Comprehensive Physiology Wiley Online Library

Pulmonary Vascular Stiffness: Measurement, Modeling, and Implications in Normal and Hypertensive Pulmonary Circulations

Full Article on Wiley Online Library



Abstract

This article introduces the concept of pulmonary vascular stiffness, discusses its increasingly recognized importance as a diagnostic marker in the evaluation of pulmonary vascular disease, and describes methods to measure and model it clinically, experimentally, and computationally. It begins with a description of systems‐level methods to evaluate pulmonary vascular compliance and recent clinical efforts in applying such techniques to better predict patient outcomes in pulmonary arterial hypertension. It then progresses from the systems‐level to the local level, discusses proposed methods by which upstream pulmonary vessels increase in stiffness, introduces concepts around vascular mechanics, and concludes by describing recent work incorporating advanced numerical methods to more thoroughly evaluate changes in local mechanical properties of pulmonary arteries. © 2011 American Physiological Society. Compr Physiol 1:1413‐1435, 2011.

Comprehensive Physiology offers downloadable PowerPoint presentations of figures for non-profit, educational use, provided the content is not modified and full credit is given to the author and publication.

Download a PowerPoint presentation of all images


Figure 1. Figure 1.

Typical pressure‐diameter curve for elastic tissues.

Figure 2. Figure 2.

Typical conduit artery pressure‐diameter (PD) response in acute and chronic models of hypertension. Left figure 152, diameter on abscissa: phenylephrine injection (active PH, APH), left PA occlusion (passive PH, PPH), or both (APPH) in an acute sheep model. Note that injection of a vasoconstrictor (phenylephrine) yields “active PH” along with reduced conduit artery diameter, while “passive PH” does not display conduit artery vasoconstriction. All the curves display roughly the same slope, suggesting that SMCs change the operating diameter but do not strongly affect the stiffness and that no strain‐induced stiffening has occurred. Right figure 221, pressure on abscissa: (A) minimum diastolic pressure; (B) peak systolic pressure; (C) beginning of diastole; (D) later part of diastole, in a chronic hypobaric hypoxia calf model. In the calf, pressures are substantially higher which cause the diameter‐pressure response to have a J‐shape typically associated with collagen engagement. There also appears to be little to no acute SMC contribution to the mechanics of the proximal vasculature in the calf; such contributions would cause the PD curve to move downward and rightward from the low pressure condition without a significant change in slope. Figures used with permission.

Figure 3. Figure 3.

Idealized representations of the pulmonary circuit and their corresponding Windkessel models. C = (pulmonary artery) compliance, PAC; R = (total pulmonary) resistance, TPR; Zc = characteristic impedance; L = inertance. From 202; used with permission.

Figure 4. Figure 4.

Tube geometry for the derivation of simple mechanics equations. Pi, Po = pressures acting on inner and outer walls; T, tension within the artery; ri, ro = inner, outer arterial radii; h = wall thickness, I = tube length.

Figure 5. Figure 5.

Deformation of a rectangular plate. (A) Un‐deformed rectangular plate. (B) Deformed rectangular plate. Loads (F) are applied along the edges of the plate in the principle directions [circumferential 1 and longitudinal 2].

Figure 6. Figure 6.

Schematic diagram of artery wall in the zero‐stress state used in the formulation of several arterial models. Arterial wall as modeled by (A) Fung 54, (B) Holzapfel 75, (C) Zulliger 222. Figures used with permission.



Figure 1.

Typical pressure‐diameter curve for elastic tissues.



Figure 2.

Typical conduit artery pressure‐diameter (PD) response in acute and chronic models of hypertension. Left figure 152, diameter on abscissa: phenylephrine injection (active PH, APH), left PA occlusion (passive PH, PPH), or both (APPH) in an acute sheep model. Note that injection of a vasoconstrictor (phenylephrine) yields “active PH” along with reduced conduit artery diameter, while “passive PH” does not display conduit artery vasoconstriction. All the curves display roughly the same slope, suggesting that SMCs change the operating diameter but do not strongly affect the stiffness and that no strain‐induced stiffening has occurred. Right figure 221, pressure on abscissa: (A) minimum diastolic pressure; (B) peak systolic pressure; (C) beginning of diastole; (D) later part of diastole, in a chronic hypobaric hypoxia calf model. In the calf, pressures are substantially higher which cause the diameter‐pressure response to have a J‐shape typically associated with collagen engagement. There also appears to be little to no acute SMC contribution to the mechanics of the proximal vasculature in the calf; such contributions would cause the PD curve to move downward and rightward from the low pressure condition without a significant change in slope. Figures used with permission.



Figure 3.

Idealized representations of the pulmonary circuit and their corresponding Windkessel models. C = (pulmonary artery) compliance, PAC; R = (total pulmonary) resistance, TPR; Zc = characteristic impedance; L = inertance. From 202; used with permission.



Figure 4.

Tube geometry for the derivation of simple mechanics equations. Pi, Po = pressures acting on inner and outer walls; T, tension within the artery; ri, ro = inner, outer arterial radii; h = wall thickness, I = tube length.



Figure 5.

Deformation of a rectangular plate. (A) Un‐deformed rectangular plate. (B) Deformed rectangular plate. Loads (F) are applied along the edges of the plate in the principle directions [circumferential 1 and longitudinal 2].



Figure 6.

Schematic diagram of artery wall in the zero‐stress state used in the formulation of several arterial models. Arterial wall as modeled by (A) Fung 54, (B) Holzapfel 75, (C) Zulliger 222. Figures used with permission.

References
 1. Aaron BB, Gosline JM. Elastin as a random‐network elastomer—a mechanical and optical analysis of single elastin fibers. Biopolymers 20(6): 1247‐1247, 1981.
 2. Arribas SM, Hinek A, Gonzalez MC. Elastic fibres and vascular structure in hypertension. Pharmacol Ther 111(3): 771‐771, 2006.
 3. Avolio A. Input impedance of distributed arterial structures as used in investigations of underlying concepts in arterial haemodynamics. Med Biol Eng Comput 47(2): 143‐143, 2009.
 4. Badesch DB, Champion HC, Sanchez MA, Hoeper MM, Loyd JE, Manes A, McGoon M, Naeije R, Olschewski H, Oudiz RJ, Torbicki A. Diagnosis and assessment of pulmonary arterial hypertension. J Am Coll Cardiol 54(1 Suppl): S55‐S66, 2009.
 5. Balzer DT, Kort HW, Day RW, Corneli HM, Kovalchin JP, Cannon BC, Kaine SF, Ivy DD, Webber SA, Rothman A, Ross RD, Aggarwal S, Takahashi M, Waldman JD. Inhaled nitric oxide as a preoperative test (INOP Test I) ‐ The INOP Test Study Group. Circulation 106(13 Suppl S): I76‐I81, 2002.
 6. Barst RJ, McGoon M, Torbicki A, Sitbon O, Krowka MJ, Olschewski H, Gaine S. Diagnosis and differential assessment of pulmonary arterial hypertension. J Am Coll Cardiol 43(12): 40S‐47S, 2004.
 7. Bayer IM, Adamson SL, Langille BL. Atrophic remodeling of the artery‐cuffed artery. Arterioscler Thromb Vasc Biol 19(6): 1499‐1499, 1999.
 8. Bergel DH. The dynamic elastic properties of the arterial wall. J Physiol 156(3): 458‐458, 1961a.
 9. Bergel DH. The static elastic properties of the arterial wall. J Physiol 156(3): 445‐445, 1961b.
 10. Bergel DH, Milnor WR. Pulmonary vascular impedance in the dog. Circ Res 16(5): 401‐401, 1965.
 11. Berger RMF, Cromme‐Dijkhuis AH, Hop WCJ, Kruit MN, Hess J. Pulmonary arterial wall distensibility assessed by intravascular ultrasound in children with congenital heart disease. Chest 122(2): 549‐549, 2002.
 12. Bezie Y, Lacolley P, Laurent S, Gabella G. Connection of smooth muscle cells to elastic lamellae in aorta of spontaneously hypertensive rats. Hypertension 32(1): 166‐166, 1998.
 13. Bezie Y, Lamaziere JMD, Laurent S, Challande P, Cunha RS, Bonnet J, Lacolley P. Fibronectin expression and aortic wall elastic modulus in spontaneously hypertensive rats. Arterioscler Thromb Vasc Biol 18(7): 1027‐1027, 1998.
 14. Bia D, Armentano R, Craiem D, Grignola J, Gines F, Simon A, Levenson J. Smooth muscle role on pulmonary arterial function during acute pulmonary hypertension in sheep. Acta Physiol Scand 181(3): 359‐359, 2004.
 15. Bia D, Armentano R, Grignola JC, Craiem D, Zocalo YA, Gines FF, Levenson J. The vascular smooth muscle of the great arteries: Local control site of arterial buffering function? Rev Esp Cardiol 56(12): 1202‐1202, 2003.
 16. Boresi AP, Chong KP. Elasticity in Engineering Mechanics. Wiley‐Interscience, New York, NY, 1999.
 17. Borges AC, Wensel R, Opitz C, Bauer U, Baumann G, Kleber FX. Relationship between haemodynamics and morphology in pulmonary hypertension. A quantitative intravascular ultrasound study. Eur Heart J 18(12): 1988‐1988, 1997.
 18. Boumaza S, Arribas SM, Osborne‐Pellegrin M, McGrath JC, Laurent S, Lacolley P, Challande P. Fenestrations of the carotid internal elastic lamina and structural adaptation in stroke‐prone spontaneously hypertensive rats. Hypertension 37(4): 1101‐1101, 2001.
 19. Bressollette E, Dupuis J, Bonan R, Doucet S, Cernacek P, Tardif JC. Intravascular ultrasound assessment of pulmonary vascular disease in patients with pulmonary hypertension. Chest 120(3): 809‐809, 2001.
 20. Brown DJ. Input impedance and reflection coefficient in fractal‐like models of asymmetrically branching compliant tubes. IEEE Trans Biomed Eng 43(7): 715‐715, 1996.
 21. Budhiraja R, Tuder RM, Hassoun PM. Endothelial dysfunction in pulmonary hypertension. Circulation 109(2): 159‐159, 2004.
 22. Burattini R, Gnudi G. Computer identification of models for the arterial tree input impedance: Comparison between two new simple models and first experimental results. Med Biol Eng Comput 20: 134‐134, 1982.
 23. Cameron J. Estimation of arterial mechanics in clinical practice and as a research technique. Clin Exp Pharmacol Physiol 26(4): 285‐285, 1999.
 24. Caro CG, McDonald DA. The relation of the pulsatile pressure and flow in the pulmonary vascular bed. J Physiol 157(3): 426‐426, 1961.
 25. Chamiot Clerc P, Renaud JF, Blacher J, Legrand M, Samuel JL, Levy BI, Sassard J, Safar ME. Collagen I and III and mechanical properties of conduit arteries in rats with genetic hypertension. J Vasc Res 36(2): 139‐139, 1999.
 26. Chesler NC, Thompson‐Figueroa J, Millburne K. Measurements of mouse pulmonary artery biomechanics. J Biomech Eng 126(2): 309‐309, 2004.
 27. Chuong CJ, Fung YC. 3‐Dimensional stress‐distribution in arteries. J Biomech Eng Trans 105(3): 268‐268, 1983.
 28. Chuong CJ, Fung YC. On residual stresses in arteries. J Biomech Eng 108: 189, 1986.
 29. Clark JM, Glagov S. Transmural organization of the arterial media. The lamellar unit revisited. Arterioscler Thromb Vasc Biol 5(1): 19, 1985.
 30. Cool CD, Stewart JS, Werahera P, Miller GJ, Williams RL, Voelkel NF, Tuder RM. Three‐dimensional reconstruction of pulmonary arteries in plexiform pulmonary hypertension using cell‐specific markers. Evidence for a dynamic and heterogeneous process of pulmonary endothelial cell growth. Am J Pathol 155: 411‐411, 1999.
 31. D'Alonzo GE, Barst RJ, Ayres SM, Bergofsky EH, Brundage BH, Detre KM, Fishman AP, Godring RM, Groves BM, Kernis JT. Survival in patients with primary pulmonary hypertension: Results from a national prospective registry. Ann Intern Med 115(5): 343‐343, 1991.
 32. De Canniere D, Stefanidis C, Brimioulle S, Naeije R. Effects of a chronic aortopulmonary shunt on pulmonary hemodynamics in piglets. J Appl Physiol 77(4): 1591‐1591, 1994.
 33. Díez J. Arterial stiffness and extracellular matrix. Adv Cardiol 44: 76‐76, 2007.
 34. Dingemanns KP, Wagenvoort CA. Pulmonary arteries and veins in experimental hypoxia. Am J Pathol 93: 353‐353, 1978.
 35. Dingemans KP, Teeling P, Lagendijk JH, Becker AE. Extracellular matrix of the human aortic media: An ultrastructural histochemical and immunohistochemical study of the adult aortic media. Anat Rec 258(1): 1‐1, 2000.
 36. Dobrin PB. Vascular mechanics. In: Handbook of Physiology. The Cardiovascular System. Peripheral Circulation and Organ Blood Flow. Bethesda, MD: American Physiological Society, 1983, sect. 2, vol. III, chapt. 3, p. 65‐65.
 37. Domanski MJ, Mitchell GF, Norman JE, Exner DV, Pitt B, Pfeffer MA. Independent prognostic information provided sphygmomanometrically determined pulse pressure and mean arterial pressure in patients with left ventricular dysfunction. J Am Coll Cardiol 33(4): 951‐951, 1999.
 38. Drexler E, Bischoff JE, Slifka AJ, McCowan CN, Quinn TP, Shandas R, Ivy DD, Stenmark K. Stiffening of the extrapulmonary arteries from rats in chronic hypoxic pulmonary hypertension. J Res Natl Inst Stand Technol 113: 239‐239, 2008.
 39. Drexler ES, McCowan C, Wright J, Slifka AJ, Ivy DD, Shandas R. Comparison of strength properties of normotensive and hypertensive rat pulmonary arteries. Biomed Sci Instrum 40: 297‐297, 2004.
 40. Durmowicz AG, Orton EC, Stenmark KR. Progressive loss of vasodilator responsive component of pulmonary‐hypertension in neonatal calves exposed to 4,570 M. Am J Physiol 265(6): H2175‐H2183, 1993.
 41. Dyer K, Lanning CJ, Das B, Lee PF, Ivy DD, Valdes‐Cruz L, Shandas R. Noninvasive Doppler tissue measurement of pulmonary artery compliance in children with pulmonary hypertension. J Am Soc Echocardiogr 19(4): 403‐403, 2006.
 42. Engelberg J, DuBois AB. Mechanics of pulmonary circulation in isolated rabbit lungs. Am J Physiol 196(2): 401‐401, 1959.
 43. Estrada KD, Chesler NC. Collagen‐related gene and protein expression changes in the lung in response to chronic hypoxia. Biomech Model Mechanobiol 8(4): 263‐263, 2009.
 44. Fagan KA, Oka M, Bauer NR, Gebb SA, Ivy DD, Morris KG, McMurtry IF. Attenuation of acute hypoxic pulmonary vasoconstriction and hypoxic pulmonary hypertension in mice by inhibition of Rho‐kinase. Am J Physiol Lung Cell Mol Physiol 287(4): L656‐L664, 2004.
 45. Finkelstein SM, Collins VR, Cohn JN. Arterial vascular compliance response to vasodilators by Fourier and pulse contour analysis. Hypertension 12: 380‐380, 1988.
 46. Finlay HM, McCullough L, Canham PB. Three‐dimensional collagen organization of human brain arteries at different transmural pressures. J Vasc Res 32(5): 301‐301, 1995.
 47. Formaggia L, Gerbeau JR, Nobile F, Quarteroni A. On the coupling of 3D and 1D Navier‐Stokes equations for flow problems in compliant vessels. Comp Methods Appl Mech Engrg 191(6‐7): 561‐561, 2001.
 48. Formaggia L, Lamponi D, Quarteroni A. One‐dimensional models for blood flow in arteries. J Eng Math 47(3/4): 251‐251, 2003.
 49. Formaggia L, Lamponi D, Tuveri M, Veneziani A. Numerical modeling of 1D arterial networks coupled with a lumped parameters description of the heart. Comput Methods Biomech Biomed Engin 9(5): 273‐273, 2006.
 50. Fourie PR, Coetzee AR, Bolliger CT. Pulmonary artery compliance: Its role in right ventricular‐arterial coupling. Cardiovasc Res 26(9): 839‐839, 1992.
 51. Frank O. [Die grundform des arteriellen pulses. Erste Abhandlung. mathematische analyse]. Z Biol 37: 483‐483, 1899.
 52. Frasher WG, Sobin SS. Distensible behavior of pulmonary artery. Am J Physiol 199(3): 472‐472, 1960.
 53. Fridez P, Makino A, Kakoi D, Miyazaki H, Meister JJ, Hayashi K, Stergiopulos N. Adaptation of conduit artery vascular smooth muscle tone to induced hypertension. Ann Biomed Eng 30(7): 905‐905, 2002.
 54. Fung YC, Fronek K, Patitucci P. Pseudoelasticity of arteries and the choice of its mathematical expression. Am J Physiol 237(5): H620‐H631, 1979.
 55. Gan CT‐J, Lankhaar JW, Weterhof N, Marcus JT, Becker A, Twisk JWR, Boonstra A, Postmus PE, Vonk‐Noordegraaf A. Noinvasively assessed pulmonary artery stiffness predicts mortality in pulmonary arterial hypertension. Chest 32(6): 1906‐1906, 2007.
 56. Gan RZ, Yen RT. Vascular impedance analysis in dog lung with detailed morphometric and elasticity data. J Appl Physiol 77(2): 706‐706, 1994.
 57. Gasser TC, Ogden RW, Holzapfel GA. Hyperelastic modelling of arterial layers with distributed collagen fibre orientations. J R Soc Interface 3(6): 15‐15, 2006.
 58. Glasser SP, Arnett DK. Vascular stiffness and the “chicken‐or‐the‐egg” question. Hypertension 51(2): 177‐177, 2008.
 59. Gow BS. Circulatory correlates: Vascular impedance, resistance, and capacity. In: Handbook of Physiology. The Cardiovascular System. Vascular Smooth Muscle. Bethesda, MD: American Physiological Society, 1980, sect. 2, vol. II, chapt. 14, p. 353‐408.
 60. Greenfield JC, Griggs DM. Relation between pressure and diameter in main pulmonary artery of man. J Appl Physiol 18(3): 557‐557, 1963.
 61. Grignola JC, Bia D, Ginés F, Armentano RL. Acute pulmonary hypertension: Protective role of vascular smooth muscle activation. Rev Esp Cardiol 56(11): 1077‐1077, 2003.
 62. Grignola JC, Ginés F, Bia D, et al. Improved right ventricular‐vascular coupling during active pulmonary hypertension. Int J Cardiol 115(2): 171‐171, 2007.
 63. Grover RF, Wagner WW, McMurtry IF, Reeves JT. Pulmonary circulation. In: Handbook of Physiology. The Cardiovascular System. Vascular Smooth Muscle. Bethesda, MD: American Physiological Society, 1980, sect. 2, vol III, chapt 4. p. 103‐136.
 64. Ha B, Lucas CL, Henry GW, Frantz EG, Ferreiro JI, Wilcox BR. Effects of chronically elevated pulmonary arterial pressure and flow on right ventricular afterload. Am J Physiol 267(1 Pt 2): H155‐H165, 1994.
 65. Hall JB, Schmidt GA, Wood LDH, Taylor CD. Principles of Critical Care. New York: McGraw‐Hill, 2005, chapt. 26.
 66. Hamilton PK, Lockhart CJ, Quinn CE, McVeigh GE. Arterial stiffness: Clinical relevance, measurement and treatment. Clin Sci (Lond) 113(4): 157‐157, 2007.
 67. Haneda T, Nakajima T, Shirato K, Onodera S, Takishima T. Effects of oxygen breathing on pulmonary vascular input impedance in patients with pulmonary hypertension. Chest 83(3): 520‐520, 1983.
 68. Harris P, Heath D. Ultrastructure of plexogenic arteriopathy. In: Harris P, Heath D, editor. The Human Pulmonary Circulation. Its Form and Function in Health and Disease. London: Churchill Livingston, 1986, p. 262‐262.
 69. Hay ED. Cell Biology of Extracellular Matrix. Springer, New York, 1981.
 70. Herve P, Musset D, Simonneau G, Wagner W Jr, Duroux P. Almitrine decreases the distensibility of the large pulmonary arteries in man. Chest 96(3): 572‐572, 1989.
 71. Hirata K, Kawakami M, O'Rourke MF. Pulse wave analysis and pulse wave velocity: A review of blood pressure interpretation 100 years after Korotkov. Circ J 70(10): 1231‐1231, 2006.
 72. Hislop A, Reid L. Changes in the pulmonary arteries of the rat during recovery from hypoxia‐induced pulmonary hypertension. Br J Exp Pathol 58: 653‐653, 1977.
 73. Hislop A, Reid L. New findings in pulmonary arteries of rats with hypoxia‐induced pulmonary hypertension. Br J Exp Pathol 57: 542‐542, 1976.
 74. Holzapfel GA. Nonlinear Solid Mechanics: A Continuum Approach for Engineering. Wiley, West Sussex, UK, 2000.
 75. Holzapfel GA, Gasser TC, Ogden RW. A new constitutive framework for arterial wall mechanics and a comparative study of material models. Journal of Elasticity 61(1‐3): 1‐1, 2000.
 76. Huang W, Tian Y, Gao J, Yen RT. Comparison of theory and experiment in pulsatile flow in cat lung. Ann Biomed Eng 26(5): 812‐812, 1998.
 77. Huez S, Brimioulle S, Naeije R, Vachiéry JL. Feasibility of routine pulmonary artery impedance measurements in pulmonary hypertension. Chest 125(6): 2121‐2121, 2004.
 78. Hughes TJR, Lubliner J. On the one‐dimensional theory of blood flow in the larger vessels. Math Biosci 18(1/2): 161‐161, 1973.
 79. Humbert M, Morrell NW, Archer SL, Stenmark KR, MacLean MR, Lang IM, Christman BW, Weir EK, Eickelberg O, Voelkel NF, Rabinovitch M. Cellular and molecular pathobiology of pulmonary arterial hypertension. J Am Coll Cardiol 43(12): 13S‐24S, 2004.
 80. Humphrey JD. “ Mechanics of the arterial wall: Review and directions.” Crit Rev Biomed Eng 23(1‐2): 1‐1, 1995.
 81. Humphrey JD. Review paper. Continuum biomechanics of soft biological tissues.” Proc Math Phys Eng Sci 459(2029): 3‐3, 2003.
 82. Hunter KS, Albietz JA, Lee PF, Lanning CJ, Lammers SR, Hofmeister SH, Kao PH, Qi H, Stenmark KR, Shandas R. In‐vivo measurement of proximal pulmonary artery elastic modulus in the neonatal calf model of pulmonary hypertension: Development and ex‐vivo validation. J Appl Physiol 108(4): 968‐968, 2010.
 83. Hunter KS, Lanning CJ, Kirby KS, Ivy DD, Shandas R. In‐vivo pulmonary vascular stiffness obtained from color M‐mode tissue doppler imaging and pressure measurements predicts clinical outcomes better than indexed pulmonary vascular resistance in pediatric patients with pulmonary arterial hypertension [Abstract 4388], Circulation 118(18): S879, 2008.
 84. Hunter KS, Lee PF, Lanning CJ, Ivy DD, Kirby KS, Claussen LR, Chan KC, Shandas R. Pulmonary vascular input impedance is a combined measure of pulmonary vascular resistance and stiffness and predicts clinical outcomes better than PVR alone in pediatric patients with pulmonary hypertension. Am Heart J 155(1): 166‐166, 2008.
 85. Hyvelin JM, Howell K, Nichol A, Costello CM, Preston RJ, McLoughlin P. Inhibition of rho‐kinase attenuates hypoxia‐induced angiogenesis in the pulmonary circulation. Circ Res 97(2): 185‐185, 2005.
 86. Intengan HD, Schiffrin EL. Structure and mechanical properties of resistance arteries in hypertension—Role of adhesion molecules and extracellular matrix determinants. Hypertension 36(3): 312‐312, 2000.
 87. Intengan HD, Schiffrin EL. Vascular remodeling in hypertension: Roles of apoptosis, inflammation, and fibrosis. Hypertension 38(3 Pt 2): 581‐581, 2001.
 88. Intengan HD, Thibault G, Li JS, Schiffrin EL. Resistance artery mechanics, structure, and extracellular components in spontaneously hypertensive rats—Effects of angiotensin receptor antagonism and converting enzyme inhibition. Circulation 100(22): 2267‐2267, 1999.
 89. Jacob MP. Extracellular matrix remodeling and matrix metalloproteinases in the vascular wall during aging and in pathological conditions. Biomed Pharmacother 57(5–6): 195‐195, 2003.
 90. Jacob MP, Badier‐Commander C, Fontaine V, Benazzoug Y, Feldman L, Michel JB. Extracellular matrix remodeling in the vascular wall. Pathol Biol 49(4): 326‐326, 2001.
 91. Jones R, Reid L. Vascular Remodeling in Clinical and Experimental Pulmonary Hypertensions. London: Portland Press, 1995.
 92. Khunatorn Y, Mahalingam S, DeGroff CG, Shandas R. Influence of connection geometry and SVC‐IVC flow rate ratio on flow structures within the total cavopulmonary connection: A numerical study. J Biomech Eng 124(4): 364‐364, 2002.
 93. Kielty CM, Sherratt MJ, Shuttleworth CA. Elastic fibres. J Cell Sci 115(14): 2817‐2817, 2002.
 94. Kim HJ, Vignon‐Clementel IE, Figueroa CA, LaDisa JF, Jansen KE, Feinstein JA, Taylor CA. On coupling a lumped parameter heart model and a three‐dimensional finite element aorta model. Ann Biomed Eng 37(11): 2153‐2153, 2009.
 95. Kobs RW, Muvarak NE, Eickhoff JC, Chesler NC. Linked mechanical and biological aspects of remodeling in mouse pulmonary arteries with hypoxia‐induced hypertension. Am J Physiol Heart Circ Physiol 288(3): H1209‐H1217, 2005.
 96. Kussmaul WG, Altschuler JA, Herrmann HC, Laskey WK. Effects of pacing tachycardia and balloon valvuloplasty on pulmonary artery impedance and hydraulic power in mitral stenosis. Circulation 86(6): 1770‐1770, 1992.
 97. Kussmaul WG, Altschuler JA, Matthai WH, Laskey WK. Right ventricular‐vascular interaction in congestive heart failure/importance of low‐frequency impedance. Circulation 88(3): 1010‐1010, 1993.
 98. Lacour‐Gayet FG, Lanning CJ, Stoica S, Wang R, Rech BA, Goldberg S, Shandas R. An artificial right ventricle for failing fontan: In vitro and computational study. Ann Thorac Surg 88(1): 170‐170, 2009.
 99. Lammers SR, Kao P, Qi HJ, Hunter KS, Lanning CJ, Albietz JA, Hofmeister SE, Mecham R, Stenmark KR, Shandas R. Changes in the structure‐function relationship of elastin and its impact on the proximal pulmonary arterial mechanics of hypertensive calves. Am J Physiol 295(4): H1451‐H1459, 2008.
 100. Lankhaar JW, Westerhof N, Faes TJ, Marques KM, Marcus JT, Postmus PE, Vonk‐Noordegraaf A. Quantification of right ventricular afterload in patients with and without pulmonary hypertension. Am J Physiol Heart Circ Physiol 291(4): H1731‐H1737, 2006.
 101. Laurent S, Boutouyrie P, Asmar R, Gautier I, Laloux B, Guize L, Ducimetiere P, Benetos A. Aortic stiffness is an independent predictor of all‐cause and cardiovascular mortality in hypertensive patients. Hypertension 37(5): 1236‐1236, 2001.
 102. Lee HW, Karam J, Hussain B, Winer N. Vascular compliance in hypertension: Therapeutic implications. Curr Diab Rep 8(3): 208‐208, 2008.
 103. Leibovitch ER. Hypertension 2008, refining our treatment. Geriatrics 63(10): 14‐14, 17‐17, 2008.
 104. Li M, Scott DE, Shandas R, Stenmark KR, Tan W. High pulsatility flow induces adhesion molecule and cytokine mRNA expression in distal pulmonary artery endothelial cells. Ann Biomed Eng 37(6): 1082‐1082, 2009.
 105. Li M, Stenmark KR, Shandas R, Tan W. Effects of pathological flow on pulmonary artery endothelial production of vasoactive mediators and growth factors. J Vasc Res 46(6): 561‐561, 2009.
 106. Liao D, Arnett DK, Tyroler HA, Riley WA, Chambless LE, Szklo M, Heiss G. Arterial stiffness and the development of hypertension. The ARIC study. Hypertension 34(2): 201‐201, 1999.
 107. Lucas CL, Wilcox BR, Ha B, Henry GW. Comparison of time domain algorithms for estimating aortic characteristic impedance in humans. IEEE Trans Biomed Eng 35: 62‐62, 1988.
 108. Madden JA, Keller PA, Effros RM, Seavitte C, Choy JS, Hacker AD. Responses to pressure and vasoactive agents by isolated pulmonary arteries from monocrotaline‐treated rats. J Appl Physiol 76(4): 1589‐1589, 1994.
 109. Mahapatra S, Nishimura RA, Oh JK, McGoon MD. The prognostic value of pulmonary vascular capacitance determined by Doppler echocardiography in patients with pulmonary arterial hypertension. J Am Soc Echocardiogr 19(8): 1045‐1045, 2006.
 110. Mahapatra S, Nishimura RA, Sorajja P, Cha S, McGoon MD. Relationship of pulmonary arterial capacitance and mortality in idiopathic pulmonary arterial hypertension. J Am Coll Cardiol 47(4): 799‐799, 2006.
 111. Marsden AL, Vignon‐Clementel IE, Chan FP, Feinstein JA, Taylor CA. Effects of exercise and respiration on hemodynamic efficiency in CFD simulations of the total cavopulmonary connection. Ann Biomed Eng 35(2): 250‐250, 2007.
 112. Maruyama K, Ye CL, Woo M, Venkatacharya H, Lines LD, Silver MM, Rabinovitch M. Chronic hypoxic pulmonary‐hypertension in rats and increased elastolytic activity. Am J Physiol 261(6): H1716‐H1726, 1991.
 113. Mauban JR, Remillard CV, Yuan JX. Hypoxic pulmonary vasoconstriction: Role of ion channels. J Appl Physiol 98: 415‐415, 2005.
 114. McDonald DA. Blood Flow in Arteries. London: Edward Arnold, 1974
 115. McEniery CM, Wilkinson IB. Large artery stiffness and inflammation. J Hum Hypertens 19(7): 507‐507, 2005.
 116. Meyrick B, Reid L. Hypoxia‐induced structural changes in the media and adventitia of the rat hilar pulmonary artery and their regression. Am J Pathol 100: 151‐151, 1980.
 117. Meyrick B, Reid L. Pulmonary hypertension. Anatomic and physiologic correlates. Clin Chest Med 4: 199‐199, 1983.
 118. Milnor WR. Hemodynamics. Williams & Wilkins, Baltimore, MD, 1989.
 119. Milnor WR, Bergel DH, Bargainer JD. Hydraulic power associated with pulmonary blood flow and its relation to heart rate. Circ Res 19(3): 467‐467, 1966.
 120. Milnor WR, Conti CR, Lewis KB, et al. Pulmonary arterial pulse wave velocity and impedance in man. Circ Res 25(6): 637‐637, 1969.
 121. Milnor WR, Jose AD, McGaff CJ. Pulmonary vascular volume, resistance, and compliance in man. Circulation 22: 130‐130, 1960.
 122. Mitchell GF, Moyé LA, Braunwald E, Rouleau JL, Bernstein V, Geltman EM, Flaker GC, Pfeffer MA. Sphygmomanometrically determined pulse pressure is a powerful independent predictor of recurrent events after myocardial infarction in patients with impaired left ventricular function. Circulation 96(12): 4254‐4254, 1997.
 123. Moore NR, Scott JP, Flower CD, Higenbottam TW. The relationship between pulmonary artery pressure and pulmonary artery diameter in pulmonary hypertension. Clin Radiol 39(5): 486‐486, 1988.
 124. Moudgil R, Michelakis ED, Archer SL. Hypoxic pulmonary vasoconstriction. J Appl Physiol 98: 390‐390, 2005.
 125. Nagaoka T, Fagan KA, Gebb SA, Morris KG, Suzuki T, Shimokawa H, McMurtry IF, Oka M. Inhaled rho kinase inhibitors are potent and selective vasodilators in rat pulmonary hypertension. Am J Respir Crit Care Med 171(5): 494‐494, 2005.
 126. Olsen MH, Christensen MK, Wachtell K, Tuxen C, Fossum E, Bang LE, Wiinberg N, Devereux RB, Kjeldsen SE, Hildebrandt P, Rokkedal J, Ibsen H. Markers of collagen synthesis is related to blood pressure and vascular hypertrophy: A life substudy. J Hum Hypertens 19(4): 301‐301, 2005.
 127. Olufsen MS, Peskin CS, Kim WY, Pedersen EM, Nadim A, Larsen J. Numerical simulation and experimental validation of blood flow in arteries with structured‐tree outflow conditions. Ann Biomed Eng 28(11): 1281‐1281, 2000.
 128. Olufsen MS. Structured tree outflow condition for blood flow in larger systemic arteries. Am J Physiol 276(1 Pt 2): H257‐H268, 1999.
 129. O'Rourke MF, Avolio AP. Arterial transfer functions: Background, applications and reservations. J Hypertens 26(1): 8‐8, 2008.
 130. O'Rourke MF, Avolio AP. Pulsatile flow and pressure in human systemic arteries. Studies in man and in a multibranched model of the human systemic arterial tree. Circ Res 46(3): 363‐363, 1980.
 131. O'Rourke MF. Vascular mechanics in the clinic. J Biomech 36(5): 623‐623, 2003.
 132. Partovian C, Adnot S, Raffestin B, Louzier V, Levame M, Mavier IM, Lemarchand P, Eddahibi S. Adenovirus‐mediated lung vascular endothelial endothelial growth factor overexpression protects against hypoxic pulmonary hypertension in rats. Am J Respir Cell Mol Biol 23: 762‐762, 2000.
 133. Patel DJ, deFreitas FM, Fry DL. Hydraulic input impedance to aorta and pulmonary artery in dogs. J Appl Physiol 18(1) 134‐134, 1963.
 134. Patel DJ, Schilder DP, Mallos AJ. Mechanical properties and dimensions of the major pulmonary arteries. J Appl Physiol 15(1): 92‐92, 1960.
 135. Pekkan K, Frakes D, De Zelicourt D, Lucas CW, Parks WJ, Yoganathan AP. Coupling pediatric ventricle assist devices to the Fontan circulation: Simulations with a lumped‐parameter model. ASAIO J 51(5): 618‐618, 2005.
 136. Peterson LH, Jensen RE, Parnell J. Mechanical properties of arteries in vivo. Circ Res 8(3): 622‐622, 1960.
 137. Pietri P, Vyssoulis G, Vlachopoulos C, Zervoudaki A, Gialernios T, Aznaouridis K, Stefanadis C. Relationship between low‐grade inflammation and arterial stiffness in patients with essential hypertension. J Hypertens 24(11): 2231‐2231, 2006.
 138. Quarteroni A, Ragni S, Veneziani A. Coupling between lumped and distributed models for blood flow problems. Comp Visual Sci 4(2): 111‐111, 2001.
 139. Reeves JT, Groves BM, Turkevich D. The case for treatment of selected patients with primary pulmonary hypertension. Am Rev Respir Dis 134(2): 342‐342, 1986.
 140. Reid L, Davies P. Control of Cell Proliferation in Pulmonary Hypertension. vol. 38. New York: Marcel Dekker Inc, 1989.
 141. Remillard CV, Yuan JX. High altitude pulmonary hypertension: Role of K_ and Ca2_ channels. High Alt Med Biol 6: 133‐133, 2005.
 142. Rich S, Dantzker DR, Ayres SM, Bergofsky EH, Brundage BH, Detre KM, Fishman AP, Goldring RM, Groves BM, Koerner SK, Levy PC, Reid LM, Vreim CE, Williams GW. Primary pulmonary hypertension: A national prospective study. Ann Intern Med 107(2): 216‐216, 1987.
 143. Rigolin VH, Robiolio PA, Wilson JS, Harrison JK, Bashore TM. The forgotten chamber: The importance of the right ventricle. Cathet Cardiovasc Diagn 35(1): 18‐18, 1995.
 144. Roach MR, Burton AC. The reason for the shape of the distensibility curves of arteries. Can J Biochem Physiol 35(8): 681‐681, 1957.
 145. Robert L, Hornebeck W. Elastin and Elastases. vol. I. CRC Press, Boca Raton, FL, 1989a.
 146. Robert L, Hornebeck W. Elastin and Elastases. vol. II. CRC Press, Boca Raton, FL, 1989b.
 147. Rodés‐Cabau J, Domingo E, Román A, Majó J, Lara B, Padilla F, Anívarro I, Angel J, Tardif JC, Soler‐Soler J. Intravascular ultrasound of the elastic pulmonary arteries: A new approach for the evaluation of primary pulmonary hypertension. Heart 89(3): 311‐311, 2003.
 148. Rondelet B, Van Beneden R, Kerbaul F, Motte S, Fesler P, McEntee K, Brimioulle S, Ketelslegers JM, Naeije R. Expression of the serotin 1b receptor in experimental pulmonary hypertension. Eur Respir J 22(3): 408‐408, 2003.
 149. Santana DB, Barra JG, Grignola JC, Ginés FF, Armentano RL. Pulmonary artery smooth muscle activation attenuates arterial dysfunction during acute pulmonary hypertension. J Appl Physiol 98(2): 605‐605, 2005.
 150. Segers P, Brimioulle S, Stergiopulos N, Westerhof N, Naeije R, Maggiorini M, Verdonck P. Pulmonary arterial compliance in dogs and pigs: The three‐element windkessel model revisited. Am J Physiol 277(2 Pt 2): H725‐H731, 1999.
 151. Segers P, Rietzschel ER, De Buyzere ML, Vermeersch SJ, De Bacquer D, Van Bortel LM, De Backer G, Gillebert TC, Verdonck PR. Noninvasive (input) impedance, pulse wave velocity, and wave reflection in healthy middle‐aged men and woman Hypertension 49: 1248‐1248, 2007.
 152. Segers P, Stergiopulos N, Westerhof N, Wouters P, Kolh P, Verdonck P. Systemic and pulmonary hemodynamics assessed with a lumped‐parameter heart‐arterial interaction model. J Eng Math 47(3): 185‐185, 2003.
 153. Shadwick RE. Mechanical design in arteries. J Exp Biol 202(23): 3305‐3305, 1999.
 154. Sherwin SJ, Franke V, Peiro J, Parker K. One‐dimensional modeling of a vascular network in space‐time variables. J Eng Math 47(3/4): 217‐217, 2003.
 155. Shewry PR, Tatham AS, Bailey JB. Elastomeric Proteins: Structures, Biomechanical Properties and Biological Roles. Cambridge University Press, Cambridge, UK, 2003.
 156. Slife DM, Latham RD, Sipkema P, Westerhof N. Pulmonary arterial compliance at rest and exercise in normal humans. Am J Physiol Heart Circ Physiol 258: H1823‐H1828, 1990.
 157. Snyder MF, Rideout VC, Hillestad RJ. Computer modeling of the human systemic arterial tree. J Biomech 1(4): 341‐341, 1968.
 158. Sokolis DP, Kefaloyannis EM, Kouloukoussa M, Marinos E, Boudoulas H, Karayannacos PE. A structural basis for the aortic stress‐strain relation in uniaxial tension. J Biomech 39(9): 1651‐1651, 2006.
 159. Spilker RL, Feinstein JA, Parker DW, Reddy VM, Taylor CA. Morphometry‐based impedance boundary conditions for patient‐specific modeling of blood flow in pulmonary arteries. Ann Biomed Eng 35(4): 546‐546, 2007.
 160. St John Sutton M. Aortic stiffness: A predictor of acute coronary events? Eur Heart J 21: 342‐342, 2000.
 161. Steele BN, Wan J, Ku JP, Hughes TJ, Taylor CA. In vivo validation of a one‐dimensional finite‐element method for predicting blood flow in cardiovascular bypass grafts. IEEE Trans Biomed Eng 50(6): 649‐649, 2003.
 162. Stefanadis C, Dernellis J, Tsiamis E, Stratos C, Diamantopoulos L, Michaelides A, Toutouzas P. Aortic stiffness as a risk factor for recurrent acute coronary events in patients with ischaemic heart disease. Eur Heart J 21: 390‐390, 2000.
 163. Steinman DA, Taylor CA. Flow imaging and computing: Large artery hemodynamics. Ann Biomed Eng 33(12): 1704‐1704, 2005.
 164. Stenmark KR, Davie N, Frid M, Gerasimovskaya E, Das M. Role of the adventitia in pulmonary vascular remodeling. Physiology (Bethesda) 21: 134‐134, 2006.
 165. Stenmark KR, Fagan KA, Frid MG. Hypoxia‐induced pulmonary vascular remodeling—Cellular and molecular mechanisms. Circ Res 99(7): 675‐675, 2006.
 166. Stenmark KR, McMurtry IF. Vascular remodeling versus vasoconstriction in chronic hypoxic pulmonary hypertension—A time for reappraisal? Circ Res 97(2): 95‐95, 2005.
 167. Stergiopulos N, Meister JJ, Westerhof N. Simple and accurate way for estimating total and segmental arterial compliance: The pulse pressure method. Ann Biomed Eng 22: 392‐392, 1994.
 168. Stergiopulos N, Meister JJ, Westerhof N. Evaluation of methods for estimation of total arterial compliance. Am J Physiol 268(4 Pt 2): H1540‐H1548, 1995.
 169. Stergiopulos N, Westerhof BE, Westerhof N. Total arterial inertance as the fourth element of the windkessel model. 276(1): H81‐H88, 1999.
 170. Stewart S. Pathology of adult pulmonary hypertension. In: Morice AH, editor. Clinical Pulmonary Hypertension. London: Portland Press, 1995, p. 43‐43.
 171. Sugawa K, Maughan L, Suga H, Sunagawa K. Cardiac Contraction and the Pressure‐Volume Relationship. Oxford, UK: Oxford University Press, 1988.
 172. Sundareswaran KS, Pekkan K, Dasi LP, Whitehead K, Sharma S, Kanter KR, Fogel MA, Yoganathan AP. The total cavopulmonary connection resistance: A significant impact on single ventricle hemodynamics at rest and exercise. Am J Physiol Heart Circ Physiol 295(6): H2427‐H2435, 2008.
 173. Tagawa H. Pulmonary arterial input impedance in patients with chronic pulmonary diseases. Nihon Kyobu Shikkan Gakkai Zasshi 27(9): 1031‐1031, 1989.
 174. Takamizawa K, Hayashi K. Strain energy density function and uniform strain hypothesis for arterial mechanics. J Biomech 20(1): 7, 1987.
 175. Tawhai MH, Burrowes KS. Modelling pulmonary blood flow. Respir Physiol Neurobiol 163(1‐3): 150‐150, 2008. Epub 2008 Mar 16.
 176. Taylor CA, Draney MT. Experimental and computational methods in cardiovascular fluid mechanics. Annu Rev Fluid Mech 36: 197‐197, 2004.
 177. Taylor CA, Figueroa CA. Patient‐specific modeling of cardiovascular mechanics. Annu Rev Biomed Eng 11: 109‐109, 2009.
 178. Taylor MG. An experimental determination of the propagation of fluid oscillations in a tube with a visco‐elastic wall; together with an analysis of the characteristics required in an electrical analogue. Phys Med Biol 4: 63‐63, 1959.
 179. Taylor MG. The input impedance of an assembly of randomly branching elastic tubes. Biophys J 6(1): 29‐29, 1966a.
 180. Taylor MG. Wave transmission through an assembly of randomly branching elastic tubes. Biophys J 6(6): 697‐697, 1966b.
 181. Tobise K, Haneda T, Onodera S. Changes in the pulmonary vascular input impedance in patients with atrial septal defect after surgical correction. Jpn Circ J 54(2): 175‐175, 1990.
 182. Tozzi CA, Christiansen DL, Poiani GJ, Riley DJ. Excess collagen in hypertensive pulmonary arteries decreases vascular distensibility. Am J Respir Crit Care Med 149(5): 1317‐1317, 1994.
 183. Tuder RM, Abman SH, Braun T, Capron F, Stevens T, Thistlethwaite PA, Haworth SG. Development and pathology of pulmonary hypertension. J Am Coll Cardiol 54(1 Suppl): S3‐S9, 2009.
 184. Tuder RM, Marecki JC, Richter A, Fijalkowska I, Flores S. Pathology of pulmonary hypertension. Clin Chest Med 28(1): 23‐23, 2007.
 185. Ugural AC, Fenster SK. Advanced Strength and Applied Elasticity. (4th ed). Upper Saddle River, NJ: Prentice Hall, 2003, p. 315‐315.
 186. Uren NG, Oakley CM. The treatment of primary pulmonary hypertension. Br Heart J 66(2): 119‐119, 1991.
 187. Vaishnav RN, Young JT, Janicki JS, Patel DJ. Nonlinear anisotropic elastic properties of the canine aorta. Biophys J 12(8): 1008‐1008, 1972.
 188. Van Den Bos GC, Westerhof N, Randall OS. Pulse wave reflection: Can it explain the differences between systemic and pulmonary pressure and flow waves? A study in dogs. Circ Res 51: 479‐479, 1982.
 189. Vignon IE, Taylor CA. Outflow boundary conditions for one‐dimensional finite element modeling of blood flow and pressure waves in arteries. Wave Motion 39(4): 361‐361, 2004.
 190. Vignon‐Clementel IE, Figueroa CA, Jansen KE, Taylor CA. Outflow boundary conditions for three‐dimensional finite element modeling of blood flow and pressure in arteries. Comput Methods Appl Mech Engrg 195(29): 3776‐3776, 2006.
 191. Vito RP, Dixon SA. Blood vessel constitutive models‐1995–2002. Annu Rev Biomed Eng 5: 413‐413, 2003.
 192. Von Maltzahn WW, Warriyar RG, Keitzer WF. Experimental measurements of elastic properties of media and adventitia of bovine carotid arteries. J Biomech 17(11): 839, 1984.
 193. Wan J, Steele B, Spicer SA, Strohband S, Feijóo GR, Hughes TJ, Taylor CA. A one‐dimensional finite element method for simulation‐based medical planning for cardiovascular disease. Comput Methods Biomech Biomed Engin 5(3): 195‐195, 2002.
 194. Wauthy P, Abdel Kafi S, Mooi WJ, Naeije R, Brimioulle S. Inhaled nitric oxide versus prostacyclin in chronic shunt‐induced pulmonary hypertension. J Thorac Cardiovasc Surg 126(5): 1434‐1434, 2003.
 195. Weinberg C, Hertzberg J, Valdes‐Cruz LM, Shandas R. Extraction of pulmonary vascular compliance, PVR and RV work from single‐pressure and Doppler flow measurements in children with pulmonary hypertension—a new method for evaluating reactivity: In vitro and clinical studies. Circulation 110(7): 2609‐2609, 2004.
 196. Westerhof N, Bosman F, de Vries CJ, Noordergraaf A. Analog studies of the human systemic arterial tree. J Biomech 2: 121‐121, 1969.
 197. Westerhof N, Elzinga G, Sipkema P. An artificial arterial system for pumping hearts. J Appl Physiol 31(5): 776‐776, 1971.
 198. Westerhof N, Lankhaar JW, Westerhof BE. The arterial Windkessel. Med Biol Eng Comput 47(2): 131‐131, 2009.
 199. Westerhof N, Sipkema P, Van Den Bos GC, Elzinga G. Forward and backward waves in the arterial system. Cardiovasc Res 6(6): 648‐648, 1972.
 200. Whitehead KK, Pekkan K, Kitajima HD, Paridon SM, Yoganathan AP, Fogel MA. Nonlinear power loss during exercise in single‐ventricle patients after the Fontan: Insights from computational fluid dynamics. Circulation 116(11 Suppl): I165‐I171, 2007.
 201. Wiener F, Morkin E, Skalak R, Fishman AP. Wave propagation in the pulmonary circulation. Circ Res 19: 834‐834, 1966.
 202. Wohrley JD, Frid MG, Moiseeva EP, Orton EC, Belknap JK, Stenmark KR. Hypoxia selectively induces proliferation in a specific subpopulation of smooth‐muscle cells in the bovine neonatal pulmonary arterial media. J Clin Invest 96(1): 273‐273, 1995.
 203. Wolinsky H, Glagov S. Structural basis for the static mechanical properties of the aortic media. Circ Res 14(5): 400, 1964.
 204. Womersley JR. An elastic theory of pulse transmission and oscillatory flow in mammalian arteries, TR 56‐614, Wright Air Development Center, Dayton, Ohio, U.S.A. 1957.
 205. Womersley JR. Mathematical theory of oscillating flow in an elastic tube. J Physiol 127(2): 37‐38P, 1955a.
 206. Womersley JR. Method for the calculation of velocity, rate of flow and viscous drag in arteries when the pressure gradient is known. J Physiol 127(3): 553‐553, 1955b.
 207. Womersley JR. Oscillatory flow in arteries: The constrained elastic tube as a model of arterial flow and pulse transmission. Phys Med Biol 2(2): 178‐178, 1957.
 208. Wright JE, Drexler ES, Slifka AJ, McCowan CN, Ivy DD, Shandas R. Stress and strain in rat pulmonary artery material during a biaxial bubble test. Biomed Sci Instrum 40: 303‐303, 2004.
 209. Wuyts FL, Vanhuyse VJ, Langewouters GJ, Decraemer WF, Raman ER, Buyle S. Elastic properties of human aortas in relation to age and atherosclerosis: A structural model. 40: 1577‐1577, 1995.
 210. Xie J, Zhou J, Fung YC. Bending of blood vessel wall: Stress‐strain laws of the intima‐media and adventitial layers. J Biomech Eng 117: 136, 1995.
 211. Yu PN, Murphy GW, Schreiner BF, James DH. Distensibility characteristics of the human pulmonary vascular bed. Circulation 35: 710‐710, 1967.
 212. Yu Q, Zhou J, Fung YC. Neutral axis location in bending and Young's modulus of different layers of arterial wall. Am J Physiol Heart Circ Physiol 265(1): H52, 1993.
 213. Zaidi SHE, You XM, Ciura S, Husain M, Rabinovitch M. Overexpression of the serine elastase inhibitor elafin protects transgenic mice from hypoxic pulmonary hypertension. Circulation 105(4): 516‐516, 2002.
 214. Zhang YH, Dunn ML, Drexler ES, McCowan CN, Slifka AJ, Ivy DD, Shandas R. A microstructural hyperelastic model of pulmonary arteries under normo‐ and hypertensive conditions. Ann Biomed Eng 33(8): 1042‐1042, 2005.
 215. Zhang YH, Dunn ML, Hunter KS, Lanning C, Ivy DD, Claussen L, Chen SJ, Shandas R. Application of a microstructural constitutive model of the pulmonary artery to patient‐specific studies: Validation and effect of orthotropy. J Biomech Eng 129(2): 193‐193, 2007.
 216. Zuckerman BD, Orton EC, Latham LP, Barbiere CC, Stenmark KR, Reeves JT. Pulmonary vascular impedance and wave reflections in the hypoxic calf. J Appl Physiol 72(6): 2118‐2118, 1992.
 217. Zuckerman BD, Orton EC, Stenmark KR, Trapp JA, Murphy JR, Coffeen PR, Reeves JT. Alteration of the pulsatile load in the high‐altitude calf model of pulmonary hypertension. J Appl Physiol 70(2): 859‐859, 1992.
 218. Zulliger MA, Fridez P, Hayashi K, Stergiopulos N. A strain energy function for arteries accounting for wall composition and structure.” J Biomech 37(7): 989‐989, 2004.

Related Articles:

Pulmonary Vascular Disease

Contact Editor

Submit a note to the editor about this article by filling in the form below.

* Required Field

How to Cite

Kendall S. Hunter, Steven R. Lammers, Robin Shandas. Pulmonary Vascular Stiffness: Measurement, Modeling, and Implications in Normal and Hypertensive Pulmonary Circulations. Compr Physiol 2011, 1: 1413-1435. doi: 10.1002/cphy.c100005