Comprehensive Physiology Wiley Online Library

Gas Exchange in Acid‐Base Disturbances

Full Article on Wiley Online Library



Abstract

The sections in this article are:

1 Definition of Gas Exchange
2 Acid‐Base Terminology
3 Effects of Acid‐Base Imbalance on Steps in O2 Delivery Process
3.1 Alveolar Ventilation
3.2 Pulmonary Vasculature
3.3 Airways
3.4 Pulmonary Gas Exchange
3.5 Hemoglobin
3.6 Cardiovascular System
3.7 Tissue Metabolism
4 Measured Net Effects of Acid‐Base Imbalance on O2 Delivery
4.1 Tissues
4.2 Whole Animal Stressed by Tissue Hypoxia
4.3 Whole Animal at Rest
4.4 Whole Animal in Exercise
5 Comparative Aspects of Acid‐Base Balance and Possible Relationship to O2 Delivery
5.1 Temperature and Acid‐Base Balance in Ectotherms
5.2 Significance for Gas Exchange in Homeotherms: Humans
6 Conclusions
Figure 1. Figure 1.

O2 concentration (Co2) shown as a function of partial pressure of O2 () in kPa for 2 values of arterial pH. Degree of venous admixture measured as the ratio of venous admixture to total blood flow (/) and O2 capacity (O2 capa) are shown. Only top portion of HbO2 dissociation curve is represented. For a given ideal end‐capillary‐to‐arterial O2 content difference (Cco2 ‐ Cao2), the ideal alveolar‐arterial difference in () is greater in alkalosis than in acidosis.

From Frans et al. 47
Figure 2. Figure 2.

Plasma pH, erythrocyte 2,3‐diphosphoglycerate (2,3‐DPG), O2 half‐saturation pressure of Hb (P50) (7.4), and P50 (in vivo) in 4 human subjects during acidosis and alkalosis induced by agents noted at top. Each symbol represents a different subject.

From Bellingham et al. 8
Figure 3. Figure 3.

Cerebrospinal fluid (CSF) during acidosis and treatment with NaHCO3 in 9‐day‐old lambs. Plasma pH was decreased from 7.38 to 7.23 over 30 min via HCl infusion and gradually decreased to 7.11 at 8 h. NaHCO3 therapy increased plasma pH to 7.24 at 15 min and to 7.29 after 24 h.

From Berthiaume et al. 11
Figure 4. Figure 4.

Values of in vitro P50 (7.4 and 37°C) and in vivo P50 (pH and animal temperature) during acidosis and NaHCO3 therapy in 9‐day‐old lambs. (See Fig. 3 for details of plasma pH changes.) Open squares, expected P50 based only on the Bohr effect. Shaded areas, estimated effect of 2,3‐DPG decrease that counterbalances the expected P50 increase due only to the Bohr effect.

From Berthiaume et al. 11
Figure 5. Figure 5.

O2‐CO2 diagram, VS. . Line at right with points labeled A, lung respiratory exchange ratio (R) line of 0.7. Lines labeled I, III, and IV, blood R lines, each with R = 0.7. I: normal resting man. III: man with diabetic ketoacidosis. IV: nonacidotic man hyperventilating as in III. Points labeled A, alveolar points; points labeled a, arterial points. Numbers on blood R lines, fractions of normal blood flow assuming an arteriovenous O2 concentration difference of 4.6 ml O2/100 ml blood.

Data from Henderson 61
Figure 6. Figure 6.

O2‐CO2 diagram, VS. . Line at right, lung R line; open circles, arterial points; dashed lines, connect arterial points to lung R line at alveolar points. Open square, mean control rat subcutaneous gas pocket values. Solid circles, gas pocket values obtained in rats made acidotic by NH4Cl treatment.

From Van Liew 158
Figure 7. Figure 7.

Blood pH (pHB) and of toads (Bufo marinus), snapping turtles (Chelydra serpentina), and bullfrogs (Rana catesbeiana) shown as function of temperature. Curves are drawn from a binary buffer model solution for each animal. Open circles are in vivo data and closed circles are in vitro data from Howell et al. 64; open squares are data from Reeves 120.

From Reeves 123
Figure 8. Figure 8.

Values of pH vs. temperature in °C for 3 chemical solutions at constant CO2 content. A, pure carbonic acid‐bicarbonate solution; B, same as A plus 0.020 M imidazole; C, same as A plus 0.020 M phosphate. Lines, theoretical calculations based on model buffer systems.

From Reeves 120


Figure 1.

O2 concentration (Co2) shown as a function of partial pressure of O2 () in kPa for 2 values of arterial pH. Degree of venous admixture measured as the ratio of venous admixture to total blood flow (/) and O2 capacity (O2 capa) are shown. Only top portion of HbO2 dissociation curve is represented. For a given ideal end‐capillary‐to‐arterial O2 content difference (Cco2 ‐ Cao2), the ideal alveolar‐arterial difference in () is greater in alkalosis than in acidosis.

From Frans et al. 47


Figure 2.

Plasma pH, erythrocyte 2,3‐diphosphoglycerate (2,3‐DPG), O2 half‐saturation pressure of Hb (P50) (7.4), and P50 (in vivo) in 4 human subjects during acidosis and alkalosis induced by agents noted at top. Each symbol represents a different subject.

From Bellingham et al. 8


Figure 3.

Cerebrospinal fluid (CSF) during acidosis and treatment with NaHCO3 in 9‐day‐old lambs. Plasma pH was decreased from 7.38 to 7.23 over 30 min via HCl infusion and gradually decreased to 7.11 at 8 h. NaHCO3 therapy increased plasma pH to 7.24 at 15 min and to 7.29 after 24 h.

From Berthiaume et al. 11


Figure 4.

Values of in vitro P50 (7.4 and 37°C) and in vivo P50 (pH and animal temperature) during acidosis and NaHCO3 therapy in 9‐day‐old lambs. (See Fig. 3 for details of plasma pH changes.) Open squares, expected P50 based only on the Bohr effect. Shaded areas, estimated effect of 2,3‐DPG decrease that counterbalances the expected P50 increase due only to the Bohr effect.

From Berthiaume et al. 11


Figure 5.

O2‐CO2 diagram, VS. . Line at right with points labeled A, lung respiratory exchange ratio (R) line of 0.7. Lines labeled I, III, and IV, blood R lines, each with R = 0.7. I: normal resting man. III: man with diabetic ketoacidosis. IV: nonacidotic man hyperventilating as in III. Points labeled A, alveolar points; points labeled a, arterial points. Numbers on blood R lines, fractions of normal blood flow assuming an arteriovenous O2 concentration difference of 4.6 ml O2/100 ml blood.

Data from Henderson 61


Figure 6.

O2‐CO2 diagram, VS. . Line at right, lung R line; open circles, arterial points; dashed lines, connect arterial points to lung R line at alveolar points. Open square, mean control rat subcutaneous gas pocket values. Solid circles, gas pocket values obtained in rats made acidotic by NH4Cl treatment.

From Van Liew 158


Figure 7.

Blood pH (pHB) and of toads (Bufo marinus), snapping turtles (Chelydra serpentina), and bullfrogs (Rana catesbeiana) shown as function of temperature. Curves are drawn from a binary buffer model solution for each animal. Open circles are in vivo data and closed circles are in vitro data from Howell et al. 64; open squares are data from Reeves 120.

From Reeves 123


Figure 8.

Values of pH vs. temperature in °C for 3 chemical solutions at constant CO2 content. A, pure carbonic acid‐bicarbonate solution; B, same as A plus 0.020 M imidazole; C, same as A plus 0.020 M phosphate. Lines, theoretical calculations based on model buffer systems.

From Reeves 120
References
 1. Alberti, K. G. M. M., J. H. Darley, P. M. Emerson, and T. D. R. Hockaday, 2,3‐Diphosphoglycerate and tissue oxygenation in uncontrolled diabetes mellitus. Lancet 2: 391–395, 1972.
 2. Albery, W. J., and B. B. Lloyd, Variation of chemical potential with temperature. In: Development of the Lung, edited by A. V. S. de Reuck and R. Porter. London: Churchill, 1967. (Ciba Found. Symp.).
 3. Arnone, A., X‐ray diffraction study of binding of 2,3‐diphosphoglycerate to human deoxyhaemoglobin. Nature Lond. 237: 146–149, 1972.
 4. Austin, J. H., F. W. Sunderman, and J. G. Camack, The electrolyte composition and the pH of serum of a poikilother‐mous animal at different temperatures. J. Biol. Chem. 72: 677–685, 1927.
 5. Barer, G. R., J. R. McCurrie, and J. W. Shaw, Effects of changes in blood pH on the vascular resistance of the normal and hypoxic cat lung. Cardiovasc. Res. 5: 490–497, 1971.
 6. Bartels, H., and R. Baumann, Respiratory function of hemoglobin. In: Respiratory Physiology II, edited by J. G. Widdicombe. Baltimore, MD: University Park, 1977, vol. 14, p. 107–134. (Int. Rev. Physiol. Ser.).
 7. Becker, H., J. Vinten‐Johanson, G. D. Buckberg, J. M. Robertson, J. D. Leaf, H. L. Lazar, and A. J. Manganaro, Myocardial damage caused by keeping pH 7.40 during deep systemic hypothermia. J. Thorac. Cardiovasc. Surg. 82: 810–820, 1981.
 8. Bellingham, A. J., J. C. Detter, and C. Lenfant, Regulatory mechanisms of hemoglobin oxygen affinity in acidosis and alkalosis. J. Clin. Invest. 50: 700–706, 1971.
 9. Benesch, R., and R. E. Benesch, The effect of organic phosphates from the human erythrocyte on the allosteric properties of human hemoglobin. Biochem. Biophys. Res. Commun. 26: 162–164, 1967.
 10. Bergofsky, E. H., D. E. Lehr, and A. P. Fishman, The effect of changes in hydrogen ion concentration on the pulmonary circulation. J. Clin. Invest. 41: 1492–1502, 1962.
 11. Berthiaume, Y., M. A. Bureau, and R. Bégin, The adaptation of neonatal blood to metabolic acidosis and its effect on cisternal oxygen tension. Pediatr. Res. 15: 809–812, 1981.
 12. Biscoe, T. J., M. J. Purves, and S. R. Sampson, The frequency of nerve impulses in single carotid body chemoreceptor afferent fibres recorded in vivo with intact circulation. J. Physiol. Lond. 208: 121–131, 1970.
 13. Blayo, M. C., Y. Lecompte, and J. J. Pocidalo, Control of acid‐base status during hypothermia in man. Respir. Physiol. 42: 287–298, 1980.
 14. Bloor, B. M., J. Fricker, F. Hellinger, H. Nishioka, and J. McCutchen, A study of cerebrospinal fluid oxygen tensions: preliminary clinical and experimental observation. Arch. Neurol. 14: 37–47, 1961.
 15. Bohr, C., K. Hasselbalch, and A. Krogh, Ueber einen in biologischer Beziehung wichtigen Einfluss, den die Kohlen säurespannung des Blutes auf dessen Sauerstoffbindung übt. Skand. Arch. Physiol. 16: 402–412, 1904.
 16. Bureau, M. A., R. Bégin, Y. Berthiaume, D. Shapcott, K. Khoury, and N. Gagon, Cerebral hypoxia from bicarbonate infusion in diabetic acidosis. J. Pediatr. 96: 968–973, 1980.
 17. Busa, W. B., and R. Nuccitelli, Metabolic regulation via intracellular pH. Am. J. Physiol. 246 (Regulatory Integrative Comp. Physiol. 15): R409–R438, 1984.
 18. Cain, S. M., Diminution of lactate rise during hypoxia by PCO2 and β‐adrenergic blockade. Am. J. Physiol. 217: 110–116, 1969.
 19. Cain, S. M., Increased oxygen uptake with passive hyperventilation of dogs. J. Appl. Physiol. 28: 4–7, 1970.
 20. Cain, S. M., Oxygen delivery and utilization in hypoxic dogs made acidemic and alkalemic. Adv. Exp. Med. Biol. 75: 483–489, 1976.
 21. Cain, S. M., Oxygen extraction in severely anemic dogs after infusion of NaHCO3 or HCl. Adv. Exp. Med. Biol. 94: 525–530, 1978.
 22. Cameron, J. N., Regulation of blood pH in teleost fish. Respir. Physiol. 33: 129–144, 1978.
 23. Cameron, J. N., Acid‐base status of fish at different temperatures. Am. J. Physiol. 246 (Regulatory Integrative Comp. Physiol. 15): R452–R459, 1984.
 24. Cameron, J. N., and C. V. Batterton, Temperature and blood acid‐base status in the blue crab, Callinectes sapidus. Respir. Physiol. 35: 101–110, 1978.
 25. Canzanelli, A., M. Greenblatt, G. A. Rogers, and D. Rapport, The effect of pH changes on the in‐vitro O2 consumption of tissues. Am. J. Physiol. 127: 290–295, 1939.
 26. Carrier, O., Jr., M. Cowsert, J. Hancock, and A. C. Guyton, Effect of hydrogen ion changes on vascular resistance in isolated artery segments. Am. J. Physiol. 207: 169–172, 1964.
 27. Carson, S. A. A., G. E. Chorley, F. N. Hamilton, D. C. Lee, and L. E. Morris, Variation in cardiac output with acid‐base changes in the anesthetized dog. J. Appl. Physiol. 20: 948–953, 1965.
 28. Chanutin, A., and R. R. Curnish, Effect of organic and inorganic phosphate on the oxygen equilibrium of human erythrocytes. Arch. Biochem. Biophys. 121: 96–102, 1967.
 29. Chapler, C. K., W. N. Stainsby, and L. B. Gladden, Effect of changes in blood flow, norepinephrine, and pH on oxygen uptake by resting skeletal muscle. Can. J. Physiol. Pharmacol. 58: 93–96, 1980.
 30. Chapman, R. A., and D. Ellis, The existence of Ca++ for H+ exchange across the sarcolemma of frog cardiac muscle cells (Abstract). J. Physiol. Lond. 265: 19P–20P, 1977.
 31. Clancy, R. L., H. E. Cingolani, R. R. Taylor, T. P. Graham, Jr., and J. P. Gilmore, Influence of sodium bicarbonate on myocardial performance. Am. J. Physiol. 212: 917–923, 1967.
 32. Clowes, G. H. A., Jr., G. A. Sabga, A. Konitaxis, R. Tomin, M. Hughes, and F. A. Simeone, Effects of acidosis on cardiovascular function in surgical patients. Ann. Surg. 154: 524–555, 1961.
 33. Crawford, E. C., and R. N. Gatz, Acid‐base status of the blood of a desert lizard at different temperatures (Abstract). Pfluegers Arch. 343, Suppl.: R3, 1973.
 34. de Daly, M. B., C. J. Lambertsen, and A. Schweitzer, The effects upon bronchial musculature of altering the oxygen and carbon dioxide tensions of the blood perfusing the brain. J. Physiol. Lond. 119: 292–341, 1953.
 35. Dill, D. B., and H. T. Edwards, Properties of reptilian blood. IV. The alligator (Alligator mississippiensis). J. Cell. Comp. Physiol. 6: 243–254, 1935.
 36. Dill, D. B., H. T. Edwards, A. V. Bock, and J. H. Talbott, Properties of reptilian blood. III. The chuckwalla (Sauromalus obesus). J. Cell. Comp. Physiol. 6: 37–42, 1935.
 37. Downing, S. E., N. S. Talner, and T. H. Gardner, Cardiovascular responses to metabolic acidosis. Am. J. Physiol. 208: 237–242, 1965.
 38. Duhm, J., Effects of 2,3‐diphosphoglycerate and other organic phosphate compounds on oxygen affinity and intracellular pH of human erythrocytes. Pfluegers Arch. 326: 341–356, 1971.
 39. Duling, B. R., Changes in microvascular diameter and oxygen tension induced by carbon dioxide. Circ. Res. 32: 370–376, 1973.
 40. Dunkin, R. S., and S. Bondurant, The determinants of cerebrospinal fluid PO2. The effect of oxygen and carbon dioxide breathing in patients with chronic lung disease. Ann. Intern. Med. 64: 71–80, 1966.
 41. Ebert, P. A., L. J. Greenfield, W. G. Austen, and A. G. Morrow, The relationship of blood pH during profound hypothermia to subsequent myocardial function. Surg. Gynecol. Obstet. 114: 357–362, 1962.
 42. Elharrar, V., and D. P. Zipes, Cardiac electrophysiologic alterations during myocardial ischemia. Am. J. Physiol. 233 (Heart Circ. Physiol. 2): H329–H345, 1977.
 43. Ellenbogen, E., Dissociation constants of peptides. IV. The isomeric alanylalanines. J. Am. Chem. Soc. 78: 369–372, 1956.
 44. Ellis, D., and R. C. Thomas, Direct measurement of the intracellular pH of mammalian cardiac muscle. J. Physiol. Lond. 262: 755–771, 1976.
 45. Fencl, V., T. B. Miller, and J. R. Pappenheimer, Studies on the respiratory response to disturbances of acid‐base balance, with deductions concerning the ionic composition of cerebral interstitial fluid. Am. J. Physiol. 210: 459–472, 1966.
 46. Finch, C. A., and C. Lenfant, Oxygen transport in man. N. Engl. J. Med. 286: 407–415, 1972.
 47. Frans, A., Z. Turek, H. Yokata, and F. Kreuzer, Effect of variations in blood hydrogen ion concentration on pulmonary gas exchange of artificially ventilated dogs. Pfluegers Arch. 380: 35–39, 1979.
 48. Fry, C. H., and P. A. Poole‐Wilson, Effects of acid‐base changes on excitation‐contraction coupling in guinea‐pig and rabbit cardiac ventricular muscle. J. Physiol. Lond. 313: 141–160, 1981.
 49. George, J. P., and S. Soloman, pH and temperature dependence of glutamine uptake, carbon dioxide, and ammonia production in kidney slices from acidotic rats. J. Physiol. Lond. 316: 251–261, 1981.
 50. Gibby, O. M., K. E. A. Veale, T. M. Hayes, J. G. Jones, and C. A. J. Waldrop, Oxygen availability from the blood and the effect of phosphate replacement on erythrocyte 2,3‐diphosphoglycerate and haemoglobin‐oxygen affinity in diabetic ketoacidosis. Diabetologia 15: 381–385, 1978.
 51. Giordano, R. V., and D. C. Jackson, The effect of temperature on ventilation in the green iguana (Iguana iguana). Comp. Biochem. Physiol. A Comp. Physiol. 45: 235–238, 1973.
 52. Goldring, R. M., P. J. Cannon, H. O. Heinemann, and A. P. Fishman, Respiratory adjustment to chronic metabolic alkalosis in man. J. Clin. Invest. 47: 188–202, 1968.
 53. Haas, F., and E. H. Bergofsky, Effect of pulmonary vasoconstriction on balance between alveolar ventilation and perfusion. J. Appl. Physiol. 24: 491–497, 1968.
 54. Harken, A. H., Hydrogen ion concentration and oxygen uptake in an isolated canine hindlimb. J. Appl. Physiol. 40: 1–5, 1976.
 55. Harvey, R. M., Y. Enson, R. Betti, M. L. Lewis, D. F. Rochester, and M. I. Feuer, Further observations on the effect of hydrogen ion on the pulmonary circulation. Circulation 35: 1019–1027, 1967.
 56. Harvey, R. M., Y. Enson, M. L. Lewis, W. B. Greenough, K. M. Ally, and R. A. Panno, Hemodynamic effects of dehydration and metabolic acidosis in Asiatic cholera. Trans. Assoc. Am. Physicians 79: 177–186, 1966.
 57. Hazel, J. R., W. S. Garlick, and P. A. Sellner, The effects of assay temperature upon the pH optima of enzymes from poikilotherms: a test of the imidazole alphastat hypothesis. J. Comp. Physiol. 123: 97–104, 1978.
 58. Heisler, N., Regulation of the acid‐base status in fish. In: Environmental Physiology of Fishes, edited by M. A. Ali. New York: Plenum, 1980, p. 123–162.
 59. Henderson, L. J., Das Gleichgewicht wischen basen and sauren in tierischen Organismus. Ergeb. Physiol. 8: 254–325, 1909.
 60. Henderson, L. J., Blood: A Study in General Physiology. New Haven, CT: Yale Univ. Press, 1928.
 61. Hitzig, B. M., Temperature‐induced changes in turtle CSF pH and central control of ventilation. Respir. Physiol. 49: 205–222, 1982.
 62. Horwitz, L. D., V. S. Bishop, and H. L. Stone, Effects of hypercapnia on the cardiovascular system of conscious dogs. J. Appl. Physiol. 25: 346–348, 1968.
 63. Howell, B. J., F. W. Baumgardner, K. Bondi, and H. Rahn, Acid‐base balance in cold‐blooded vertebrates as a function of body temperature. Am. J. Physiol. 218: 600–606, 1970.
 64. Ingram, R. H., Jr., Effects of airway versus arterial CO2 changes on lung mechanics in dogs. J. Appl. Physiol. 38: 603–607, 1975.
 65. Jacey, M. J., and K. E. Schaefer, The effect of chronic hypercapnia on blood phosphofructokinase activity and the adenine nucleotide system. Respir. Physiol. 16: 267–272, 1972.
 66. Jankowska, L., and P. Grieb, Relationship between arterial and cisternal CSF oxygen tension in rabbits. Am. J. Physiol. 236 (Renal Fluid Electrolyte Physiol. 5): F220–F225, 1979.
 67. Jarum, S., J. Lorenzen, and E. Skinhøi, Cisternal fluid oxygen tension in man. Neurology 14: 703–707, 1964.
 68. Johansen, K., and C. Lenfant, A comparative approach to the adaptability of O2‐Hb affinity. In: Oxygen Affinity of Hemoglobin and Red Cell Acid‐Base Status, edited by M. Rørth and P. Astrup. Copenhagen: Munksgaard, 1972. (Alfred Benzon Symp., 4th, 1971.).
 69. Jones, N. L., J. R. Sutton, R. Taylor, and C. J. Toews, Effect of pH on cardiorespiratory and metabolic responses to exercise. J. Appl. Physiol. 43: 959–964, 1977.
 70. Karetzky, M. S., and S. M. Cain, Oxygen uptake stimulation following Na‐l‐lactate infusion in anesthetized dogs. Am. J. Physiol. 216: 1486–1490, 1969.
 71. Katz, U., Acid‐base status in the toad Bufo viridis in vivo. Respir. Physiol. 41: 105–115, 1980.
 72. Kazemi, H., R. C. Klein, F. N. Turner, and D. J. Strieder, Dynamics of oxygen transfer in the cerebrospinal fluid. Respir. Physiol. 4: 24–31, 1968.
 73. Kinney, J. L., D. T. Matsuura, and F. N. White, Cardiorespiratory effects of temperature in the turtle, Pseudemys floridana. Respir. Physiol. 31: 309–325, 1977.
 74. Kontos, H. A., D. W. Richardson, and J. L. Patterson, Jr., Vasodilator effect of hypercapnic acidosis on human forearm blood vessels. Am. J. Physiol. 215: 1403–1405, 1968.
 75. Kontos, H. A., D. W. Richardson, A. J. Raper, Z. Ul‐Hassan, and J. L. Patterson, Jr., Mechanisms of action of hypocapnic alkalosis on limb blood vessels in man and dog. Am. J. Physiol. 223: 1296–1307, 1972.
 76. Krall, M. A., J. D. Bristow, J. E. Welch, and J. Metcalfe, Physiological effects of lowered blood oxygen affinity in dogs. Respir. Physiol. 33: 263–270, 1978.
 77. Krantz, S. G., and L. O. Jacobson, Erythropoietin and the Regulation of Erythropoiesis. Chicago, IL: Univ. of Chicago Press, 1970.
 78. Kreisberg, R. A., Diabetic ketoacidosis: new concepts and trends in pathogenesis and treatment. Ann. Intern. Med. 88: 681–695, 1978.
 79. Lai, Y.‐L., W. J. E. Lamm, and J. Hildebrandt, Ventilation during prolonged hypercapnia in the rat. J. Appl. Physiol. 51: 78–83, 1981.
 80. Laux, B. E., and M. E. Raichle, The effect of acetazolamide on cerebral flow and oxygen utilization in the rhesus monkey. J. Clin. Invest. 62: 585–592, 1978.
 81. Laver, M. B., E. Jackson, M. Scherperel, C. Tung, W. Tung, and E. P. Radford, Hemoglobin‐O2 affinity regulation: DPG, monovalent anions; and hemoglobin concentration. J. Appl. Physiol. 43: 632–642, 1977.
 82. Lenfant, C., J. Torrance, E. English, C. A. Finch, C. Reynafarje, J. Ramos, and J. Faura, Effect of altitude on oxygen binding by hemoglobin and on organic phosphate levels. J. Clin. Invest. 47: 2652–2656, 1968.
 83. Leusen, I., Regulation of cerebrospinal fluid composition with reference to breathing. Physiol. Rev. 52: 1–56, 1972.
 84. Lifschitz, M. D., R. Brasch, A. J. Cuomo, and S. J. Menn, Marked hypercapnia secondary to severe metabolic alkalosis. Ann. Intern. Med. 77: 405–409, 1972.
 85. Ligou, J. C., and G. G. Nahas, Comparative effects of acidosis induced by acid infusion and CO2 accumulation. Am. J. Physiol. 198: 1201–1206, 1960.
 86. Liljestrand, G., Chemical control of the distribution of pulmonary blood flow. Acta Physiol. Scand. 44: 216–240, 1958.
 87. Loewe, R., and H. B. de Eggert, Blood gas analysis and acid‐base status in the hemolymph of a spider (Eurypelma californicum). Influence of temperature. J. Comp. Physiol. 134: 331–338, 1979.
 88. Malan, A., T. L. Wilson, and R. B. Reeves, Intracellular pH in cold‐blooded vertebrates as a function of body temperature. Respir. Physiol. 28: 29–47, 1976.
 89. Malik, A. B., and B. S. L. Kidd, Independent effects of changes in H+ and CO2 concentrations on hypoxic pulmonary vasoconstriction. J. Appl. Physiol. 34: 318–323, 1973.
 90. McConnell, D. H., F. N. White, R. L. Nelson, S. M. Goldstein, J. V. Maloney, E. C. Deland, and G. D. Buckberg, Importance of alkalosis in maintenance of “ideal” blood pH during hyothermia. Surg. Forum 26: 263–265, 1975.
 91. Miller, A. T., Jr., Acclimatization to carbon dioxide. Am. J. Physiol. 129: 524–531, 1940.
 92. Miller, M. E., The interaction between the regulation of acid‐base and erythropoietin production. Blood Cells 1: 449–465, 1975.
 93. Miller, M. E., M. Rørth, H. H. Parving, D. Howard, I. Reddington, C. R. Valeri, and F. Stohlman, Jr., pH effect on erythropoietin response to hypoxia. N. Engl. J. Med. 288: 706–710, 1973.
 94. Mitchell, J. H., K. Wildenthal, and R. L. Johnson, Jr., The effects of acid‐base disturbances on cardiovascular and pulmonary function. Kidney Int. 1: 375–387, 1972.
 95. Mitchell, R. A., The regulation of respiration in metabolic acidosis and alkalosis. In: Cerebrospinal Fluid and the Regulation of Ventilation, edited by C. M. Brooks, F. F. Kao, and B. B. Lloyd. Oxford, UK: Blackwell, 1965, p. 109–131.
 96. Mittelman, A., S. J. Dos, H. G. Barker, and G. G. Nahas, Adrenocortical response during corrected and uncorrected hypercapnic acidosis. Am. J. Physiol. 202: 334–336, 1962.
 97. Moalli, R., R. S. Meyers, G. R. Ultsch, and D. C. Jackson, Acid‐base balance and temperature in a predominantly skin‐breathing salamander, Cryptobranchus alleganiensis. Respir. Physiol. 43: 1–11, 1981.
 98. Nadel, J. A., and J. G. Widdicombe, Effect of changes in blood gas tensions and carotid sinus pressure on tracheal volume and total lung resistance to airflow. J. Physiol. Lond. 163: 13–33, 1962.
 99. Naeraa, N., E. Strange Petersen, E. Boye, and J. W. Severinghaus, pH and molecular CO2 components of the Bohr effect in human blood. Scand. J. Clin. Lab. Invest. 18: 96–102, 1966.
 100. Nahas, G. G., Mechanisms of carbon dioxide and pH effects on metabolism. In: Carbon Dioxide and Metabolic Regulation, edited by G. G. Nahas and K. E. Schaefer. New York: Springer‐Verlag, 1974, p. 107–117.
 101. Nahas, G. G., and C. Poyart, Effect of arterial pH alterations on metabolic activity of norepinephrine. Am. J. Physiol. 212: 765–772, 1967.
 102. Nahas, G. G., and O. S. Steinsland, Increased rate of catecholamine synthesis during respiratory acidosis. Respir. Physiol. 5: 108–117, 1968.
 103. Nisell, O., The action of oxygen and carbon dioxide on the bronchioles and vessels of the isolated perfused lungs. Acta Physiol. Scand. Suppl. 73: 15–62, 1950.
 104. Noble, M. I. M., D. Trenchard, and A. Guz, Effect of changes in PaCO2 and PaO2 on cardiac performance in conscious dogs. J. Appl. Physiol. 22: 147–152, 1966.
 105. O'Cain, C. F., M. J. Hensley, E. R. McFadden, Jr., and R. H. Ingram, Jr., Pattern and mechanism of airway response to hypocapnia in normal subjects. J. Appl. Physiol. 47: 8–12, 1979.
 106. Pappenheimer, J. R., V. Fencl, S. R. Heisey, and D. Held, Role of cerebral fluids in control of respiration as studied in unanesthetized goats. Am. J. Physiol. 208: 436–450, 1965.
 107. Park, Y. S., and S. K. Hong, Properties of toad skin Na‐K‐ATPase with special reference to effect of temperature. Am. J. Physiol. 231: 1356–1363, 1976.
 108. Park, Y. S., and S. Solomon, pH‐temperature dependence of organic acid transport in rat kidney slices. Am. J. Physiol. 233 (Renal Fluid Electrolyte Physiol. 2): F382–F387, 1977.
 109. Patterson, R. W., and S. F. Sullivan, Determinants of oxygen uptake during sodium bicarbonate infusion. J. Appl. Physiol. 45: 399–402, 1978.
 110. Peters, R. M., E. M. Hedgpeth, Jr., and B. G. Greenberg, The effect of alterations in acid‐base balance on pulmonary mechanics. J. Thorac. Cardiovasc. Surg. 57: 303–311, 1969.
 111. Popham, P. A. B., P. J. Oldershaw, and J. R. Cameron, Relationship between developed tension and intracellular pH in rat papillary muscle during acute respiratory and metabolic acid‐base changes (Abstract). Clin. Sci. Mol. Med. 58: 10P, 1980.
 112. Poyart, C., and G. G. Nahas, Inhibition of catecholamine‐induced calorigenesis and lipolysis by hypercapnic acidosis. Am. J. Physiol. 211: 161–168, 1966.
 113. Price, H. L., Effects of carbon dioxide on the cardiovascular system. Anesthesiology 21: 652–663, 1960.
 114. Rahn, H., and F. W. Baumgardner, Temperature and acid‐base regulation in fish. Respir. Physiol. 14: 171–182, 1972.
 115. Rahn, H., and B. J. Howell, The OH−/H++ concept of acid‐base balance: historical development. Respir. Physiol. 33: 91–97, 1978.
 116. Randall, D. J., and J. N. Cameron, Respiratory control of arterial pH as temperature changes in rainbow trout Salmo gairdneri. Am. J. Physiol. 225: 997–1002, 1973.
 117. Rapoport, S., and G. M. Guest, The decomposition of diphosphoglycerate in acidified blood: its relationship to reactions of the glycolytic cycle. J. Biol. Chem. 129: 781–790, 1939.
 118. Reeves, R. B., Role of body temperature in determining the acid‐base state in vertebrates. Federation Proc. 28: 1204–1208, 1969.
 119. Reeves, R. B., An imidazole alphastat hypothesis for vertebrate acid‐base regulation: tissue carbon dioxide content and body temperature in bullfrogs. Respir. Physiol. 14: 219–236, 1972.
 120. Reeves, R. B., Temperature‐induced changes in blood acid‐base status: pH and PCO2 in a binary buffer. J. Appl. Physiol. 40: 752–761, 1976.
 121. Reeves, R. B., Temperature‐induced changes in blood acid‐base status: Donnan rCI and red cell volume. J. Appl. Physiol. 40: 762–767, 1976.
 122. Reeves, R. B., The interaction of body temperature and acid‐base balance in ectothermic vertebrates. Annu. Rev. Physiol. 39: 559–586, 1977.
 123. Reeves, R. B., The effect of temperature on the oxygen equilibrium curve of human blood. Respir. Physiol. 42: 317–328, 1980.
 124. Relman, S. A., Metabolic consequences of acid‐base disorders. Kidney Int. 1: 347–359, 1972.
 125. Richardson, D. W., A. J. Wasserman, and J. L. Patterson, General and regional circulatory responses to change in blood pH and carbon dioxide tension. J. Clin. Invest. 40: 31–43, 1961.
 126. Riggs, T. E., A. W. Shafer, and C. A. Guenter, Acute changes in oxyhemoglobin affinity: effects on oxygen transport and utilization. J. Clin. Invest. 52: 2660–2663, 1973.
 127. Robin, E. D., Relationship between temperature and plasma pH and carbon dioxide tension in the turtle. Nature Lond. 195: 249–251, 1962.
 128. Robin, E. D., P. A. Bromberg, and C. E. Cross, Some aspects of the evolution of vertebrate acid‐base regulation. Yale J. Biol. Med. 41: 448–467, 1969.
 129. Rocamora, J. M., and S. E. Downing, Preservation of ventricular function by adrenergic influences during metabolic acidosis in the cat. Circ. Res. 24: 373–381, 1969.
 130. Roos, A., and W. F. Boron, Intracellular pH. Physiol. Rev. 61: 296–434, 1981.
 131. Rose, I. A., Regulation of human red cell glycolysis: a review. Exp. Eye Res. 11: 264–272, 1971.
 132. Rosenthal, T. B., The effect of temperature on the pH of blood and plasma in vitro. J. Biol. Chem. 173: 25–30, 1959.
 133. Scarpelli, E. M., and E. J. Agasso, Arterial pH, airway caliber and response to acetylcholine and catecholamines in vivo. Respir. Physiol. 38: 235–242, 1979.
 134. Schaefer, K. E., N. McCabe, and J. Withers, Stress response in chronic hypercapnia. Am. J. Physiol. 214: 543–548, 1968.
 135. Schaefer, K. E., A. A. Messier, C. Morgan, and G. T. Baker III., Effect of chronic hypercapnia on body temperature regulation. J. Appl. Physiol. 38: 900–906, 1975.
 136. Serur, J. R., C. L. Skelton, R. Bodem, and E. H. Sonnenblick, Respiratory acid‐base changes and myocardial contractility: interaction between calcium and hydrogen ions. J. Mol. Cell. Cardiol. 8: 823–836, 1976.
 137. Severinghaus, J. W., E. W. Swenson, T. N. Finley, M. T. Lategola, and J. Williams, Unilateral hypoventilation produced in dogs by occluding one pulmonary artery. J. Appl. Physiol. 16: 53–60, 1961.
 138. Shapiro, B. J., D. H. Simmons, and L. M. Linde, Pulmonary hemodynamics during acute acid‐base changes in the intact dog. Am. J. Physiol. 210: 1026–1032, 1966.
 139. Smith, L. J., C. R. Inners, P. B. Terry, H. A. Menkes, and R. J. Traystman, Effects of methacholine and hypocapnia on airways and collateral ventilation in dogs. J. Appl. Physiol. 46: 966–972, 1979.
 140. Steenbergen, C., G. Deleeuw, T. Rich, and J. R. Williamson, Effects of acidosis and ischemia on contractility and intracellular pH of rat heart. Circ. Res. 41: 849–858, 1977.
 141. Stein, J. R., and J. G. Widdicombe, The interaction of chemo‐ and mechanoreceptor signals in the control of airway calibre. Respir. Physiol. 25: 363–376, 1975.
 142. Stephens, N. L., and R. W. Mitchell, Mechanism of action of respiratory acidosis on tracheal smooth muscle. Am. J. Physiol. 227: 647–651, 1974.
 143. Sterling, G. M., The mechanism of bronchoconstriction due to hypocapnia in man. Clin. Sci. Lond. 34: 277–285, 1968.
 144. Stewart, P. A., How to Understand Acid‐Base. New York: Elsevier, 1981.
 145. Stupfel, M., Carbon dioxide and temperature regulation. In: Carbon Dioxide and Metabolic Regulation, edited by G. Nahas and K. E. Schaefer. New York: Springer‐Verlag, 1974, p. 163–188.
 146. Sutton, J. R., N. L. Jones, and C. J. Toews, Effect of pH on muscle glycolysis during exercise. Clin. Sci. Lond. 61: 331–338, 1981.
 147. Swan, H., The hydroxyl‐hydrogen ion concentration ratio during hypothermia. Surg. Gynecol. Obstet. 155: 897–912, 1982.
 148. Swan, H., The importance of acid‐base management for cardiac and cerebral preservation during open heart operations. Surg. Gynecol. Obstet. 158: 391–414, 1984.
 149. Tenney, S. M., Sympatho‐adrenal stimulation by carbon dioxide and the inhibitory effect of carbonic acid on epinephrine response. Am. J. Physiol. 187: 341–346, 1956.
 150. Tenney, S. M., Effects of CO2 on neurohumoral and endocrine mechanisms. Anesthesiology 21: 674–685, 1960.
 151. Theye, R. A., G. A. Gronert, and J. J. A. Heffion, Oxygen uptake of canine whole body and hind limb with hypocapnic alkalosis. Anesthesiology 47: 416–422, 1977.
 152. Thomas, H. M., S. S. Lefrak, R. S. Irwin, H. W. Fritts, Jr., and P. R. B. Caldwell, The oxyhemoglobin dissociation curve in health and disease. Am. J. Med. 57: 331–348, 1974.
 153. Trivedi, B., and W. H. Danforth, Effect of pH on the kinetics of frog muscle phosphofructokinase. J. Biol. Chem. 241: 4110–4112, 1966.
 154. Truchot, J. P., Temperature and acid‐base regulation in the shore crab Carcinus maenas (L.). Respir. Physiol. 17: 11–20, 1973.
 155. Tuller, M. A., and F. Mehdi, Compensatory hypoventilation and hypercapnia in primary metabolic alkalosis. Am. J. Med. 50: 281–290, 1971.
 156. Twining, R. H., V. Lopez‐Majano, H. N. Wagner, Jr., V. Chernick, and R. E. Dutton, Effect of regional hypercapnia on the distribution of pulmonary blood flow in man. Johns Hopkins Med. J. 123: 95–103, 1968.
 157. Van Liew, H. D., Oxygen and carbon dioxide tensions in tissue and blood of normal and acidotic rats. J. Appl. Physiol. 25: 575–580, 1968.
 158. Vaughn‐Williams, E. M., The individual effects of CO2, bicarbonate and pH on the electrical and mechanical activity of isolated rabbit auricles. J. Physiol. Lond. 129: 90–110, 1955.
 159. Weast, R. C. (editor)., Handbook of Chemistry and Physics (46th ed.). Cleveland, OH: CRC, 1965.
 160. Wendling, M. G., J. W. Eckstein, and F. M. Abboud, Cardiovascular responses to carbon dioxide before and after beta‐adrenergic blockade. J. Appl. Physiol. 22: 223–226, 1967.
 161. West, J. B., Ventilation‐perfusion relationships. Am. Rev. Respir. Dis. 116: 919–943, 1977.
 162. White, F. N., A comparative physiological approach to hypothermia. J. Thorac. Cardiovasc. Surg. 82: 821–831, 1981.
 163. White, F. N., and G. Somero, Acid‐base regulation and phospholipid adaptations to temperature: time courses and physiological significance of modifying the milieu for protein function. Physiol. Rev. 62: 40–90, 1982.
 164. Widdicombe, J. G., Regulation of tracheobronchial smooth muscle. Physiol. Rev. 43: 1–37, 1963.
 165. Wildenthal, K., D. S. Mierzwiak, R. W. Myers, and J. H. Mitchell, Effects of acute lactic acidosis on left ventricular performance. Am. J. Physiol. 214: 1352–1359, 1968.
 166. Williamson, J. R., B. Safer, T. Rich, S. Schaffer, and K. Kobayashi, Effects of acidosis on myocardial contractility and metabolism. Acta Med. Scand. Suppl. 587: 95–112, 1975.
 167. Wilson, T. L., Theoretical analysis of the effects of two pH regulation patterns on the temperature sensitivities of biological systems in nonhomeothermic animals. Arch. Biochem. Biophys. 182: 409–419, 1977.
 168. Withers, P. C., Acid‐base regulation as a function of body temperature in ectothermic toads, a heliothermic lizard, and a heterothermic mammal. J. Therm. Biol. 3: 163–171, 1978.
 169. Wolf‐Priessnitz, J., J. C. Schooley, and L. J. Mahlmann, Inhibition of erythropoietin production in unanesthetized rabbits exposed to an acute hypoxic‐hypercapnic environment. Blood 52: 153–162, 1978.
 170. Wood, S. C., K. Johansen, and R. N. Gatz, Pulmonary blood flow, ventilation/perfusion ratio, and oxygen transport in a varanid lizard. Am. J. Physiol. 233 (Regulatory Integrative Comp. Physiol. 2): R89–R93, 1977.
 171. Wood, S. C., K. Johansen, M. L. Glass, and R. W. Hoyt, Acid‐base regulation during heating and cooling in the lizard, Varanus exanthematicus. J. Appl. Physiol. 50: 779–783, 1981.
 172. Woodson, R. D., B. Wranne, and J. C. Detter, Effects of increased blood oxygen affinity on work performance of rats. J. Clin. Invest. 52: 2717–2724, 1973.
 173. Yancey, P. H., and G. N. Somero, Temperature dependence of intracellular pH: its role in the conservation of pyruvate apparent Km values of vertebrate lactate dehydrogenases. J. Comp. Physiol. 125: 129–134, 1978.
 174. Yudkin, J., R. D. Cohen, and B. Slack, The haemodynamic effects of metabolic acidosis in the rat. Clin. Sci. Lond. 50: 177–184, 1976.

Contact Editor

Submit a note to the editor about this article by filling in the form below.

* Required Field

How to Cite

Eugene E. Nattie. Gas Exchange in Acid‐Base Disturbances. Compr Physiol 2011, Supplement 13: Handbook of Physiology, The Respiratory System, Gas Exchange: 421-438. First published in print 1987. doi: 10.1002/cphy.cp030420