Comprehensive Physiology Wiley Online Library

Carbon Monoxide Transport and Actions in Blood and Tissues

Full Article on Wiley Online Library



Abstract

This chapter will discuss the transport of carbon monoxide (CO) from the environment to the tissues of the body and physiological effects on blood‐borne cells and perivascular tissues. It will review the physiology of CO exchange between alveolar gas and pulmonary capillary blood, dynamics of hemoglobin transport, the effects of CO on blood elements, and the effects of CO on extravascular tissues at the capillary bed. Effects of CO from exogenous and endogenous sources on the activities of different proteins will be reviewed. Because CO binds competitively to heme‐containing proteins its effects depend on CO concentration relative to alternative ligands. Therefore, some discussion is devoted to how nitric oxide and hydrogen sulfide influence CO effects. © 2011 American Physiological Society. Compr Physiol 1:421‐446, 2011.

Comprehensive Physiology offers downloadable PowerPoint presentations of figures for non-profit, educational use, provided the content is not modified and full credit is given to the author and publication.

Download a PowerPoint presentation of all images


Figure 1. Figure 1.

Schematic depicting interactions between carbon monoxide (CO)/heme oxygenase‐1, and nitric oxide/nitric oxide synthase (NO/NOS). CO generated by HO‐1 can mediate HO‐1 and NOS synthesis in pathways involving several transcription factors (TF's) 76,155,172,193,225,389. HO‐1 synthesis can also be induced by NO (shown with the label “mRNA”), although the mechanism for gene regulation has not been elucidated 50,51,234,244,245. The figure also indicates that CO can inhibit NOS activity, although local concentrations of enzyme substrates and co‐factors have a large impact on CO affinity 1,25,94,192,288,315,381.

Figure 2. Figure 2.

Oxyhemoglobin curve for normal human blood and for blood containing 50% carboxyhemoglobin (COHb). The top curve shows normal hemoglobin (Hb) dynamics with the red (A) site indicating normal arterial O2 saturation (∼100 mmHg) and a 5 volume % drop to a mixed venous value indicated by the blue (V) to be ∼40 mmHg. In the presence of 50% COHb, although the arterial blood may have a measured value of ∼100 mmHg, the actual O2 saturation is only 50% and a 5 volume % drop results in a mixed venous value indicated by the blue (V) to be ∼16 mmHg. This contrasts with a simple 50% anemia where the mixed venous value would be approximately 26 mmHg. The value of 16 mmHg is due to the “left shift” caused by the impact of COHb on Hb cooperativity.

Figure 3. Figure 3.

This is a figure used with permission from Senozan et al. 298. Lines show predicted changes in tissue carbon monoxide (CO) pressure (PCO) as a function of tissue Po2. The family of curves was generated for different alveolar CO partial pressures from 0.01 to 0.1 Torr assuming an alveolar Po2 value of 100 Torr.

Figure 4. Figure 4.

Schematic illustrating intravascular platelet‐neutrophil events leading to vascular wall oxidative stress. This is a modified figure similar to one in reference 227. Starting with carbon monoxide binding to platelet hemoproteins (at left in figure), platelet‐derived nitric oxide reacts with neutrophil‐derived O2., giving rise to reactive species that activate platelets and cause platelet‐neutrophil aggregates. On‐going interactions involving reactive products and adhesion molecules cause firm aggregation and stimulate intravascular neutrophil degranulation. Myeloperoxidase (MPO) is deposited along the vascular lining and some is transcytosed to the subendothelial matrix. Products from MPO‐mediated reactions cause endothelial cell activation, facilitating firm neutrophil adhesion and further degranulation. Neutrophil‐derived proteases react with endothelial cell constituents exacerbating the vascular insult.



Figure 1.

Schematic depicting interactions between carbon monoxide (CO)/heme oxygenase‐1, and nitric oxide/nitric oxide synthase (NO/NOS). CO generated by HO‐1 can mediate HO‐1 and NOS synthesis in pathways involving several transcription factors (TF's) 76,155,172,193,225,389. HO‐1 synthesis can also be induced by NO (shown with the label “mRNA”), although the mechanism for gene regulation has not been elucidated 50,51,234,244,245. The figure also indicates that CO can inhibit NOS activity, although local concentrations of enzyme substrates and co‐factors have a large impact on CO affinity 1,25,94,192,288,315,381.



Figure 2.

Oxyhemoglobin curve for normal human blood and for blood containing 50% carboxyhemoglobin (COHb). The top curve shows normal hemoglobin (Hb) dynamics with the red (A) site indicating normal arterial O2 saturation (∼100 mmHg) and a 5 volume % drop to a mixed venous value indicated by the blue (V) to be ∼40 mmHg. In the presence of 50% COHb, although the arterial blood may have a measured value of ∼100 mmHg, the actual O2 saturation is only 50% and a 5 volume % drop results in a mixed venous value indicated by the blue (V) to be ∼16 mmHg. This contrasts with a simple 50% anemia where the mixed venous value would be approximately 26 mmHg. The value of 16 mmHg is due to the “left shift” caused by the impact of COHb on Hb cooperativity.



Figure 3.

This is a figure used with permission from Senozan et al. 298. Lines show predicted changes in tissue carbon monoxide (CO) pressure (PCO) as a function of tissue Po2. The family of curves was generated for different alveolar CO partial pressures from 0.01 to 0.1 Torr assuming an alveolar Po2 value of 100 Torr.



Figure 4.

Schematic illustrating intravascular platelet‐neutrophil events leading to vascular wall oxidative stress. This is a modified figure similar to one in reference 227. Starting with carbon monoxide binding to platelet hemoproteins (at left in figure), platelet‐derived nitric oxide reacts with neutrophil‐derived O2., giving rise to reactive species that activate platelets and cause platelet‐neutrophil aggregates. On‐going interactions involving reactive products and adhesion molecules cause firm aggregation and stimulate intravascular neutrophil degranulation. Myeloperoxidase (MPO) is deposited along the vascular lining and some is transcytosed to the subendothelial matrix. Products from MPO‐mediated reactions cause endothelial cell activation, facilitating firm neutrophil adhesion and further degranulation. Neutrophil‐derived proteases react with endothelial cell constituents exacerbating the vascular insult.

References
 1. Abu‐Soud HM, Wu C, Ghosh DK, Stuehr DJ. Stopped‐flow analysis of CO and NO binding to inducible nitric oxide synthase. Biochemistry 37: 3777–3786, 1998.
 2. Adams KF, Koch G, Chatterjee B, Goldstein GM, O'Neil JJ, Bromberg PA, Sheps DS. Acute elevation of blood carboxyhemoglobin to 6% impairs exercise performance and aggravates symptoms in patients with ischemic heart disease. J Am Coll Cardiol 12: 900–909, 1988.
 3. Adams M, Jia Z. Structural and biochemical analysis reveal pirins to possess quercetinase activity. J Biol Chem 280: 28675–28682, 2005.
 4. Adir Y, Merdler A, Ben Haim S, Front A, Harduf R, Bitterman H. Effects of exposure to low concentrations of carbon monoxide on exercise performance and myocardial perfusion in young healthy men. Occup Environ Med 56: 535–538, 1999.
 5. Alkadhi KA, Al‐Hijailan RS, Malik K, Hogan YH. Retrograde carbon monoxide is required for induction of long‐term potentiation in rat superior cervical ganglion. J Neurosci 21: 3515–3520, 2001.
 6. Allen TA, Root WS. Partition of carbon monoxide and oxygen between air and whole blood of rats, dogs and men as affected by plasma pH. J Appl Physiol 10: 186–190, 1957.
 7. Allred EN, Bleecker ER, Chaitman BR, Dahms TE, Gottlieb SO, Hackney JD, Pagano M,Selvester RH, Walden SM, Warren J. Effects of carbon monoxide on myocardial ischemia. Environ Health Perspec 91: 89–132, 1991.
 8. Allred FN, Bleecker ER, Chaitman BR, Dahms TE, Gottlieb SO, Hackney JD, Pagano M, Selvester RH, Walden SM, Warren J. Short‐term effects of carbon monoxide exposure on the exercise performance of subjects with coronary artery disease. N Eng J Med 321: 1426–1432, 1989.
 9. Amersi F, Shen XD, Anselmo D, Melinek J, Iyer S, Southard DJ, Katori M, Volk HD, Busuttil RW, Buelow R, Kupiec‐Weglinski JW. Ex vivo exposure to carbon monoxide prevents hepatic ischemia/reperfusion injury through p38 MAP kinase pathway. Hepatology 35: 815–823, 2002.
 10. Anderson E, Andelman R, Strauch J, Fortuin N, Knelson J. Effects of low‐level carbon monoxide exposure on onset and duration of angina pectoris. Ann Intern Med 79: 46–50, 1973.
 11. Andersson KE. Neurotransmission and drug effects in urethral smooth muscle. Scand J Urol Nephrol Suppl 207: 26–34, 2001.
 12. Antonini E, Brunori M. Hemoglobin and Myoglobin in their Reactions with Ligands. Amsterdam, Netherlands: Elsevier/North Holland, 1971.
 13. Arranz B, Blennow K, Eriksson A, Mansson JE, Marcusson J. Serotonergic, noradrenergic, and dopaminergic measures in suicide brains. Biol Psychiatry 41: 1000–1009, 1997.
 14. Arruda MA, Rossi AG, de Freitas MS, Barja‐Fidalgo C, Graça‐Souza AV. Heme inhibits human neutrophil apoptosis: Involvement of phosphoinositide 3‐kinase, MAPK, and NF‐kappaB. J Immunol 173: 2023–2030, 2004.
 15. Artinian LR, Ding JM, Gillette MU. Carbon monoxide and nitric oxide: Interacting messengers in muscarinic signaling to the brain's circadian clock. Exp Neurol 171: 293–300, 2001.
 16. Ascenzi P, Ciaccio C, Coletta M. Peroxynitrite‐mediated oxidation of ferrous carbonylated myoglobin is limited by carbon monoxide dissociation. Biochem Biophys Res Commun 363: 931–936, 2007.
 17. Asmussen E, Chiodi H. The effect of hypoxemia on ventilation and circulation in man. Am J Physiol 132: 426–436, 1941.
 18. Baccarelli A, Zanobetti A, Martinelli I, Grillo P, Hou L, Giacomini S, Bonzini M, Lanzani G, Mannucci PM, Bertazzi PA, Schwartz J. Effects of exposure to air pollution on blood coagulation. J Thromb Haemost 5: 252–260, 2007.
 19. Baranano DE, Rao M, Ferris CD, Snyder SH. Biliverdin reductase: A major physiologic cytoprotectant. Proc Natl Acad Sci U S A 99: 16093–16098, 2002.
 20. Basova LV, Kurnikov IV, Wang L, Ritov VB, Belikova NA, Vlasova, II, Pacheco AA, Winnica DE, Peterson J, Bayir H, Waldeck DH, Kagan VE. Cardiolipin switch in mitochondria: Shutting off the reduction of cytochrome c and turning on the peroxidase activity. Biochemistry 46: 3423–3434, 2007.
 21. Basuroy S, Bjattacharya S, Tcheranova D, Qu Y, Regan RF, Leffler CW, Parfenova H. HO‐2 provides endogenous protection against oxidative stress and apoptosis by TNF‐alpha in cerebral vascular endothelial cells. Am J Physiol 291: C897–C908, 2006.
 22. Bates DV. The uptake of carbon monoxide in health and in emphysema. Clin Sci (Lond) 11: 21–32, 1952.
 23. Belikova NA, Vladimirov YA, Osipov AN, Kapralov AA, Tyurin VA, Potapovich MV, Basova LV, Peterson J, Kurnikov IV, Kagan VE. Peroxidase activity and structural transitions of cytochrome c bound to cardiolipin‐containing membranes. Biochemistry 45: 4998–5009, 2006.
 24. Benesch RE, Maeda N, Benesch R. 2,3 Diphosphoglycerate and the relative affinity of adult and fetal hemoglobin for oxygen and carbon monoxide. Biochem Biophys Acta 257: 178–182, 1972.
 25. Bengea S, Araki Y, Ito O, Igarashi J, Sagami I, Shimizu T. Analysis of the kinetics of CO binding to neuronal nitric oxide synthase by flash photolysis: Dual effects of substrates, inhibitors, and tetrahydrobiopterin. J Inorg Biochem 98: 1210–1216, 2004.
 26. Benignus VA, Hazucha MJ, Smith MV, Bromberg PA. Prediction of carboxyhemoglobin formation due to transient exposure to carbon monoxide. J Appl Physiol 76: 1739–1742, 1994.
 27. Bernard C. Lecons sur les effects des substances toxiques et medicamenteuses. Paris: Bailliere, 1857.
 28. Bilban M, Bach FH, Otterbein SL, Ifedigbo E, de Costa d'Avilla J, Esterbauer H, Chin BY, Usheva A, Robson SC, Wagner O, Otterbein LE. Carbon monoxide orchestrates a protective response through PPAR gamma. Immunity 24: 601–610, 2006.
 29. Bilban M, Haschemi A, Wegiel B, Chin BY, Wagner O, Otterbein LE. Heme oxygenase and carbon monoxide initiate homeostatic signaling. J Mol Med 86: 267–279, 2008.
 30. Blackburn NJ, Pettingill TM, Seagraves KS, Shigeta RT. Characterization of a carbon monoxide complex of reduced dopamine beta‐hydroxylase. Evidence for inequivalence of the Cu(I) centers. J Biol Chem 265: 15383–15386, 1990.
 31. Boehning D, Moon C, Sharma S, Hurt KJ, Hester LD, Ronnett GV, Shugar D, Snyder SH. Carbon monoxide neurotransmission activated by CK2 phosphorylation of heme oxygenase 2. Neuron 40: 129–137, 2003.
 32. Boswell JS, Reedy BJ, Kulathila R, Merkler D, Blackburn NJ. Structural investigations on the coordination environment of the active‐site copper centers of recombinant bifunctional peptidylglycine alpha‐amidating enzyme. Biochemistry 35: 12241–12250, 1996.
 33. Brancho D, Tanaka N, Jaeschke A, Ventura JJ, Kelkar N, Tanaka Y, Kyuuma M, Takeshita T, Flavell RA, Davis RJ. Mechanism of p38 MAP kinase activation in vivo. Genes Dev 17: 1969–1978, 2003.
 34. Britten JS, Myers RAM. Effects of hyperbaric treatment on carbon monoxide elimination in humans. Undersea Biomed Res 12: 431–438, 1985.
 35. Brouard S, Berberat PO, Tobiasch E, Seldon M, Bach FH, Soares MP. Heme oxygenase‐1 derived carbon monoxide requires the activation of transcription factor NF‐kappa B to protect endothelial cells from tumor necrosis factor‐alpha‐mediated apoptosis. J Biol Chem 277: 17950–17961, 2002.
 36. Brouard S, Otterbein L, Anrather J, Tobiasch E, Bach F, Choi A, Soares M. Carbon monoxide generated by heme oxygenase 1 suppresses endothelial cell apoptosis. J Exp Med 1: 1015–1025, 2000.
 37. Brown AS, Moro MA, Masse JM, Cramer EM, Radomski M, Darley‐Usmar V. Nitric oxide‐dependent and independent effects on human platelets treated with peroxynitrite. Cardiovasc Res 40: 380–388, 1998.
 38. Brown SD, Piantadosi CA, Volume RVTR. In vivo binding of carbon monoxide to cytochrome c oxidase in rat brain. J Appl Physiol 68: 604–610, 1990.
 39. Bruce EN, Bruce MC. A multicompartment model of carboxyhemoglobin and carboxymyoglobin responses to inhalation of carbon monoxide. J Appl Physiol 95: 1235–1247, 2003.
 40. Bruce MC, Bruce EN. Analysis of factors that influence rates of carbon monoxide uptake, distribution, and washout from blood and extravascular tissues using a multicompartment model. J Appl Physiol 100: 1171–1180, 2006.
 41. Brune B, Ullrich V. Inhibition of platelet aggregation by carbon monoxide is mediated by activation of guanylate cyclase. Mol Pharmacol 32: 497–504, 1987.
 42. Burney RE, Wu SC, Nemiroff MJ. Mass carbon monoxide poisoning: Clinical effects and results of treatment in 184 victims. Ann Emerg Med 11: 394–399, 1982.
 43. Cardell L, Ueki I, Stjarne P, Agusti C, Takeyama K, Linden A, Nadel J. Bronchodilatation in vivo by carbon monoxide, a cyclic GMP related messenger. Br J Pharmacol 124: 1065–1068, 1998.
 44. Cary SP, Marletta MA. The case of CO signaling: Why the jury is still out. J Clin Invest 107: 1071–1073, 2001.
 45. Caudill TK, Resta TC, Kanagy NL, Walker BR. Role of endothelial carbon monoxide in attenuated vasoreactivity following chronic hypoxia. Am J Physiol 275: R1025–R1030, 1998.
 46. Cepinskas G, Katada K, Bihari A, Potter RF. Carbon monoxide liberated from carbon monoxide‐releasing molecule CORM‐2 attenuates inflammation in the liver of septic mice. Am J Physiol 294: G184–G191, 2008.
 47. Chance B, Erecinska M, Wagner M. Mitochondrial responses to carbon monoxide toxicity. Ann N Y Acad Sci 174: 193–204, 1970.
 48. Chance B, Williams GR. The respiratory chain and oxidative phosphorylation. Adv Enzymol Relat Subj Biochem 17: 65–134, 1956.
 49. Chang EF, Wong RJ, Vreman HJ, Igarashi T, Galo E, Sharp FR, Stevenson DK, Noble‐Haeusslein LJ. Heme oxygenase‐2 protects against lipid peroxidation‐mediated cell loss and impaired motor recovery after traumatic brain injury. J Neurosci 23: 3689–3696, 2003.
 50. Choi BM, Pae HO, Chung HT. Nitric oxide priming protects nitric oxide‐mediated apoptosis via heme oxygenase‐1 induction. Free Radic Biol Med 34: 1136–1145, 2003.
 51. Choi BM, Pae HO, Kim YM, Chung HT. Nitric oxide‐mediated cytoprotection of hepatocytes from glucose deprivation‐induced cytotoxicity: Involvement of heme oxygenase‐1. Hepatology 37: 810–823, 2003.
 52. Chora AA, Fontoura P, Cunha A, Pais TF, Cardoso S, Ho PP, Lee LY, Sobel RA, Steinman L, Soares MP. Heme oxygenase‐1 and carbon monoxide suppress autoimmune neuroinflammation. J Clin Invest 117: 438–447, 2007.
 53. Chung HT, Pae HO, Choi BM, Billiar TR, Kim YM. Nitric oxide as a bioregulator of apoptosis. Biochem Biophys Res Commun 282: 1075–1079, 2001.
 54. Chung Y, Xu D, Jue T. Nitrite oxidation of myoglobin in perfused myocardium: Implications for energy coupling in respiration. Am J Physiol 271: H1166–1173, 1996.
 55. Cinti DL, Feinstein MB. Platelet cytochrome P450: A possible role in arachidonate‐induced aggregation. Biochem Biophys Res Commun 73: 171–179, 1976.
 56. Clark EH, Woods RL, Hughes JM. Effect of blood transfusion on the carbon monoxide transfer factor of the lung in man. Clin Sci Mol Med 54: 627–631, 1978.
 57. Clark JE, Naughton P, Shurey S, Green CJ, Johnson TR, Mann BE, Foresti R, Motterlini R. Cardioprotective actions by a water‐soluble carbon monoxide‐releasing molecule. Circ Res 93: e2–e8, 2003.
 58. Clark RT. Evidence for conversion of carbon monoxide to carbon dioxide by the intact animal. Am J Physiol 162: 560–564, 1950.
 59. Clementi E, Brown G, Foxwell N, Moncada S. On the mechanism by which vascular endothelial cells regulate their oxygen consumption. Proc Natl Acad Sci U S A 96: 1559–1562, 1999.
 60. Clementi E, Nisoli E. Nitroc oxide and mitochondrial biogenesis: A key to long‐term regulation of cellular metabolism. Comp Biochem Physiol A Mol Integr Physiol 142: 102–110, 2005.
 61. Coburn RF. The carbon monoxide body stores. Ann N Y Acad Sci 174: 11–22, 1970.
 62. Coburn RF. Mechanisms of carbon monoxide toxicity. Prev Med 8: 310–322, 1979.
 63. Coburn RF, Forman HJ. Carbon monoxide toxicity. In: Fishman AP, Farki LE, Geiger SR, editors. Handbook of Physiology. Baltimore: Williams & Wilkies, 1987, p. 439–456.
 64. Coburn RF, Forster RE, Kane PB. Considerations of the physiological variables that determine the blood carboxyhemoglobin concentration in man. JClinInvest 44: 1899–1910, 1965.
 65. Coceani F, Breen CA, Lees JG, Falck JR, Olley PM. Further evidence implicating a cytochrome P‐450‐mediated reaction in the contractile tension of the lamb ductus arteriosus. Circ Res 62: 471–477, 1988.
 66. Cole RP, Wittenberg BA, Caldwell PR. Myoglobin function in the isolated fluorocarbon‐perfused dog heart. Am J Physiol 234: H567–H572, 1978.
 67. Coletta M, Giardina B, Amiconi G, Gualtieri P, Benedetti PA, Brunori M. Kinetics of the reaction of intraerythrocytic haemoglobin by single cell microspectroscopy: Effect of shape and osmolarity. FEBS Lett 190: 217–220, 1985.
 68. Comroe JH, Jr. Pulmonary diffusing capacity for carbon monoxide (DLco). Am Rev Respir Dis 111: 225–228, 1975.
 69. Cotes JE, Dabbs JM, Elwood PC, Hall AM, McDonald A, Saunders MJ. Iron‐deficiency anaemia: Its effect on transfer factor for the lung (diffusiong capacity) and ventilation and cardiac frequency during sub‐maximal exercise. Clin Sci 42: 325–335, 1972.
 70. Cotes JE, Snidal DP, Shepard RH. Effect of negative intra‐alveolar pressure on pulmonary diffusing capacity. J Appl Physiol 15: 372–376, 1960.
 71. Cotton DJ, Mink JT, Graham BL. Effect of high negative inspiratory pressure on single breath CO diffusing capacity. Respir Physiol 54: 19–29, 1983.
 72. Cotton DJ, Prabhu MB, Mink JT, Graham BL. Effects of ventilation inhomogeneity on DLcoSB‐3EQ in normal subjects. J Appl Physiol 73: 2623–2630, 1992.
 73. Cotton DJ, Prabhu MB, Mink JT, Graham BL. Effect of ventilation inhomogeneity on “intrabreath” measurements of diffusing capacity in normal subjects. J Appl Physiol 75: 927–932, 1993.
 74. Couture M, Burmester T, Hankeln T, Rousseau DL. The heme environment of mouse neuroglobin. Evidence for the presence of two conformations of the heme pocket. J Biol Chem 276: 36377–36382, 2001.
 75. Crapo RO, Forster RE II. Carbon monoxide diffusing capacity. Clin Chest Med 10: 187–198, 1989.
 76. Cronje FJ, Carraway MS, Freiberger JJ, Suliman HB, Piantadosi CA. Carbon monoxide actuates O(2)‐limited heme degradation in the rat brain. Free Radic Biol Med 37: 1802–1812, 2004.
 77. D'Amico G, Lam F, Hagen T, Moncada S. Inhibition of cellular respiration by endogenously produced carbon monoxide. J Cell Sci 119: 2291–2298, 2006.
 78. Daum G. Lipids of mitochondria. Biochim Biophys Acta 822: 1–42, 1985.
 79. Davies DM, Smith DJ. Electrocardiographic changes in healthy men during continuous low‐level carbon monoxide exposure. Environ Res 21: 197–206, 1980.
 80. Dembinska‐Kiec A, Zmuda A, Wenhrynowicz O, Stachura J, Peskar BA, Gryglewski RJ. Selectin‐P‐mediated adherence of platelets to neutrophils is regulated by prostanoids and nitric oxide. Int J Tissue React 15: 55–64, 1993.
 81. Dewilde S, Kiger L, Burmester T, Hankeln T, Baudin‐Creuza V, Aerts T, Marden MC, Caubergs R, Moens L. Biochemical characterization and ligand binding properties of neuroglobin, a novel member of the globin family. J Biol Chem 276: 38949–38955, 2001.
 82. Dixon M. The action of carbon monoxide on the autoxidation of sulphydryl compounds. Biochem J 22: 902–908, 1928.
 83. Doblar DD, Santiago TV, Edelman NH. Correlation between ventilatory and cerebrovascular responses to inhalation of CO. J Appl Physiol 43: 455–462, 1977.
 84. Doeller JE, Wittenberg BA. Myoglobin function and energy metabolism of isolated cardiac myocytes: Effect of sodium nitrite. Am J Physiol 261: H53–H62, 1991.
 85. Dore S, Takahashi M, Ferris CD, Zakhary R, Hester LD, Guastella D, Snyder SH. Bilirubin, formed by activation of heme oxygenase‐2, protects neurons against oxidative stress injury. Proc Natl Acad Sci U S A 96: 2445–2450, 1999.
 86. Douglas CG, Haldane JS, Haldane JB. The laws of combination of haemoglobin with carbon monoxide and oxygen. J Physiol 44: 275–304, 1912.
 87. Dulak J, Loboda A, Zagorska A, Jozkowicz A. Complex role of heme oxygenase‐1 in angiogenesis. Antioxid Redox Signal 6: 858–866, 2004.
 88. Eipper BA, Mains RE, Glembotski CC. Identification in pituitary tissue of a peptide alpha‐amidation activity that acts on glycine‐extended peptides and requires molecular oxygen, copper, and ascorbic acid. Proc Natl Acad Sci U S A 80: 5144–5148, 1983.
 89. Eipper BA, Quon AS, Mains RE, Boswell JS, Blackburn NJ. The catalytic core of peptidylglycine alpha‐hydroxylating monooxygenase: Investigation by site‐directed mutagenesis, Cu X‐ray absorption spectroscopy, and electron paramagnetic resonance. Biochemistry 34: 2857–2865, 1995.
 90. Epler GR, Saber FA, Gaensler EA. Determination of severe impairment (disability) in interstitial lung disease. Am Rev Respir Dis 121: 647–659, 1980.
 91. Ewing JF, Maines MD. In situ hybridization and immunohistochemical localization of heme oxygenase‐2 mRNA and protein in normal rat brain: Differential distribution of isozyme 1 and 2. Mol Cell Neurosci 3: 559–570, 1992.
 92. Fagin J, Bradley J, Williams D. Carbon monoxide poisoning secondary to inhaling methylene chloride. Br Med J 281: 1461, 1980.
 93. Fago A, Hundahl C, Dewilde S, Gilany K, Moens L, Weber RE. Allosteric regulation and temperature dependence of oxygen binding in human neuroglobin and cytoglobin. Molecular mechanisms and physiological significance. J Biol Chem 279: 44417–44426, 2004.
 94. Fan B, Wang J, Stuehr DJ, Rousseau DL. NO synthase isozymes have distinct substrate binding sites. Biochemistry 36: 12660–12665, 1997.
 95. Favory R, Lancel S, Tissier S, Mathieu D, Decoster B, Neviere R. Myocardial dysfunction and potential cardiac hypoxia in rats induced by carbon monoxide inhalation. Am J Respir Crit Care Med 174: 320–325, 2006.
 96. Fenn WO, Cobb DM. The burning of carbon monoxide by heart and skeletal muscle. Am J Physiol 102: 393–401, 1932.
 97. Filley GF, Macintosh DJ, Wright GW. Carbon monoxide uptake and pulmonary diffusing capacity in normal subjects at rest and during exercise. J Clin Invest 33: 530–539, 1954.
 98. Fisher AB, Hyde RW, Baue AE, Reif JS, Kelly DF. Effect of carbon monoxide on function and structure of the lung. J Appl Physiol 26: 4–12, 1969.
 99. Fiumana E, Parfenova H, Jaggar JH, Leffler CW. Carbon monoxide mediates vasodilator effects of glutamate in isolated pressurized cerebral arterioles of newborn pigs. Am J Physiol 284: H1073–H1079, 2003.
 100. Flogel U, Merx MW, Godecke A, Decking UKM, Schrader J. Myoglobin: A scavenger of bioactive NO. Proc Natl Acad Sci U S A 98: 735–740, 2001.
 101. Flugel D, Gorlach A, Michiels C, Kietzmann T. Glycogen synthase kinase 3 phosphorylates hypoxia‐inducible factor 1alpha and mediates its destabilization in a VHL‐independent manner. Mol Cell Biol 27: 3253–3265, 2007.
 102. Forbes W, Sargent F, Roughton F. The rate of carbon monoxide uptake by normal men. Am J Physiol 143: 594–608, 1945.
 103. Foresti R, Hammad J, Clark JE, Johnson TR, Mann BE, Friebe A, Green CJ, Motterlini R. Vasoactive properties of CORM‐3, a novel water‐soluble carbon monoxide‐releasing molecule. Br J Pharmacol 142: 453–460, 2004.
 104. Forster RE. Carbon monoxide and the partial pressure of oxygen in tissue. Ann N Y Acad Sci 174: 233–241, 1970.
 105. Forster RE, Fowler WS, Bates DV, Van Lingen B. The absorption of carbon monoxide by the lungs during breath‐holding. J Clin Invest 33: 1135–1145, 1954.
 106. Freitas A, Alves‐Filho JC, Secco DD, Neto AF, Ferreira SH, Barja‐Fidalgo C, Cunha FQ. Heme oxygenase/carbon monoxide‐biliverdin pathway down regulates neutrophil rolling, adhesion and migration in acute inflammation. Br J Pharmacol 149: 345–354, 2006.
 107. Fujimoto H, Ohno M, Ayabe S, Kobayashi H, Ishizaka N, Kimura H, Yoshida K, Nagai R. Carbon monoxide protects against caardiac ischemia‐reperfusion injury in vivo via MAPK and Akt‐eNOS pathways. Arterioscler Thromb Vasc Biol 24: 1848–1853, 2004.
 108. Fujita T, Toda K, Karimova A, Yan SF, Naka Y, Yet SF, Pinsky DJ. Paradoxical rescue from ischemic lung injury by inhaled carbon monoxide driven by derepression of fibrinolysis. Nat Med 7: 598–604, 2001.
 109. Gautier M, Antier D, Bonnet P, Le Net JL, Hanton G, Eder V. Continuous inhalation of carbon monoxide induces right ventricle ischemia and dysfunction in rats with hypoxic pulmonary hypertension. Am J Physiol Heart Circ Physiol 293: H1046–1052, 2007.
 110. Gelb AF, Gold WM, Wright RR, Bruch HR, Nadel JA. Physiologic diagnosis of subclinical emphysema. Am Rev Respir Dis 107: 50–63, 1973.
 111. Gende OA. Carbon monoxide inhibits capacitative calcium entry in human platelets. Thromb Res 114: 113–119, 2004.
 112. Ghio AJ, Stonehuerner JG, Dailey LA, Richards JH, Madden MD, Deng Z, Nguyen NB, Callaghan KD, Yang F, Piantadosi CA. Carbon monoxide reversibly alters iron homeostasis and respiratory epithtelial cell function. Am J Respir Cell Mol Biol 38: 715–723, 2008.
 113. Gibson QH, Olson JS, McKinnie RE, Rohlfs RJ. A kinetic description of ligand binding to sperm whale myoglobin. J Biol Chem 261: 10228–10239, 1986.
 114. Gibson QH, Roughton FJW. The kinetics and equilibria of the reactions of nitric oxide with sheep haemoglobin. J Physiol 136: 507–526, 1957.
 115. Glabe A, Chung Y, Xu D, Jue T. Carbon monoxide inhibition of regulatory pathways in myocardium. Am J Physiol Heart Circ Physiol 274: H2143–H2151, 1998.
 116. Glaum SR, Miller RJ. Zinc protoporphyrin‐IX blocks the effects of metabotropic glutamate receptor activation in the rat nucleus tractus solitarii. Mol Pharmacol 43: 965–969, 1993.
 117. Godin G, Shepard RJ. On the course of carbon monoxide uptake and release. Respiration 29: 317–320, 1972.
 118. Gothert M, Lutz F, Malorny G. Carbon monoxide partial pressure in tissue of different animals. Environ Res 3: 303–309, 1970.
 119. Gould GA, Redpath AT, Ryan M, Warren PM, Best JJ, Flenley DC, MacNee W. Lung CT density correlates with measurements of airflow limitation and the diffusing capacity. Eur Respir J 4: 141–146, 1991.
 120. Graham BL, Dosman JA, Cotton DJ. A theoretical analysis of the single breath diffusing capacity for carbon monoxide. IEEE Trans Biomed Eng 27: 221–227, 1980.
 121. Grundemar L, Ny L. Pitfalls using metalloporphyrins in carbon monoxide research. Trends Pharmacol Sci 18: 193–195, 1997.
 122. Guo Y, Stein AB, Wu WJ, Tan W, Zhu X, Li QH, Dawn B, Motterlini R, Bolli R. Administration of a CO‐releasing molecule at the time of reperfusion reduces infarct size in vivo. Am J Physiol Heart Circ Physiol 286: H1649–1653, 2004.
 123. Gupta RK, Wittenberg BA. 31P‐NMR studies of isolated adult heart cells: Effect of myoglobin inactivation. Am J Physiol 261: H1155–H1163, 1991.
 124. Gutsaeva DR, Carraway MS, Suliman HB, Demchenko IT, Shitarra H, Yonekawa H, Piantadosi CA. Transient hypoxia stimulates mitochondrial biogenesis in brain subcortex by a neuronal nitric oxide synthase‐dependent mechanism. J Neurosci 28: 2015–2024, 2008.
 125. Guyatt AR, Holmes MA, Cumming G. Can carbon monoxide be absorbed from the upper respiratory tract in man? Eur J Respir Dis 62: 383–390, 1981.
 126. Haldane J. The action of carbonic oxide on man. J Physiol 18: 430–462, 1895.
 127. Hauck H, Neuberger M. Carbon monoxide uptake and the resulting carboxyhemoglobin in man. Eur J Appl Physiol 53: 186–190, 1984.
 128. Hawkins RD, Zhuo M, Arancio O. Nitric oxide and carbon monoxide as possible retrograde messengers in hippocampal long‐term potentiation. J Neurobiol 25: 652–665, 1994.
 129. Hayashi S, Takamiya R, Yamaguchi T, Matsumoto K, Tojo SJ, Tamatani T, Kitajima M, Makino N, Ishimura Y, Suematsu M. Induction of heme oxygenase‐1 suppresses venular leukocyte adhesion elicited by oxidative stress: Role of bilirubin generated by the enzyme. Circ Res 85: 663–671, 1999.
 130. Heidner EJ, Ladner RC, Perutz MF. Structure of horse carbonmonoxyhaemoglobin. J Mol Biol 104: 707–722, 1976.
 131. Henry ER, Jones CM, Hofrichter J, Eaton WA. Can a two‐state MWC allosteric model explain hemoglobin kinetics? Biochemistry 36: 6511–6528, 1997.
 132. Hirayama A, Noronha‐Dutra AA, Gordge MP, Neild GH, Hothersall JS. S‐nitrosothiols are stored by platelets and released during platelet‐neutrophil interactions. Nitric Oxide 3: 95–104, 1999.
 133. Horowitz BZ. Carboxyhemoglobinemia caused by inhalation of methylene chloride. Am J Emerg Med 4: 48–51, 1986.
 134. Huang YC, Helms MJ, MacIntyre NR. Normal values for single exhalation diffusing capacity and pulmonary capillary blood flow in sitting, supine positions, and during mild exercise. Chest 105: 501–508, 1994.
 135. Hughes JM, Pride NB. In defence of the carbon monoxide transfer coefficient Kco (TL/VA). Eur Respir J 17: 168–174, 2001.
 136. Iheagwara KN, Thom SR, Deutschman CS, Levy RJ. Myocardial cytochrome oxidase activity is decreased following carbon monoxide exposure. Biochim Biophys Acta 1772: 1112–1116, 2007.
 137. Ikegaya Y, Saito H, Matsuki N. Involvement of carbon monoxide in long‐term potentiation in the dentate gyrus of anesthetized rats. Jpn J Pharmacol 64: 225–227, 1994.
 138. Ingi T, Cheng J, Ronnett GV. Carbon monoxide: An endogenous modulator of the nitric oxide cyclic GMP signaling system. Neuron 16: 835–842, 1996.
 139. Ingi T, Ronnett GV. Direct demonstration of a physiological role for carbon monoxide in olfactory receptor neurons. J Neurosci 15: 8214–8222, 1995.
 140. Ischiropoulos H, Beers MF, Ohnishi ST, Fisher D, Garner SE, Thom SR. Nitric oxide production and perivascular tyrosine nitration in brain after carbon monoxide poisoning in the rat. J Clin Invest 97: 2260–2267, 1996.
 141. Ishimaru H, Katoh A, Suzuki H, Fukuta T, Kameyama T, Nabeshima T. Effects of N‐methyl‐D‐aspartate receptor antagonists on carbon monoxide‐induced brain damage in mice. J Pharmacol Exp Ther 261: 349–352, 1992.
 142. Ishimaru H, Nabeshima T, Katoh A, Suzuki H, Fukuta T, Kameyama T. Effects of successive carbon monoxide exposures on delayed neuronal death in mice under the maintenance of normal body temperature. Biochem Biophys Res Commun 179: 836–840, 1991.
 143. Jaggar JH, Leffler CW, Cheranov SY, Tcheranova D, E S, Cheng X. Carbon monoxide dilates cerebral arterioles by enhancing the coupling of Ca2+ sparks to Ca2+‐activated K+ channels. Circ Res 91: 610–617, 2002.
 144. Jay GD, Tetz DJ, Hartigan CF, Lane LL, Aghababian RV. Portable hyperbaric oxygen therapy in the emergency department with the modified Gamow bag. Ann Emerg Med 26: 707–711, 1995.
 145. Johnson DC. Importance of adjusting carbon monoxide diffusing capacity (DLco) and carbon monoxide transfer coefficient (KCO) for alveolar volume. Respir Med 94: 28–37, 2000.
 146. Johnson R, Colombari E, Colombari D, Lavesa M, Talman W, Nasjletti A. Role of endogenous carbon monoxide in central regulation of arterial pressure. Hypertension 30: 962–967, 1997.
 147. Johnson RL Jr, Spicer WS, Bishop JM, Forster RE. Pulmonary capillary blood volume, flow and diffusing capacity during exercise. J Appl Physiol 15: 893–902, 1960.
 148. Johnson TR, Mann BE, Clark JE, Foresti R, Green CJ, Motterlini R. Metal carbonyls: A new class of pharmaceuticals? Angew Chem Int Ed Engl 42: 3722–3729, 2003.
 149. Joumard R, Chiron M, Vidon R, Maurin M, Rouzioux JM. Mathematical models of the uptake of carbon monoxide on hemoglobin at low carbon monoxide levels. Environ Health Perspect 41: 277–289, 1981.
 150. Kapetanaki SM, Silkstone G, Husu I, Liebl U, Wilson MT, Vos MH. Interaction of carbon monoxide with the apoptosis‐inducing cytochrome c‐cardiolipin complex. Biochemistry 48: 1613–1619, 2009.
 151. Kashiba M, Kajimura M, Goda N, Suematsu M. From O2 to H2S: A landscape view of gas biology. Keio J Med 51: 1–10, 2002.
 152. Keilin D, Hartree EF. Cytochrome and cytochrome oxidase. Proc R Soc Lond B Biol Sci 127: 167–191, 1939.
 153. Kim HP, Wang X, Zhang J, Suh GY, Benjamin IJ, Ryter SW, Choi AMK. Heat shock proteni‐70 mediates the cytoprotective effect of carbon monoxide: Involvement of p38‐beta MAPK and heat shock factor‐1. J Immunol 175: 2622–2629, 2005.
 154. Kim KM, Pae HO, Zheng M, Park R, Kim YM, Chung HT. Carbon monoxide induces heme oxygenase‐1 via activation of protein kinase R‐like endoplasmic reticulum kinase and inhibits endothelial cell apoptosis triggered by endoplasmic reticulum stress. Circ Res 101: 919–927, 2007.
 155. Kimmel EC, Carpenter RL, Reboulet JE, Still KR. A physiological model for predicting carboxyhemoglobin formation from exposure to carbon monoxide in rats. J Appl Physiol 86: 1977–1983, 1999.
 156. Kitamuro T, Takahashi K, Ogawa K, Udono‐Fujimori R, Takeda K, Furuyama K, Nakayama M, Sun JH, Fujita H, Hida W, Hattori T, Shirato K, Igarashi KI, Shibahara S. Bach 1 functions as a hypoxia‐inducible repressor for the heme oxygenase‐1 gene in human cells. J Biol Chem 278: 9125–9133, 2003.
 157. Kizakevich PN, McCartney ML, Hazucha MJ, Sleet LH, Jochem WJ, Hackney AC, Bolick K. Noninvasive ambulatory assessment of cardiac function in healthy men exposed to carbon monoxide during upper and lower body exercise. Eur J Appl Physiol 83: 7–16, 2000.
 158. Kjeldsen K, Astrup P, Wanstrup J. Ultrastructural intimal changes in the rabbit aorta after a moderate carbon monoxide exposure. Altherosclerosis 16: 67–82, 1972.
 159. Kleinert HD, Scales JL, Weiss HR. Effects of carbon monoxide or low oxygen gas mixture inhalation on regional oxygenation, blood flow, and small vessel blood content of the rabbit heart. Pflugers Arch 383: 105–111, 1980.
 160. Kleinman MT, Davidson DM, Vandagriff RB, Caiozzo VJ, Whittenberger JL. Effects of short‐term exposure to carbon monoxide in subjects with coronary artery disease. Arch Environ Health 44: 361–369, 1989.
 161. Kleinman MT, Leaf DA, Kelly E, Caiozzo V, Osann K, O'Niell T. Urban angina in the mountains: Effects of carbon monoxide and mild hypoxemia on subjects with chronic stable angina. Arch Environ Health 53: 388–397, 1998.
 162. Koehler RC, Jones J, Traystman RJ. Cerebral circulatory response to carbon monoxide and hypoxic hypoxia in the lamb. AmJPhysiol 243: H27–H32, 1982.
 163. Kohmoto J, Nakao A, Stolz DB, Kaizu T, Tsung A, Ikeda A, Shimizu H, Takahashi T, Tomiyama K, Sugimoto R, Choi AMK, Billiar TR, Murase N, McCurry KR. Carbon monoxide protects rat lung transplants from ischemia‐reperfusion injury via a mechanism involving p38 MAPK pathway. Am J Transplant 7: 2279–2290, 2007.
 164. Koike A, Wasserman K, Armon Y, Weiler‐Ravell D. The work‐rate‐dependent effect of carbon monoxide on ventilatory control during exercise. Respir Physiol 85: 169–183, 1991.
 165. Koivisto A, Matthias A, Bronnikov G, Nedergaard J. Kinetics of the inhibition of mitochondrial respiration by NO. FEBS Lett 417: 75–80, 1997.
 166. Koneru P, Leffler CW. Role of cGMP in carbon monoxide‐induced cerebral vasodilation in piglets. Am J Physiol Heart Circ Physiol 286: H304–H309, 2004.
 167. Krebs JJ, Hauser H, Carafoli E. Asymmetric distribution of phospholipids in the inner membrane of beef heart mitochondria. J Biol Chem 254: 5308–5316, 1979.
 168. Krogh A, Krogh M. On the rate of diffusion of carbonic oxide into the lungs of man. Skandinavisches Arkivfur Physiologie 23: 236–247, 1910.
 169. Kubic VL, Anders MW. Metabolism of dihalomethanes to carbon monoxide‐III. Studies on teh mechanism of the reaction. Biochem Pharmacol 27: 2349–2355, 1978.
 170. Lahiri S, Mulligan E, Nishino T, Mokashi A, Davies RO. Relative responses of aortic body and carotid body chemoreceptors to carboxyhemoglobinemia. J Appl Physiol 50: 580–586, 1981.
 171. Landaw SA. The effects of cigarette smoking on total body burden and excretion rates of carbon monoxide. J Occup Med 15: 231–235, 1973.
 172. Lee BS, Heo JH, Kim YM, Shim SM, Pae HO, Kim YM, Chung HT. Carbon monoxide mediates heme oxygenase‐1 induction via Nrf2 activation in hepatoma cells. Biochem Biophys Res Commun 343: 965–972, 2006.
 173. Lee TS, Chau LY. Heme oxygenase‐1 mediates the anti‐inflammatory effect of interleukin‐10 in mice. Nat Med 8: 240–246, 2002.
 174. Leech JA, Martz L, Liben A, Becklake MR. Diffusing capacity for carbon monoxide. The effects of different derivations of breathhold time and alveolar volume and of carbon monoxide back pressure on calculated results. Am Rev Respir Dis 132: 1127–1129, 1985.
 175. Leffler C, Nasjletti A, Yu C, Johnson R, Fedinec A, Walker N. Carbon monoxide and cerebral microvascular tone in newborn pigs. Am J Physiol Heart Circ Physiol 276: H1641–H1646, 1999.
 176. Lehr HA, Frei B, Arfors KE. Vitamin C prevents cigarette smoke‐induced leukocyte aggregation and adhesion to endothelium in vivo. Proc Natl Acad Sci U S A 91: 7688–7692, 1994.
 177. Leikin JB, Kaufman D, Lipscomb JW, Burda AM, Hryhorczuk DO. Methylene chloride report of five exposures and two deaths. Am J Emerg Med 8: 534–537, 1990.
 178. Liao D, Heiss G, Chinchilli VM, Duan Y, Folsom AR, Lin HM, Salomaa V. Association of criteria pollutants with plasma hemostatic/inflammatory markers: A population‐based study. J Expo Anal Environ Epidemiol 15: 319–328, 2005.
 179. Lilienthal JL, Pine MB. The effect of oxygen pressure on the uptake of carbon monoxide by man at sea level and at altitude. Am J Physiol 145: 346, 1946.
 180. Lin CH, Lo WC, Hsiao M, Tseng CJ. Interaction of carbon monoxide and adenosine in nucleus tractus solitarii of rats. Hypertension 42: 380–385, 2003.
 181. Liu XM, Chapman GB, Peyton KJ, Schafer AI, Durante W. Antiapoptotic action of carbon monoxide on cultured vascular smooth muscle cells. Exp Biol Med 228: 572–575, 2003.
 182. Liu Y, Fechter LD. MK‐801 protects against carbon monoxide‐induced hearing loss. ToxicolApplPharmacol 132: 196–202, 1995.
 183. Lo WC, Chan JY, Tung CS, Tseng CJ. Carbon monoxide and metabotropic glutamate receptors in the rat nucleus tractus solitarii: Participation in cardiovascular effect. Eur J Pharmacol 454: 39–45, 2002.
 184. Luomanmaki K, Coburn RF. Effects of metabolism and distribution of carbon monoxide on blood and body stores. Am J Physiol 217: 354–363, 1969.
 185. Lutter R, van Schaik ML, van Zwieten R, Wever R, Roos D, Hamers MN. Purification and partial characterization of the b‐type cytochrome from human polymorphonuclear leukocytes. J Biol Chem 260: 2237–2244, 1985.
 186. Macintyre N, Crapo RO, Viegi G, Johnson DC, Van Der Grinten CP, Brusasco V, Burgos F, Casaburi R, Coates A, Enright P, Gustafsson P, Hankinson J, Jensen R, McKay R, Miller MR, Navajas D, Pedersen OF, Pellegrino R, Wanger J. Standardisation of the single‐breath determination of carbon monoxide uptake in the lung. Eur Respir J 26: 720–735, 2005.
 187. MacIntyre NR, Leatherman N, Deitz JL, Wagoner R, Friedman M. Distribution and uptake of helium, carbon monoxide, and acetylene in the lungs during high frequency oscillatory ventilation. Respir Physiol 63: 201–212, 1986.
 188. MacIntyre NR, Nadel JA. Regional diffusing capacity in normal lungs during a slow exhalation. J Appl Physiol 52: 1487–1492, 1982.
 189. Maines MD. The heme oxygenase system: A regulator of second messenger gases. Ann Rev Pharmacol Toxicol 37: 517–554, 1997.
 190. Maines MD, Trakshel GM, Kutty RK. Characterization of two constitutive forms of rat liver microsomal heme oxygenase. Only one molecular species of the enzyme is inducible. J Biol Chem 261: 411–419, 1986.
 191. Marks GS, Vreman HJ, McLaughlin BE, Brien JF, Nakatsu K. Measurement of endogenous carbon monoxide formation in biological systems. Antioxid Redox Signal 4: 271–277, 2002.
 192. Marrades RM, Diaz O, Roca J, Campistol JM, Torregrosa JV, Barbera JA, Cobos A, Felez MA, Rodriguez‐Roisin R. Adjustment of DLco for hemoglobin concentration. Am J Respir Crit Care Med 155: 236–241, 1997.
 193. Matsuoka A, Stuehr DJ, Olson JS, Clark P, Ikeda‐Saito M. L‐arginine and calmodulin regulation of the heme iron reactivity in neuronal nitric oxide synthase. J Biol Chem 269: 20335–20339, 1994.
 194. Maulik N, Engelman DT, Watanabe M, Engelman RM, Das DK. Nitric oxide a retrograde messenger for carbon monoxide signaling in ischemic heart. Mol Cell Biochem 157: 75–86, 1996.
 195. Maurel A, Apovo M, Beuzard Y, Boynard M, Lagrue G. [Effect of smoking on blood rheology]. J Mal Vasc 22: 239–243, 1997.
 196. Maurer FW. The effects of carbon monoxide anoxemia on the flow and composition of cervical lymph. Am J Physiol 133: 170–179, 1941.
 197. Mayevsky A, Meilin S, Rogatsky GG, Zarchin N, Thom SR. Multiparametric monitoring of the awake brain exposed to carbon monoxide. J Appl Physiol 78: 1188–1196, 1995.
 198. Mc GM, Thomson ML. The effect of age, body size and lung volume change on alveolar‐capillary permeability and diffusing capacity in man. J Physiol 146: 572–582, 1959.
 199. McCarter SD, Akyea TG, Lu X, Bihari A, Scott JR, Badhwar A, Dungey AA, Harris KA, Feng Q, Potter RF. Endogenous heme oxygenase induction is a critical mechanism attenuating apoptosis and restoring microvascular perfusion following limb ischemia/reperfusion. Surgery 136: 67–75, 2004.
 200. McCarter SD, Badhwar A, Scott JR, Akyea TG, Bihari A, Dungey AA, Harris KA, Potter RF. Remote liver injury is attenuated by adenovirus‐mediated gene transfer of heme oxygenase‐1 during the systemic inflammatory response syndrome. Microcirculation 11: 587–595, 2004.
 201. McCartney ML. Sensitivity analysis applied to Coburn‐Forster‐Kane models of carboxyhemoglobin formation. Am Ind Hyg Assoc J 51: 169–177, 1990.
 202. McCoubrey WK, Huang TJ, Maines MD. Isolation and characterization of a cDNA from the rat brain that encodes hemoprotein heme oxygenase‐3. Eur J Biochem 247: 725–732, 1997.
 203. Meffert MK, Haley JE, Schuman EM, Schulman H, Madison DV. Inhibition of hippocampal heme oxygenase, nitric oxide synthase, and long‐term potentiation by metalloporphyrins. Neuron 13: 1225–1233, 1994.
 204. Meilin S, Rogatsky GG, Thom SR, Zarchin N, Guggenheimer‐Furman E, Mayevsky A. Effects of carbon monoxide on the brain may be mediated by nitric oxide. J Appl Physiol 81: 1078–1083, 1996.
 205. Melin A, Bonnet P, Eder V, Antier D, Obert P, Fauchier L. Direct implication of carbon monoxide in the development of heart failure in rats with cardiac hypertrophy subjected to air pollution. Cardiovasc Toxicol 5: 311–320, 2005.
 206. Melin A, Obert P, Rebocho M, Bonnet P. Cardiac morphology and function following long‐term exposure to carbon monoxide at high altitude in rats. J Toxicol Environ Health A 65: 1981–1998, 2002.
 207. Meyer J, Prien T, Aken V, Van Aken H, Bone HG, Waurick R, Theilmeier G, Booke M. Arterio‐venous carboxyhemoglobin difference suggests carbon monoxide production by human lungs. Biochem Biophys Res Commun 244: 230–232, 1998.
 208. Michaelson ED, Sackner MA, Johnson RL, Jr. Vertical distributions of pulmonary diffusing capacity and capillary blood flow in man. J Clin Invest 52: 359–369, 1973.
 209. Miles EW, Kraus JP. Cystathionine beta‐synthase: Structure, function, regulation, and location of homocystinuria‐causing mutations. J Biol Chem 279: 29871–29874, 2004.
 210. Mishra S, Fujita T, Lama VN, Nam D, Liao H, Okada M, Minamoto K, Yoshikawa Y, Harada H, Pinsky DJ. Carbon monoxide rescues ischemic lungs by interrupting MAPK‐driven expression of early growth response 1 gene and its downstream target genes. Proc Natl Acad Sci U S A 103: 5191–5196, 2006.
 211. Mohsenifar Z, Brown HV, Schnitzer B, Prause JA, Koerner SK. The effect of abnormal levels of hematocrit on the single breath diffusing capacity. Lung 160: 325–330, 1982.
 212. Moore BA, Overhaus M, Whitcomb J, Ifedigbo E, Choi AM, Otterbein LE, Bauer AJ. Brief inhalation of low‐dose carbon monoxide protects rodents and swine from postoperative ileus. Crit Care Med 33: 1317–1326, 2005.
 213. Moore TA, Greenwood C, Wilson MT. Ligand binding to ferrocytochrome c at high pH. Biochem J 147: 335–341, 1975.
 214. Morita T, Mitsialis SA, Koike H, Liu Y, Kourembanas S. Carbon monoxide controls the proliferation of hypoxic vascular smooth muscle cells. J Biol Chem 272: 32804–32809, 1997.
 215. Morita T, Perrella MA, Lee ME, Kourembanas S. Smooth muscle cell‐derived carbon monoxide is a regulator of vascular cGMP. Proc Natl Acad SciU S A 92: 1475–1479, 1995.
 216. Morrison NJ, Abboud RT, Ramadan F, Miller RR, Gibson NN, Evans KG, Nelems B, Muller NL. Comparison of single breath carbon monoxide diffusing capacity and pressure‐volume curves in detecting emphysema. Am Rev Respir Dis 139: 1179–1187, 1989.
 217. Morse D, Pischke SE, Zhou Z, Davis RJ, Flavell RA, Loop T, Otterbein SL, Otterbein LE, Choi AM. Suppression of inflammatory cytokine production by carbon monoxide involves the JNK pathway and AP‐1. J Biol Chem 278: 36993–36998, 2003.
 218. Motterlini R, Clark JE, Foresti R, Sarathchandra P, Mann BE, Green CJ. Carbon monoxide‐releasing molecules: Characterization of biochemical and vascular activities. Circ Res 90: E17–E24, 2002.
 219. Motterlini R, Mann BE, Johnson TR, Clark JE, Foresti R, Green CJ. Bioactivity and pharmacological actions of carbon monoxide‐releasing molecules. Curr Pharm Des 9: 2525–2539, 2003.
 220. Motterlini R, Sawle P, Hammad J, Bains S, Alberto R, Foresti R, Green CJ. CORM‐A1: A new pharmacologically active carbon monoxide‐releasing molecule. FASEB J 19: 284–286, 2005.
 221. Muelheims G, Dellenback R, Rawson R. Red cell volume and distribution after bleed‐out in the rat as determined by Cr51‐labelled red blood cells. Am J Physiol 196: 169–172, 1959.
 222. Myers R, Jones D, Britten J. Carbon monoxide half‐life study. Flagstaff, AZ: Best Publishing, 1987.
 223. Nabeshima T, Katoh A, Ishimaru H, Yoneda Y, Ogita K, et al. Carbon monoxide‐induced delayed amnesia, delayed neuronal death and change in acetylcholine concentration in mice. J Pharm Exp Ther 256: 378–384, 1991.
 224. Nabeshima T, Yoshida S, Morinaka H, Kameyama T, Thurkauf A, Rice KC, Jacobson AE, et al. MK‐801 ameliorates delayed amnesia, but potentiates acute amnesia induced by CO. Neurosci Lett 108: 321–327, 1990.
 225. Nairn JR, Power GG, Hyde RW, Forster RE, Lambertsen CJ, Dickson J. Diffusing capacity and pulmonary capillary blood flow at hyperbaric pressures. J Clin Invest. 44: 1591–1599, 1965.
 226. Nakahira K, Kim HP, Geng XH, Nakao A, Wang X, Murase N, Drain PF, Sasidhar M, Nabel EG, Takahashi T, Lukacs NW, Ryter SW, Morita K, Choi AM. Carbon monoxide differentially inhibits TLR signaling pathways by regulating ROS‐induced trafficking of TLRs to lipid rafts. J Exp Med 203: 2377–2389, 2006.
 227. Nakao A, Kaczorowski DJ, Zuckerbraun BS, Lei J, Faleo G, Deguchi K, McCurry KR, Billiar TR, Kanno S. Galantamine and carbon monoxide protect brain microvascular endothelial cells by heme oxygenase‐1 induction. Biochem Biophys Res Commun 367: 674–679, 2008.
 228. Nakao A, Toyokawa H, Abe M, Kiyomoto T, Kiichi N, Choi AMK, Nalesnik MA, Thomson AW, Murase N. Heart allograft protection with low‐dose carbon monoxide inhalation: Effects on inflammatory mediators and alloreactive T‐cell responses. Transplantation 81: 220–230, 2006.
 229. Newby MB, Roberts RJ, Bhatnagar RK. Carbon monoxide‐ and hypoxia‐induced effects on catecholamines in the mature and developing rat brain. J Pharmacol Exp Ther 206: 61–68, 1978.
 230. Newth CJ, Cotton DJ, Nadel JA. Pulmonary diffusing capacity measured at multiple intervals during a single exhalation in man. J Appl Physiol 43: 617–625, 1977.
 231. Nicholls P. The reactions of azide with catalase and their significance. Biochem J 90: 331–343, 1964.
 232. Nisimoto Y, Otsuka‐Murakami H, Iwata S. NADPH‐cytochrome c reductase from human neutrophil membranes: Purification, characterization and localization. Biochem J 297 (Pt 3): 585–593, 1994.
 233. Nisoli E, Carruba MO. Nitric oxide and mitochondrial biogenesis. J Cell Sci 119: 2855–2862, 2006.
 234. Nisoli E, Clementi E, Paolucci C, Cozzi V, Tonello C, Sciorati C, Bracale R, Valerio A, Francolini M, Moncada S, Carruba MO. Mitochondrial biogenesis in mammal: The role of endogenous nitroc oxide [see commnets]. Science 299: 896–899, 2003.
 235. Nordenfelt I, Svensson G. The transfer factor (diffusing capacity) as a predictor of hypoxaemia during exercise in restrictive and chronic obstructive pulmonary disease. Clin Physiol 7: 423–430, 1987.
 236. Oh GS, Pae HO, Choi BM, Chae SC, Lee HS, Ryu DG, Chung HT. 3‐Hydroxyanthranilic acid, one of metabolites of tryptophan via indoleamine 2,3‐dioxygenase pathway, suppresses inducible nitric oxide synthase expression by enhancing heme oxygenase‐1 expression. Biochem Biophys Res Commun 320: 1156–1162, 2004.
 237. Oh GS, Pae HO, Lee BS, Kim BN, Kim JM, Kim HR, Jeon SB, Jeon WK, Chae HJ, Chung HT. Hydrogen sulfide inhibits nitric oxide production and nuclear factor‐kappaB via heme oxygenase‐1 expression in RAW264.7 macrophages stimulated with lipopolysaccharide. Free Radic Biol Med 41: 106–119, 2006.
 238. Ott MC, Scott JR, Bihari A, Badhwar A, Otterbein LE, Gray DK, Harris KA, Potter RF. Inhalation of carbon monoxide prevents liver injury and inflammation following hind limb ischemia/reperfusion. FASEB J 19: 106–108, 2005.
 239. Otterbein LE, Bach FH, Alam J, Soares M, Tao Lu H, Wysk M, Davis RJ, Flavell RA, Choi AM. Carbon monoxide has anti‐inflammatory effects involving the mitogen‐activated protein kinase pathway. Nat Med 6: 422–428, 2000.
 240. Otterbein LE, Soares MP, Yamashita K, Bach FH. Heme oxygenase‐1: Unleashing the protective properties of heme. Trends Immunol 24: 449–455, 2003.
 241. Ow YP, Green DR, Hao Z, Mak TW. Cytochrome c: Functions beyond respiration. Nat Rev Mol Cell Biol 9: 532–542, 2008.
 242. Owens GR, Rogers RM, Pennock BE, Levin D. The diffusing capacity as a predictor of arterial oxygen desaturation during exercise in patients with chronic obstructive pulmonary disease. N Engl J Med 310: 1218–1221, 1984.
 243. Pace N, Consolazio WV, White WA, Behnke AR. Formulation of the principal factors affecting the rate of uptake on carbon monoxide by man. Am J Physiol 147: 352, 1946.
 244. Pace N, Strajman E, Walker EL. Acceleration of carbon monoxide elimination in man by high pressure oxygen. Science 111: 652–654, 1950.
 245. Pacultova K, Obalova L, Kovanda F, Jiratova K. Catalytic reduction of nitrous oxide with carbon monoxide over calcined Co‐Mn‐Al hydrotalcite. Catalysis Today 137: 385–389, 2008.
 246. Pae HO, Choi BM, Oh GS, Lee MS, Ryu DG, Rhew HY, Kim YM, Chung HT. Roles of heme oxygenase‐1 in the antiproliferative and antiapoptotic effects of nitric oxide on Jurkat T cells. Mol Pharmacol 66: 122–128, 2004.
 247. Pae HO, Oh GS, Choi BM, Kim YM, Chung HT. A molecular cascade showing nitric oxide‐heme oxygenase‐1‐vascular endothelial growth factor‐interleukin‐8 sequence in human endothelial cells. Endocrinology 146: 2229–2238, 2005.
 248. Palacios‐Callender M, Quintero M, Hollis VS, Springett RJ, Moncada S. Endogenous NO regulates superoxide production at low oxygen concentrations by modifying the redox state of cytochrome c oxidase. Proc Natl Acad Sci U S A 101: 7630–7635, 2004.
 249. Parving HH, Ohlsson K, Buchardt‐Hansen HJ, Rörth M. Effect of carbon monoxide on capillary permeability to ablumin and macroglobulin. Scand J Clin Lab Invest 29: 381–388, 1972.
 250. Paulson OB, Parving HH, Olesen J, Skinhoj E. Influence of carbon monoxide and of hemodilution on cerebral blood flow and blood gases in man. J Appl Physiol 35: 111–116, 1973.
 251. Pawar A, Nanduri J, Yuan G, Khan SA, Wang N, Kumar GK, Prabhakar NR. Reactive oxygen species‐dependent endothelin signaling is required for augmented hypoxic sensory response of the neonatal carotid body by intermittent hypoxia. Am J Physiol 296: R735–R742, 2008.
 252. Pekkanen J, Brunner EJ, Anderson HR, Tiittanen P, Atkinson RW. Daily concentrations of air pollution and plasma fibrinogen in London. Occup Environ Med 57: 818–822, 2000.
 253. Perrella M, Di Cera E. CO ligation intermediates and the mechanism of hemoglobin cooperativity. J Biol Chem 274: 2605–2608, 1999.
 254. Petersen FB, Siggaard‐Anderson J, Kristensen JH, Kjeldsen K. Capillary filtration rate on the human calf during exposure to carbon monoxide and hypoxia (3454 m). Scand J Clin Lab Invest 103: 49–54, 1968.
 255. Peterson JE, Stewart RD. Absorption and elimination of carbon monoxide by inactive young men. Arch Environ Health 21: 165–171, 1970.
 256. Peterson JE, Stewart RD. Predicting the carboxyhemoglobin levels resulting from carbon monoxide exposures. J Appl Physiol 39: 633–638, 1975.
 257. Petrache LE, Otterbein J, Alam GW, Wiegand B, Choi AM. Heme oxygenase‐1 inhibits TNF‐alpha‐induced apoptosis in cultured fibroblasts. Am J Physiol 278: L312–L319, 2000.
 258. Piantadosi CA. Spectrophotometry of b‐type cytochromes in rat brain in vivo and in vitro. Am J Physiol 256: C840–848, 1989.
 259. Piantadosi CA, Carraway MS, Babiker A, Suliman HB. Heme oxygenase‐1 regulates cardiac mitochondrial biogenesis via Nrf2‐mediated transcriptional control of nuclear respiratory factor‐1. Circ Res 103: 1232–1240, 2008.
 260. Piantadosi CA, Carraway MS, Suliman HB. Carbon monoxide, oxidative stress and mitochondrial permeability pore transition. Free Radic Biol Med 40: 1332–1339, 2006.
 261. Piantadosi CA, Sylvia AL, Jobsis‐Vandervliet FF. Differences in brain cytochrome responses to carbon monoxide and cyanide in vivo. JApplPhysiol 62: 1277–1284, 1987.
 262. Piantadosi CA, Sylvia AL, Saltzman HA, Vandervliet FFJ. Carbon monoxide‐cytochrome interactions in the brain of the fluorocarbon‐perfused rat. J Appl Physiol 58: 665–672, 1985.
 263. Piantadosi CA, Zhang J, Demchenko IT. Production of hydroxyl radical in the hippocampus after CO hypoxia or hypoxic hypoxia in the rat. Free Radic Biol Med 22: 725–732, 1997.
 264. Poss KD, Thomas MJ, Abralidze AK, O'Dell TJ, Tonegawa S. Hippocampal long term potentiation is normal in heme oxygenase‐2 mutant mice. Neuron 15: 867–873, 1995.
 265. Power GG, Bradford WC. Measurement of pulmonary diffusing capacity during blood‐to‐gas exchange in humans. J Appl Physiol 27: 61–66, 1969.
 266. Prabhakar NR. NO and CO as second messengers in oxygen sensing in the carotid body. Respir Physiol 115: 161–168, 1999.
 267. Prabhakar NR, Kumar GK, Chang CH, Agani FH, Haxhiu MA. Nitric oxide in the sensory function of the carotid body. Brain Res 625: 16–22, 1993.
 268. Prigge ST, Kolhekar AS, Eipper BA, Mains RE, Amzel LM. Substrate‐mediated electron transfer in peptidylglycine α‐hydroxylating monooxygenase. Nat Struct Biol 6: 976–983, 1999.
 269. Puranik M, Weeks CL, Lahaye D, Kabil O, Taoka S, Nielsen SB, Groves JT, Banerjee R, Spiro TG. Dynamics of carbon monoxide binding to cystathionine beta‐synthase. J Biol Chem 281: 13433–13438, 2006.
 270. Radomski MW, Palmer RMJ, Moncada S. Endogenous nitric oxide inhibits human platelet adhesion to vascular endothelium. Lancet 2: 1057–1058, 1987.
 271. Raff H, Tzankoff SP, Fitzgerald RS. ACTH and cortisol responses to hypoxia in dogs. J Appl Physiol 51: 1257–1260, 1981.
 272. Rainger GE, Rowley AF, Nash GB. Adhesion‐dependent release of elastase from human neutrophils in a novel, flow‐based model: Specificity of different chemotactic agents. Blood 92: 4819–4827, 1998.
 273. Ramos KS, Lin H, McGrath JJ. Modulation of cyclic guanosine monophosphate levels in cultured aortic smooth muscle cells by carbon monoxide. Biochem Pharm 38: 1368–1370, 1989.
 274. Rattan S, Chakder S. Inhibitory effect of CO on internal anal sphincter: Heme oxygenase inhibitor inhibits NANC relaxation. Am J Physiol Gastrointest Liver Physiol 265: G799–G804, 1993.
 275. Raub JA, Benignus VA. Carbon monoxide and the nervous system. Neurosci Biobehav Rev 26: 925–940, 2002.
 276. Ren X, Dorrington KL, Robbins PA. Respiratory control in humans after 8 h of lowered arterial Po2, hemodilution, or carboxyhemoglobinemia. J Appl Physiol 90: 1189–1195, 2001.
 277. Resch H, Zawinka C, Weigert G, Schmetterer L, Garhofer G. Inhaled carbon monoxide increases retinal and choroidal blood flow in healthy humans. Invest Ophthalmol Vis Sci 46: 4275–4280, 2005.
 278. Reynolds CM, Suliman HB, Hollingsworth JW, Welty‐Wolf K, Carraway MS, Piantadosi CA. Nitric oxide synthase‐2 induction optimizes cardiac mitochondrial biogenesis after endotoxemia. Free Radic Biol Med 46: 564–572, 2008.
 279. Riesco‐Fagundo AM, Perez‐Garcia MT, Gonzalez C, Lopez‐Lopez JR. O(2) modulates large‐conductance Ca(2+)‐dependent K(+) channels of rat chemoreceptor cells by a membrane‐restricted and CO‐sensitive mechanism. Circ Res 89: 430–436, 2001.
 280. Rodkey FL, O'Neal JD, Collison HA, etal. Relative affinity of hemoglobin S and hemoglobin A for carbon monoxide and oxygen. ClinChem 20: 83–84, 1974.
 281. Root WS. Carbon Monoxide. Washington DC: American Physiological Society, 1965.
 282. Rosenberg E, Young RC Jr. Potential value of diffusing capacity per liter of lung volume (DL/VA) for early detection of alveolar capillary defects. Lung 157: 23–29, 1979.
 283. Roughton FJ, Forster RE. Relative importance of diffusion and chemical reaction rates in determining rate of exchange of gases in the human lung, with special reference to true diffusing capacity of pulmonary membrane and volume of blood in the lung capillaries. J Appl Physiol 11: 290–302, 1957.
 284. Roughton FJW, Root WS. The fate of CO in the body during recovery from mild carbon monoxide poisoning in man. Am J Physiol 145: 239, 1945.
 285. Ruckerl R, Greven S, Ljungman P, Aalto P, Antoniades C, Bellander T, Berglind N, Chrysohoou C, Forastiere F, Jacquemin B, von Klot S, Koenig W, Kuchenhoff H, Lanki T, Pekkanen J, Perucci CA, Schneider A, Sunyer J, Peters A. Air pollution and inflammation (interleukin‐6, C‐reactive protein, fibrinogen) in myocardial infarction survivors. Environ Health Perspect 115: 1072–1080, 2007.
 286. Ruckerl R, Ibald‐Mulli A, Koenig W, Schneider A, Woelke G, Cyrys J, Heinrich J, Marder V, Frampton M, Wichmann HE, Peters A. Air pollution and markers of inflammation and coagulation in patients with coronary heart disease. Am J Respir Crit Care Med 173: 432–441, 2006.
 287. Ryter SW, Otterbein LE, Morse D, Choi AM. Heme oxygenase/carbon monoxide signaling pathways: Regulation and functional significance. Mol Cell Biochem 234‐235: 249–263, 2002.
 288. Salazar M, Rojo AI, Velasco D, de Sagarra RM, Cuadrada A. Glycogen synthase kinase‐3beta inhibits the xenobiotic and antioxidant cell response by direct phosphorylation and nuclear exclusion of the transcription factor Nrf2. J Biol Chem 281: 14841–14851, 2006.
 289. Santiago TV, Edelman NH. Mechanism of the ventilatory response to carbon monoxide. J Clin Invest 57: 977–986, 1976.
 290. Sato H, Nomura S, Sagami I, Ito O, Daff S, Shimizu T. CO binding studies of nitric oxide synthase: Effects of the substrate, inhibitors and tetrahydrobiopterin. FEBS Lett 430: 377–380, 1998.
 291. Sawai H, Makino M, Mizutani Y, Ohta T, Sugimoto H, Uno T, Kawada N, Yoshizato K, Kitagawa T, Shiro Y. Structural characterization of the proximal and distal histidine environment of cytoglobin and neuroglobin. Biochemistry 44: 13257–13265, 2005.
 292. Sawle P, Foresti R, Mann BE, Johnson TR, Green CJ, Motterlini R. Carbon monoxide‐releasing molecules (CO‐RMs) attenuate the inflammatory response elicited by lipopolysaccharide in RAW264.7 murine macrophages. Br J Pharmacol 145: 800–810, 2005.
 293. Schmidt HHHW, Nau H, Wittfoht W, Gerlach J, Prescher KE, Klein MM, Niroomand F, Bohme E. Arginine is a physiological precursor of endothelium‐derived nitric oxide. Eur J Pharmacol 154: 213–216, 1988.
 294. Schoenfisch WH, Hoop KA, Struelens BS. Carbon monoxide absorption through the oral and nasal mucosae of cynomolgus monkeys. Arch Environ Health 35: 152–154, 1980.
 295. Schonhoff CM, Gaston B, Mannick JB. Nitrosylation of cytochrome c during apoptosis. J Biol Chem 278: 18265–18270, 2003.
 296. Schumann K, Szegner B, Kohler B, Pfaffi MW, Ettle T. A method to assess (59)Fe in residual tissue blood content in mice and its use to correct (59)Fe‐distribution kinetics accordingly. Toxicology 241: 19–32, 2007.
 297. Scott EE, Gibson QH, Olson JS. Mapping the pathways for O2 entry into and exit from myoglobin. J Biol Chem 276: 5177–5188, 2001.
 298. Scott JR, Gray DK, Bihari A, Badhwar A, Zhang X, Shan P, Lee PJ, Chakrabarti S, Harris KA, Potter RF. Heme oxygenase modulates small intestine leukocyte adhesion following hindlimb ischemia/reperfusion by regulating the expression of intercellular adhesion molecule‐1. Crit Care Med 33: 2563–2570, 2005.
 299. Sekhar KR, Crooks PA, Sonar VN, Friedman DB, Chan JY, Meredith MJ, Starnes JH, Kelton KR, Summar SR, Sasi S, Freeman ML. NADPH oxidaase activity is essential for Keap1/Nrf2‐mediated induction of GCLC in response to 2‐indol‐3‐yl‐methylenequinuclidin‐3‐ols. Cancer Res 63: 5636–5645, 2003.
 300. Senozan NM, DeVore JA, Lesniewski EK. Hemoglobin‐oxygen‐carbon monoxide equilibria with the MWC model. Biophys Chem 75: 141–150, 1998.
 301. Sheps DS, Adams J, Bromberg PA, Goldstein GM, O'neil JJ, Horstman D, Koch G. Lack of effect of low levels of carboxyhemoglobin on cardiovascular function in patients with ischemic heart disease. Arch Environ Health 42: 108–116, 1987.
 302. Sheps DS, Herbst MC, Hinderliter AL, Adams KF, Ekelund LG, O'Neil JJ, Goldstein GM, Bromberg PA, Dalton JL, Ballenger MN, Davis SM, Koch GG. Production of arrhythmias by elevated carboxyhemoglobin in patients with coronary artery disease. Ann Intern Med 113: 343–351, 1990.
 303. Shibahara S, Kitamuro T, Takahashi K. Heme degradation and human disease: Diversity is the soul of life. Antioxid Redox Signal 4: 593–602, 2002.
 304. Shinomura T, Nakao S, Mori K. Reduction of depolarization induced glutamate released by heme oxygenase inhyibitor: Possible role of carbon monoxide in synaptic transmission. Neurosci Lett 166: 131–134, 1994.
 305. Silva CC, Almeida VA, Haibara AS, Johnson RA, Colombari E. Role of carbon monoxide in L‐glutamate‐induced cardiovascular responses in nucleus tractus solitarius of conscious rats. Brain Res 824: 147–152, 1999.
 306. Smith MV, Hazucha MJ, Benignus VA, Bromberg PA. Efect of regional circulation patterns on observed COHb levels. J Appl Physiol 76: 1659–1664, 1994.
 307. Smith TC, Rankin J. Pulmonary diffusing capacity and the capillary bed during Valsalva and Muller maneuvers. J Appl Physiol 27: 826–833, 1969.
 308. Soares MP, Gregoire IP, Vassilevskaia T, Berberat PO, Yu J, Tsui TY, Bach FH. Heme oxygenase‐1 modulates the expression of adhesion molecules associated with endothelial cell activation. J Immunol 172: 3553–3563, 2004.
 309. Sokal JA, Kralkowska E. The relationship between exposure duration, carboxyhemoglobin, blood glucose, pyruvate and lactate and the severity of intoxication in 39 cases of acute carbon monoxide poisoning in man. Arch Toxicol 57: 196–199, 1985.
 310. Sokal JA, Majka J, Palus J. The content of carbon monoxide in the tissues of rats intoxicated with carbon monoxide in various conditions of acute exposure. ArchToxicol 56: 106–108, 1984.
 311. Springer BA, Sligar SG, Olson JS, Phillips GN. Mechanisms of ligand recognition in myoglobin. Chem Rev 94: 699–714, 1994.
 312. Srisook K, Cha YN. Super‐induction of HO‐1 in macrophages stimulated with lipopolysaccharide by prior depletion of glutathione decreases iNOS expression and NO production. Nitric Oxide 12: 70–79, 2005.
 313. Stam H, Kreuzer FJ, Versprille A. Effect of lung volume and positional changes on pulmonary diffusing capacity and its components. J Appl Physiol 71: 1477–1488, 1991.
 314. Stam H, Versprille A, Bogaard JM. The components of the carbon monoxide diffusing capacity in man dependent on alveolar volume. Bull Eur Physiopathol Respir 19: 17–22, 1983.
 315. Steinvil A, Kordova‐Biezuner L, Shapira I, Berliner S, Rogowski O. Short‐term exposure to air pollution and inflammation‐sensitive biomarkers. Environ Res 106: 51–61, 2008.
 316. Stevens CF, Wang Y. Reversal of long‐term potentiation by inhibitors of haem oxygenase. Nature 364: 147–149, 1993.
 317. Stevenson TH, Gutierrez AF, Alderton WK, Lian L, Scrutton NS. Kinetics of CO binding to the haem domain of murine inducible nitric oxide synthase: Differential effects of haem domain ligands. Biochem J 358: 201–208, 2001.
 318. Stewart RD, Fisher TN, Hosko MJ, Peterson JE, Baretta ED, Dodd HC. Experimental human exposure to methylene chloride. Arch Environ Health 25: 342–348, 1972.
 319. Stocker R, Yamamoto Y, McDonagh AF, Glazer AN, Ames BN. Bilirubin is an antioxidant of possible physiological importance. Science 235: 1043–1046, 1987.
 320. Stokes DL, MacIntyre NR, Nadel JA. Nonlinear increases in diffusing capacity during exercise by seated and supine subjects. J Appl Physiol 51: 858–863, 1981.
 321. Stone JR, Marletta MA. Soluble guanylate cyclase from bovine lung: Activation with nitric oxide and carbon monoxide and spectral characterization of the ferrous and ferric states. Biochemistry 33: 5636–5640, 1994.
 322. Suematsu M, Kashiwagi S, Sano T, Goda N, Shinoda Y, Ishimura Y. Carbon monoxide as an endogenous modulator of hepatic vascular perfusion. Biochem Biophys Res Comm 205: 1333–1337, 1994.
 323. Suliman HB, Carraway MS, Tatro LG, Piantadosi CA. A new activating role for CO in cardiac mitochondrial biogenesis. J Cell Sci 120: 299–308, 2007.
 324. Sylvester JT, Scharf SM, Gilbert RD, Fitzgerald RS, Traystman RJ. Hypoxic and CO hypoxia in dogs: Hemodynamics, carotid reflexes, and catecholamines. Am J Physiol 236: H22–H28, 1979.
 325. Taille C, El‐Benna J, Lanone S, Boczkowski J, Motterlini R. Mitochondrial respiratory chain and NAD(P)H oxidase are targets for the antiproliferative effect of carbon monoxide in human airway smooth muscle. J Biol Chem 280: 25350–25360, 2005.
 326. Taylor DJ, Matthews PM, Radda GK. Myoglobin‐dependent oxidative metabolism in the hypoxic rat heart. Respir Physiol 63: 275–283, 1986.
 327. Tenhunen R, Marver HS, Schmid R. The enzymatic conversion of heme to bilirubin by microsomal heme oxygenase. Proc Natl Acad Sci U S A 61: 748–755, 1968.
 328. Tenney SM. A theoretical analysis of the relationship between venous blood and mean tissue oxygen pressures. Respir Physiol 20: 283–296, 1974.
 329. Thom S, Bhopale V, Han S‐T, Clark J, Hardy K. Intravascular neutrophil activation due to carbon monoxide poisoning. Am J Respir Crit Care Med 174: 1239–1248, 2006.
 330. Thom SR, Fisher D, Xu YA, Garner S, Ischiropoulos H. Role of nitric oxide‐derived oxidants in vascular injury from carbon monoxide in the rat. Am J Physiol 276: H984–H992, 1999.
 331. Thom SR, Fisher D, Xu YA, Notarfrancesco K, Ischiropoulos H. Adaptive responses and apoptosis in endothelial cells exposed to carbon monoxide. Proc Natl Acad Sci U S A 97: 1305–1310, 2000.
 332. Thom SR, Ischiropoulos H. Mechanism of oxidative stress from low levels of carbon monoxide. Res Rep Health Eff Inst 80: 1–19; discussion 21–17, 1997.
 333. Thom SR, Ohnishi ST, Fisher D, Xu YA, Ischiropoulos H. Pulmonary vascular stress from carbon monoxide. Toxicol Appl Pharmacol 154: 12–19, 1999.
 334. Thom SR, Ohnishi ST, Ischiropoulos H. Nitric oxide released by platelets inhibits neutrophil B2 integrin function following acute carbon monoxide poisoning. Toxicol Appl Pharmacol 128: 105–110, 1994.
 335. Thom SR, Xu YA, Ischiropoulos H. Vascular endothelial cells generate peroxynitrite in response to carbon monoxide exposure. Chem Res Toxicol 10: 1023–1031, 1997.
 336. Thorup C, Jones CL, Gross SS, Moore LC, Goligorsky MS. Carbon monoxide induces vasodilation and nitric oxide release but suppresses endothelial NOS. Am J Physiol 277: F882–F889, 1999.
 337. Tikuisis P, Buick F, Kane DM. Percent carboxyhemoglobin in resting humans exposed repeatedly to 1,500 and 7,500 ppm CO. J Appl Physiol 63: 820–827, 1987.
 338. Tikuisis P, Kane DM, McLellan TM, Buick F, Fairburn SM. Rate of formation of carboxyhemoglobin in exercising humans exposed to carbon monoxide. J Appl Physiol 72: 1311–1320, 1992.
 339. Tikuisis P, Madill HD, Gill BJ, Lewis WF, Cox KM, Kane DM. A critical analysis of the use of the CFK equation in predicting COHb formation. Am Ind Hyg Assoc J 48: 208–213, 1987.
 340. Tobias CA, Lawrence FJ, Roughton FJ, Root WS, Gregersen MI. The elimination of carbon monoxide from the human body with reference to the possible conversion of CO to CO2. Am J Physiol 145: 253–263, 1945.
 341. Traystman RJ, Fitzgerald RS, Loscutoff SC. Cerebral circulatory responses to arterial hypoxia in normal and chemodenervated dogs. Circ Res 42: 649–657, 1978.
 342. Tyuma I, Ueda Y, Imaizumi K, Kosaka H. Prediction of the carbonmonoxyhemoglobin levels during and after carbon monoxide exposures in various animal species. Jpn J Physiol 31: 131–143, 1981.
 343. Urquhart P, Rosignoli G, Cooper D, Motterlini R, Perretti M. Carbon monoxide‐releasing molecules modulate leukocyte‐endothelial interactions under flow. J Pharmacol Exp Ther 321: 656–662, 2007.
 344. Utz J, Ullrich V. Carbon monoxide relaxes ileal smooth muscle through activation of guanylate cyclase. Biochem Pharmacol 41: 1195–1201, 1991.
 345. Vallone B, Nienhaus K, Matthes A, Brunori M, Nienhaus GU. The structure of carbonmonoxy neuroglobin reveals a heme‐sliding mechanism for control of ligand affinity. Proc Natl Acad Sci U S A 101: 17351–17356, 2004.
 346. Verma A, Hirsch DJ, Glatt CE, Ronnett GV, Snyder SH. Carbon monoxide: A putative neural messenger. Science 259: 381–309, 1993.
 347. Vesely AE, Somogyi RB, Sasano H, Sasano N, Fisher JA, Duffin J. The effects of carbon monoxide on respiratory chemoreflexes in humans. Environ Res 94: 227–233, 2004.
 348. Viegi G, Baldi S, Begliomini E, Ferdeghini EM, Pistelli F. Single breath diffusing capacity for carbon monoxide: Effects of adjustment for inspired volume dead space, carbon dioxide, hemoglobin and carboxyhemoglobin. Respiration 65: 56–62, 1998.
 349. Viegi G, Paoletti P, Prediletto R, Di Pede F, Carrozzi L, Carmignani G, Mammini U, Lebowitz MD, Giuntini C. Carbon monoxide diffusing capacity, other indices of lung function, and respiratory symptoms in a general population sample. Am Rev Respir Dis 141: 1033–1039, 1990.
 350. Vile GF, Basu‐Modak S, Waltner C, Tyrrell RM. Heme oxygenase 1 mediates an adaptive response to oxidative stress in human skin fibroblasts. Proc Natl Acad Sci U S A 91: 2607–2610, 1994.
 351. Vile GF, Tyrrell RM. Oxidative stress resulting from ultraviolet A irradiation of human skin fibroblasts leads to a heme oxygenase‐dependent increase in ferritin. J Biol Chem 268: 14678–14681, 1993.
 352. Vincent SR, Das S, Maines MD. Brain heme oxygenase isoenzymes and nitric oxide synthase are co‐localized in select neurons. Neuroscience 63: 223–231, 1994.
 353. Vlasova II, Tyurin VA, Kapralov AA, Kurnikov IV, Osipov AN, Potapovich MV, Stoyanovsky DA, Kagan VE. Nitric oxide inhibits peroxidase activity of cytochrome c.cardiolipin complex and blocks cardiolipin oxidation. J Biol Chem 281: 14554–14562, 2006.
 354. Vreman HJ, Stevenson DK, Henton D, Rosenthal P. Correlation of carbon monoxide and bilirubin production by tissue homogenates. J Chromatogr 427: 315–319, 1988.
 355. Vreman HJ, Wong CM, Kadotani T, Stevenson DK. Determiantion of carbon monoxide (CO) in rodent tissue: Effect of heme administration and environmental CO exposure. Anal Biochem 341: 280–289, 2005.
 356. Vreman HJ, Wong RJ, Stevenson DK, Smialek JE, Fowler DR, Li L, Vigorito RD, Zielke HR. Concentration of carbon monoxide (CO) in postmortem human tissues: Effect of environmental CO exposure. J Forensic Sci 51: 1182–1190, 2006.
 357. Wagner JA, Horvath SM, Dahms TE. Carbon monoxide elimination. Respir Physiol 23: 41–47, 1975.
 358. Wang R. Resurgence of carbon monoxide: An endogenous gaseous vasorelaxing factor. Can J Physiol Pharmacol 76: 1–15, 1998.
 359. Wang R. Two's company, three's a crowd: Can H2S be the third endogenous gaseous transmitter? FASEB J 16: 1792–1798, 2002.
 360. Wang R, Wang Z, Wu L. Carbon monoxide‐induced vasorelaxation and the underlying mechanisms. Br J Pharmacol 121: 927–934, 1997.
 361. Wang R, Wu L. The chemical modification of KCa channels by carbon monoxide in vascular smooth muscle cells. J Biol Chem 272: 8222–8226, 1997.
 362. Wang R, Wu L, Wang Z. The direct effect of carbon monoxide on KCa channels in vascular smooth muscle cells. Pflugers Arch Eur J Physiol 434: 285–291, 1997.
 363. Wang X, Wang Y, Kim HP, Nakahira K, Ryter SW, Choi AM. Carbon monoxide protects against hyperoxia‐induced endothelial cell apoptosis by inhibiting reactive oxygen species formation. J Biol Chem 282: 1718–1726, 2007.
 364. Weaver L, Howe S, Hopkins R, Chan K. Carboxyhemoglobin half‐life in carbon monoxide‐poisoned patients treated with 100% oxygen at atmospheric pressure. Chest 117: 801–808, 2000.
 365. Weibel ER. Morphometric estimation of pulmonary diffusion capacity. I. Model and method. Respir Physiol 11: 54–75, 1970.
 366. Weir FW, Viano DC. Prediction of carboxyhemoglobin concentration from transient carbon monoxide exposure. Aviat Space Environ Med 48: 1076–1080, 1977.
 367. Weiss HR, Cohen JA. Effects of low levels of carbon monoxide on rat brain and muscle tissue Po2. Environ Physiol Biochem 4: 31–39, 1974.
 368. White RE, Coon MJ. Oxygen activation by cytochrome P450. Ann Rev Physiol 48: 325–340, 1980.
 369. Williams SE, Wootton P, Mason HS, Bould J, Iles DE, Riccardi D, Peers C, Kemp PJ. Hemoxygenase‐2 is an oxygen sensor for a calcium‐sensitive potassium channel. Science 306: 2093–2097, 2004.
 370. Wittenberg BA, Wittenberg JB. Myoglobin‐mediated oxygen delivery to mitochondria of isolated cardiac myocytes. Proc Natl Acad Sci U S A 84: 7503–7507, 1987.
 371. Wittenberg JB. Myoglobin‐facilitated oxygen diffusion: Role of myoglobin in oxygen entry into muscle. Physiol Rev 50: 559–636, 1970.
 372. Woo CH, Masset MP, Sgishido T, Itoh S, Ding B, McClain C, Che W, Vulapalli S, Yan C, Abe J. ERK5 activation inhibits inflammatory responses via peroxisome proliferator‐activated receptor delta (PPAR‐delta) stimulation. J Biol Chem 281: 32164–32174, 2006.
 373. Wu L, Cao K, Lu Y, Wang R. Different mechanisms underlying the stimulation of K(Ca) channels by nitric oxide and carbon monoxide. J Clin Invest 110: 691–700, 2002.
 374. Wunder C, Potter RF. The heme oxygenase system: Its role in liver inflammation. Curr Drug Targets Cardiovasc Haematol Disord 3: 199–208, 2003.
 375. Wunderlich C, Flogel U, Godecke A, Heger J, Schrader J. Acute inhibition of myoglobin impairs contractility and energy state in iNOS‐overexpressing hearts. Circ Res 92: 1352–1358, 2003.
 376. Wyman J, Bishop G, Richey B, Spokane R, Gill S. Examination of Haldane's first law for the partition of CO and O2 to hemoglobin A0. Biopolymers 21: 1735–1747, 1982.
 377. Xu W, Liu L, Charles IG, Moncada S. Nitric oxide induces coupling of mitochondrial signalling with the endoplasmic reticulum stress response. Nat Cell Biol 6: 1129–1134, 2004.
 378. Yamaguchi K, Mori M, Kawai A, Yokoyama T. Influences of carbon monoxide on the binding of oxygen, carbon dioxide, proton and 2,3‐diphosphoglycerate to human hemoglobin. Adv Exp Med Biol 222: 299–307, 1988.
 379. Yamanaka M, Yamabe K, Saitoh Y, Katoh‐Semba R, Semba R. Immunohistochemical localization of heme oxygenase‐2 in the rat cerebellum. Neurosci Lett 24: 403–407, 1996.
 380. Young LJ, Caughey WS. Mitochondrial oxygenation of carbon monoxide. BiochemJ 239: 225–227, 1986.
 381. Zakhary R, Gaine SP, Dinerman JL, Ruat M, Flavahan NA, Snyder SH. Heme oxygenase 2: Endothelial and neuronal localization and role in endothelium‐dependent relaxation. Proc Natl Acad Sci U S A 93: 795–798, 1996.
 382. Zakhary R, Poss KD, Jaffrey SR, Ferris CD, Tonegawa S, Snyder SH. Targeted gene deletion of heme oxygenase 2 reveals neural role for carbon monoxide. Proc Natl Acad Sci U S A 94: 14848–14853, 1997.
 383. Zemojtel T, Scheele JS, Martasek P, Masters BS, Sharma VS, Magde D. Role of the interdomain linker probed by kinetics of CO ligation to an endothelial nitric oxide synthase mutant lacking the calmodulin binding peptide (residues 503‐517 in bovine). Biochemistry 42: 6500–6506, 2003.
 384. Zhang J, Piantadosi CA. Mitochondrial oxidative stress after carbon monoxide hypoxia in the rat brain. J Clin Invest 90: 1193–1199, 1992.
 385. Zhang X, Shan P, Alam J, Fu XY, Lee PJ. Carbon monoxide differentially modulates STAT1 and STAT3 and inhibits apoptosis via a phosphatidylinositol 3‐kinase/Akt and p38 kinase‐dependent STAT3 pathway during anoxia‐reoxygenation injury. J Biol Chem 280: 8714–8721, 2005.
 386. Zhang X, Shan P, Alam JR, Davis J, Flavell RA, Lee PJ. Carbon monoxide modulates Fas/Fas ligand, caspases, and Bcl‐2 family proteins via the p38alpha mitogen‐activated protein kinase pathway during ischemia‐reperfusion lung injury. J Biol Chem 278: 22061–22070, 2003.
 387. Zhang X, Shan P, Jiang G, Zhang S, Otterein LE, Fu X, Lee P. Endothelial STAT3 is essential for the protective effecgs of HO‐1 in oxidant‐induced lung injury. FASEB J 20: 2156–2158, 2006.
 388. Zhang X, Shan P, Otterbein LE, Alam J, Flavell RA, Davis RJ, Choi AM, Lee PJ. Carbon monoxide inhibition of apoptosis during ischemia‐reperfusion lung injury is dependent on the p38 mitogen‐activated protein kinase pathway and involves caspase 3. J Biol Chem 278: 1248–1258, 2003.
 389. Zhuo M, Small SA, Kandel ER, Hawkins RD. Nitric oxide and carbon monoxide produce activity‐dependent long‐term synaptic enhancement in hippocampus. Science 260: 1946–1950, 1993.
 390. Zorn H. The partial oxygen pressure in the brain and liver at subtoxic concentrations of carbon monoxide. Staub‐Rein‐Hal Luft 32: 24–29, 1972.
 391. Zuckerbraun BS, Billiar T, Otterbein SL, Kim PKM, Liu F, Choi AM, Bach FH, Otterbein L. Carbon monoxide protects against liver failure through nitric oxide‐induced heme oxygenase 1. J Exp Med 198: 1707–1716, 2003.
 392. Zufall F, Leinders‐Zufall T. Identification of a long‐lasting form of odor adaptation that depends on the carbon monoxide/cGMP second messenger system. J Neurosci 17: 2703–2712, 1997.

Related Articles:

Determinants of Pulmonary Blood Flow Distribution
Spatial Distribution of Ventilation and Perfusion: Mechanisms and Regulation

Contact Editor

Submit a note to the editor about this article by filling in the form below.

* Required Field

How to Cite

Stephen R. Thom. Carbon Monoxide Transport and Actions in Blood and Tissues. Compr Physiol 2011, 1: 421-446. doi: 10.1002/cphy.c091005