Circulatory Physiology: Cardiac Output and its Regulation (2nd ed.). Philadelphia, PA: Saunders, 1973, p. 436–450.
 220. Guzman, C. A., and E. D. Summers. Pulmonary diffusing capacity during exercise in women. Chest 64: 678–682, 1973.
 221. Haab, P., C. Perret, and J. Piiper. La capacité de diffusion pulmonaire pour l'oxygène chez l'homme normal jeune. Helv. Physiol. Pharmacol. Acta 23: C23–C25, 1965.
 222. Hagberg, J. M., R. C. Hickson, A. A. Ehsani, and J. O. Holloszy. Faster adjustment to and recovery from submaximal exercise in the trained state. J. Appl. Physiol 48: 218–224, 1980.
 223. Hagberg, J. M., J. P. Mullin, and F. J. Nagle. Oxygen consumption during constant‐load exercise. J. Appl. Physiol 45: 381–384, 1978.
 224. Hagberg, J. M., F. J. Nagle, and J. L. Carlson. Transient O2 uptake response at the onset of exercise. J. Appl. Physiol 44: 90–92, 1978.
 225. Hamilton, L. H., and D. J. Kersting. A study of gas analysis for measurement of pulmonary diffusing capacity for carbon monoxide by chromatographic techniques. Am. Rev. Respir. Dis. 102: 916–920, 1970.
 226. Hanson, J. S., and B. S. Tabakin. Carbon monoxide diffusing capacity in normal male subjects, age 20–60, during exercise. J. Appl. Physiol. 15: 402–404, 1960.
 227. Hanson, J. S., B. S. Tabakin, and A. M. Levy. Exercise arterial blood gas and end‐tidal gas changes during acute airway obstruction. Respir. Physiol. 3: 64–77, 1967.
 228. Harris, R. C., R. H. T. Edwards, E. Hultman, L.‐O. Nordesjö, B. Nylind, and K. Sahlin. The time course of phosphoryl‐creatine resynthesis during recovery of the quadriceps muscle in man. Pfluegers Arch. 367: 137–142, 1976.
 229. Harris, R. C., K. Sahlin, and E. Hultman. Phosphagen and lactate contents of m. quadriceps femoris of man after exercise. J. Appl. Physiol 43: 852–857, 1977.
 230. Hartley, L. H., G. Grimby, å. Kilbom, N. J. Nilsson, I. Åstrand, J. Bjure, B. Ekblom, and B. Saltin. Physical training in sedentary middle‐aged and older men. III. Cardiac output and gas exchange at submaximal and maximal exercise. Scand. J. Clin. Lab. Invest. 24: 335–344, 1969.
 231. Heath, G. W., J. M. Hagberg, A. A. Ehsani, and J. O. Holloszy. A physiological comparison of young and older endurance athletes. J. Appl. Physiol. 51: 634–640, 1981.
 232. Henriksson, J. Training induced adaptation of skeletal muscle and metabolism during submaximal exercise. J. Physiol. Lond. 270: 661–675, 1977.
 233. Henriksson, J., and J. S. Reitman. Quantitative measures of enzyme activities in type I and type II muscle fibres of man after training. Acta Physiol. Scand. 97: 392–397, 1976.
 234. Henriksson, J., and J. S. Reitman. Time course of changes in human skeletal muscle succinate dehydrogenase and cytochrome oxidase activities and maximal oxygen uptake with physical activity and inactivity. Acta Physiol. Scand. 99: 91–97, 1977.
 235. Henry, F. M. Aerobic oxygen consumption and alactic debt in muscular work. J. Appl. Physiol. 3: 427–438, 1951.
 236. Henry, F. M., and W. E. Berg. Physiological and performance changes in athletic conditioning. J. Appl. Physiol. 3: 103–111, 1950.
 237. Henry, F. M., and J. De Moor. Metabolic efficiency of exercise in relation to work load at constant speed. J. Appl. Physiol. 2: 481–487, 1950.
 238. Henry, F. M., and J. De Moor. Lactic and alactic oxygen consumption in moderate exercise of graded intensity. J. Appl. Physiol. 8: 608–614, 1956.
 239. Hermansen, L., and K. L. Andersen. Aerobic work capacity in young Norwegian men and women. J. Appl. Physiol. 20: 425–431, 1965.
 240. Hermansen, L., B. Ekblom, and B. Saltin. Cardiac output during submaximal and maximal treadmill and bicycle exercise. J. Appl. Physiol. 29: 82–86, 1970.
 241. Hermansen, L., and I. Stensvold. Production and removal of lactate during exercise in man. Acta Physiol. Scand. 86: 191–201, 1972.
 242. Hesser, C. M., D. Linnarsson, and L. Fagraeus. Pulmonary mechanics and work of breathing at maximal ventilation and raised air pressure. J. Appl. Physiol. 50: 747–753, 1981.
 243. Hesser, C. M., and G. Matell. Effect of light and moderate exercise on alveolar‐arterial O2 tension difference in man. Acta Physiol. Scand. 63: 247–256, 1965.
 244. Hickson, R. C., H. A. Bomze, and J. O. Holloszy. Faster adjustment of O2 uptake to the energy requirement of exercise in the trained state. J. Appl. Physiol. 44: 877–881, 1978.
 245. Hill, A. V., C. N. H. Long, and H. Lupton. Muscular exercise, lactic acid and the supply and utilization of oxygen. Pt. IV. Proc. R. Soc. Lond. B. Biol. Sci. 97: 84–95, 1924.
 246. Hirche, H., H. Schumacher, and H. Hagemann. Extracellular K+ concentration and K+ balance of the gastrocnemius muscle of the dog during exercise. Pfluegers Arch. 387: 231–237, 1980.
 247. Hnik, P., M. Holas, I. Krekule, N. Křiž, J. Mejsnar, V. Smieško, E. Ujec, and F. Vyskočil. Work‐induced potassium changes in skeletal muscle and effluent venous blood assessed by liquid ion‐exchanger microelectrodes. Pfluegers Arch. 362: 85–94, 1976.
 248. Hnik, P., O. Hudlickæ, J. Kučera, and R. Payne. Activation of muscle afferents by nonproprioceptive stimuli. Am. J. Physiol. 217: 1451–1458, 1969.
 249. Holland, J., J. Milic‐Emili, P. T. Mackleä, and D. V. Bates. Regional distribution of pulmonary ventilation and perfusion in elderly subjects. J. Clin. Invest. 47: 81–92, 1968.
 250. Holland, R. A. B., and R. B. Blacket. The carbon monoxide diffusing capacity of the lung in normal subjects. Australas. Ann. Med. 7: 192–203, 1958.
 251. Hollander, A. P., and L. N. Bouman. Cardiac acceleration in man elicited by a muscle‐heart reflex. J. Appl. Physiol. 38: 272–278, 1975.
 252. Holloszy, J. O., and F. W. Booth. Biochemical adaptations to endurance exercise in muscle. Annu. Rev. Physiol. 38: 273–291, 1976.
 253. Holloszy, J. O., M. J. Rennie, R. C. Hickson, R. K. Conlee, and J. M. Hagberg. Physiological consequences of the biochemical adaptation to endurance exercise. Ann. NY Acad. Sci 301: 440–450, 1977.
 254. Holmberg, S., W. Serzysko, and E. Varnauskas. Coronary circulation during heavy exercise in control subjects and patients with coronary heart disease. Acta Med. Scand. 190: 465–480, 1971.
 255. Holmgren, A. Circulatory changes during muscular work in man: with special reference to arterial and central venous pressures in the systemic circulation. Scand. J. Clin. Lab. Invest. Suppl. 24: 1–97, 1956.
 256. Holmgren, A. On the reproducibility of steady state Dico measurements during exercise in man. Scand. J. Clin. Lab. Invest. 17: 110–116, 1965.
 257. Holmgren, A. On the variation of Dico with increasing oxygen uptake during exercise in healthy young men and women. Acta Physiol. Scand. 65: 207–220, 1965.
 258. Holmgren, A. Experience of measuring the diffusing capacity during exercise with the steady state method of Filley, modified by Linderholm. In: Pulmonary Diffusing Capacity on Exercise, edited by M. Scherrer. Bern: Huber, 1971, p. 65–84.
 259. Holmgren, A., and P.‐O. Åstrand. Dl and the dimensions and functional capacities of the O2 transport system in humans. J. Appl. Physiol. 21: 1463–1470, 1966.
 260. Holmgren, A., and H. Linderholm. Oxygen and carbon dioxide tensions of arterial blood during heavy and exhaustive exercise. Acta Physiol. Scand. 44: 203–215, 1958.
 261. Honig, C. R. Contributions of nerves and metabolites to exercise vasodilation: a unifying hypothesis. Am. J. Physiol 236 (Heart Circ. Physiol. 5): H705–H719, 1979.
 262. Honig, C. R., and J. L. Frierson. Neurons intrinsic to arterioles initiate postcontraction vasodilation. Am. J. Physiol. 230: 493–507, 1976.
 263. Honig, C. R., and J. L. Frierson. Role of adenosine in exercise vasodilation in dog gracilis muscle. Am. J. Physiol 238 (Heart Circ. Physiol. 7): H703–H715, 1980.
 264. Honig, C. R., and T. E. J. Gayeski. Capillary recruitment and de‐recruitment in exercise: relation to control mechanisms, and tissue PO2 (Abstract). Proc. Int. Congr. Physiol. Sci., 28th, Budapest, 1980, vol. 14, p. 23.
 265. Honig, C. R., C. L. Odoroff, and J. L. Frierson. Capillary recruitment in exercise: rate, extent, uniformity, and relation to blood flow. Am. J. Physiol. 238 (Heart Circ. Physiol. 7): H31–H42, 1980.
 266. Horstman, D. H., M. Gleser, D. Wolfe, T. Tryon, and J. Delehunt. Effects of hemoglobin reduction on VO2max and related hemodynamics in exercising dogs. J. Appl. Physiol. 37: 97–102, 1974.
 267. Hubbard, J. L. The effect of exercise on lactate metabolism. J. Physiol. Lond. 231: 1–18, 1973.
 268. Hudlickæ, O. Effect of training on macro‐ and microcirculatory changes in exercise. Exercise Sport Sci. Rev. 5: 181–230, 1978.
 269. Hughson, R. L., and M. Morrissey. Delayed kinetics of respiratory gas exchange in the transition from prior exercise. J. Appl. Physiol. 52: 921–929, 1982.
 270. Hultman, E., J. Bergstrom, and N. McLennon Anderson. Break‐down and resynthesis of phosphorylcreatine and adenosine‐triphosphate in connection with muscular work in man. Scand. J. Clin. Lab. Invest. 19: 56–66, 1967.
 271. Hultman, E., and K. Sahlin. Acid‐base balance during exercise. Exercise Sport Sci. Rev. 8: 41–128, 1980.
 272. Hyde, R. W., R. E. Forster, G. G. Power, J. Nairn, and R. Rynes. Measurement of O2 diffusing capacity of the lungs with a stable O2 isotope. J. Clin. Invest. 45: 1178–1193, 1966.
 273. Hyde, R. W., M. G. Marin, R. I. Rynes, G. Karreman, and R. E. Forster. Measurement of uneven distribution of pulmonary blood flow to CO diffusing capacity. J. Appl. Physiol. 31: 605–612, 1971.
 274. Hyde, R. W., R. J. M. Puy, W. F. Raub, and R. E. Forster. Rate of disappearance of labelled carbon dioxide from the lungs of humans during breath holding: a method for studying the dynamics of pulmonary CO2 exchange. J. Clin. Invest. 47: 1535–1552, 1968.
 275. Ingjer, F. Maximal aerobic power related to the capillary supply of the quadriceps femoris muscle in man. Acta Physiol. Scand. 104: 138–140, 1978.
 276. Ivy, J. L., D. L. Costill, and B. D. Maxwell. Skeletal muscle determinants of maximum aerobic power in man. Eur. J. Appl. Physiol. Occup. Physiol. 44: 1–8, 1980.
 277. Jacobs, H. A., H. W. Heldt, and M. Klingenberg. High activity of creatine‐kinase in mitochondria from heart and brain and evidence for a separate mitochondrial isoenzyme of creatine kinase. Biochem. Biophys. Res. Commun. 16: 516–524, 1964.
 278. Jacobus, W. E., and A. L. Lehninger. Coupling of creatine phosphorylation to electron transport. J. Biol. Chem. 248: 4803–4810, 1973.
 279. Jebavy, P., J. Hurych, and J. Widimský. Relations of pulmonary diffusing capacity to ventilation and haemodynamics in healthy subjects. Respiration 34: 152–161, 1977.
 280. Jebavýelig, P., and J. Widimskýelig. Lung‐transfer factor at maximal effort in healthy men. Respiration 30: 297–310, 1973.
 281. Johnson, P. C. The microcirculation, and local and humoral control of the circulation. In: Cardiovascular Physiology I, edited by A. C. Guyton and C. E. Jones. Baltimore, MD: University Park, 1974, vol. 1, p. 163–195. (Int. Rev. Physiol. Ser.)
 282. Johnson, R. L., Jr., and J. M. Miller. Distribution of ventilation, blood flow, and gas transfer coefficients in the lung. J. Appl. Physiol. 25: 1–15, 1968.
 283. Johnson, R. L., Jr., W. S. Spicer, J. M. Bishop, and R. E. Forster. Pulmonary capillary blood volume, flow and diffusing capacity during exercise. J. Appl. Physiol. 15: 893–902, 1960.
 284. Jones, N. L., G. J. R. McHardy, A. Naimark, and E. J. M. Campbell. Physiological dead space and alveolar‐arterial gas pressure differences during exercise. Clin. Sci. Lond. 31: 19–29, 1966.
 285. Jones, N. L., D. G. Robertson, and J. W. Kane. Difference between end‐tidal and arterial Pco2 in exercise. J. Appl. Physiol. 47: 954–960, 1979.
 286. Jones, W. B., R. N. Finchum, R. O. Russell, Jr., and T. J. Reeves. Transient cardiac output response to multiple levels of supine exercise. J. Appl. Physiol. 28: 183–189, 1970.
 287. Kaijser, L. Limiting factors for aerobic muscle performance. Acta Physiol. Scand. Suppl. 346: 1–96, 1970.
 288. Kaijser, L., B. W. Lassers, M. L. Wahlqvist, and L. A. Carlson. Myocardial lipid and carbohydrate metabolism in fasting men during prolonged exercise. J. Appl. Physiol. 32: 847–858, 1972.
 289. Karlsson, J. Lactate and phosphagen concentrations in working muscle of man. Acta Physiol. Scand. Suppl. 358: 1–72, 1971.
 290. Karlsson, J., L.‐O. Nordesjö, L. Jorfeldt, and B. Saltin. Muscle lactate, ATP, and CP levels during exercise after physical training in man. J. Appl. Physiol. 33: 199–203, 1972.
 291. Karlsson, J., and B. Saltin. Lactate, ATP, and CP in working muscles during exhaustive exercise in man. J. Appl. Physiol. 29: 598–602, 1970.
 292. Katch, V. L. Kinetics of oxygen uptake and recovery for supramaximal work of short duration. Int. Z. Angew. Physiol. Einschl. Arbeitsphysiol. 31: 197–207, 1973.
 293. Keul, J., E. Doll, H. Steim, U. Fleer, and H. Reindell. Ueber den Stoffwechsel des menschlichen Herzens. III. Der oxydative Stoffwechsel des menschlichen Herzens unter verschiedenen Arbeitsbedingungen. Pfluegers Arch. 282: 43–53, 1965.
 294. Kitamura, K., C. R. Jorgensen, F. L. Gobel, H. L. Taylor, and Y. Wang. Hemodynamic correlates of myocardial oxygen consumption during upright exercise. J. Appl. Physiol. 32: 516–522, 1972.
 295. Kjellberg, S. R., U. Rudhe, and T. Sjöstrand. Increase of the amount of hemoglobin and blood volume in connection with physical training. Acta Physiol. Scand. 19: 146–151, 1949.
 296. Kjellmer, I. The potassium ion as a vasodilator during muscular exercise. Acta Physiol. Scand. 63: 460–468, 1965.
 297. Klein, J. P., H. V. Forster, R. D. Stewart, and A. Wu. Hemoglobin affinity for oxygen during short‐term exhaustive exercise. J. Appl. Physiol. 48: 236–242, 1980.
 298. Klissouras, V. Heritability of adaptive variation. J. Appl. Physiol. 31: 338–344, 1971.
 299. Klissouras, V., F. Pirnay, and J.‐M. Petit. Adaptation to maximal effort: genetics and age. J. Appl. Physiol. 35: 288–293, 1973.
 300. Klocke, F. J., E. Braunwald, and J. Ross, Jr. Oxygen cost of electrical activation of the heart. Circ. Res. 18: 357–365, 1966.
 301. Klocke, F. J., R. C. Koberstein, D. E. Pittman, I. L. Bunnel, D. G. Greene, and D. R. Rosig. Effects of heterogeneous myocardial perfusion on coronary venous H2 desaturation curves and calculations of coronary flow. J. Clin. Invest. 47: 2711–2724, 1968.
 302. Knuttgen, H. G. Oxygen debt, lactate, pyruvate, and excess lactate after muscular work. J. Appl. Physiol. 17: 639–644, 1962.
 303. Knuttgen, H. G. Oxygen debt after submaximal physical exercise. J. Appl. Physiol. 29: 651–657, 1970.
 304. Knuttgen, H. G., F. Bonde‐Petersen, and K. Klausen. Oxygen uptake and heart rate responses to exercise performed with concentric and eccentric muscle contractions. Med. Sci. Sports 3: 1–15, 1970.
 305. Knuttgen, H. G., and K. Klausen. Oxygen debt in shortterm exercise with concentric and eccentric muscle contractions. J. Appl. Physiol. 30: 632–635, 1971.
 306. Knuttgen, H. G., and B. Saltin. Oxygen uptake, muscle high energy phosphates, and lactate in exercise under acute hypoxic conditions in man. Acta Physiol. Scand. 87: 368–376, 1973.
 307. Kobayashi, K., K. Kitamura, M. Miura, H. Sodeyama, Y. Murase, M. Miyashita, and H. Matsui. Aerobic power as related to body growth and training in Japanese boys: a longitudinal study. J. Appl. Physiol. 44: 666–672, 1978.
 308. Komi, P. V., and J. Karlsson. Physical performance, skeletal muscle enzyme activities and fibre types in monozygous and dizygous twins of both sexes. Acta Physiol. Scand. Suppl. 462: 1–28, 1979.
 309. Krasney, J. A., M. G. Levitzky, and R. C. Koehler. Sinoaortic contribution to the adjustment of systemic resistance in exercising dogs. J. Appl. Physiol. 36: 679–685, 1974.
 310. Kreukniet, J., and B. F. Visser. Die Diffusionskapazität der Lungen für Kohlenmonoxid berechnet mit Hilfe des arteriellen und des alveolären Kohlensäuredruckes bei Patienten mit Verteilungsstörungen. Pfluegers Arch. 277: 585–602, 1963.
 311. Kreuzer, F., and P. Lookeren van Campagne. Resting pulmonary diffusing capacity for CO and O2 at high altitude. J. Appl. Physiol. 20: 519–524, 1965.
 312. Krogh, A. The diffusion of gases through the lungs of man. J. Physiol. Lond. 49: 271–300, 1915.
 313. Krogh, A., and J. Lindhard. The regulation of respiration and circulation during the initial stages of muscular work. J. Physiol. Lond. 47: 112–136, 1913.
 314. Kruhøffer, P. Studies on the lung diffusion coefficient for carbon monoxide in normal subjects by means of 14CO. Acta Physiol. Scand. 32: 106–123, 1954.
 315. Krumholz, R. A., L. H. King, Jr., and J. C. Ross. Effect of pulmonary vascular engorgement on Dl during and immediately after exercise. J. Appl. Physiol. 18: 1180–1182, 1963.
 316. Kunski, H., and M. Sztobryn. The effect of physical exercise on 2,3‐diphosphoglycerate (2,3‐DPG) concentration in erythrocytes. Acta Physiol. Pol. 27: 293–299, 1976.
 317. Lacour, J. R., and R. Flandrois. Le rôle du métabolisme aérobie dans l'exercice intense de longue durée. J. Physiol. Paris 73: 89–130, 1977.
 318. Lammert, O. Maximal aerobic power and energy expenditure of Eskimo hunters in Greenland. J. Appl. Physiol. 33: 184–188, 1972.
 319. Lassen, N. A., I. F. Lindbjerg, and O. Munck. Measurement of blood flow through skeletal muscle by intramuscular injection of 133Xenon. Lancet 1: 686–689, 1964.
 320. Lassers, B. W., M. L. Wahlqvist, L. Kaijser, and L. A. Carlson. Effect of nicotinic acid on myocardial metabolism in man at rest and during exercise. J. Appl. Physiol. 33: 72–80, 1972.
 321. Laurent, D., C. Bolene‐Williams, F. L. Williams, and L. N. Katz. Effects of heart rate·on coronary flow and cardiac oxygen consumption. Am. J: Physiol. 185: 355–364, 1956.
 322. Lavallée, H., G. Lariviére, and R. J. Shephard. Correlation between field tests of performance and laboratory measurements of fitness. Results in the 10‐year‐old school child. Acta Paediatr. Belg 28, Suppl.: 29–39, 1974.
 323. Lawson, W. H., Jr. Rebreathing measurements of pulmonary diffusing capacity for CO during exercise. J. Appl. Physiol. 29: 896–900, 1970.
 324. Lawson, W. H., Jr. Effect of drugs, hypoxia, and ventilatory maneuvers on lung diffusion for CO in man. J. Appl. Physiol. 32: 788–794, 1972.
 325. Leary, W. P., and C. H. Wyndham. The capacity for maximum physical effort of Caucasian and Bantu athletes of international class. S. Afr. Med. J. 39: 651–655, 1965.
 326. Lechner, A. J. The scaling of maximal oxygen consumption and pulmonary dimensions in small mammals. Respir. Physiol. 34: 29–44, 1978.
 327. Levine, M. J., and R. J. Wagman. Energetics of the human heart. Am. J. Cardiol. 9: 372–383, 1962.
 328. Lewis, B. M., E. J. Hayford‐Welsing, A. Furusho, and L. C. Reed, Jr. Effect of uneven ventilation on pulmonary diffusing capacity. J. Appl. Physiol. 16: 679–683, 1961.
 329. Lewis, B. M., T. H. Lin, F. E. Noe, and E. J. Hayford‐Welsing. The measurement of pulmonary diffusing capacity for carbon monoxide by a rebreathing method. J. Clin. Invest. 38: 2073–2086, 1959.
 330. Lewis, B. M., T. H. Lin, F. E. Noe, and R. Komisaruk. The measurement of pulmonary capillary blood volume and pulmonary membrane diffusing capacity in normal subjects: the effects of exercise and position. J. Clin. Invest. 37: 1061–1070, 1958.
 331. Lilienthal; J. L., Jr., R. L. Riley, D. D. Proemmel, and R. E. Franke. An experimental analysis in man of the oxygen pressure gradient from alveolar air to arterial blood during rest and exercise at sea level and at altitude. Am. J. Physiol. 147: 199–216, 1946.
 332. Liljestrand, G. Untersuchungen über die Atmungsarbeit. Skand. Arch. Physiol. 35: 199–293, 1918.
 333. Lind, A. R., and G. W. McNicol. Local and central circulatory responses to sustained contractions and the effect of free or restricted arterial inflow on post‐exercise hyperaemia. J. Physiol. Lond. 192: 575–593, 1967.
 334. Lind, A. R., and G. W. McNicol. Circulatory responses to sustained hand‐grip contractions performed during other exercise, both rythmic and static. J. Physiol. Lond. 192: 595–607, 1967.
 335. Lind, A. R., S. H. Taylor, P. W. Humphreys, B. M. Kennelly, and K. W. Donald. The circulatory effects of sustained voluntary muscle contraction. Clin. Sci. Lond. 27: 229–244, 1964.
 336. Linderholm, H. On the significance of CO tension in pulmonary capillary blood for determination of pulmonary diffusing capacity with the steady state CO method. Acta Med. Scand. 156: 413–427, 1957.
 337. Linderholm, H. Diffusing capacity of the lungs as a limiting factor for physical working capacity. Acta Med. Scand. 163: 61–84, 1959.
 338. Linnarsson, D. Dynamics of pulmonary gas exchange and heart rate changes at start and end of exercise. Acta Physiol. Scand. Suppl. 415: 1–68, 1974.
 339. Lucas, A., A. Therminarias, and M. Tanche. Maximum oxygen consumption in dogs during muscular exercise and cold exposure. Pfluegers Arch. 388: 83–87, 1980.
 340. Magel, J. R., and K. Lange‐Andersen. Pulmonary diffusing capacity and cardiac output in young trained Norwegian swimmers and untrained subjects. Med. Sci. Sports 1: 131–139, 1969.
 341. Mahler, M. Kinetics of oxygen consumption after a single isometric tetanus of frog sartorius muscle at 20àC. J. Gen. Physiol. 71: 559–580, 1978.
 342. Mahler, M. The relationship between initial creatine phosphate breakdown and recovery oxygen consumption for a single isometric tetanus of the frog sartorius muscle at 20àC. J. Gen. Physiol. 73: 159–174, 1979.
 343. Mahler, M. Kinetics and control of oxygen consumption in skeletal muscle. In: Exercise Bioenergetics and Gas Exchange, edited by P. Cerretelli and B. J. Whipp. Amsterdam: Elsevier, 1980, p. 53–66.
 344. Mahler, M. First‐order kinetics of muscle oxygen consumption, and equivalent proportionality between Qo2 and phosphorylcreatine level. Implications for the control of respiration. J. Gen. Physiol. 86: 135–165, 1985.
 345. Marconi, C., and P. Cerretelli. Gas exchange adjustments in running dogs. Prog. Respir. Res. 16: 311–313, 1981.
 346. Margaria, R. Aerobic and anaerobic energy sources in muscular exercise. In: Exercise at Altitude, edited by R. Margaria. Amsterdam: Excerpta Med., 1967, p. 15–32.
 347. Margaria, R., E. Camporesi, P. Aghemo, and G. Sassi. The effect of O2 breathing on maximal aerobic power. Pfluegers Arch. 336: 225–235, 1972.
 348. Margaria, R., P. Cerretelli, S. Marchi, and L. Rossi. Maximum exercise in oxygen. Int. Z. Angew. Physiol. Einschl. Arbeitsphysiol. 18: 465–467, 1961.
 349. Margaria, R., H. T. Edwards, and D. B. Dill. The possible mechanisms of contracting and paying the oxygen debt and the role of lactic acid in muscular contraction. Am. J. Physiol. 106: 689–715, 1933.
 350. Margaria, R., F. Mangili, F. Cuttica, and P. Cerretelli. The kinetics of the oxygen consumption at the onset of muscular exercise in man. Ergonomics 8: 49–54, 1965.
 351. Margaria, R., G. Milic‐Emili, J. M. Petit, and G. Cavagna. Mechanical work of breathing during muscular exercise. J. Appl. Physiol. 15: 354–358, 1960.
 352. Marks, A., D. W. Cugell, J. B. Cadigan, and E. A. Gaensler. Clinical determination of the diffusion capacity of the lungs. Comparison of methods in normal subjects and patients with “alveolar‐capillary block” syndrome. Am. J. Med. 22: 51–73, 1957.
 353. Marshall, R. A comparison of methods for measuring the diffusing capacity of the lungs for carbon monoxide. Investigation by fractional analysis of the alveolar air. J. Clin. Invest. 37: 394–408, 1958.
 354. Martin, B. J., E. J. Morgan, C. W. Zwillich, and J. V. Weil. Control of breathing during prolonged exercise. J. Appl. Physiol. 50: 27–31, 1981.
 355. Matell, G. Time‐courses of changes in ventilation and arterial gas tensions in man induced by moderate exercise. Acta Physiol. Scand. Suppl. 206: 1–53, 1963.
 356. McCloskey, D. I., P. B. C. Matthews, and J. M. Mitchell. Absence of appreciable cardiovascular and respiratory responses to muscle vibration. J. Appl. Physiol. 33: 623–626, 1972.
 357. McCloskey, D. I., and J. M. Mitchell. Reflex cardiovascular and respiratory responses originating in exercising muscle. J. Physiol. Lond. 224: 173–186, 1972.
 358. McCloskey, D. I., and K. A. Streatfeild. Muscular reflex stimuli to cardiovascular system during isometric contractions of muscle groups of different mass. J. Physiol. Lond. 250: 431–441, 1975.
 359. McGrath, M. W., and M. L. Thomson. The effect of age, body size and lung volume change on alveolar‐capillary permeability and diffusing capacity in man. J. Physiol. Lond. 146: 572–582, 1959.
 360. McKerrow, C. B., and A. B. Otis. Oxygen cost of hyperventilation. J. Appl. Physiol. 9: 375–379, 1956.
 361. Messer, J. V., and W. A. Veill. The oxygen supply of the human heart. Am. J. Cardiol. 9: 384–394, 1962.
 362. Messer, J. V., R. J. Wagman, H. J. Levine, W. A. Veill, N. Krasnow, and R. Gorlin. Patterns of human myocardial oxygen extraction during rest and exercise. J. Clin. Invest. 41: 725–742, 1962.
 363. Meyer, M. Analyse des alveolär‐kapillären Gasaustausches in der Lunge. Untersuchung der Diffusionskapazität der Lunge mit stabilen Isotopen. Göttingen, FRG: Georg‐August‐Universität, 1980. Habilitations Dissertation.
 364. Meyer, M., P. Scheid, G. Riepl, H.‐J. Wagner, and J. Piiper. Pulmonary diffusing capacities for O2 and CO measured by a rebreathing technique. J. Appl. Physiol. 51: 1643–1650, 1981.
 365. Michell, J. L., and P. Haab. Estimation de la capacité de diffusion pulmonaire pour l'oxygène chez l'homme au repos par la méthode du rebreathing hypoxique. J. Physiol. Paris 62, Suppl. 1: 194–195, 1970.
 366. Milic‐Emili, G., J. M. Petit, and R. Deroanne. The effects of respiratory rate on the mechanical work of breathing during muscular exercise. Int. Z. Angew. Physiol. Einschl. Arbeitsphysiol. 18: 330–340, 1960.
 367. Milic‐Emili, G., J. M. Petit, and R. Deroanne. Mechanical work of breathing during exercise in trained and untrained subjects. J. Appl. Physiol. 17: 43–46, 1962.
 368. Miller, J. M., and R. L. Johnson. Effect of lung inflation on pulmonary diffusing capacity at rest and exercise. J. Clin. Invest. 45: 493–500, 1966.
 369. Minaire, Y. Origine et destinée du lactate plasmatique. J. Physiol. Paris 66: 229–257, 1973.
 370. Mitchell, J. H., F. C. Payne, B. Saltin, and B. Schibye. The role of muscle mass in the cardiovascular response to static contractions. J. Physiol. Lond. 309: 45–54, 1980.
 371. Mitchell, J. H., and K. Wildenthal. Static (isometric) exercise and the heart: physiological and clinical considerations. Annu. Rev. Med. 25: 369–381, 1974.
 372. Mognoni, P., M. G. Clement, C. Marconi, F. Saibene, and G. Aguggini. Estimate of the cost of breathing in dog at maximal exercise (Abstract). Proc. Int. Congr. Physiol. Sci., 27th, Paris, 1977, vol. 13, p. 521.
 373. Molé, A. P., R. L. Coulson, J. R. Caton, B. G. Nichols, and T. J. Barstow. In vivo 31P‐NMR in human muscle: transient patterns with exercise. J. Appl. Physiol. 59: 101–104, 1985.
 374. Morrison, P., F. A. Ryser, and A. R. Dawe. Studies on the physiology of the masked shrew. Sorex cinereus Physiol. Zool. 32: 256–271, 1959.
 375. Mostyn, E. M., S. Helle, J. B. L. Gee, L. G. Bentivoglio, and D. V. Bates. Pulmonary diffusing capacity of athletes. J. Appl. Physiol. 18: 687–695, 1963.
 376. Nairn, J. R., G. G. Power, R. W. Hyde, R. E. Forster, C. J. Lambertsen, and J. Dickson. Diffusing capacity and pulmonary capillary blood flow at hyperbaric pressures. J. Clin. Invest. 44: 1591–1599, 1965.
 377. Newth, C. J. L., D. J. Cotton, and J. A. Nadel. Pulmonary diffusing capacity measured at multiple intervals during a single exhalation in man. J. Appl. Physiol. 43: 617–625, 1977.
 378. Nielsen, M., and O. Hansen. Maximale körpliche Arbeit bei O2‐reicher Luft. Skand. Arch. Physiol. 76: 37–59, 1937.
 379. Ogilvie, C. M., R. E. Forster, W. S. Blakemore, and J. W. Morton. A standardized breath holding technique for the clinical measurement of the diffusing capacity of the lung for carbon monoxide. J. Clin. Invest. 36: 1–17, 1957.
 380. Olafsson, S., and R. E. Hyatt. Ventilatory mechanics and expiratory flow limitation during exercise in normal subjects. J. Clin. Invest. 48: 564–573, 1969.
 381. Olsson, R. A. Local factors regulating cardiac and skeletal muscle blood flow. Annu. Rev. Physiol. 43: 385–395, 1981.
 382. Opie, L. H. Metabolism of the heart in health and disease. II. Am. Heart J. 77: 100–122, 1969.
 383. Oscai, L. B., B. T. Williams, and B. A. Hertig. Effects of exercise on blood volume. J. Appl. Physiol. 24: 622–624, 1968.
 384. Osman, H., R. Flandrois, J. R. Lacour, S. Quard, M. A. Danjou, and C. Natton. Modifications de la ventilation et de la fréquence cardiaque au cours d'exercices musculaires de differentes puissances chez le chien. J. Physiol. Paris 61: 363–364, 1969.
 385. Otis, A. B. The work of breathing. Physiol. Rev. 34: 449–458, 1954.
 386. Pasquis, P., A. Lacaisse, and P. Dejours. Maximal oxygen uptake in four species in small mammals. Respir. Physiol. 9: 298–309, 1970.
 387. Patch, L. D., and G. A. Brooks. Effects of training on Vo2max and Vo2 during two running intensities in rats. Pfluegers Arch. 386: 215–219, 1980.
 388. Paulev, P.‐E. Cardiac rate and ventilatory volume rate reactions to a muscle contraction in man. J. Appl. Physiol. 34: 578–583, 1973.
 389. Pendergast, D., P. Cerretelli, and D. W. Rennie. Aerobic and glycolytic metabolism in arm exercise. J. Appl. Physiol. 47: 754–760, 1979.
 390. Pendergast, D. R., J. A. Krasney, A. Ellis, B. McDonald, C. Marconi, and P. Cerretelli. Cardiac output and muscle blood flow in exercising dogs. Respir. Physiol. 61: 317–326, 1985.
 391. Pérez‐González, J. F., and J. H. Coote. Activity of muscle afferents and reflex circulatory responses to exercise. Am. J. Physiol. 223: 138–143, 1972.
 392. Petro, J. K., A. P. Hollander, and L. N. Bouman. Instantaneous cardiac acceleration in man induced by a voluntary muscle contraction. J. Appl. Physiol. 29: 794–798, 1970.
 393. Petrofsky, J. S., C. A. Phillips, M. N. Sawka, D. Hanpeter, A. R. Lind, and D. Stafford. Muscle fiber recruitment and blood pressure response to isometric exercise. J. Appl. Physiol. 50: 32–37, 1981.
 394. Piiper, J. Variations of ventilation and diffusing capacity to perfusion determining the alveolar‐arterial O2 difference: theory. J. Appl. Physiol. 16: 507–510, 1961.
 395. Piiper, J. Apparent increase of the O2 diffusing capacity with increased O2 uptake in inhomogeneous lungs: theory. Respir. Physiol. 6: 209–218, 1969.
 396. Piiper, J., P. Cerretelli, F. Cuttica, and F. Mangili. Energy metabolism and circulation in dogs exercising in hypoxia. J. Appl. Physiol. 21: 1143–1149, 1966.
 397. Piiper, J., P. Cerretelli, D. W. Rennie, and P. E. di Prampero. Estimation of the pulmonary diffusing capacity for O2 by a rebreathing procedure. Respir. Physiol. 12: 157–162, 1971.
 398. Piiper, J., P. E. di Prampero, and P. Cerretelli. Oxygen debt and high‐energy phosphates in gastrocnemius muscle of the dog. Am. J. Physiol. 215: 523–531, 1968.
 399. Piiper, J., M. Meyer, C. Marconi, and P. Scheid. Alveolar‐capillary equilibration kinetics of 13CO2 in human lungs studied by rebreathing. Respir. Physiol. 42: 29–41, 1980.
 400. Piiper, J., D. R. Pendergast, C. Marconi, M. Meyer, N. Heisler, and P. Cerretelli. Blood flow distribution in dog gastrocnemius muscle at rest and during stimulation. J. Appl. Physiol. 58: 2068–2074, 1985.
 401. Piiper, J., and P. Scheid. Blood‐gas equilibrium in lungs. In: Pulmonary Gas Exchange. Ventilation, Blood Flow, and Diffusion, edited by J. B. West. New York: Academic, 1980, vol. 1, p. 131–171.
 402. Piiper, J., and P. Spiller. Repayment of O2 debt and resynthesis of high‐energy phosphates in gastrocnemius muscle of the dog. J. Appl. Physiol. 28: 657–662, 1970.
 403. Pirnay, F., J. Dujardin, R. Deroanne, and J. M. Petit. Muscular exercise during intoxication by carbon monoxide. J. Appl. Physiol 31: 573–575, 1971.
 404. Pirnay, F., R. Marechal, R. Radermecker, and J. M. Petit. Muscle blood flow during submaximum and maximum exercise on a bicycle ergometer. J. Appl. Physiol. 32: 210–212, 1972.
 405. Podlesch, J., and M. Stevanovic. Die Altersabhängigkeit der Diffusionskapazität der Lunge in Ruhe und während Belastung. Med. Thorac. 23: 144–159, 1966.
 406. Power, G. G., and W. C. Bradford. Measurement of pulmonary diffusing capacity during blood‐to‐gas exchange in humans. J. Appl. Physiol. 27: 61–66, 1969.
 407. Pugh, L. G. C. E. Blood volume changes in outdoor exercise of 8–10 hour duration. J. Physiol. Lond. 200: 345–351, 1969.
 408. Pugh, L. G. C. E., M. B. Gill, S. Lahiri, J. S. Milledge, M. P. Ward, and J. B. West. Muscular exercise at great altitudes. J. Appl. Physiol. 19: 431–440, 1964.
 409. Rahn, H., and L. E. Farhi. Ventilation, perfusion, and gas exchange—the Va/Q concept. In: Handbook of Physiology. Respiration, edited by W. O. Fenn and H. Rahn. Washington, DC: Am. Physiol. Soc., 1964, sect. 3, vol. I, chapt. 30, p. 735–766.
 410. Rampulla, C., C. Marconi, G. Beulcke, and S. Amaducci. Correlations between lung‐transfer factor, ventilation, and cardiac output during exercise. Respiration 33: 405–415, 1976.
 411. Ramsay, A. G. Effects of metabolism and anesthesia on pulmonary ventilation. J. Appl. Physiol. 14: 102–104, 1959.
 412. Rand, P. W., J. M. Norton, N. Barker, and M. Lovell. Influence of athletic training on hemoglobin‐oxygen affinity. Am. J. Physiol. 224: 1334–1337, 1973.
 413. Raven, P. B., B. L. Drinkwater, R. O. Ruhling, N. Bolduan, S. Taguchi, J. Gliner, and S. M. Horvath. Effect of carbon monoxide and peroxyacetyl nitrate on man's maximal aerobic capacity. J. Appl. Physiol. 36: 288–293, 1974.
 414. Raynaud, J., J. P. Martineaud, J. Bordachar, M. C. Tillous, and J. Durand. Oxygen deficit and debt in submaximal exercise at sea level and high altitude. J. Appl. Physiol. 37: 43–48, 1974.
 415. Regan, T. M., C. Timmis, M. Gray, K. Binak, and H. K. Hellems. Myocardial oxygen consumption during exercise in fasting and lipemic subjects. J. Clin. Invest. 40: 624–630, 1962.
 416. Remmers, J. E., and J. C. Mithoefer. The carbon monoxide diffusing capacity in permanent residents at high altitudes. Respir. Physiol. 6: 233–244, 1969.
 417. Rennie, D. W. Exercise physiology. In: Eskimos of Northwestern Alaska: A Biological Perspective, edited by P. L. Jamison, S. L. Zegura, and F. A. Milan. Stroudsburg, PA: Dowden, Hutchinson & Ross, 1978, p. 198–216.
 418. Rennie, D. W., P. E. di Prampero, and P. Cerretelli. Effects of water immersion on cardiac output, heart rate, and stroke volume of man at rest and during exercise. Med. Sport Turin 24: 223–228, 1971.
 419. Rennie, D. W., P. E. di Prampero, R. W. Fitts, and L. Sinclair. Physical fitness and respiratory function of Eskimos of Wainwright, Alaska. Arct. Anthropol. 2: 73–82, 1970.
 420. Reuschlein, P. S., W. G. Reddan, J. Burpee, J. B. L. Gee, and J. Rankin. Effect of physical training on the pulmonary diffusing capacity during submaximal work. J. Appl. Physiol. 24: 152–158, 1968.
 421. Riepl, G., and P. Hilpert. Der Einfluss funktioneller Inhomogenitäten auf die Single‐breath‐CO‐Diffusionskapazität (Dlco‐sb). Respiration 31: 60–70, 1974.
 422. Riley, R. L., J. L. Lilienthal, Jr., D. D. Proemmel, and R. E. Franke. On the determination of the physiologically effective pressures of oxygen and carbon dioxide in alveolar air. Am. J. Physiol. 147: 191–198, 1946.
 423. Riley, R. L., R. H. Shepard, J. E. Cohn, D. G. Carroll, and B. W. Armstrong. Maximal diffusing capacity of the lungs. J. Appl. Physiol. 6: 573–587, 1954.
 424. Roberts, D. A., and A. A. Morton. Total and alactic oxygen debts after supramaximal work. Eur. J. Appl. Physiol. Occup. Physiol. 38: 281–289, 1978.
 425. Robertson, R. J., R. Gilcher, K. F. Metz, C. J. Caspersen, T. G. Allison, R. A. Abbott, G. S. Skrinar, J. R. Krause, and P. A. Nixon. Hemoglobin concentration and aerobic work capacity in women following induced erythrocythemia. J. Appl. Physiol. 57: 568–575, 1984.
 426. Robertson, R. J., R. Gilcher, K. F. Metz, G. S. Skrinar, T. G. Allison, H. T. Bahnson, R. A. Abbott, R. Becker, and J. E. Falkel. Effect of induced erythrocythemia on hypoxia tolerance during physical exercise. J. Appl. Physiol. 53: 490–495, 1982.
 427. Robinson, S. Experimental studies of physical fitness in relation to age. Arbeitsphysiologie 10: 251–323, 1938.
 428. Robinson, S., D. B. Dill, R. D. Robinson, S. P. Tzankoff, and J. A. Wagner. Physiological aging of champion runners. J. Appl. Physiol. 41: 46–51, 1976.
 429. Rode, A., and R. J. Shephard. Cardiorespiratory fitness of an Arctic community. J. Appl. Physiol. 31: 519–526, 1971.
 430. Romo‐Salas, F., L. Aquin, J. M. Searles, Jr., and N. Banchero. Oxygen cost of breathing in dogs. Respiration 35: 186–191, 1978.
 431. Rose, G. L., S. S. Cassidy, and R. L. Johnson, Jr. Diffusing capacity at different lung volumes during breath holding and rebreathing. J. Appl. Physiol. 47: 32–37, 1979.
 432. Rosenberg, E., and L. D. MacLean. Effect of high oxygen tensions on diffusing capacity for CO and Krogh's K. J. Appl. Physiol. 23: 11–17, 1967.
 433. Rosenmann, M., and P. Morrison. Maximum oxygen consumption and heat loss facilitation in small homeotherms by He‐O2. Am. J. Physiol. 226: 490–495, 1974.
 434. Rosenmann, M., P. Morrison, and D. Feist. Seasonal changes in the metabolic capacity of red‐backed voles. Physiol. Zool. 48: 303–310, 1975.
 435. Ross, J. C., R. Frayser, and J. B. Hickam. A study of the mechanisms by which exercise increases the pulmonary diffusing capacity for carbon monoxide. J. Clin. Invest. 38: 916–932, 1959.
 436. Ross, J. C., R. W. Reinhart, J. F. Boxell, and L. H. King, Jr. Relationship of increased breath‐holding diffusing capacity to ventilation in exercise. J. Appl. Physiol. 18: 794–797, 1963.
 437. Rowell, L. B. Circulation. Med. Sci. Sports 1: 15–22, 1969.
 438. Rowell, L. B. Human cardiovascular adjustments to exercise and thermal stress. Physiol. Rev. 54: 75–159, 1974.
 439. Rowell, L. B., H. J. Marx, R. A. Bruce, R. D. Conn, and F. Kusumi. Reductions in cardiac output, central blood volume, and stroke volume with thermal stress in normal men during exercise. J. Clin. Invest. 45: 1801–1816, 1966.
 440. Sackner, M. A., G. Greeneltch, M. S. Heiman, S. Epstein, and N. Atkins. Diffusing capacity, membrane diffusing capacity, capillary blood volume, pulmonary tissue volume, and cardiac output measured by a rebreathing technique. Am. Rev. Respir. Dis. 111: 157–165, 1975.
 441. Sackner, M. A., M. M. Raskin, P. J. Julien, and W. G. Avery. Effect of lung volume on steady state pulmonary membrane diffusing capacity and pulmonary capillary blood volume. Am. Rev. Respir. Dis. 104: 408–417, 1971.
 442. Sahlin, K., G. Palmskog, and E. Hultman. Adenine nucleotide and IMP contents of the quadriceps muscle in man after exercise. Pfluegers Arch. 374: 193–198, 1978.
 443. Saibene, F. Work of breathing at altitude. In: Medicine and Sport. Physiological Chemistry of Exercise and Training, edited by P. E. di Prampero and J. R. Poortmans. Basel: Karger, 1981, vol. 13, p. 191–198.
 444. Saibene, F., P. Mognoni, G. Aguggini, and M. G. Clement. Work of breathing in dog during exercise. J. Appl. Physiol. 50: 1087–1092, 1981.
 445. Saibene, F., P. Mognoni, C. Lafortuna, and R. Mostardi. Oronasal breathing during exercise. Pfluegers Arch. 378: 65–69, 1978.
 446. Saks, V. A., V. V. Kupriyanov, G. V. Elizarova, and W. E. Jacobus. Studies of energy transport in heart cells. The importance of creatine kinase localization for the coupling of mitochondrial phosphorylcreatine production to oxidative phosphorylation. J. Biol. Chem. 255: 755–763, 1980.
 447. Saks, V. A., N. V. Lipina, V. N. Smirnov, and E. I. Chasov. Studies of energy transport in heart cells. The functional coupling between mitochondrial creatine phosphokinase and ATP‐ADP translocase: kinetic evidence. Arch. Biochem. Biophys. 173: 34–41, 1976.
 448. Saltin, B. The interplay between peripheral and central factors in the adaptive response to exercise and training. Ann. NY Acad. Sci. 301: 224–231, 1977.
 449. Saltin, B., and P.‐O. Astrand. Maximal oxygen uptake in athletes. J. Appl. Physiol. 23: 353–358, 1967.
 450. Saltin, B., C. G. Blomqvist, R. C. Mitchell, R. L. Johnson, K. Wildenthal, and C. B. Chapman. Response to exercise after bed rest and after training. Circulation 38, Suppl. 7: 1–78, 1968.
 451. Saltin, B., R. F. Grover, C. G. Blomqvist, L. H. Hartley, and R. L. Johnson, Jr Maximal oxygen uptake and cardiac output after 2 weeks at 4,300 m. J. Appl. Physiol. 25: 400–409, 1968.
 452. Saltin, B., K. Nazar, D. L. Costill, E. Stein, E. Jansson, B. Essén, and P. D. Gollnick. The nature of the training response: peripheral and central adaptations to one‐legged exercise. Acta Physiol. Scand. 96: 289–305, 1976.
 453. Samaja, M., A. Veicsteinas, and P. Cerretelli. Oxygen affinity of blood in altitude Sherpas. J. Appl. Physiol. 47: 337–341, 1979.
 454. Sarnoff, S. J., E. Braunwald, G. H. Welch, Jr., R. B. Case, W. N. Stainsby, and R. Macruz. Hemodynamic determinants of oxygen consumption of the heart with special reference to the tension time‐index. Am. J. Physiol. 192: 148–156, 1958.
 455. Savitz, D. V., W. Sidel, and A. K. Solomon. Osmotic properties of human red cells. J. Gen. Physiol 48: 79–94, 1965.
 456. Scheid, P., and J. Piiper. Blood/gas equilibrium of carbon dioxide in lungs. A critical review. Respir. Physiol. 39: 1–31, 1980.
 457. Schmidt, W., G. Thews, and K. H. Schnabel. Results of distribution analysis of ventilation, perfusion and O2 diffusing capacity in the human lung. Respiration 29: 1–16, 1972.
 458. Schumacker, P. T., B. Guth, A. J. Suggett, P. D. Wagner, and J. B. West. Effects of transfusion‐induced polycythemia on O2 transport during exercise in the dog. J. Appl. Physiol. 58: 749–758, 1985.
 459. Seals, D. R., J. M. Hagberg, B. F. Hurley, A. A. Ehsani, and J. O. Holloszy. Endurance training in older men and women. I. Cardiovascular responses to exercise. J. Appl. Physiol. 57: 1024–1029, 1984.
 460. Seals, D. R., B. F. Hurley, J. Schultz, and J. M. Hagberg. Endurance training in older men and women. II. Blood lactate response to submaximal exercise. J. Appl. Physiol. 57: 1030–1033, 1984.
 461. Seeherman, H. J., C. R. Taylor, and G. M. O. Maloiy. Maximum aerobic power and anaerobic glycolysis during running in lions, horses and dogs (Abstract). Federation Proc. 35: 797, 1976.
 462. Seeherman, H. J., C. R. Taylor, G. M. O. Maloiy, and R. B. Armstrong. Design of the mammalian respiratory system. II. Measuring maximum aerobic capacity. Respir. Physiol. 44: 11–23, 1981.
 463. Shappell, S. D., J. A. Murray, A. J. Bellingham, R. D. Woodson, J. C. Detter, and C. Lenfant. Adaptation to exercise: role of hemoglobin affinity for oxygen and 2,3‐diphosphoglycerate. J. Appl. Physiol. 30: 827–832, 1971.
 464. Shepard, R. H., E. Varnauskas, H. B. Martin, H. A. White, S. Permutt, J. E. Cotes, and R. L. Riley. Relationship between cardiac output and apparent diffusing capacity of the lung in normal men during treadmill exercise. J. Appl. Physiol. 13: 205–210, 1958.
 465. Shephard, R. J. “Breath‐holding” measurements of carbon monoxide diffusing capacity. Comparison of a field test with steady‐state and other methods of measurements. J. Physiol. Lond. 141: 408–419, 1958.
 466. Shephard, R. J. The oxygen cost of breathing during vigorous exercise. Q. J. Exp. Physiol. 51: 336–350, 1966.
 467. Shephard, R. J. Cardio‐respiratory fitness—a new look at maximum oxygen intake. In: Advances in Exercise Physiology, edited by E. Jokl, R. L. Anand, and H. Stoboy. Basel: Karger, 1976, vol. 9, p. 61–84.
 468. Shephard, R. J., C. Allen, O. Bar‐Or, C. T. M. Davies, S. Degre, R. Hedman, K. Ishii, M. Kaneko, J. R. Lacour, P. E. di Prampero, and V. Seliger. The working capacity of Toronto schoolchildren. Pt. I. Can. Med. Assoc. J. 100: 560–566, 1969.
 469. Sidney, K. H., and R. J. Shephard. Maximum and submaximum exercise tests in men and women in the seventh, eighth, and ninth decades of life. J. Appl. Physiol. 43: 280–287, 1977.
 470. Siebens, A. A., N. R. Frank, D. C. Kent, M. M. Newman, R. A. Rauf, and B. L. Vestal. Measurements of the pulmonary diffusing capacity for oxygen during exercise. Am. Rev. Respir. Dis. 80: 806–824, 1959.
 471. Smith, J. R., and L. H. Hamilton. Dlco measurements with gas chromatography. J. Appl. Physiol. 17: 856–860, 1962.
 472. Smith, R. J. Rethinking allometry. J. Theor. Biol. 87: 97–111, 1980.
 473. Sølvsteen, P. Measurement of lung diffusing capacity by means of C14O in a closed system. J. Appl. Physiol. 19: 59–74, 1964.
 474. Sonnenblick, E. H., E. Braunwald, J. F. Williams, Jr., and G. Glick. Effects of exercise on myocardial force‐velocity relations in intact unanesthetized man: relative roles of changes in heart rate, sympathetic activity, and ventricular dimensions. J. Clin. Invest. 44: 2051–2062, 1965.
 475. Sparks, H. V., Jr., and F. L. Belloni. The peripheral circulation: local regulation. Annu. Rev. Physiol. 40: 67–92, 1978.
 476. Spriet, L. L., N. Gledhill, A. B. Froese, D. L. Wilkes, and E. C. Meyers. The effect of induced erythrocythemia on central circulation and oxygen transport during maximal exercise (Abstract). Med. Sci. Sports Exercise 12: 122, 1980.
 477. Sproule, B. J., J. H. Mitchell, and W. F. Miller. Cardiopulmonary physiological responses to heavy exercise in patients with anemia. J. Clin. Invest. 39: 378–388, 1960.
 478. Staub, N. C. Alveolar‐arterial oxygen tension gradient due to diffusion. J. Appl. Physiol. 18: 673–680, 1963.
 479. Stegall, H. F. Muscle pumping in the dependent leg. Circ. Res. 19: 180–190, 1966.
 480. Stegemann, J., and T. Kenner. A theory on heart rate control by muscular metabolic receptors. Arch. Kreislaufforsch. 64: 185–214, 1971.
 481. Steinhagen, G., H. Hirche, N. W. Nestle, U. Bovenkamp, and I. Hosselmann. The interstitial pH of the working gastrocnemius muscle of the dog. Pfluegers Arch. 367: 151–156, 1976.
 482. Stenberg, J., B. Ekblom, and R. Messin. Hemodynamic response to work at simulated altitude, 4,000 m. J. Appl. Physiol. 21: 1589–1594, 1966.
 483. Steplock, D. A., A. Veicsteinas, and M. Mariani. Maximal aerobic and anaerobic power and stroke volume of the heart in a subalpine population. Int. Z. Angew. Physiol. Einschl. Arbeitsphysiol. 29: 203–214, 1971.
 484. Strømme, S. B., F. Ingjer, and H. D. Meen. Assessment of maximal aerobic power in specifically trained athletes. J. Appl. Physiol. 42: 833–837, 1977.
 485. Sundström, G. Influence of body position on pulmonary diffusing capacity in young and old men. J. Appl. Physiol. 38: 418–423, 1975.
 486. Sundström, G. Influence of ventilation, exercise, and body position on techniques for determining steady state diffusing capacity. Scand. J. Respir. Dis. Suppl. 92: 1–74, 1975.
 487. Sundström, G., C. W. Zauner, and M. Arborelius, Jr Decrease in pulmonary diffusing capacity during lipid infusion in healthy men. J. Appl. Physiol. 34: 816–820, 1973.
 488. Suskind, M., R. A. Bruce, M. E. McDowell, P. N. G. Yu, and F. W. Lovejoy, Jr Normal variations in end‐tidal air and arterial blood carbon dioxide and oxygen tensions during moderate exercise. J. Appl. Physiol. 3: 282–290, 1950.
 489. Swenson, E. R., and T. H. Maren. A quantitative analysis of CO2 transport at rest and during maximal exercise. Respir. Physiol. 35: 129–159, 1978.
 490. Taunton, J. E., E. W. Banister, T. R. Patrick, P. Oforsagd', and W. R. Duncan. Physical work capacity in hyperbaric environments and conditions of hyperoxia. J. Appl. Physiol. 28: 421–427, 1970.
 491. Taunton, J. E., C. A. Taunton, and E. W. Banister. Alterations in 2,3‐DPG and P50 with maximal and submaximal exercise. Med. Sci. Sports 6: 238–241, 1974.
 492. Taylor, C. R., and V. J. Rowntree. Running on two or on four legs: which consumes more energy? Science Wash. DC 179: 186–187, 1973.
 493. Taylor, C. R., and E. R. Weibel. Design of the mammalian respiratory system. I. Problem and strategy. Respir. Physiol. 44: 1–10, 1981.
 494. Taylor, D. J., M. Crowe, P. J. Bore, P. Styles, D. L. Arnold, and G. K. Radda. Examination of the energetics of aging skeletal muscle using nuclear magnetic resonance. Gerontology 30: 2–7, 1984.
 495. Tenney, S. M., and R. E. Reese. The ability to sustain great breathing efforts. Respir. Physiol. 5: 187–201, 1968.
 496. Thoden, J. S., J. A. Dempsey, W. G. Reddan, M. L. Birnbaum, H. V. Forster, R. F. Grover, and J. Rankin. Ventilatory work during steady state response to exercise. Federation Proc. 28: 1316–1321, 1969.
 497. Thomas, D. P., and G. F. Fregin. Cardiorespiratory and metabolic responses to treadmill exercise in the horse. J. Appl. Physiol. 50: 864–868, 1981.
 498. Thomson, J. M., J. A. Dempsey, L. W. Chosy, N. T. Shahidi, and W G. Reddan. Oxygen transport and oxyhemoglobin dissociation during prolonged muscular work. J. Appl. Physiol. 37: 658–664, 1974.
 499. Tibes, U. Neurogenic control of ventilation in exercise. In: Exercise Bioenergetics and Gas Exchange, edited by P. Cerretelli and B. J. Whipp. Amsterdam: Elsevier, 1980, p. 149–158.
 500. Tibes, U., E. Haberkorn‐Butendeich, and F. Hammersen. Effect of contraction on lymphatic, venous, and tissue electrolytes and metabolites in rabbit skeletal muscle. Pfluegers Arch. 368: 195–202, 1977.
 501. Tibes, U., B. Hemmer, and D. Böning. Heart rate and ventilation in relation to venous [K+], osmolality, pH, PCO2, PO2, [orthophosphate], and [lactate] at transition from rest to exercise in athletes and non‐athletes. Eur. J. Appl. Physiol. Occup. Physiol. 36: 127–140, 1977.
 502. Tibes, U., B. Hemmer, D. Böning, and U. Schweigart. Relationships of femoral venous [K+], [H+], PO2, osmolality, and [orthophosphate] with heart rate, ventilation, and leg blood flow during bicycle exercise in athletes and non‐athletes. Eur. J. Appl. Physiol. Occup. Physiol. 35: 201–214, 1976.
 503. Tibes, U., B. Hemmer, U. Schweigart, D. Böning, and D. Fotescu. Exercise acidosis as cause of electrolyte changes in femoral venous blood of trained and untrained man. Pfluegers Arch. 347: 145–158, 1974.
 504. Turino, G. M., E. H. Bergofsky, R. M. Goldring, and A. P. Fishman. Effect of exercise on pulmonary diffusing capacity. J. Appl. Physiol. 18: 447–456, 1963.
 505. Turino, G. M., M. Brandfonbrener, and A. P. Fishman. The effects of changes in ventilation and pulmonary blood flow on the diffusing capacity of the lung. J. Clin. Invest. 38: 1186–1201, 1959.
 506. Vatner, S. F., C. B. Higgins, S. White, T. Patrick, and D. Franklin. The peripheral vascular response to severe exercise in untethered dogs before and after complete heart block. J. Clin. Invest. 50: 1950–1960, 1971.
 507. Vaughan, T R., E. M. De Marino, and N. C. Staub. Indicator dilution lung water and capillary blood volume in prolonged heavy exercise in normal men. Am. Rev. Respir. Dis. 113: 757–762, 1976.
 508. Veicsteinas, A., H. Magnussen, M. Meyer, and P. Cerretelli. Pulmonary O2 diffusing capacity at exercise by a modified rebreathing method. Eur. J. Appl. Physiol. Occup. Physiol. 35: 79–88, 1976.
 509. Veicsteinas, A., M. Samaja, M. Gussoni, and P. Cerretelli. Blood O2 affinity and maximal O2 consumption in elite bicycle racers. J. Appl. Physiol. 57: 52–58, 1984.
 510. Vogel, J. A., and M. A. Gleser. Effect of carbon monoxide on oxygen transport during exercise. J. Appl. Physiol. 32: 234–239, 1972.
 511. Wagner, J. A., S. M. Horvath, and T. E. Dahms. Cardiovascular, respiratory, and metabolic adjustments to exercise in dogs. J. Appl. Physiol. 42: 403–407, 1977.
 512. Wagner, P. D., R. W. Mazzone, and J. B. West. Diffusing capacity and anatomic dead space for carbon monoxide (C18O). J. Appl. Physiol. 31: 847–852, 1971.
 513. Wasserman, K., B. J. Whipp, and R. Casaburi. Respiratory control during exercise. In: Handbook of Physiology. The Respiratory System. Control of Breathing, edited by N. S. Cherniack and J. G. Widdicombe. Bethesda, MD: Am. Physiol. Soc., 1986, sect. 3, vol. II, pt. 2, chapt. 17, p. 595–619.
 514. Wasserman, K., B. J. Whipp, R. Casaburi, and A. Oren. Coupling of ventilation to metabolism during exercise. In: Exercise Bioenergetics and Gas Exchange, edited by P. Cerretelli and B. J. Whipp. Amsterdam: Elsevier, 1980, p. 159–173.
 515. Weber, G., W. Kartodihardjo, and V. Klissouras. Growth and physical training with reference to heredity. J. Appl. Physiol. 40: 211–215, 1976.
 516. Weibel, E. R., and C. R. Taylor (editors) Design of the mammalian respiratory system. Respir. Physiol. 44: 1–164, 1981.
 517. Weissman, M. L., B. J. Whipp, D. J. Huntsman, and K. Wasserman. Role of neural afferents from working limbs in exercise hyperpnea. J. Appl. Physiol. 49: 239–248, 1980.
 518. Welch, H. G., and P. K. Pedersen. Measurement of metabolic rate in hyperoxia. J. Appl. Physiol. 51: 725–731, 1981.
 519. West, J. B. Diffusing capacity of the lung for carbon monoxide at high altitude. J. Appl. Physiol. 17: 421–426, 1962.
 520. West, J. B. Distribution of gas and blood in the normal lungs. Br. Med. Bull. 19: 53–58, 1963.
 521. West, J. B., and C. T. Dollery. Distribution of blood flow and ventilation‐perfusion ratio in the lung, measured with radioactive CO2. J. Appl. Physiol. 15: 405–410, 1960.
 522. Whipp, B. J. Rate constant for the kinetics of oxygen uptake during light exercise. J. Appl. Physiol. 30: 261–263, 1971.
 523. Whipp, B. J., and M. Mahler. Dynamics of pulmonary gas exchange during exercise. In: Pulmonary Gas Exchange. Organism and Environment, edited by J. B. West. New York: Academic, 1980, vol. 2, p. 33–96.
 524. Whipp, B. J., C. Seard, and K. Wasserman. Oxygen deficitoxygen debt relationships and efficiency of anaerobic work. J. Appl. Physiol. 28: 452–456, 1970.
 525. Whipp, B. J., S. A. Ward, N. Lamarra, J. A. Davis, and K. Wasserman. Parameters of ventilatory and gas exchange dynamics during exercise. J. Appl. Physiol. 52: 1506–1513, 1982.
 526. Whipp, B. J., and K. Wasserman. Alveolar‐arterial gas tension differences during graded exercise. J. Appl. Physiol. 27: 361–365, 1969.
 527. Whipp, B. J., and K. Wasserman. Oxygen uptake kinetics for various intensities of constant‐load work. J. Appl. Physiol. 33: 351–356, 1972.
 528. Whipp, B. J., K. Wasserman, R. Casaburi, C. Juratsch, M. L. Weissmann, and L. W. Stremel. Ventilatory control characteristics of conditions resulting in isocapnic hyperpnea. In: Control of Respiration During Sleep and Anesthesia, edited by R. Fitzgerald, S. Lahiri, and H. Gautier. New York: Plenum, 1978, p. 355–365.
 529. Whipp, B. J., K. Wasserman, A.J. Davis, N. Lamarra, and S. A. Ward. Determinants of O2 and CO2 kinetics during exercise in man. In: Exercise Bioenergetics and Gas Exchange, edited by P. Cerretelli and B. J. Whipp. Amsterdam: Elsevier, 1980, p. 175–185.
 530. Wigertz, O. Dynamics of ventilation and heart rate in response to sinusoidal work load in man. J. Appl. Physiol. 29: 208–218, 1970.
 531. Wigertz, O. Dynamics of respiratory and circulatory adaptation to muscular exercise in man. Acta Physiol. Scand. Suppl. 363: 1–32, 1971.
 532. Wildenthal, K., D. S. Mierzwiak, N. S. Skinner, Jr., and J. H. Mitchell. Potassium‐induced cardiovascular and ventilatory reflexes from the dog hindlimb. Am. J. Physiol. 215: 542–548, 1968.
 533. Williams, M. H., A. R. Goodwin, R. Perkins, and J. Bocrie. Effect of blood reinjection upon endurance capacity and heart rate. Med. Sci. Sports 5: 181–186, 1973.
 534. Williams, M. H., M. Lindhejm, and R. Schuster. The effect of blood infusion upon endurance capacity and ratings of specified exertion. Med. Sci. Sports 10: 113–118, 1978.
 535. Woodson, R. D., R. E. Wills, and C. Lenfant. Effect of acute and established anemia on O2 transport at rest, submaximal and maximal work. J. Appl. Physiol. 44: 36–43, 1978.
 536. Wyndham, C. H. The physiology of exercise under heat stress. Annu. Rev. Physiol. 35: 193–220, 1973.
 537. Wyndham, C. H., N. B. Strydom, J. F. Morrison, J. Peter, C. G. Williams, G. A. G. Bredell, and A. Joffe. Differences between ethnic groups in physical working capacity. J. Appl. Physiol. 18: 361–366, 1963.
 538. Wyndham, C. H., N. B. Strydom, A. J. van Rensburg, and G. G. Rogers. Effects on maximal oxygen intake of acute changes in altitude in a deep mine. J. Appl. Physiol. 29: 552–555, 1970.
 539. Young, D. R., R. Mosher, P. Erve, and H. Spector. Energy metabolism and gas exchange during treadmill running in dogs. J. Appl. Physiol. 14: 834–838, 1959.
 540. Zedda, S. Steady‐state diffusing capacity for CO during exercise in normal subjects. Respiration 30: 127–131, 1973.
 541. Zelis, R., and J. Longhurst. The circulation in congestive heart failure. In: The Peripheral Circulations, edited by R. Zelis. New York: Grune & Stratton, 1975, p. 286–289.
 542. Zelis, R., D. T. Mason, and E. Braunwald. Partition of blood flow to the cutaneous and muscular beds of the forearm at rest and during leg exercise in normal subjects and in patients with heart failure. Circ. Res. 24: 799–806, 1969.
 543. Zuntz, N., and O. Hagemann. Untersuchungen über den Stoffwechsel des Pferdes bei Ruhe und Arbeit. Landwirtsch. Jahrb. 27, Suppl. 3: 1–438, 1898. (Cited in
 544. Circ. Res. 23: 8, 1968.)

Contact Editor

Submit a note to the editor about this article by filling in the form below.

* Required Field

How to Cite

Paolo Cerretelli, Pietro E. Di Prampero. Gas Exchange in Exercise. Compr Physiol 2011, Supplement 13: Handbook of Physiology, The Respiratory System, Gas Exchange: 297-339. First published in print 1987. doi: 10.1002/cphy.cp030416