References |
1. |
Admirand, W. H., and
D. M. Small.
The physico‐chemical basis of cholesterol gallstone formation in man.
J. Clin. Invest.
47:
1045–1052,
1968.
|
2. |
Angelico, M.
Subselection of phospholipids during formation of native bile: physical‐chemical coupling of bile salts and phospholipids (Abstract).
Clin. Res.
33:
538A,
1985.
|
3. |
Armstrong, M. C., and
M. C. Carey.
The hydrophobic‐hydrophilic balance of bile salts. Inverse correlation between reverse phase high pressure liquid chromatographic mobilities and micellar cholesterol‐solubilizing capacities.
J. Lipid Res.
23:
70–80,
1982.
|
4. |
Arora, S. K.,
G. Germain, and
J. P. Declercq.
The crystal and molecular structure of lithocholic acid.
Acta Crystallogr. Sect. B. Struct. Crystallogr. Cryst. Chem.
32:
415–419,
1982.
|
5. |
Backer, J. M., and
E. A. Dawidowicz.
Mechanism of cholesterol exchange between phospholipid vesicles.
Biochemistry
20:
3805–3810,
1981.
|
6. |
Barnes, S., and
J. M. Geckle.
High resolution nuclear magnetic resonance spectroscopy of bile salts: individual proton assignments for sodium cholate in aqueous solution at 400 MHz.
J. Lipid Res.
23:
161–170,
1982.
|
7. |
Bennett, W. S.,
G. Ellington, and
S. Kovack.
Self‐association of phenolics and bile acid derivatives.
Nature Lond.
214:
776–780,
1967.
|
8. |
Birdi, K. S.
Aggregation of bile salts (Na‐deoxycholate).
Finn. Chem. Lett.
6–8:
142–146,
1982.
|
9. |
Bloch, C. A., and
J. B. Watkins.
Determination of conjugated bile acids in human bile and duodenal fluid by reverse phase high pressure liquid chromatography.
J. Lipid Res.
19:
510–513,
1978.
|
10. |
Borgstrom, B.
Studies of the phospholipids of human bile and small intestine.
Acta Chem. Scand.
11:
749,
1957.
|
11. |
Bourges, M.,
D. M. Small, and
D. G. Dervichian.
Biophysics of lipidic associations. II. The ternary systems. Cholesterol‐lecithin‐water.
Biochim. Biophys. Acta
137:
157–167,
1967.
|
12. |
Bourges, M.,
D. M. Small, and
D. G. Dervichian.
Biophysics of lipidic associations. III. The quaternary systems. Bile salt‐lecithin‐cholesterol‐water.
Biochim. Biophys. Acta
144:
189–202,
1967.
|
13. |
Bruckdirfer, K. R., and
M. K. Sherry.
The solubility of cholesterol and its exchange between membranes.
Biochim. Biophys. Acta
769:
187–196,
1984.
|
14. |
Burnstein, M. J.,
R. G. Ilson,
C. N. Petrunka,
R. D. Taylor, and
S. M. Strasberg.
Evidence of a potential nucleating factor in the gallbladder bile of patients with cholesterol gallstones.
Gastroenterology
85:
801–807,
1983.
|
15. |
Cabral, D. J.,
J. A. Hamilton, and
D. M. Small.
The ionization behavior of bile acids in different aqueous environments.
J. Lipid Res.
27:
334–343,
1986.
|
16. |
Cabral, D. J.,
D. M. Small,
H. S. Lilly, and
J. A. Hamilton.
Transbilayer movement of bile acids in model membranes.
Biochemistry
26:
1801–1804,
1987.
|
17. |
Cabral, D. J.,
D. M. Small, and
J. A. Hamilton.
Exchange behavior of bile acids in phosphatidylcholine vesicles (Abstract).
Biophys. J.
51:
540a,
1987.
|
18. |
Campanelli, A. R.,
D. Ferro,
E. Giglio,
P. Imperatori, and
V. Piacente.
Thermal and x‐ray study of sodium deoxycholate crystal and fiber.
Thermochim. Acta
67:
223–232,
1983.
|
19. |
Cantafora, A.,
A. DiBiase,
D. Alvaro,
M. Angelico,
M. Marin, and
A. F. Attili.
High performance liquid chromatographic analysis of molecular species of phosphatidylcholine‐development of quantitative assay and its application to human bile.
Clin. Chim. Acta
134:
281–285,
1983.
|
20. |
Carey, M. C.
Critical tables for calculating the cholesterol saturation of native bile.
J. Lipid Res.
19:
945–955,
1978.
|
21. |
Carey, M. C.
Physical‐chemical properties of bile acids and their salts. In:
New Comprehensive Biochemistry: Sterols and Bile Acids,
edited by J. Sjovall and
H. Danielson.
Amsterdam:
Elsevier,
1985,
p. 345–403.
|
22. |
Carey, M. C.,
M. J. Armstrong,
N. A. Mazer,
H. Igimi, and
G. Salvioli.
Measurement of the hydrophilic‐hydrophobic balance of bile salt: correlation with physical‐chemical interactions. In:
Bile Acids and Cholesterol in Health and Disease, edited by
G. Paumgartner,
A. Stiehl, and
W. Gerok.
Lancaster, UK:
MTP,
1983,
p. 31–42.
|
23. |
Carey, M. C., and
D. M. Small.
Micellar properties of dihydroxy and trihydroxy bile salts: effects of counterion and temperature.
J. Colloid Interface Sci.
31:
382–396,
1969.
|
24. |
Carey, M. C., and
D. M. Small.
The physical chemistry of cholesterol solubility in bile: relationship to gallstone formation and dissolution in man.
J. Clin. Invest.
61:
998–1026,
1978.
|
25. |
Carey, M. D.,
D. M. Small, and
C. M. Bliss.
Lipid digestion and absorption.
Annu. Rev. Physiol.
45:
651–677,
1983.
|
26. |
Castellino, F. J., and
B. N. Violand.
31P‐nuclear magnetic resonance and 31P[1H] nuclear Overhauser effect analysis of mixed egg phosphatidylcholine‐sodium taurocholate vesicles and micelles.
Arch. Biochem. Biophys.
193:
543–550,
1979.
|
27. |
Chang, Y., and
J. R. Cardinal.
Light scattering studies on bile acid salts. II. Pattern of self‐association of sodium deoxycholate, sodium taurodeoxycholate and sodium glycodeoxycholate in aqueous electrolyte solutions.
J. Pharm. Sci.
67:
994–999,
1978.
|
28. |
Christopher, F.
Textbook of Surgery
(9th ed.),
edited by L. Davis.
Philadelphia, PA:
Saunders,
1968.
|
29. |
Cistola, D. P.,
D. M. Small, and
J. A. Hamilton.
Ionization behavior of aqueous short‐chain carboxylic acids: a carbon‐13 NMR study.
J. Lipid Res.
23:
795–799,
1982.
|
30. |
Claffey, W. J., and
R. T. Holzbach.
Dimorphism in bile salt/lecithin mixed micelles.
Biochemistry
20:
415–418,
1981.
|
31. |
Cobbledick, R. E., and
F. W. B. Einstein.
The structure of 3α,7α,12α‐trihydroxy‐5β‐cholan‐24‐oate monohydrate (sodium cholate monohydrate).
Acta Crystallogr. Sect. B Struct. Crystallogr. Cryst. Chem.
36:
287–292,
1980.
|
32. |
Coiro, Y. M.,
E. Giglio,
S. Morosette, and
A. Palleschi.
A monoclinic phase of the deoxycholic acid rubidium salt.
Acta Crystallogr. Sect. B Struct. Crystallogr. Cryst. Chem.
36:
1478–1480,
1980.
|
33. |
Conte, G.,
R. DiBlasi,
E. Giglio,
A. Parrett, and
N. V. Pavel.
Nuclear magnetic resonance and x‐ray studies on micellar aggregates of sodium deoxycholate.
J. Phys. Chem.
88:
5720–5724,
1984.
|
34. |
Delacroix, D. L.,
H. J. F. Hodgson,
A. McPherson,
C. Dive, and
J. P. Vaerman.
Selective transport of polymeric immunoglobulin A in bile.
J. Clin. Invest.
70:
230–241,
1982.
|
35. |
DeMaria, P.,
A. Fini, and
A. Roda.
Chemical properties of bile acids. I. Thermodynamic dissociation constants of some cholanic acid derivatives in 50 weight percent aqueous methanol.
Gazz. Chim. Ital.
111:
95–97,
1981.
|
36. |
Dowling, R. H.,
E. Mack, and
D. M. Small.
Effects of controlled interruption of the enterohepatic circulation of bile salts by biliary diversion and by ileal resection on bile salt secretion, synthesis and pool size in the Rhesus monkey.
J. Clin. Invest.
49:
232–242,
1970.
|
37. |
Dowling, R. J.,
E. Mack, and
D. M. Small.
Biliary lipid secretion and bile composition following acute and chronic interruption of the enterohepatic circulation in the Rhesus monkey.
J. Clin. Invest.
50:
1917–1926,
1971.
|
38. |
Dowling, R. H., and
D. M. Small.
The effect of pH on the solubility of varying mixtures of free and conjugated bile salts in solution.
Gastroenterology
54:
1291,
1968.
|
39. |
Ekwall, P.,
T. Rosendahl, and
N. Lofman.
Studies on bile acid salt solutions.
Acta Chem. Scand.
11:
590–598,
1957.
|
40. |
Ekwall, P.,
T. Rosendahl, and
A. Sten.
Studies on bile acid salt solutions. II. The solubility of cholic acid in sodium cholate solutions and that of deoxycholate in sodium deoxycholate solutions.
Acta Chem. Scand.
12:
1622–1633,
1958.
|
41. |
Fini, A.,
A. Roda, and
P. DeMaria.
Chemical properties of bile acids. Part 2. pKa values in H2O and aqueous methanol of some hydroxy bile acids.
Eur. J. Chem.
17:
467–470,
1982.
|
42. |
Fini, A.,
A. Roda,
R. Fugazza, and
B. Grigolo.
Chemical properties of bile acids. III. Bile acid structure and solubility in water.
J. Solution Chem.
14:
595–603,
1985.
|
43. |
Fromhertz, P.
Lipid‐vesicle structure: size control by edgeactive agents.
Chem. Phys. Lipids
94:
259–266,
1983.
|
44. |
Fromhertz, P., and
D. Ruppel.
Lipid vesicle formation: the transition from open disk to closed shells.
FEBS Lett.
179:
155–159,
1985.
|
45. |
Gallinger, S.,
P. R. C. Harvey,
C. N. Petrunka, and
S. M. Strasberg.
The effect of binding of ionized calcium on the in vitro nucleation of cholesterol and calcium bilirubinate in human gallbladder bile.
Gut
27:
1382–1386,
1986.
|
46. |
Gallinger, S.,
P. Robert,
C. Harvey,
C. N. Petrunka,
R. G. Ilson, and
S. M. Strasberg.
Biliary proteins and the nucleation defect in cholesterol cholelithiasis.
Gastroenterology
91:
867–875,
1987.
|
47. |
Gallinger, S.,
R. D. Taylor,
P. R. C. Harvey,
C. N. Petrunka, and
S. M. Strasberg.
Effect of mucous glycoprotein on nucleation time of human bile.
Gastroenterology
89:
648–658,
1985.
|
48. |
Gilat, T., and
G. J. Sömjen.
Cholesterol solubility in human bile.
J. Clin. Gastroenterol.
In press.
|
49. |
Haberland, M. E., and
J. A. Reynolds.
Self‐association of cholesterol in aqueous solution.
Proc. Natl. Acad. Sci. USA
70:
2313–2316,
1973.
|
50. |
Halpern, Z.,
M. A. Dudley,
A. Kibe,
M. P. Lynn,
A. C. Breuer, and
R. T. Holzbach.
Rapid vesicle formation and aggregation in abnormal human biles. A time‐lapse videoenhanced contrast microscopy study.
Gastroenterology
90:
875–885,
1986.
|
51. |
Harvey, P. R. C.,
C. A. Rupar,
S. Gallinger,
C. N. Petrunka, and
S. M. Strasberg.
Quantitative and qualitative comparison of gallbladder mucus glycoprotein from patients with and without gallstones.
Gut
27:
374–381,
1986.
|
52. |
Harvey, P. R. C.,
D. Taylor,
C. N. Petrunka,
A. D. Murray, and
S. M. Strasberg.
Quantitative analysis of major, minor and trace elements in gallbladder bile of patients with and without gallstones.
Hepatology Baltimore
5:
129–132,
1985.
|
53. |
Hegardt, F. G., and
H. Dam.
The solubility of cholesterol in aqueous solutions of bile salts and lecithin.
Z. Ernaehrungswiss.
10:
223–233,
1971.
|
54. |
Hepatology Baltimore
4,
Suppl.:
1S–252S,
1984.
|
55. |
Hofmann, A. F.
Animal models of calcium cholelithiasis.
Hepatology Baltimore
4,
Suppl.:
209S–211S,
1984.
|
56. |
Hogan, A.,
S. E. Ealick,
C. E. Bugg, and
S. Barnes.
Aggregation patterns of bile salts: crystal structure of calcium cholate chloride heptahydrate.
J. Lipid Res.
25:
791–798,
1984.
|
57. |
Holan, K. R.,
R. T. Holzbach,
R. E. Hermann,
A. C. Cooperman, and
W. J. Claffey.
Nucleation time: a key factor in the pathogenesis of cholesterol gallstone disease.
Gastroenterology
77:
611–617,
1979.
|
58. |
Holzbach, R. T., and
C. Corbusier.
Liquid crystals and cholesterol nucleation during equilibration in supersaturated bile analogues.
Biochim. Biophys. Acta
528:
436–444,
1978.
|
59. |
Holzbach, R. T.,
A. Kibe,
E. Thiel,
J. H. Howell,
M. Marsh, and
R. E. Hermann.
Biliary proteins: unique inhibitors of cholesterol crystal nucleation in human gallbladder bile.
J. Clin. Invest.
73:
35–45,
1984.
|
60. |
Holzbach, R. T.,
M. Marsh,
M. Olsezewski, and
K. Holan.
Cholesterol solubility in bile: evidence that supersaturated bile is frequent in healthy man.
J. Clin. Invest.
52:
1467–1479,
1973.
|
61. |
Hunt, G. R. A.
A comparison of triton X‐100 and the bile salt taurocholate as micellar ionophones or fusogenes in phospholipid vesicular membranes. A 1H NMR method using the lanthanide probe ion Pr3+.
FEBS Lett.
119:
132–136,
1980.
|
62. |
Hunt, G. R. A., and
K. Jawaharlal.
A 1H‐NMR investigation of the mechanism for the ionophore activity of the bile salts in phospholipid vesicular membranes and the effects of cholesterol.
Biochim. Biophys. Acta
601:
678–684,
1980.
|
63. |
Igimi, H., and
M. C. Carey.
pH‐solubility relations of chenodeoxycholic and ursodeoxycholic acids: physical‐chemical basis for dissimilar solution and membrane phenomena.
J. Lipid Res.
21:
72–90,
1980.
|
64. |
Iser, J. H.,
G. M. Murphy, and
R. H. Dowling.
Speed of change in biliary lipids and bile acids with chenodeoxycholic acid—is intermittent therapy feasible?
Gut
18:
7–15,
1977.
|
65. |
Kibe, A.,
M. A. Dudley,
Z. Halpern,
M. P. Lynn,
A. C. Breuer, and
R. T. Holzbach.
Factors affecting cholesterol monohydrate crystal nucleation time in model systems of supersaturated bile.
J. Lipid Res.
26:
1102–1111,
1985.
|
66. |
Kolehmainen, E.
Solubilization of aromatics in aqueous bile salts. I. Benzene and alkylbenzenes in sodium cholate: 1H NMR study.
J. Colloid Interface Sci.
105:
273–277,
1985.
|
67. |
Kramer, R. M.,
H. J. Hasselbach, and
G. Semenza.
Rapid transmembrane movement of phosphatidylcholine in small unilamellar lipid vesicles formed by detergent removal.
Biochim. Biophys. Acta
643:
233–242,
1985.
|
68. |
Kratohvil, J. P., and
H. T. Dellicolli.
Micellar properties of bile salts. Sodium taurodeoxycholate and sodium glycodeoxycholate.
Can. J. Biochem.
46:
945–952,
1968.
|
69. |
Kratohvil, J. P.,
W. P. Hsu,
M. A. Jacobs,
T. M. Aminabhavi, and
Y. Mukunoki.
Concentration‐dependent aggregation patterns of conjugated bile salts in aqueous sodium chloride solutions.
Colloid Polym. Sci.
261:
781–785,
1983.
|
70. |
Lack, L., and
I. M. Weiner.
Intestinal bile salt transport: structure‐activity relationships and other properties.
Am. J. Physiol.
210:
1142–1152,
1966.
|
71. |
Lake, M., and
D. T. Organisciak.
Determination of the composition of mixed micelles of bile salts by kinetic dialysis.
Lipids
19:
553–557,
1984.
|
72. |
LaRusso, N. F.
Proteins in bile: how they get there and what they do.
Am. J. Physiol.
247
(Gastrointest. Liver Physiol. 10):
G199–G205,
1984.
|
73. |
Lecuyer, H., and
D. G. Dervichian.
Structure of aqueous mixtures of lecithin and cholesterol.
J. Mol. Biol.
45:
39–57,
1969.
|
74. |
Lee, S. P.,
M. C. Carey, and
J. T. LaMont.
Aspirin prevention of cholesterol gallstone formation in the prairie dog.
Science Wash. DC
211:
1420,
1981.
|
75. |
Lee, S. P.,
J. T. LaMont, and
M. C. Carey.
Role of gallstone mucin hypersecretion in the evolution of cholesterol gallstones: studies in the prairie dog.
J. Clin. Invest.
67:
1712–1723,
1981.
|
76. |
Leibfritz, D., and
J. D. Roberts.
Nuclear magnetic resonance spectroscopy. Carbon‐13 spectra of cholic acids and hydrocarbons included in sodium deoxycholate solutions.
J. Am. Chem. Soc.
95:
4996–5003,
1973.
|
77. |
Lichtenberg, D.,
Y. Zilberman,
P. Greenzaid, and
S. Zamir.
Structural and kinetic studies on the solubilization of lecithin by sodium deoxycholate.
Biochemistry
18:
3517–3525,
1979.
|
78. |
Lindheimer, M.,
J. C. Montet,
J. Molenat,
R. Bontemps, and
B. Brun.
Ionic self‐diffusion of various bile salts.
J. Chim. Phys.
78:
447–455,
1981.
|
79. |
Lindley, P. F.,
M. M. Mahmoud,
F. E. Watson, and
W. A. Jones.
The structure of chenodeoxycholic acid, C24H40O4.
Acta Crystallogr. Sect. B Struct. Crystallogr. Cryst. Chem.
36:
1893–1897,
1980.
|
80. |
Lindman, B.,
N. Kamenka,
H. Fabre,
J. Ulmius, and
T. Weiloch.
Aggregation, aggregate composition and dynamics in aqueous sodium cholate solutions.
J. Colloid Interface Sci.
73:
556–565,
1980.
|
81. |
MacPherson, B. R.,
R. S. Pemsingh, and
G. W. Scott.
Experimental cholelithiasis in the ground squirrel.
Lab. Invest.
56:
138–145,
1987.
|
82. |
Mazer, N. A.,
G. B. Benedek, and
M. C. Carey.
Quasielastic light‐scattering studies of aqueous biliary lipid systems. Mixed micelle formation in bile salt‐lecithin solutions.
Biochemistry
19:
601–615,
1980.
|
83. |
Mazer, N. A., and
M. C. Carey.
Quasi‐elastic light scattering studies of aqueous biliary lipid systems. Cholesterol solubilization and precipitation in model bile solutions.
Biochemistry
22:
426–442,
1983.
|
84. |
Mazer, N. A.,
M. C. Carey,
R. F. Kwasnick, and
G. B. Benedek.
Quasi‐elastic light scattering studies of aqueous biliary lipid systems. Size, shape and thermodynamics of bile salt micelles.
Biochemistry
18:
3064–3075,
1979.
|
85. |
Mazer, N. A.,
P. Schurtenberger,
M. C. Carey,
R. Presig,
K. Weigand, and
W. Kaniz.
Quasi‐elastic light scattering studies of native bile from the dog: comparison with aggregation behavior of model biliary lipid systems.
Biochemistry
23:
1994–2005,
1984.
|
86. |
McLean, L. R., and
M. C. Phillips.
Mechanism of cholesterol and phospholipid exchange or transfer between unilamellar vesicles.
Biochemistry
20:
2893–2900,
1981.
|
87. |
Montet, J. C., and
D. G. Dervichian.
Solubilisation micellaire du cholesterol par les sels biliares et les lécithines extraits de la bile humaine.
Biochimi Paris
53:
751–754,
1971.
|
88. |
Moore, E. W.
The role of calcium in the pathogenesis of gallstones: Ca++ electrode studies of model bile salt solutions and other biologic systems.
Hepatology Baltimore
4,
Suppl.:
228S–243S,
1984.
|
89. |
Moore, E. W.,
L. Celic, and
J. D. Ostrow.
Interactions between ionized calcium and sodium cholate: bile salts are important buffers for prevention of calcium‐containing gallstones.
Gastroenterology
83:
1079–1089,
1982.
|
90. |
Mukidjam, E.,
S. Barnes, and
G. A. Elgavish.
NMR studies of the binding of sodium and calcium ions to the bile salts glycocholate and taurocholate in dilute solution, as probed by the paramagnetic lanthanide dysprosium.
J. Am. Chem. Soc.
108:
7082–7089,
1986.
|
91. |
Muller, K.
Structural dimorphism of bile salt/lecithin mixed micelles. A possible regulatory mechanism for cholesterol solubility in bile? X‐ray structure analysis.
Biochemistry
20:
404–414,
1981.
|
92. |
Murata, Y.,
G. Suglhara,
K. Fukushima, and
M. Tanaka.
Study of the micelle formation of sodium deoxycholate. Concentration dependence of carbon‐13 nuclear magnetic resonance chemical shift.
J. Phys. Chem.
86:
4690–4694,
1982.
|
93. |
Norton, D. A., and
B. Haner.
Crystal data (I) for some bile acid derivatives.
Acta Crystallogr. Sect. B. Struct. Crystallogr. Cryst. Chem.
19:
477–479,
1965.
|
94. |
O'Connor, C. J.,
B. T. Ch'ng, and
R. G. Wallace.
Studies in bile salt solutions. 1. Surface tension evidence for a stepwise aggregation model.
J. Colloid Interface Sci.
95:
410–419,
1983.
|
95. |
Olive, J., and
D. G. Dervichian.
Action d'une phospholipase sur la lécithine a l'état micellaire.
Bull. Soc. Chim. Biol.
50:
1409–1418,
1968.
|
96. |
Pal, S.,
A. R. Das, and
S. P. Moulik.
Interaction of bile salts (sodium cholate and sodium deoxycholate) with a nonionic surfactant (Triton X‐100) and polyethylene glycols.
Indian J. Biochem. Biophys.
19:
295–300,
1982.
|
97. |
Palmer, R. H.
Bile salts and the liver.
Prog. Liver Dis.
7:
221–242,
1982.
|
98. |
Parris, N. A.
Liquid chromatographic separation of bile acids.
J. Chromatogr.
133:
273–279,
1977.
|
99. |
Patton, G. M.,
S. B. Clark,
J. M. Fasulo, and
S. J. Robins.
Utilization of individual lecithins in intestinal lipoprotein formation in the rat.
J. Clin. Invest.
73:
231–240,
1984.
|
100. |
Patton, G. M.,
S. J. Robins,
J. M. Fasulo, and
S. B. Clark.
Influence of lecithin acyl chain composition on the kinetics of exchange between chylomicrons and high density lipoproteins.
J. Lipid Res.
26:
1285–1293,
1985.
|
101. |
Paul, R.,
M. K. Mathew,
R. Narayanan, and
P. Balaram.
Fluorescent probe and NMR studies of the aggregation of bile salts in aqueous solutions.
Chem. Phys. Lipids
25:
345–356,
1979.
|
102. |
Plank, L.,
C. E. Dahl, and
B. R. Ware.
Effect of sterol incorporation on headgroup separation in liposomes.
Chem. Phys. Lipids
36:
319–328,
1985.
|
103. |
Rajagopalan, N., and
S. Lindenbaum.
The binding of Ca2+ to taurine and glycine‐conjugated bile salt micelles.
Biochim. Biophys. Acta
711:
66–74,
1982.
|
104. |
Rajagopalan, N., and
S. Lindenbaum.
Kinetics and thermodynamics of the formation of mixed micelles of egg phosphatidylcholine and bile salt.
J. Lipid Res.
25:
135–147,
1984.
|
105. |
Rajagopalan, N.,
M. Vadnere, and
S. Lindenbaum.
Thermodynamics of aqueous bile salt solutions: heat capacity, enthalpy and entropy of dilution.
J. Solution Chem.
10:
785–801,
1981.
|
106. |
Redinger, R. N., and
D. M. Small.
Bile composition, bile salt metabolism and gallstones.
Arch. Intern. Med.
130:
618–630,
1972.
|
107. |
Renshaw, P. F.,
A. S. Janoff, and
K. W. Miller.
On the nature of dilute aqueous cholesterol suspensions.
J. Lipid Res.
24:
47–51,
1983.
|
108. |
Robins, S. J.,
J. M. Fasulo, and
G. M. Patton.
Lipids of pigment gallstones.
Biochim. Biophys. Acta
712:
21–25,
1982.
|
109. |
Roda, A.,
A. F. Hofmann, and
K. J. Mysels.
The influence of bile salt structure and aggregation in aqueous solutions.
J. Biol. Chem.
258:
6362–6370,
1983.
|
110. |
Roe, J. M., and
B. W. Barry.
Measurement of critical micelle concentration by photon correlation spectroscopy.
J. Colloid Interface Sci.
94:
580–583,
1983.
|
111. |
Roe, J. M., and
B. W. Barry.
Bile salt association (cholate, deoxycholate, chenodeoxycholate and ursodeoxycholate) and interactions with aromatic alcohols (benzyl, 2‐phenylethanol, and 3‐phenylpropanol).
J. Colloid Interface Sci.
107:
398–404,
1985.
|
112. |
Ruppin, D. C.,
G. M. Murphy,
R. H. Dowling, and the
British Gallstone Study Group.
Gallstone disease without gallstones—bile acid and bile lipid metabolism after complete gallstone dissolution.
Gut
27:
559–566,
1986.
|
113. |
Saad, H. Y., and
W. I. Higuchi.
Water solubility of cholesterol.
J. Pharm. Sci.
54:
1205–1206,
1965.
|
114. |
Saito, H.,
Y. Sugimoto,
R. Tabeta,
S. Suzuki,
G. Izumi,
M. Kodama,
S. Toyoshima, and
C. Nagata.
Incorporation of bile acids of low concentration into model and biological membranes studied by 2H and 31P NMR.
J. Biochem. Tokyo
94:
1877–1887,
1983.
|
115. |
Salvioli, G.,
H. Igimi, and
M. C. Carey.
Cholesterol gallstone dissolution in bile. Dissolution kinetics of crystalline cholesterol monohydrate by conjugated chenodeoxycholatelecithin and conjugated ursodeoxycholate‐lecithin mixtures: dissimilar phase equilibria and dissolution mechanisms.
J. Lipid Res.
24:
701–720,
1983.
|
116. |
Sedaghat, S., and
S. M. Grundy.
Cholesterol crystals and the formation of cholesterol gallstones.
N. Engl. J. Med.
302:
1274–1277,
1980.
|
117. |
Sewell, R. B.,
S. J. T. Mao,
T. Kawamoto, and
N. F. LaRusso.
Apolipoproteins of high, low, and very low density lipoproteins in human bile.
J. Lipid Res.
24:
391–401,
1983.
|
118. |
Shankland, W.
The equilibrium and structure of lecithincholate mixed micelles.
Chem. Phys. Lipids
4:
109–130,
1970.
|
119. |
Shaw, R., and
W. H. Elliott.
Bile acids. XLVIII. Separation of conjugated bile acids by high‐pressure liquid chromatography.
Anal. Biochem.
74:
273–281,
1976.
|
120. |
Shaw, R.,
M. Rivetna, and
W. H. Elliott.
Bile acids. LXIII. Relationship between the mobility on reverse‐phase high performance liquid chromatography and the structure of bile acids.
J. Chromatogr.
21:
347–361,
1980.
|
121. |
Shurtenberger, P., and
B. Lindman.
Coexistence of simple and mixed bile salt micelles: an NMR self‐diffusion study.
Biochemistry
24:
7161–7165,
1985.
|
122. |
Shurtenberger, P.,
N. Mazer, and
W. Kanzig.
Static and dynamic light scattering studies of miceller growth and interactions in bile salt solutions.
J. Phys. Chem.
87:
308–315,
1983.
|
123. |
Schurtenberger, P.,
N. Mazer, and
W. Kanzig.
Micelle to vesicle transition in aqueous solutions of bile salt and lecithin.
J. Phys. Chem.
89:
1042–1049,
1985.
|
124. |
Small, D. M.
Phase equilibria and structure of dry and hydrated egg lecithin.
J. Lipid Res.
8:
551–557,
1967.
|
125. |
Small, D. M.
Physico‐chemical studies of cholesterol gallstone formation.
Gastroenterology
52:
607–610,
1967.
|
126. |
Small, D. M.
A classification of biological lipids based upon their interaction in aqueous systems.
J. Am. Oil Chem. Soc.
45:
108–119,
1968.
|
127. |
Small, D. M.
Studies on the size and structure of bile salt micelles, influences of structure, concentration, counterion concentration, pH and temperature.
Adv. Chem. Ser.
84:
31–52,
1968.
|
128. |
Small, D. M.
The formation of gallstones.
Adv. Intern. Med.
16:
243–264,
1970.
|
129. |
Small, D. M.
The physical chemistry of cholanic acids. In:
The Bile Acids: Chemistry, Physiology and Metabolism. Chemistry,
edited by P. P. Nair and
D. Kritchevsky.
New York:
Plenum,
1971,
vol. 1,
p. 249–356.
|
130. |
Small, D. M.
Cholesterol nucleation and growth in gallstone formation.
N. Engl. J. Med.
302:
1305–1307,
1980.
|
131. |
Small, D. M.
Nucleation and growth of cholesterol gallstones.
Med. Chir. Dig.
9:
619–635,
1980.
|
132. |
Small, D. M.
The staging of cholesterol gallstones with respect to nucleation and growth. (Workshop on dissolution of gallstones.
Proc. 6th Bile Acid Meet.,
Freiburg, W. Germany, October 9–11, 1980.) In: Bile Acids and Lipids,
edited by G. Paumgartner,
A. Stiehl, and
W. Gerok.
Lancaster, UK:
MTP,
1981,
pt. 1,
p. 291–300.
|
133. |
Small, D. M.
The physical chemistry of lipids from alkanes to phospholipids. In:
Handbook of Lipid Research,
edited by D. Hanahan.
New York:
Plenum,
1986,
vol. 4,
p. 1–672.
|
134. |
Small, D. M., and
M. Bourges.
Lyotropic paracrystalline phases obtained with aqueous ternary systems of amphiphilic substances in water.
Mol. Cryst. Liq. Cryst.
1:
541–561,
1966.
|
135. |
Small, D. M.,
M. Bourges, and
D. G. Dervichian.
Biophysics of lipid associations. I. The ternary systems. Lecithinbile salt‐water.
Biochim. Biophys. Acta
125:
563–580,
1966.
|
136. |
Small, D. M.,
M. Bourges, and
D. G. Dervichian.
Ternary and quaternary aqueous systems containing bile salts, lecithin and cholesterol.
Nature Lond.
211:
816–818,
1966.
|
137. |
Small, D. M.,
D. J. Cabral,
D. P. Cistola,
J. S. Parks, and
J. A. Hamilton.
The ionization behavior of fatty acids and bile acids in micelles and membranes.
Hepatology Baltimore
4,
Suppl.:
77S–79S,
1984.
|
138. |
Small, D. M.,
S. A. Penkett, and
D. Chapman.
Studies on simple and mixed bile salt micelles by nuclear resonance spectroscopy.
Biochim. Biophys. Acta
176:
178–189,
1969.
|
139. |
Somjen, G. J., and
T. Gilat.
A non‐micellar mode of cholesterol transport in human bile.
FEBS Lett.
156:
265–268,
1983.
|
140. |
Somjen, G. J.,
Y. Marikovsky,
P. Lelkes, and
T. Gilat.
Cholesterol‐phospholipid vesicles in human bile: an ultrastructural study.
Biochim. Biophys. Acta
879:
14–21,
1986.
|
141. |
Spink, C. H.,
K. Muller, and
J. M. Sturtevant.
Precision scanning calorimetry of bile salt‐phosphatidylcholine micelles.
Biochemistry
26:
6598–6605,
1982.
|
142. |
Stark, R. E.,
G. J. Gosselin,
J. M. Donovan,
M. C. Carey, and
M. F. Roberts.
Influence of dilution on the physical state of model bile systems: NMR and quasi‐elastic lightscattering investigations.
Biochemistry
24:
5599–5605,
1985.
|
143. |
Stark, R. E.,
J. L. Manstein,
W. Curatolo, and
B. Sears.
Deuterium nuclear magnetic resonance studies of bile salt/phosphatidylcholine mixed micelles.
Biochemistry
22:
2486–2490,
1983.
|
144. |
Stark, R. E., and
M. R. Roberts.
500 MHz 1H‐NMR studies of bile salt‐phosphatidylcholine vesicles. Evidence for differential motional restraint on bile salt and phosphatidylcholine resonances.
Biochim. Biophys. Acta
770:
115–121,
1984.
|
145. |
Strasberg, S. M.,
R. N. Redinger,
D. M. Small, and
R. H. Egdahl.
The effect of elevated biliary tract pressure on biliary lipid metabolism and bile flow in nonhuman primates.
J. Lab. Clin. Med.
99:
343–353,
1982.
|
146. |
Tang, C. P.,
R. Popovitz‐Biro,
M. Lahav, and
L. Leiserowitz.
The tetragonal crystal structure of 2:3 deoxycholate acid‐water complex.
Isr. J. Chem.
18:
385–389,
1979.
|
147. |
Thomas, D. C., and
S. D. Christian.
Micellar and surface behavior of sodium deoxycholate characterized by surface tension and ellipsometric methods.
J. Colloid Interface Sci.
78:
466–478,
1980.
|
148. |
Ulloa, N.,
J. Garrido, and
F. Nervi.
Ultracentrifugal isolation of vesicular carriers of biliary cholesterol in native human and rat bile.
Hepatology Baltimore
7:
235–244,
1987.
|
149. |
Ulmius, J.,
G. Lindblom,
H. Wennerstrom,
L. B. A. Johansson,
K. Fontell,
O. Soderman, and
G. Arvidson.
Molecular organization in liquid‐crystal phases of lecithinsodium cholate‐water systems studied by nuclear magnetic resonance.
Biochemistry
21:
1553–1560,
1982.
|
150. |
Vadnere, M., and
S. Lindenbaum.
Association of deoxycholic acid in organic solvents.
J. Pharm. Sci.
71:
881–883,
1982.
|
151. |
Vadnere, M.,
R. Natarajan, and
S. Lindenbaum.
Apparent molal volumes of bile salts in water and water‐d2 solution.
J. Phys. Chem.
84:
1900–1903,
1980.
|
152. |
Waterhous, D. V.,
S. Barnes, and
D. D. Muccio.
Nuclear magnetic resonance spectroscopy of bile acids. Development of two‐dimensional NMR methods for the elucidation of proton reasonance assignments for five common hydroxylated bile acids and their parent bile acid, 5β‐cholanoic acid.
J. Lipid Res.
26:
1068–1078,
1985.
|
153. |
Whiting, M. J., and
J. M. Watts.
Cholesterol crystal formation and growth in model bile solutions.
J. Lipid Res.
24:
861–868,
1983.
|
154. |
Williamson, B. W. A., and
I. W. Percy‐Robb.
The interaction of calcium ions with glycocholate micelles in aqueous solution.
Biochem. J.
181:
61–66,
1979.
|
155. |
Williamson, B. W. A., and
I. W. Percy‐Robb.
Contribution of biliary lipids to calcium binding in bile.
Gastroenterology
78:
696–702,
1980.
|
156. |
Woodford, F. P.
Enlargement of taurocholate micelles by added cholesterol and monoolein: self‐diffusion measurements.
J. Lipid Res.
10:
539–545,
1969.
|