Comprehensive Physiology Wiley Online Library

Experimental and Transgenic Models of Pulmonary Hypertension

Full Article on Wiley Online Library



Abstract

Pulmonary hypertension in human patients can result from increased pulmonary vascular tone, pressure transferred from the systemic circulation, dropout of small pulmonary vessels, occlusion of vessels with thrombi or intimal lesions, or some combination of all of these. Different animal models have been designed to reflect these different mechanistic origins of disease. Pulmonary hypertension models may be roughly grouped into tone‐related models, inflammation‐related models, and genetic models with unusual or mixed mechanism. Models of tone generally use hypoxia as a base, and then modify this with either genetic modifications (SOD, NOS, and caveolin) or with drugs (Sugen), although some genetic modifications of tone‐related pathways can result in spontaneous pulmonary hypertension (Hph‐1). Inflammation‐related models can use either toxic chemicals (monocrotaline, bleomycin), live pathogens (stachybotrys, schistosomiasis), or genetic modifications (IL‐6, VIP). Additional genetic models rely on alterations in metabolism (adiponectin), cell migration (S100A4), the serotonin pathway, or the BMP pathway. While each of these shares molecular and pathologic symptoms with different classes of human pulmonary hypertension, in most cases the molecular etiology of human pulmonary hypertension is unknown, and so the relationship between any model and human disease is unclear. There is thus no best animal model of pulmonary hypertension; instead, investigators must select the model most related to the specific pathology they are studying. © 2011 American Physiological Society. Compr Physiol 1:769‐782, 2011.

Comprehensive Physiology offers downloadable PowerPoint presentations of figures for non-profit, educational use, provided the content is not modified and full credit is given to the author and publication.

Download a PowerPoint presentation of all images


Figure 1. Figure 1.

Primary sources of increased pulmonary vascular resistance. Smooth muscle cells are color‐coded green, endothelium red, and cells of mixed or unknown origin yellow, with nucleii blue (A) normal murine pulmonary arteries lack adventitia, and elastic lamina is generally not visible without specific staining. Vessels below 25 μm in size are rarely muscularized; about one‐third of vessels in the range of 25 to 75 μm in size are muscularized. With partially muscularized vessels, smooth muscle is wrapped in a helix around the length of a vessel, and thus appears to leave part of the vessel uncovered in cross‐section. (B) Relatively mild constriction, in terms of % reduction in radius (r), can lead to much more dramatic increases in pulmonary vascular resistance and shear stress. Since area changes as r2 and shear stress changes inversely with r4, a 30% decrease in area results in a 2‐fold decrease in vessel area and a 4‐fold increase in shear stress. (C) Remodeling in response to sustained high pressure or inflammatory insults results in hypertrophy of existing smooth muscle, and increased muscularization either through migration, transdifferentiation, or proliferation (this is not settled in the literature). In addition, vessels are stiffened through deposition of additional matrix; this is difficult to see in muring pulmonary vessels, but may result in increased dynamic resistance through loss of compliance to pressure waves. (D) Vessels may also be obstructed through thrombus formation (not shown) or through accumulation of cells in the intima or lumen. These cells may arise through proliferation, transdifferentiation and migration, or recruitment of circulating cells—the relative importance of these mechanisms is an area of ongoing study.

Figure 2. Figure 2.

Shunt exposes the pulmonary vasculature to increased flow and consequent shear stress. This causes endothelial damage, with resulting inflammation, conventional remodeling, and possible intimal lesions through failed attempts at angiogenesis.

Figure 3. Figure 3.

Pulmonary hypertension can be driven primarily by vasoconstriction, due to hypoxic vasoconstriction or alteration in factors that directly regulate tone, such as endothelin, nitric oxide, or nitric‐oxide pathway genes. In these models, sustained constriction leads to increased pressure and shear stress, resulting in inflammation, conventional remodeling, and in extreme cases formation of intimal lesions.

Figure 4. Figure 4.

The pulmonary vasculature responds to damage or chronic inflammation through initiating a program of remodeling, including hypertrophy, neomuscularization, and under some conditions creation of intimal lesions. In these cases, increased RVSP may not develop until the remodeling program is far advanced.

Figure 5. Figure 5.

Normal response‐to‐acute vascular injury includes cellular shift to a synthetic state, with altered metabolism, to support proliferation coupled with changes in actin organization to allow migration and recruitment of inflammatory cells. Mutations in genes directing these pathways (depicted in colors) result in a pathologic inability to properly terminate or direct these processes, leading to loss of vessel patency and pulmonary hypertension.



Figure 1.

Primary sources of increased pulmonary vascular resistance. Smooth muscle cells are color‐coded green, endothelium red, and cells of mixed or unknown origin yellow, with nucleii blue (A) normal murine pulmonary arteries lack adventitia, and elastic lamina is generally not visible without specific staining. Vessels below 25 μm in size are rarely muscularized; about one‐third of vessels in the range of 25 to 75 μm in size are muscularized. With partially muscularized vessels, smooth muscle is wrapped in a helix around the length of a vessel, and thus appears to leave part of the vessel uncovered in cross‐section. (B) Relatively mild constriction, in terms of % reduction in radius (r), can lead to much more dramatic increases in pulmonary vascular resistance and shear stress. Since area changes as r2 and shear stress changes inversely with r4, a 30% decrease in area results in a 2‐fold decrease in vessel area and a 4‐fold increase in shear stress. (C) Remodeling in response to sustained high pressure or inflammatory insults results in hypertrophy of existing smooth muscle, and increased muscularization either through migration, transdifferentiation, or proliferation (this is not settled in the literature). In addition, vessels are stiffened through deposition of additional matrix; this is difficult to see in muring pulmonary vessels, but may result in increased dynamic resistance through loss of compliance to pressure waves. (D) Vessels may also be obstructed through thrombus formation (not shown) or through accumulation of cells in the intima or lumen. These cells may arise through proliferation, transdifferentiation and migration, or recruitment of circulating cells—the relative importance of these mechanisms is an area of ongoing study.



Figure 2.

Shunt exposes the pulmonary vasculature to increased flow and consequent shear stress. This causes endothelial damage, with resulting inflammation, conventional remodeling, and possible intimal lesions through failed attempts at angiogenesis.



Figure 3.

Pulmonary hypertension can be driven primarily by vasoconstriction, due to hypoxic vasoconstriction or alteration in factors that directly regulate tone, such as endothelin, nitric oxide, or nitric‐oxide pathway genes. In these models, sustained constriction leads to increased pressure and shear stress, resulting in inflammation, conventional remodeling, and in extreme cases formation of intimal lesions.



Figure 4.

The pulmonary vasculature responds to damage or chronic inflammation through initiating a program of remodeling, including hypertrophy, neomuscularization, and under some conditions creation of intimal lesions. In these cases, increased RVSP may not develop until the remodeling program is far advanced.



Figure 5.

Normal response‐to‐acute vascular injury includes cellular shift to a synthetic state, with altered metabolism, to support proliferation coupled with changes in actin organization to allow migration and recruitment of inflammatory cells. Mutations in genes directing these pathways (depicted in colors) result in a pathologic inability to properly terminate or direct these processes, leading to loss of vessel patency and pulmonary hypertension.

References
 1. Abe K, Toba M, Alzoubi A, Ito M, Fagan KA, Cool CD, Voelkel NF, McMurtry IF, Oka M. Formation of plexiform lesions in experimental severe pulmonary arterial hypertension. Circulation 121: 2747–2754, 2010.
 2. Affolter M, Basler K. The Decapentaplegic morphogen gradient: From pattern formation to growth regulation. Nat Rev Genet 8: 663–674, 2007.
 3. Aicher A, Heeschen C, Mildner‐Rihm C, Urbich C, Ihling C, Technau‐Ihling K, Zeiher AM, Dimmeler S. Essential role of endothelial nitric oxide synthase for mobilization of stem and progenitor cells. Nat Med 9: 1370–1376, 2003.
 4. Aldred MA, Vijayakrishnan J, James V, Soubrier F, Gomez‐Sanchez MA, Martensson G, Galie N, Manes A, Corris P, Simonneau G, Humbert M, Morrell NW, Trembath RC. BMPR2 gene rearrangements account for a significant proportion of mutations in familial and idiopathic pulmonary arterial hypertension. Hum Mutat 27: 212–213, 2006.
 5. Alexander AF, Will DH, Grover RF, Reeves JT. Pulmonary hypertention and right ventricular hypertrophy in cattle at high altitude. Am J Vet Res 21: 199–204, 1960.
 6. Ambartsumian N, Klingelhofer J, Grigorian M, Christensen C, Kriajevska M, Tulchinsky E, Georgiev G, Berezin V, Bock E, Rygaard J, Cao R, Cao Y, Lukanidin E. The metastasis‐associated Mts1(S100A4) protein could act as an angiogenic factor. Oncogene 20: 4685–4695, 2001.
 7. Amiri F, Virdis A, Neves MF, Iglarz M, Seidah NG, Touyz RM, Reudelhuber TL, Schiffrin EL. Endothelium‐restricted overexpression of human endothelin‐1 causes vascular remodeling and endothelial dysfunction. Circulation 110: 2233–2240, 2004.
 8. Anderson L, Lowery JW, Frank DB, Novitskaya T, Jones M, Mortlock DP, Chandler RL, de Caestecker MP. Bmp2 and Bmp4 exert opposing effects in hypoxic pulmonary hypertension. Am J Physiol Regul Integr Comp Physiol 298(3): R833‐842, 2010.
 9. Arita Y, Kihara S, Ouchi N, Takahashi M, Maeda K, Miyagawa J, Hotta K, Shimomura I, Nakamura T, Miyaoka K, Kuriyama H, Nishida M, Yamashita S, Okubo K, Matsubara K, Muraguchi M, Ohmoto Y, Funahashi T, Matsuzawa Y. Paradoxical decrease of an adipose‐specific protein, adiponectin, in obesity. Biochem Biophys Res Commun 257: 79–83, 1999.
 10. Arranz A, Abad C, Juarranz Y, Leceta J, Martinez C, Gomariz RP. Vasoactive intestinal peptide as a healing mediator in Crohn's disease. Neuroimmunomodulation 15: 46–53, 2008.
 11. Asano T, Watanabe K, Kubota N, Gunji T, Omata M, Kadowaki T, Ohnishi S. Adiponectin knockout mice on high fat diet develop fibrosing steatohepatitis. J Gastroenterol Hepatol 24: 1669–1676, 2009.
 12. Aton SJ, Colwell CS, Harmar AJ, Waschek J, Herzog ED. Vasoactive intestinal polypeptide mediates circadian rhythmicity and synchrony in mammalian clock neurons. Nat Neurosci 8: 476–483, 2005.
 13. Austin ED, Loyd JE, Phillips JA, III. Genetics of pulmonary arterial hypertension. Semin Respir Crit Care Med 30: 386–398, 2009.
 14. Balabanian K, Foussat A, Dorfmuller P, Durand‐Gasselin I, Capel F, Bouchet‐Delbos L, Portier A, Marfaing‐Koka A, Krzysiek R, Rimaniol AC, Simonneau G, Emilie D, Humbert M. CX(3)C chemokine fractalkine in pulmonary arterial hypertension. Am J Respir Crit Care Med 165: 1419–1425, 2002.
 15. Barbosa MM, Lamounier JA, Oliveira EC, Souza MV, Marques DS, Silva AA, Lambertucci JR. Pulmonary hypertension in schistosomiasis mansoni. Trans R Soc Trop Med Hyg 90: 663–665, 1996.
 16. Beppu H, Ichinose F, Kawai N, Jones RC, Yu PB, Zapol WM, Miyazono K, Li E, Bloch KD. BMPR‐II heterozygous mice have mild pulmonary hypertension and an impaired pulmonary vascular remodeling response to prolonged hypoxia. Am J Physiol Lung Cell Mol Physiol 287: L1241–1247, 2004.
 17. Beppu H, Kawabata M, Hamamoto T, Chytil A, Minowa O, Noda T, Miyazono K. BMP type II receptor is required for gastrulation and early development of mouse embryos. Dev Biol 221: 249–258, 2000.
 18. Black SM, Fineman JR, Steinhorn RH, Bristow J, Soifer SJ. Increased endothelial NOS in lambs with increased pulmonary blood flow and pulmonary hypertension. Am J Physiol 275: H1643–H1651, 1998.
 19. Boelsterli UA, Hsiao CJ. The heterozygous Sod2(+/−) mouse: Modeling the mitochondrial role in drug toxicity. Drug Discov Today 13: 982–988, 2008.
 20. Bousamra M II, Rossi R, Jacobs E, Parviz M, Busch C, Nelin LD, Haworth S, Dawson CA. Systemic lobar shunting induces advanced pulmonary vasculopathy. J Thorac Cardiovasc Surg 120: 88–98, 2000.
 21. Boye K, Maelandsmo GM. S100A4 and metastasis: A small actor playing many roles. Am J Pathol 176(2): 528‐35, 2010.
 22. Bozzini C, Olivera MI, Huygens P, Alippi RM, Bozzini CE. Long‐term exposure to hypobaric hypoxia in rat affects femur cross‐sectional geometry and bone tissue material properties. Ann Anat 191: 212–217, 2009.
 23. Burke DL, Frid MG, Kunrath CL, Karoor V, Anwar A, Wagner BD, Strassheim D, Stenmark KR Sustained hypoxia promotes the development of a pulmonary artery specific chronic inflammatory microenvironment. Am J Physiol Lung Cell Mol Physiol 297(2): L238–250, 2009.
 24. Casey DB, Badejo AM, Dhaliwal JS, Sikora JL, Fokin A, Golwala NH, Greco AJ, Murthy SN, Nossaman BD, Hyman AL, Kadowitz PJ. Analysis of responses to the Rho‐kinase inhibitor Y‐27632 in the pulmonary and systemic vascular bed of the rat. Am J Physiol Heart Circ Physiol 299: H184–H192, 2010.
 25. Chaiswing L, Cole MP, Ittarat W, Szweda LI, St Clair DK, Oberley TD. Manganese superoxide dismutase and inducible nitric oxide synthase modify early oxidative events in acute adriamycin‐induced mitochondrial toxicity. Mol Cancer Ther 4: 1056–1064, 2005.
 26. Chaouat A, Savale L, Chouaid C, Tu L, Sztrymf B, Canuet M, Maitre B, Housset B, Brandt C, Le Corvoisier P, Weitzenblum E, Eddahibi S, Adnot S. Role for interleukin‐6 in COPD‐related pulmonary hypertension. Chest 136: 678–687, 2009.
 27. Clouthier DE, Hosoda K, Richardson JA, Williams SC, Yanagisawa H, Kuwaki T, Kumada M, Hammer RE, Yanagisawa M. Cranial and cardiac neural crest defects in endothelin‐A receptor‐deficient mice. Development 125: 813–824, 1998.
 28. Copple BL, Ganey PE, Roth RA. Liver inflammation during monocrotaline hepatotoxicity. Toxicology 190: 155–169, 2003.
 29. Crona D, Harral J, Adnot S, Eddahibi S, West J. Gene expression in lungs of mice lacking the 5‐hydroxytryptamine transporter gene. BMC Pulm Med 9: 19, 2009.
 30. Crosby A, Jones FM, Southwood M, Stewart S, Schermuly R, Butrous G, Dunne DW, Morrell NW. Pulmonary vascular remodeling correlates with lung eggs and cytokines in murine schistosomiasis. Am J Respir Crit Care Med 181(3): 279–288, 2010.
 31. Cuifen Z, Lijuan W, Li G, Wei X, Zhiyu W, Fuhai L. Changes and distributions of peptides derived from proadrenomedullin in left‐to‐right shunt pulmonary hypertension of rats. Circ J 72: 476–481, 2008.
 32. Daley E, Emson C, Guignabert C, de Waal Malefyt R, Louten J, Kurup VP, Hogaboam C, Taraseviciene‐Stewart L, Voelkel NF, Rabinovitch M, Grunig E, Grunig G. Pulmonary arterial remodeling induced by a Th2 immune response. J Exp Med 205: 361–372, 2008.
 33. Davidson MB, Aoki VS. Fasting glucose homeostasis in rats after chronic exposure to hypoxia. Am J Physiol 219: 378–383, 1970.
 34. Davies MP, Rudland PS, Robertson L, Parry EW, Jolicoeur P, Barraclough R. Expression of the calcium‐binding protein S100A4 (p9Ka) in MMTV‐neu transgenic mice induces metastasis of mammary tumours. Oncogene 13: 1631–1637, 1996.
 35. De Canniere D, Stefanidis C, Brimioulle S, Naeije R. Effects of a chronic aortopulmonary shunt on pulmonary hemodynamics in piglets. J Appl Physiol 77: 1591–1596, 1994.
 36. Debonneuil EH, Quillard J, Baulieu EE. Hypoxia and dehydroepiandrosterone in old age: A mouse survival study. Respir Res 7: 144, 2006.
 37. Degano B, Guillaume M, Savale L, Montani D, Jais X, Yaici A, Le Pavec J, Humbert M, Simonneau G, Sitbon O. HIV‐associated pulmonary arterial hypertension: Survival and prognostic factors in the modern therapeutic era. AIDS 24: 67–75.
 38. Delgado M, Ganea D. Anti‐inflammatory neuropeptides: A new class of endogenous immunoregulatory agents. Brain Behav Immun 22: 1146–1151, 2008.
 39. Delot EC, Bahamonde ME, Zhao M, Lyons KM. BMP signaling is required for septation of the outflow tract of the mammalian heart. Development 130: 209–220, 2003.
 40. Dempsie Y, Morecroft I, Welsh DJ, MacRitchie NA, Herold N, Loughlin L, Nilsen M, Peacock AJ, Harmar A, Bader M, MacLean MR. Converging evidence in support of the serotonin hypothesis of dexfenfluramine‐induced pulmonary hypertension with novel transgenic mice. Circulation 117: 2928–2937, 2008.
 41. Diaz‐Guzman E, Farver C, Parambil J, Culver DA. Pulmonary hypertension caused by sarcoidosis. Clin Chest Med 29: 549–563, x, 2008.
 42. Donn R, Berry A, Stevens A, Farrow S, Betts J, Stevens R, Clayton C, Wang J, Warnock L, Worthington J, Scott L, Graham S, Ray D. Use of gene expression profiling to identify a novel glucocorticoid sensitivity determining gene, BMPRII. FASEB J 21: 402–414, 2007.
 43. Drab M, Verkade P, Elger M, Kasper M, Lohn M, Lauterbach B, Menne J, Lindschau C, Mende F, Luft FC, Schedl A, Haller H, Kurzchalia TV. Loss of caveolae, vascular dysfunction, and pulmonary defects in caveolin‐1 gene‐disrupted mice. Science 293: 2449–2452, 2001.
 44. Dumitrascu R, Koebrich S, Dony E, Weissmann N, Savai R, Pullamsetti SS, Ghofrani HA, Samidurai A, Traupe H, Seeger W, Grimminger F, Schermuly RT. Characterization of a murine model of monocrotaline pyrrole‐induced acute lung injury. BMC Pulm Med 8: 25, 2008.
 45. Dunn NR, Winnier GE, Hargett LK, Schrick JJ, Fogo AB, Hogan BL. Haploinsufficient phenotypes in Bmp4 heterozygous null mice and modification by mutations in Gli3 and Alx4. Dev Biol 188: 235–247, 1997.
 46. Dyck DJ. Adipokines as regulators of muscle metabolism and insulin sensitivity. Appl Physiol Nutr Metab 34: 396–402, 2009.
 47. Eddahibi S, Hanoun N, Lanfumey L, Lesch KP, Raffestin B, Hamon M, Adnot S. Attenuated hypoxic pulmonary hypertension in mice lacking the 5‐hydroxytryptamine transporter gene. J Clin Invest 105: 1555–1562, 2000.
 48. Fagan KA, Badesch DB. Pulmonary hypertension associated with connective tissue disease. Prog Cardiovasc Dis 45: 225–234, 2002.
 49. Fagan KA, McMurtry I, Rodman DM. Nitric oxide synthase in pulmonary hypertension: Lessons from knockout mice. Physiol Res 49: 539–548, 2000.
 50. Fagan KA, Tyler RC, Sato K, Fouty BW, Morris KG, Jr., Huang PL, McMurtry IF, Rodman DM. Relative contributions of endothelial, inducible, and neuronal NOS to tone in the murine pulmonary circulation. Am J Physiol 277: L472–L478, 1999.
 51. Fasules JW, Tryka F, Chipman CW, Van Devanter SH. Pulmonary hypertension and arterial changes in calves with a systemic‐to‐left pulmonary artery connection. J Appl Physiol 77: 867–875, 1994.
 52. Firth AL, Yuan JX. Bringing down the ROS: A new therapeutic approach for PPHN. Am J Physiol Lung Cell Mol Physiol 295: L976–L978, 2008.
 53. Frank DB, Abtahi A, Yamaguchi DJ, Manning S, Shyr Y, Pozzi A, Baldwin HS, Johnson JE, de Caestecker MP. Bone morphogenetic protein 4 promotes pulmonary vascular remodeling in hypoxic pulmonary hypertension. Circ Res 97: 496–504, 2005.
 54. Frank DB, Lowery J, Anderson L, Brink M, Reese J, de Caestecker M. Increased susceptibility to hypoxic pulmonary hypertension in Bmpr2 mutant mice is associated with endothelial dysfunction in the pulmonary vasculature. Am J Physiol Lung Cell Mol Physiol 294: L98–L109, 2008.
 55. Fujimura M, Morita‐Fujimura Y, Noshita N, Sugawara T, Kawase M, Chan PH. The cytosolic antioxidant copper/zinc‐superoxide dismutase prevents the early release of mitochondrial cytochrome c in ischemic brain after transient focal cerebral ischemia in mice. J Neurosci 20: 2817–2824, 2000.
 56. Fujita M, Mason RJ, Cool C, Shannon JM, Hara N, Fagan KA. Pulmonary hypertension in TNF‐alpha‐overexpressing mice is associated with decreased VEGF gene expression. J Appl Physiol 93: 2162–2170, 2002.
 57. Golembeski SM, West J, Tada Y, Fagan KA. Interleukin‐6 causes mild pulmonary hypertension and augments hypoxia‐induced pulmonary hypertension in mice. Chest 128: 572S–573S, 2005.
 58. Goto H, Nishikawa T, Sonoda K, Kondo T, Kukidome D, Fujisawa K, Yamashiro T, Motoshima H, Matsumura T, Tsuruzoe K, Araki E. Endothelial MnSOD overexpression prevents retinal VEGF expression in diabetic mice. Biochem Biophys Res Commun 366: 814–820, 2008.
 59. Gozes I. VIP, from gene to behavior and back: Summarizing my 25 years of research. J Mol Neurosci 36: 115–124, 2008.
 60. Greenway S, van Suylen RJ, Du Marchie Sarvaas G, Kwan E, Ambartsumian N, Lukanidin E, Rabinovitch M. S100A4/Mts1 produces murine pulmonary artery changes resembling plexogenic arteriopathy and is increased in human plexogenic arteriopathy. Am J Pathol 164: 253–262, 2004.
 61. Guignabert C, Izikki M, Tu LI, Li Z, Zadigue P, Barlier‐Mur AM, Hanoun N, Rodman D, Hamon M, Adnot S, Eddahibi S. Transgenic mice overexpressing the 5‐hydroxytryptamine transporter gene in smooth muscle develop pulmonary hypertension. Circ Res 98: 1323–1330, 2006.
 62. Hagen M, Fagan K, Steudel W, Carr M, Lane K, Rodman DM, West J. Interaction of interleukin‐6 and the BMP pathway in pulmonary smooth muscle. Am J Physiol Lung Cell Mol Physiol 292: L1473–1479, 2007.
 63. Hampl V, Herget J. Role of nitric oxide in the pathogenesis of chronic pulmonary hypertension. Physiol Rev 80: 1337–1372, 2000.
 64. Han RN, Babaei S, Robb M, Lee T, Ridsdale R, Ackerley C, Post M, Stewart DJ. Defective lung vascular development and fatal respiratory distress in endothelial NO synthase‐deficient mice: A model of alveolar capillary dysplasia? Circ Res 94: 1115–1123, 2004.
 65. Hassoun PM. Pulmonary arterial hypertension complicating connective tissue diseases. Semin Respir Crit Care Med 30: 429–439, 2009.
 66. Hemnes AR, Zaiman A, Champion HC. PDE5A inhibition attenuates bleomycin‐induced pulmonary fibrosis and pulmonary hypertension through inhibition of ROS generation and RhoA/Rho kinase activation. Am J Physiol Lung Cell Mol Physiol 294: L24–L33, 2008.
 67. Hong KH, Lee YJ, Lee E, Park SO, Han C, Beppu H, Li E, Raizada MK, Bloch KD, Oh SP. Genetic ablation of the BMPR2 gene in pulmonary endothelium is sufficient to predispose to pulmonary arterial hypertension. Circulation 118: 722–730, 2008.
 68. Hopkins N, Cadogan E, Giles S, McLoughlin P. Chronic airway infection leads to angiogenesis in the pulmonary circulation. J Appl Physiol 91: 919–928, 2001.
 69. Hoshikawa Y, Nana‐Sinkam P, Moore MD, Sotto‐Santiago S, Phang T, Keith RL, Morris KG, Kondo T, Tuder RM, Voelkel NF, Geraci MW. Hypoxia induces different genes in the lungs of rats compared with mice. Physiol Genomics 12: 209–219, 2003.
 70. Hosoda K, Hammer RE, Richardson JA, Baynash AG, Cheung JC, Giaid A, Yanagisawa M. Targeted and natural (piebald‐lethal) mutations of endothelin‐B receptor gene produce megacolon associated with spotted coat color in mice. Cell 79: 1267–1276, 1994.
 71. Huang PL, Huang Z, Mashimo H, Bloch KD, Moskowitz MA, Bevan JA, Fishman MC. Hypertension in mice lacking the gene for endothelial nitric oxide synthase. Nature 377: 239–242, 1995.
 72. Ikeda Y, Yonemitsu Y, Kataoka C, Kitamoto S, Yamaoka T, Nishida K, Takeshita A, Egashira K, Sueishi K. Anti‐monocyte chemoattractant protein‐1 gene therapy attenuates pulmonary hypertension in rats. Am J Physiol Heart Circ Physiol 283: H2021–2028, 2002.
 73. Izikki M, Hanoun N, Marcos E, Savale L, Barlier‐Mur AM, Saurini F, Eddahibi S, Hamon M, Adnot S. Tryptophan hydroxylase 1 knockout and tryptophan hydroxylase 2 polymorphism: Effects on hypoxic pulmonary hypertension in mice. Am J Physiol Lung Cell Mol Physiol 293: L1045–1052, 2007.
 74. Jernigan NL, Walker BR, Resta TC. Pulmonary PKG‐1 is upregulated following chronic hypoxia. Am J Physiol Lung Cell Mol Physiol 285: L634–L642, 2003.
 75. Jones SP, Hoffmeyer MR, Sharp BR, Ho YS, Lefer DJ. Role of intracellular antioxidant enzymes after in vivo myocardial ischemia and reperfusion. Am J Physiol Heart Circ Physiol 284: H277–282, 2003.
 76. Jouannic JM, Roussin R, Hislop AA, Lanone S, Martinovic J, Boczkowski J, Dumez Y, Dinh‐Xuan AT. Systemic arteriovenous fistula leads to pulmonary artery remodeling and abnormal vasoreactivity in the fetal lamb. Am J Physiol Lung Cell Mol Physiol 285: L701–L709, 2003.
 77. Kay JM, Harris P, Heath D. Pulmonary hypertension produced in rats by ingestion of Crotalaria spectabilis seeds. Thorax 22: 176–179, 1967.
 78. Keegan A, Morecroft I, Smillie D, Hicks MN, MacLean MR. Contribution of the 5‐HT(1B) receptor to hypoxia‐induced pulmonary hypertension: Converging evidence using 5‐HT(1B)‐receptor knockout mice and the 5‐HT(1B/1D)‐receptor antagonist GR127935. Circ Res 89: 1231–1239, 2001.
 79. Kho AT, Zhao Q, Cai Z, Butte AJ, Kim JY, Pomeroy SL, Rowitch DH, Kohane IS. Conserved mechanisms across development and tumorigenesis revealed by a mouse development perspective of human cancers. Genes Dev 18: 629–640, 2004.
 80. Khoo JP, Zhao L, Alp NJ, Bendall JK, Nicoli T, Rockett K, Wilkins MR, Channon KM. Pivotal role for endothelial tetrahydrobiopterin in pulmonary hypertension. Circulation 111: 2126–2133, 2005.
 81. Kobashi C, Urakaze M, Kishida M, Kibayashi E, Kobayashi H, Kihara S, Funahashi T, Takata M, Temaru R, Sato A, Yamazaki K, Nakamura N, Kobayashi M. Adiponectin inhibits endothelial synthesis of interleukin‐8. Circ Res 97: 1245–1252, 2005.
 82. Kurihara Y, Kurihara H, Suzuki H, Kodama T, Maemura K, Nagai R, Oda H, Kuwaki T, Cao WH, Kamada N, and et al. Elevated blood pressure and craniofacial abnormalities in mice deficient in endothelin‐1. Nature 368: 703–710, 1994.
 83. La Padula P, Costa LE. Effect of sustained hypobaric hypoxia during maturation and aging on rat myocardium. I. Mechanical activity. J Appl Physiol 98: 2363–2369, 2005.
 84. Lalich JJ, Ehrhart LA. Monocrotaline‐induced pulmonary arteritis in rats. J Atheroscler Res 2: 482–492, 1962.
 85. Landskroner‐Eiger S, Qian B, Muise ES, Nawrocki AR, Berger JP, Fine EJ, Koba W, Deng Y, Pollard JW, Scherer PE. Proangiogenic contribution of adiponectin toward mammary tumor growth in vivo. Clin Cancer Res 15: 3265–3276, 2009.
 86. Lane KB, Machado RD, Pauciulo MW, Thomson JR, Phillips JA III, Loyd JE, Nichols WC, Trembath RC. Heterozygous germline mutations in BMPR2, encoding a TGF‐beta receptor, cause familial primary pulmonary hypertension. Nat Genet 26: 81–84, 2000.
 87. Leuchte HH, Baezner C, Baumgartner RA, Bevec D, Bacher G, Neurohr C, Behr J. Inhalation of vasoactive intestinal peptide in pulmonary hypertension. Eur Respir J 32: 1289–1294, 2008.
 88. Li FH, Xia W, Li AW, Zhao CF, Sun RP. Inhibition of Rho kinase attenuates high flow induced pulmonary hypertension in rats. Chin Med J (Engl) 120: 22–29, 2007.
 89. Li ZH, Bresnick AR. The S100A4 metastasis factor regulates cellular motility via a direct interaction with myosin‐IIA. Cancer Res 66: 5173–5180, 2006.
 90. Liu D, Wang J, Kinzel B, Mueller M, Mao X, Valdez R, Liu Y, Li E. Dosage‐dependent requirement of BMP type II receptor for maintenance of vascular integrity. Blood 110: 1502–1510, 2007.
 91. Long L, MacLean MR, Jeffery TK, Morecroft I, Yang X, Rudarakanchana N, Southwood M, James V, Trembath RC, Morrell NW. Serotonin increases susceptibility to pulmonary hypertension in BMPR2‐deficient mice. Circ Res 98: 818–827, 2006.
 92. MacLean MR. Pulmonary hypertension and the serotonin hypothesis: Where are we now? Int J Clin Pract Suppl 156: 27–31, 2007.
 93. MacLean MR, Deuchar GA, Hicks MN, Morecroft I, Shen S, Sheward J, Colston J, Loughlin L, Nilsen M, Dempsie Y, Harmar A. Overexpression of the 5‐hydroxytryptamine transporter gene: Effect on pulmonary hemodynamics and hypoxia‐induced pulmonary hypertension. Circulation 109: 2150–2155, 2004.
 94. McMurtry IF, Abe K, Ota H, Fagan KA, Oka M. Rho kinase‐mediated vasoconstriction in pulmonary hypertension. Adv Exp Med Biol 661: 299–308, 2010.
 95. McNamara PJ, Murthy P, Kantores C, Teixeira L, Engelberts D, van Vliet T, Kavanagh BP, Jankov RP. Acute vasodilator effects of Rho‐kinase inhibitors in neonatal rats with pulmonary hypertension unresponsive to nitric oxide. Am J Physiol Lung Cell Mol Physiol 294: L205–213, 2008.
 96. Medoff BD, Okamoto Y, Leyton P, Weng M, Sandall BP, Raher MJ, Kihara S, Bloch KD, Libby P, Luster AD. Adiponectin deficiency increases allergic airway inflammation and pulmonary vascular remodeling. Am J Respir Cell Mol Biol 41: 397–406, 2009.
 97. Menard G, Turmel V, Bissonnette EY. Serotonin modulates the cytokine network in the lung: Involvement of prostaglandin E2. Clin Exp Immunol 150: 340–348, 2007.
 98. Meyrick B, Gamble W, Reid L. Development of Crotalaria pulmonary hypertension: Hemodynamic and structural study. Am J Physiol 239: H692–702, 1980.
 99. Meyrick B, Reid L. Hypoxia‐induced structural changes in the media and adventitia of the rat hilar pulmonary artery and their regression. Am J Pathol 100: 151–178, 1980.
 100. Meyrick BO, Perkett EA. The sequence of cellular and hemodynamic changes of chronic pulmonary hypertension induced by hypoxia and other stimuli. Am Rev Respir Dis 140: 1486–1489, 1989.
 101. Miyata M, Sakuma F, Ito M, Ohira H, Sato Y, Kasukawa R. Athymic nude rats develop severe pulmonary hypertension following monocrotaline administration. Int Arch Allergy Immunol 121: 246–252, 2000.
 102. Miyata M, Sakuma F, Yoshimura A, Ishikawa H, Nishimaki T, Kasukawa R. Pulmonary hypertension in rats. 2. Role of interleukin‐6. Int Arch Allergy Immunol 108: 287–291, 1995.
 103. Moore BB, Hogaboam CM. Murine models of pulmonary fibrosis. Am J Physiol Lung Cell Mol Physiol 294: L152–L160, 2008.
 104. Nagase T, Kurihara H, Kurihara Y, Aoki‐Nagase T, Nagai R, Ouchi Y. Disruption of ET‐1 gene enhances pulmonary responses to methacholine via functional mechanism in knockout mice. J Appl Physiol 87: 2020–2024, 1999.
 105. Nakagawa Y, Kishida K, Kihara S, Funahashi T, Shimomura I. Adiponectin ameliorates hypoxia‐induced pulmonary arterial remodeling. Biochem Biophys Res Commun 382: 183–188, 2009.
 106. Nandi M, Miller A, Stidwill R, Jacques TS, Lam AA, Haworth S, Heales S, Vallance P. Pulmonary hypertension in a GTP‐cyclohydrolase 1‐deficient mouse. Circulation 111: 2086–2090, 2005.
 107. Nelson RJ, Trainor BC, Chiavegatto S, Demas GE. Pleiotropic contributions of nitric oxide to aggressive behavior. Neurosci Biobehav Rev 30: 346–355, 2006.
 108. Newman JH, Fanburg BL, Archer SL, Badesch DB, Barst RJ, Garcia JG, Kao PN, Knowles JA, Loyd JE, McGoon MD, Morse JH, Nichols WC, Rabinovitch M, Rodman DM, Stevens T, Tuder RM, Voelkel NF, Gail DB. Pulmonary arterial hypertension: Future directions. Report of a National Heart, Lung and Blood Institute/Office of Rare Diseases workshop. Circulation 109: 2947–2952, 2004.
 109. Nozik‐Grayck E, Suliman HB, Majka S, Albietz J, Van Rheen Z, Roush K, Stenmark KR. Lung EC‐SOD overexpression attenuates hypoxic induction of Egr‐1 and chronic hypoxic pulmonary vascular remodeling. Am J Physiol Lung Cell Mol Physiol 295: L422–L430, 2008.
 110. Ochiai E, Kamei K, Watanabe A, Nagayoshi M, Tada Y, Nagaoka T, Sato K, Sato A, Shibuya K. Inhalation of stachybotrys chartarum causes pulmonary arterial hypertension in mice. Int J Exp Pathol 89: 201–208, 2008.
 111. Ohashi K, Kihara S, Ouchi N, Kumada M, Fujita K, Hiuge A, Hibuse T, Ryo M, Nishizawa H, Maeda N, Maeda K, Shibata R, Walsh K, Funahashi T, Shimomura I. Adiponectin replenishment ameliorates obesity‐related hypertension. Hypertension 47: 1108–1116, 2006.
 112. Ohashi K, Parker JL, Ouchi N, Higuchi A, Vita JA, Gokce N, Amstrup Pedersen A, Kalthoff C, Tullin S, Sams A, Summer R, Walsh K. Adiponectin promotes macrophage polarization towards an anti‐inflammatory phenotype. J Biol Chem 285(9): 6153–6160, 2009.
 113. Ohashi Y, Kawashima S, Hirata K, Yamashita T, Ishida T, Inoue N, Sakoda T, Kurihara H, Yazaki Y, Yokoyama M. Hypotension and reduced nitric oxide‐elicited vasorelaxation in transgenic mice overexpressing endothelial nitric oxide synthase. J Clin Invest 102: 2061–2071, 1998.
 114. Oka M, Fagan KA, Jones PL, McMurtry IF. Therapeutic potential of RhoA/Rho kinase inhibitors in pulmonary hypertension. Br J Pharmacol 155: 444–454, 2008.
 115. Oka M, Homma N, Taraseviciene‐Stewart L, Morris KG, Kraskauskas D, Burns N, Voelkel NF, McMurtry IF. Rho kinase‐mediated vasoconstriction is important in severe occlusive pulmonary arterial hypertension in rats. Circ Res 100: 923–929, 2007.
 116. Okada K, Tanaka Y, Bernstein M, Zhang W, Patterson GA, Botney MD. Pulmonary hemodynamics modify the rat pulmonary artery response to injury. A neointimal model of pulmonary hypertension. Am J Pathol 151: 1019–1025, 1997.
 117. Ouchi N, Kihara S, Funahashi T, Matsuzawa Y, Walsh K. Obesity, adiponectin and vascular inflammatory disease. Curr Opin Lipidol 14: 561–566, 2003.
 118. Partovian C, Adnot S, Raffestin B, Louzier V, Levame M, Mavier IM, Lemarchand P, Eddahibi S. Adenovirus‐mediated lung vascular endothelial growth factor overexpression protects against hypoxic pulmonary hypertension in rats. Am J Respir Cell Mol Biol 23: 762–771, 2000.
 119. Phillips JA III, Poling JS, Phillips CA, Stanton KC, Austin ED, Cogan JD, Wheeler L, Yu C, Newman JH, Dietz HC, Loyd JE. Synergistic heterozygosity for TGFbeta1 SNPs and BMPR2 mutations modulates the age at diagnosis and penetrance of familial pulmonary arterial hypertension. Genet Med 10: 359–365, 2008.
 120. Robbins IM, Newman JH, Johnson RF, Hemnes AR, Fremont RD, Piana RN, Zhao DX, Byrne DW. Association of the metabolic syndrome with pulmonary venous hypertension. Chest 136: 31–36, 2009.
 121. Rodriguez‐Murillo L, Subaran R, Stewart WC, Pramanik S, Marathe S, Barst RJ, Chung WK, Greenberg DA. Novel Loci interacting epistatically with bone morphogenetic protein receptor 2 cause familial pulmonary arterial hypertension. J Heart Lung Transplant 29(2): 174–180, 2010.
 122. Roedersheimer M, West J, Huffer W, Harral J, Benedict J. A bone‐derived mixture of TGF beta‐superfamily members forms a more mature vascular network than bFGF or TGF‐beta 2 in vivo. Angiogenesis 8: 327–338, 2005.
 123. Said SI. The vasoactive intestinal peptide gene is a key modulator of pulmonary vascular remodeling and inflammation. Ann N Y Acad Sci 1144: 148–153, 2008.
 124. Said SI, Hamidi SA, Dickman KG, Szema AM, Lyubsky S, Lin RZ, Jiang YP, Chen JJ, Waschek JA, Kort S. Moderate pulmonary arterial hypertension in male mice lacking the vasoactive intestinal peptide gene. Circulation 115: 1260–1268, 2007.
 125. Sanchez‐Porro Valades P, Posada de la Paz M, de Andres Copa P, Gimenez Ribota O, Abaitua Borda I. Toxic oil syndrome: Survival in the whole cohort between 1981 and 1995. J Clin Epidemiol 56: 701–708, 2003.
 126. Savale L, Tu L, Rideau D, Izziki M, Maitre B, Adnot S, Eddahibi S. Impact of interleukin‐6 on hypoxia‐induced pulmonary hypertension and lung inflammation in mice. Respir Res 10: 6, 2009.
 127. Savourey G, Launay JC, Besnard Y, Guinet A, Travers S. Normo‐ and hypobaric hypoxia: Are there any physiological differences? Eur J Appl Physiol 89: 122–126, 2003.
 128. Schmidt TS, Alp NJ. Mechanisms for the role of tetrahydrobiopterin in endothelial function and vascular disease. Clin Sci (Lond) 113: 47–63, 2007.
 129. Schroll S, Arzt M, Sebah D, Nuchterlein M, Blumberg F, Pfeifer M. Improvement of bleomycin‐induced pulmonary hypertension and pulmonary fibrosis by the endothelin receptor antagonist Bosentan. Respir Physiol Neurobiol 170(1): 32–36, 2010.
 130. Schultze AE, Wagner JG, White SM, Roth RA. Early indications of monocrotaline pyrrole‐induced lung injury in rats. Toxicol Appl Pharmacol 109: 41–50, 1991.
 131. Semov A, Moreno MJ, Onichtchenko A, Abulrob A, Ball M, Ekiel I, Pietrzynski G, Stanimirovic D, Alakhov V. Metastasis‐associated protein S100A4 induces angiogenesis through interaction with Annexin II and accelerated plasmin formation. J Biol Chem 280: 20833–20841, 2005.
 132. Sentman ML, Granstrom M, Jakobson H, Reaume A, Basu S, Marklund SL. Phenotypes of mice lacking extracellular superoxide dismutase and copper‐ and zinc‐containing superoxide dismutase. J Biol Chem 281: 6904–6909, 2006.
 133. Sheedy W, Thompson JS, Morice AH. A comparison of pathophysiological changes during hypobaric and normobaric hypoxia in rats. Respiration 63: 217–222, 1996.
 134. Shu RZ, Zhang F, Wang F, Feng DC, Li XH, Ren WH, Wu XL, Yang X, Liao XD, Huang L, Wang ZG. Adiponectin deficiency impairs liver regeneration through attenuating STAT3 phosphorylation in mice. Lab Invest 89: 1043–1052, 2009.
 135. Song Y, Jones JE, Beppu H, Keaney JF, Jr., Loscalzo J, Zhang YY. Increased susceptibility to pulmonary hypertension in heterozygous BMPR2‐mutant mice. Circulation 112: 553–562, 2005.
 136. Speyer CL, Neff TA, Warner RL, Guo RF, Sarma JV, Riedemann NC, Murphy ME, Murphy HS, Ward PA. Regulatory effects of iNOS on acute lung inflammatory responses in mice. Am J Pathol 163: 2319–2328, 2003.
 137. Spiekerkoetter E, Guignabert C, de Jesus Perez V, Alastalo TP, Powers JM, Wang L, Lawrie A, Ambartsumian N, Schmidt AM, Berryman M, Ashley RH, Rabinovitch M. S100A4 and bone morphogenetic protein‐2 codependently induce vascular smooth muscle cell migration via phospho‐extracellular signal‐regulated kinase and chloride intracellular channel 4. Circ Res 105: 639–647, 13 p following 647, 2009.
 138. Stenmark KR, Fasules J, Hyde DM, Voelkel NF, Henson J, Tucker A, Wilson H, Reeves JT. Severe pulmonary hypertension and arterial adventitial changes in newborn calves at 4,300 m. J Appl Physiol 62: 821–830, 1987.
 139. Stenmark KR, Meyrick B, Galie N, Mooi WJ, McMurtry IF. Animal models of pulmonary arterial hypertension: The hope for etiological discovery and pharmacological cure. Am J Physiol Lung Cell Mol Physiol 297: L1013–1032, 2009.
 140. Summer R, Fiack CA, Ikeda Y, Sato K, Dwyer D, Ouchi N, Fine A, Farber HW, Walsh K. Adiponectin deficiency: A model of pulmonary hypertension associated with pulmonary vascular disease. Am J Physiol Lung Cell Mol Physiol 297: L432–438, 2009.
 141. Summer R, Little FF, Ouchi N, Takemura Y, Aprahamian T, Dwyer D, Fitzsimmons K, Suki B, Parameswaran H, Fine A, Walsh K. Alveolar macrophage activation and an emphysema‐like phenotype in adiponectin‐deficient mice. Am J Physiol Lung Cell Mol Physiol 294: L1035–L1042, 2008.
 142. Szema AM, Hamidi SA, Lyubsky S, Dickman KG, Mathew S, Abdel‐Razek T, Chen JJ, Waschek JA, Said SI. Mice lacking the VIP gene show airway hyperresponsiveness and airway inflammation, partially reversible by VIP. Am J Physiol Lung Cell Mol Physiol 291: L880–L886, 2006.
 143. Tada Y, Laudi S, Harral J, Carr M, Ivester C, Tanabe N, Takiguchi Y, Tatsumi K, Kuriyama T, Nichols WC, West J. Murine pulmonary response to chronic hypoxia is strain specific. Exp Lung Res 34: 313–323, 2008.
 144. Tada Y, Majka S, Carr M, Harral J, Crona D, Kuriyama T, West J. Molecular effects of loss of BMPR2 signaling in smooth muscle in a transgenic mouse model of PAH. Am J Physiol Lung Cell Mol Physiol 292: L1556–L1563, 2007.
 145. Thomson JR, Machado RD, Pauciulo MW, Morgan NV, Humbert M, Elliott GC, Ward K, Yacoub M, Mikhail G, Rogers P, Newman J, Wheeler L, Higenbottam T, Gibbs JS, Egan J, Crozier A, Peacock A, Allcock R, Corris P, Loyd JE, Trembath RC, Nichols WC. Sporadic primary pulmonary hypertension is associated with germline mutations of the gene encoding BMPR‐II, a receptor member of the TGF‐beta family. J Med Genet 37: 741–745, 2000.
 146. Tofovic SP, Zhang X, Jackson EK, Zhu H, Petrusevska G. 2‐Methoxyestradiol attenuates bleomycin‐induced pulmonary hypertension and fibrosis in estrogen‐deficient rats. Vascul Pharmacol 51: 190–197, 2009.
 147. Tourneux P, Markham N, Seedorf G, Balasubramaniam V, Abman SH. Inhaled nitric oxide improves lung structure and pulmonary hypertension in a model of bleomycin‐induced bronchopulmonary dysplasia in neonatal rats. Am J Physiol Lung Cell Mol Physiol 297: L1103–L1111, 2009.
 148. Umezawa H, Takeuchi T, Hori S, Sawa T, Ishizuka M. Studies on the mechanism of antitumor effect of bleomycin of squamous cell carcinoma. J Antibiot (Tokyo) 25: 409–420, 1972.
 149. Vaszar LT, Nishimura T, Storey JD, Zhao G, Qiu D, Faul JL, Pearl RG, Kao PN. Longitudinal transcriptional analysis of developing neointimal vascular occlusion and pulmonary hypertension in rats. Physiol Genomics 17: 150–156, 2004.
 150. Voelkel NF, Cool CD, Flores S. From viral infection to pulmonary arterial hypertension: A role for viral proteins? AIDS 22 Suppl 3: S49–S53, 2008.
 151. Wagenvoort CA. Vasoconstriction and medial hypertrophy in pulmonary hypertension. Circulation 22: 535–546, 1960.
 152. West J, Fagan K, Steudel W, Fouty B, Lane K, Harral J, Hoedt‐Miller M, Tada Y, Ozimek J, Tuder R, Rodman DM. Pulmonary hypertension in transgenic mice expressing a dominant‐negative BMPRII gene in smooth muscle. Circ Res 94: 1109–1114, 2004.
 153. West J, Harral J, Lane K, Deng Y, Ickes B, Crona D, Albu S, Stewart D, Fagan K. Mice expressing BMPR2R899X transgene in smooth muscle develop pulmonary vascular lesions. Am J Physiol Lung Cell Mol Physiol 295: L744–L755, 2008.
 154. Wilson DW, Segall HJ, Pan LC, Lame MW, Estep JE, Morin D. Mechanisms and pathology of monocrotaline pulmonary toxicity. Crit Rev Toxicol 22: 307–325, 1992.
 155. Wunderlich C, Schmeisser A, Heerwagen C, Ebner B, Schober K, Braun‐Dullaeus RC, Schwencke C, Kasper M, Morawietz H, Strasser RH. Chronic NOS inhibition prevents adverse lung remodeling and pulmonary arterial hypertension in caveolin‐1 knockout mice. Pulm Pharmacol Ther 21: 507–515, 2008.
 156. Xu W, Koeck T, Lara AR, Neumann D, DiFilippo FP, Koo M, Janocha AJ, Masri FA, Arroliga AC, Jennings C, Dweik RA, Tuder RM, Stuehr DJ, Erzurum SC. Alterations of cellular bioenergetics in pulmonary artery endothelial cells. Proc Natl Acad Sci U S A 104: 1342–1347, 2007.
 157. Yammani RR, Carlson CS, Bresnick AR, Loeser RF. Increase in production of matrix metalloproteinase 13 by human articular chondrocytes due to stimulation with S100A4: Role of the receptor for advanced glycation end products. Arthritis Rheum 54: 2901–2911, 2006.
 158. Yanagisawa H, Yanagisawa M, Kapur RP, Richardson JA, Williams SC, Clouthier DE, de Wit D, Emoto N, Hammer RE. Dual genetic pathways of endothelin‐mediated intercellular signaling revealed by targeted disruption of endothelin converting enzyme‐1 gene. Development 125: 825–836, 1998.
 159. Yeh CH, Chang CK, Cheng MF, Lin HJ, Cheng JT. The antioxidative effect of bone morphogenetic protein‐7 against high glucose‐induced oxidative stress in mesangial cells. Biochem Biophys Res Commun 382: 292–297, 2009.
 160. Young KA, Ivester C, West J, Carr M, Rodman DM. BMP signaling controls PASMC KV channel expression in vitro and in vivo. Am J Physiol Lung Cell Mol Physiol 290: L841–L848, 2006.
 161. Yu PB, Beppu H, Kawai N, Li E, Bloch KD. Bone morphogenetic protein (BMP) type II receptor deletion reveals BMP ligand‐specific gain of signaling in pulmonary artery smooth muscle cells. J Biol Chem 280: 24443–24450, 2005.
 162. Yu Y, Keller SH, Remillard CV, Safrina O, Nicholson A, Zhang SL, Jiang W, Vangala N, Landsberg JW, Wang JY, Thistlethwaite PA, Channick RN, Robbins IM, Loyd JE, Ghofrani HA, Grimminger F, Schermuly RT, Cahalan MD, Rubin LJ, Yuan JX. A functional single‐nucleotide polymorphism in the TRPC6 gene promoter associated with idiopathic pulmonary arterial hypertension. Circulation 119: 2313–2322, 2009.
 163. Zamanian RT, Hansmann G, Snook S, Lilienfeld D, Rappaport KM, Reaven GM, Rabinovitch M, Doyle RL. Insulin resistance in pulmonary arterial hypertension. Eur Respir J 33: 318–324, 2009.
 164. Zambrowicz BP, Imamoto A, Fiering S, Herzenberg LA, Kerr WG, Soriano P. Disruption of overlapping transcripts in the ROSA beta geo 26 gene trap strain leads to widespread expression of beta‐galactosidase in mouse embryos and hematopoietic cells. Proc Natl Acad Sci U S A 94: 3789–3794, 1997.
 165. Zhao YD, Courtman DW, Deng Y, Kugathasan L, Zhang Q, Stewart DJ. Rescue of monocrotaline‐induced pulmonary arterial hypertension using bone marrow‐derived endothelial‐like progenitor cells: Efficacy of combined cell and eNOS gene therapy in established disease. Circ Res 96: 442–450, 2005.
 166. Zhao YD, Courtman DW, Ng DS, Robb MJ, Deng YP, Trogadis J, Han RN, Stewart DJ. Microvascular regeneration in established pulmonary hypertension by angiogenic gene transfer. Am J Respir Cell Mol Biol 35: 182–189, 2006.
 167. Zhao YY, Zhao YD, Mirza MK, Huang JH, Potula HH, Vogel SM, Brovkovych V, Yuan JX, Wharton J, Malik AB. Persistent eNOS activation secondary to caveolin‐1 deficiency induces pulmonary hypertension in mice and humans through PKG nitration. J Clin Invest 119(7): 2009–2018, 2009.
 168. Zuckerman BD, Orton EC, Latham LP, Barbiere CC, Stenmark KR, Reeves JT. Pulmonary vascular impedance and wave reflections in the hypoxic calf. J Appl Physiol 72: 2118–2127, 1992.

Related Articles:

Pulmonary Vascular Disease

Contact Editor

Submit a note to the editor about this article by filling in the form below.

* Required Field

How to Cite

James West, Anna Hemnes. Experimental and Transgenic Models of Pulmonary Hypertension. Compr Physiol 2011, 1: 769-782. doi: 10.1002/cphy.c100003