Comprehensive Physiology Wiley Online Library

Chloride Transport

Full Article on Wiley Online Library



Abstract

The sections in this article are:

1 Proximal Tubule Chloride Transport
2 Amphibian Proximal Tubule
3 Mammalian Proximal Convoluted Tubule
4 Proximal Straight Tubule
5 Descending Limb of Henle
6 Thin Ascending Limb of Henle
7 Thick Ascending Limb of Henle
8 Distal Convoluted Tubule
8.1 Amphibian Distal Tubule
8.2 Mammalian Distal Tubule
9 Collecting Duct
9.1 Cortical Collecting Tubule
9.2 Outer Medullary Collecting Duct
9.3 Inner Medullary Collecting Duct
10 Summary
Figure 1. Figure 1.

Axial profile of solute and transepithelial potential difference changes along mammalian proximal convoluted tubule 176.

Figure 2. Figure 2.

Summary of the transport processes in amphibian proximal tubule.

Figure 3. Figure 3.

Chloride flux plotted as a function of the electrochemical driving force in rat proximal convoluted tubule 7. At the point where driving force is zero, there remains a significant net chloride flux.

Figure 4. Figure 4.

Summary of the transport processes in mammalian proximal tubule. The proximal straight tubule has an apical sodium conductance (not shown).

Figure 5. Figure 5.

Schematics of Cl transport across thick ascending limb of Henle. Not shown are the parallel Na+‐H+ and Cl exchanges present in the mouse cortical thick ascending limb of Henle 56. “1” and “2” on chloride cotransporter refer to the two chloride binding sites with differing affinities and specificities (see text). The +5 luminal potential is a representative PD in a rabbit TALH when perfused without Cl gradients. Most of the lumen‐positive PD results when K diffuses down a favorable electrochemical gradient from intracellular space to the luminal side. The PD may be even more lumen positive in vivo with a superimposition of a diffusion PD; Na+ is more permeable than Cl across this segment. The estimated intracellular Cl of 12 mEq/liter is from Amphiuma diluting segment punctures 166. The K+‐Cl symporter on basolateral membrane is from works of Greger and Schlatter 75. See text for rest of the transport descriptions.

Figure 6. Figure 6.

Transepithelial response across frog diluting segment to chloride replacement in bath and perfusate 225.

Figure 7. Figure 7.

Chloride concentration measurement from free‐flow micropuncture samples as a function of distal tubule length in male Wistar rats 199.

Figure 8. Figure 8.

Model of Cl transport across late part of mammalian distal tubule. This figure is modified from reference 237 to include apical electroneutral KCl influx mechanism.

Figure 9. Figure 9.

Diagram of a superficial and a juxtamedullary nephron. PT, proximal tubule; TL, thin limb of Henle's loop; MTAL, medullary thick ascending limb; CTAL, cortical thick ascending limb; DCT, distal convoluted tubule; CNT, connecting tubule; ICT, initial collecting tubule; OMCDo, collecting duct in outer stripe of outer medulla; OMCDi, collecting duct in inner stripe of outer medulla; IMCD1, outer third of inner medullary collecting duct; IMCD2, middle third of inner medullary collecting duct; IMCD3, inner third of inner medullary collecting duct.

From Madsen and Tisher 150
Figure 10. Figure 10.

Schematic representation of three cell types found in rabbit cortical collecting tubule. Apical (luminal) membrane is on left of cell. Principal cell (P‐cell) and ‐secreting (beta) cells are found predominantly in cortical collecting tubule. Acid‐secreting (alpha) cells are located in outer medullary collecting tubule (inner stripe) as well as in cortical collecting tubule.

From Schuster and Stokes 202


Figure 1.

Axial profile of solute and transepithelial potential difference changes along mammalian proximal convoluted tubule 176.



Figure 2.

Summary of the transport processes in amphibian proximal tubule.



Figure 3.

Chloride flux plotted as a function of the electrochemical driving force in rat proximal convoluted tubule 7. At the point where driving force is zero, there remains a significant net chloride flux.



Figure 4.

Summary of the transport processes in mammalian proximal tubule. The proximal straight tubule has an apical sodium conductance (not shown).



Figure 5.

Schematics of Cl transport across thick ascending limb of Henle. Not shown are the parallel Na+‐H+ and Cl exchanges present in the mouse cortical thick ascending limb of Henle 56. “1” and “2” on chloride cotransporter refer to the two chloride binding sites with differing affinities and specificities (see text). The +5 luminal potential is a representative PD in a rabbit TALH when perfused without Cl gradients. Most of the lumen‐positive PD results when K diffuses down a favorable electrochemical gradient from intracellular space to the luminal side. The PD may be even more lumen positive in vivo with a superimposition of a diffusion PD; Na+ is more permeable than Cl across this segment. The estimated intracellular Cl of 12 mEq/liter is from Amphiuma diluting segment punctures 166. The K+‐Cl symporter on basolateral membrane is from works of Greger and Schlatter 75. See text for rest of the transport descriptions.



Figure 6.

Transepithelial response across frog diluting segment to chloride replacement in bath and perfusate 225.



Figure 7.

Chloride concentration measurement from free‐flow micropuncture samples as a function of distal tubule length in male Wistar rats 199.



Figure 8.

Model of Cl transport across late part of mammalian distal tubule. This figure is modified from reference 237 to include apical electroneutral KCl influx mechanism.



Figure 9.

Diagram of a superficial and a juxtamedullary nephron. PT, proximal tubule; TL, thin limb of Henle's loop; MTAL, medullary thick ascending limb; CTAL, cortical thick ascending limb; DCT, distal convoluted tubule; CNT, connecting tubule; ICT, initial collecting tubule; OMCDo, collecting duct in outer stripe of outer medulla; OMCDi, collecting duct in inner stripe of outer medulla; IMCD1, outer third of inner medullary collecting duct; IMCD2, middle third of inner medullary collecting duct; IMCD3, inner third of inner medullary collecting duct.

From Madsen and Tisher 150


Figure 10.

Schematic representation of three cell types found in rabbit cortical collecting tubule. Apical (luminal) membrane is on left of cell. Principal cell (P‐cell) and ‐secreting (beta) cells are found predominantly in cortical collecting tubule. Acid‐secreting (alpha) cells are located in outer medullary collecting tubule (inner stripe) as well as in cortical collecting tubule.

From Schuster and Stokes 202
References
 1. Abramow, M., and L. Orci. On the “tightness” of the rabbit descending limb of the loop of Henle—Physiological and morphological evidence. Int. J. Biochem. 12: 23–27, 1980.
 2. Allen, G. G., and L. J. Barratt. Electrophysiology of the early distal tubule: further observations on electrode techniques. Kidney Int. 19: 24–35, 1981.
 3. Allen, G. G., and L. J. Barratt. Effect of aldosterone on the transepithelial potential difference of the rat distal tubule. Kidney Int. 19: 678–686, 1981.
 4. Allen, F., and C. C. Tisher. Morphology of the ascending thick limb of Henle. Kidney Int. 9: 8–22, 1976.
 5. Alpern, R. J. Apical membrane chloride/base exchange in the rat proximal convoluted tubule. J. Clin. Invest. 79: 1026–1030, 1987.
 6. Alpern, R. J., and M. Chambers. Basolateral membrane Cl/HCO3 exchange in the rat proximal convoluted tubule. J. Gen. Physiol. 89: 581–598, 1987.
 7. Alpern, R. J., K. J. Howlin, and P. A. Preisig. Active and passive components of chloride transport in the rat proximal convoluted tubule. J. Clin. Invest. 76: 1360–1366, 1985.
 8. Alvo, M., J. Calamia, and J. Eveloff. Lack of potassium effect on Na—Cl cotransport in the medullary thick ascending limb. Am. J. Physiol. 249 (Renal Fluid Electrolyte Physiol. 18): F34–F39, 1985.
 9. Anagnostopoulos, T., and G. Planelles. Organic anion permeation at the proximal tubule of Necturus. Pflugers Arch. 381: 231–239, 1979.
 10. Andreoli, T. E., J. A. Schafer, S. L. Troutman, and M. I. Watkins. Solvent drag component of Cl flux in superficial proximal straight tubules: evidence for a paracellular component of isotonic fluid absorption. Am. J. Physiol. 237 (Renal Fluid Electrolyte Physiol. 6): F455–F462, 1979.
 11. Backman, S., and W. Kriz. Histotopography and ultrastructure of the thin limbs of the loop of Henle in the hamster. Cell Tissue Res. 225: 111–127, 1982.
 12. Barratt, L. J., F. C. Rector, Jr., J. P. Kokko, and D. W. Seldin. Factors governing the transepithelial potential difference across the proximal tubule of the rat kidney. J. Clin. Invest. 53: 454–464, 1974.
 13. Barratt, L. J., F. C. Rector, J. P. Kokko, C. C. Tisher, and D. W. Seldin. Transepithelial potential difference profile of the distal tubule of the rat kidney. Kidney Int. 8: 368–375, 1975.
 14. Barrett, J. M., W. Kriz, B. Kaissling, and C. deRouffignac. The ultrastructure of the nephrons of the desert rodent (Psammonys obesus) kidney. I. Thin limbs of Henle of short‐looped nephrons. Am. J. Anat. 151: 487–498, 1978.
 15. Barrett, J. M., W. Kriz, B. Kaissling, and C. deRouffignac. The ultrastructure of the nephrons of the desert rodent (Psammonys obesus) kidney. II. Thin limb of Henle of long‐looped nephrons. Am. J. Anat. 151: 499–514, 1978.
 16. Baum, M. Evidence that parallel Na+‐H+ and Cl−‐HCO3 (OH−) antiporters transport NaCl in the proximal tubule. Am. J. Physiol. 252 (Renal Fluid Electrolyte Physiol. 21): F338–F345, 1987.
 17. Baum, M. Effect of luminal chloride on cell pH in rabbit proximal tubule. Am. J. Physiol. 254 (Renal Fluid Electrolyte Physiol. 23): F677–F683, 1988.
 18. Baum, M., and C. A. Berry. Evidence for neutral transcellular NaCl transport and neutral basolateral chloride exit in the rabbit proximal convoluted tubule. J. Clin. Invest. 74: 205–211, 1984.
 19. Bello‐Reuss, E. Electrical properties of the basolateral membrane of the straight portion of the rabbit proximal renal tubule. J. Physiol. (Lond.) 326: 49–63, 1982.
 20. Bentzel, C. J. Expanding drop analysis of Na and H2O flux across Necturus proximal tubule. Am. J. Physiol. 226: 118–126, 1974.
 21. Bentzel, C. J., T. Anagnostopoulos, and H. Pandit. Necturus kidney: its response to effects of isotonic volume expansion. Am. J. Physiol. 218: 205–213, 1970.
 22. Berry, C. A., and F. C. Rector, Jr. Relative sodium‐to‐chloride permeability in the proximal convoluted tubule. Am. J. Physiol. 235 (Renal Fluid Electrolyte Physiol. 6): F592–F604, 1978.
 23. Berry, C. A., and F. C. Rector, Jr. Active and passive sodium transport in the proximal tubule. Mineral Electrolyte Metab. 4: 149–160, 1980.
 24. Besseghir, K., M. E. Trimble, and L. Stoner. Action of ADH on isolated medullary thick ascending limb of the Brattleboro rat. Am. J. Physiol. 251 (Renal Fluid Electrolyte Physiol. 20): F271–F277, 1986.
 25. Bott, P.A. Micropuncture study of renal excretion of water, K, Na, and Cl in Necturus. Am. J. Physiol. 203: 662–666, 1962.
 26. Boulpaep, E. L. Electrophysiological properties of the proximal tubule: importance of cellular and intercellular transport pathways. In: Electrophysiology of Epithelial Cells, edited by G. Giebisch. New York: F. K. Schattauer, 1971, p. 98–112.
 27. Boulpaep, E. L. Permeability changes of the proximal tubule of Necturus during saline loading. Am. J. Physiol. 222: 517–531, 1972.
 28. Bourdeau, J. E., and M. B. Burg. Voltage dependence of calcium transport in the thick ascending limb of Henle's loop. Am. J. Physiol. 236 (Renal Fluid Electrolyte Physiol. 5): F357–F364, 1979.
 29. Burg, M. M., and N. Green. Function of the thick ascending limb of Henle's loop. Am. J. Physiol. 224: 659–668, 1973.
 30. Burg, M., and N. Green. Effect of ethacrynic acid on the thick ascending limb of Henle's loop. Kidney Int. 4: 245–251, 1973.
 31. Burg, M. B. and J. Orloff. Control of fluid absorption in the renal proximal tubules. J. Clin. Invest. 47: 2016–2024, 1968.
 32. Burg, M. B., L. Stoner, J. Cardinal, and N. Green. Furosemide effect on isolated perfused tubules. Am. J. Physiol. 225: 119–224, 1973.
 33. Cardinal J., J. Lapointe, and R. Laprade. Luminal and peritubular ionic substitutions and intracellular potential of the rabbit proximal convoluted tubule. Am. J. Physiol. 247 (Renal Fluid Electrolyte Physiol. 16): F352–F364, 1984.
 34. Cassola, A. C., M. Mollenhauer, and E. Fromter. The intracellular chloride activity of rat kidney proximal tubular cells. Pflugers Arch. 399: 259–265, 1983.
 35. Chandhoke, P. S., G. M. Saidel, and M. A. Knepper. Role of inner medullary collecting duct NaCl transport in urinary concentration. Am. J. Physiol. 249 (Renal Fluid Electrolyte Physiol. 18): F688–F697, 1985.
 36. Chantrelle, B. M., M. G. Cogan, and F. C. Rector, Jr. Active and passive components of NaCl absorption in the proximal convoluted tubule of the rat kidney. Mineral Electrolyte Metab. 11: 209–214, 1985.
 37. Chen, P. Y., N. P. Illsley, and A. S. Verkman. Renal brush‐border chloride transport mechanisms characterized using a fluorescent indicator. Am. J. Physiol. 254 (Renal Fluid Electrolyte Physiol. 23): F114–F120, 1988.
 38. Chen, P. Y., and A. S. Verkman. Sodium‐dependent chloride transport in basolateral membrane vesicles (BLMV) isolated from rabbit proximal tubules. Kidney Int. 33: 417, 1988.
 39. Clapp, J. R., J. F. Watson, and R. W. Berliner. Osmolality, bicarbonate concentration and water reabsorption in proximal tubule of dog nephron. Am. J. Physiol. 205: 273–280, 1963.
 40. Cogan, M. G. and F. C. Rector, Jr. Proximal reabsorption during metabolic acidosis in the rat. Am. J. Physiol. 242 (Renal Fluid Electrolyte Physiol. 11): F499–F507, 1982.
 41. Corman, B., and A. DiStefano. Does water drag solutes through kidney proximal tubule? Pflugers Arch. 397: 35–41, 1983.
 42. Costanzo, L. S. Localization of diuretic action in microperfused rat distal tubules: Ca and Na transport. Am. J. Physiol. 248 (Renal Fluid Electrolyte Physiol. 17): F527–F535, 1985.
 43. Costanzo, L. S., and E. E. Windhager. Calcium and sodium transport by the distal convoluted tubule of the rat. Am. J. Physiol. 235 (Renal Fluid Electrolyte Physiol. 4): F492–F506, 1978.
 44. Culpepper, R. M., and T. E. Andreoli. Interactions among prostaglandin E2, antidiuretic hormone, and cyclic adenosine monophosphate in modulating Cl− absorption in single mouse medullary thick ascending limbs of Henle. J. Clin. Invest. 71: 1588–1601, 1983.
 45. Danielson, B. G., E. Persson, and H. R. Ulfendahl. The transport of halide ions across the membrane of distal rat tubules. Acta Physiol. Scand. 78: 347–352, 1970.
 46. Dietrich, H. J., J. M. Barrett, W. Kriz, and J. P. Bulhoff. The ultrastructure of the thin loop limbs in the mouse kidney. Anat. Embryol. 147: 1–13, 1975.
 47. Diezi, J., P. Michoud, J. Aceves, and G. Giebisch. Micropuncture study of electrolyte transport across papillary collecting duct of the rat. Am. J. Physiol. 224: 623–634, 1973.
 48. DiStefano, A., M. Wittner, E. Schlatter, H. J. Lang, H. Englert, and R. Greger. Diphenylamine‐2‐carboxylate, a blocker of the Cl−‐conductive pathway in Cl−‐transporting epithelia. Pflugers Arch. 405: S95–S100, 1985.
 49. DuBose, T. D., Jr., D. W. Seldin, and J. P. Kokko. Segmental chloride reabsorption in the rat nephron as a function of load. Am. J. Physiol. 234 (Renal Fluid Electrolyte Physiol. 3): F97–F105, 1978.
 50. Eigler, F. W. Short‐circuit current measurements in proximal tubule of Necturus kidney. Am. J. Physiol. 201: 157–163, 1961.
 51. Ellison, D. H., H. Velazquez, and F. S. Wright. Thiazide‐sensitive sodium chloride cotransport in the early distal tubule. Am. J. Physiol. 253 (Renal Fluid Electrolyte Physiol. 22): F546–F554, 1987.
 52. Ellison, D. H., H. Velazquez, and‐ F. S. Wright. Stimulation of distal potassium secretion by low lumen chloride in the presence of barium. Am. J. Physiol. 248 (Renal Fluid Electrolyte Physiol. 17): F638–F649, 1985.
 53. Ellison, D. H., H. Velazquez, and F. S. Wright. Unidirectional potassium fluxes in renal distal tubule: effects of chloride and barium. Am. J. Physiol. 250 (Renal Fluid Electrolyte Physiol. 19): F885–F894, 1986.
 54. Eveloff, J., and R. Kinne. Sodium‐chloride transport in the medullary thick ascending limb of Henle's loop: evidence for a sodium‐chloride cotransport system in plasma membrane vesicles. J. Membr. Biol. 72: 173–181, 1983.
 55. Eveloff, J., and D. G. Warnock. K‐Cl transport systems in rabbit renal basolateral membrane vesicles. Am. J. Physiol. 252 (Renal Fluid Electrolyte Physiol. 21): F883–F889, 1987.
 56. Friedman, P. A., and T. E. Andreoli. CO2‐stimulated NaCl absorption in the mouse renal cortical thick ascending limb of Henle—Evidence for synchronous Na+/H+ and Cl−/HCO3−exchange in apical plasma membranes. J. Gen. Physiol. 80: 683–711, 1982.
 57. Fromter, E., and K. Gessner. Free‐flow potential along rat kidney proximal tubule. Pflugers Arch. 351: 69–83, 1974.
 58. Fromter, E., G. Rumrich, and K. J. Ullrich. PheAnomenologie description of Na, Cl, and HCO3 absorption from proximal tubules of the rat kidney. Pflugers Arch. 343: 189–220, 1973.
 59. Galla, J. H., J. E. Beaumont, and R. G. Luke. Effect of volume expansion of NaCl or NaHCO3 on nephron fluid and Cl transport. Am. J. Physiol. 233 (Renal Fluid Electrolyte Physiol. 2): F118–F125, 1977.
 60. Gelbart, D. R., C. A. Battilana, J. Bhattacharya, F. B. Lacy, and R. L. Jamison. Transepithelial gradient and fractional delivery of chloride in thin loop of Henle. Am. J. Physiol. 235 (Renal Fluid Electrolyte Physiol. 4): F192–F198, 1978.
 61. Giebisch, G. Electrical potential measurements on single nephrons of Necturus. J. Cell. Comp. Physiol. 51: 221–239, 1958.
 62. Giebisch, G. Measurement of pH, Cl and inulin concentrations in proximal tubule fluid of Necturus. Am. J. Physiol. 185: 171–174, 1956.
 63. Giebisch, G. Measurement of electrical potential difference on single nephrons of the perfused Necturus kidney. J. Gen. Physiol. 44: 659–678, 1961.
 64. Giebisch, G., L. P. Sullivan, G. Whittembury. Relationship between tubular net sodium reabsorption and peritubular potassium uptake in the perfused Necturus kidney. J. Physiol. 230: 51–74, 1973.
 65. Giebisch, G., and E. E. Windhager. Measurement of chloride movement across single proximal tubules of Necturus kidney. Am. J. Physiol. 204: 387–391, 1963.
 66. Gottschalk, C. W. Renal tubular function: lessons from micropuncture. Harvey Lect. 58: 99–124, 1963.
 67. Grassl, S. M. and P. S. Aronson. Na+/HCO3− co‐transport in basolateral membrane vesicles isolated from rabbit renal cortex. J. Biol. Chem. 261: 8778–8783, 1986.
 68. Grassl, S. M., P. D. Holohan, and C. R. Ross. Cl/HCO3 exchange in rat renal cortical basolateral membrane vesicles (BLMV). Kidney Int. 31: 409, 1987.
 69. Green, R., J. H. V. Bishop, and G. Giebisch. Ionic requirements of proximal tubular sodium transport. III. Selective luminal anion substitution. Am. J. Physiol. 236 (Renal Fluid Electrolyte Physiol. 5): F268–F277, 1979.
 70. Green, R., and G. Giebisch. Ionic requirements of proximal tubular sodium transport. I. Bicarbonate and chloride. Am. J. Physiol. 229: 1205–1215, 1975.
 71. Greger, R. Cation selectivity of the isolated perfused cortical thick ascending limb of Henle's loop of rabbit kidney. Pflugers Arch. 390: 30–37, 1981.
 72. Greger, R. Coupled transport of Na and Cl in the thick ascending limb of Henle's loop of rabbit nephron. Scand. Audiol. (Suppl.) 14: 1–15, 1981.
 73. Greger, R. Chloride reabsorption in the rabbit cortical thick ascending limb of the loop of Henle. A sodium dependent process. Pflugers Arch. 390: 38–43, 1981.
 74. Greger, R., and E. Schlatter. Presence of luminal K, a requisite for active NaCl transport in the cortical thick ascending limb of Henle's loop of rabbit kidney. Pflugers Arch. 392: 92–94, 1981.
 75. Greger, R., and E. Schlatter. Properties of the basolateral membrane of the cortical thick ascending limb of Henle's loop of rabbit kidney. A model for secondary active chloride transport. Pflugers Arch. 396: 325–334, 1983.
 76. Greger, R., and E. Schlatter. Properties of the lumen membrane of the cortical thick ascending limb of Henle's loop of rabbit kidney. Pflugers Arch. 396: 315–324, 1983.
 77. Greger, R., and E. Schlatter. Cellular mechanism of the action of loop diuretics on the thick ascending limb of Henle's loop. Klin. Wochenschr. 61: 1019–1027, 1983.
 78. Greven, J. Studies on the renal receptors of loop diuretics. Clin. Exp. Hypertens [A] 5: 193–208, 1983.
 79. Greven, J. The pharmacological basis of the action of loop diuretics. In: Diuretics II, edited by J. B. Puschett and A. Greenberg. New York: Elsevier, 1986, p. 173–181.
 80. Guggino, W. B., E. L. Boulpaep, and G. Giebisch. Electrical properties of chloride transport across the Necturus proximal tubule. J. Membr. Biol. 65: 185–196, 1982.
 81. Guggino, W. B., R. Longon, E. L. Boulpaep, and G. Giebisch. Chloride transport across the basolateral membrane of the Necturus proximal tubule: dependence on bicarbonate and sodium. J. Membr. Biol. 71: 227–240, 1983.
 82. Gutsche, H. U., R. Muller‐Suur, U. Hegel, and K. Hierholzer. Electrical conductivity of tubular fluid of the rat nephron. Micropuncture study of the diluting segment in situ. Pflugers Arch. 383: 113–122, 1980.
 83. Hall, D. A., and D. M. Varney. Effect of vasopressin on electrical potential difference and chloride transport in mouse medullary thick ascending limbs of Henle's loop. J. Clin. Invest. 66: 792–802, 1980.
 84. Hanley, M. J., and J. P. Kokko. Study of chloride transport across the rabbit cortical collecting tubule. J. Clin. Invest. 62: 39–44, 1978.
 85. Hanley, M. J., J. P. Kokko, J. B. Gross, and H. R. Jacobson. An electrophysiologic study of the cortical collecting tubule of the rabbit. Kidney Int. 17: 74–81, 1980.
 86. Hannafin, J. A., and R. Kinne. Active chlorine transport in rabbit thick ascending limb of Henle's loop and elasmobranch rectal gland: chloride fluxes in isolated plasma membranes. J. Comp. Physiol. B155: 415–421, 1985.
 87. Hayslett, J. P., E. L. Boulpaep, and G. H. Giebisch. Factors influencing transepithelial potential difference in mammalian distal tubule. Am. J. Physiol. 234 (Renal Fluid Electrolyte Physiol. 3): F182–F191, 1978.
 88. Hebert, S. C., and T. E. Andreoli. Effects of antidiuretic hormone on cellular conductive pathways in mouse medullary thick ascending limbs of Henle. II. Determinants of ADH‐mediated increases in transepithelial voltage and in net chloride absorption. J. Membr. Biol. 80: 221–233, 1984.
 89. Hebert, S. C., R. M. Culpepper, and T. E. Andreoli. NaCl transport in mouse medullary thick ascending limbs. l. Functional nephron heterogeneity and ADH‐stimulated NaCl co‐transport. Am. J. Physiol. 241 (Renal Fluid Electrolyte Physiol. 10): F412–F431, 1981.
 90. Hebert, S. C., R. M. Culpepper, and T. E. Andreoli. NaCl transport in mouse medullary thick ascending limbs. II. ADH enhancement of transcellular NaCl cotransport; origin of transepithelial voltage. Am. J. Physiol. 241 (Renal Fluid Electrolyte Physiol. 10): F432–F442, 1981.
 91. Hebert, S. C., R. M. Culpepper, and T. E. Andreoli. NaCl transport in mouse medullary thick ascending limbs. III. Modulation of the ADH effect by peritubular osmolality. Am. J. Physiol. 241 (Renal Fluid Electrolyte Physiol. 10): F443–F451, 1981.
 92. Hebert, S. C., P. A. Friedman, and T. E. Andreoli. Effects of anti‐diuretic hormone on cellular conductive pathways in mouse medullary thick ascending limbs of Henle. I. ADH increases transcellular conductive pathways. J. Membr. Biol. 80: 201–219, 1984.
 93. Helman, S. I., and R. G. O'Neil. Model of active transepithelial Na and K transport of renal collecting tubules. Am. J. Physiol. 233 (Renal Fluid Electrolyte Physiol. 2): F559–F571, 1977.
 94. Hierholzer, K., S. Kawamura, D. W. Seldin, J. P. Kokko, and H. R. Jacobson. Reflection coefficients of various substrates across superficial and juxtamedullary proximal convoluted segments of rabbit nephrons. Mineral Electrolyte Metab. 3: 172–180, 1980.
 95. Higashihara, E., T. D. DuBose, Jr., and J. P. Kokko. Direct examination of chloride transport across papillary collecting duct of the rat. Am. J. Physiol. 235 (Renal Fluid Electrolyte Physiol. 4): F219–F226, 1978.
 96. Higashihara, E., J. B. Stokes, J. P. Kokko, W. B. Campbell, and T. D. DuBose, Jr. Cortical and papillary micropuncture examination of chloride transport in segments of the rat kidney during inhibition of prostaglandin production. J. Clin. Invest. 64: 1277–1287, 1979.
 97. Hogg, R. J., and J. P. Kokko. Comparison between the electrical potential profile and the chloride gradients in the thin limbs of Henle's loop in rats. Kidney Int. 14: 428–436, 1978.
 98. Holmberg, C., J. P. Kokko, and H. R. Jacobson. Determination of chloride and bicarbonate permeabilities in proximal convoluted tubules. Am. J. Physiol. 241 (Renal Fluid Electrolyte Physiol. 10): F386–F394, 1981.
 99. Howlin, K. J., R. J. Alpern, C. A. Berry, and F. C. Rector, Jr. Evidence for electroneutral sodium chloride transport in rat proximal convoluted tubule. Am. J. Physiol. 250 (Renal Fluid Electrolyte Physiol. 19): F644–F648, 1986.
 100. Imai, M. Functional heterogeneity of the descending limbs of Henle's loop: II. Interspecies differences among rabbits, rats and hamsters. Pflugers Arch. 402: 392–401, 1984.
 101. Imai, M. Function of the thin ascending limbs of Henle of rats and hamsters perfused in vitro. Am. J. Physiol. 232 (Renal Fluid Electrolyte Physiol. 1): F201–F209, 1977.
 102. Imai, M. Calcium transport across the rabbit thick ascending limb of Henle's loop perfused in vitro. Pflugers Arch. 374: 255–263, 1978.
 103. Imai, M. Effect of bumetanide and furosemide on the thick ascending limb of Henle's loop of rabbits and rats perfused in vitro. Eur. J. Pharmacol. 41: 409–416, 1977.
 104. Imai, M., M. Hayashi, and M. Araki. Functional heterogeneity of the descending limbs of Henle's loop. I. Internephron heterogeneity in the hamster kidney. Pflugers Arch. 402: 385–392, 1984.
 105. Imai, M., and J. P. Kokko. Sodium, chlorate, urea, and water transport in the thin ascending limb of Henle. J. Clin. Invest. 53: 393–402, 1974.
 106. Imai, M., and E. Kusano. Effects of arginine vasopressin on the thin ascending limb of Henle's loop of hamsters. Am. J. Physiol. 243 (Renal Fluid Electrolyte Physiol. 12): F167–F172, 1982.
 107. Imai, M., and R. Nakamura. Function of distal convoluted and connecting tubules studied by isolated nephron fragments. Kidney Int. 22: 465–472, 1982.
 108. Imbert, M., D. Chabardes, M. Montegut, A. Clique, and F. Morel. Vasopressin dependent adenylate cyclase in single segments of rabbit kidney tubule. Pflugers Arch. 357: 173–186, 1975.
 109. Imbert‐Teboul, M., D. Chabardes, M. Montegut, A. Clique, and F. Morel. Vasopressin‐dependent adenylate cyclase activities in the rat kidney medulla: evidence for two separate sites of action. Endocrinology 102: 1254–1261, 1978.
 110. Ishikawa, F., T. Saito, K. Okada, and T. Kuzuya. Atrial natriuretic factor increases cyclic GMP and inhibits cyclic AMP in rat renal papillary tubule cells in culture. Biochem. Biophys. Res. Commun. 130: 1147–1153, 1985.
 111. Ives, H. E., P. Y. Chen, and A. S. Verkman. Mechanism of coupling between Cl− and OH− transport in renal brush‐border membranes. Biochim. Biophys. Acta 863: 91–100, 1986.
 112. Jacobson, H. R. Characteristics of volume reabsorption in rabbit superficial and juxtamedullary proximal convoluted tubules. J. Clin. Invest. 63: 410–418, 1979.
 113. Jacobson, H. R., and J. P. Kokko. Intrinsic differences in various segments of the proximal convoluted tubule. J. Clin. Invest. 57: 818–825, 1976.
 114. Jacobson, H. R., J. P. Kokko, D. W. Seldin, and C. Holmberg. Lack of solvent drag of NaCl and HaHCO3 in rabbit proximal tubules. Am. J. Physiol. 243 (Renal Fluid Electrolyte Physiol. 12): F342–F348, 1982.
 115. Jamison, R. L., C. M. Bennett, and R. W. Berliner. Countercurrent multiplication by the thin loops of Henle. Am. J. Physiol. 212: 357–366, 1967.
 116. Jorgensen, P. L., J. Petersen, and W. D. Rees. Identification of a Na+,K+,Cl−‐cotransport protein of Mr 34000 from kidney by photolabeling with [3H]bumetanide. Biochim. Biophys. Acta 775: 105–110, 1984.
 117. Kaissling, B., and W. Kriz. Structural analysis of rabbit kidney. Adv. Anat. Embryol. Cell Biol. 56: 1–123, 1979.
 118. Karniski, L. P., and P. S. Aronson. Chloride/formate exchange with formic acid recycling: a mechanism of active chloride transport across epithelial membranes. Proc. Natl. Acad Sci. U.S.A. 82: 6362–6365, 1985.
 119. Karniski, L. P., and P. S. Aronson. Anion exchange pathways for Cl− transport in rabbit renal microvillus membranes. Am. J. Physiol. 253 (Renal Fluid Electrolyte Physiol. 22): F513–F521, 1987.
 120. Kashgarian, M., H. Stockle, C. W. Gottschalk, and K. J. Ullrich. Transtubular electrochemical potentials of sodium and chloride in proximal and distal renal tubules of rats during antidiuresis and water diuresis (diabetes insipidus). Arch. Gen. Physiol. 277: 89–106, 1963.
 121. Kashgarian, M., Y. Warren, and H. Levitin. Micropuncture study of proximal renal tubular chloride transport during hypercapnea in the rat. Am. J. Physiol. 209: 655–658, 1965.
 122. Kawamura, S., M. Imai, D. W. Seldin, and J. P. Kokko. Characteristics of salt and water transport in superficial and juxtamedullary straight segments of proximal tubules. J. Clin. Invest. 55: 1269–1277, 1975.
 123. Khuri, R. N. Electrochemical potentials of potassium and chloride in the proximal renal tubules of Necturus maculosus: ion‐selective microelectrodes. In: Ion‐Selective Microelectrodes, edited by H. J. Berman and H. C. Hebert. New York: Plenum, 1974, p. 109–126.
 124. Khuri, R. N., S. K. Agulian, and K. Bogharian. Electrochemical potentials of chloride in distal renal tubule of the rat. Am. J. Physiol. 227: 1352–1355, 1974.
 125. Kim, J. K., S. N. Summer, A. E. Erickson, and R. W. Schrier. Role of arginine vasopressin in medullary thick ascending limb on maximal urinary concentration. Am. J. Physiol. 251 (Renal Fluid Electrolyte Physiol. 20): F266–F270, 1986.
 126. Kimura, G., and K. R. Spring. Transcellular and paracellular tracer chloride fluxes in Necturus proximal tubule. Am. J. Physiol. 235 (Renal Fluid Electrolyte Physiol. 4): F617–F625, 1978.
 127. Kimura, G., and K. R. Spring. Luminal Na+ entry into Necturus proximal tubule cells. Am. J. Physiol. 236 (Renal Fluid Electrolyte Physiol. 5): F295–F301, 1979.
 128. Kinne, R. Molecular properties of the sodium‐potassium‐chloride cotransport system in the kidney. In: Diuretics II, edited by J. B. Puschett and A. Greenberg. New York: Elsevier, 1987, p. 138–144.
 129. Koenig, B., S. Ricapito, and R. Kinne. Chloride transport in the thick ascending limb of Henle's loop: potassium dependence and stoichiometry of the NaCl cotransport system in plasma‐membrane vesicles. Pflugers Arch. 399: 173–179, 1983.
 130. Koeppen, B. M. Conductive properties of the rabbit outer medullary collecting duct: outer stripe. Am. J. Physiol. 250 (Renal Fluid Electrolyte Physiol. 19): F70–F76, 1986.
 131. Koeppen, B. M. Conductive properties of the rabbit outer medullary duct: inner stripe. Am. J. Physiol. 248 (Renal Fluid Electrolyte Physiol. 17): F500–F506, 1985.
 132. Koeppen, B. M., B. A. Biagi, and G. H. Giebisch. Intracellular microelectrode characterization of the rabbit cortical collecting duct. Am. J. Physiol. 244 (Renal Fluid Electrolyte Physiol. 13): F35–F47, 1983.
 133. Koeppen, B. M., and G. Giebisch. Cellular electrophysiology of potassium transport in the mammalian cortical collecting tubule. Pflugers Arch. 405, Suppl. 1: S143–S146, 1985.
 134. Kokko, J. P. Sodium chloride and water transport in the descending limb of Henle. J. Clin. Invest. 49: 1838–1846, 1970.
 135. Kokko, J. P. Urea transport in the proximal tubule and the descending limb of Henle. J. Clin. Invest. 51: 1999–2008, 1972.
 136. Kokko, J. P. Membrane characteristics governing salt and water transport in the loop of Henle. Federation Proc. 33: 25–30, 1974.
 137. Kokko, J. P. Proximal tubule potential difference dependence on glucose, HCO3 and amino acids. J. Clin. Invest. 53: 1362–1367, 1973.
 138. Kokko, J. P., M. B. Burg, and J. Orloff. Characteristics of NaCl and water transport in the renal proximal tubule. J. Clin. Invest. 50: 69–76, 1971.
 139. Kokko, J. P., and H. R. Jacobson. Renal chloride transport. In: The Kidney: Physiology and Pathophysiology, edited by D. W. Seldin and G. Giebisch. New York: Raven Press, 1985, p. 1097–1118.
 140. Kunan, R. T., D. R. Weller, and H. L. Webb. Classification of the site of action of chlorothiazides in the rat nephron. J. Clin. Invest. 56: 401–407, 1975.
 141. Kunau, R. T., Jr. The influence of the carbonic anhydrase inhibitor, benzolamide (CL‐11,366), on the reabsorption of chloride, sodium, and bicarbonate in the proximal tubule of the rat. J. Clin. Invest. 51: 294–306, 1972.
 142. Laski, M. E., and N. E. Kurtzman. Characterization of acidification in the cortical and medullary collecting tubule of the rabbit. J. Clin. Invest. 72: 2050–2059, 1983.
 143. LeGrimellec, C. Micropuncture study along the proximal convoluted tubule: electrolyte reabsorption in first convolutions. Pflugers Arch. 354: 133–150, 1975.
 144. Litchfield, J. B., and P. A. Bott. Micropuncture study of renal excretion of water, K, Na, and Cl in the rat. Am. J. Physiol. 203: 667–670, 1962.
 145. Liu, F. Y., and M. G. Cogan. Axial heterogeneity in the rat proximal convoluted tubule. I. Bicarbonate, chloride, and water transport. Am. J. Physiol. 247 (Renal Fluid Electrolyte Physiol. 16): F816–F821, 1984.
 146. Liu, F. Y., and M. G. Cogan. Kinetics of bicarbonate transport in the early proximal convoluted tubule. Am. J. Physiol. 253 (Renal Fluid Electrolyte Physiol. 22): F912–F916, 1987.
 147. Lombard, W. E., J. P. Kokko, and H. R. Jacobson. Bicarbonate transport in cortical and outer medullary collecting tubules. Am. J. Physiol. 244 (Renal Fluid Electrolyte Physiol. 13): F289–F296, 1983.
 148. Lucci, M. S., and D. G. Warnock. Effects of anion‐transport inhibitors on NaCl reabsorption in the rat superficial proximal convoluted tubule. J. Clin. Invest. 64: 570–579, 1979.
 149. Maddox, D. A., and F. J. Gennari. Load dependence of HCO3 and H2O reabsorption in the early proximal tubule of the Munich‐Wistar rat. Am. J. Physiol. 248 (Renal Fluid Electrolyte Physiol. 17): F113–F121, 1985.
 150. Madsen, K. M., and C. C. Tisher. Structural‐functional relationships along the distal nephron. Am. J. Physiol. 250 (Renal Fluid Electrolyte Physiol. 19): F1–F15, 1986.
 151. Malnic, G., and G. Giebisch. Some electrical properties of distal tubular epithelium in the rat. Am. J. Physiol. 223: 797–808, 1972.
 152. Malnic, G., M. Mello Aires, and F. L. Vieira. Chloride excretion in nephrons of rat kidney during alterations of acid‐base equilibrium. Am. J. Physiol. 218: 20–26, 1970.
 153. Marchand, G. G., C. E. Ott, J. L. Cuche, and F. G. Knox. Comparison of proximal tubule fluid‐to‐plasma ultrafiltrate chloride ratio in rats and dogs. J. Appl. Physiol. 4: 1009–1011, 1976.
 154. Marsh, D. J. Solute and water flows in thin limbs of Henle's loop in the hamster kidney. Am. J. Physiol. 218: 824–831, 1970.
 155. Marsh, D. J., and S. Solomon. Analysis of electrolyte movement in thin Henle's loop of hamster papilla. Am. J. Physiol. 208: 1119–1128, 1965.
 156. Miwa, T., and M. Imai. Flow‐dependent water permeability of rabbit descending limb of Henle's loop. Am. J. Physiol. 245 (Renal Fluid Electrolyte Physiol. 14): F743–F754, 1983.
 157. Molony, D. A., W. B. Reeves, S. C. Hebert, and T. E. Andreoli. ADH increases apical Na+, K+, 2Cl− entry in mouse medullary thick ascending limbs of Henle. Am. J. Physiol. 252 (Renal Fluid Electrolyte Physiol. 21): F177–F187, 1987.
 158. Montgomery, H., and J. A. Pierce. The site of acidification of the urine within the renal tubule in amphibia. Am. J. Physiol. 118: 114–152, 1937.
 159. Morel, F., D. Chabardes, and M. Imbert. Functional segmentation of the rabbit distal tubule by microdetermination of hormone‐dependent adenylate cyclase activity. Kidney Int. 9: 264–277, 1976.
 160. Morgan, T., and R. W. Berliner. Permeability of loop of Henle, vasa recta, and collecting duct to water, urea, and sodium. Am. J. Physiol. 215: 108–115, 1968.
 161. Morgan, T., and C. Ray. The permeability of collecting ducts to 22Na+ and 36Cl− in rat isolated papillae. Clin. Exp. Pharmacol. Physiol. 9: 657–663, 1982.
 162. Muto, S., G. Giebisch, and S. Sansom. Effects of adrenalectomy on CCD: evidence for differential response of two cell types. Am. J. Physiol. 253 (Renal Fluid Electrolyte Physiol. 22): F742–F752, 1987.
 163. Nagle, R. B., E. M. Altschuler, D. C. Dobyan, S. Dong, and R. E. Bulger. The ultrastructure of the thin limbs of Henle in kidneys of the heteromyid (Perognathus penicillatus). Am. J. Anat. 161: 34–47, 1981.
 164. Neumann, K. H., and F. C. Rector. Mechanism of NaCl and water reabsorption in the proximal convoluted tubule of rat kidney. J. Clin. Invest. 58: 1110–1118, 1976.
 165. Nonoguchi, H., M. A. Knepper, and V. C. Manganiello. Effects of atrial natriuretic factor on cyclic guanosine monophosphate and cyclic adenosine monophosphate accumulation in microdissected nephron segments from rats. J. Clin. Invest. 79: 500–507, 1987.
 166. Oberleithner, H., W. Guggino, and G. Giebisch. Mechanism of distal tubular chloride transport in Amphiuma kidney. Am. J. Physiol. 242 (Renal Fluid Electrolyte Physiol. 11): F331–F339, 1982.
 167. Oberleithner, H., F. Lang, W. Wenhui, and G. Giebisch. Effects of inhibition of chloride transport in intracellular sodium activity in distal amphibian nephron. Pflugers Arch. 394: 55–60, 1982.
 168. Oken, D. E., G. Whittembury, E. E. Windhager, and A. K. Solomon. Single proximal tubules of Necturus kidney. V: undirectional sodium movement. Am. J. Physiol. 204: 372–376, 1976.
 169. O'Neil, R. G., and E. L. Boulpaep. Ionic conductive properties and electrophysiology of the rabbit cortical collecting tubule. Am. J. Physiol. 243 (Renal Fluid Electrolyte Physiol. 12): F81–F95, 1982.
 170. O'Neil, R. G., and S. I. Helman. Transport characteristics of renal collecting tubules: influences of DOCA and diet. Am. J. Physiol. 233 (Renal Fluid Electrolyte Physiol. 2): F544–F558, 1977.
 171. O'Neil, R. G., and S. C. Sansom. Electrophysiological properties of cellular and paracellular conductive pathways of the rabbit cortical collecting duct. J. Membr. Biol. 82: 281–295, 1984.
 172. O'Neil, R. G., and S. C. Sansom. Characterization of apical cell membrane Na+ and K+ conductances of cortical collecting duct using microelectrode techniques. Am. J. Physiol. 247 (Renal Fluid Electrolyte Physiol. 16): F14–F24, 1984.
 173. Preisig, P. A., and F. C. Rector, Jr. Role of Na+/H+ antiport in rat proximal tubule NaCl absorption. Am. J. Physiol. 255 (Renal Fluid Electrolyte Physiol. 24): F461–F465, 1988.
 174. Radtke, H. W., G. Rumrich, S. Kloss, and K. J. Ullrich. Influence of luminal diameter and flow velocity on the isotonic fluid absorption and 36Cl permeability of the proximal convolution of the rat kidney. Pflugers Arch. 324: 288–296, 1971.
 175. Rau, W. S., and E. Fromter. Electrical properties of the medullary collecting ducts of the golden hamster kidney. I. The transepithelial potential difference. Pflugers Arch. 354: 99–111, 1974.
 176. Rector, F. C., Jr. Sodium, bicarbonate, and chloride absorption by the proximal tubule. Am. J. Physiol. 244 (Renal Fluid Electrolyte Physiol. 13): F461–F471, 1983.
 177. Rector, F. C., and J. R. Clapp. Evidence for active chloride reabsorption in the distal renal tubule of the rat. J. Clin. Invest. 41: 101–107, 1962.
 178. Rector, F. C., M. Martinez‐Maldonado, F. P. Brunner, and D. W. Seldin. Evidence for passive reabsorption of NaCl in proximal tubule of rat kidney. J. Clin. Invest. 45: 1060, 1966 (abstr.).
 179. Rocha, A. S., and J. P. Kokko. Sodium chloride and water transport in the medullary thick ascending limb of Henle. Evidence for active chloride transport. J. Clin. Invest. 52: 612–623, 1973.
 180. Rocha, A. S., and J. P. Kokko. Permeability of medullary nephron segments to urea and water: effect of vasopressin. Kidney Int. 6: 379–387, 1974.
 181. Rocha, A. S., and L. H. Kudo. Water, urea, sodium, chloride, and potassium transport in the in vitro isolated perfused papillary collecting duct. Kidney Int. 22: 485–491, 1982.
 182. Rocha, A. S., J. B. Magaldi, and J. P. Kokko. Calcium and phosphate transport in isolated segments of rabbit Henle's loop. J. Clin. Invest. 59: 975–983, 1977.
 183. Sakai, F., M. Tadokoro, and M. Teraoka. Experimentelle Untersuchungen uber die Funktion des Nierenmarkes mit der Mikropunktionsmethode. Tokyo J. Med. Sci. 79: 1–30, 1971.
 184. Sakai, F., M. Tadokoro, and I. Yamaguchi. Osmolality of loop of Henle fluid in golden hamster. Jpn. J. Pharmacol. 16: 492, 1966.
 185. Sands, J. M., and M. A. Knepper. Urea permeability of mammalian collecting duct system and papillary surface epithelium. J. Clin Invest. 79: 138–147, 1987.
 186. Sansom, S., S. Muto, and G. Giebisch. Na‐dependent effects of DOCA on cellular transport properties of CCDs from ADX rabbits. Am. J. Physiol. 253 (Renal Fluid Electrolyte Physiol. 22): F753–F759, 1987.
 187. Sansom, S. C., E. J. Weinman, and R. G. O'Neil. Microelectrode assessment of chloride‐conductive properties of cortical collecting duct. Am. J. Physiol. 247 (Renal Fluid Electrolyte Physiol. 16): F291–F302, 1984.
 188. Sasaki, S., and M. Imai. Effects of vasopressin on water and NaCl transport across the in vitro perfused medullary thick ascending limbs of Henle's loop of mouse, rat and rabbit kidneys. Pflugers Arch. 383: 215–221, 1980.
 189. Sasaki, S., K. Ishibashi, N. Yoshiyama, and T. Shiigai. KCl co‐transport across the basolateral membrane of rabbit renal proximal straight tubules. J. Clin. Invest. 81: 194–199, 1988.
 190. Sasaki, S., and N. Yoshiyama. Interaction of chloride and bicarbonate transport across the basolateral membrane of rabbit proximal straight tubule. J. Clin. Invest. 81: 1004–1011, 1988.
 191. Schafer, J. A., and D. W. Barfus. The study of pars recta function by the perfusion of isolated tubule segments. Kidney Int. 22: 434–448, 1982.
 192. Schafer, J. A., C. S. Patlak, and T. E. Andreoli. Fluid absorption and active and passive ion flows in the rabbit superficial pars recta. Am. J. Physiol. 233 (Renal Fluid Electrolyte Physiol. 2): F154–F167, 1977.
 193. Schafer, J. A., C. S. Patlak, and T. E. Andreoli. A component of fluid absorption linked to passive ion flows in the superficial pars recta. J. Gen. Physiol. 66: 445–471, 1975.
 194. Schafer, J. A., S. L. Troutman, and T. E. Andreoli. Volume reabsorption, transepithelial potential differences, and ionic permeability properties in mammalian superficial proximal straight tubules. J. Gen. Physiol. 64: 582–607, 1974.
 195. Schafer, J. A., S. L. Troutman, M. D. Watkins, and T. E. Andreoli. Volume absorption in the pars recta. I. “Simple” active Na transport. Am. J. Physiol. 234 (Renal Fluid Electrolyte Physiol. 3): F332–F339, 1978.
 196. Schatzmann, H. J., E. E. Windhager, and A. K. Solomon. Single tubules of the Necturus kidney. II. Effect of 2,4‐dinitrophenol and ouabain on water reabsorption. Am. J. Physiol. 195: 570–574, 1958.
 197. Schild, L., G. Giebisch, L. P. Karniski, and P. S. Aronson. Effect of formate on volume reabsorption in the rabbit proximal tubule. J. Clin. Invest. 79: 32–38, 1987.
 198. Schlatter, E., and R. Greger. cAMP increases the basolateral Cl− conductance in the isolated perfused medullary thick ascending limb of Henle's loop of the mouse. Pflugers Arch. 405: 367–376, 1985.
 199. Schnermann, J., J. Briggs, and G. Schubert. In situ studies of the distal convoluted tubule in the rat. I. Evidence for NaCl secretion. Am. J. Physiol. 243 (Renal Fluid Electrolyte Physiol. 12): F160–F166, 1982.
 200. Schuster, V. L. Cyclic adenosine monophosphate‐stimulated bicarbonate secretion in rabbit cortical collecting tubules. J. Clin. Invest. 75: 2056–2064, 1985.
 201. Schuster, V. L. Cyclic adenosine monophosphate‐stimulated anion transport in rabbit cortical collecting duct. Kinetics, stoichiometry, and conductive pathways. J. Clin. Invest. 78: 1621–1630, 1986.
 202. Schuster, F. L., and J. B. Stokes. Cl transport by the cortical and outer medullary collecting duct. Am. J. Physiol. 253 (Renal Fluid Electrolyte Physiol. 22): F203–F212, 1987.
 203. Schutz, W., and J. Schnermann. Pelvic urine composition as a determinant of inner medullary solute concentration and urine osmolality. Pflugers Arch. 334: 154–166, 1972.
 204. Schwartz, G. J. Absence of Cl−‐OH− or Cl−‐HCO3− exchange in the rabbit renal proximal tubule. Am. J. Physiol. 245 (Renal Fluid Electrolyte Physiol. 14): F462–F469, 1983.
 205. Schwartz, M. M., M. J. Karnovsky, and M. A. Venkatachalam. Regional membrane specialization in the thin limbs of Henle's loops as seen by freeze‐fracture electron microscopy. Kidney Int. 16: 577–589, 1979.
 206. Schwartz, M. M., and M. A. Venkatachalam. Structural differences in thin limbs of Henle: physiological implications. Kidney Int. 6: 193–208, 1974.
 207. Seely, J. F., and E. Chirito. Studies of the electrical potential difference in rat proximal tubule. Am. J. Physiol. 229: 72–80, 1975.
 208. Seifter, J. L., and P. S. Aronson. Cl− transport via anion exchange in Necturus renal microvillus membranes. Am. J. Physiol. 247 (Renal Fluid Electrolyte Physiol. 16): F888–F895, 1984.
 209. Seifter, J. L., R. Knickelbein, and P. S. Aronson. Absence of Cl‐OH exchange and NaCl cotransport in rabbit renal microvillus membrane vesicles. Am. J. Physiol. 247 (Renal Fluid Electrolyte Physiol. 16): F753–F759, 1984.
 210. Shindo, T., and K. R. Spring. Chloride movement across the basolateral membrane of proximal tubule cells. J. Membr. Biol. 58: 35–42, 1981.
 211. Shiuan, D., and S. W. Weinstein. Evidence for electroneutral chloride transport in rabbit renal cortical brush border membrane vesicles. Am. J. Physiol. 247 (Renal Fluid Electrolyte Physiol. 16): F837–F847, 1984.
 212. Spring, K. R. Current‐induced voltage transients in Necturus proximal tubule. J. Membr. Biol. 13: 299–322, 1973.
 213. Spring, K. R., and G. Giebisch. Tracer Na fluxes in Necturus proximal tubule. Am. J. Physiol. 232 (Renal Fluid Electrolyte Physiol. 1): F461–F470, 1977.
 214. Spring, K. R., and G. Kimura. Chloride reabsorption by renal proximal tubules of Necturus. J. Membr. Biol. 38: 233–254, 1978.
 215. Spring, K. R., and G. Kimura. Intracellular ion activities in Necturus proximal tubule. Federation Proc. 38: 2729–2732, 1979.
 216. Spring, K. R., and C. V. Paganelli. Sodium flux in Necturus proximal tubule under voltage clamp. J. Gen. Physiol. 60: 181–201, 1972.
 217. Stokes, J. B. Effect of prostaglandin E2 on chloride transport across the rabbit thick ascending limb of Henle. Selective inhibition of the medullary portion. J. Clin. Invest. 64: 495–502, 1979.
 218. Stokes, J. B. Consequences of potassium recycling in the renal medulla. Effects on ion transport by the medullary thick ascending limb of Henle's loop. J. Clin. Invest. 70: 219–229, 1982.
 219. Stokes, J. B. Sodium chloride absorption by the urinary bladder of the winter flounder. A thiazide‐sensitive, electrically neutral transport system. J. Clin. Invest. 74: 7–16, 1984.
 220. Stokes, J. B. Ion transport by the cortical and outer medullary collecting tubule. Kidney Int. 22: 473–484, 1982.
 221. Stokes, J. B., M. J. Ingram, A. D. Williams, and D. Ingram. Heterogeneity of the rabbit collecting tubule: localization of mineralocorticoid hormone action to the cortical portion. Kidney Int. 20: 340–347, 1981.
 222. Stokes, J. B., C. C. Tisher, and J. P. Kokko. Structural‐functional heterogeneity along the rabbit collecting tubule. Kidney Int. 14: 585–593, 1978.
 223. Stone, D. K., D. W. Seldin, J. P. Kokko, and H. R. Jacobson. Anion dependence of rabbit medullary collecting duct acidification. J. Clin. Invest. 71: 1505–1508, 1983.
 224. Stone, D. K., D. W. Seldin, J. P. Kokko, and H. R. Jacobson. Mineralocorticoid modulation of rabbit medullary collecting duct acidification. J. Clin. Invest. 72: 77–83, 1983.
 225. Stoner, L. C. Isolated, perfused amphibian renal tubules: the diluting segment. Am. J. Physiol. 233 (Renal Fluid Electrolyte Physiol. 2): F438–F444, 1977.
 226. Stoner, L. C., M. B. Burg, and J. Orloff. Ion transport in cortical collecting tubule; effect of amiloride. Am. J. Physiol. 227: 453–459, 1974.
 227. Stoner, L. C., and F. Roch‐Ramel. The effects of perfusion pressure on the water permeability of the descending limb of Henle's loop of rabbits. Pflugers Arch. 382: 7–15, 1979.
 228. Suki, W. N., D. Rouse, R. C. K. Ng, and J. P. Kokko. Calcium transport in the thick ascending limb of Henle. Heterogeneity of function in the medullary and cortical segments. J. Clin. Invest. 66: 1004–1009, 1980.
 229. Sullivan, W. J. Electrical potential differences across distal renal tubules of Amphiuma. Am. J. Physiol. 214: 1096–1103, 1968.
 230. Tago, K., V. L. Schuster, and J. B. Stokes. Regulation of Cl self exchange by cAMP in cortical collecting tubule. Am. J. Physiol. 251 (Renal Fluid Electrolyte Physiol. 20): F40–F48, 1926.
 231. Tago, K., V. L. Schuster, and J. B. Stokes. Stimulation of chloride transport by HCO3‐CO2 in rabbit cortical collecting tubule. Am. J. Physiol. 251 (Renal Fluid Electrolyte Physiol. 20): F49–F56, 1986.
 232. Tago, K., D. H. Warden, V. L. Schuster, and J. B. Stokes. Effects of inhibitors of Cl conductance and Cl self‐exchange in rabbit cortical collecting tubule. Am. J. Physiol. 251 (Renal Fluid Electrolyte Physiol. 20): F1009–F1017, 1986.
 233. Takeda, K., S. Torikai, Y. Asano, and M. Imai. Modulation by verapamil of hormonal action on the Henle's loop of mice. Kidney Int. 29: 863–869, 1986.
 234. Torikai, S., and M. Imai. Effects of solute concentration on vasopressin stimulated cyclic AMP generation in the rat medullary thick ascending limbs of Henle's loop. Pflugers Arch. 400: 306–308, 1984.
 235. Vari, R. C., and C. E. Ott. In vivo proximal tubular fluid‐to‐plasma chloride concentration gradient in the rabbit. Am. J. Physiol. 242 (Renal Fluid Electrolyte Physiol. 11): F575–F579, 1982.
 236. Velazquez, H., D. H. Ellison, and F. S. Wright. Chloride‐dependent potassium secretion in early and late renal distal tubules. Am. J. Physiol. 253 (Renal Fluid Electrolyte Physiol. 22): F555–F562, 1987.
 237. Velazquez, H., F. S. Wright, and D. W. Good. Luminal influences on potassium secretion: chloride replacement with sulfate. Am. J. Physiol. 242 (Renal Fluid Electrolyte Physiol. 11): F46–F55, 1982.
 238. Walker, A. M., P. A. Bott, J. Oliver, and M. C. MacDowell. The collection and analysis of fluid from single nephrons of the mammalian kidney. Am. J. Physiol. 134: 580–595, 1941.
 239. Walker, A. M., C. L. Hudson, T. Findley, Jr., and A. Richards. The total molecular concentration and the chloride concentration of fluid from different segments of the renal tubule of amphibia: the site of chloride reabsorption. Am. J. Physiol. 118: 121–129, 1937.
 240. Wangemann, P., M. Wittner, A. DiStefano, H. C. Englert, H. J. Lang, E. Schlatter, and R. Greger. Cl−‐channel blockers in the thick ascending limb of the loop of Henle. Pflugers Arch. 407: S128–S141, 1986.
 241. Warden, D. H., V. L. Schuster, and J. B. Stokes. The paracellular pathway of rabbit cortical collecting tubule. A high‐resistance, non‐selective barrier (abstract). Federation Proc. 45: 517, 1986.
 242. Warnock, D. G., and J. Eveloff. NaCl entry mechanisms in the luminal membrane of the renal tubule. Am. J. Physiol. 242 (Renal Fluid Electrolyte Physiol. 11): F561–F574, 1982.
 243. Warnock, D. G., and V. J. Vee. Chloride uptake by brush border membrane vesicles isolated from rabbit renal cortex. J. Clin. Invest. 67: 103–115, 1981.
 244. Weinstein, S. W. Micropuncture studies of the effects of acetazolamide on nephron function in the rat. Am. J. Physiol. 214: 222–227, 1968.
 245. Whittembury, G. Site of potential difference in single renal proximal tubule of Necturus. Am. J. Physiol. 204: 401–404, 1963.
 246. Whittembury, G., F. Diezi, J. Diezi, K. Spring, and G. Giebisch. Some aspects of proximal tubular sodium chloride reabsorption in Necturus kidney. Kidney Int. 7: 293–303, 1975.
 247. Whittembury, G., N. Sugino, and A. K. Solomon. Ionic permeability and electrical potential differences in Necturus kidney cells. J. Gen. Physiol. 44: 689–712, 1961.
 248. Whittembury, G., and E. E. Windhager. Electrical potential difference measurements in perfused single proximal tubules in Necturus kidney. J. Gen. Physiol. 44: 679–687, 1961.
 249. Wiederholt, M., W. J. Sullivan, and G. Giebisch. Potassium and sodium transport across single distal tubules of Amphiuma. J. Gen. Physiol. 57: 495–525, 1971.
 250. Windhager, E. E., and G. Giebisch. Micropuncture study of renal tubular transfer of sodium chloride in the rat. Am. J. Physiol. 200: 581–590, 1961.
 251. Windhager, E., G. Whittembury, D. E. Oken, H. J. Schatzmann, and A. K. Solomon. Single proximal tubules of the Necturus kidney. III. Dependence of H2O movement on NaCl concentration. Am. J. Physiol. 197: 313–318, 1959.
 252. Wingo, C. S. Effect of acidosis on chloride transport in the cortical thick ascending limb of Henle perfused in vitro. J. Clin. Invest. 78: 1324–1330, 1986.
 253. Wright, F. S. Increasing magnitude of electrical potential along the renal distal tubule. Am. J. Physiol. 220: 624–638, 1971.
 254. Yoshitomi, K., C. Koseki, J. Taniguchi, and M. Imai. Functional heterogeneity in the hamster medullary thick ascending limb of Henle's loop. Pflugers Arch. 408: 600–608, 1987.

Contact Editor

Submit a note to the editor about this article by filling in the form below.

* Required Field

How to Cite

Juha P. Kokko, Michel Baum. Chloride Transport. Compr Physiol 2011, Supplement 25: Handbook of Physiology, Renal Physiology: 739-765. First published in print 1992. doi: 10.1002/cphy.cp080117