Comprehensive Physiology Wiley Online Library

Obesity

Full Article on Wiley Online Library



Abstract

The sections in this article are:

1 Definitions and Measurement of Body Fat, Fat Distribution, and Weight
1.1 The Problem Posed by Obesity
2 Methods Used to Study Obesity
2.1 Animal Models Used to Produce Obesity
3 Obesity as a Disturbance of Energy Balance
4 Obesity as a Disturbance of Nutrient Feedback
4.1 Controlled System
4.2 Afferent Feedback
4.3 The Controller
4.4 Efferent Controls
5 Recent Experimental Findings
5.1 Single Genes
5.2 Polygenic Obesity
5.3 Diet‐Related Obesities
5.4 Hypothalamic Obesity
5.5 Endocrine Obesity
5.6 Features Common to Many Models of Obesity
6 Summary
Figure 1. Figure 1.

Hypothalamic areas where damage produces obesity. Comparison of VMN and PVN lesions. The PVN lesion produces hyperphagia as its main mechanism for accumulating fat. A VMN lesion alters sympathetic activity and can produce an increase in body fat without hyperphagia.

[Copyright 1993, George A. Bray.]
Figure 2. Figure 2.

A diagram of factors affecting the formation of visceral fat and how visceral fat affects metabolic signals to produce diseases.

Figure 3. Figure 3.

Schematic diagram to show the periodicity of food intake. The first meal (q1) begins at time 1 and ends at time 2. Following the intermeal interval between 2 and 3 a second meal begins at 3 and ends at 4, with a quantity q2 that is smaller than q1.

[Copyright 1995, George A. Bray.]
Figure 4. Figure 4.

First Law of Thermodynamics Rewritten to include feedback from fat (leptin) and energy expenditure (sympathetic nervous system).

(Copyright 1996, George A. Bray).
Figure 5. Figure 5.

Diagram of a controlled system. The controller for food intake is located in the brain, which receives afferent signals from the periphery and integrates them into efferent controls that modulate food intake and the controlled system of nutrient intake storage and oxidation.

Figure 6. Figure 6.

Body and energy composition. The four bars on the left side of the graph represent the chemical composition of a lean and obese individual expressed as proportion of body weight for a 70 kg and 100 kg man and a 56 kg and 86 kg woman (i.e. an extra 30 kg for the obese person of each gender). The corresponding energy contribution from this chemical composition is shown in the right side of the graph, with the ordinate to the right.

Figure 7. Figure 7.

Relationship of macronutrient intake to body stores of that macronutrient. A diet containing 40En% fat, 40En% carbohydrate, and 20En% protein is shown on the left. The relationship of each of these components to the body stores of the corresponding nutrient is shown on the left side as a percentage of nutrient stores.

Figure 8. Figure 8.

Negative Feedback Signals

Figure 9. Figure 9.

Components of energy expenditure.

Figure 10. Figure 10.

Cartoon of afferent signals controlling food intake. MSH = melanocyte stimulating hormone; CCK = cholecystokinin; VPDPR = enterostatin; GRP = gastrin releasing hormone; SNS = sympathetic nervous system; NTS = nucleus tractus solitarius; NE = norepinephrine; BAT – brown adipose tissue; ARC = arcuate nucleus; GR = glucocorticoid receptor; db‐R = receptor for Ob protein (absent or defective in db mouse).

Figure 11. Figure 11.

Autonomic Nervous System Modulation of Food Seeking

Figure 12. Figure 12.

Diagram showing the anatomic location of the hypothalamic nuclei. Damage to the ventromedial or paraventricular nucleus will produce obesity. Damage to the more lateral hypothalamus produces weight loss and anorexia.

Figure 13. Figure 13.

Schematic of controller. The peptides and monoamines involved in food intake. NTS = nucleus of the tractus solitarius; CCK = cholecystokinin; 5‐HT = serotonin; NE = norepinephrine; CRH = corticotropin‐releasing hormone; MPG = motor pattern generator; SNS = sympathetic nervous system; DMV = dorsal motor nucleus of the vagus.

Figure 14. Figure 14.

A model of food intake and satiety. Food seeking, physiologically, may be initiated by gastric contractions and/or a dip in glucose. Following ingestion of food 3 mechanisms, including nutrient and hormonal, gastric distension and the sympathetic nervous system serve to signal satiety. In the post‐absorptive period the decline in activity of the sympathetic nervous system may lower the threshold for increasing vagal activity, which in turn stimulates gastric contractions and the rise in insulin leading to the glucose dip.

Figure 15. Figure 15.

Shows a detailed diagram of the controller system for food intake. Both stimulatory (+) and inhibitory (−) signals are generated and fed to the brain through the sensory system, through circulating nutrients and hormones, or through the vagus and the sympathetic afferent nervous system. All of this information is integrated in the controller, where serotonin (5‐HT), the β‐adrenergic system, and the α‐adrenergic system are important. A number of peptides also modulate feeding. The transduced signals control motor activity for food selection as well as the sympathetic and parasympathetic (vagus) nervous system. These efferent systems in turn modulate the control of food intake and the metabolism within the controlled system. (5‐HT = serotonin; NE = norepinephrine; CCK = cholecystokinin; NPY = neuropeptide Y; CRF = corticotropin‐releasing factor (hormone); NTS = nucleus of the tractus solitarius; F.I. = food ingestion; SNS = sympathetic nervous system; DMV = dorsomotor vagal nucleus; BAT = brown adipose tissue; Panc = pancreas.)

Figure 16. Figure 16.

Splicing and mutations of the leptin receptor gene. Either a short form (a) or long form (b) of the receptor result from alternative splicing in the wild‐type mouse. A G‐to‐T mutation in the diabetes (db/db) mouse forms a new splice donor site that results in a single longer form of mRNA that includes an additional 106‐base insertion from exon 2. This mRNA is not fully translated into protein because of the premature stop codon in exon 2. Thus the leptin receptor of db/db mice lacks the intracellular arm of the receptor that is coded by exon 3. TM = transmembrane.

Figure 17. Figure 17.

Potential sites of action of leptin to modulate energy balance and peripheral metabolism. Leptin synthesis and secretion is increased by body fat, insulin, and glucocorticoids (GC). Through actions in the hypothalamus, possibly mediated by inhibition of neuropeptide Y (NPY) secretion and stimulation of corticotropin releasing hormone (CRH) secretion, leptin decreases food intake, stimulates sympathetically (SNS)‐mediated brown adipose tissue (BAT) thermogenesis, and reduces the parasympathetically (PNS)‐mediated insulin secretion. The increased thermogenesis and decreased energy intake lead to the energy deficit that is satisfied by mobilization of body fat stores. In addition, leptin may enhance glucose uptake into nonadipose tissues, such as muscle, to improve glucose disposal and insulin sensitivity. + − stimulation, inhibition.

Figure 18. Figure 18.

Adrenalectomy and sympathetic activity. Diagram of peripheral and central signals that regulate body fat, food intake, and autonomic activity. In the normal animal, the balance between NPY and CRH is seen to be critical to the control of food intake and autonomic balance modulating insulin secretion and brown fat thermogenesis. Leptin probably is an important signal to regulate the NPY‐CRH axis. In obesity, absence of appropriate leptin signaling leads to increased NPY activity. Increased activity of the HPA axis results in excessive glucocorticoid influences on the autonomic system. These effects are exacerbated by the development of central insulin resistance and loss of central serotoninergic activity. Dotted lines (—) indicate reduced activity, thin lines (–) normal activity, double lines (=) excessive activity.

Figure 19. Figure 19.

Hepatic androgenization and diabetes in db/db and Ay/a mice. Sulphation of steroids increases solubility but prevents binding to the steroid receptor. High levels of sex steroid transferase (STS) and low dehydroepiandrosterone (DHEA) sulphotransferase (DST) activity in males and estrogen sulphotransferase (EST) activity in females maintain the androgenic and estrogenic states, respectively, in males and females. In obese males and obese females that become diabetic, inhibition of DST and activation of EST promote androgenization. This alters the balance between hepatic glucose storage and output, promotes the deposition of visceral fat and leads to the development of diabetes. Other abbreviations: S = sulphate; EST = estrogen; TESTOST = testosterone.

Figure 20. Figure 20.

A model for the effect of glucocorticoids on the production of CRH, on the level of CRH binding protein (CRHBP) or on the activity of CRH2 receptor.



Figure 1.

Hypothalamic areas where damage produces obesity. Comparison of VMN and PVN lesions. The PVN lesion produces hyperphagia as its main mechanism for accumulating fat. A VMN lesion alters sympathetic activity and can produce an increase in body fat without hyperphagia.

[Copyright 1993, George A. Bray.]


Figure 2.

A diagram of factors affecting the formation of visceral fat and how visceral fat affects metabolic signals to produce diseases.



Figure 3.

Schematic diagram to show the periodicity of food intake. The first meal (q1) begins at time 1 and ends at time 2. Following the intermeal interval between 2 and 3 a second meal begins at 3 and ends at 4, with a quantity q2 that is smaller than q1.

[Copyright 1995, George A. Bray.]


Figure 4.

First Law of Thermodynamics Rewritten to include feedback from fat (leptin) and energy expenditure (sympathetic nervous system).

(Copyright 1996, George A. Bray).


Figure 5.

Diagram of a controlled system. The controller for food intake is located in the brain, which receives afferent signals from the periphery and integrates them into efferent controls that modulate food intake and the controlled system of nutrient intake storage and oxidation.



Figure 6.

Body and energy composition. The four bars on the left side of the graph represent the chemical composition of a lean and obese individual expressed as proportion of body weight for a 70 kg and 100 kg man and a 56 kg and 86 kg woman (i.e. an extra 30 kg for the obese person of each gender). The corresponding energy contribution from this chemical composition is shown in the right side of the graph, with the ordinate to the right.



Figure 7.

Relationship of macronutrient intake to body stores of that macronutrient. A diet containing 40En% fat, 40En% carbohydrate, and 20En% protein is shown on the left. The relationship of each of these components to the body stores of the corresponding nutrient is shown on the left side as a percentage of nutrient stores.



Figure 8.

Negative Feedback Signals



Figure 9.

Components of energy expenditure.



Figure 10.

Cartoon of afferent signals controlling food intake. MSH = melanocyte stimulating hormone; CCK = cholecystokinin; VPDPR = enterostatin; GRP = gastrin releasing hormone; SNS = sympathetic nervous system; NTS = nucleus tractus solitarius; NE = norepinephrine; BAT – brown adipose tissue; ARC = arcuate nucleus; GR = glucocorticoid receptor; db‐R = receptor for Ob protein (absent or defective in db mouse).



Figure 11.

Autonomic Nervous System Modulation of Food Seeking



Figure 12.

Diagram showing the anatomic location of the hypothalamic nuclei. Damage to the ventromedial or paraventricular nucleus will produce obesity. Damage to the more lateral hypothalamus produces weight loss and anorexia.



Figure 13.

Schematic of controller. The peptides and monoamines involved in food intake. NTS = nucleus of the tractus solitarius; CCK = cholecystokinin; 5‐HT = serotonin; NE = norepinephrine; CRH = corticotropin‐releasing hormone; MPG = motor pattern generator; SNS = sympathetic nervous system; DMV = dorsal motor nucleus of the vagus.



Figure 14.

A model of food intake and satiety. Food seeking, physiologically, may be initiated by gastric contractions and/or a dip in glucose. Following ingestion of food 3 mechanisms, including nutrient and hormonal, gastric distension and the sympathetic nervous system serve to signal satiety. In the post‐absorptive period the decline in activity of the sympathetic nervous system may lower the threshold for increasing vagal activity, which in turn stimulates gastric contractions and the rise in insulin leading to the glucose dip.



Figure 15.

Shows a detailed diagram of the controller system for food intake. Both stimulatory (+) and inhibitory (−) signals are generated and fed to the brain through the sensory system, through circulating nutrients and hormones, or through the vagus and the sympathetic afferent nervous system. All of this information is integrated in the controller, where serotonin (5‐HT), the β‐adrenergic system, and the α‐adrenergic system are important. A number of peptides also modulate feeding. The transduced signals control motor activity for food selection as well as the sympathetic and parasympathetic (vagus) nervous system. These efferent systems in turn modulate the control of food intake and the metabolism within the controlled system. (5‐HT = serotonin; NE = norepinephrine; CCK = cholecystokinin; NPY = neuropeptide Y; CRF = corticotropin‐releasing factor (hormone); NTS = nucleus of the tractus solitarius; F.I. = food ingestion; SNS = sympathetic nervous system; DMV = dorsomotor vagal nucleus; BAT = brown adipose tissue; Panc = pancreas.)



Figure 16.

Splicing and mutations of the leptin receptor gene. Either a short form (a) or long form (b) of the receptor result from alternative splicing in the wild‐type mouse. A G‐to‐T mutation in the diabetes (db/db) mouse forms a new splice donor site that results in a single longer form of mRNA that includes an additional 106‐base insertion from exon 2. This mRNA is not fully translated into protein because of the premature stop codon in exon 2. Thus the leptin receptor of db/db mice lacks the intracellular arm of the receptor that is coded by exon 3. TM = transmembrane.



Figure 17.

Potential sites of action of leptin to modulate energy balance and peripheral metabolism. Leptin synthesis and secretion is increased by body fat, insulin, and glucocorticoids (GC). Through actions in the hypothalamus, possibly mediated by inhibition of neuropeptide Y (NPY) secretion and stimulation of corticotropin releasing hormone (CRH) secretion, leptin decreases food intake, stimulates sympathetically (SNS)‐mediated brown adipose tissue (BAT) thermogenesis, and reduces the parasympathetically (PNS)‐mediated insulin secretion. The increased thermogenesis and decreased energy intake lead to the energy deficit that is satisfied by mobilization of body fat stores. In addition, leptin may enhance glucose uptake into nonadipose tissues, such as muscle, to improve glucose disposal and insulin sensitivity. + − stimulation, inhibition.



Figure 18.

Adrenalectomy and sympathetic activity. Diagram of peripheral and central signals that regulate body fat, food intake, and autonomic activity. In the normal animal, the balance between NPY and CRH is seen to be critical to the control of food intake and autonomic balance modulating insulin secretion and brown fat thermogenesis. Leptin probably is an important signal to regulate the NPY‐CRH axis. In obesity, absence of appropriate leptin signaling leads to increased NPY activity. Increased activity of the HPA axis results in excessive glucocorticoid influences on the autonomic system. These effects are exacerbated by the development of central insulin resistance and loss of central serotoninergic activity. Dotted lines (—) indicate reduced activity, thin lines (–) normal activity, double lines (=) excessive activity.



Figure 19.

Hepatic androgenization and diabetes in db/db and Ay/a mice. Sulphation of steroids increases solubility but prevents binding to the steroid receptor. High levels of sex steroid transferase (STS) and low dehydroepiandrosterone (DHEA) sulphotransferase (DST) activity in males and estrogen sulphotransferase (EST) activity in females maintain the androgenic and estrogenic states, respectively, in males and females. In obese males and obese females that become diabetic, inhibition of DST and activation of EST promote androgenization. This alters the balance between hepatic glucose storage and output, promotes the deposition of visceral fat and leads to the development of diabetes. Other abbreviations: S = sulphate; EST = estrogen; TESTOST = testosterone.



Figure 20.

A model for the effect of glucocorticoids on the production of CRH, on the level of CRH binding protein (CRHBP) or on the activity of CRH2 receptor.

References
 1. Abou Mrad, J., F. Yakubu, D. Lin, J. C. Peters, J. B. Atkinson and J. O. Hill. Skeletal muscle composition in dietary obesity‐susceptible and dietary obesity‐resistant rats. Am J Physiol 262: R684–8, 1992.
 2. Acheson, K., E. Jequier and J. Wahren. Influence of betaadrenergic blockade on glucose‐induced thermogenesis in man. J Clin Invest 72: 981–6, 1983.
 3. Acheson, K., E. Ravussin, J. Wahren and E. Jequier. Thermic effect of glucose in man:obligatory and facultative thermogenesis. J Clin Invest 74: 1572–80, 1984.
 4. Ahlskog, J. E., and B. G. Hoebel. Overeating and obesity from damage to a noradrenergic system in the brain. Science 182: 166–9, 1982.
 5. Ahlskog, J. E., P. K. Randall and B. G. Hoebel. Hypothalamic hyperphagia: dissociation from hyperphagia following destruction of noradrenergic neurons. Science 190: 399–401, 1975.
 6. Aisner, J., H. Parnes, N. Tait, M. Hickman, A. Forrest, F. A. Greco and N. S. Tchekmedyian. Appetite stimulation and weight gain with megestrol acetate. Semin Oncol 17: 2–7, 1990.
 7. Akabayashi, A., Y. Watanabe, C. Wahlestedt, B. S. McEwen, X. Paez and S. F. Leibowitz. Hypothalamic neuropeptide Y, its gene expression and receptor activity: relation to circulating corticosterone in adrenalectomized rats. Brain Res 665: 201–12, 1994.
 8. Allars, J., S. J. Holt and D. A. York. Energetic efficiency and brown adipose tissue uncoupling protein of obese Zucker rats fed high carbohydrate and high fat diets: the effect of adrenalectomy. Int J Obes Relat Metab Disord 11: 591–607, 1987.
 9. Arase, K., J. S. Fisler, N. S. Shargill, D. A. York and G. A. Bray. Intracerebroventricular infusions of 3‐OH‐butyrate and insulin in a rat model of dietary obesity. Am J Physiol 255: R974–81, 1988.
 10. Arase, K., T. Sakaguchi and G. A. Bray. Lateral hypothalamic lesions and activity of the sympathetic nervous system. Life Sci 41: 657–62, 1987.
 11. Arase, K., T. Sakaguchi and G. A. Bray. Effect of fenfluramine on sympathetic firing rate. Pharmacol Biochem Behav 29: 675–80, 1988.
 12. Arase, K., N. S. Shargill and G. A. Bray. Effects of intraventricular infusion of corticotropin‐releasing factor on VMH‐lesioned obese rats. Am J Physiol 256: R751–6, 1989.
 13. Arase, K., N. S. Shargill and G. A. Bray. Effect of corticotropin releasing factor on genetically obese (fatty) rats. Physiol Behav 45: 565–70, 1989.
 14. Arase, K., D. A. York and G. A. Bray. Corticosterone inhibition of the intracerebroventricular effects of 2‐deoxy‐D‐glucose on brown adipose tissue thermogenesis. Physiol Behav 40: 489–495, 1987.
 15. Arase, K., D. A. York, N. S. Shargill and G. A. Bray. Effects of corticotropin releasing factor on food intake and brown adipose tissue thermogenesis in rats. Am J Physiol 255: E255–9, 1988.
 16. Arase, K., D. A. York, H. Shimizu, N. Shargill and G. A. Bray. Effects of corticotropin releasing factor on food intake and brown adipose tissue. Am J Physiol 255: E255–9, 1988.
 17. Assimacopoulos‐Jeannet, F., and B. Jeanrenaud. The hormonal and metabolic basis of experimental obesity. [Review], Clin Endocrinol Metab 5: 337–65, 1976.
 18. Atef, N., C. Brule, M. T. Bihoreau, A. Ktorza, L. Picon and L. Penicaud. Enhanced insulin secretory response to acetylcholine by perifused pancreas of 5‐day old preobese Zucker rats. Endocrinology 129: 2219–24, 1991.
 19. Atef, N., A. Ktorza, L. Picon and L. Penicaud. Increased islet blood‐flow in obese rats: Role of the autonomic nervous‐system. Am J Physiol 262: E736–40, 1992.
 20. Atwater, W. O., and F. O. Benedict. Experiments on the metabolism of matter and energy in the human body, 1900–1902. Washington, D.C.: Government Printing Office. U.S. Department of Agriculture, Office of Experiment Stations, 1903.
 21. Avery, D. D., and M. Livosky. Peripheral injections of bombesin and cholecystokinin affect dietary self‐selection in rats. Pharm Biochem Behav 25: 7–11, 1986.
 22. Avrith, D., and G. J. Mogenson. Reversible hyperphagia and obesity following intracerebral microinjections of colchicine into the ventromedial hypothalamus of the rat. Brain Res 153: 99–107, 1978.
 23. Baez, M., J. D. Kursar, L. A. Helton, D. B. Wainscott and D. L. G. Nelson. Molecular biology of serotonin receptors. Obes Res 3: 441–47, 1995.
 24. Banks, W. A., A. J. Kastin, W. Huang, J. B. Jaspan and L. M. Maness. Leptin enters the brain by a saturable system independent of insulin. Peptides 17: 305–11, 1996.
 25. Barton, C., D. A. York and G. A. Bray. Bombesin‐induced hypothermia in rats tested at normal ambient temperatures: Contribution of the sympathetic nervous system. Brain Res Bull 37: 163–8, 1995.
 26. Bazin, R., D. Eteve and M. Lavau. Evidence for decreased GDP binding to brown‐adipose‐tissue mitochondria of obese Zucker (fa/fa) rats in the very first days of life. Biochem J 221: 241–5, 1984.
 27. Beatty, W. W., D. A. O'Briant and T. R. Vilberg. Effects of ovariectomy and estradiol injections on food intake and body weight in rats with ventromedial hypothalamic lesions. Pharmacol Biochem Behav 3: 539–44, 1975.
 28. Bechini‐Hooft van Huijsduijnen, O. B., F. Rohner‐Jeanrenaud and B. Jeanrenaud. Hypothalamic neuropeptide Y messenger ribonucleic acid levels in pre‐obese and genetically obese (fa/fa) rats; potential regulation thereof by corticotropin‐releasing factor. J Neuroendocrinol 5: 381–6, 1993.
 29. Beck, B., A. Stricker‐Krongrad, J. P. Nicolase and C. Burlet. Chronic and continuous intracerebroventricular infusion of neuropeptide Y in Long‐Evans rats mimics the feeding behaviour of obese Zucker rats. Int J Obes Relat Metab Disord 16: 295–302, 1992.
 30. Beltt, B. M., and R. Keesey. Hypothalamic map of stimulation current thresholds for inhibition of feeding in rats. Am J Physiol 229: 1124–33, 1975.
 31. Bennett, S. A. and P. Magnus. Trends in cardiovascular risk factors in Australia. Results from the National Heart Foundation's Risk Factor Prevalence Study, 1980–1989. Med J Aust 161: 519–27, 1994.
 32. Bernardis, L. L., and L. L. Bellinger. The lateral hypothalamic area revisitedingestive behavior. Neurosci Biobehav Rev 20: 189–287, 1996.
 33. Berthoud, H. R.. Cephalic phase insulin response as a prediction of body weight gain and obesity induced by a palatable cafeteria diet. J Obes Wt Regul 4: 120–8, 1985.
 34. Berthoud, H. R., and B. Jeanrenaud. Changes of insulinemia, glycemia and feeding behavior induced by VMH‐procainization in the rat. Brain Res Bull 174: 184–7, 1979.
 35. Berthoud, H. R., and B. Jeanrenaud. Acute hyperinsulinemia and its reversal by vagotromy after lesions of the ventromedial hypothalamus in anesthetized rats. Endocrinology 105: 146–51, 1979.
 36. Bestetti, G., F. Abramo, C. Guillaume‐Gentil, F. Rohner‐Jeanrenaud, B. Jeanrenaud and G. Rossi. Changes in the hypothalamo‐pituitary‐adrenal axis of genetically obese fa/fa rats: a structural, immunocytochemical, and morphometrical study. Endocrinology 126: 1880–7, 1990.
 37. Beyer, H. S., S. G. Matta and B. M. Sharp. Regulation of the messenger ribonucleic acid for corticotropin‐releasing factor in the paraventricular nucleus and other brain sites of the rat. Endocrinology 123: 2117–23, 1988.
 38. Bielschowsky, M., and F. Bielschowsky. A new strain of mouse with hereditary + obesity. Proc Univ Otago Med School 31: 29–31, 1953.
 39. Billington, C., T. Bartness, J. Briggs, A. Levine and J. Morley. Glucagon stimulation of brown adipose tissue growth and thermogenesis. Am J Physiol 252: R160–5, 1987.
 40. Billington, C. J., J. E. Briggs, S. Harker, M. Grace, A. S. Levine. Neuropeptide‐Y in hypothalalmic paraventricular nucleus‐A center coordinating energy metabolism. Am J Physiol 266: 1765–70, 1994.
 41. Billington, C. J., J. E. Briggs and A. S. Levine. Effects of intracer‐ebroventricular injection of neuropeptide Y on energy metabolism. Am J Physiol 260: R321–7, 1991.
 42. Billington, C. J., J. E. Briggs, J. G. Link, and A. S. Levine. Glucagon in physiological concentrations stimulates brown fat thermogenesis in vivo. Am J Physiol 261: R501–7, 1991.
 43. Bjorntorp, P.. Visceral obesity: A “civilization syndrome”. Obes Res 1: 206–22, 1993.
 44. Bodkin, N. L., J. S. Hannah, H. K. Ortmeyer and B. C. Hansen. Central obesity in rhesus monkeys: association with hyperinsulinemia, insulin resistance and hypertriglyceridemia? Int J Obes Relat Metab Disord 17: 53–61, 1993.
 45. Bodkin, N. L., B. L. Metzger and B. C. Hansen. Hepatic glucose production and insulin sensitivity preceding diabetes in monkeys. Am J Physiol 256: E676–81, 1989.
 46. Bodkin, N. L., H. K. Ortmeyer and B. C. Hansen. Long‐term dietary restriction in older‐aged rhesus monkeys: effects on insulin resistance. J Gerontol A Biol Sci Med Sci 50: B142–7, 1995.
 47. Bogardus, C., S. Lillioja, E. Ravussin, W. Abbott, J. K. Zawadzk, A. Young, W. C. Knowler, R. Jacobowitz and P. P. Moll. Familial dependence of the resting metabolic rate. N Engl J Med 315: 96–100, 1986.
 48. Boosalis, M. G., N. Gemayel, A. Lee, G. A. Bray, L. Laine and H. Cohen. Cholecystokinin and the satiety: Effect of hypothalamic obesity and gastric bubble insertion. Am J Physiol 262: R241–4, 1992.
 49. Borthwick, E. B., A. Burchell and M. W. H. Coughtrie. Differential expression of hepatic estrogen, phenol and dehydroepiandrosterone sulfotransferases in genetically‐obese diabetic (ob/ob) male and female mice. J Endocrinol 144: 31–7, 1995.
 50. Bouchard, C., J. P. Despres and P. Mauriege. Genetic and non‐genetic determinants of regional fat distribution (review). Endocr Rev 14: 72–93, 1993.
 51. Bray, G. A.. The Obese Patient: Major Problems in Internal Medicine. 9th ed. Philadelphia: W. B. Saunders, p. 1–450, 1976.
 52. Bray, G. A.. Reciprocal relation between the sympathetic nervous system and food intake. Brain Res Bull 27: 517–20, 1991.
 53. Bray, G. A.. Commentary on classics of obesity 4. hypothalamic obesity. Obes Res 1: 325–8, 1993.
 54. Bray, G. A.. Topography of body fat. Adv Endocrinol Metab 5: 297–322, 1994.
 55. Bray, G. A.. Leptin and leptomania. Lancet 348: 140–1, 1996.
 56. Bray, G. A.. Hereditary adiposity in mice: Human lessons from the yellow and obese (ob/ob) mice. Obes Res 4: 91–95, 1996.
 57. Bray, G. A.. Genetics hypothesis of nutrient partitioning. In: Progress in Obesity Research: 7. Angel, A., Anderson, H., Bouchard, C., Lau, D., Leiter, L. and Mendelson R. (eds). London: John Libbey & Company, Ltd., pp. 43–66, 1996.
 58. Bray, G. A., J. S. Fisler and D. A. York. Neuroendocrine control of the development of obesity: Understanding gained from studies of experimental animal models. Front Neuroendocrinology 11: 128–81, 1990.
 59. Bray, G. A., and Y. Nishizawa. Ventromedial hypothalamic lesions and the mobilization of fatty acids. J Chem Invest 61: 714–21, 1978.
 60. Bray, G. A., R. J. Teague and C. K. Lee. Brain uptake of ketones in rats with differing susceptibility to dietary obesity. Metabolism 36: 27–30, 1987.
 61. Bray, G. A., and D. A. York. Hypothalamic and genetic obesity in experimental animals:an autonomic and endocrine hypothesis. Physiol Rev 59: 719–809, 1979.
 62. Bray, G. A., D. A. York and J. S. Fisler. Experimental obesity: a homeostatic failure due to defective nutrient stimulation of the sympathetic nervous system. Vitam Horm 45: 1–125, 1989.
 63. Bray, G. A., D. A. York and R. W. Swerdloff. Genetic obesity in rats: I. The effects of food restriction on body composition and hypothalamic function. Metabolism 22: 435–42, 1973.
 64. Brecher, G., and S. H. Waxler. Obesity in albino mice due to single injections of gold thioglucose. Proc Soc Exp Biol Med 70: 498–501, 1949.
 65. Breisch, S. T., F. P. Zemlan and B. G. Hoebel. Hyperphagia and obesity following serotonin depletion by intraventricular pchlorophenylalanine. Science 192: 382–5, 1976.
 66. Britton, D. R., and E. Indyk. Effects of ganglionic blocking agents on behavioral responses to centrally administered CRF. Brain Res 478: 205–10, 1989.
 67. Brown, M. R. and L. A. Fisher. Corticotropin releasing factor: Effects on autonomic nervous system and visceral systems. Fed Proc 44: 243–8, 1985.
 68. Bultman, S. J., E. J. Michaud and R. P. Woychik. Molecular characterization of the mouse agouti locus. Cell 71: 1195–204, 1992.
 69. Bultman, S. J., L. B. Russell, G. A. Gutierrez‐Espeleta and R. P. Woychik. Molecular characterization of a region of DNA associated with mutations at the agouti locus in the mouse. Proc Natl Acad Sci USA 88: 8062–6, 1991.
 70. Butler, L., and G. C. Gerritsen. A comparison of the modes of inheritance of diabetes in the Chinese hamster and the KK mouse. Diabetologia 6: 163–7, 1970.
 71. Cahill, G. F.. Starvation in man. N Engl J Med 282: 668–75, 1976.
 72. Calingasan, N. Y., and S. Ritter. Hypothalamic paraventricular nucleus lesions do not abolish glucoprivic or lipoprivic feeding. Brain Res 595: 25–31, 1992.
 73. Campfield, L. A., P. Brandon and F. J. Smith. On‐line continuous measurement of blood glucose and meal pattern in free‐feeding rats: The role of glucose in meal initiation. Brain Res Bull 14: 605–16, 1985.
 74. Campfield, L. A., and F. J. Smith. Blood glucose dynamics and the control of meal initiation: A pattern detection and recognition theory. Physiol Rev 2000, in press.
 75. Campfield, L. A., F. J. Smith, and P. Burn. The OB protein (leptin) pathway‐a link between adipose tissue mass and central neural networks. Horm Metab Res 28: 619–32, 1996.
 76. Campfield, L. A., F. J. Smith, Y. Guisez, R. Devos and P. Burn. Recombinant mouse OB protein: Evidence for a peripheral signal linking adiposity and central neural networks. Science 269: 546–9, 1995.
 77. Cannon, W. B., and A. L. Washburn. An explanation of hunger. Am J Physiol 29: 441–54, 1912.
 78. Carlson, A. J.. Contributions to the physiology of the stomach.‐II. The relation between the concentrations of the empty stomach and the sensation of hunger. Am J Physiol 29: 441–54, 1912.
 79. Carlson, A. J.. The Control of Hunger in Health and Disease. Chicago: University of Chicago Press, 1916.
 80. Chan, J. M., E. B. Rimm, G. A. Colditz, M. J. Stampfer and W. C. Willett. Obesity, fat distribution, and weight‐gain as risk‐factors for clinical diabetes in men. Diabetes Care 17: 961–9, 1994.
 81. Chang, S., B. Graham, F. Yakubu, D. Lin, J. C. Peters and J. O. Hill. Metabolic differences between obestiy‐prone and obesity‐reseistant rats. Am J Physiol 259: R1103–10, 1990.
 82. Chehab, F. F., M. E. Lim and R. H. La. Correction of the sterility defect in homozygous obese female mice by treatment with the human recombinant leptin. Nat Genet 12: 318–20, 1996.
 83. Chen, H., O. Charlat, L. A. Tartaglia, E. A. Woolf, X. Weng, S. J. Ellis, N. D. Lakey, J. Culpepper, K.J. Moore, R. E. Breitbart, G. M. Duyk, R. I. Tepper and J. P. Morgenstern. Evidence that the diabetes gene encodes the leptin receptor: Identification of a mutation in the leptin receptor gene in db/db mice. Cell 84: 491–5, 1996.
 84. Chen, N. G., and D. R. Romsos. Enhanced sensitivity of pancreatic islets from preobese 2‐week old ob/ob mice to neurohormonal stimulation of insulin secretion. Endocrinology 136: 505–11, 1995.
 85. Chua, S. C, A. W. Brown, J. H. Kim, K. L. Hennessey, R. L. Leibel and J. Hirsch. Food deprivation and hypothalamic neuropeptide gene expression: Effects of strain background and the diabetes mutation. Brain Res Mol Brain Res 11: 291–9. 1991.
 86. Chua, S. C., D. W. White, X. S. Wu‐Peng, S. M. Liu, N. Okada, E. E. Kershaw, W. K. Chung, L. Power‐Kehoe, M. Chua, L. A. Tartaglia and R. L. Leibel. Phenotype of fatty due to Gln269Pro mutation in the leptin receptor (Lepr). Diabetes 45: 1141–3, 1996.
 87. Cohen B., Novick D., and Rubinstein M.. Modulation of insulin activities by leptin. Science 274: 1185–8, 1996.
 88. Cohn, C., and D. Joseph. Changes in body composition with force feeding. Am J Physiol 196: 965–8, 1959.
 89. Coleman, D. L.. Obese and diabetes: Two mutant genes causing diabetes‐obesity syndromes in mice (review). Diabetologia 14: 141–8, 1978.
 90. Coleman, D. L., and E. M. Eicher. Fat (fat) and tubby (tub): Two autosomal recessive mutations causing obesity syndromes in the mouse. J Hered 81: 424–7, 1990.
 91. Coleman, D. L., and K. P. Hummel. The influence of genetic background on the expression of the obese (Ob) gene in the mouse. Diabetologia 9: 287–93, 1973.
 92. Collins, S., C. M. Kuhn, A. E. Petro, A. G. Swick, B. A. Chrunyk and R. S. Surwit. Role of leptin in fat regulation. Nature 380: 677, 1996.
 93. Corbett, S. W., J. S. Stern and R. E. Keesey. Energy expenditure in rats with diet‐induced obesity. Am J Clin Nutr 44: 173–80, 1986.
 94. Cox, J. E., and T. L. Powley. Development of obesity in diabetic mice pair‐fed with lean siblings. J Comp Physiol Psychol 91: 347–358, 1977.
 95. Cummings, D. E., E. P. Brandon, J. V. Planas, K. Motamed, R. L. Idzerda and G. S. McKnight. Genetically lean mice result from targeted disruption of the RII beta subunit of protein kinase A [see comments]. Nature 382: 622–6, 1996.
 96. Cushing, H.. The basophil adenomas of the pituitary body and their clinical manifestations. Pituitary basophilism. Bull Johns Hopkins Hospital L: 137–95, 1932.
 97. Cusin, I., Rohner‐Jeanrenaud, F., Sticker‐Krongard, A., and Jeanrenaud, B.. The weight‐reducing effect of an intracerebroventricular bolus injection of leptin in genetically obese fa/fa rats. Reduced sensitivity compared with lean animals. Diabetes 45: 1446–50, 1996.
 98. Dagnault, A., D. Ouerghi and D. Richard. Treatment with alphahelical‐CRF‐(9–41) prevents the anorectic effect of 17–beta‐estradiol. Brain Res Bull 32: 689–92, 1993.
 99. Davis, J. D., D. Wirtshafter, K. E. Asin and D. Brief. Sustained intracerebroventricular infusion of brain fuels reduces body weight and food intake in rats. Science 212: 81–83, 1981.
 100. de Jonge, L., and D. R. Garrel. Role of the autonomic nervous system in the thermogenic response to feed in lean individuals. Am J Physiol 273: C747–53, 1997.
 101. de Souza, C. J., J. H. Yu, D. D. Robinson, R. G. Ulrich and M. D. Meglasson. Insulin secretory defect in Zucker fa/fa rats is improved by ameliorating insulin resistance. Diabetes 44: 984–91, 1995.
 102. De Souza, E. B.. Corticotropin‐releasing factor receptors: Physiology, pharmacology, biochemistry and role in central nervous system and immune disorders. Psychoneuroendocrinology 20: 789–819, 1995.
 103. De Vries, J., J. H. Strubbe, W. C. Wildering, J. A. Gorter and A. J. Prins. Patterns of body temperature during feeding in rats under varying ambient temperatures. Physiol Behav 53: 229–35, 1993.
 104. Delany, J. P., D. W. Harsha and G. A. Bray. Reduced energy expenditure predicts increase in body fat in boys. Am J Clin Nutr 66: 205, 1998.
 105. Devos, P., R. Saladin, J. Auwerx and B. Staels. Induction of ob gene‐expression by corticosteroids is accompanied by body‐weight loss and reduced food‐intake. J Biol Chem 270: 5958–61, 1995.
 106. Dickson, P. R. and F. J. Vaccarino. GRF‐induced feeding:evidence for protein selectivity and opiate involvement. Peptides 15: 1343–52, 1994.
 107. Dong, Z. M., J‐C. Guitierrez‐Ramos, A. Coxon, T. N. Mayadas, D. D. Wagner. A new class of obesity genes encodes leukocyte adhesion receptors. Proc Natl Acad Sci 94: 7526–30, 1997.
 108. Dragani, T. A., Z. B. Zeng, F. Canzian, M. Gariboldi, M. T. Ghilarducci, G. Manenti and M. A. Pierotti. Mapping of body weight loci on mouse chromosome X. Mamm Genome 6: 778–81, 1995.
 109. Egawa, M., H. Yoshimatsu and G. A. Bray. Effects of 2‐deoxy‐D‐glucose on sympathetic nerve activity to interscapular brown adipose tissue. Am J Physiol 257: R1377–85, 1989.
 110. Egawa, M., H. Yoshimatsu and G. A. Bray. Lateral hypothalamic injection of 2‐deoxy‐D‐glucose suppresses sympathetic activity. Am J Physiol 257: R1386–92, 1989.
 111. Egawa, M., H. Yoshimatsu and G. A. Bray. Effect of corticotropin releasing hormone and neuropeptide Y on electrophysiological activity of sympathetic nerves to interscapular brown adipose tissue. Neuroscience 34: 771–5, 1990.
 112. Egawa, M., H. Yoshimatsu and G. A. Bray. Preoptic area injection of corticotropin‐releasing hormone stimulates sympathetic activity. Am J Physiol 259: R799–806, 1990.
 113. Egawa, M., H. Yoshimatsu and G. A. Bray. Neuropeptide Y (NPY) suppresses sympathetic activity to interscapular brown adipose tissue in rats. Am J Physiol 260: R328–34, 1991.
 114. Egawa, M., H. Yoshimatsu and G. A. Bray. Effect of ã‐endorphin on sympathetic nerve activity to interscapular brown adipose tissue. Am J Physiol 264: R109–15, 1993.
 115. Epstein, A. N.. Reciprocal changes in feeding behavior produced by intrahypothalamic chemical injections. Am J Physiol 199: 969–74, 1960.
 116. Erickson, J. C., K. E. Clegg and R. D. Palmiter. Sensitivity to leptin and susceptibility to seizures of mice lacking neuropeptide Y [see comments]. Nature 381: 415–21, 1996.
 117. Erlanson‐Albertsson, C., J. Mei, S. Okada, D. A. York and G. A. Bray. Pancreatic procolipase propeptide, enterostatin, specifically inhibits fat intake. Physiol Behav 49: 11911–4, 1991.
 118. Erlanson‐Albertsson, C., and D. York. Enterostatin‐a peptide regulating fat intake. Obes Res 5: 360–72, 1997.
 119. Evans, D. J., R. G. Hoffmann, R. K. Kalkoff and A. H. Kissebah. Relationship of androgenic activity to body fat topography, fat cell morphology, and metabolic aberrations in premenopausal women. J Clin Endocrinol Metab 57: 304–10, 1983.
 120. Fan, W., B. A. Boston, R. A. Kesterson, V. J. Hruby and R. D. Cone. Role of melanocrotinergic neurons in feeding and the agouti obesity syndrome. Nature 385: 165–168, 1997.
 121. Ferreras, L., A. S. M. K. Kelada, M. McCoy and J. Proietto. Early decrease in GLUT4 protein‐levels in brown adipose tissue of New Zealand obese mice. Int J Obes Relat Metab Disord 18: 760–5, 1994.
 122. Fisher, L., D. Kikkawa, J. Rivier, S. Amara, R. Evans, M. Rosenfeld, Valefeld, W. and M. Brown. Stimulation of noradrenergic sympathetic outflow by calcitonin gene‐related peptide. Nature 305–534, 1983.
 123. Fisler, J. S., and G. A. Bray. Dietary obesity: Effects of drugs on food intake in S 5B/P1 and Osborne‐Mendel rats. Physiol Behav 34: 225–31, 1985.
 124. Fisler, J. S., R. D. Wood, J. R. D Lupien and G. A. Bray. Weight gain and indexes of brown adipose tissue thermogenesis do not differ between S5B/PL (S) and Osborne‐Mendel (OM) rats fed cafeteria diets. Fed Proc 44: 1160, 1985. (Abstract)
 125. Flatt, J. P.. Opposite effects of variations in food‐intake on carbohydrate and fat oxidation in ad‐libitum fed mice. J Nutr Biochem 2: 186–92, 1991.
 126. Flatt, J. P.. McCollum Award Lecture, 1995:diet, lifestyle, and weight maintenance. [Review]. Am J Clin Nutr 62: 820–36, 1995.
 127. Flatt, J. P., E. Ravussin, K. J. Acheson and E. Jequier. Effects of dietary fat on postprandial substrate oxidation and on carbohydrate and fat balances. J Clin Invest 76: 1019–24, 1985.
 128. Flegal, K. M., M. D. Carroll, R. J. Kuczmarski and C. L. Johnson. Overweight and obesity in the Unites States: prevalence and trends, 1960–1994. Int J Obes Relat Metab Disord 22: 39–47, 1998.
 129. Flier, J. S.. The adipocyte: Storage depot or node on the energy information superhighway. Cell 80: 15–8, 1995.
 130. Forbes, G. B., C. R. Porta, B. E. Herr and R. C. Griggs. Sequence of changes in body composition induced by testosterone and reversal of changes after drug is stopped (technical note). JAMA 267: 397–9, 1992.
 131. Freed, W. J., M. J. Perlow and R. D. Wyatt. Calcitonin: Inhibitory effect on eating in rats. Science 206: 850–2, 1979.
 132. Freedman, M. R., J. S. Stern, G. M. Reaven and C. E. Mondon. Effect of adrenalectomy on in vivo glucose metabolism in insulin resistant Zucker obese rats. Horm Metab Res 18: 296–8, 1986.
 133. Friedman, J. M., R. L. Leibel and N. Bahary. Molecular mapping of obesity genes. Mammalian Genome 1: 130–44, 1991.
 134. Friedman, M. I., and M. G. Tordoff. Fatty acid oxidation and glucose utilization interact to control food intake in rats. Am J Physiol 251: R840–5, 1986.
 135. Frohman, L. A., and L. L. Bernardis. Growth hormone and insulin levels in weanling rats with ventromedial hypothalamic lesions. Endocrinology 82: 1125–32, 1968.
 136. Frohman, L. A., L. L. Bernardis and K. J. Kant. Hypothalamic stimulation of growth hormone release. Science 162: 580–2, 1968.
 137. Frohman, L. A., L. L. Bernardis, J. D. Schnatz and L. Burek. Plasma insulin and triglyceride levels after hypothalamic lesions in weanling rats. Am J Physiol 216: 1496–501, 1969.
 138. Funahashi, T., I. Shimomura, H. Hiraoka, T. Arai, M. Takahashi, T. Nakamura, S. Nozaki, S. Yamashita, K. Takemura, K. Tokunaga and Y. Matsuzawa. Enhanced expression of rat obese (ob) gene in adipose tissues of ventromedial hypothalamus (VMH)‐lesioned rats. Biochem Biophys Res Commun 211: 469–75, 1995.
 139. Galante, P., E. Maerker, R. Scholz, K. Rett, L. Herberg, L. Mosthaf and H. U. Haring. Insulin‐induced translocation of GLUT 4 in skeletal muscle of insulin‐resistant Zucker rats. Diabetologia 37: 3–9, 1994.
 140. Galvin‐Parton, P. A., X. Chen, C. M. Moxham and C. C. Malbon. Induction of Galphaq‐specific antisense RNA in vivo causes increased body mass and hyperadiposity. J Biol Chem 272: 4335–41, 1997.
 141. Garrow, J. S.. Treat Obesity Seriously. Philadelphia: W. B. Saunders and Company, 1980.
 142. Gauguier, D., P. Froguel, V. Parent, C. Bernard, M. T. Bihoreau, B. Portha, M. R. James, L. Penicaud, M. Lathrop and A. Ktorza. Chromosomal mapping of genetic loci associated with non‐insulin dependent diabetes in the GK rat. Nat Genet 12: 38–43, 1996.
 143. Geary, N., and G. P. Smith. Pancreatic glucagon and postprandial satiety in the rat. Physiol Behav 28: 313–22, 1982.
 144. Ghilardi, N., S. Ziegler, A. Wiestner, R. Stoffel, M. H. Heim and R. C. Skoda. Defective STAT signaling by the leptin receptor in diabetic mice. Proc Nat Acad Sci USA 93: 6231–5, 1996.
 145. Gill, A. M., E. H. Leiter, J. G. Powell, H. D. Chapman and T. T. Yen. Dexamethasone‐induced hyperglycemia in obese Avy/a (viable yellow) female mice entails preferential induction of a hepatic estrogen sulfotransferase. Diabetes 43: 999–1004, 1994.
 146. Glick, Z., R. J. Teague and G. A. Bray. Brown adipose tissue: Thermic response increased by a single low protein meal. Science 213: 1125–7, 1981.
 147. Godbole, V., and D. A. York. Lipogenesis in situ in the genetically obese “Zucker” fatty rat: role of hyperphagia and hyperinsulinaemia. Diabetologia 14: 191–7, 1978.
 148. Gonet, A. E., W. Stauffacher, R. Pictet and A. E. Renold. Obesity and diabetes mellitus with striking congenital hyperplasia of the islets of langerhans in spiny mice (Acomys cahirimius). I. Histological findings and preliminary metabolic observations. Diabetologia 1: 162–71, 1965.
 149. Greenberg, D., J. McCaffery, J. Z. Potack, G. A. Bray, and D. York. Differential satiating effects of fat in the small intestine of obesity‐resistant and obesity‐prone rats. Physiol Behav 66: 621–626, 1999.
 150. Guillaume‐Gentil, C., F. Rohner‐Jeanrenaud, F. Abramo, G. E. Bestetti, G. L. Rossi and B. Jeanrenaud. Abnormal regulation of the hypothalamo‐pituitary‐adrenal axis in the genetically obese fa/fa rat. Endocrinology 126 (4): 1873–9, 1990.
 151. Haarbo, J., U. Marslew, A. Gotfreds and C. Christia. Postmenopausal hormone replacement therapy prevents central distribution of body fat after menopause. Metabolism 40: 1323–6, 1991.
 152. Hackel, D. B., L. Frohman, E. Mikat, H. E. Lebovitz, K. Schmidt‐Nielsen and T. D. Kinney. Effect of diet on the glucose tolerance and plasma insulin levels of the sand rat (Psammomys obesus). Diabetes 15: 105–14, 1966.
 153. Halaas, J. L., K. S. Gajiwala, M. Maffei, S. L. Cohen, B. T. Chait, D. Rabinowi, R. L. Lallone, S. K. Burley and J. M. Friedman. Weight‐reducing effects of the plasma‐protein encoded by the obese gene. Science 269: 543–6, 1995.
 154. Hamilton, C. L., P. J. Ciaccia and D. O. Lewis. Feeding behavior in monkeys with and without lesions of the hypothalamus. Am J Physiol 230: 818–830, 1976.
 155. Han, P. W.. Energy metabolism of tube‐fed hypophysectomized rats bearing hypothalamic lesions. Am J Physiol 215: 1343–50.
 156. Han, P. W., and An‐Ch'ang Liu. Obesity and impaired growth of rats force fed 40 days after hypothalamic lesions. Am J Physiol 211: 229–231, 1966.
 157. Hansen, B. C.. Obesity and diabetes in monkeys. In: Obesity. Bjorntorp, P., B. N. Brodoff, editors. Philadelphia: Lippincott, pp. 256–65, 1992.
 158. Hansen, B. C., and N. L. Bodkin. Heterogeneity of insulin responses: phases leading to type 2 (non‐insulin‐dependent) diabetes mellitus in the rhesus monkey. Diabetologia 29: 713–9, 1986.
 159. Hansen, B. C., and N. L. Bodkin. ã‐cell hyperresponsiveness: Earliest event in development of diabetes in monkeys. Am J Physiol 259: R612–7, 1990.
 160. Hansen, B. C., and N. L. Bodkin. Primary prevention of diabetes mellitus by prevention of obesity in monkeys. Diabetes 42: 1809–14, 1993.
 161. Hansen, B. C., N. L. Bodkin, K. L. C. Jen and H. K. Ortmeyer. Primate Models of Diabetes. Amsterdam, Netherlands: Elsevier Science, 1991.
 162. Hansen, B. C., N. L. Bodkin, H. K. Ortmeyer, K. Hotta and M. A. Nicolson. Longitudinal changes in plasma leptin levels (Ob gene protein) during the progression of overt non‐insulin‐dependent diabetes (NIDDM). Am Diet Asso, 1996.
 163. Harihara, N., D. Farrelly, D. Hagan, D. Hillyer, C. Abeeny, T. Sabrah, A. Treloar, K. Brown, S. Kalinows and K. Mookhitia. Expression pression of human hepatic glucokinase in transgenic mice liver results in decreased glucose‐levels and reduced body‐weight. Diabetes 46: 11–16, 1997.
 164. Harris, R. B., E. Hervey, G. R. Hervey and G. Tobin. Body composition of lean and obese Zucker rats in parabiosis. Int J Obes 11: 275–83, 1987.
 165. Hauger, R., B. Hulihan‐Giblin, A. Angel, M. Luu, A. Janowsky, P. Skolnick and S. Paul. Glucose regulates (3H)(+)‐amphetamine binding and Na+K+ATPase activity in the hypothalamus: a proposed mechanism for the glucostatic control of feeding and satiety. Brain Res Bull 16: 281–8, 1986.
 166. Hausberger, F. X., and B. C. Hausberger. Castration‐induced obesity in mice. Body composition, histology of adrenal cortex and islets of Langerhans in castrated mice. Acta Endocrinol (Copenh) 53: 571–83, 1966.
 167. Hellerstein, M. K., M. Christiansen, S. Kaempfer, C. Kletke, K. Wu, J. S. Reid, K. Mulligan, N. S. Hellerstein and C. H. L. Shackleton. Measurement of de novo hepatic lipogenesis in humans using stable isotopes. J Clin Invest 87: 1841–52, 1991.
 168. Henke, B. R., T. M. Willson, E. E. Sugg, D. K. Croom, R. W. Dougherty Jr., K. L. Queen, L. S. Birkemo, G. N. Ervin, M. K. Grizzle, M. F. Johnson and M. K. James. 3‐(1H‐Indazol‐3‐ylmethyl)‐1,5‐benzo‐diazepines: CCK‐A agonists that demonstrate oral activity as satiety agents. J Med Chem 39: 2655–58, 1996.
 169. Hetherington, A. W., S. W. Ranson. Hypothalamic lesions and adipostiy in the rat. Anat Rec 78: 149–72, 1940.
 170. Himms‐Hagen, J.. Role of brown adipose tissue thermogenesis in control of thermoregulatory feeding in rats: A new hypothesis that links thermostatic and glucostatic hypotheses for control of foodintake. Proc Soc Exp Biol Med 208: 159–69, 1995.
 171. Hoebel, B. G., and P. Teitelbaum. Weight regulation in normal and hypothalamic hyperphagic rats. J Comp Physiol Psych 61: 189–193, 1966.
 172. Hogan, S., and J. Himms‐Hagen. Abnormal brown adipose tissue in obese (ob/ob) mice: Response to acclimation to cold. Am J Physiol 239: E301–9, 1980.
 173. Holt, S., and D. A. York. Interactions of intracerebroventricular glucose and insulin in the regulation of the sympathetic efferent nerves to brown adipose tissue in lean and obese zucker rats. Brain Res 500: 384–8, 1989.
 174. Holt, S., D. A. York and J. T. R. Fitzsimons. The effects of corticosterone, cold exposure and overfeeding with sucrose on brown adipose tissue of obese Zucker rats (fa/fa). Biochem J 214: 215–23, 1983.
 175. Holt, S. J., R. Grimble, and D. A. York. Tumour necrosis factor and lymphotoxin have opposite effects on sympathetic efferent nerves to brown adipose tissue by direct action in the central nervous system. Brain Res 497: 183–6, 1989.
 176. Holt, S. J., H. Wheal and D. A. York. Response of brown adipose tissue to electrical stimulation of hypothalamic centers in intact and adrenalectomized Zucker rats. Neurosci Lett 84: 63–7, 1988.
 177. Holt, S. J., and D. A. York. The effects of adrenalectomy, corticotropin releasing factor and vasopressin on the sympathetic firing rate of nerves to interscapular brown adipose tissue in the Zucker rat. Physiol Behav 45: 1123–9, 1989.
 178. Holt, S. J., and D. A. York. Studies on the sympathetic efferent nerves of brown adipose tissue of lean and obese Zucker rats. Brain Res 481: 106–12, 1989.
 179. Hotamisligil, G. S., R. S. Johnson, R. J. Distel, R. Ellis, V. E. Papaioannou and B. M. Spiegelman. Uncoupling of obesity from insulin resistance through a targeted mutation in aP2, the adipocyte fatty acid binding protein. Sciences 274: 1377–9, 1996.
 180. Hotamisligil, G. S., N. S. Shargill and B. M. Spiegelman. Adipose expression of tumor necrosis factor‐a: Direct role of obesity‐linked insulin resistance. Science 259: 87–91, 1993.
 181. Hotta, K., T. A. Gustafson, H. K. Ortmeyer, N. L. Bodkin and B. C. Hansen. Structure and expression of the monkey obese (ob) mRNA. Experimental Biology 96. FASEB J, 1996.
 182. Howard, C. F., M. J. Kessler and S. Schwartz. Carbohydrate impairment and insulin secretory abnormalities among Macaca mulatta. J Med Primatol 11: 147–8, 1986.
 183. Huang, Z., N. L. Bodkin, H. K. Ortmeyer, B. C. Hansen and A. R. Shuldine. Hyperinsulinemia is associated with altered insulinreceptor messenger RNA splicing in muscle of the spontaneously obese diabetic rhesus monkey. J Clin Invest 94: 1289–96, 1994.
 184. Hudgins, L. C., M. Hellerstein, J. Diakun, C. Seidman, J. Hirsch and R. Neese. Human fatty‐acid synthesis is stimulated by a eucaloric low‐fat, high‐carbohydrate diet. J Clin Invest 97: 2081–91, 1996.
 185. Huszar, D., C. A. Lynch, V. Fairchild‐Huntress, J. H. Dunmore, Q. Fang, L. R. Berkemeier, W. Gu, R. A. Kesterson, B. A. Boston, R. D. Cone, F. J. Smith, L. A. Campfield, P. Burn and F. Lee. Targeted disruption of the melanocortin‐4 receptor results in obesity in mice. Cell 88: 131–41, 1997.
 186. Iida, M., T. Murakami, K. Ishida, A. Mizuno, M. Kuwajima and K. Shima. Substitution at codon 269 (glutamine—proline) of the leptin receptor (OB‐R) cDNA is the only mutation found in the Zucker fatty (fa/fa) rat. Biochem Biophys Res Commun 224: 597–604, 1996.
 187. Ikemoto, S., K. S. Thompson, M. Takahashi, H. Itakura, M. D. Lane and O. Ezaki. High fat diet‐induced hyperglycemia: prevention by low level expression of a glucose transporter (GLUT4) minigene in transgenic mice. Proc Natl Acad Sci USA 92: 3096–90, 1995.
 188. Inokuchi, A., Y. Oomura and N. Nishimura. Effect of intracerebroventricular infused glucagon on feeding behavior. Physiol Behav 33: 397, 1984.
 189. Inoue, S., and G. A. Bray. The effect by subdiaphragmatic vagotomy in rats with ventromedial hypothalamic obesity. Endocrinology 100: 108–14, 1977.
 190. Inoue, S., Y. S. Mullen and G. A. Bray. Hyperinsulinemia in rats with hypothalamic obesity: effects of autonomic drugs and glucose. Am J Physiol 245 (Regulatory, Integrative Comp Physiol 14): R372–78, 1983.
 191. Inoue, S., S. Satoh, K. Tanaka, Y. Takamura and T. Murase. Determinants of fasting hypertriglyceridemia in ventromedial hypothalamic obesity in rats. Am J Physiol 265: R786–91, 1993.
 192. Islam, A. K. and R. J. Bodnar. Selective opioid receptor antagonist effects upon intake of a high‐fat diet in rats. Brain Res 508: 293–6, 1990.
 193. Jeanrenaud, B.. Neuroendocrine and metabolic basis of type II diabetes as studied in animal models. [Review]. Diabetes Metab Rev 4: 603–14, 1988.
 194. Jebb, S. A., A. M. Prentice, G. R. Goldberg, P. R. Murgatroyd, A. E. Black and W. A. Coward. Changes in macronutrient balance during over‐ and underfeeding assessed by 12‐d continuous wholebody calorimetry. Am J Clin Nutr 64: 259–66, 1996.
 195. Jen, K. L., M. R. C. Greenwood and S. A. Brasel. Sex differences in the effects of high‐fat feeding on behavior and carcass composition. Physiol Behav 27: 161–6, 1981.
 196. Jen, K. L., B. C. Hansen and B. L. Metzger. Adiposity, anthropometric measures, and plasma insulin levels of rhesus monkeys. Int J Obes 9: 213–24, 1985.
 197. Jenson, M., G. Kilroy, D. A. York and D. Braymer. Abnormal regulation of hepatic glucocorticoid receptor mRNA and receptor protein distribution in the obese Zucker rat. Obes Res 4: 133–43, 1996.
 198. Jequier, E., and Y. Schutz. Long‐term measurements of energy expenditure in humans using a respiration chamber. Am J Clin Nutr 38: 989–98, 1983.
 199. Jones, A. P., J. F. Mcelroy, L. Crnic and G. N. Wade. Effects of ovariectomy on thermogenesis in brown adipose‐tissue and liver in syrian‐hamsters. Physiol Behav 50: 41–5, 1991.
 200. Kanarek, R. B., and N. Orthen‐Gambill. Differential effects of suerase, fructose and glucose on carbohydrate‐induced obesity in rats. J Nutr 112: 1546–54, 1982.
 201. Kapeller, R., A. Moriarty, A. Strauss, H. Stabdal, K. Theriault, E. Siebert, T. Chickering, J. Morgenstern, L. Tartaglia and J. Lillie. Tyrosine phosphorylation of tub and its association with src homology 2 domain‐containing proteins implicate tub in intracellular signaling by insulin. J Biol Chem 274: 24980–86, 1999.
 202. Katz, E. B., A. E. Stenbit, K. Hatton, R. De Pinho and M. J. Charron. Cardiac and adipose tissue abnormalities but not diabetes in mice deficient in GLUT4. Nature 377: 151–5, 1995.
 203. Keesey, R. E.. Physiological regulation of body weight and the issue of obesity. Med Clin N A 73: 15–27, 1989.
 204. Keesey, R. E., and T. L. Powley. The regulation of body weight. Annu Rev Psychol 37: 109–33, 1986.
 205. Kemnitz, J. W., and G. A. Francken. Characteristics of spontaneous obesity in male rhesus monkeys. Physiol Behav 38: 477–83, 1986.
 206. Kemnitz, J. W., R. W. Goy, T. J. Flitsch, J. J. Lohmiller and J. A. Robinson. Obesity in male and female rhesus monkeys: fat distribution, glucoregulation, and serum androgen levels. J Clin Endocrinol Metab 69: 287–93, 1989.
 207. Kemnitz, J. W., E. B. Roecker, R. Weindruch, D. F. Elson, S. T. Baum and R. N. Bergman. Dietary restriction increases insulin sensitivity and lowers blood glucose in rhesus monkeys. Am J Physiol 266: E540–7, 1994.
 208. Khan, A., C. Hong‐Lie and B. R. Landau. Glucose‐6‐phosphatase activity in islets from ob/ob and lean mice and the effect of dexamethasone. Endocrinology 136: 1934–8, 1995.
 209. Khan, A., C. G. Ostenson, P. O. Berggren and S. Efendic. Glucocorticoid increases glucose cycling and inhibits insulin release in pancreatic islets of ob/ob mice. Am J Physiol 263: E663–6, 1992.
 210. Kim, Y. S., R. I. Carp, S. M. Callahan and H. M. Wisniewski. Adrenal involvement in scrapie‐induced obesity. P.S.E.B.M. 189: 21–7, 1988.
 211. King, B. M., E. R. Arceneaux, J. T. Cook, G. F. Alheid and A. L. Benjamin. Temporal‐lobe lesion‐induced obesity in rats: An anatomical investigation of the posterior amygdala and hippocampalformation. Physiol Behav 59: 843–8, 1996.
 212. King, B. M., A. R. Banta, G. N. Tharel, B. K. Bruce and L. A. Frohman. Hypothalamic hyperinulinemia and obesity: Role of adrenal glucocorticoids. Am J Physiol 245: E194–9, 1983.
 213. King, B. M., J. T. Cook and M. F. Dallman. Hyperinsulinemia in rats with obesity‐inducing amygdaloid lesions. Am J Physiol 271: R1156–9, 1996.
 214. King, P. A., E. D. Horton, M. F. Hirshman and E. S. Horton. Insulin resistance in obese Zucker rat (fa/fa) skeletal muscle is associated with a failure of glucose transporter translocation. J Clin Invest 90: 1568–75, 1992.
 215. Klebig, M. L., J. E. Wilkinson, J. G. Geisler and R. P. Woychik. Ectopic expression of the agouti gene in transgenic mice causes obesity, features of type‐II diabetes, and yellow fur. Proc Natl Acad Sci USA 92: 4728–32, 1995.
 216. Kleiber, M.. The Fire of Life: An Introduction to Animal Energetics. New York: John Wiley & Sons Inc., 1961.
 217. Kopecky, J., G. Clarke, S. Enerback, B. Spiegelman and L. P. Kozak. Expression of the mitochondrial uncoupling protein gene from the aP2 gene promoter prevents genetic obesity. J Clin Invest 96: 2914–23, 1995.
 218. Koranyi, L., D. James, M. Mueckler and M. A. Permutt. Glucose transporter levels in spontaneously obese (db/db) insulin‐resistant mice (technical note). J Clin Invest 85: 962–7, 1990.
 219. Kortner, G., O. Petrova, S. Vogt and I. Schmidt. Sympathetically and nonsympathetically mediated onset of excess fat deposition in Zucker rats. Am J Physiol 30: E947–53, 1994.
 220. Kotani, K., K. Tokunaga, S. Fujioka, T. Kobatake, Y. Keno, S. Yoshida, I. Shimomura, S. Tarui and Y. Matsuzawa. Sexual dimorphism of age‐related changes in whole‐body fat distribution in the obese. Int J Obes 18: 207–12, 1994.
 221. Kotz, C. M., M. K. Grace, J. Briggs, A. S. Levine and C. J. Billington. Effects of opioid antagonists naloxone and naltrexone on neuropeptide‐Y induced feeding and brown fat thermogenesis in the rat. J Clin Invest 96: 163–70, 1995.
 222. Kozak, L. P., U. C. Kozak, G. T. Clarke. Abnormal brown and white fat development in transgenic mice overexpressing glycerol 3‐phosphate dehydrogenase. Genes Dev 5: 2256–64, 1991.
 223. Kritchevsky, D.. Animal models of lipoprotein metabolism. In: Handbook of Experimental Pharmacology, Principles and Treatment of Lipoprotein Disorders. Schettler, G., A. J. R. Habenichtand S. V. Berlin, editors. pp. 207–18, 1994.
 224. Kuczmarski, R. J., K. M. Flegal, S. M. Campbell and C. L. Johnson. Increasing prevalence of overweight among US adults: The National Health and Nutrition Examination Surveys, 1960 to 1991. JAMA 272: 205–11, 1994.
 225. Kulkosky, P. J., J. Gibbs and G. P. Smith. Behavioral effects of bombesin administration in rats. Physiol Behav 28: 502–12, 1982.
 226. Kurachi, H., H. Adachi, S. Ohtsuka, K. I. Morishige, K. Amemiya, Y. Keno, I. Shimomura, K. Tokunaga, A. Miyake, Y. Matsuzawa and O. Tanizawa. Involvement of epidermal growth factor in inducing obesity in ovariectomized mice. Am J Physiol 265: E323–31, 1993.
 227. Kuskowska‐Wolk, A., and R. Bergstrom. Trends in body mass index and prevalence of obesity in Swedish men 1980–89. J Epidemiol and Community Health 47: 103–8, 1993.
 228. Kuskowska‐Wolk, A. and R. Bergstrom. Trends in body mass index and prevalence of obesity in Swedish women 1980–89. J Epidemiol and Community Health 47: 195–9, 1993.
 229. Langhans, W.. Hepatic and intestinal handling of metabolites during feeding in rats. Physiol Behav 49: 1203–1209, 1991.
 230. Langhans, W.. Metabolic and glucostatic control of feeding. Proc Nutr Soc 55: 497–515, 1996.
 231. Langhans, W., E. Delprete and E. Scharrer. Mechanisms of vasopressins anorectic effect. Physiol Behav 49: 169–76, 1991.
 232. Langhans, W., G. Egli and E. Scharrer. Regulation of food intake by hepatic oxidative metabolism. Brain Res Bull 15: 425–428, 1985.
 233. Langley, S., and D. A. York. The effects of the antiglucocorticoid RU‐486 on the development of obesity in the obese fa/fa Zucker rat. Am J Physiol 259: R539–44, 1990.
 234. Langley, S., and D. A. York. Increased type II glucocorticoid receptor numbers and glucocorticoid sensitive eyzyme activities in the brain of the Zucker rat. Brain Res 533: 268–74, 1990.
 235. Lapidus, L., C. Bengtsson, B. Larsson, K. Pennert, E. Rybo and L. Sjostrom. Distribution of adipose tissue and risk of cardiovascular disease and death: A 12 year follow‐up of participants in the population study of women in Gothenburg, Sweden. Br Med J 289: 1257–61, 1984.
 236. Larsson, B., K. Svardsudd, L. Welin, L. Wllhelmsen, P. Bjorntorp and G. Tibblin. Abdominal adipose tissue distribution, obesity, and risk of cardiovascular disease and death: 13 year follow‐up of participants in the study of men born in 1913. Br Med J 288: 1401–4, 1984.
 237. Laughton, W., and T. L. Powley. Bipiperidyl mustard produces brain lesions and obesity in the rat. Brain Res 221: 415–20, 1981.
 238. Le Marchand‐Brustel, Y., C. Olichonb, T. Gremeaux, J. F. Tanti, N. Rochet and E. Vanobber. Glucose transporter in insulin sensitive tissues of lean and obese mice: Effect of the thermogenic agent BRL‐26830A. Endocrinology 127: 2687–95, 1990.
 239. Lee, G. H., R. Proenca, J. M. Montez, K. M. Carroll, J. G. Darvishzadeh, J. I. Lee and J. M. Friedman. Abnormal splicing of the leptin receptor in diabetic mice. Nature 379: 632–5, 1996.
 240. Leibowitz, S. F.. Reciprocal hunger‐regulating circuits involving alpha‐ and beta‐adrenergic receptors located, respectively, in the ventromedial and lateral hypothalamus. Proc Natl Acad Sci USA 67: 1063–1070, 1970.
 241. Leibowitz, S. F., N. J. Hammer and K. Chang. Hypothalamic paraventricular nucleus lesions produce overeating and obesity in the rat. Physiol Behav 27: 1031–40, 1981.
 242. Leibowitz, S. F., and B. G. Hoebel. Behavioral neuroscience and obesity. In: The Handbook of Obesity, G. A. Bray, C. Bouchard, W. P. T. James (eds). New York: Marcel Dekker, Inc., 1996.
 243. Leiter, E. H., and H. D. Chapman. Obesity‐induced diabetes (Diabesity) in C57BL/KsJ mice produces aberrant trans‐regulation of sex steroid sulfotransferase genes. J Clin Invest 93: 2007–13, 1994.
 244. Leiter, E. H., H. D. Chapman and D. L. Coleman. The influence of genetic background on the expression of mutations at the diabetes locus in the mouse. V. Interaction between the db gene and hepatic sex steroid sulfotransferases correlates with genderdependent susceptibility to hyperglycemia. Endocrinology 124: 912–22, 1989.
 245. Levak‐Frank, S., H. Radner, A. Walsh, R. Stolberg, G. Knipping, G. Hoefler, W. Sattler, P. H. Weinstoc, J. L. Breslow and R. Zechner. Muscle‐specific overexpression of lipoprotein‐lapse causes a severe myopathy characterized by proliferation of mitochondria and peroxisomes in transgenic mice. J Clin Invest 96: 976–86, 1995.
 246. Levin, B. E.. Obesity‐prone and obesity‐resistant rats differ in their brain 3H‐paraminoclonidine binding. Brain Res 512 (1): 54–9, 1990.
 247. Levin, B. E.. Sympathetic activity, age, sucrose preference, and diet‐induced obesity. Obes Res 1: 281–7, 1993.
 248. Levin, B. E., and B. Planas. Defective glucoregulation of brain a2‐adrenoceptors in obesity‐prone rats. Am J Physiol 264: R305–11, 1993.
 249. Levin, B. E., and A. C. Sullivan. Glucose‐induced norepinephrine levels and obesity resistance. Am J Physiol 253: R475–81, 1987.
 250. Lin, L., S. Okada, D. A. York and G. A. Bray. Structural requirements for the biological activity of enterostatin. Peptides 15: 849–54, 1994.
 251. Lin, L., G. E. Truett, N. Levens, and D. A. York. Central but not peripheral administration of leptin reduced the food intake and body weight in Zucker fatty (fa/fa) and lean (fa/?) rats. Obes Res 4: 1S, 1996 (Abs).
 252. Lin, L., D. A. York and G. A. Bray. Comparison of OsborneMendel and S5B/P1 strains of rat: central effects of galanin, NPY, ã‐casomorphin and CRH on intake of high fat and low‐fat diets. Obes Res 4: 117–24, 1996.
 253. Lin, L., D. A. York and G. A. Bray. The effects of ã‐casomorphins on intake of high fat and low fat diets. Int J Obes 16: P207, 1992.
 254. Lin, X., D. Braymer, G. A. Bray and D. A. York. Differential expression of insulin receptor tyrosine kinase inhibitor (fetuin) gene in a model of diet‐induced obesity. Life Sci 63: 145–53, 1998.
 255. Lin, X., M. R. Chavez, R. C. Bruch, G. E. Kilroy, L. A. Simmons, L. Lin, H. D. Braymer, G. A. Bray and D. A. York. The effect of a high‐fat diet on leptin mRNA, serum leptin and the response to leptin are not altered in a rat strain susceptible to high‐fat diet induced obesity. J Nutr 128: 1606–13, 1998.
 256. Lin, X., D. A. York, R. B. S. Harris, G. A. Bray and R. C. Bruch. The effect of adrenalectomy and glucocorticoid replacement on ob mRNA levels in adipose tissue of obese Zucker fa/fa rats. Obes Res 3: S338, 1995 (Abs).
 257. Lissner, L., and B. L. Heitmann. Dietary fat and obesity: Evidence from epidemiology. Eur J Clin Nutr 49: 79–90, 1995.
 258. Lonn, L., G. Johansson, L. Sjostrom, H. Kvist, A. Oden and B. A. Bengtsson. Body composition and tissue distributions in growth hormone deficient adults before and after growth hormone treatment. Obes Res 4: 45–54, 1996.
 259. Lonn, L., H. Kvist, I. Ernest and L. Sjostrom. Volume determinations by computed tomography before and after treatment of women with Cushing's syndrome. Metabolism 43: 1517–22, 1994.
 260. Lotter, F. C., and S. C. Wards. Injections of insulin and changes of body weight. Physiol Behav 18: 293–7, 1977.
 261. Louis‐Sylvestre, J., and J. LeMagnen. A fall in blood glucose level precedes meal onset in free‐feeding rats. Neurosci Biobehav Rev 4: 13–5, 1980.
 262. Lovejoy, J. C., G. A. Bray, M. O. Bourgeois, R. Macchiavelli, J. C. Rood, C. Greeson and C. Partington. Exogenous androgens influence body composition and regional body fat distribution in obese postmenopausal women: A Clinical Research Center study. J Clin Endocrinol Metab 81: 2198–203, 1996.
 263. Lovejoy, J. C., G. A. Bray, C. S. Greeson, M. Klemperer, J. Morris, C. Partington and R. Tulley. Oral anablic steroid treatment, but not parenteral androgen treatment, decreases abdominal fat in obese, older men. Int J Obes 19: 614–24, 1995.
 264. Lowell, B. B., V. S. Susulic, A. Hamann, J. Lawitts, J. Himms‐Hagen, B. Boyer, L. P. Kozak and J. S. Flier. Development of obesity in transgenic mice after genetic ablation of brown adipose tissue. Nature 366: 740–2, 1993.
 265. Lowell, B. B., V. S. Susulic, A. Hamann, J. A. Lawitts, J. HimmsHagen, B. B. Boyer, L. P. Kozak and J. S. Flier. Development of obesity in transgenic mice after genetic ablation of brown adipose tissue. Nature 366: 740–2, 1993.
 266. Lu, D., D. Willard, I. R. Patel, S. Kadwell, L. Overton, T. Kost, M. Luther, W. Chen, R. P. Woychik and W. O. Wilkison. Agouti protein is an antagonist of the melanocyte‐stimulating‐hormone receptor. Nature 371: 799–802, 1994.
 267. Lucas, F., and A. Sclafani. Hyperphagia in rats produced by a mixture of fat and sugar. Physiol Behav 47: 51–5, 1990.
 268. Lupien, J., and G. Bray. Effect of fenfluramine on GDP‐binding to brown adipose tissue mitochondria. Pharmacol Biochem Behav 23: 509–13, 1985.
 269. Lupien, J. R., K. Tokunaga, W. Kemnitz, E. Groos and G. A. Bray. Lateral hypothalamic lesions and fenfluramine increase thermogenesis in brown adipose tissue. Physiol Behav 38: 15–20, 1986.
 270. Maffei, M., J. Halaas, E. Ravussin, R. E. Pratley, G. H. Lee, Y. Zhang, H. Fei Kim, R. Lallone, S. Ranganathan, P. A. Kern and J. M. Friedman. Leptin levels in human and rodent: measurement of plasma leptin and ob RNA in obese and weight‐reduced subjects. Nat Med 1: 1155–61, 1995.
 271. Manson, J. E., M. J. Stampfer, C. H. Hennekens and W. C. Willett. Body weight and longevity. A reassessment. JAMA 257: 353–8, 1987.
 272. Marin, P., S. Holmang, C. Gustafsson, L. Jonsson, H. Kvist, A. Elander, J. Eldh, L. Sjostrom, G. Holm and P. Bjorntorp. Androgen treatment of abdominally obese men. Obes Res 1: 245–51, 1993.
 273. Marin, P., S. Holmang, L. Jonsson, L. Sjostrom, H. Kvist, G. Holm, G. Lindstedt and P. Bjorntorp. The effects of testosterone treatment on body composition and metabolism in middle‐aged obese men. Int J Obes 16: 991–7, 1992.
 274. Markewicz, B., G. Kuhmichel and I. Schmidt. Onset of excess fat deposition in Zucker rats with and without decreased thermogenesis. Am J Physiol 265: E478–86, 1993.
 275. Marks‐Kaufman, R.. Increased fat consumption induced by morphine administration in rats. Pharmacol Biochem Behav 16: 949–55, 1982.
 276. Marks‐Kaufman, R., and R. B. Kanarek. Modifications in nutrition selection induced by naloxone in rats. Psychopharmacology 74: 321–4, 1981.
 277. Melnyk, A., M. E. Harper, and J. Himms‐Hagen. Raising at thermoneutrality prevents obesity and hyperphagia in BAT‐ablated mice. Am J Physiol 272: R1088–93, 1997.
 278. Miselis, R. R., and A. N. Epstein. Feeding induced by intracerebroventricular 2‐deoxy‐D‐glucose in the rat. Am J Physiol 229: 1438–47, 1975.
 279. Miskin, R., and T. Masos. Transgenic mice overexpressing urokinase‐type plasminogen‐activator in the brain exhibit reduced food‐consumption, body‐weight and size, and increased longevity. J Geront A 52: B118–24, 1997.
 280. Mook, D. G., N. J. Kenney, S. Roberts, A. I. Nussbaum and W. I. Rodier. 3d. Ovarian‐adrenal interactions in regulation of body weight by female rats. J Comp Physiol Psychol 81: 198–211, 1972.
 281. Moran, T. M., and P. McHugh. Gastric and nongastric mechanisms for satiety action of cholecystokinin. Am J Physiol 245: R628–32, 1988.
 282. Murakami, T., M. Iida and K. Shima. Dexamethasone regulates obese expression in isolated rat adipocytes. Biochem Biophys Res Commun 214: 1260–7, 1995.
 283. Murakami, T., and K. Shima. Cloning of rat obese cDNA and its expression in obese rats. Biochem Biophys Res Commun 209: 944–52, 1995.
 284. Nagai, K., L. Thibault, K. Nishikawa, A. Hashida, K. Otani and H. Nakagawa. Role of glucagon in macronutrient self‐selection: Glucagon enhanced protein intake. Brain Res Bull 27: 409–15, 1991.
 285. Nagase, H., G. A. Bray and D. A. York. Pyruvate and hepatic pyruvate dehydrogenase levels in rat strains sensitive and resistant to dietary obesity. Am J Physiol 270: R489–95, 1996.
 286. Nagase, H., G. A. Bray and D. A. York. Effects of pyruvate and lactate on food‐intake in rat strains sensitive and resistant to dietary obesity. Physiol Behav 59: 555–60, 1996.
 287. Nagase, H., G. A. Bray and D. A. York. Effect of galanin and enterostatin on sympathetic‐nerve activity to interscapular brown adipose‐tissue. Brain Res 709: 44–50, 1996.
 288. Nagase, H., T. Qi, D. A. York and G. A. Bray. The effects of hepatic vagotomy on the feeding response and the central c‐fos response to peripheral enterostatin. Obes Res 1 (suppl 2): 91S, 1993.
 289. Naggert, J. K., L. D. Fricker, O. Varlamov, P. M. Nishina, Y. Rouille, D. F. Steiner, R. J. Carroll, B. J. Paigen and E. H. Leiter. Hyperproinsulinaemia in obese fat/fat mice associated with a carboxypeptidase‐E mutation which reduces enzyme‐activity. Nature Genet 10: 135–42, 1995.
 290. Nakamura, M., and K. Yamada. Studies on a diabetic (KK) strain of the mouse. Diabetologia 3: 212–21, 1967.
 291. National Health and Medical Research Council. Acting on Australia's Weight: a Strategic Plan for the Prevention of Overweight and Obesity. Canberra: NHMRC, p. 77, 1997.
 292. Nauck, M. A., E. Bartels, C. Orskov, R. Ebert and W. Creutzfeldt. Additive insulinotropic effects of exogenous synthetic human gastric inhibitory polypeptide and glucagon‐like peptide‐1‐(7–36) amide infused at near‐physiological insulinotropic hormone and glucose concentrations. J Clin Endocrinol Metab 76: 912–7, 1993.
 293. Nauck, M. A., M. M. Heimesaat, C. Orskov, J. J. Holst, R. Ebert and W. Creutzfeldt. Preserved incretin activity of glucagon‐like peptide 1 [7–36 amide] but not of synthetic human gastric inhibitory polypeptide in patients with type‐2 diabetes mellitus. J Clin Invest 91: 301–7, 1993.
 294. Newburgh, L. H., and M. W. Johnston. The Exchange of Energy between Man and the Environment. Springfield, IL: Charles C. Thomas, 1930.
 295. Niijima, A.. Glucose‐sensitive afferent nerve fibers in the liver and their role in food intake and blood glucose regulation. J Auton Nerv Syst 9: 207–20, 1983.
 296. Niijima, A.. Reflex control of the autonomic nervous system activity from the glucose sensors in the liver in normal and midpontinetransected animals. J Auton Nerv Syst 10: 279–85, 1984.
 297. Niijima, A.. Effect of glucose and other hexoses on efferent discharges of brown adipose tissue nerves. Am J Physiol 251: R240–2, 1986.
 298. Niijima, A., F. Rohner‐Jeanrenaud and B. Jeanrenaud. Role of ventromedial hypothalamus on sympathetic efferents of brown adipose tissue. Am J Physiol 247: R650–4, 1984.
 299. Nishizawa, Y., and G. A. Bray. Ventromedial hypothalamic lesions and the mobilization of fatty acids. J Clin Invest 61: 714–21, 1978.
 300. Noben‐Trauth, K., J. K. Naggert, M. A. North and P. M. Nishina. A candidate gene for the mouse mutation tubby. Nature 380: 534–8, 1996.
 301. Ohki‐Hamazaki, H., K. Watase, K. Yamamoto, H. Ogura, M. Yamano, K. Yamada, H. Maeno, J. Imaki, S. Kikuyama, E. Wada and K. Wada. Mice lacking bombesin receptor subtype‐3 develop metabolic defects and obesity. Nature 390: 165–9, 1997.
 302. Ohlsson, L. O., B. Larsson, K. Svardsudd, L. Welin, H. Eriksson, L. WIlhelmsen, P. Bjorntorp and G. Tibblin. The influence of body fat distribution on the incidence of diabetes mellitus. 13.5 years of follow‐up of the participants in the study of men born in 1913. Diabetes 34: 1055–8, 1985.
 303. Ohshima, K., N. S. Shargill, T. M. Chan and G. A. Bray. Adrenalectomy reverses insulin resistance in muscle from obese (ob/ob) mice. Am J Physiol 246: E193–207, 1984.
 304. Ohshima, K., N. S. Shargill, T. M. Chan and G. A. Bray. Effects of dexamethasone on glucose transport by skeletal muscles of obese (ob/ob) mice. Int J Obes Relat Metab Disord 13: 155–63, 1989.
 305. Okada, S., D. A. York and G. A. Bray. Mifepristone (RU‐486), a blocker of type‐II glucocorticoid and progestin receptors, reverses a dietary form of obesity. Am J Physiol 262: R1106–10, 1992.
 306. Okada, S., D. A. York, G. A. Bray and C. Erlanson‐Albertsson. Enterostatin (Val‐Pro‐Asp‐Pro‐Arg), the activation peptide of procolipase, selectively reduces fat intake. Physiol Behav 49: 1185–9, 1991.
 307. Okada, S., D. A. York, G. A. Bray, J. Mei and C. Erlanson‐Albertsson. Differential inhibition of fat intake in two strains of rat by the peptide enterostatin. Am J Physiol 262: R1111–6, 1992.
 308. Okuda, T., and D. R. Romsos. Adrenalectomy suppresses insulinsecretion from pancreatic islets of ob/ob mice. Int J Obes Relat Metab Disord 18: 801–5, 1994.
 309. Oomura, Y., T. Ono, H. Ooyama and M. J. Wayner. Glucose and osmosensitive neurones of the rat hypothalamus. Nature 222: 282–4, 1969.
 310. Orth, D. N.. Cushing's Syndrome. N Engl J Med 332: 791–803, 1995.
 311. Pagliassotti, M. J., S. M. Knobel, K. A. Shahrokh, A. M. Manzo and J. O. Hill. Time‐course of adaptation to a high‐fat diet in obesityresistant and obesity‐prone rats. Am J Physiol 267: R659–64, 1994.
 312. Pagliassotti, M. J., D. Pan, P. Prach, T. Koppenhafer, L. Storlien and J. O. Hill. Tissue oxidative capacity, fuel stores and skeletal muscle fatty acid composition in obesity‐prone and obesity‐resistant rats. Obes Res 3: 459–64, 1995.
 313. Parameswaran, S. V., A. B. Steffens, G. R. Hervey and L. De Ruiter. Involvement of humoral factor in regulation of body weight in parabiotic rats. Am J Physiol 232: R150–7, 1977.
 314. Parkinson, W. L., and H. P. Weingarten. Dissociative analysis of ventromedial hypothalamic obesity syndrome. Am J Physiol 259: R829–35, 1990.
 315. Pedersen, O., C. R. Kahn, J. S. Flier and B. B. Kahn. High fat feeding causes insulin resistance and a marked decrease in the expression of glucose transporters (Glut‐4) in fat cells of rats. Endocrinology 129 (2): 771–7, 1991.
 316. Pedersen, O., C. R. Kahn and B. B. Kahn. Divergent regulation of the Glut‐1 and Glut‐4 glucose transporters in isolated adipocytes from zucker rats. J Clin Invest 89 (6): 1964–73, 1992.
 317. Pederson, R. A., R. V. Campos, A. M. J. Buchan, C. B. Chisholm, J. C. Russell and J. C. Brown. Comparison of the enteroinsular axis in two strains of obese rat, the fatty Zucker and the JCR:LAcorpulent. Int J Obes Relat Metab Disord 15 (7): 461–70, 1991.
 318. Pelleymounter, M. A., M. J. Cullen, M. B. Baker, R. Hecht, D. Winters, T. Boone and F. Collins. Effects of the obese geneproduct on body‐weight regulation in OB/OB mice. Science 269: 540–3, 1995.
 319. Penicaud, L., F. Rohner‐Jeanrenaud and B. Jeanrenaud. In vivo metabolic changes as studied longitudinally after ventromedial hypothalamic lesions. Am J Physiol 250: E662–8, 1986.
 320. Pepin, M. C., and N. Barden. Decreased glucocorticoid receptor activity following glucocorticoid receptor antisense RNA gene fragment transfection. Mol Cell Biol 11: 1647–53, 1991.
 321. Perry, W. L., C. M. Hustad, D. A. Swing, N. A. Jenkins and N. G. Copeland. A transgenic mouse assay for agouti protein‐activity. Genetics 140: 267–74, 1995.
 322. Phillips, M. S., Q. Liu, H. A. Hammond, V. Dugan, P. J. Heg, C. T. Caskey, and J. F. Hess. Leptin missense mutation in the fatty Zucker rat. Nat Gen 13: 18–19, 1996.
 323. Pouliot, M. C., J. P. Despres, S. Lemieux, S. Moorjani, C. Bouchard, A. Tremblay, A. Nadeau and P. J. Lupien. Waist circumference and abdominal sagittal diameter: Best simple anthropometric indexes of abdominal visceral adipose tissue accumulation and related cardiovascular risk in men and women. Am J Cardiol 73: 460–8, 1994.
 324. Powley, T. L., and C. A. Opsahl. Ventromedial hypothalamic obesity abolished by subdiaphragmatic vagotomy. Am J Physiol 226: 25–33, 1974.
 325. Prentice, A. M., G. R. Goldberg, P. R. Murgatroyd, P. S. Shetty and R. J. Stubbs. Carbohydrate balance and food intake regulation: Reply. Am J Clin Nutr 62: 156–7, 1995.
 326. Prentice, A. M., and S. A. Jebb. Obesity in Britain: Gluttony or sloth? Br Med J 311: 437–9, 1995.
 327. Prescott‐Clarke, P. and P. Primatesta. Health Survey for England 1995. London: Department of Health, HMSO, 1997.
 328. Proietto, J., and R. G. Larkins. A perspective on the New Zealand obese mouse. In: Lessons from Animal Diabetes. Shafrir, E. editor. London: Smith‐Gordon & Co., pp. 65–74, 1992.
 329. Qu, D., D. S. Ludwig, S. Gammeltoft, M. Piper, M. A. Pelleymounter, M. J. Cullen, W. F. Mathes, R. Przypek, R. Kanarek and E. Maratos‐Flier. A role for melanin‐concentrating hormone in the central regulation of feeding behaviour. Nature 380: 243–70, 1996.
 330. Quetelet, A.. Sur l'homme et le development de ses facultes, ou essai de physique sociale. Paris: Bachelier, 1835.
 331. Ramirez, I.. High‐fat diets stimulate transient hyperphagia whereas wet diets stimulate prolonged hyperphagia in Fischer rats. Physiol Behav 49: 1223–8, 1991.
 332. Ravussin, E., S. Lillioja, W. C. Knowler, L. Christin, D. Freymond, W. G. Abbott, V. Boyce, B. V. Howard and C. Bogardus. Reduced rate of energy expenditure as a risk factor for body‐weight gain. N Engl J Med 318: 467–72, 1988.
 333. Reeder, B. A, A. Angel, M. Ledoux, S. W. Rabkin, T. K. Young, L. E. Sweet. Canadian Heart Health Surveys Research Group. Obesity and its relation to cardiovascular risk factors in Canadian adults. Can Med Assoc J 146: 2009–19, 1992.
 334. Richard, D., S. Chapdelaine, Y. Deshaies, M. C. Pepin and N. Barden. Energy balance and lipid metabolism in transgenic mice bearing an antisense GCR gene construct. Am J Physiol 265: R146–50, 1993.
 335. Rissanen, A. M., M. Heliovaara, P. Knekt, A. Reunanen and A. Aromaa. Determinants of weight‐gain and overweight in adult Finns. Eur J Clin Nutr 45: 419–30, 1991.
 336. Ritter, S., A. Scheurin and L. K. Singer. 2‐deoxy‐d‐glucose but not 2‐mercaptoacetate increases fos‐like immunoreactivity in adrenalmedulla and sympathetic preganglionic neurons. Obes Res 3: S729–34, 1995.
 337. Rohner‐Jeanrenaud, F.. A neuroendocrine reappraisal of the dual center hypothesis: Its implications for obesity and insulin resistance. Int J Obes Relat Metab Disord 19: 517–34, 1995.
 338. Rohner‐Jeanrenaud, F., and B. Jeanrenaud. Possible involvement of the cholinergic system in hormonal secretion by the perfused pancreas from ventromedial‐hypothalamic lesioned rats. Diabetologia 20: 217–22, 1981.
 339. Rohner‐Jeanrenaud, F., and B. Jeanrenaud. Vagal mediation of corticotropin‐releasing‐factor‐induced increase in insulinemia in lean and genetically‐obese fa/fa rats. Neuroendocrinology 52: 52–6, 1990.
 340. Rohner‐Jeanrenaud, F., J. Seydoux, A. Chinet, S. Bas, J. P. Giacobino, F. Assimacopoulos‐Jeannet, B. Jeanrenaud and L. Girardier. Defective diet‐induced but normal cold‐induced brown adipose tissue adaptation in hypothalamic obesity in rats. J Physiol (Paris) 78: 833–7, 1982.
 341. Rohner‐Jeanrenaud, F., C. D. Walker, R. Greco‐Perotto and B. Jeanrenaud. Central corticotropin‐releasing factor administration prevents the excessive body weight gain of genetically obese (fa/fa) rats. Endocrinology 124: 733–9, 1989.
 342. Rolland‐Cachera, M. F., M. Deheeger, M. Akrout and F. Bellisle. Influence of macronutrients on adiposity development: A followup study of nutrition and growth from 10 months to 8 years of age. Int J Obes 19: 573–8, 1995.
 343. Romsos, D. R., B. A. Gosnell, J. E. Morley and A. S. Levine. Effects of kappa opiate agonists, cholecystokinin and bombesin on intake of diets varying in carbohydrate to fat ratio in rats. J Nutr 117: 976–85, 1987.
 344. Rosholt, M. N., P. A. King and E. S. Horton. High‐fat diet reduces glucose transporter responses to both insulin and exercise. Am J Physiol 266: R95–101, 1994.
 345. Ross, S. R., R. A. Graves and B. M. Spiegelman. Targeted expression of a toxin gene to adipose tissue: Transgenic mice resistant to obesity. Genes Dev 7: 1318–24, 1993.
 346. Rothwell, N. J., M. E. Saville and M. J. Stock. Effects of feeding a “cafeteria” diet on energy balance and diet‐induced thermogenesis in four strains of rat. J Nutr 112: 1515–24, 1982.
 347. Rothwell, N. J., and M.J. Stock. Regulation of energy balance in two models of reversible obesity in the rat. J Comp Physiol Psychol 93: 1024–34, 1979.
 348. Rothwell, N. J., and M.J. Stock. A role for brown adipose tissue in diet‐induced thermogenesis. Nature 281: 31–5, 1979.
 349. Rothwell, N. J., and M. J. Stock. Effects of age on diet‐induced thermogenesis and brown adipose tissue metabolism in the rat. Int J Obes 7: 583–9, 1983.
 350. Rothwell, N. J., and M. J. Stock. The cafeteria diet as a tool for studies of thermogenesis. [Review]. J Nutr 118: 925–8, 1988.
 351. Rothwell, N. J., M. J. Stock and D. A. York. Effects of adrenalectomy on energy balance, diet‐induced thermogenesis and brown adipose tissue in adult cafeteria fed rats. Comp Biochem Physiol 78A: 565–9, 1984.
 352. Rubner, M.. Die quelle der thierischen warme. Zeitschr fur Biol 30: 73–142, 1984.
 353. Rutman, R. J., F. S. Lewis and W. D. Bloomer. Bipiperidyl mustard, a new obesifying agent in the mouse. Science 153: 1000–2, 1966.
 354. Sahakian, B. J., P. Winn, T. W. Robbins, R. J. Deeley, B. J. Everitt, L. T. Dunn, M. Wallace and W. P. T. James. Changes in body weight and food‐related behavior induced by destruction of the ventral of dorsal noradrenergic bundle in the rat. Neuroscience 10 (4): 1405–20, 1983.
 355. Sahu, A., M. G. Dube, C. P. Phelps, C. A. Sninsky, P. S. Kalra and S. P. Kalra. Insulin and insulin‐like growth factor II suppress neuropeptide Y release from the nerve terminals in the paraventricular nucleus:a putative hypothalamic site for energy homeostasis. Endocrinology 136: 5718–24, 1995.
 356. Saito, M., and G. A. Bray. Adrenalectomy and food restriction in the genetically obese (ob/ob) mouse. Am J Physiol 246: R20–5, 1984.
 357. Sakaguchi, T., K. Arase and G. A. Bray. Effect of intrahypothalamic hydroxybutyrate on sympathetic firing rate. Metabolism 37: 732–5, 1988.
 358. Sakaguchi, T., K. Arase and G. A. Bray. Sympathetic activity and food intake of rats with ventromedial hypothalamic lesions. Int J Obes 12: 43–9, 1988.
 359. Sakaguchi, T., and G. A. Bray. The effect of intrahypothalamic injections of glucose on sympathetic efferent firing rate. Brain Res Bull 18: 591–5, 1987.
 360. Sakaguchi, T., and G. A. Bray. Intrahypothalamic injection of insulin decreases firing rate of sympathetic nerves. Proc Natl Acad Sci USA 84: 2012–4, 1987.
 361. Sakaguchi, T., and G. A. Bray. Sympathetic activity following paraventricular injections of glucose and insulin. Brain Res Bull 21: 25–9, 1988.
 362. Sakaguchi, T., and G. A. Bray. Effect of norepinephrine, serotonin and tryptophan on the firing rate of sympathetic nerves. Brain Res Bull 492: 271–80, 1989.
 363. Sakaguchi, T., and G. A. Bray. Ventromedial hypothalamic lesions attenuate responses of sympathetic nerves to carotid arterial infusions of glucose and insulin. Int J Obes 14: 127–34, 1990.
 364. Sakaguchi, T., M. Takahashi and G. A. Bray. Diurnal changes in sympathetic activity: Relation to food intake and to insulin injected into the ventromedial or suprachiasmatic nucleus. J Clin Invest 32: 282–6, 1988.
 365. Sakaguchi, T., M. Takahashi and G. A. Bray. The lateral hypothalamus and sympathetic firing rate. Am J Physiol 255: R507–12, 1988.
 366. Saladin, R., P. De Vos, M. Guerre‐Millo, A. Leturque, J. Girard, B. Staels and J. Auwerx. Transient increase in obese gene expression after food intake or insulin administration. Nature 377: 527–9, 1995.
 367. Sanacora, G., M. Kershaw, J. A. Finkelst and J. D. White. Increased hypothalamic content of preproneuropeptide‐Y messengerribonucleic‐acid in genetically‐obese Zucker rats and its regulation by food‐deprivation. Endocrinology 127: 730–7, 1990.
 368. Sanchez‐Gutierrez, J. C., J. A. Sanchez‐Arias, C. G. Lechuga, J. C. Valle, B. Samper and J. E. Feliu. Decreased responsiveness of basal gluconeogenesis to insulin action in hepatocytes isolated from genetically obese (fa/fa) Zucker rats. Endocrinology 134: 1868–73, 1994.
 369. Santana, P., S. F. Akana, E. S. Hanson, A. M. Strack, R. J. Sebastian and M. F. Dallman. Aldosterone and dexamethasone both stimulate energy acquisition whereas only the glucocorticoid alters energy storage. Endocrinology 136: 2214–22, 1995.
 370. Scallet, A. C., and J. W. Olney. Components of hypothalamic obesity: bipiperidyl‐mustard lesions add hyperphagia to monosodium glutamate‐induced hyperinsulinemia. Brain Res 374: 380–4, 1986.
 371. Schemmel, R., O. Mickelsen and J. L. Gill. Dietary obesity in rats: Body weight and body fat accretion in seven strains of rats. J Nutr 100: 1041–8, 1970.
 372. Schmidt‐Neilsen, K., H. B. Haines and D. B. Haskel. Diabetes mellitus in the sand rat induced by standard laboratory diets. Science 143: 689–90, 1964.
 373. Schutz, Y., K. J. Acheson and E. Jequier. Twenty‐four‐hour energy expenditure and thermogenesis: response to progressive carbohydrate overfeeding in man. Int J Obes 9 Suppl 2: 111–4, 1985.
 374. Schutz, Y., A. Tremblay, R. L. Weinsier and K. M. Nelson. Role of fat oxidation in the long‐term stabilization of body weight in obese women. Am J Clin Nutr 55: 670–4, 1992.
 375. Schwartz, M. W., D. P. Figlewicz, D. G. Baskin, S. C. Woods and D. Porte Jr.. Insulin in the brain: A hormonal regulator of energy balance. Endocr Rev 13: 387–414, 1992.
 376. Schwartz, M. W., J. L. Marks, A. J. Sipols, D. G. Baskin, S. C. Woods, S. E. Kahn and D. Porte. Central insulin administration reduces neuropeptide Y mRNA expression in the arcuate nucleus of food‐deprived lean (Fa/Fa) but not obese (fa/fa) Zucker rats. Endocrinology 128: 2645–7, 1991.
 377. Schwartz, M. W., A. J. Sipols, J. L. Marks, G. Sanacora, J. D. White, A. Scheurink, S. E. Kahn, D. G. Baskin, S. C. Woods, D. P. Figlewicz and D. Porte Jr.. Inhibition of hypothalamic neuropeptide‐y gene‐expression by insulin. Endocrinology 130: 3608–16, 1992.
 378. Schwartz, M. W., D. P. Figlewicz, D. G. Baskin, S. C. Woods, and D. Porte, Jr.. Insulin and the central regulation of energy balance: Update 1994. Endo Rev 2: 109–113, 1999.
 379. Sclafani, A.. Carbohydrate‐induced hyperphagia and obesity in the rat: Effects of saccharide type, form, and taste. Neurosci Biobehav Rev 11: 155–62, 1987.
 380. Sclafani, A.. Dietary obesity models. In: Obesity. Bjorntorp, P., and B. Brodoff, editors. Philadelphia: J. B. Lippincott Co. pp. 241–8, 1992.
 381. Sclafani, A.. Eating rates in normal and hypothalamic hyperphagic rats. Physiol Behav 55: 489–494, 1994.
 382. Sclafani, A., and S. P. Grossman. Hyperphagia produced by knife cuts between the medial and lateral hypothalamus in the rat. Physiol Behav 4: 533–7, 1969.
 383. Sclafani, A., and D. Springer. Dietary obesity in adult rats: similarities to hypothalamic and human obesity syndromes. Physiol Behav 17: 461–71, 1976.
 384. Scrocchi, L. A., T. J. Brown, N. MacLusky, P. L. Brubaker, A. B. Auerbach, A. L. Joyner and D. J. Drucker. Glucose intolerance but normal satiety in mice with a null mutation in the glucagon‐like peptide‐1 receptor gene. Nature Med 3: 1254–8, 1996.
 385. Segal, K. R., A. Chun, P. Coronel, A. Cruz‐Noori and R. Santos. Reliability of the measurement of postprandial thermogenesis in men of three levels of body fatness. Metabolism 41: 754–762, 1992.
 386. Seidell, J. C.. The impact of obesity on health status: Some implications for health care costs. [Review]. Int J Obes 19: 13–6, 1995.
 387. Shafrir, E.. Animal models of non‐insulin‐dependent diabetes. [Review]. Diabetes Metab Rev 8: 179–208, 1992.
 388. Shargill, N. S., I. Al‐Baker and D. A. York. Serum corticosterone and hepatic glucocorticoid receptors in obese Zucker rats. Biosci Rep 7: 843–51, 1988.
 389. Shargill, N. S., S. Tsujii, G. A. Bray, and C. Erlanson‐Albertsson. Enterostatin suppresses food intake following injection into the third ventricle of rats. Brain Res 544: 137–140, 1991.
 390. Shargill, N. S., D. A. York and D. Marchington. Regulation of hepatic tyrosine aminotransferase in genetically obese rats. Biochim Biophys Acta 756: 297–307, 1983.
 391. Shepherd, P. R., L. Gnudi, E. Tozzo, H. M. Yang, F. Leach and B. B. Kahn. Adipose cell hyperplasia and enhanced glucose disposal in transgenic mice overexpressing GLUT4 selectively in adiposetissue (technical note). J Biol Chem 268: 22243–6, 1993.
 392. Shetty, P. S., A. M. Prentice, G. R. Goldberg, P. R. Murgatro, A. P. M. McKenna, R. J. Stubbs and P. A. Volschen. Alterations in fuel selection and voluntary food‐intake in response to isoenergetic manipulation of glycogen stores in humans. Am J Clin Nutr 60: 534–43, 1994.
 393. Shimazu, T., M. Noma and M. Saito. Chronic infusion of norepinephrine into the ventromedial hypothalamus induces obesity in rats. Brain Res 369: 215–23, 1986.
 394. Shimizu, H. and G. A. Bray. Effects of neuropeptide Y on norepinephrine and serotonin metabolism in rat hypothalamus in vivo. Brain Res Bull 22: 208–14, 1989.
 395. Shimizu, H., H. Egawa and H. Yoshimatsu. Glucagon injected in the lateral hypothalamus stimulates sympathetic activity and suppresses momoamine metabolism. Brain Res 630: 95–100, 1993.
 396. Shimizu, H., J. S. Fisler and G. A. Bray. Extracellular hypothalamic monoamines measured by in vivo micro‐dialysis in a rat model of dietary obesity. Obes Res 2: 100–9, 1994.
 397. Shimizu, H., N. S. Shargill, K. Arase, D. A. York and G. A. Bray. Relationship between uptake of norepinephrine by hypothalamic homogenates and the activity of brown adipose tissue. Brain Res 510: 216–22, 1990.
 398. Shimizu, H., N. S. Shargill and G. A. Bray. Adrenalectomy and response to corticosterone and MSH in the genetically obese yellow mouse. Am J Physiol 256: R494–500, 1989.
 399. Shimizu, H., N. S. Shargill, G. A. Bray, T. Yen and P. Gesellchen. Effects of MSH on food intake, body weight and coat color of the yellow obese mouse. Life Sci 45: 543–52, 1989.
 400. Shimizu, H., Y. Shimomura, Y. Uekara and I. Kobayashi. Reduced pituitary acetylation and possible role of hypothalamic monoamines in the yellow obese mouse. Neuroendocrinal Lett 12 (1): 31–42, 1990.
 401. Shimizu, N., Y. Oomura, C. R. Plata‐Salaman and M. Morimoto. Hyperphagia and obesity in rats with bilateral ibotenic acid‐induced lesions of the ventromedial hypothalamic nucleus. Brain Res 416: 153–6, 1987.
 402. Shimomura, Y., G. A. Bray and M. Lee. Adrenalectomy and steroid treatment in obese (ob/ob) and diabetic (db/db) mice. Horm Metab Res 19: 295–9, 1987.
 403. Shor‐Posner, G., A. P. Ayar, R. Filart, D. Tempel and S. F. Leibowitz. Morphine stimulated feeding:analysis of macronutrient selection and paraventricular nucleus lesions. Pharmacol Biochem Behav 24: 931–9, 1986.
 404. Singer, L. K., and S. Ritter. Intraventricular glucose blocks feeding induced by 2‐deoxy‐d‐glucose but not mercaptoacetate. Physiol Behav 59: 921–3, 1996.
 405. Sjostrom, L., H. Kvist, A. Cederblad and V. Tyler. Determination of total adipose tissue and body fat in women by computed tomography, 40 K and tritium. Am J Physiol 250: E736–45, 1986.
 406. Slieker, L. J., K. L. Sundell, W. F. Heath, H. E. Osborne, J. Bue, J. Manetta and J. R. Sportsman. Glucose transporter levels in tissues of spontaneously diabetic Zucker fa/fa rat (ZDF/drt) and viable yellow mouse (Avy/a). Diabetes 41: 187–93, 1992.
 407. Smith, B. K., D. A. York and G. A. Bray. Chronic d‐fenfluramine treatment reduces fat intake independent of macronutrient preference. Pharmacol Biochem Behav 60: 105–114, 1998.
 408. Smith, G. P., and J. Gibbs. Satiating effect of cholecystokinin. Ann NY Acad Sci 713: 236–41, 1994.
 409. Smith, P. E.. The disabilities caused by hypophysectomy and their repair. The tuberal (hypothalamic) syndrome in the rat. JAMA 88: 159–61, 1927.
 410. Smith, S. R., T. G. Ramsay and R. B. Harris. Ob mRNA is responsive to insulin status in diabetic rats. Obes Res 3: S389, 1995.
 411. Song, W. C., R. Moore, J. A. McLachlan and M. Negishi. Molecular characterization of a testis‐specific estrogen sulfotransferase and aberrant liver expression in obese and diabetogenic C57BL/KSJ—db/db mice. Endocrinology 136: 2477–84, 1995.
 412. Spiegelman, B. M., and J. S. Flier. Adipogenesis and obesity; Rounding out the big picture (Review). Cell 87: 377–89, 1996.
 413. Spina, M., E. Merlo‐Pich, R. K. W. Chan, A. M. Basso, J. Rivier, W. Vale and G. F. Koob. Appetite‐suppressing effects of urocortin, a CRF‐related neuropeptide. Science 273: 1561–4, 1996.
 414. Spraul, M., E. Ravussin, A. M. Fontvieille, R. Rising, D. E. Larson and E. A. Anderson. Reduced sympathetic nervous activity: A potential mechanism predisposing to body weight gain. J Clin Invest 92: 1730–5, 1993.
 415. Stanley, B. G., B. G. Hoebel and S. F. Leibowitz. Neurotensin: Effects of hypothalamic and intravenous injections on eating and drinking in rats. Peptides 4: 493–500, 1983.
 416. Stanley, B. G., S. E. Kyrkouli, S. Lampert and S. F. Leibowitz. Neuropeptide Y chronically injected into the hypothalamus: a powerful neurochemical inducer of hyperphagia and obesity. Peptides 7: 1189–92, 1986.
 417. Stenzel‐Poore, M. P., V. A. Cameron, J. Vaughan, P. E. Sawchenko and W. Vale. Development of Cushing's syndrome in corticotropin‐releasing factor transgenic mice. Endocrinology 130: 3378–86, 1992.
 418. Stephens, J. M., and P. H. Pekala. Transcriptional repression of the GLUT4 and C/EBP genes in 3T3‐L1 adipocytes by tumor necrosis factor‐alpha. J Biol Chem 266: 21839–45, 1991.
 419. Stephens, T. W., M. Basinski, P. K. Bristow, J. M. Bue‐Valleskey, S. G. Burgett, L. Craft, J. Hale, J. Hoffmann, H. M. Hsiung, A. Kriauciunas, W. MacKellar, P. R. Rosteck, B. Schoner, D. Smith, F. C. Tinsley, X. Y. Zhang and M. Heiman. The role of neuropeptide Y in the antiobesity action of the obese gene product. Nature 377: 530–2, 1995.
 420. Strack, A. M., R. J. Sebastian, M. W. Schwartz and M. F. Dallman. Glucocorticoids and insulin: Reciprocal signals for energy balance. Am J Physiol 268: 142–9, 1995.
 421. Stubbs, M., and D. A. York. Central glucocorticoid regulation of parasympathetic drive to pancreatic B‐cells in the obese fa/fa rat. Int J Obes 15: 547–53, 1991.
 422. Stubbs, R. J., C. G. Harbron, P. R. Murgatro and A. M. Prentice. Covert manipulation of dietary‐fat and energy density: Effect on substrate flux and food‐intake in men eating ad‐libitum. Am J Clin Nutr 62: 316–29, 1995.
 423. Stubbs, R. J., P. R. Murgatroyd, G. R. Goldberg and A. M. Prentice. Carbohydrate balance and the regulation of day to day food intake in humans. Am J Clin Nutr 57: 897–903, 1993.
 424. Susulic, V. S., R. C. Frederic, J. Lawitts, E. Tozzo, B. B. Kahn, M. E. Harper, J. Himms‐Hagen, J. S. Flier and B. B. Lowell. Targeted disruption of the beta(3) adrenergic receptor gene. J Biol Chem 270: 9483–92, 1995.
 425. Susulic, V. S., M. Ito, D. Grujic, R. C. Frederich, J. A. Lawitts, E. Tozzo, B. B. Kahn, M. E. Harper, J. Himms‐Hagen, J. Flier and B. B. Lowell. Knockout of Beta‐3‐adrenergic receptor gene. Obes Res 3: S319, 1995.
 426. Suter, P. M., Y. S. Schutz and E. Jequier. The effect of ethanol on fat storage in healthy subjects. N Engl J Med 326: 983–7, 1992.
 427. Tanaka, K., M. Shimada, K. Nakao and T. Kusunoki. Hypothalamic lesion induced by injection of monosodium glutamate in suckling period and subsequent development of obesity. Exp Neurol 62: 191–9, 1978.
 428. Tanaka, Y., M. Egawa, S. Inoue and Y. Takamura. Effect of hypothalamic administration of growth hormone‐releasing factor (GRF) on feeding behavior in rats. Brain Res 558: 273–9, 1991.
 429. Tartaglia, L. A., M. Dembski, X. Weng, N. Deng, J. Culpepper, R. Devos, G. J. Richards, L. A. Campfield, F. T. Clark, J. Deeds, C. Muir, S. Sanker, A. Moriarty, K. J. Moore, J. S. Smutko, G. G. Mays, E. A. Woolf, C. A. Monroe and R. I. Tepper. Identification and expression cloning of a leptin receptor, OB‐R. Cell 83: 1263–71, 1995.
 430. Tempel, D. L., K. J. Leibowitz and S. F. Leibowitz. Effects of PVN galanin on macronutrient selection. Peptides 9: 309–14, 1988.
 431. Thibault, L., K. Nagal, A. Hashida, N. Yanaihara and H. Nakagawa. Satiation due to CCK‐8 derivative infusion into VMH is related to a specific macronutrient selection. Physiol Behav 47: 911–15, 1990.
 432. Thomas, T. L., L. D. Devenport and R. D. Stith. Relative contribution of type‐I and type‐II corticosterone receptors in VMH lesion induced obesity and hyperinsulinemia. Am J Physiol 266: 1623–9, 1994.
 433. Tokunaga, K., M. Fukushima, J. Kemnitz and G. Bray. Comparison of ventromedial and paraventricular lesions in rats that become obese. Am J Physiol 251: R1221–7, 1986.
 434. Tokunaga, K., M. Fukushima, J. R. Lupien, G. A. Bray, J. W. Kemnitz and R. Schemmel. Effects of food restriction and adrenalectomy in rats with VMH or PVN lesions. Physiol Behav 45: 1131–7, 1989.
 435. Tokuyama, K., and J. Himms‐Hagen. Adrenalectomy prevents obesity in glutamate‐treated mice. Am J Physiol 257: E139–44, 1989.
 436. Tomita, T., V. Doull, H. G. Pollock and D. Krizsan. Pancreatic islets of obese hyperglycemic mice (ob/ob). Pancreas 7: 367–75, 1992.
 437. Trayhurn, P., J. S. Duncan and D. V. Rayner. Acute cold‐induced suppression of ob (obese) gene expression in white adipose tissue of mice:mediation by the sympathetic system. Biochem J 311: 729–33, 1995.
 438. Tecot, L. H., L. M. Sun, S. F. Skana, A. M. Strack, D. H. Lowenstein, M. F. Dallman, D. Julius. Eating disorder and epilepsy in mice lacking the 5‐HT2C serotonin receptor. Nature 374: 542–6, 1995.
 439. Truett, G. E., N. Bahary, J. M. Friedman and R. L. Leibel. Rat obesity gene fatty (fa) maps to chromosome 5: evidence for homology with the mouse gene diabetes (db). Proc Natl Acad Sci USA 88: 7806–9, 1991.
 440. Truett, G. E., R. J. Tempelman and J. A. Walker. Codominant effects of the fatty (fa) gene during early development of obesity. Am J Physiol 31: E15–20, 1995.
 441. Tsai, H. J., and D. R. Romsos. Glucocorticoid and mineralocorticoid receptor‐binding characteristics in obese (ob/ob) mice. Am J Physiol 261: E495–9, 1991.
 442. Tsujii, S., and G. A. Bray. Acetylation alters the feeding response to MSH and beta‐endorphin. Brain Res Bull 23: 165–9, 1989.
 443. Tsujii, S., and G. A. Bray. Effects of glucose, 2‐deoxyglucose, phlorizin, and insulin on food intake of lean and fatty rats. Am J Physiol 258: E476–81, 1990.
 444. Tsujji, S., and G. A. Bray. GABA‐related feeding control in genetically obese rats. Brain Res 540: 48–54, 1991.
 445. Tsujii, S., and G. A. Bray. Food intake of lean and obese Zucker rats following ventricular infusions of adrenergic agonists. Brain Res 587: 226–32, 1992.
 446. Vaccarino, F. J.. Growth hormone‐releasing factor and feeding: Behavioral evidence for direct central feeding. Ann NY Acad Sci 579: 227–32, 1990.
 447. Vaisse, C., J. L. Halaas, C. M. Horvath, J. E. Darnell, Jr., M. Stoffel and J. M. Friedman. Leptin activation of Stat3 in the hypothalamus of wild‐type and ob/ob mice but not db/db mice. Nat Genet 14: 95–7, 1996.
 448. Van der Kooy, K. and J. D. Seidell. Techniques for the measurement of visceral fat: a practical guide. Int J Obes Rel Metab Dis 17: 187–96, 1993.
 449. Van Heek, M., D. S. Compton, C. F. France, R. P. Tedesco, A. B. Fawzi, M. P. Graziano, E. J. Sybertz, C. D. Stader, and H. R. Davis Jr.. Diet‐induced obese mice develop peripheral, but not central, resistance to leptin. J Clin Invest 99: 385–390.
 450. Van Zeggeren, A., and E. T. S. Li. Food intake and choice in lean and obese Zucker rats after intragastric carbohydrate preloads. J Nutr 120: 309–16, 1990.
 451. Vander Tuig, J. G., A. W. Knehans and D. R. Romsos. Reduced sympathetic nervous activity in rats with ventromedial hypothalamic lesions. Life Sci 30: 913–20, 1982.
 452. Vander Tuig, J. G., K. Ohshima, T. Yoshida, D. Romsos, G. Bray. Adrenalectomy increases norepinephrine turnover in brown adipose tissue of obese (ob/ob) mice. Life Sci 34: 1423–32, 1984.
 453. Vander Weele, D. A.. Insulin is a prandial satiety hormone. Physiol Behav 56: 610–22, 1994.
 454. Vaughan, J., C. Donaldson, J. Bittencourt, M. H. Perrin, K. Lewis, S. Sutton, R. Chan, A. V. Turnbull, D. Lovejoy, C. Rivier, J. Rivier, P. E. Sawchenko and W. Vale. Urocortin, a mammalian neuropeptide related to fish urotensin I and to corticotropin‐releasing factor. Nature 378: 287–92, 1995.
 455. Walgren, M. D. and T. L. Powley. Effects of intragastric hyperalimentation on pair‐fed rats with ventromedial hypothalamic lesions. Am J Physiol 248: R172–80, 1985.
 456. Wang, Z. M., S. Heshka, R. N. Pierson and S. B. Heymsfield. Systematic organization of body‐composition methodology: An overview with emphasis on component‐based methods. Am J Clin Nutr 61: 457–65, 1995.
 457. Warden, C. H., J. S. Fisler, M. J. Pace, K. L. Svenson and A. J. Lusis. Coincidence of genetic loci for plasma cholesterol levels and obesity in a multifactorial mouse model. J Clin Invest 92: 773–9, 1993.
 458. Warden, C. H., J. S. Fisler, S. M. Shoemaker, P. Z. Wen, K. L. Svenson, M. J. Pace and A. J. Lusis. Identification of 4 chromosomal loci determining obesity in a multifactorial mouse model. J Clin Invest 95: 1545–52, 1995.
 459. Weingarten, H. P., P. K. Chang and T. J. McDonald. Comparison of the metabolic and behavioral disturbances following paraventricular‐ and ventromedial‐hypothalamic lesions. Brain Res Bull 14: 551–9, 1985.
 460. Wellman, P. J., B. T. Davies, A. Morien, and L. McMahon. Modulation of feeding by hypothalamic paraventricular nucleus alpha 1‐ and alpha 2‐adrenergic receptors. Life Sci 1993: 669–679, 1993.
 461. West, D. B., C. N. Boozer, D. L. Moody and R. L. Atkinson. Dietary obesity in nine inbred mouse strains. Am J Physiol 262: 1025–32, 1992.
 462. West, D. B., J. Goudey‐Lefevre, B. York and G. E. Truett. Dietary obesity linked to genetic‐loci on chromosome‐9 and chromosome‐15 in a polygenic mouse model. J Clin Invest 94: 1410–6, 1994.
 463. West, D. B., J. Waguespack, B. York, J. Goudey‐Lefevre and R. A. Price. Genetics of dietary obesity in AKR/J X SWR/J mice—Segregation of the trait and identification of a linked locus on chromosome‐4. Mamm Genome 5: 546–52, 1994.
 464. White, B. D., W. D. Davenport and J. R. Porter. Responsiveness of isolated adrenocortical cells from lean and obese Zucker rats to ACTH. Am J Physiol 255: E229–35, 1988.
 465. White, B. D., R. G. Dean and R. J. Martin. Adrenalectomy decreases neuropeptide Y mRNA levels in the arcuate nucleus. Brain Res Bull 25: 711–5, 1990.
 466. Wilding, J. P., S. G. Gilbey, C. J. Bailey, R. A. Batt, G. Williams, M. A. Ghatei and S. R. Bloom. Increased neuropeptide‐Y messenger ribonucleic acid (mRNA) and decreased neurotensin mRNA in the hypothalamus of the obese (ob/ob) mouse. Endocrinology 132: 1939–44, 1993.
 467. Wilding, J. P., S. G. Gilbey, M. Mannan, N. Aslam, M. A. Ghatei and S. R. Bloom. Increased neuropeptide Y content in individual hypothalamic nuclei, but not neuropeptide Y mRNA, in diet‐induced obesity in rats. J Endocrinol 132: 299–304, 1992.
 468. Willett, W. C., J. E. Manson, M. J. Stampfer, G. A. Colditz, B. Rosner, F. E. Speizer and C. H. Hennekens. Weight, weight change, and coronary heart disease in women. Risk within the ‘normal’ weight range. JAMA 273: 461–5, 1995.
 469. Williams, J. K., T. B. Clarkson. Nonhuman primate atherosclerotic models. In: Atherosclerosis and Arteriosclerosis: Human Pathology and Experimental Animal Methods and Models. White, R. A. editor. Boca Raton, FL: CRC Press, pp. 261–85, 1989.
 470. Williamson, D. F.. Descriptive epidemiology of body weight and weight change in US adults. [Review]. Ann Intern Med 119: 646–9, 1993.
 471. Williamson, D. F., H. S. Kahn, P. L. Remington and R. F. Anada. The 10‐year incidence of overweight and major weight gain in US adults. Arch Intern Med 150: 665–72, 1990.
 472. Williamson, D. F., J. Madans, E. Pamuk, K. M. Flegal, J. S. Kendrick and M. K. Serdula. A prospective study of childbearing and 10‐year weight gain in US white women 25 to 45 years of age. Int J Obes Relat Metab Disord 18: 561–9, 1994.
 473. Wilmot, C. A., A. C. Sullivan and B. E. Levin. Effects of diet and obesity on brain alpha 1‐ and alpha 2‐noradrenergic receptors in the rat. Brain Res 453: 157–66, 1988.
 474. Wilson, B. D., M. M. Ollmann, L. Kang, M. Stoffel, G. I. Bell and G. S. Barsh. Structure and function of ASP, the human homolog of the mouse agouti gene. Hum Mol Genet 4: 223–30, 1995.
 475. Wolff, G. C.. Body composition and coast colour correlation in different phenotypes of “viable yellow” mice. Science 147: 1145–7, 1965.
 476. Wolff, G. L., and J. D. Flack. Genetic regulation of plasma corticosterone concentration and its response to castration and allogeneic tumour growth in the mouse. Nat New Biol 232: 181–2, 1971.
 477. Woods, S. C., M. Chavez, C. R. Park, C. Riedy, K. Kaiyala, R. D. Richardson, D. P. Figlewicz, M. W. Schwartz, D. Porte and R. J. Seeley. The evaluation of insulin as a metabolic signal influencing behavior via the brain. Neurosci Bull 20: 139–44, 1996.
 478. Woods, S. C., E. C. Lotter, D. McKay and D. Porte. Chronic intracerebroventricular infusion of insulin reduces food intake and body weight of baboons. Nature 282: 503–505, 1979.
 479. Yamashita, J., T. Onai, D. A. York and G. A. Bray. Relationship between food intake and metabolic rate in rats treated with ã‐adrenergic agonists. Int J Obes Relat Metab Disord 18: 429–33, 1994.
 480. York, D. A.. Neuroendocrine and metabolic derangements. In: Obesity and Cachexia: A Biological Council Symposium. Stock, M., and N. Rothwell, editors. London: John Wiley & Sons, Ltd. pp. 103–18, 1991.
 481. York, D. A.. Central regulation of appetite and autonomic activity by crh, glucocorticoids and stress. Prog Neuren 5: 153–65, 1992.
 482. York, D. A., and G. A. Bray. Dependence of hypothalamic obesity on insulin, the pituitary and the adrenal gland. Endocrinology 90: 885–94, 1972.
 483. York, D. A., and V. Godbole. Effect of adrenalectomy on obese “fatty” rats. Horm Metab Res 11: 646, 1979.
 484. York, D. A., and B. C. Hansen. Animal models of obesity. In: Handbook of Obesity. Bray, G. A., C. Bouchard and W. P. T. James, editors. New York: Marcel Dekker, Inc., 1997.
 485. York, D. A., S. J. Holt, J. Allars and J. Payne. Glucocorticoids and the central control of sympathetic activity in the obese fa/fa rat. In: Obesity in Europe 88. Bjorntorp, P., and S. Rossner, editors. London: John Libbey and Co., pp. 219–24, 1988.
 486. Yoshida, T., and G. A. Bray. Catecholamine turnover in rats with ventromedial hypothalamic lesions. Am J Physiol 246: R558–65, 1984.
 487. Yoshida, T., J. S. Fisler, M. Fukushima, G. A. Bray and R. A. Schemmel. Diet, lighting and food intake affect norepinephrine turnover in dietary obesity. Am J Physiol 252: R402–8, 1987.
 488. Yoshida, T., J. Kemnitz and G. Bray. Lateral hypothalamic lesions and norepinephrine turnover in rats. J Clin Invest 72: 919–27, 1983.
 489. Yoshida, T., H. Nishioka, Y. Nakamura and M. Kondo. Reduced norepinephrine turnover in mice with monosodium glutamate‐induced obesity. Metabolism 33: 1060–3, 1984.
 490. Yoshida, T., K. Yoshioka, N. Hiraoka and M. Kondo. Effect of nicotine on norepinephrine turnover and thermogenesis in brown adipose tissue and metabolic rate in MSG obese mice. J Nutr Sci Vitaminol 36: 123–30, 1990.
 491. Yoshimatsu, H., M. Egawa and G. A. Bray. Adrenal sympathetic nerve activity in response to hypothalamic injections of 2‐deoxy‐D‐glucose. Am J Physiol 261: R875–81, 1991.
 492. Yoshimatsu, H., M. Egawa and G. A. Bray. Effects of cholecystokinin on sympathetic activity to interscapular brown adipose tissue. Brain Res 597: 298–303, 1992.
 493. Yoshimatsu, H., M. Egawa and G. A. Bray. Sympathetic nerve activity after discrete hypothalamic injections of L‐glutamate. Brain Res 601: 121–8, 1993.
 494. Yoshioka, K., T. Yoshida and M. Kondo. Reduced brown adipose tissue thermogenesis and metabolic rate in pre‐obese mice among rats fed a high fat diet. Jpn J Physiol 38: 75–79, 1991.
 495. Yoshioka, K., T. Yoshida, Y. Wakabayashi, H. Nishioka and M. Kondo. Reduced brown adipose tissue thermogenesis of obese rats after ovariectomy. Endocrinol Jpn 35: 537–43, 1988.
 496. Zaninetti, D., R. Greco‐Perotto, F. Assimacopoulos‐Jeannet and B. Jeanrenaud. Dysregulation of glucose transport and transporters in perfused hearts of genetically obese (fa/fa) rats. Diabetologia 32: 56–60, 1989.
 497. Zarjevski, N., I. Cusin, R. Vettor, F. Rohner‐Jeanrenaud and B. Jeanrenaud. Chronic intracerebroventricular neuropeptide‐Y‐administration to normal rats mimics hormonal and metabolic changes of obesity. Endocrinology 133: 1753–8, 1993.
 498. Zarjevski, N., P. Doyle and B. Jeanrenaud. Muscle insulin resistance may not be a primary etiological factor in the genetically obese fa/fa rat. Endocrinology 130: 1564–70, 1992.
 499. Zemel, M. B., J. H. Kim, R. P. Woychik, E. J. Michaud, S. H. Kadwell, I. R. Patel and W. O. Wilkison. Agouti regulation of intracellular calcium: role in the insulin resistance of viable yellow mice. Proc Nat Acad Sci 92: 4733–7, 1995.
 500. Zhang, Y. Y., R. Proenca, M. Maffei, M. Barone, L. Leopold and J. M. Friedman. Positional cloning of the mouse obese gene and its human homolog. Nature 372: 425–32, 1994.
 501. Zucker, L. M., and F. T. Zucker. Fatty, a new mutation in the rat. J Hered 52: 275–8, 1961.
 502. Zurlo, F., K. Larson, C. Bogardus and E. Ravussin. Skeletal muscle metabolism is a major determinant of resting energy expenditure. J Clin Invest 86: 1423–7, 1990.
 503. Zurlo, F., S. Lillioja, A. E. D. Puente, B. L. Nyomba, I. Raz, M. F. Saad, B. A. Swinburn, W. C. Knowler, C. Bogardus and E. Ravussin. Low ratio of fat to carbohydrate oxidation as predictor of weight gain: Study of 24‐h RQ. Am J Physiol 259: E650–7, 1990.

Contact Editor

Submit a note to the editor about this article by filling in the form below.

* Required Field

How to Cite

George A. Bray, David A. York. Obesity. Compr Physiol 2011, Supplement 21: Handbook of Physiology, The Endocrine System, The Endocrine Pancreas and Regulation of Metabolism: 1015-1056. First published in print 2001. doi: 10.1002/cphy.cp070234