References |
1. |
Aaronson DS,
Horvath CM.
A road map for those who don't know JAK‐STAT.
Science
296:
1653‐1655,
2002.
|
2. |
Ahmed RG.
The physiological and biochemical effects of diabetes on the balance between oxidative stress and antioxidant defense system.
Med J Islamic World Acad Sci
15:
31‐42,
2005.
|
3. |
Aird WC.
Endothelial cell heterogeneity.
Crit Care Med
31:
S221‐S230,
2003.
|
4. |
Aldred MA,
Comhair SA,
Garcia MV,
Xu W,
Asosingh K,
Noon GP,
Thistlethwaite PA,
Tuder RM,
Erzurum SC,
Geraci MW,
Coldren CD.
Acquired genetic abnormalities in the lungs of patients with pulmonary arterial hypertension.
Am J Respir Crit Care Med
179:
A6010,
2009.
|
5. |
Alp NJ,
Channon KM.
Regulation of endothelial nitric oxide synthase by tetrahydrobiopterin in vascular disease.
Arterioscler Thromb Vasc Biol
24:
413‐420,
2004.
|
6. |
Amaral S,
Oliveira PJ,
Ramalho‐Santos J.
Diabetes and the impairment of reproductive function: Possible role of mitochondria and reactive oxygen species.
Curr Diabetes Rev
4:
46‐54,
2008.
|
7. |
Ameshima S,
Golpon H,
Cool CD,
Chan D,
Vandivier RW,
Gardai SJ,
Wick M,
Nemenoff RA,
Geraci MW,
Voelkel NF.
Peroxisome proliferator‐activated receptor gamma (PPARgamma) expression is decreased in pulmonary hypertension and affects endothelial cell growth.
Circ Res
92:
1162‐1169,
2003.
|
8. |
Andrae U,
Singh J,
Ziegler‐Skylakakis K.
Pyruvate and related alpha‐ketoacids protect mammalian cells in culture against hydrogen peroxide‐induced cytotoxicity.
Toxicol Lett
28:
93‐98,
1985.
|
9. |
Antunes F,
Boveris A,
Cadenas E.
On the mechanism and biology of cytochrome oxidase inhibition by nitric oxide.
Proc Natl Acad Sci U S A
101:
16774‐16779,
2004.
|
10. |
Archer S,
Rich S.
Primary pulmonary hypertension: A vascular biology and translational research work in progress.
Circulation
102:
2781‐2791,
2000.
|
11. |
Archer SL,
Gomberg‐Maitland M,
Maitland ML,
Rich S,
Garcia JG,
Weir EK.
Mitochondrial metabolism, redox signaling, and fusion: a mitochondria‐ROS‐HIF‐1alpha‐Kv1.5 O2‐sensing pathway at the intersection of pulmonary hypertension and cancer.
Am J Physiol Heart Circ Physiol
294:
H570‐H578,
2008.
|
12. |
Asosingh K,
Aldred MA,
Vasanji A,
Drazba J,
Sharp J,
Farver C,
Comhair SA,
Xu W,
Licina L,
Huang L,
Anand‐Apte B,
Yoder MC,
Tuder RM,
Erzurum SC.
Circulating angiogenic precursors in idiopathic pulmonary arterial hypertension.
Am J Pathol
172:
615‐627,
2008.
|
13. |
Atkinson C,
Stewart S,
Upton PD,
Machado R,
Thomson JR,
Trembath RC,
Morrell NW.
Primary pulmonary hypertension is associated with reduced pulmonary vascular expression of type II bone morphogenetic protein receptor.
Circulation
105:
1672‐1678,
2002.
|
14. |
Augustus AS,
Buchanan J,
Gutman E,
Rengo G,
Pestell RG,
Fortina P,
Koch WJ,
Bensadoun A,
Abel ED,
Lisanti MP.
Hearts lacking caveolin‐1 develop hypertrophy with normal cardiac substrate metabolism.
Cell Cycle
7:
2509‐2518,
2008.
|
15. |
Azeka E,
Costa Auler JO Jr,
Kajita L,
Alliman AC,
Franchini Ramires JA,
Ebaid M.
Effects of low doses of inhaled nitric oxide combined with oxygen for the evaluation of pulmonary vascular reactivity in patients with pulmonary hypertension.
Pediatr Cardiol
23:
20‐26,
2002.
|
16. |
Bartoli M,
Platt D,
Lemtalsi T,
Gu X,
Brooks SE,
Marrero MB,
Caldwell RB.
VEGF differentially activates STAT3 in microvascular endothelial cells.
Faseb J
17:
1562‐1564,
2003.
|
17. |
Belik J,
Jankov RP,
Pan J,
Tanswell AK.
Peroxynitrite inhibits relaxation and induces pulmonary artery muscle contraction in the newborn rat.
Free Radic Biol Med
37:
1384‐1392,
2004.
|
18. |
Boccaccio C,
Ando M,
Tamagnone L,
Bardelli A,
Michieli P,
Battistini C,
Comoglio PM.
Induction of epithelial tubules by growth factor HGF depends on the STAT pathway.
Nature
391:
285‐288,
1998.
|
19. |
Bonnet S,
Michelakis ED,
Porter CJ,
Andrade‐Navarro MA,
Thebaud B,
Bonnet S,
Haromy A,
Harry G,
Moudgil R,
McMurtry MS,
Weir EK,
Archer SL.
An abnormal mitochondrial‐hypoxia inducible factor‐1alpha‐Kv channel pathway disrupts oxygen sensing and triggers pulmonary arterial hypertension in fawn hooded rats: Similarities to human pulmonary arterial hypertension.
Circulation
113:
2630‐2641,
2006.
|
20. |
Bottje W,
Enkvetchakul B,
Moore R,
McNew R.
Effect of alpha‐tocopherol on antioxidants, lipid peroxidation, and the incidence of pulmonary hypertension syndrome (ascites) in broilers.
Poult Sci
74:
1356‐1369,
1995.
|
21. |
Bowers R,
Cool C,
Murphy RC,
Tuder RM,
Hopken MW,
Flores SC,
Voelkel NF.
Oxidative stress in severe pulmonary hypertension.
Am J Respir Crit Care Med
169:
764‐769,
2004.
|
22. |
Brown GC,
Borutaite V.
Inhibition of mitochondrial respiratory complex I by nitric oxide, peroxynitrite and S‐nitrosothiols.
Biochim Biophys Acta
1658:
44‐49,
2004.
|
23. |
Brusselmans K,
Compernolle V,
Tjwa M,
Wiesener MS,
Maxwell PH,
Collen D,
Carmeliet P.
Heterozygous deficiency of hypoxia‐inducible factor‐2alpha protects mice against pulmonary hypertension and right ventricular dysfunction during prolonged hypoxia.
J Clin Invest
111:
1519‐1527,
2003.
|
24. |
Bulfone‐Paus S,
Ungureanu D,
Pohl T,
Lindner G,
Paus R,
Ruckert R,
Krause H,
Kunzendorf U.
Interleukin‐15 protects from lethal apoptosis in vivo.
Nat Med
3:
1124‐1128,
1997.
|
25. |
Cawthon D,
Iqbal M,
Brand J,
McNew R,
Bottje WG.
Investigation of proton conductance in liver mitochondria of broilers with pulmonary hypertension syndrome.
Poult Sci
83:
259‐265,
2004.
|
26. |
Champion HC,
Bivalacqua TJ,
Greenberg SS,
Giles TD,
Hyman AL,
Kadowitz PJ.
Adenoviral gene transfer of endothelial nitric‐oxide synthase (eNOS) partially restores normal pulmonary arterial pressure in eNOS‐deficient mice.
Proc Natl Acad Sci U S A
99:
13248‐13253,
2002.
|
27. |
Chandel NS,
Maltepe E,
Goldwasser E,
Mathieu CE,
Simon MC,
Schumacker PT.
Mitochondrial reactive oxygen species trigger hypoxia‐induced transcription.
Proc Natl Acad Sci U S A
95:
11715‐11720,
1998.
|
28. |
Chandel NS,
McClintock DS,
Feliciano CE,
Wood TM,
Melendez JA,
Rodriguez AM,
Schumacker PT.
Reactive oxygen species generated at mitochondrial complex III stabilize hypoxia‐inducible factor‐1alpha during hypoxia: A mechanism of O2 sensing.
J Biol Chem
275:
25130‐25138,
2000.
|
29. |
Clementi E,
Nisoli E.
Nitric oxide and mitochondrial biogenesis: A key to long‐term regulation of cellular metabolism.
Comp Biochem Physiol A Mol Integr Physiol
142:
102‐110,
2005.
|
30. |
Comhair SA,
Erzurum SC.
Antioxidant responses to oxidant‐mediated lung diseases.
Am J Physiol Lung Cell Mol Physiol
283:
L246‐L255,
2002.
|
31. |
Cooke JP,
Dzau VJ.
Derangements of the nitric oxide synthase pathway, l‐arginine, and cardiovascular diseases.
Circulation
96:
379‐382,
1997.
|
32. |
Cool CD,
Kennedy D,
Voelkel NF,
Tuder RM.
Pathogenesis and evolution of plexiform lesions in pulmonary hypertension associated with scleroderma and human immunodeficiency virus infection.
Hum Pathol
28:
434‐442,
1997.
|
33. |
Cool CD,
Stewart JS,
Werahera P,
Miller GJ,
Williams RL,
Voelkel NF,
Tuder RM.
Three‐dimensional reconstruction of pulmonary arteries in plexiform pulmonary hypertension using cell‐specific markers. Evidence for a dynamic and heterogeneous process of pulmonary endothelial cell growth.
Am J Pathol
155:
411‐419,
1999.
|
34. |
Cosentino F,
Barker JE,
Brand MP,
Heales SJ,
Werner ER,
Tippins JR,
West N,
Channon KM,
Volpe M,
Luscher TF.
Reactive oxygen species mediate endothelium‐dependent relaxations in tetrahydrobiopterin‐deficient mice.
Arterioscler Thromb Vasc Biol
21:
496‐502,
2001.
|
35. |
Cracowski JL,
Cracowski C,
Bessard G,
Pepin JL,
Bessard J,
Schwebel C,
Stanke‐Labesque F,
Pison C.
Increased lipid peroxidation in patients with pulmonary hypertension.
Am J Respir Crit Care Med
164:
1038‐1042,
2001.
|
36. |
Culic O,
Gruwel ML,
Schrader J.
Energy turnover of vascular endothelial cells.
Am J Physiol
273:
C205‐C213,
1997.
|
37. |
Darnell JE Jr,
Kerr IM,
Stark GR.
Jak‐STAT pathways and transcriptional activation in response to IFNs and other extracellular signaling proteins.
Science
264:
1415‐1421,
1994.
|
38. |
Deng Z,
Morse JH,
Slager SL,
Cuervo N,
Moore KJ,
Venetos G,
Kalachikov S,
Cayanis E,
Fischer SG,
Barst RJ,
Hodge SE,
Knowles JA.
Familial primary pulmonary hypertension (gene PPH1) is caused by mutations in the bone morphogenetic protein receptor‐II gene.
Am J Hum Genet
67:
737‐744,
2000.
|
39. |
Dweik RA,
Laskowski D,
Abu‐Soud HM,
Kaneko F,
Hutte R,
Stuehr DJ,
Erzurum SC.
Nitric oxide synthesis in the lung. Regulation by oxygen through a kinetic mechanism.
J Clin Invest
101:
660‐666,
1998.
|
40. |
Fagan KA,
Fouty BW,
Tyler RC,
Morris KG Jr,
Hepler LK,
Sato K,
LeCras TD,
Abman SH,
Weinberger HD,
Huang PL,
McMurtry IF,
Rodman DM.
The pulmonary circulation of homozygous or heterozygous eNOS‐null mice is hyperresponsive to mild hypoxia.
J Clin Invest
103:
291‐299,
1999.
|
41. |
Farahmand F,
Hill MF,
Singal PK.
Antioxidant and oxidative stress changes in experimental cor pulmonale.
Mol Cell Biochem
260:
21‐29,
2004.
|
42. |
Farkas L,
Farkas D,
Ask K,
Moller A,
Gauldie J,
Margetts P,
Inman M,
Kolb M.
VEGF ameliorates pulmonary hypertension through inhibition of endothelial apoptosis in experimental lung fibrosis in rats.
J Clin Invest
119:
1298‐1311,
2009.
|
43. |
Funamoto M,
Fujio Y,
Kunisada K,
Negoro S,
Tone E,
Osugi T,
Hirota H,
Izumi M,
Yoshizaki K,
Walsh K,
Kishimoto T,
Yamauchi‐Takihara K.
Signal transducer and activator of transcription 3 is required for glycoprotein 130‐mediated induction of vascular endothelial growth factor in cardiac myocytes.
J Biol Chem
275:
10561‐10566,
2000.
|
44. |
Gao S,
Chen J,
Brodsky SV,
Huang H,
Adler S,
Lee JH,
Dhadwal N,
Cohen‐Gould L,
Gross SS,
Goligorsky MS.
Docking of endothelial nitric oxide synthase (eNOS) to the mitochondrial outer membrane: A pentabasic amino acid sequence in the autoinhibitory domain of eNOS targets a proteinase K‐cleavable peptide on the cytoplasmic face of mitochondria.
J Biol Chem
279:
15968‐15974,
2004.
|
45. |
Garber K.
Energy deregulation: Licensing tumors to grow.
Science
312:
1158‐1159,
2006.
|
46. |
Gaston B,
Drazen JM,
Loscalzo J,
Stamler JS.
The biology of nitrogen oxides in the airways.
Am J Respir Crit Care Med
149:
538‐551,
1994.
|
47. |
Gatenby RA,
Gillies RJ.
Why do cancers have high aerobic glycolysis?
Nat Rev Cancer
4:
891‐899,
2004.
|
48. |
Giaid A,
Saleh D.
Reduced expression of endothelial nitric oxide synthase in the lungs of patients with pulmonary hypertension.
N Engl J Med
333:
214‐221,
1995.
|
49. |
Girard D,
Paquet ME,
Paquin R,
Beaulieu AD.
Differential effects of interleukin‐15 (IL‐15) and IL‐2 on human neutrophils: Modulation of phagocytosis, cytoskeleton rearrangement, gene expression, and apoptosis by IL‐15.
Blood
88:
3176‐3184,
1996.
|
50. |
Girgis RE,
Champion HC,
Diette GB,
Johns RA,
Permutt S,
Sylvester JT.
Decreased exhaled nitric oxide in pulmonary arterial hypertension: Response to bosentan therapy.
Am J Respir Crit Care Med
172:
352‐357,
2005.
|
51. |
Guzy RD,
Sharma B,
Bell E,
Chandel NS,
Schumacker PT.
Loss of the SdhB, but not the SdhA, subunit of complex II triggers reactive oxygen species‐dependent hypoxia‐inducible factor activation and tumorigenesis.
Mol Cell Biol
28:
718‐731,
2008.
|
52. |
Hagen T,
Taylor CT,
Lam F,
Moncada S.
Redistribution of intracellular oxygen in hypoxia by nitric oxide: Effect on HIF1alpha.
Science
302:
1975‐1978,
2003.
|
53. |
Heath D,
Edwards JE.
The pathology of hypertensive pulmonary vascular disease; a description of six grades of structural changes in the pulmonary arteries with special reference to congenital cardiac septal defects.
Circulation
18:
533‐547,
1958.
|
54. |
Herget J,
Wilhelm J,
Novotna J,
Eckhardt A,
Vytasek R,
Mrazkova L,
Ostadal M.
A possible role of the oxidant tissue injury in the development of hypoxic pulmonary hypertension.
Physiol Res
49:
493‐501,
2000.
|
55. |
Hoshikawa Y,
Ono S,
Suzuki S,
Tanita T,
Chida M,
Song C,
Noda M,
Tabata T,
Voelkel NF,
Fujimura S.
Generation of oxidative stress contributes to the development of pulmonary hypertension induced by hypoxia.
J Appl Physiol
90:
1299‐1306,
2001.
|
56. |
Ignarro LJ.
Nitric oxide‐mediated vasorelaxation.
Thromb Haemost
70:
148‐151,
1993.
|
57. |
Iqbal M,
Cawthon D,
Wideman RF Jr,
Bottje WG.
Lung mitochondrial dysfunction in pulmonary hypertension syndrome. I. Site‐specific defects in the electron transport chain.
Poult Sci
80:
485‐495,
2001.
|
58. |
Iqbal M,
Cawthon D,
Wideman RF Jr,
Bottje WG.
Lung mitochondrial dysfunction in pulmonary hypertension syndrome. II. Oxidative stress and inability to improve function with repeated additions of adenosine diphosphate.
Poult Sci
80:
656‐665,
2001.
|
59. |
Jamison BM,
Michel RP.
Different distribution of plexiform lesions in primary and secondary pulmonary hypertension.
Hum Pathol
26:
987‐993,
1995.
|
60. |
Jasmin JF,
Mercier I,
Dupuis J,
Tanowitz HB,
Lisanti MP.
Short‐term administration of a cell‐permeable caveolin‐1 peptide prevents the development of monocrotaline‐induced pulmonary hypertension and right ventricular hypertrophy.
Circulation
114:
912‐920,
2006.
|
61. |
Jeffery TK,
Morrell NW.
Molecular and cellular basis of pulmonary vascular remodeling in pulmonary hypertension.
Prog Cardiovasc Dis
45:
173‐202,
2002.
|
62. |
Jung JE,
Lee HG,
Cho IH,
Chung DH,
Yoon SH,
Yang YM,
Lee JW,
Choi S,
Park JW,
Ye SK,
Chung MH.
STAT3 is a potential modulator of HIF‐1‐mediated VEGF expression in human renal carcinoma cells.
FASEB J
19:
1296‐1298,
2005.
|
63. |
Kaewpila S,
Venkataraman S,
Buettner GR,
Oberley LW.
Manganese superoxide dismutase modulates hypoxia‐inducible factor‐1 alpha induction via superoxide.
Cancer Res
68:
2781‐2788,
2008.
|
64. |
Kaneko FT,
Arroliga AC,
Dweik RA,
Comhair SA,
Laskowski D,
Oppedisano R,
Thomassen MJ,
Erzurum SC.
Biochemical reaction products of nitric oxide as quantitative markers of primary pulmonary hypertension.
Am J Respir Crit Care Med
158:
917‐923,
1998.
|
65. |
Katusic ZS.
Vascular endothelial dysfunction: Does tetrahydrobiopterin play a role?
Am J Physiol Heart Circ Physiol
281:
H981‐H986,
2001.
|
66. |
Kawamura C,
Kizaki M,
Yamato K,
Uchida H,
Fukuchi Y,
Hattori Y,
Koseki T,
Nishihara T,
Ikeda Y.
Bone morphogenetic protein‐2 induces apoptosis in human myeloma cells with modulation of STAT3.
Blood
96:
2005‐2011,
2000.
|
67. |
Khoo JP,
Zhao L,
Alp NJ,
Bendall JK,
Nicoli T,
Rockett K,
Wilkins MR,
Channon KM.
Pivotal role for endothelial tetrahydrobiopterin in pulmonary hypertension.
Circulation
111:
2126‐2133,
2005.
|
68. |
King J,
Hamil T,
Creighton J,
Wu S,
Bhat P,
McDonald F,
Stevens T.
Structural and functional characteristics of lung macro‐ and microvascular endothelial cell phenotypes.
Microvasc Res
67:
139‐151,
2004.
|
69. |
Kirito K,
Nakajima K,
Watanabe T,
Uchida M,
Tanaka M,
Ozawa K,
Komatsu N.
Identification of the human erythropoietin receptor region required for Stat1 and Stat3 activation.
Blood
99:
102‐110,
2002.
|
70. |
Lai YL,
Wu HD,
Chen CF.
Antioxidants attenuate chronic hypoxic pulmonary hypertension.
J Cardiovasc Pharmacol
32:
714‐720,
1998.
|
71. |
Lakshminrusimha S,
Russell JA,
Wedgwood S,
Gugino SF,
Kazzaz JA,
Davis JM,
Steinhorn RH.
Superoxide dismutase improves oxygenation and reduces oxidation in neonatal pulmonary hypertension.
Am J Respir Crit Care Med
174:
1370‐1377,
2006.
|
72. |
Lane KB,
Machado RD,
Pauciulo MW,
Thomson JR,
Phillips JA III,
Loyd JE,
Nichols WC,
Trembath RC.
Heterozygous germline mutations in BMPR2, encoding a TGF‐beta receptor, cause familial primary pulmonary hypertension. The International PPH Consortium.
Nat Genet
26:
81‐84,
2000.
|
73. |
Langleben D,
Fox RB,
Jones RC,
Reid LM.
Effects of dimethylthiourea on chronic hypoxia‐induced pulmonary arterial remodelling and ventricular hypertrophy in rats.
Clin Invest Med
12:
235‐240,
1989.
|
74. |
Lee SD,
Shroyer KR,
Markham NE,
Cool CD,
Voelkel NF,
Tuder RM.
Monoclonal endothelial cell proliferation is present in primary but not secondary pulmonary hypertension.
J Clin Invest
101:
927‐934,
1998.
|
75. |
Liu Y,
Christou H,
Morita T,
Laughner E,
Semenza GL,
Kourembanas S.
Carbon monoxide and nitric oxide suppress the hypoxic induction of vascular endothelial growth factor gene via the 5′ enhancer.
J Biol Chem
273:
15257‐15262,
1998.
|
76. |
Loike JD,
Cao L,
Brett J,
Ogawa S,
Silverstein SC,
Stern D.
Hypoxia induces glucose transporter expression in endothelial cells.
Am J Physiol
263:
C326‐C333,
1992.
|
77. |
Machado RD,
Eickelberg O,
Elliott CG,
Geraci MW,
Hanaoka M,
Loyd JE,
Newman JH,
Phillips JA III,
Soubrier F,
Trembath RC,
Chung WK.
Genetics and genomics of pulmonary arterial hypertension.
J Am Coll Cardiol
54:
S32‐S42,
2009.
|
78. |
Machado RF,
Londhe Nerkar MV,
Dweik RA,
Hammel J,
Janocha A,
Pyle J,
Laskowski D,
Jennings C,
Arroliga AC,
Erzurum SC.
Nitric oxide and pulmonary arterial pressures in pulmonary hypertension.
Free Radic Biol Med
37:
1010‐1017,
2004.
|
79. |
Mason NA,
Springall DR,
Burke M,
Pollock J,
Mikhail G,
Yacoub MH,
Polak JM.
High expression of endothelial nitric oxide synthase in plexiform lesions of pulmonary hypertension.
J Pathol
185:
313‐318,
1998.
|
80. |
Masri FA,
Comhair SAA,
Dostanic‐Larson I,
Kaneko FT,
Dweik RA,
Arroliga AC,
Erzurum SC.
Deficiency of lung antioxidants in idiopathic pulmonary arterial hypertension.
Clin Transl Sci
1:
99‐106,
2008.
|
81. |
Masri FA,
Xu W,
Comhair SA,
Asosingh K,
Koo M,
Vasanji A,
Drazba J,
Anand‐Apte B,
Erzurum SC.
Hyperproliferative apoptosis‐resistant endothelial cells in idiopathic pulmonary arterial hypertension.
Am J Physiol Lung Cell Mol Physiol
293:
L548‐L554,
2007.
|
82. |
Mateo J,
Garcia‐Lecea M,
Cadenas S,
Hernandez C,
Moncada S.
Regulation of hypoxia‐inducible factor‐1alpha by nitric oxide through mitochondria‐dependent and ‐independent pathways.
Biochem J
376:
537‐544,
2003.
|
83. |
Mathew R,
Huang J,
Shah M,
Patel K,
Gewitz M,
Sehgal PB.
Disruption of endothelial‐cell caveolin‐1alpha/raft scaffolding during development of monocrotaline‐induced pulmonary hypertension.
Circulation
110:
1499‐1506,
2004.
|
84. |
Matoba S,
Kang J,
Patino W,
Wragg A,
Boehm M,
Gavrilova O,
Hurley P,
Bunz F,
Hwang P.
p53 regulates mitochondrial respiration.
Science
16:
1650‐1653,
2006.
|
85. |
McCaffrey TA.
TGF‐betas and TGF‐beta receptors in atherosclerosis.
Cytokine Growth Factor Rev
11:
103‐114,
2000.
|
86. |
Merlo‐Pich M,
Deleonardi G,
Biondi A,
Lenaz G.
Methods to detect mitochondrial function.
Exp Gerontol
39:
277‐281,
2004.
|
87. |
Mertens C,
Darnell JE Jr.
SnapShot: JAK‐STAT signaling.
Cell
131:
612,
2007.
|
88. |
Michelakis ED,
McMurtry MS,
Wu XC,
Dyck JR,
Moudgil R,
Hopkins TA,
Lopaschuk GD,
Puttagunta L,
Waite R,
Archer SL.
Dichloroacetate, a metabolic modulator, prevents and reverses chronic hypoxic pulmonary hypertension in rats: Role of increased expression and activity of voltage‐gated potassium channels.
Circulation
105:
244‐250,
2002.
|
89. |
Mingatto FE,
Maioli MA,
Bracht A,
Ishii‐Iwamoto EL.
Effects of monocrotaline on energy metabolism in the rat liver.
Toxicol Lett
182:
115‐120,
2008.
|
90. |
Momken I,
Fortin D,
Serrurier B,
Bigard X,
Ventura‐Clapier R,
Veksler V.
Endothelial nitric oxide synthase (NOS) deficiency affects energy metabolism pattern in murine oxidative skeletal muscle.
Biochem J
368:
341‐347,
2002.
|
91. |
Moncada S.
Nitric oxide: Discovery and impact on clinical medicine.
J R Soc Med
92:
164‐169,
1999.
|
92. |
Moncada S,
Erusalimsky JD.
Does nitric oxide modulate mitochondrial energy generation and apoptosis?
Nat Rev Mol Cell Biol
3:
214‐220,
2002.
|
93. |
Mukhopadhyay S,
Shah M,
Xu F,
Patel K,
Tuder RM,
Sehgal PB.
Cytoplasmic provenance of STAT3 and PY‐STAT3 in the endolysosomal compartments in pulmonary arterial endothelial and smooth muscle cells: Implications in pulmonary arterial hypertension.
Am J Physiol Lung Cell Mol Physiol
294:
L449‐L468,
2008.
|
94. |
Murphy MP.
Does interplay between nitric oxide and mitochondria affect hypoxia‐inducible transcription factor‐1 activity?
Biochem J
376:
e5‐e6,
2003.
|
95. |
Myers MG Jr.
Cell biology. Moonlighting in mitochondria.
Science
323:
723‐724,
2009.
|
96. |
Nandi M,
Miller A,
Stidwill R,
Jacques TS,
Lam AA,
Haworth S,
Heales S,
Vallance P.
Pulmonary hypertension in a GTP‐cyclohydrolase 1‐deficient mouse.
Circulation
111:
2086‐2090,
2005.
|
97. |
Nathan C,
Xie QW.
Nitric oxide synthases: Roles, tolls, and controls.
Cell
78:
915‐918,
1994.
|
98. |
Nisoli E,
Clementi E,
Paolucci C,
Cozzi V,
Tonello C,
Sciorati C,
Bracale R,
Valerio A,
Francolini M,
Moncada S,
Carruba MO.
Mitochondrial biogenesis in mammals: The role of endogenous nitric oxide.
Science
299:
896‐899,
2003.
|
99. |
Nisoli E,
Falcone S,
Tonello C,
Cozzi V,
Palomba L,
Fiorani M,
Pisconti A,
Brunelli S,
Cardile A,
Francolini M,
Cantoni O,
Carruba MO,
Moncada S,
Clementi E.
Mitochondrial biogenesis by NO yields functionally active mitochondria in mammals.
Proc Natl Acad Sci U S A
101:
16507‐16512,
2004.
|
100. |
O'Donnell‐Tormey J,
Nathan CF,
Lanks K,
DeBoer CJ,
de la Harpe J.
Secretion of pyruvate. An antioxidant defense of mammalian cells.
J Exp Med
165:
500‐514,
1987.
|
101. |
Ozkan M,
Dweik RA,
Laskowski D,
Arroliga AC, and
Erzurum SC.
High levels of nitric oxide in individuals with pulmonary hypertension receiving epoprostenol therapy.
Lung
179:
233‐243,
2001.
|
102. |
Pelletier M,
Ratthe C,
Girard D.
Mechanisms involved in interleukin‐15‐induced suppression of human neutrophil apoptosis: Role of the anti‐apoptotic Mcl‐1 protein and several kinases including Janus kinase‐2, p38 mitogen‐activated protein kinase and extracellular signal‐regulated kinases‐1/2.
FEBS Lett
532:
164‐170,
2002.
|
103. |
Pepper MS.
Transforming growth factor‐beta: Vasculogenesis, angiogenesis, and vessel wall integrity.
Cytokine Growth Factor Rev
8:
21‐43,
1997.
|
104. |
Poderoso JJ,
Carreras MC,
Lisdero C,
Riobo N,
Schopfer F,
Boveris A.
Nitric oxide inhibits electron transfer and increases superoxide radical production in rat heart mitochondria and submitochondrial particles.
Arch Biochem Biophys
328:
85‐92,
1996.
|
105. |
Prie S,
Stewart DJ,
Dupuis J.
EndothelinA receptor blockade improves nitric oxide‐mediated vasodilation in monocrotaline‐induced pulmonary hypertension.
Circulation
97:
2169‐2174,
1998.
|
106. |
Quintero M,
Colombo SL,
Godfrey A,
Moncada S.
Mitochondria as signaling organelles in the vascular endothelium.
Proc Natl Acad Sci U S A
103:
5379‐5384,
2006.
|
107. |
Rabinovitch M.
Molecular pathogenesis of pulmonary arterial hypertension.
J Clin Invest
118:
2372‐2379,
2008.
|
108. |
Ramachandran A,
Levonen AL,
Brookes PS,
Ceaser E,
Shiva S,
Barone MC,
Darley‐Usmar V.
Mitochondria, nitric oxide, and cardiovascular dysfunction.
Free Radic Biol Med
33:
1465‐1474,
2002.
|
109. |
Ramanathan A,
Wang C,
Schreiber SL.
Perturbational profiling of a cell‐line model of tumorigenesis by using metabolic measurements.
Proc Natl Acad Sci U S A
102:
5992‐5997,
2005.
|
110. |
Razani B,
Engelman JA,
Wang XB,
Schubert W,
Zhang XL,
Marks CB,
Macaluso F,
Russell RG,
Li M,
Pestell RG,
Di Vizio D,
Hou H Jr,
Kneitz B,
Lagaud G,
Christ GJ,
Edelmann W,
Lisanti MP.
Caveolin‐1 null mice are viable but show evidence of hyperproliferative and vascular abnormalities.
J Biol Chem
276:
38121‐38138,
2001.
|
111. |
Rosca MG,
Hoppel CL.
New aspects of impaired mitochondrial function in heart failure.
J Bioenerg Biomembr
41:
107‐112,
2009.
|
112. |
Sakao S,
Taraseviciene‐Stewart L,
Lee JD,
Wood K,
Cool CD,
Voelkel NF.
Initial apoptosis is followed by increased proliferation of apoptosis‐resistant endothelial cells.
FASEB J
19:
1178‐1180,
2005.
|
113. |
Schapira AH.
Mitochondrial involvement in Parkinson's disease, Huntington's disease, hereditary spastic paraplegia and Friedreich's ataxia.
Biochim Biophys Acta
1410:
159‐170,
1999.
|
114. |
Sehgal PB,
Mukhopadhyay S,
Xu F,
Patel K,
Shah M.
Dysfunction of Golgi tethers, SNAREs, and SNAPs in monocrotaline‐induced pulmonary hypertension.
Am J Physiol Lung Cell Mol Physiol
292:
L1526‐L1542,
2007.
|
115. |
Semenza GL.
Targeting HIF‐1 for cancer therapy.
Nat Rev Cancer
3:
721‐732,
2003.
|
116. |
Semenza GL.
Life with oxygen.
Science
318:
62‐64,
2007.
|
117. |
Senoo‐Matsuda N,
Yasuda K,
Tsuda M,
Ohkubo T,
Yoshimura S,
Nakazawa H,
Hartman PS,
Ishii N.
A defect in the cytochrome b large subunit in complex II causes both superoxide anion overproduction and abnormal energy metabolism in Caenorhabditis elegans.
J Biol Chem
276:
41553‐41558,
2001.
|
118. |
Sharma S,
Sud N,
Wiseman DA,
Carter AL,
Kumar S,
Hou Y,
Rau T,
Wilham J,
Harmon C,
Oishi P,
Fineman JR,
Black SM.
Altered carnitine homeostasis is associated with decreased mitochondrial function and altered nitric oxide signaling in lambs with pulmonary hypertension.
Am J Physiol Lung Cell Mol Physiol
294:
L46‐L56,
2008.
|
119. |
Shibata R,
Kai H,
Seki Y,
Kato S,
Wada Y,
Hanakawa Y,
Hashimoto K,
Yoshimura A,
Imaizumi T.
Inhibition of STAT3 prevents neointima formation by inhibiting proliferation and promoting apoptosis of neointimal smooth muscle cells.
Hum Gene Ther
14:
601‐610,
2003.
|
120. |
Sies H.
Strategies of antioxidant defense.
Eur J Biochem
215:
213‐219,
1993.
|
121. |
Simonneau G,
Galie N,
Rubin LJ,
Langleben D,
Seeger W,
Domenighetti G,
Gibbs S,
Lebrec D,
Speich R,
Beghetti M,
Rich S,
Fishman A.
Clinical classification of pulmonary hypertension.
J Am Coll Cardiol
43:
5S‐12S,
2004.
|
122. |
Sproule DM,
Dyme J,
Coku J,
de Vinck D,
Rosenzweig E,
Chung WK,
De Vivo DC.
Pulmonary artery hypertension in a child with MELAS due to a point mutation of the mitochondrial tRNA((Leu)) gene (m.3243A>G).
J Inherit Metab Dis
2008.
|
123. |
Stevens T.
Molecular and cellular determinants of lung endothelial cell heterogeneity.
Chest
128:
558S‐564S,
2005.
|
124. |
Stuehr DJ.
Mammalian nitric oxide synthases.
Biochim Biophys Acta
1411:
217‐230,
1999.
|
125. |
Stuehr DJ,
Griffith OW.
Mammalian nitric oxide synthases.
Adv Enzymol Relat Areas Mol Biol
65:
287‐346,
1992.
|
126. |
Tang Z,
Iqbal M,
Cawthon D,
Bottje WG.
Heart and breast muscle mitochondrial dysfunction in pulmonary hypertension syndrome in broilers (Gallus domesticus).
Comp Biochem Physiol A Mol Integr Physiol
132:
527‐540,
2002.
|
127. |
Taraseviciene‐Stewart L,
Kasahara Y,
Alger L,
Hirth P,
McMahon G,
Waltenberger J,
Voelkel NF,
Tuder RM.
Inhibition of the VEGF receptor 2 combined with chronic hypoxia causes cell death‐dependent pulmonary endothelial cell proliferation and severe pulmonary hypertension.
FASEB J
15:
427‐438,
2001.
|
128. |
Thannickal VJ,
Fanburg BL.
Reactive oxygen species in cell signaling.
Am J Physiol Lung Cell Mol Physiol
279:
L1005‐L1028,
2000.
|
129. |
Thomson JR,
Machado RD,
Pauciulo MW,
Morgan NV,
Humbert M,
Elliott GC,
Ward K,
Yacoub M,
Mikhail G,
Rogers P,
Newman J,
Wheeler L,
Higenbottam T,
Gibbs JS,
Egan J,
Crozier A,
Peacock A,
Allcock R,
Corris P,
Loyd JE,
Trembath RC,
Nichols WC.
Sporadic primary pulmonary hypertension is associated with germline mutations of the gene encoding BMPR‐II, a receptor member of the TGF‐beta family.
J Med Genet
37:
741‐745,
2000.
|
130. |
Trummer G,
Berchtold‐Herz M,
Martin J,
Beyersdorf F.
Successful treatment of pulmonary hypertension with inhaled nitric oxide after pulmonary embolectomy.
Ann Thorac Surg
73:
1299‐1301,
2002.
|
131. |
Tuder RM,
Chacon M,
Alger L,
Wang J,
Taraseviciene‐Stewart L,
Kasahara Y,
Cool CD,
Bishop AE,
Geraci M,
Semenza GL,
Yacoub M,
Polak JM,
Voelkel NF.
Expression of angiogenesis‐related molecules in plexiform lesions in severe pulmonary hypertension: Evidence for a process of disordered angiogenesis.
J Pathol
195:
367‐374,
2001.
|
132. |
Tuder RM,
Flook BE,
Voelkel NF.
Increased gene expression for VEGF and the VEGF receptors KDR/Flk and Flt in lungs exposed to acute or to chronic hypoxia. Modulation of gene expression by nitric oxide.
J Clin Invest
95:
1798‐1807,
1995.
|
133. |
Tuder RM,
Groves B,
Badesch DB,
Voelkel NF.
Exuberant endothelial cell growth and elements of inflammation are present in plexiform lesions of pulmonary hypertension.
Am J Pathol
144:
275‐285,
1994.
|
134. |
Tuder RM,
Lee SD,
Cool CC.
Histopathology of pulmonary hypertension.
Chest
114:
1S‐6S,
1998.
|
135. |
Tuder RM,
Marecki JC,
Richter A,
Fijalkowska I,
Flores S.
Pathology of pulmonary hypertension.
Clin Chest Med
28:
23‐42,
vii,
2007.
|
136. |
Tyler RC,
Muramatsu M,
Abman SH,
Stelzner TJ,
Rodman DM,
Bloch KD,
McMurtry IF.
Variable expression of endothelial NO synthase in three forms of rat pulmonary hypertension.
Am J Physiol
276:
L297‐L303,
1999.
|
137. |
Upton PD,
Morrell NW.
TGF‐beta and BMPR‐II pharmacology— implications for pulmonary vascular diseases.
Curr Opin Pharmacol
9:
274‐280,
2009.
|
138. |
Veyssier‐Belot C,
Cacoub P.
Role of endothelial and smooth muscle cells in the physiopathology and treatment management of pulmonary hypertension.
Cardiovasc Res
44:
274‐282,
1999.
|
139. |
Vinogradov AD,
Grivennikova VG.
Generation of superoxide‐radical by the NADH: Ubiquinone oxidoreductase of heart mitochondria.
Biochemistry (Mosc)
70:
120‐127,
2005.
|
140. |
Voelkel NF,
Cool C,
Lee SD,
Wright L,
Geraci MW,
Tuder RM.
Primary pulmonary hypertension between inflammation and cancer.
Chest
114:
225S‐230S,
1998.
|
141. |
Wallace DC.
Mitochondrial diseases in man and mouse.
Science
283:
1482‐1488,
1999.
|
142. |
Wang T,
Marquardt C,
Foker J.
Aerobic glycolysis during lymphocyte proliferation.
Nature
261:
702‐705,
1976.
|
143. |
Warburg O,
Posener K,
Negelein E.
Ueber den Stoffwechsel der Tumoren.
Biochem Zeitschrift
152:
319‐344,
1924.
|
144. |
Wassmann S,
Wassmann K,
Nickenig G.
Modulation of oxidant and antioxidant enzyme expression and function in vascular cells.
Hypertension
44:
381‐386,
2004.
|
145. |
Wedgwood S,
Black SM.
Role of reactive oxygen species in vascular remodeling associated with pulmonary hypertension.
Antioxid Redox Signal
5:
759‐769,
2003.
|
146. |
Wegrzyn J,
Potla R,
Chwae YJ,
Sepuri NB,
Zhang Q,
Koeck T,
Derecka M,
Szczepanek K,
Szelag M,
Gornicka A,
Moh A,
Moghaddas S,
Chen Q,
Bobbili S,
Cichy J,
Dulak J,
Baker DP,
Wolfman A,
Stuehr D,
Hassan MO,
Fu XY,
Avadhani N,
Drake JI,
Fawcett P,
Lesnefsky EJ,
Larner AC.
Function of mitochondrial Stat3 in cellular respiration.
Science
323:
793‐797,
2009.
|
147. |
Weinhouse S.
Glycolysis, respiration, and anomalous gene expression in experimental hepatomas: G.H.A. Clowes memorial lecture.
Cancer Res
32:
2007‐2016,
1972.
|
148. |
Xu Q,
Briggs J,
Park S,
Niu G,
Kortylewski M,
Zhang S,
Gritsko T,
Turkson J,
Kay H,
Semenza GL,
Cheng JQ,
Jove R,
Yu H.
Targeting Stat3 blocks both HIF‐1 and VEGF expression induced by multiple oncogenic growth signaling pathways.
Oncogene
24:
5552‐5560,
2005.
|
149. |
Xu W,
Kaneko FT,
Zheng S,
Comhair SA,
Janocha AJ,
Goggans T,
Thunnissen FB,
Farver C,
Hazen SL,
Jennings C,
Dweik RA,
Arroliga AC,
Erzurum SC.
Increased arginase II and decreased NO synthesis in endothelial cells of patients with pulmonary arterial hypertension.
FASEB J
18:
1746‐1748,
2004.
|
150. |
Xu W,
Koeck T,
Lara AR,
Neumann D,
DiFilippo FP,
Koo M,
Janocha AJ,
Masri FA,
Arroliga AC,
Jennings C,
Dweik RA,
Tuder RM,
Stuehr DJ,
Erzurum SC.
Alterations of cellular bioenergetics in pulmonary artery endothelial cells.
Proc Natl Acad Sci U S A
104:
1342‐1347,
2007.
|
151. |
Yahata Y,
Shirakata Y,
Tokumaru S,
Yamasaki K,
Sayama K,
Hanakawa Y,
Detmar M,
Hashimoto K.
Nuclear translocation of phosphorylated STAT3 is essential for vascular endothelial growth factor‐induced human dermal microvascular endothelial cell migration and tube formation.
J Biol Chem
278:
40026‐40031,
2003.
|
152. |
Yankovskaya V,
Horsefield R,
Tornroth S,
Luna‐Chavez C,
Miyoshi H,
Leger C,
Byrne B,
Cecchini G,
Iwata S.
Architecture of succinate dehydrogenase and reactive oxygen species generation.
Science
299:
700‐704,
2003.
|
153. |
Yeager ME,
Halley GR,
Golpon HA,
Voelkel NF,
Tuder RM.
Microsatellite instability of endothelial cell growth and apoptosis genes within plexiform lesions in primary pulmonary hypertension.
Circ Res
88:
E2‐E11,
2001.
|
154. |
Yeager ME,
Voelkel NF,
Tuder RM.
Mutational analysis of endothelial cell TGF‐β receptor type II in plexiform lesions of patients with primary pulmonary hypertension.
Circulation
100:
I‐587,
1999.
|
155. |
Ying QL,
Nichols J,
Chambers I,
Smith A.
BMP induction of Id proteins suppresses differentiation and sustains embryonic stem cell self‐renewal in collaboration with STAT3.
Cell
115:
281‐292,
2003.
|
156. |
Yu AY,
Shimoda LA,
Iyer NV,
Huso DL,
Sun X,
McWilliams R,
Beaty T,
Sham JS,
Wiener CM,
Sylvester JT,
Semenza GL.
Impaired physiological responses to chronic hypoxia in mice partially deficient for hypoxia‐inducible factor 1alpha.
J Clin Invest
103:
691‐696,
1999.
|
157. |
Zaiman A,
Fijalkowska I,
Hassoun PM,
Tuder RM.
One hundred years of research in the pathogenesis of pulmonary hypertension.
Am J Respir Cell Mol Biol
33:
425‐431,
2005.
|
158. |
Zhao YY,
Liu Y,
Stan RV,
Fan L,
Gu Y,
Dalton N,
Chu PH,
Peterson K,
Ross J Jr,
Chien KR.
Defects in caveolin‐1 cause dilated cardiomyopathy and pulmonary hypertension in knockout mice.
Proc Natl Acad Sci U S A
99:
11375‐11380,
2002.
|
159. |
Zhou P,
Levy NB,
Xie H,
Qian L,
Lee CY,
Gascoyne RD,
Craig RW.
MCL1 transgenic mice exhibit a high incidence of B‐cell lymphoma manifested as a spectrum of histologic subtypes.
Blood
97:
3902‐3909,
2001.
|