Comprehensive Physiology Wiley Online Library

Apnea of Prematurity

Full Article on Wiley Online Library



Abstract

Apnea of prematurity is a significant problem due to immaturity of the central neural control circuitry responsible for integrating afferent input and central rhythm. In this review, we provide an overview of the pathogenesis of apnea of prematurity—including our current understanding of the role that afferent input to the brain stem plays in synergy with the central pattern generation circuitry in the emergence of apnea of prematurity. We then discuss the interplay of apnea, bradycardia, desaturation, as well as the genesis of central, mixed, and obstructive apnea. Finally, we provide a summary of the physiological basis for current therapeutic approaches to treating apnea of prematurity, and conclude with an overview of proposed long‐term consequences of the resultant intermittent hypoxic episodes. © 2012 American Physiological Society. Compr Physiol 2:2923‐2931, 2012.

Comprehensive Physiology offers downloadable PowerPoint presentations of figures for non-profit, educational use, provided the content is not modified and full credit is given to the author and publication.

Download a PowerPoint presentation of all images


Figure 1. Figure 1.

Specific contributory causes of apnea. CNS, central nervous system.

Figure 2. Figure 2.

Diagram of the relationship between inputs and integration at the brain stem in relation to autonomic “stability.” The role that phasic inputs from the lung stretch receptors and other “noisy” inputs play in coordinating and producing robust rhythm depends on the central integration at the brain stem that changes dramatically in early development. Greater respiratory stability should decrease the resultant morbidities that may be a consequence of intermittent hypoxia.

Figure 3. Figure 3.

Proposed physiologic mechanisms whereby apnea induces reflex bradycardia. This can occur secondary to hypoxemia in the absence of lung inflation or by stimulation of upper airway inhibitory afferents.

Figure 4. Figure 4.

The interplay of gas exchange depends on oxygen carrying capacity as well as hemoglobin affinity. Since premature children have a higher oxygen consumption, the relative carrying capacity and significance of neonatal hemoglobin kinetics may play a significant role in the evolution of apnea of prematurity.

Figure 5. Figure 5.

Evidence that adenosine A2A receptors modulate breathing rhythm in a developmentally dependent manner. (A) Integrated diaphragm electromyography in rats at P14, P21, and Adult (P35) showing the inhibitory effect of the adenosine A2A agonist, CGS21680, upon breathing. (B) Staining for A2A receptor protein in pre‐Bötzinger complex on the left, and GAD67 in Bötzinger complex (Bc) on the right, at ages P4, P7, P14, and P21 in rat. Scale bar = 100 microns.



Figure 1.

Specific contributory causes of apnea. CNS, central nervous system.



Figure 2.

Diagram of the relationship between inputs and integration at the brain stem in relation to autonomic “stability.” The role that phasic inputs from the lung stretch receptors and other “noisy” inputs play in coordinating and producing robust rhythm depends on the central integration at the brain stem that changes dramatically in early development. Greater respiratory stability should decrease the resultant morbidities that may be a consequence of intermittent hypoxia.



Figure 3.

Proposed physiologic mechanisms whereby apnea induces reflex bradycardia. This can occur secondary to hypoxemia in the absence of lung inflation or by stimulation of upper airway inhibitory afferents.



Figure 4.

The interplay of gas exchange depends on oxygen carrying capacity as well as hemoglobin affinity. Since premature children have a higher oxygen consumption, the relative carrying capacity and significance of neonatal hemoglobin kinetics may play a significant role in the evolution of apnea of prematurity.



Figure 5.

Evidence that adenosine A2A receptors modulate breathing rhythm in a developmentally dependent manner. (A) Integrated diaphragm electromyography in rats at P14, P21, and Adult (P35) showing the inhibitory effect of the adenosine A2A agonist, CGS21680, upon breathing. (B) Staining for A2A receptor protein in pre‐Bötzinger complex on the left, and GAD67 in Bötzinger complex (Bc) on the right, at ages P4, P7, P14, and P21 in rat. Scale bar = 100 microns.

References
 1. Abdala AP, Rybak IA, Smith JC, Zoccal DB, Machado BH, St‐John WM, Paton JF. Multiple pontomedullary mechanisms of respiratory rhythmogenesis. Respir Physiol Neurobiol 168(1‐2): 19‐25. 2009.
 2. Abu‐Shaweesh JM, Dreshaj IA, Haxhiu MA, Martin RJ. Central GABAergic mechanisms are involved in apnea induced by SLN stimulation in piglets. J Appl Physiol 90: 1570‐1576, 2001.
 3. Abu‐Shaweesh JM, Martin RJ. Neonatal apnea: What's new? Pediatr Pulmonol 43: 937‐944, 2008.
 4. Al‐Aif S, Alvaro R, Manfreda J, Kwiatkowski K, Cates D, Rigatto H. Inhalation of low (0.5%‐1.5%) CO2 as a potential treatment for apnea of prematurity. Semin Perinatol 25: 100‐106, 2001.
 5. Al‐Matary A, Kutbi I, Qurashi M, Khalil M, Alvaro R, Kwiatkowski K, Cates D, Rigatto H. Increased peripheral chemoreceptor activity may be critical in destabilizing breathing in neonates. Semin Perinatol 28: 264‐272, 2004.
 6. Amin SB, Charafeddine L, Guillet R. Transient bilirubin encephalopathy and apnea of prematurity in 28 to 32 weeks gestational age infants. J Perinatol 25: 386‐390, 2005.
 7. Back SA, Craig A, Luo NL, Ren J, Akundi RS, Ribeiro I, Rivkees SA. Protective effects of caffeine on chronic hypoxia‐induced perinatal white matter injury. Ann Neurol 60: 696‐705, 2006.
 8. Balan KV, Kc P, Hoxha Z, Mayer CA, Wilson CG, Martin RJ. Vagal afferents modulate cytokine‐mediated respiratory control at the neonatal medulla oblongata. Respir Physiol Neurobiol 178: 458‐464, 2011.
 9. Barrington KJ, Finer NN. Periodic breathing and apnea in preterm infants. Pediatr Res 27: 118‐121, 1990.
 10. Blain GM, Smith CA, Henderson KS, Dempsey JA. Contribution of the carotid body chemoreceptors to eupneic ventilation in the intact, unanesthetized dog. J Appl Physiol 106: 1564‐1573, 2009.
 11. Blain GM, Smith CA, Henderson KS, Dempsey JA. Peripheral chemoreceptors determine the respiratory sensitivity of central chemoreceptors to CO2. J Physiol 588(13): 2455‐2471, 2010.
 12. Bloch‐Salisbury E, Indic P, Bednarek F, Paydarfar D. Stabilizing immature breathing patterns of preterm infants using stochastic mechanosensory stimulation. J Appl Physiol 107: 1017‐1027, 2009.
 13. Bookatz GB, Mayer CA, Wilson CG, Vento M, Gelfand SL, Haxhiu MA, Martin RJ. Effect of supplemental oxygen on reinitiation of breathing after neonatal resuscitation in rat pups. Pediatr Res 61: 698‐702, 2007.
 14. Cardot V, Chardon K, Tourneux P, Micallef S, Stéphan E, Léké A, Bach V, Libert J, Telliez F. Ventilatory response to a hyperoxic test is related to the frequency of short apneic episodes in late preterm neonates. Pediatr Res 62: 591‐596, 2007.
 15. Carlo WA, Di Fiore JM. Respiratory muscle responses to changes in chemoreceptor drive in infants. J Appl Physiol 68: 1041‐1047, 1990.
 16. Carroll JL, Kim I. Postnatal development of carotid body glomus cell O2 sensitivity. Respir Physiol Neurobiol 149: 201‐215, 2005.
 17. Chavez‐Valdez R, Wills‐Karp M, Ahlawat R, Cristofalo EA, Nathan A, Gauda EB. Caffeine modulates TNF‐alpha production by cord blood monocytes: The role of adenosine receptors. Pediatr Res 65: 203‐208, 2009.
 18. Cream C, Li A, Nattie E. The retrotrapezoid nucleus (RTN): Local cytoarchitecture and afferent connections. Respir Physiol Neurobiol 130: 121‐137, 2002.
 19. Darnall RA. The role of CO2 and central chemoreception in the control of breathing in the fetus and the neonate. Respir Physiol Neurobiol 173: 201‐212, 2010.
 20. Di Fiore J, Arko M, Herynk, Martin R, Hibbs AM. Characterization of cardiorespiratory events following gastroesophageal reflux in preterm infants. J Perinatol 30: 683‐687, 2010.
 21. Di Fiore JM, Arko MK, Miller MJ, Krauss A, Betkerur A, Zadell A, Kenney SR, Martin RJ. Cardiorespiratory events in preterm infants referred for apnea monitoring studies. Pediatrics 108: 1304‐1308, 2001.
 22. Di Fiore JM, Bloom JN, Orge F, Schutt A, Schluchter M, Cheruvu VK, Walsh M, Finer N, Martin RJ. A higher incidence of intermittent hypoxemic episodes is associated with severe retinopathy of prematurity. J Pediatr 157: 69‐73, 2010.
 23. Dorostkar PC, Arko MK, Baird TM, Rodriguez S, Martin RJ. Asystole and severe bradycardia in preterm infants. Biol Neonate 88: 299‐305, 2005.
 24. Dutschmann M, Mörschel M, Kron M, Herbert H. Development of adaptive behaviour of the respiratory network: Implications for the pontine Kolliker‐Fuse nucleus. Respir Physiol Neurobiol 143: 155‐165, 2004.
 25. Dutschmann M, Mörschel M, Reuter J, Zhang W, Gestreau C, Stettner GM, Kron M. Postnatal emergence of synaptic plasticity associated with dynamic adaptation of the respiratory motor pattern. Respir Physiol Neurobiol 164: 72‐79, 2008.
 26. Ezure K. Respiration‐related afferents to parabrachial pontine regions. Respir Physiol Neurobiol 143: 167‐175, 2004.
 27. Ezure K, Tanaka I, Saito Y, Otake K. Axonal projections of pulmonary slowly adapting receptor relay neurons in the rat. J Comp Neurol 446: 81‐94, 2002.
 28. Forster H, Smith CA. Contributions of central and peripheral chemoreceptors to the ventilatory response to CO2/H+. J Appl Physiol 108: 989‐994, 2010.
 29. Funk GD, Huxtable AG, Lorier AR. ATP in central respiratory control: A three‐part signaling system. Respir Physiol Neurobiol 164: 131‐142, 2008.
 30. Gauda EB, Miller MJ, Carlo WA, Di Fiore JM, Johnsen DC, Martin RJ. Genioglossus response to airway occlusion in apneic versus nonapneic infants. Pediatr Res 22: 683‐687, 1987.
 31. Gauda EB, Carroll JL, Donnelly DF. Developmental maturation of chemosensitivity to hypoxia of peripheral arterial chemoreceptors–invited article. Adv Exp Med Biol 648: 243‐255, 2009.
 32. Gerhardt T, Bancalari E. Apnea of prematurity: I. Lung function and regulation of breathing. Pediatrics 74: 58‐62, 1984.
 33. Gerhardt T, Bancalari E. Apnea of prematurity: II. Respiratory reflexes. Pediatrics 74: 63‐66, 1984.
 34. Gresham K, Boyer B, Mayer C, Foglyano R, Martin R, Wilson CG. Airway inflammation and central respiratory control: Results from in vivo and in vitro neonatal rat. Respir Physiol Neurobiol 178: 414‐421, 2011.
 35. Guyenet PG, Mulkey DK. Retrotrapezoid nucleus and parafacial respiratory group. Respir Physiol Neurobiol 173: 244‐255, 2010.
 36. Guyenet PG, Stornetta RL, Abbott SBG, Depuy SD, Fortuna MG, Kanbar R. Central CO2‐chemoreception and integrated neural mechanisms of cardiovascular and respiratory control. J Appl Physiol 108: 995‐1002, 2010.
 37. Henderson‐Smart DJ, Butcher‐Puech MC, Edwards DA. Incidence and mechanism of bradycardia during apnoea in preterm infants. Arch Dis Child 61: 227‐232, 1986.
 38. Herlenius E, Lagercrantz H, Yamamoto Y. Adenosine modulates inspiratory neurons and the respiratory pattern in the brain stem of neonatal rats. Pediatr Res 42: 46‐53, 1997.
 39. Hertzberg T, Lagercrantz H. Postnatal sensitivity of the peripheral chemoreceptors in newborn infants. Arch Dis Child 62: 1238‐1241, 1987.
 40. Hibbs AM, Johnson NL, Rosen CL, Kirchner HL, Martin R, Storfer‐Isser A, Redline S. Prenatal and neonatal risk factors for sleep disordered breathing in school‐aged children born preterm. J Pediatr 153: 176‐182, 2008.
 41. Hodges MR, Richerson GB. Medullary serotonin neurons and their roles in central respiratory chemoreception. Respir Physiol Neurobiol 173: 256‐263, 2010.
 42. Hodges MR, Richerson GB. The role of medullary serotonin (5‐HT) neurons in respiratory control: Contributions to eupneic ventilation, CO2 chemoreception, and thermoregulation. J Appl Physiol 108: 1425‐1432, 2010.
 43. Hodges MR, Wehner M, Aungst J, Smith JC, Richerson GB. Transgenic mice lacking serotonin neurons have severe apnea and high mortality during development. J Neurosci 29: 10341‐10349, 2009.
 44. Hoffman MS, Golder FJ, Mahamed S, Mitchell GS. Spinal adenosine A2A receptor inhibition enhances phrenic long term facilitation following acute intermittent hypoxia. J Physiol 588(1): 255‐266, 2010.
 45. Hofstetter AO, Saha S, Siljehav V, Jakobsson P, Herlenius E. The induced prostaglandin E2 pathway is a key regulator of the respiratory response to infection and hypoxia in neonates. Proc Natl Acad Sci U S A 104: 9894‐9, 2007.
 46. Hunt CE, Corwin MJ, Baird T, Tinsley LR, Palmer P, Ramanathan R, Crowell DH, Schafer S, Martin RJ, Hufford D, Peucker M, Weese‐Mayer DE, Silvestri JM, Neuman MR, Cantey‐Kiser J, the Collaborative Home Infant Monitoring Evaluation [CHIME] Study Group: Cardiorespiratory events detected by home memory monitoring and one‐year neurodevelopmental outcome. J Pediatr 145: 465‐471, 2004.
 47. Huxtable AG, Zwicker JD, Poon BY, Pagliardini S, Vrouwe SQ, Greer JJ, Funk GD. Tripartite purinergic modulation of central respiratory networks during perinatal development: The influence of ATP, ectonucleotidases, and ATP metabolites. J. Neurosci 29: 14713‐14725, 2009.
 48. Janczewski WA, Feldman JL. Novel data supporting the two respiratory rhythm oscillator hypothesis. Focus on “respiration‐related rhythmic activity in the rostral medulla of newborn rats”. J. Neurophysiol 96: 1‐2, 2006.
 49. Janvier A, Khairy M, Kokkotis A, Cormier C, Messmer D, Barrington KJ. Apnea is associated with neurodevelopmental impairment in very low birth weight infants. J Perinatol 24: 763‐768, 2004.
 50. Katz‐Salamon M, Jonsson B, Lagercrantz H. Blunted peripheral chemoreceptor response to hyperoxia in a group of infants with bronchopulmonary dysplasia. Pediatr Pulmonol 20: 101‐106, 1995.
 51. Khan A, Qurashi M, Kwiatkowski K, Cates D, Rigatto H. Measurement of the CO2 apneic threshold in newborn infants: Possible relevance for periodic breathing and apnea. J Appl Physiol 98: 1171‐1176, 2005.
 52. Kiatchoosakun P, Dreshaj IA, Abu‐Shaweesh JM, Haxhiu MA, Martin RJ. Effects of hypoxia on respiratory neural output and lower esophageal sphincter pressure in piglets. Pediatr Res 52: 50‐55, 2002.
 53. Kinney HC, Richerson GB, Dymecki SM, Darnall RA, Nattie EE. The brain stem and serotonin in the sudden infant death syndrome. Annu Rev Pathol 4: 517‐550, 2009.
 54. Liu Q, Wong‐Riley MTT. Postnatal developmental expressions of neurotransmitters and receptors in various brain stem nuclei of rats. J Appl Physiol 98: 1442‐1457, 2005.
 55. Liu Q, Wong‐Riley MTT. Developmental changes in the expression of GABAA receptor subunits alpha1, alpha2, and alpha3 in brain stem nuclei of rats. Brain Res 1098: 129‐138, 2006.
 56. Liu YY, Ju G, Wong‐Riley MT. Distribution and colocalization of neurotransmitters and receptors in the pre‐Bötzinger complex of rats. J Appl Physiol 91: 1387‐1395, 2001.
 57. Lorier AR, Lipski J, Housley GD, Greer JJ, Funk GD. ATP sensitivity of preBötzinger complex neurones in neonatal rat in vitro: Mechanism underlying a P2 receptor‐mediated increase in inspiratory frequency. J Physiol 586: 1429‐1446, 2008.
 58. Martin RJ, Carlo WA, Robertson SS, Day WR, Bruce EN. Biphasic response of respiratory frequency to hypercapnea in preterm infants. Pediatr Res 19: 791‐796, 1985.
 59. Martin RJ, van Lunteren E, Haxhiu MA, Carlo WA. Upper airway muscle and diaphragm responses to hypoxia in the piglet. J Appl Physiol 68: 672‐677, 1990.
 60. Martin RJ, Wilson CG. What to do about apnea of prematurity? J Appl Physiol 107: 1015‐1016, 2009.
 61. Mayer CA, Haxhiu MA, Martin RJ, Wilson CG. Adenosine A2A receptors mediate GABAergic inhibition of respiration in immature rats. J Appl Physiol 100: 91‐97, 2006.
 62. Mesner O, Miller MJ, Iben SC, Prabha KC, Mayer CA, Haxhiu MA, Martin RJ. Hyperbilirubinemia diminishes respiratory drive in a rat pup model. Pediatr Res 64: 270‐274, 2008.
 63. Millar D, Schmidt B. Controversies surrounding xanthine therapy. Semin Neonatol 9(3): 239‐244, 2004.
 64. Miller MJ, DiFiore JM. A comparison of swallowing during apnea and periodic breathing in premature infants. Pediatr Res 37: 796‐799, 1995.
 65. Miyazaki M, Tanaka I, Ezure K. Excitatory and inhibitory synaptic inputs shape the discharge pattern of pump neurons of the nucleus tractus solitarii in the rat. Exp Brain Res 129: 191‐200, 1999.
 66. Nattie E.. Julius H. Comroe, Jr., Distinguished Lecture: Central chemoreception: then…and now J Appl Physiol 110: 1–8, 2011.
 67. Nattie E, Li A. Central chemoreception is a complex system function that involves multiple brain stem sites. J. Appl. Physiol 106: 1464‐1466, 2009.
 68. Nock ML, Difiore JM, Arko MK, Martin RJ. Relationship of the ventilatory response to hypoxia with neonatal apnea in preterm infants. J Pediatr 144: 291‐295, 2004.
 69. Olsson A, Kayhan G, Lagercrantz H, Herlenius E. IL‐1beta depresses respiration and anoxic survival via a prostaglandin‐dependent pathway in neonatal rats. Pediatr Res 54: 326‐331, 2003.
 70. Omari TI. Apnea‐associated reduction in lower esophageal sphincter tone in premature infants. J Pediatr 154: 374‐378, 2009.
 71. Paavonen EJ, Strang‐Karlsson S, Räikkönen K, Heinonen K, Pesonen A, Hovi P, Andersson S, Järvenpää A, Eriksson JG, Kajantie E. Very low birth weight increases risk for sleep‐disordered breathing in young adulthood: The Helsinki Study of Very Low Birth Weight Adults. Pediatrics 120: 778‐784, 2007.
 72. Paton JY, Swaminathan S, Sargent CW, Hypoxic and hypercapnic ventilatory responses in awake children with congenital central hypoventilation syndrome. Am Rev Respir Dis 140: 368‐372, 1989.
 73. Pawar A, Peng Y, Jacono FJ, Prabhakar NR. Comparative analysis of neonatal and adult rat carotid body responses to chronic intermittent hypoxia. J Appl Physiol 104: 1287‐1294, 2008.
 74. Paydarfar D, Buerkel DM. Sporadic apnea: Paradoxical transformation to eupnea by perturbations that inhibit inspiration. Med Hypotheses 49: 19‐26, 1997.
 75. Paydarfar D, Forger DB, Clay JR. Noisy inputs and the induction of on‐off switching behavior in a neuronal pacemaker. J Neurophysiol 96: 3338‐3348, 2006.
 76. Peter CS, Sprodowski N, Bohnhorst B, Silny J, Poets CF. Gastroesophageal reflux and apnea of prematurity: No temporal relationship. Pediatrics 109(1): 8‐11, 2002.
 77. Pickens DL, Schefft G, Thach BT. Prolonged apnea associated with upper airway protective reflexes in apnea of prematurity. Am Rev Respir Dis 137: 113‐118, 1988.
 78. Pillekamp F, Hermann C, Keller T, von Gontard A, Kribs A, Roth B. Factors influencing apnea and bradycardia of prematurity ‐ implications for neurodevelopment. Neonatology 91: 155‐161, 2007.
 79. Ramanathan R, Corwin MJ, Hunt CE, Lister G, Tinsley LR, Baird T, Silvestri JM, Crowell DH, Hufford D, Martin RJ, Newman MR, Weese‐Mayer DE, Cupples LA, Peucker M, Willinger M, Keens TG for the Collaborative Home Infant Monitoring Evaluation [CHIME] Study Group: Cardiorespiratory events recorded on home monitors: Comparison of healthy infants with those at increased risk for SIDS. JAMA 285: 2199‐2207, 2001.
 80. Renolleau S, Letourneau P, Niyonsenga T, Praud JP, Gagné B. Thyroarytenoid muscle electrical activity during spontaneous apneas in preterm lambs. Am J Respir Crit Care Med 159: 1396‐1404, 1999.
 81. Rigatto H, Brady JP. Periodic breathing and apnea in preterm infants. I. Evidence for hypoventilation possibly due to central respiratory depression. Pediatrics 50: 202‐218, 1972.
 82. Rigatto H, Brady JP. Periodic Breathing and Apnea in Preterm Infants. II. Hypoxia as a Primary Event. Pediatrics 50: 219‐228, 1972.
 83. Rigatto H, Brady JP, Torre RDL. Chemoreceptor reflexes in preterm infants: II. The effect of gestational and postnatal age on the ventilatory response to inhaled carbon dioxide. Pediatrics 55: 614–620, 1975.
 84. Rosen CL, Larkin EK, Kirchner HL, Emancipator JL, Bivins SF, Surovec SA, Martin RJ, Redline S. Prevalence and risk factors for sleep‐disordered breathing in 8‐ to 11‐year‐old children: Association with race and prematurity. J Pediatr 142: 383‐389, 2003.
 85. Sands SA, Edwards BA, Kelly VJ, Davidson MR, Wilkinson MH, Berger PJ. A model analysis of arterial oxygen desaturation during apnea in preterm infants. PLoS Comput Biol 5: e1000588, 2009.
 86. Schmidt B, Roberts RS, Davis P, Doyle LW, Barrington KJ, Ohlsson A, Solimano A, Tin W; Caffeine for Apnea of Prematurity Trial Group. Caffeine therapy for apnea of prematurity. N Engl J Med 354: 2112‐2121, 2006.
 87. Schmidt B, Roberts RS, Davis P, Doyle LW, Barrington KJ, Ohlsson A, Solimano A, Tin W. Long‐term effects of caffeine therapy for apnea of prematurity. N. Engl. J. Med 357: 1893‐1902, 2007.
 88. Smith CA, Chenuel BJ, Henderson KS, Dempsey JA. The apneic threshold during non‐REM sleep in dogs: Sensitivity of carotid body vs. central chemoreceptors. J Appl Physiol 103: 578‐586, 2007.
 89. St‐Hilaire M, Samson N, Duvareille C, Praud J. Laryngeal stimulation by an acid solution in the pre‐term lamb. Adv Exp Med Biol 605: 154‐158, 2008.
 90. Stunden CE, Filosa JA, Garcia AJ, Dean JB, Putnam RW. Development of in vivo ventilatory and single chemosensitive neuron responses to hypercapnia in rats. Respir Physiol 127: 135‐155, 2001.
 91. Tryba AK, Pena F, Ramirez J. Gasping activity in vitro: A rhythm dependent on 5‐HT2A receptors. J Neurosci 26: 2623‐2634, 2006.
 92. Turner CP, Seli M, Ment L, Stewart W, Yan H, Johansson B, Fredholm BB, Blackburn M, Rivkees SA. A1 adenosine receptors mediate hypoxia‐induced ventriculomegaly. Proc Natl Acad Sci U S A 100: 11718‐11722, 2003.
 93. Walker DW. Hypoxic inhibition of breathing and motor activity in the foetus and newborn. Clin Exp Pharmacol Physiol 22: 533‐536, 1995.
 94. Wilkinson MH, Skuza EM, Rennie GC, Sands SA, Yiallourou SR, Horne RSC, Berger PJ. Postnatal development of periodic breathing cycle duration in term and preterm infants. Pediatr Res 62: 331‐336, 2007.
 95. Wilson CG, Martin RJ, Jaber M, Abu‐Shaweesh J, Jafri A, Haxhiu MA, Zaidi S. Adenosine A2A receptors interact with GABAergic pathways to modulate respiration in neonatal piglets. Respir Physiol Neurobiol 141: 201‐211.
 96. Wilson CG, Zhang Z, Bonham AC. Non‐NMDA receptors transmit cardiopulmonary C fibre input in nucleus tractus solitarii in rats. J Physiol 496(Pt 3): 773‐785, 1996.
 97. Wong‐Riley MTT, Liu Q. Neurochemical and physiological correlates of a critical period of respiratory development in the rat. Respir Physiol Neurobiol 164: 28‐37, 2008.
 98. Xia L, Leiter JC, Bartlett D Jr. Laryngeal apnea in rat pups: Effects of age and body temperature. J Appl Physiol 104: 269‐274, 2008.

Contact Editor

Submit a note to the editor about this article by filling in the form below.

* Required Field

How to Cite

Richard J. Martin, Christopher G. Wilson. Apnea of Prematurity. Compr Physiol 2012, 2: 2923-2931. doi: 10.1002/cphy.c100021