Comprehensive Physiology Wiley Online Library

Molecular Mechanisms of Muscle Plasticity with Exercise

Full Article on Wiley Online Library



Abstract

The skeletal muscle phenotype is subject to considerable malleability depending on use. Low‐intensity endurance type exercise leads to qualitative changes of muscle tissue characterized mainly by an increase in structures supporting oxygen delivery and consumption. High‐load strength‐type exercise leads to growth of muscle fibers dominated by an increase in contractile proteins. In low‐intensity exercise, stress‐induced signaling leads to transcriptional upregulation of a multitude of genes with Ca2+ signaling and the energy status of the muscle cells sensed through AMPK being major input determinants. Several parallel signaling pathways converge on the transcriptional co‐activator PGC‐1α, perceived as being the coordinator of much of the transcriptional and posttranscriptional processes. High‐load training is dominated by a translational upregulation controlled by mTOR mainly influenced by an insulin/growth factor‐dependent signaling cascade as well as mechanical and nutritional cues. Exercise‐induced muscle growth is further supported by DNA recruitment through activation and incorporation of satellite cells. Crucial nodes of strength and endurance exercise signaling networks are shared making these training modes interdependent. Robustness of exercise‐related signaling is the consequence of signaling being multiple parallel with feed‐back and feed‐forward control over single and multiple signaling levels. We currently have a good descriptive understanding of the molecular mechanisms controlling muscle phenotypic plasticity. We lack understanding of the precise interactions among partners of signaling networks and accordingly models to predict signaling outcome of entire networks. A major current challenge is to verify and apply available knowledge gained in model systems to predict human phenotypic plasticity. © 2011 American Physiological Society. Compr Physiol 1:1383‐1412, 2011.

Comprehensive Physiology offers downloadable PowerPoint presentations of figures for non-profit, educational use, provided the content is not modified and full credit is given to the author and publication.

Download a PowerPoint presentation of all images


Figure 1. Figure 1.

Schematic outline of the muscular signal integration of physical exercise stimuli. The stimulation of muscle tissue by exercise bouts is integrated by complex signaling networks causing changes in protein quantity, activity, and localization by adjusting transcriptional and/or translational mechanisms.

Figure 2. Figure 2.

A simplified scheme summarizing some known signaling pathways/networks that are preferentially activated with endurance‐type training. Energy depletion and elevated calcium levels are the main stressors initiating mitochondrial biogenesis and slow fiber programs by increasing PGC‐1alpha transcription. Consult “Endurance Exercise Training” paragraph for details.

Figure 3. Figure 3.

A selection of stressors and subsequent signaling pathways and networks engaged with strength‐type training. The Akt‐mTOR pathway is thought to be the main integrator of mechanical stress and hormonal stimulation. Downstream activation of p70S6K, initation, and elongation factors leads to an increased mRNA translation. As a consequence of the gain in muscle mass, number of nuclei (proliferation of satellite cells) must be adjusted to maintain a constant myonuclear domain. Consult “Strength Training” paragraph for details.

Figure 4. Figure 4.

Simplified model of the molecular interference of endurance and strength training. AMPK (endurance) and mTOR (strength) activity are thought to be the main points of divergence with concurrent endurance and strength exercise training. Consult “Interactions Between Endurance and Strength Training” paragraph for details.



Figure 1.

Schematic outline of the muscular signal integration of physical exercise stimuli. The stimulation of muscle tissue by exercise bouts is integrated by complex signaling networks causing changes in protein quantity, activity, and localization by adjusting transcriptional and/or translational mechanisms.



Figure 2.

A simplified scheme summarizing some known signaling pathways/networks that are preferentially activated with endurance‐type training. Energy depletion and elevated calcium levels are the main stressors initiating mitochondrial biogenesis and slow fiber programs by increasing PGC‐1alpha transcription. Consult “Endurance Exercise Training” paragraph for details.



Figure 3.

A selection of stressors and subsequent signaling pathways and networks engaged with strength‐type training. The Akt‐mTOR pathway is thought to be the main integrator of mechanical stress and hormonal stimulation. Downstream activation of p70S6K, initation, and elongation factors leads to an increased mRNA translation. As a consequence of the gain in muscle mass, number of nuclei (proliferation of satellite cells) must be adjusted to maintain a constant myonuclear domain. Consult “Strength Training” paragraph for details.



Figure 4.

Simplified model of the molecular interference of endurance and strength training. AMPK (endurance) and mTOR (strength) activity are thought to be the main points of divergence with concurrent endurance and strength exercise training. Consult “Interactions Between Endurance and Strength Training” paragraph for details.

References
 1. Adams J, Chen ZP, Van Denderen BJ, Morton CJ, Parker MW, Witters LA, Stapleton D, Kemp BE. Intrasteric control of AMPK via the gamma1 subunit AMP allosteric regulatory site. Protein Sci 13: 155‐155, 2004.
 2. Al‐Shanti N, Stewart CE. Ca2+/calmodulin‐dependent transcriptional pathways: Potential mediators of skeletal muscle growth and development. Biol Rev Camb Philos Soc 84: 637‐637, 2009.
 3. Allen RE, Boxhorn LK. Regulation of skeletal muscle satellite cell proliferation and differentiation by transforming growth factor‐beta, insulin‐like growth factor I, and fibroblast growth factor. J Cell Physiol 138: 311‐311, 1989.
 4. Ambros V. The functions of animal microRNAs. Nature 431: 350‐350, 2004.
 5. Ameln H, Gustafsson T, Sundberg CJ, Okamoto K, Jansson E, Poellinger L, Makino Y. Physiological activation of hypoxia inducible factor‐1 in human skeletal muscle. FASEB J 19: 1009‐1009, 2005.
 6. Amirouche A, Durieux AC, Banzet S, Koulmann N, Bonnefoy R, Mouret C, Bigard X, Peinnequin A, Freyssenet D. Down‐regulation of Akt/mammalian target of rapamycin signaling pathway in response to myostatin overexpression in skeletal muscle. Endocrinology 150: 286‐286, 2009.
 7. Amit I, Citri A, Shay T, Lu Y, Katz M, Zhang F, Tarcic G, Siwak D, Lahad J, Jacob‐Hirsch J, Amariglio N, Vaisman N, Segal E, Rechavi G, Alon U, Mills GB, Domany E, Yarden Y. A module of negative feedback regulators defines growth factor signaling. Nat Genet 39: 503‐503, 2007.
 8. Anthony JC, Reiter AK, Anthony TG, Crozier SJ, Lang CH, MacLean DA, Kimball SR, Jefferson LS. Orally administered leucine enhances protein synthesis in skeletal muscle of diabetic rats in the absence of increases in 4E‐BP1 or S6K1 phosphorylation. Diabetes 51: 928‐928, 2002.
 9. Antonio J, Gonyea WJ. Skeletal muscle fiber hyperplasia. Med Sci Sports Exerc 25: 1333‐1333, 1993.
 10. Aoi W, Naito Y, Mizushima K, Takanami Y, Kawai Y, Ichikawa H, Yoshikawa T. The microRNA miR‐696 regulates PGC‐1{alpha} in mouse skeletal muscle in response to physical activity. Am J Physiol Endocrinol Metab 298: E799‐E806, 2010.
 11. Arany Z, Lebrasseur N, Morris C, Smith E, Yang W, Ma Y, Chin S, Spiegelman BM. The transcriptional coactivator PGC‐1beta drives the formation of oxidative type IIX fibers in skeletal muscle. Cell Metab 5: 35‐35, 2007.
 12. Atherton PJ, Babraj J, Smith K, Singh J, Rennie MJ, Wackerhage H. Selective activation of AMPK‐PGC‐1alpha or PKB‐TSC2‐mTOR signaling can explain specific adaptive responses to endurance or resistance training‐like electrical muscle stimulation. FASEB J 19: 786‐786, 2005.
 13. Baar K. The signaling underlying FITness. Appl Physiol Nutr Metab 34: 411‐411, 2009.
 14. Baar K. Training for endurance and strength: Lessons from cell signaling. Med Sci Sports Exerc 38: 1939‐1939, 2006.
 15. Baar K. Epigenetic control of skeletal muscle fibre type. Acta Physiol (Oxf) 199: 477‐477, 2010.
 16. Backer JM. The regulation and function of Class III PI3Ks: Novel roles for Vps34. Biochem J 410: 1‐1, 2008.
 17. Baldwin KM, Haddad F. Effects of different activity and inactivity paradigms on myosin heavy chain gene expression in striated muscle. J Appl Physiol 90: 345‐345, 2001.
 18. Basaria S, Coviello AD, Travison TG, Storer TW, Farwell WR, Jette AM, Eder R, Tennstedt S, Ulloor J, Zhang A, Choong K, Lakshman KM, Mazer NA, Miciek R, Krasnoff J, Elmi A, Knapp PE, Brooks B, Appleman E, Aggarwal S, Bhasin G, Hede‐Brierley L, Bhatia A, Collins L, Lebrasseur N, Fiore LD, Bhasin S. Adverse events associated with testosterone administration. N Engl J Med 263: 109‐109, 2010.
 19. Bassel‐Duby R, Olson EN. Signaling pathways in skeletal muscle remodeling. Annu Rev Biochem 75: 19‐19, 2006.
 20. Baum O, Da Silva‐Azevedo L, Willerding G, Wockel A, Planitzer G, Gossrau R, Pries AR, Zakrzewicz A. Endothelial NOS is main mediator for shear stress‐dependent angiogenesis in skeletal muscle after prazosin administration. Am J Physiol Heart Circ Physiol 287: H2300‐H2308, 2004.
 21. Beale EG, Forest C, Hammer RE. Regulation of cytosolic phosphoenolpyruvate carboxykinase gene expression in adipocytes. Biochimie 85: 1207‐1207, 2003.
 22. Beauchamp JR, Heslop L, Yu DS, Tajbakhsh S, Kelly RG, Wernig A, Buckingham ME, Partridge TA, Zammit PS. Expression of CD34 and Myf5 defines the majority of quiescent adult skeletal muscle satellite cells. J Cell Biol 151: 1221‐1221, 2000.
 23. Beckman JS. Oxidative damage and tyrosine nitration from peroxynitrite. Chem Res Toxicol 9: 836‐836, 1996.
 24. Bellomo G, Vairetti M, Stivala L, Mirabelli F, Richelmi P, Orrenius S. Demonstration of nuclear compartmentalization of glutathione in hepatocytes. Proc Natl Acad Sci U S A 89: 4412‐4412, 1992.
 25. Bengtsson J, Gustafsson T, Widegren U, Jansson E, Sundberg CJ. Mitochondrial transcription factor A and respiratory complex IV increase in response to exercise training in humans. Pflugers Arch 443: 61‐61, 2001.
 26. Bensinger SJ, Tontonoz P. Integration of metabolism and inflammation by lipid‐activated nuclear receptors. Nature 454: 470‐470, 2008.
 27. Beyer RE, Fattore JE. The influence of age and endurance exercise on the myoglobin concentration of skeletal muscle of the rat. J Gerontol 39: 525‐525, 1984.
 28. Bhasin S, Calof OM, Storer TW, Lee ML, Mazer NA, Jasuja R, Montori VM, Gao W, Dalton JT. Drug insight: Testosterone and selective androgen receptor modulators as anabolic therapies for chronic illness and aging. Nat Clin Pract Endocrinol Metab 2: 146‐146, 2006.
 29. Bhasin S, Jasuja R. Selective androgen receptor modulators as function promoting therapies. Curr Opin Clin Nutr Metab Care 12: 232‐232, 2009.
 30. Bigland‐Ritchie B, Graichen H, Woods JJ. A variable‐speed motorized bicycle ergometer for positive and negative work exercise. J Appl Physiol 35: 739‐739, 1973.
 31. Bigland‐Ritchie B, Woods JJ. Integrated electromyogram and oxygen uptake during positive and negative work. J Physiol 260: 267‐267, 1976.
 32. Billeter R, Jostarndt‐Fogen K, Gunthor W, Hoppeler H. Fiber type characteristics and myosin light chain expression in a world champion shot putter. Int J Sports Med 24: 203‐203, 2003.
 33. Bloor CM. Angiogenesis during exercise and training. Angiogenesis 8: 263‐263, 2005.
 34. Bodine SC, Stitt TN, Gonzalez M, Kline WO, Stover GL, Bauerlein R, Zlotchenko E, Scrimgeour A, Lawrence JC, Glass DJ, Yancopoulos GD. Akt/mTOR pathway is a crucial regulator of skeletal muscle hypertrophy and can prevent muscle atrophy in vivo. Nat Cell Biol 3: 1014‐1014, 2001.
 35. Bohe J, Low A, Wolfe RR, Rennie MJ. Human muscle protein synthesis is modulated by extracellular, not intramuscular amino acid availability: A dose‐response study. J Physiol 552: 315‐315, 2003.
 36. Bolster DR, Crozier SJ, Kimball SR, Jefferson LS. AMP‐activated protein kinase suppresses protein synthesis in rat skeletal muscle through down‐regulated mammalian target of rapamycin (mTOR) signaling. J Biol Chem 277: 23977‐23977, 2002.
 37. Bonasio R, Tu S, Reinberg D. Molecular signals of epigenetic states. Science 330: 612‐612.
 38. Bonavaud S, Agbulut O, Nizard R, D'Honneur G, Mouly V, Butler‐Browne G. A discrepancy resolved: Human satellite cells are not preprogrammed to fast and slow lineages. Neuromuscul Disord 11: 747‐747, 2001.
 39. Bonen A, Dohm GL, van Loon LJ. Lipid metabolism, exercise and insulin action. Essays Biochem 42: 47‐47, 2006.
 40. Boveris A, Chance B. The mitochondrial generation of hydrogen peroxide. General properties and effect of hyperbaric oxygen. Biochem J 134: 707‐707, 1973.
 41. Boyadjiev N. Increase of aerobic capacity by submaximal training and high‐fat diets. Folia Med (Plovdiv) 38: 49‐49, 1996.
 42. Brack AS, Conboy IM, Conboy MJ, Shen J, Rando TA. A temporal switch from notch to Wnt signaling in muscle stem cells is necessary for normal adult myogenesis. Cell Stem Cell 2: 50‐50, 2008.
 43. Brandt C, Pedersen BK. The role of exercise‐induced myokines in muscle homeostasis and the defense against chronic diseases. J Biomed Biotechnol 2010: 520258, 2010.
 44. Burgin M, Eberbach E. Cooperative combinatorial optimization: Evolutionary computation case study. Biosystems 91: 34‐34, 2008.
 45. Burns KA, Vanden Heuvel JP. Modulation of PPAR activity via phosphorylation. Biochim Biophys Acta 1771: 952‐952, 2007.
 46. Callis TE, Wang DZ. Taking microRNAs to heart. Trends Mol Med 14: 254‐254, 2008.
 47. Carriere A, Ray H, Blenis J, Roux PP. The RSK factors of activating the Ras/MAPK signaling cascade. Front Biosci 13: 4258‐4258, 2008.
 48. Chen JF, Mandel EM, Thomson JM, Wu Q, Callis TE, Hammond SM, Conlon FL, Wang DZ. The role of microRNA‐1 and microRNA‐133 in skeletal muscle proliferation and differentiation. Nat Genet 38: 228‐228, 2006.
 49. Cheng B, Karamizrak O, Noakes TD, Dennis SC, Lambert EV. Time course of the effects of a high‐fat diet and voluntary exercise on muscle enzyme activity in Long‐Evans rats. Physiol Behav 61: 701‐701, 1997.
 50. Chilibeck PD, Calder A, Sale DG, Webber CE. Twenty weeks of weight training increases lean tissue mass but not bone mineral mass or density in healthy, active young women. Can J Physiol Pharmacol 74: 1180‐1180, 1996.
 51. Chin ER. Role of Ca2+/calmodulin‐dependent kinases in skeletal muscle plasticity. J Appl Physiol 99: 414‐414, 2005.
 52. Chinsomboon J, Ruas J, Gupta RK, Thom R, Shoag J, Rowe GC, Sawada N, Raghuram S, Arany Z. The transcriptional coactivator PGC‐1alpha mediates exercise‐induced angiogenesis in skeletal muscle. Proc Natl Acad Sci U S A 106: 21401‐21401, 2009.
 53. Christian M, Tullet JM, Parker MG. Characterization of four autonomous repression domains in the corepressor receptor interacting protein 140. J Biol Chem 279: 15645‐15645, 2004.
 54. Clayton AL, Hazzalin CA, Mahadevan LC. Enhanced histone acetylation and transcription: A dynamic perspective. Mol Cell 23: 289‐289, 2006.
 55. Cleasby ME, Reinten TA, Cooney GJ, James DE, Kraegen EW. Functional studies of Akt isoform specificity in skeletal muscle in vivo; maintained insulin sensitivity despite reduced insulin receptor substrate‐1 expression. Mol Endocrinol 21: 215‐215, 2007.
 56. Clemmons DR. Role of IGF‐I in skeletal muscle mass maintenance. Trends Endocrinol Metab 20: 349‐349, 2009.
 57. Clever JL, Sakai Y, Wang RA, Schneider DB. Inefficient skeletal muscle repair in inhibitor of differentiation knockout mice suggests a crucial role for BMP signaling during adult muscle regeneration. Am J Physiol Cell Physiol 298: C1087‐C1099, 2010.
 58. Coffey VG, Hawley JA. The molecular bases of training adaptation. Sports Med 37: 737‐737, 2007.
 59. Coffey VG, Jemiolo B, Edge J, Garnham AP, Trappe SW, Hawley JA. Effect of consecutive repeated sprint and resistance exercise bouts on acute adaptive responses in human skeletal muscle. Am J Physiol Regul Integr Comp Physiol 297: R1441‐R1451, 2009.
 60. Coffey VG, Pilegaard H, Garnham AP, O'Brien BJ, Hawley JA. Consecutive bouts of diverse contractile activity alter acute responses in human skeletal muscle. J Appl Physiol 106: 1187‐1187, 2009.
 61. Coffey VG, Zhong Z, Shield A, Canny BJ, Chibalin AV, Zierath JR, Hawley JA. Early signaling responses to divergent exercise stimuli in skeletal muscle from well‐trained humans. FASEB J 20: 190‐190, 2006.
 62. Conboy IM, Conboy MJ, Smythe GM, Rando TA. Notch‐mediated restoration of regenerative potential to aged muscle. Science 302: 1575‐1575, 2003.
 63. Conboy IM, Rando TA. The regulation of Notch signaling controls satellite cell activation and cell fate determination in postnatal myogenesis. Dev Cell 3: 397‐397, 2002.
 64. Conley KE, Kayar SR, Roesler K, Hoppeler H, Weibel ER, Taylor CR. Adaptive variation in the mammalian respiratory system in relation to energetic demand: IV Capillaries and their relationship to oxidative capacity. Respir Physiol 69: 47‐47, 1987.
 65. Croce JC, McClay DR. Evolution of the Wnt pathways. Methods Mol Biol 469: 3‐3, 2008.
 66. Cuthbertson D, Smith K, Babraj J, Leese G, Waddell T, Atherton P, Wackerhage H, Taylor PM, Rennie MJ. Anabolic signaling deficits underlie amino acid resistance of wasting, aging muscle. FASEB J 19: 422‐422, 2005.
 67. Czifra G, Toth IB, Marincsak R, Juhasz I, Kovacs I, Acs P, Kovacs L, Blumberg PM, Biro T. Insulin‐like growth factor‐I‐coupled mitogenic signaling in primary cultured human skeletal muscle cells and in C2C12 myoblasts. A central role of protein kinase Cdelta. Cell Signal 18: 1461‐1461, 2006.
 68. Daar AS, Singer PA, Persad DL, Pramming SK, Matthews DR, Beaglehole R, Bernstein A, Borysiewicz LK, Colagiuri S, Ganguly N, Glass RI, Finegood DT, Koplan J, Nabel EG, Sarna G, Sarrafzadegan N, Smith R, Yach D, Bell J. Grand challenges in chronic non‐communicable diseases. Nature 450: 494‐494, 2007.
 69. Davies KJ, Quintanilha AT, Brooks GA, Packer L. Free radicals and tissue damage produced by exercise. Biochem Biophys Res Commun 107: 1198‐1198, 1982.
 70. Davis ME, Grumbach IM, Fukai T, Cutchins A, Harrison DG. Shear stress regulates endothelial nitric‐oxide synthase promoter activity through nuclear factor kappaB binding. J Biol Chem 279: 163‐163, 2004.
 71. de Lange P, Farina P, Moreno M, Ragni M, Lombardi A, Silvestri E, Burrone L, Lanni A, Goglia F. Sequential changes in the signal transduction responses of skeletal muscle following food deprivation. FASEB J 20: 2579‐2579, 2006.
 72. de Silva E, Stumpf MP. Complex networks and simple models in biology. J R Soc Interface 2: 419‐419, 2005.
 73. Delling U, Tureckova J, Lim HW, De Windt LJ, Rotwein P, Molkentin JD. A calcineurin‐NFATc3‐dependent pathway regulates skeletal muscle differentiation and slow myosin heavy‐chain expression. Mol Cell Biol 20: 6600‐6600, 2000.
 74. Di Ventura B, Lemerle C, Michalodimitrakis K, Serrano L. From in vivo to in silico biology and back. Nature 443: 527‐527, 2006.
 75. Dietz MW, Piersma T, Dekinga A. Body‐building without power training: Endogenously regulated pectoral muscle hypertrophy in confined shorebirds. J Exp Biol 202 (Pt 20): 2831‐2831, 1999.
 76. Dillard CJ, Litov RE, Savin WM, Dumelin EE, Tappel AL. Effects of exercise, vitamin E, and ozone on pulmonary function and lipid peroxidation. J Appl Physiol 45: 927‐927, 1978.
 77. Djonov V, Baum O, Burri PH. Vascular remodeling by intussusceptive angiogenesis. Cell Tissue Res 314: 107‐107, 2003.
 78. Dreyer HC, Drummond MJ, Pennings B, Fujita S, Glynn EL, Chinkes DL, Dhanani S, Volpi E, Rasmussen BB. Leucine‐enriched essential amino acid and carbohydrate ingestion following resistance exercise enhances mTOR signaling and protein synthesis in human muscle. Am J Physiol Endocrinol Metab 294: E392‐E400, 2008.
 79. Drummond MJ, Dreyer HC, Fry CS, Glynn EL, Rasmussen BB. Nutritional and contractile regulation of human skeletal muscle protein synthesis and mTORC1 signaling. J Appl Physiol 106: 1374‐1374, 2009.
 80. Drummond MJ, Fujita S, Abe T, Dreyer HC, Volpi E, Rasmussen BB. Human muscle gene expression following resistance exercise and blood flow restriction. Med Sci Sports Exerc 40: 691‐691, 2008.
 81. Egginton S. Invited review: Activity‐induced angiogenesis. Pflugers Arch 457: 963‐963, 2009.
 82. Egginton S, Zhou AL, Brown MD, Hudlicka O. Unorthodox angiogenesis in skeletal muscle. Cardiovasc Res 49: 634‐634, 2001.
 83. Ehebauer M, Hayward P, Arias AM. Notch, a universal arbiter of cell fate decisions. Science 314: 1414‐1414, 2006.
 84. Ehebauer M, Hayward P, Martinez‐Arias A. Notch signaling pathway. Sci STKE 2006: cm7, 2006.
 85. Ehrenborg E, Krook A. Regulation of skeletal muscle physiology and metabolism by peroxisome proliferator‐activated receptor delta. Pharmacol Rev 61: 373‐373, 2009.
 86. Elashry MI, Otto A, Matsakas A, El‐Morsy SE, Patel K. Morphology and myofiber composition of skeletal musculature of the forelimb in young and aged wild type and myostatin null mice. Rejuvenation Res 12: 269‐269, 2009.
 87. Elia L, Contu R, Quintavalle M, Varrone F, Chimenti C, Russo MA, Cimino V, De Marinis L, Frustaci A, Catalucci D, Condorelli G. Reciprocal regulation of microRNA‐1 and insulin‐like growth factor‐1 signal transduction cascade in cardiac and skeletal muscle in physiological and pathological conditions. Circulation 120: 2377‐2377, 2009.
 88. Eriksson A, Kadi F, Malm C, Thornell LE. Skeletal muscle morphology in power‐lifters with and without anabolic steroids. Histochem Cell Biol 124: 167‐167, 2005.
 89. Escher P, Braissant O, Basu‐Modak S, Michalik L, Wahli W, Desvergne B. Rat PPARs: Quantitative analysis in adult rat tissues and regulation in fasting and refeeding. Endocrinology 142: 4195‐4195, 2001.
 90. Eulalio A, Huntzinger E, Izaurralde E. Getting to the root of miRNA‐mediated gene silencing. Cell 132: 9‐9, 2008.
 91. Fabian MR, Sundermeier TR, Sonenberg N. Understanding how miRNAs post‐transcriptionally regulate gene expression. Prog Mol Subcell Biol 50: 1‐1, 2010.
 92. Febbraio MA, Pedersen BK. Contraction‐induced myokine production and release: Is skeletal muscle an endocrine organ? Exerc Sport Sci Rev 33: 114‐114, 2005.
 93. Feige JN, Gelman L, Tudor C, Engelborghs Y, Wahli W, Desvergne B. Fluorescence imaging reveals the nuclear behavior of peroxisome proliferator‐activated receptor/retinoid X receptor heterodimers in the absence and presence of ligand. J Biol Chem 280: 17880‐17880, 2005.
 94. Fernando SM, Rao P, Niel L, Chatterjee D, Stagljar M, Monks DA. Myocyte androgen receptors increase metabolic rate and improve body composition by reducing fat mass. Endocrinology 151: 3125‐3125, 2010.
 95. Filippin LI, Moreira AJ, Marroni NP, Xavier RM. Nitric oxide and repair of skeletal muscle injury. Nitric Oxide 21: 157‐157, 2009.
 96. Finck BN, Bernal‐Mizrachi C, Han DH, Coleman T, Sambandam N, LaRiviere LL, Holloszy JO, Semenkovich CF, Kelly DP. A potential link between muscle peroxisome proliferator‐ activated receptor‐alpha signaling and obesity‐related diabetes. Cell Metab 1: 133‐133, 2005.
 97. Firth SM, Baxter RC. Cellular actions of the insulin‐like growth factor binding proteins. Endocr Rev 23: 824‐824, 2002.
 98. Fluck M. Functional, structural and molecular plasticity of mammalian skeletal muscle in response to exercise stimuli. J Exp Biol 209: 2239‐2239, 2006.
 99. Fluck M, Booth FW, Waxham MN. Skeletal muscle CaMKII enriches in nuclei and phosphorylates myogenic factor SRF at multiple sites. Biochem Biophys Res Commun 270: 488‐488, 2000.
 100. Fluck M, Hoppeler H. Molecular basis of skeletal muscle plasticity—from gene to form and function. Rev Physiol Biochem Pharmacol 146: 159‐159, 2003.
 101. Fluck M, Waxham MN, Hamilton MT, Booth FW. Skeletal muscle Ca(2+)‐independent kinase activity increases during either hypertrophy or running. J Appl Physiol 88: 352‐352, 2000.
 102. Folland JP, Williams AG. The adaptations to strength training: Morphological and neurological contributions to increased strength. Sports Med 37: 145‐145, 2007.
 103. Fraga MF, Ballestar E, Paz MF, Ropero S, Setien F, Ballestar ML, Heine‐Suner D, Cigudosa JC, Urioste M, Benitez J, Boix‐Chornet M, Sanchez‐Aguilera A, Ling C, Carlsson E, Poulsen P, Vaag A, Stephan Z, Spector TD, Wu YZ, Plass C, Esteller M. Epigenetic differences arise during the lifetime of monozygotic twins. Proc Natl Acad Sci U S A 102: 10604‐10604, 2005.
 104. Francaux M. Toll‐like receptor signalling induced by endurance exercise. Appl Physiol Nutr Metab 34: 454‐454, 2009.
 105. Freyssenet D. Energy sensing and regulation of gene expression in skeletal muscle. J Appl Physiol 102: 529‐529, 2007.
 106. Freyssenet D, Di Carlo M, Hood DA. Calcium‐dependent regulation of cytochrome c gene expression in skeletal muscle cells. Identification of a protein kinase c‐dependent pathway. J Biol Chem 274: 9305‐9305, 1999.
 107. Fritz T, Kramer DK, Karlsson HK, Galuska D, Engfeldt P, Zierath JR, Krook A. Low‐intensity exercise increases skeletal muscle protein expression of PPARdelta and UCP3 in type 2 diabetic patients. Diabetes Metab Res Rev 22: 492‐492, 2006.
 108. Frosig C, Jorgensen SB, Hardie DG, Richter EA, Wojtaszewski JF. 5′‐AMP‐activated protein kinase activity and protein expression are regulated by endurance training in human skeletal muscle. Am J Physiol Endocrinol Metab 286: E411‐E417, 2004.
 109. Fruchart JC, Duriez P, Staels B. Peroxisome proliferator‐activated receptor‐alpha activators regulate genes governing lipoprotein metabolism, vascular inflammation and atherosclerosis. Curr Opin Lipidol 10: 245‐245, 1999.
 110. Fry AC. The role of resistance exercise intensity on muscle fibre adaptations. Sports Med 34: 663‐663, 2004.
 111. Fujita S, Dreyer HC, Drummond MJ, Glynn EL, Cadenas JG, Yoshizawa F, Volpi E, Rasmussen BB. Nutrient signalling in the regulation of human muscle protein synthesis. J Physiol 582: 813‐813, 2007.
 112. Gabriel DA, Kamen G, Frost G. Neural adaptations to resistive exercise: Mechanisms and recommendations for training practices. Sports Med 36: 133‐133, 2006.
 113. Gibala M. Molecular responses to high‐intensity interval exercise. Appl Physiol Nutr Metab 34: 428‐428, 2009.
 114. Gibala MJ, McGee SL, Garnham AP, Howlett KF, Snow RJ, Hargreaves M. Brief intense interval exercise activates AMPK and p38 MAPK signaling and increases the expression of PGC‐1{alpha} in human skeletal muscle. J Appl Physiol 106: 929‐929, 2009.
 115. Gibney ER, Nolan CM. Epigenetics and gene expression. Heredity 105: 4‐4, 2010.
 116. Gill R, Hitchins L, Fletcher F, Dhoot GK. Sulf1A and HGF regulate satellite‐cell growth. J Cell Sci 123: 1873‐1873, 2010.
 117. Goldspink G. Gene expression in muscle in response to exercise. J Muscle Res Cell Motil 24: 121‐121, 2003.
 118. Gomez‐Cabrera MC, Domenech E, Romagnoli M, Arduini A, Borras C, Pallardo FV, Sastre J, Vina J. Oral administration of vitamin C decreases muscle mitochondrial biogenesis and hampers training‐induced adaptations in endurance performance. Am J Clin Nutr 87: 142‐142, 2008.
 119. Gonyea WJ, Sale D. Physiology of weight‐lifting exercise. Arch Phys Med Rehabil 63: 235‐235, 1982.
 120. Granjon A, Gustin MP, Rieusset J, Lefai E, Meugnier E, Guller I, Cerutti C, Paultre C, Disse E, Rabasa‐Lhoret R, Laville M, Vidal H, Rome S. The microRNA signature in response to insulin reveals its implication in the transcriptional action of insulin in human skeletal muscle and the role of a sterol regulatory element‐binding protein‐1c/myocyte enhancer factor 2C pathway. Diabetes 58: 2555‐2555, 2009.
 121. Greenhaff PL, Karagounis LG, Peirce N, Simpson EJ, Hazell M, Layfield R, Wackerhage H, Smith K, Atherton P, Selby A, Rennie MJ. Disassociation between the effects of amino acids and insulin on signaling, ubiquitin ligases, and protein turnover in human muscle. Am J Physiol Endocrinol Metab 295: E595‐E604, 2008.
 122. Grewal SI, Elgin SC. Transcription and RNA interference in the formation of heterochromatin. Nature 447: 399‐399, 2007.
 123. Guderley H. Functional significance of metabolic responses to thermal acclimation in fish muscle. Am J Physiol 259: R245‐R252, 1990.
 124. Guerfali I, Manissolle C, Durieux AC, Bonnefoy R, Bartegi A, Freyssenet D. Calcineurin A and CaMKIV transactivate PGC‐1alpha promoter, but differentially regulate cytochrome c promoter in rat skeletal muscle. Pflugers Arch 454: 297‐297, 2007.
 125. Gunn HM. Heart weight and running ability. J Anat 167: 225‐225, 1989.
 126. Gustafsson T, Puntschart A, Kaijser L, Jansson E, Sundberg CJ. Exercise‐induced expression of angiogenesis‐related transcription and growth factors in human skeletal muscle. Am J Physiol 276: H679‐H685, 1999.
 127. Hamilton MT, Etienne J, McClure WC, Pavey BS, Holloway AK. Role of local contractile activity and muscle fiber type on LPL regulation during exercise. Am J Physiol 275: E1016‐E1022, 1998.
 128. Handschin C, Chin S, Li P, Liu F, Maratos‐Flier E, Lebrasseur NK, Yan Z, Spiegelman BM. Skeletal muscle fiber‐type switching, exercise intolerance, and myopathy in PGC‐1alpha muscle‐specific knock‐out animals. J Biol Chem 282: 30014‐30014, 2007.
 129. Handschin C, Rhee J, Lin J, Tarr PT, Spiegelman BM. An autoregulatory loop controls peroxisome proliferator‐activated receptor gamma coactivator 1alpha expression in muscle. Proc Natl Acad Sci U S A 100: 7111‐7111, 2003.
 130. Hansen JM, Zhang H, Jones DP. Mitochondrial thioredoxin‐2 has a key role in determining tumor necrosis factor‐alpha‐induced reactive oxygen species generation, NF‐kappaB activation, and apoptosis. Toxicol Sci 91: 643‐643, 2006.
 131. Hardie DG, Sakamoto K. AMPK: A key sensor of fuel and energy status in skeletal muscle. Physiology (Bethesda) 21: 48‐48, 2006.
 132. Hardie DG. AMP‐activated/SNF1 protein kinases: Conserved guardians of cellular energy. Nat Rev Mol Cell Biol 8: 774‐774, 2007.
 133. Hardie DG. Energy sensing by the AMP‐activated protein kinase and its effects on muscle metabolism. Proc Nutr Soc, in press.
 134. Harridge SD. Plasticity of human skeletal muscle: Gene expression to in vivo function. Exp Physiol 92: 783‐783, 2007.
 135. Hawley JA. Molecular responses to strength and endurance training: Are they incompatible? Appl Physiol Nutr Metab 34: 355‐355, 2009.
 136. Hawley JA, Holloszy JO. Exercise: It's the real thing! Nutr Rev 67: 172‐172, 2009.
 137. Hawley JA, Lessard SJ. Exercise training‐induced improvements in insulin action. Acta Physiol (Oxf) 192: 127‐127, 2008.
 138. He ZH, Bottinelli R, Pellegrino MA, Ferenczi MA, Reggiani C. ATP consumption and efficiency of human single muscle fibers with different myosin isoform composition. Biophys J 79: 945‐945, 2000.
 139. Hecker M, Lambeck S, Toepfer S, van Someren E, Guthke R. Gene regulatory network inference: Data integration in dynamic models‐a review. Biosystems 96: 86‐86, 2009.
 140. Helgerud J, Hoydal K, Wang E, Karlsen T, Berg P, Bjerkaas M, Simonsen T, Helgesen C, Hjorth N, Bach R, Hoff J. Aerobic high‐intensity intervals improve VO2max more than moderate training. Med Sci Sports Exerc 39: 665‐665, 2007.
 141. Hickson RC. Interference of strength development by simultaneously training for strength and endurance. Eur J Appl Physiol Occup Physiol 45: 255‐255, 1980.
 142. Holmes BF, Lang DB, Birnbaum MJ, Mu J, Dohm GL. AMP kinase is not required for the GLUT4 response to exercise and denervation in skeletal muscle. Am J Physiol Endocrinol Metab 287: E739‐E743, 2004.
 143. Hood DA. Mechanisms of exercise‐induced mitochondrial biogenesis in skeletal muscle. Appl Physiol Nutr Metab 34: 465‐465, 2009.
 144. Hood DA, Irrcher I, Ljubicic V, Joseph AM. Coordination of metabolic plasticity in skeletal muscle. J Exp Biol 209: 2265‐2265, 2006.
 145. Hoppeler H. Exercise‐induced ultrastructural changes in skeletal muscle. Int J Sports Med 7: 187‐187, 1986.
 146. Hoppeler H. [Morphology of human skeletal muscle and its adaptability to different training conditions]. Sportverletz Sportschaden 1: 71‐71, 1987.
 147. Hoppeler H. The different relationship of VO2max to muscle mitochondria in humans and quadrupedal animals. Respir Physiol 80: 137‐137, 1990.
 148. Hoppeler H, Fluck M. Normal mammalian skeletal muscle and its phenotypic plasticity. J Exp Biol 205: 2143‐2143, 2002.
 149. Hoppeler H, Fluck M. Plasticity of skeletal muscle mitochondria: Structure and function. Med Sci Sports Exerc 35: 95‐95, 2003.
 150. Hoppeler H, Howald H, Conley K, Lindstedt SL, Claassen H, Vock P, Weibel ER. Endurance training in humans: Aerobic capacity and structure of skeletal muscle. J Appl Physiol 59: 320‐320, 1985.
 151. Hoppeler H, Luthi P, Claassen H, Weibel ER, Howald H. The ultrastructure of the normal human skeletal muscle. A morphometric analysis on untrained men, women and well‐trained orienteers. Pflugers Arch 344: 217‐217, 1973.
 152. Hornberger TA, Chu WK, Mak YW, Hsiung JW, Huang SA, Chien S. The role of phospholipase D and phosphatidic acid in the mechanical activation of mTOR signaling in skeletal muscle. Proc Natl Acad Sci U S A 103: 4741‐4741, 2006.
 153. Hotamisligil GS. Mechanisms of TNF‐alpha‐induced insulin resistance. Exp Clin Endocrinol Diabetes 107: 119‐119, 1999.
 154. Huang Z, Chen D, Zhang K, Yu B, Chen X, Meng J. Regulation of myostatin signaling by c‐Jun N‐terminal kinase in C2C12 cells. Cell Signal 19: 2286‐2286, 2007.
 155. Hudlicka O, Brown MD. Adaptation of skeletal muscle microvasculature to increased or decreased blood flow: Role of shear stress, nitric oxide and vascular endothelial growth factor. J Vasc Res 46: 504‐504, 2009.
 156. Hudlicka O, Brown M, Egginton S. Angiogenesis in skeletal and cardiac muscle. Physiol Rev 72: 369‐369, 1992.
 157. Hull‐Thompson J, Muffat J, Sanchez D, Walker DW, Benzer S, Ganfornina MD, Jasper H. Control of metabolic homeostasis by stress signaling is mediated by the lipocalin NLaz. PLoS Genet 5: e1000460, 2009.
 158. Huonker M, Schmid A, Schmidt‐Trucksass A, Grathwohl D, Keul J. Size and blood flow of central and peripheral arteries in highly trained able‐bodied and disabled athletes. J Appl Physiol 95: 685‐685, 2003.
 159. Ieronimakis N, Balasundaram G, Rainey S, Srirangam K, Yablonka‐Reuveni Z, Reyes M. Absence of CD34 on murine skeletal muscle satellite cells marks a reversible state of activation during acute injury. PLoS ONE 5: e10920, 2010.
 160. Inoki K, Li Y, Xu T, Guan KL. Rheb GTPase is a direct target of TSC2 GAP activity and regulates mTOR signaling. Genes Dev 17: 1829‐1829, 2003.
 161. Inoki K, Li Y, Zhu T, Wu J, Guan KL. TSC2 is phosphorylated and inhibited by Akt and suppresses mTOR signalling. Nat Cell Biol 4: 648‐648, 2002.
 162. Inoki K, Ouyang H, Zhu T, Lindvall C, Wang Y, Zhang X, Yang Q, Bennett C, Harada Y, Stankunas K, Wang CY, He X, MacDougald OA, You M, Williams BO, Guan KL. TSC2 integrates Wnt and energy signals via a coordinated phosphorylation by AMPK and GSK3 to regulate cell growth. Cell 126: 955‐955, 2006.
 163. Irrcher I, Adhihetty PJ, Sheehan T, Joseph AM, Hood DA. PPARgamma coactivator‐1alpha expression during thyroid hormone‐ and contractile activity‐induced mitochondrial adaptations. Am J Physiol Cell Physiol 284: C1669‐C1677, 2003.
 164. Irrcher I, Ljubicic V, Hood DA. Interactions between ROS and AMP kinase activity in the regulation of PGC‐1alpha transcription in skeletal muscle cells. Am J Physiol Cell Physiol 296: C116‐C123, 2009.
 165. Izumiya Y, Hopkins T, Morris C, Sato K, Zeng L, Viereck J, Hamilton JA, Ouchi N, LeBrasseur NK, Walsh K. Fast/Glycolytic muscle fiber growth reduces fat mass and improves metabolic parameters in obese mice. Cell Metab 7: 159‐159, 2008.
 166. Jaakkola P, Mole DR, Tian YM, Wilson MI, Gielbert J, Gaskell SJ, Kriegsheim A, Hebestreit HF, Mukherji M, Schofield CJ, Maxwell PH, Pugh CW, Ratcliffe PJ. Targeting of HIF‐alpha to the von Hippel‐Lindau ubiquitylation complex by O2‐regulated prolyl hydroxylation. Science 292: 468‐468, 2001.
 167. Jackson MJ. Redox regulation of adaptive responses in skeletal muscle to contractile activity. Free Radic Biol Med 47: 1267‐1267, 2009.
 168. Jackson MJ, Papa S, Bolanos J, Bruckdorfer R, Carlsen H, Elliott RM, Flier J, Griffiths HR, Heales S, Holst B, Lorusso M, Lund E, Oivind Moskaug J, Moser U, Di Paola M, Polidori MC, Signorile A, Stahl W, Vina‐Ribes J, Astley SB. Antioxidants, reactive oxygen and nitrogen species, gene induction and mitochondrial function. Mol Aspects Med 23: 209‐209, 2002.
 169. Jain RK. Molecular regulation of vessel maturation. Nat Med 9: 685‐685, 2003.
 170. Jansson E, Sylven C, Nordevang E. Myoglobin in the quadriceps femoris muscle of competitive cyclists and untrained men. Acta Physiol Scand 114: 627‐627, 1982.
 171. Ji LL, Gomez‐Cabrera MC, Vina J. Exercise and hormesis: Activation of cellular antioxidant signaling pathway. Ann N Y Acad Sci 1067: 425‐425, 2006.
 172. Johnston IA, Temple GK. Thermal plasticity of skeletal muscle phenotype in ectothermic vertebrates and its significance for locomotory behaviour. J Exp Biol 205: 2305‐2305, 2002.
 173. Jones AM, Carter H. The effect of endurance training on parameters of aerobic fitness. Sports Med 29: 373‐373, 2000.
 174. Jones TE, Stephenson KW, King JG, Knight KR, Marshall TL, Scott WB. Sarcopenia–mechanisms and treatments. J Geriatr Phys Ther 32: 39‐39, 2009.
 175. Jorgensen SB, Nielsen JN, Birk JB, Olsen GS, Viollet B, Andreelli F, Schjerling P, Vaulont S, Hardie DG, Hansen BF, Richter EA, Wojtaszewski JF. The alpha2‐5′AMP‐activated protein kinase is a site 2 glycogen synthase kinase in skeletal muscle and is responsive to glucose loading. Diabetes 53: 3074‐3074, 2004.
 176. Jorgensen SB, Richter EA, Wojtaszewski JF. Role of AMPK in skeletal muscle metabolic regulation and adaptation in relation to exercise. J Physiol 574: 17‐17, 2006.
 177. Jorgensen SB, Rose AJ. How is AMPK activity regulated in skeletal muscles during exercise? Front Biosci 13: 5589‐5589, 2008.
 178. Jorgensen SB, Treebak JT, Viollet B, Schjerling P, Vaulont S, Wojtaszewski JF, Richter EA. Role of AMPKalpha2 in basal, training‐, and AICAR‐induced GLUT4, hexokinase II, and mitochondrial protein expression in mouse muscle. Am J Physiol Endocrinol Metab 292: E331‐E339, 2007.
 179. Juan AH, Kumar RM, Marx JG, Young RA, Sartorelli V. Mir‐214‐dependent regulation of the polycomb protein Ezh2 in skeletal muscle and embryonic stem cells. Mol Cell 36: 61‐61, 2009.
 180. Juge‐Aubry CE, Hammar E, Siegrist‐Kaiser C, Pernin A, Takeshita A, Chin WW, Burger AG, Meier CA. Regulation of the transcriptional activity of the peroxisome proliferator‐activated receptor alpha by phosphorylation of a ligand‐independent trans‐activating domain. J Biol Chem 274: 10505‐10505, 1999.
 181. Kadi F, Eriksson A, Holmner S, Thornell LE. Effects of anabolic steroids on the muscle cells of strength‐trained athletes. Med Sci Sports Exerc 31: 1528‐1528, 1999.
 182. Kadi F, Schjerling P, Andersen LL, Charifi N, Madsen JL, Christensen LR, Andersen JL. The effects of heavy resistance training and detraining on satellite cells in human skeletal muscles. J Physiol 558: 1005‐1005, 2004.
 183. Kelley DE, Williams KV, Price JC, McKolanis TM, Goodpaster BH, Thaete FL. Plasma fatty acids, adiposity, and variance of skeletal muscle insulin resistance in type 2 diabetes mellitus. J Clin Endocrinol Metab 86: 5412‐5412, 2001.
 184. Kemp BE, Stapleton D, Campbell DJ, Chen ZP, Murthy S, Walter M, Gupta A, Adams JJ, Katsis F, van Denderen B, Jennings IG, Iseli T, Michell BJ, Witters LA. AMP‐activated protein kinase, super metabolic regulator. Biochem Soc Trans 31: 162‐162, 2003.
 185. Kiel C, Yus E, Serrano L. Engineering signal transduction pathways. Cell 140: 33‐33, 2010.
 186. Kim E, Goraksha‐Hicks P, Li L, Neufeld TP, Guan KL. Regulation of TORC1 by Rag GTPases in nutrient response. Nat Cell Biol 10: 935‐935, 2008.
 187. Kimball SR, Jefferson LS. Control of translation initiation through integration of signals generated by hormones, nutrients, and exercise. J Biol Chem 285: 29027‐29027, 2010.
 188. Kirkland JG, Kamakaka RT. tRNA insulator function: insight into inheritance of transcription states? Epigenetics 5: 96‐96.
 189. Kitamura T, Kitamura YI, Funahashi Y, Shawber CJ, Castrillon DH, Kollipara R, DePinho RA, Kitajewski J, Accili D. A Foxo/Notch pathway controls myogenic differentiation and fiber type specification. J Clin Invest 117: 2477‐2477, 2007.
 190. Kitzmann M, Bonnieu A, Duret C, Vernus B, Barro M, Laoudj‐Chenivesse D, Verdi JM, Carnac G. Inhibition of Notch signaling induces myotube hypertrophy by recruiting a subpopulation of reserve cells. J Cell Physiol 208: 538‐538, 2006.
 191. Kitzmann M, Fernandez A. Crosstalk between cell cycle regulators and the myogenic factor MyoD in skeletal myoblasts. Cell Mol Life Sci 58: 571‐571, 2001.
 192. Klossner S, Durieux AC, Freyssenet D, Flueck M. Mechano‐transduction to muscle protein synthesis is modulated by FAK. Eur J Appl Physiol 106: 389‐389, 2009.
 193. Kluppel M, Wrana JL. Turning it up a Notch: cross‐talk between TGF beta and Notch signaling. Bioessays 27: 115‐115, 2005.
 194. Kosek DJ, Kim JS, Petrella JK, Cross JM, Bamman MM. Efficacy of 3 days/wk resistance training on myofiber hypertrophy and myogenic mechanisms in young vs. older adults. J Appl Physiol 101: 531‐531, 2006.
 195. Kovacheva EL, Hikim AP, Shen R, Sinha I, Sinha‐Hikim I. Testosterone supplementation reverses sarcopenia in aging through regulation of myostatin, c‐Jun NH2‐terminal kinase, Notch, and Akt signaling pathways. Endocrinology 151: 628‐628, 2010.
 196. Kramer DK, Ahlsen M, Norrbom J, Jansson E, Hjeltnes N, Gustafsson T, Krook A. Human skeletal muscle fibre type variations correlate with PPAR alpha, PPAR delta and PGC‐1 alpha mRNA. Acta Physiol (Oxf) 188: 207‐207, 2006.
 197. Krebs M, Brunmair B, Brehm A, Artwohl M, Szendroedi J, Nowotny P, Roth E, Furnsinn C, Promintzer M, Anderwald C, Bischof M, Roden M. The Mammalian target of rapamycin pathway regulates nutrient‐sensitive glucose uptake in man. Diabetes 56: 1600‐1600, 2007.
 198. Krutzfeldt J, Rajewsky N, Braich R, Rajeev KG, Tuschl T, Manoharan M, Stoffel M. Silencing of microRNAs in vivo with ‘antagomirs’. Nature 438: 685‐685, 2005.
 199. Kubica N, Bolster DR, Farrell PA, Kimball SR, Jefferson LS. Resistance exercise increases muscle protein synthesis and translation of eukaryotic initiation factor 2Bepsilon mRNA in a mammalian target of rapamycin‐dependent manner. J Biol Chem 280: 7570‐7570, 2005.
 200. Kumar A, Harris TE, Keller SR, Choi KM, Magnuson MA, Lawrence JC Jr. Muscle‐specific deletion of rictor impairs insulin‐stimulated glucose transport and enhances Basal glycogen synthase activity. Mol Cell Biol 28: 61‐61, 2008.
 201. Kumar AH, Metharom P, Schmeckpeper J, Weiss S, Martin K, Caplice NM. Bone marrow‐derived CX3CR1 progenitors contribute to neointimal smooth muscle cells via fractalkine CX3CR1 interaction. FASEB J 24: 81‐81, 2010.
 202. Kumar V, Atherton P, Smith K, Rennie MJ. Human muscle protein synthesis and breakdown during and after exercise. J Appl Physiol 106: 2026‐2026, 2009.
 203. Kumar V, Selby A, Rankin D, Patel R, Atherton P, Hildebrandt W, Williams J, Smith K, Seynnes O, Hiscock N, Rennie MJ. Age‐related differences in the dose‐response relationship of muscle protein synthesis to resistance exercise in young and old men. J Physiol 587: 211‐211, 2009.
 204. Lai KM, Gonzalez M, Poueymirou WT, Kline WO, Na E, Zlotchenko E, Stitt TN, Economides AN, Yancopoulos GD, Glass DJ. Conditional activation of akt in adult skeletal muscle induces rapid hypertrophy. Mol Cell Biol 24: 9295‐9295, 2004.
 205. Landgraf P, Rusu M, Sheridan R, Sewer A, Iovino N, Aravin A, Pfeffer S, Rice A, Kamphorst AO, Landthaler M, Lin C, Socci ND, Hermida L, Fulci V, Chiaretti S, Foa R, Schliwka J, Fuchs U, Novosel A, Muller RU, Schermer B, Bissels U, Inman J, Phan Q, Chien M, Weir DB, Choksi R, De Vita G, Frezzetti D, Trompeter HI, Hornung V, Teng G, Hartmann G, Palkovits M, Di Lauro R, Wernet P, Macino G, Rogler CE, Nagle JW, Ju J, Papavasiliou FN, Benzing T, Lichter P, Tam W, Brownstein MJ, Bosio A, Borkhardt A, Russo JJ, Sander C, Zavolan M, Tuschl T. A mammalian microRNA expression atlas based on small RNA library sequencing. Cell 129: 1401‐1401, 2007.
 206. Lastayo PC, Reich TE, Urquhart M, Hoppeler H, Lindstedt SL. Chronic eccentric exercise: improvements in muscle strength can occur with little demand for oxygen. Am J Physiol 276: R611‐R615, 1999.
 207. Lee EK, Gorospe M. Minireview: Posttranscriptional regulation of the insulin and insulin‐like growth factor systems. Endocrinology 151: 1403‐1403, 2010.
 208. Lee IS, Shin G, Choue R. Shifts in diet from high fat to high carbohydrate improved levels of adipokines and pro‐inflammatory cytokines in mice fed a high‐fat diet. Endocr J 57: 39‐39, 2010.
 209. Lee JS, Bruce CR, Spriet LL, Hawley JA. Interaction of diet and training on endurance performance in rats. Exp Physiol 86: 499‐499, 2001.
 210. Lee SJ. Regulation of muscle mass by myostatin. Annu Rev Cell Dev Biol 20: 61‐61, 2004.
 211. Lefebvre P, Chinetti G, Fruchart JC, Staels B. Sorting out the roles of PPAR alpha in energy metabolism and vascular homeostasis. J Clin Invest 116: 571‐571, 2006.
 212. Leick L, Wojtaszewski JF, Johansen ST, Kiilerich K, Comes G, Hellsten Y, Hidalgo J, Pilegaard H. PGC‐1alpha is not mandatory for exercise‐ and training‐induced adaptive gene responses in mouse skeletal muscle. Am J Physiol Endocrinol Metab 294: E463‐E474, 2008.
 213. Lin J, Wu H, Tarr PT, Zhang CY, Wu Z, Boss O, Michael LF, Puigserver P, Isotani E, Olson EN, Lowell BB, Bassel‐Duby R, Spiegelman BM. Transcriptional co‐activator PGC‐1 alpha drives the formation of slow‐twitch muscle fibres. Nature 418: 797‐797, 2002.
 214. Lin J, Yang R, Tarr PT, Wu PH, Handschin C, Li S, Yang W, Pei L, Uldry M, Tontonoz P, Newgard CB, Spiegelman BM. Hyperlipidemic effects of dietary saturated fats mediated through PGC‐1beta coactivation of SREBP. Cell 120: 261‐261, 2005.
 215. Lin JD. Minireview: The PGC‐1 coactivator networks: chromatin‐remodeling and mitochondrial energy metabolism. Mol Endocrinol 23: 2‐2, 2009.
 216. Lindstedt SL, Hokanson JF, Wells DJ, Swain SD, Hoppeler H, Navarro V. Running energetics in the pronghorn antelope. Nature 353: 748‐748, 1991.
 217. Lindstedt SL, Lastayo PC, Reich TE. When active muscles lengthen: Properties and consequences of eccentric contractions. News Physiol Sci 16: 256‐256, 2001.
 218. Liu Y, Shen T, Randall WR, Schneider MF. Signaling pathways in activity‐dependent fiber type plasticity in adult skeletal muscle. J Muscle Res Cell Motil 26: 13‐13, 2005.
 219. Lonard DM, O'Malley BW. Nuclear receptor coregulators: Judges, juries, and executioners of cellular regulation. Mol Cell 27: 691‐691, 2007.
 220. Long YC, Barnes BR, Mahlapuu M, Steiler TL, Martinsson S, Leng Y, Wallberg‐Henriksson H, Andersson L, Zierath JR. Role of AMP‐activated protein kinase in the coordinated expression of genes controlling glucose and lipid metabolism in mouse white skeletal muscle. Diabetologia 48: 2354‐2354, 2005.
 221. Long YC, Zierath JR. Influence of AMP‐activated protein kinase and calcineurin on metabolic networks in skeletal muscle. Am J Physiol Endocrinol Metab 295: E545‐E552, 2008.
 222. Luethi JM, Howald H, Claassen H, Roesler K, Vock P, Hoppeler H. Structural changes in skeletal muscle tissue with heavy‐ resistance exercise. Int J Sports Med 7: 123‐123, 1986.
 223. Lundberg IE, Nader GA. Molecular effects of exercise in patients with inflammatory rheumatic disease. Nat Clin Pract Rheumatol 4: 597‐597, 2008.
 224. Luthi JM, Howald H, Claassen H, Rosler K, Vock P, Hoppeler H. Structural changes in skeletal muscle tissue with heavy‐resistance exercise. Int J Sports Med 7: 123‐123, 1986.
 225. MacDougall JD, Sale DG, Elder GC, Sutton JR. Muscle ultrastructural characteristics of elite powerlifters and bodybuilders. Europ J Appl Physiol 48: 117‐117, 1982.
 226. Manceau M, Gros J, Savage K, Thome V, McPherron A, Paterson B, Marcelle C. Myostatin promotes the terminal differentiation of embryonic muscle progenitors. Genes Dev 22: 668‐668, 2008.
 227. Manco M, Calvani M, Mingrone G. Effects of dietary fatty acids on insulin sensitivity and secretion. Diabetes Obes Metab 6: 402‐402, 2004.
 228. Mascher H, Tannerstedt J, Brink‐Elfegoun T, Ekblom B, Gustafsson T, Blomstrand E. Repeated resistance exercise training induces different changes in mRNA expression of MAFbx and MuRF‐1 in human skeletal muscle. Am J Physiol Endocrinol Metab 294: E43‐E51, 2008.
 229. Mason S, Johnson RS. The role of HIF‐1 in hypoxic response in the skeletal muscle. Adv Exp Med Biol 618: 229‐229, 2007.
 230. Mason SD, Howlett RA, Kim MJ, Olfert IM, Hogan MC, McNulty W, Hickey RP, Wagner PD, Kahn CR, Giordano FJ, Johnson RS. Loss of skeletal muscle HIF‐1alpha results in altered exercise endurance. PLoS Biol 2: e288, 2004.
 231. Mason SD, Rundqvist H, Papandreou I, Duh R, McNulty WJ, Howlett RA, Olfert IM, Sundberg CJ, Denko NC, Poellinger L, Johnson RS. HIF‐1alpha in endurance training: Suppression of oxidative metabolism. Am J Physiol Regul Integr Comp Physiol 293: R2059‐R2069, 2007.
 232. Masuda K, Okazaki K, Kuno S, Asano K, Shimojo H, Katsuta S. Endurance training under 2500‐m hypoxia does not increase myoglobin content in human skeletal muscle. Eur J Appl Physiol 85: 486‐486, 2001.
 233. Matheny RW Jr, Nindl BC, Adamo ML. Minireview: Mechano‐growth factor: A putative product of IGF‐I gene expression involved in tissue repair and regeneration. Endocrinology 151: 865‐865.
 234. Mathur N, Pedersen BK. Exercise as a mean to control low‐grade systemic inflammation. Mediators Inflamm 2008: 109502, 2008.
 235. Matsakas A, Patel K. Intracellular signalling pathways regulating the adaptation of skeletal muscle to exercise and nutritional changes. Histol Histopathol 24: 209‐209, 2009.
 236. Mauro A. Satellite cell of skeletal muscle fibers. J Biophys Biochem Cytol 9: 493‐493, 1961.
 237. Mayerson AB, Hundal RS, Dufour S, Lebon V, Befroy D, Cline GW, Enocksson S, Inzucchi SE, Shulman GI, Petersen KF. The effects of rosiglitazone on insulin sensitivity, lipolysis, and hepatic and skeletal muscle triglyceride content in patients with type 2 diabetes. Diabetes 51: 797‐797, 2002.
 238. McArdle A, Vasilaki A, Jackson M. Exercise and skeletal muscle ageing: Cellular and molecular mechanisms. Ageing Res Rev 1: 79‐79, 2002.
 239. McCarthy JJ, Esser KA, Peterson CA, Dupont‐Versteegden EE. Evidence of MyomiR network regulation of beta‐myosin heavy chain gene expression during skeletal muscle atrophy. Physiol Genomics 39: 219‐219, 2009.
 240. McFarlane C, Sharma M, Kambadur R. Myostatin is a procachectic growth factor during postnatal myogenesis. Curr Opin Clin Nutr Metab Care 11: 422‐422, 2008.
 241. McPherron AC, Lawler AM, Lee SJ. Regulation of skeletal muscle mass in mice by a new TGF‐beta superfamily member. Nature 387: 83‐83, 1997.
 242. Meister G, Tuschl T. Mechanisms of gene silencing by double‐stranded RNA. Nature 431: 343‐343, 2004.
 243. Michel RN, Chin ER, Chakkalakal JV, Eibl JK, Jasmin BJ. Ca2+/calmodulin‐based signalling in the regulation of the muscle fibre phenotype and its therapeutic potential via modulation of utrophin A and myostatin expression. Appl Physiol Nutr Metab 32: 921‐921, 2007.
 244. Millward DJ, Garlick PJ, James WP, Nnanyelugo DO, Ryatt JS. Relationship between protein synthesis and RNA content in skeletal muscle. Nature 241: 204‐204, 1973.
 245. Miyazaki M, McCarthy JJ, Esser KA. Insulin like growth factor‐1‐induced phosphorylation and altered distribution of tuberous sclerosis complex (TSC)1/TSC2 in C2C12 myotubes. FEBS J 277: 2180‐2180, 2010.
 246. Mohammad‐Qureshi SS, Jennings MD, Pavitt GD. Clues to the mechanism of action of eIF2B, the guanine‐nucleotide‐exchange factor for translation initiation. Biochem Soc Trans 36: 658‐658, 2008.
 247. Moore DR, Robinson MJ, Fry JL, Tang JE, Glover EI, Wilkinson SB, Prior T, Tarnopolsky MA, Phillips SM. Ingested protein dose response of muscle and albumin protein synthesis after resistance exercise in young men. Am J Clin Nutr 89: 161‐161, 2009.
 248. Morin P Jr, Storey KB. Mammalian hibernation: Differential gene expression and novel application of epigenetic controls. Int J Dev Biol 53: 433‐433, 2009.
 249. Morris KV. RNA‐directed transcriptional gene silencing and activation in human cells. Oligonucleotides 19: 299‐299, 2009.
 250. Mueller M, Breil FA, Vogt M, Steiner R, Lippuner K, Popp A, Klossner S, Hoppeler H, Dapp C. Different response to eccentric and concentric training in older men and women. Eur J Appl Physiol 107: 145‐145, 2009.
 251. Muoio DM, Koves TR. Lipid‐induced metabolic dysfunction in skeletal muscle. Novartis Found Symp 286: 24‐24; discussion 38‐38, 162‐162, 196‐196, 2007.
 252. Musaro A, McCullagh KJ, Naya FJ, Olson EN, Rosenthal N. IGF‐1 induces skeletal myocyte hypertrophy through calcineurin in association with GATA‐2 and NF‐ATc1. Nature 400: 581‐581, 1999.
 253. Myers J, Kaykha A, George S, Abella J, Zaheer N, Lear S, Yamazaki T, Froelicher V. Fitness versus physical activity patterns in predicting mortality in men. Am J Med 117: 912‐912, 2004.
 254. Nader GA. Molecular determinants of skeletal muscle mass: Getting the “AKT” together. Int J Biochem Cell Biol 37: 1985‐1985, 2005.
 255. Nader GA. Concurrent strength and endurance training: From molecules to man. Med Sci Sports Exerc 38: 1965‐1965, 2006.
 256. Nader GA, Lundberg IE. Exercise as an anti‐inflammatory intervention to combat inflammatory diseases of muscle. Curr Opin Rheumatol 21: 599‐599, 2009.
 257. Naguibneva I, Ameyar‐Zazoua M, Polesskaya A, Ait‐Si‐Ali S, Groisman R, Souidi M, Cuvellier S, Harel‐Bellan A. The microRNA miR‐181 targets the homeobox protein Hox‐A11 during mammalian myoblast differentiation. Nat Cell Biol 8: 278‐278, 2006.
 258. Narici MV, Hoppeler H, Kayser B, Landoni L, Claassen H, Gavardi C, Conti M, Cerretelli P. Human quadriceps cross‐sectional area, torque and neural activation during 6 months strength training. Acta Physiol Scand 157: 175‐175, 1996.
 259. Narkar VA, Downes M, Yu RT, Embler E, Wang YX, Banayo E, Mihaylova MM, Nelson MC, Zou Y, Juguilon H, Kang H, Shaw RJ, Evans RM. AMPK and PPARdelta agonists are exercise mimetics. Cell 134: 405‐405, 2008.
 260. Nielsen JN, Frosig C, Sajan MP, Miura A, Standaert ML, Graham DA, Wojtaszewski JF, Farese RV, Richter EA. Increased atypical PKC activity in endurance‐trained human skeletal muscle. Biochem Biophys Res Commun 312: 1147‐1147, 2003.
 261. Niess AM, Simon P. Response and adaptation of skeletal muscle to exercise–the role of reactive oxygen species. Front Biosci 12: 4826‐4826, 2007.
 262. Nieto‐Vazquez I, Fernandez‐Veledo S, de Alvaro C, Lorenzo M. Dual role of interleukin‐6 in regulating insulin sensitivity in murine skeletal muscle. Diabetes 57: 3211‐3211, 2008.
 263. Norris AW, Hirshman MF, Yao J, Jessen N, Musi N, Chen L, Sivitz WI, Goodyear LJ, Kahn CR. Endogenous peroxisome proliferator‐activated receptor‐gamma augments fatty acid uptake in oxidative muscle. Endocrinology 149: 5374‐5374, 2008.
 264. Nuhr M, Crevenna R, Gohlsch B, Bittner C, Pleiner J, Wiesinger G, Fialka‐Moser V, Quittan M, Pette D. Functional and biochemical properties of chronically stimulated human skeletal muscle. Eur J Appl Physiol 89: 202‐202, 2003.
 265. Nunn AV, Bell J, Barter P. The integration of lipid‐sensing and anti‐inflammatory effectsHow the PPARs play a role in metabolic balance. Nucl Recept 5: 1, 2007.
 266. Ohshima T, Koga H, Shimotohno K. Transcriptional activity of peroxisome proliferator‐activated receptor gamma is modulated by SUMO‐1 modification. J Biol Chem 279: 29551‐29551, 2004.
 267. Olson EN, Williams RS. Calcineurin signaling and muscle remodeling. Cell 101: 689‐689, 2000.
 268. Otto A, Patel K. Signalling and the control of skeletal muscle size. Exp Cell Res 16: 3059‐3059, 2010.
 269. Pain VM. Initiation of protein synthesis in eukaryotic cells. Eur J Biochem 236: 747‐747, 1996.
 270. Pattengale PK, Holloszy JO. Augmentation of skeletal muscle myoglobin by a program of treadmill running. Am J Physiol 213: 783‐783, 1967.
 271. Pavelic K, Bukovic D, Pavelic J. The role of insulin‐like growth factor 2 and its receptors in human tumors. Mol Med 8: 771‐771, 2002.
 272. Pedersen BK. The diseasome of physical inactivity–and the role of myokines in muscle–fat cross talk. J Physiol 587: 5559‐5559, 2009.
 273. Pedersen BK, Febbraio MA. Muscle as an endocrine organ: Focus on muscle‐derived interleukin‐6. Physiol Rev 88: 1379‐1379, 2008.
 274. Pedersen BK, Saltin B. Evidence for prescribing exercise as therapy in chronic disease. Scand J Med Sci Sports 16 (Suppl 1): 3‐3, 2006.
 275. Petersen AM, Pedersen BK. The anti‐inflammatory effect of exercise. J Appl Physiol 98: 1154‐1154, 2005.
 276. Peterson MD, Rhea MR, Sen A, Gordon PM. Resistance exercise for muscular strength in older adults: A meta‐analysis. Ageing Res Rev 9: 226‐226, 2010.
 277. Pette D, Vrbova G. What does chronic electrical stimulation teach us about muscle plasticity? Muscle Nerve 22: 666‐666, 1999.
 278. Phillips SM. Physiologic and molecular bases of muscle hypertrophy and atrophy: Impact of resistance exercise on human skeletal muscle (protein and exercise dose effects). Appl Physiol Nutr Metab 34: 403‐403, 2009.
 279. Piersma T, Gudmundsson GA, Lilliendahl K. Rapid changes in the size of different functional organ and muscle groups during refueling in a long‐distance migrating shorebird. Physiol Biochem Zool 72: 405‐405, 1999.
 280. Pilegaard H, Neufer PD. Transcriptional regulation of pyruvate dehydrogenase kinase 4 in skeletal muscle during and after exercise. Proc Nutr Soc 63: 221‐221, 2004.
 281. Pilegaard H, Ordway GA, Saltin B, Neufer PD. Transcriptional regulation of gene expression in human skeletal muscle during recovery from exercise. Am J Physiol Endocrinol Metab 279: E806‐E814, 2000.
 282. Pilegaard H, Saltin B, Neufer PD. Exercise induces transient transcriptional activation of the PGC‐1alpha gene in human skeletal muscle. J Physiol 546: 851‐851, 2003.
 283. Polesskaya A, Seale P, Rudnicki MA. Wnt signaling induces the myogenic specification of resident CD45+ adult stem cells during muscle regeneration. Cell 113: 841‐841, 2003.
 284. Poliseno L, Salmena L, Zhang J, Carver B, Haveman WJ, Pandolfi PP. A coding‐independent function of gene and pseudogene mRNAs regulates tumour biology. Nature 465: 1033‐1033, 2010.
 285. Powers SK, Hamilton K. Antioxidants and exercise. Clin Sports Med 18: 525‐525, 1999.
 286. Powers SK, Jackson MJ. Exercise‐induced oxidative stress: Cellular mechanisms and impact on muscle force production. Physiol Rev 88: 1243‐1243, 2008.
 287. Pozzi A, Capdevila JH. PPARalpha ligands as antitumorigenic and antiangiogenic agents. PPAR Res 2008: 906542, 2008.
 288. Prior BM, Yang HT, Terjung RL. What makes vessels grow with exercise training? J Appl Physiol 97: 1119‐1119, 2004.
 289. Pruznak AM, Kazi AA, Frost RA, Vary TC, Lang CH. Activation of AMP‐activated protein kinase by 5‐aminoimidazole‐4‐carboxamide‐1‐beta‐D‐ribonucleoside prevents leucine‐stimulated protein synthesis in rat skeletal muscle. J Nutr 138: 1887‐1887, 2008.
 290. Puigserver P, Adelmant G, Wu Z, Fan M, Xu J, O'Malley B, Spiegelman BM. Activation of PPARgamma coactivator‐1 through transcription factor docking. Science 286: 1368‐1368, 1999.
 291. Puntschart A, Claassen H, Jostarndt K, Hoppeler H, Billeter R. mRNAs of enzymes involved in energy metabolism and mtDNA are increased in endurance‐trained athletes. Am J Physiol 269: C619‐C625, 1995.
 292. Qi C, Zhu Y, Reddy JK. Peroxisome proliferator‐activated receptors, coactivators, and downstream targets. Cell Biochem Biophys 32: 187‐187, 2000.
 293. Rahman I, Biswas SK, Jimenez LA, Torres M, Forman HJ. Glutathione, stress responses, and redox signaling in lung inflammation. Antioxid Redox Signal 7: 42‐42, 2005.
 294. Rebbapragada A, Benchabane H, Wrana JL, Celeste AJ, Attisano L. Myostatin signals through a transforming growth factor beta‐like signaling pathway to block adipogenesis. Mol Cell Biol 23: 7230‐7230, 2003.
 295. Reichmann H, Hoppeler H, Mathieu‐Costello O, von Bergen F, Pette D. Biochemical and ultrastructural changes of skeletal muscle mitochondria after chronic electrical stimulation in rabbits. Pfluegers Arch 404: 1‐1, 1985.
 296. Rennie MJ, Tipton KD. Protein and amino acid metabolism during and after exercise and the effects of nutrition. Annu Rev Nutr 20: 457‐457, 2000.
 297. Riccardi G, Giacco R, Rivellese AA. Dietary fat, insulin sensitivity and the metabolic syndrome. Clin Nutr 23: 447‐447, 2004.
 298. Richardson RS, Noyszewski EA, Kendrick KF, Leigh JS, Wagner PD. Myoglobin O2 desaturation during exercise. Evidence of limited O2 transport. J Clin Invest 96: 1916‐1916, 1995.
 299. Richardson RS, Wagner H, Mudaliar SR, Saucedo E, Henry R, Wagner PD. Exercise adaptation attenuates VEGF gene expression in human skeletal muscle. Am J Physiol Heart Circ Physiol 279: H772‐H778, 2000.
 300. Richter EA, Ruderman NB. AMPK and the biochemistry of exercise: Implications for human health and disease. Biochem J 418: 261‐261, 2009.
 301. Rivas DA, Lessard SJ, Coffey VG. mTOR function in skeletal muscle: A focal point for overnutrition and exercise. Appl Physiol Nutr Metab 34: 807‐807, 2009.
 302. Rochat A, Fernandez A, Vandromme M, Moles JP, Bouschet T, Carnac G, Lamb NJ. Insulin and wnt1 pathways cooperate to induce reserve cell activation in differentiation and myotube hypertrophy. Mol Biol Cell 15: 4544‐4544, 2004.
 303. Roesler KM, Conley KE, Claassen H, Howald H, Hoppeler H, Gehr P. Transfer effects in endurance exercise: Adaptations in trained and untrained muscles. Eur J Appl Physiol 54: 355‐355, 1985.
 304. Roig M, O'Brien K, Kirk G, Murray R, McKinnon P, Shadgan B, Reid DW. The effects of eccentric versus concentric resistance training on muscle strength and mass in healthy adults: A systematic review with meta‐analyses. Br J Sports Med 43: 556‐556, 2009.
 305. Rommel C, Bodine SC, Clarke BA, Rossman R, Nunez L, Stitt TN, Yancopoulos GD, Glass DJ. Mediation of IGF‐1‐induced skeletal myotube hypertrophy by PI(3)K/Akt/mTOR and PI(3)K/Akt/GSK3 pathways. Nat Cell Biol 3: 1009‐1009, 2001.
 306. Rose AJ, Broholm C, Kiillerich K, Finn SG, Proud CG, Rider MH, Richter EA, Kiens B. Exercise rapidly increases eukaryotic elongation factor 2 phosphorylation in skeletal muscle of men. J Physiol 569: 223‐223, 2005.
 307. Rose AJ, Hargreaves M. Exercise increases Ca2+‐calmodulin‐dependent protein kinase II activity in human skeletal muscle. J Physiol 553: 303‐303, 2003.
 308. Rose AJ, Kiens B, Richter EA. Ca2+‐calmodulin‐dependent protein kinase expression and signalling in skeletal muscle during exercise. J Physiol 574: 889‐889, 2006.
 309. Rose AJ, Richter EA. Regulatory mechanisms of skeletal muscle protein turnover during exercise. J Appl Physiol 106: 1702‐1702, 2009.
 310. Rudnicki MA, Le Grand F, McKinnell I, Kuang S. The molecular regulation of muscle stem cell function. Cold Spring Harb Symp Quant Biol 73: 323‐323, 2008.
 311. Russell AP, Feilchenfeldt J, Schreiber S, Praz M, Crettenand A, Gobelet C, Meier CA, Bell DR, Kralli A, Giacobino JP, Deriaz O. Endurance training in humans leads to fiber type‐specific increases in levels of peroxisome proliferator‐activated receptor‐gamma coactivator‐1 and peroxisome proliferator‐activated receptor‐alpha in skeletal muscle. Diabetes 52: 2874‐2874, 2003.
 312. Russell AP, Hesselink MK, Lo SK, Schrauwen P. Regulation of metabolic transcriptional co‐activators and transcription factors with acute exercise. FASEB J 19: 986‐986, 2005.
 313. Ruvinsky I, Meyuhas O. Ribosomal protein S6 phosphorylation: From protein synthesis to cell size. Trends Biochem Sci 31: 342‐342, 2006.
 314. Sacheck JM, Ohtsuka A, McLary SC, Goldberg AL. IGF‐I stimulates muscle growth by suppressing protein breakdown and expression of atrophy‐related ubiquitin ligases, atrogin‐1 and MuRF1. Am J Physiol Endocrinol Metab 287: E591‐E601, 2004.
 315. Sakamoto K, Aschenbach WG, Hirshman MF, Goodyear LJ. Akt signaling in skeletal muscle: Regulation by exercise and passive stretch. Am J Physiol Endocrinol Metab 285: E1081‐E1088, 2003.
 316. Sakuma K, Yamaguchi A. Molecular mechanisms in aging and current strategies to counteract sarcopenia. Curr Aging Sci 3: 90‐90, 2010.
 317. Sale DG. Neural adaptation to resistance training. Med Sci Sports Exerc 20: S135‐S145, 1988.
 318. Sancak Y, Peterson TR, Shaul YD, Lindquist RA, Thoreen CC, Bar‐Peled L, Sabatini DM. The Rag GTPases bind raptor and mediate amino acid signaling to mTORC1. Science 320: 1496‐1496, 2008.
 319. Sanders MJ, Grondin PO, Hegarty BD, Snowden MA, Carling D. Investigating the mechanism for AMP activation of the AMP‐activated protein kinase cascade. Biochem J 403: 139‐139, 2007.
 320. Sandri M, Lin J, Handschin C, Yang W, Arany ZP, Lecker SH, Goldberg AL, Spiegelman BM. PGC‐1alpha protects skeletal muscle from atrophy by suppressing FoxO3 action and atrophy‐specific gene transcription. Proc Natl Acad Sci U S A 103: 16260‐16260, 2006.
 321. Sandri M, Sandri C, Gilbert A, Skurk C, Calabria E, Picard A, Walsh K, Schiaffino S, Lecker SH, Goldberg AL. Foxo transcription factors induce the atrophy‐related ubiquitin ligase atrogin‐1 and cause skeletal muscle atrophy. Cell 117: 399‐399, 2004.
 322. Sandstrom ME, Zhang SJ, Bruton J, Silva JP, Reid MB, Westerblad H, Katz A. Role of reactive oxygen species in contraction‐mediated glucose transport in mouse skeletal muscle. J Physiol 575: 251‐251, 2006.
 323. Schachtrup C, Emmler T, Bleck B, Sandqvist A, Spener F. Functional analysis of peroxisome‐proliferator‐responsive element motifs in genes of fatty acid‐binding proteins. Biochem J 382: 239‐239, 2004.
 324. Schiaffino S, Sandri M, Murgia M. Activity‐dependent signaling pathways controlling muscle diversity and plasticity. Physiology (Bethesda) 22: 269‐269, 2007.
 325. Schiaffino S, Serrano A. Calcineurin signaling and neural control of skeletal muscle fiber type and size. Trends Pharmacol Sci 23: 569‐569, 2002.
 326. Schmutz S, Dapp C, Wittwer M, Durieux AC, Mueller M, Weinstein F, Vogt M, Hoppeler H, Fluck M. A hypoxia complement differentiates the muscle response to endurance exercise. Exp Physiol 95: 723‐723, 2010.
 327. Schmutz S, Dapp C, Wittwer M, Vogt M, Hoppeler H, Fluck M. Endurance training modulates the muscular transcriptome response to acute exercise. Pflugers Arch 451: 678‐678, 2006.
 328. Schoonjans K, Watanabe M, Suzuki H, Mahfoudi A, Krey G, Wahli W, Grimaldi P, Staels B, Yamamoto T, Auwerx J. Induction of the acyl‐coenzyme A synthetase gene by fibrates and fatty acids is mediated by a peroxisome proliferator response element in the C promoter. J Biol Chem 270: 19269‐19269, 1995.
 329. Schrauwen‐Hinderling VB, Hesselink MK, Schrauwen P, Kooi ME. Intramyocellular lipid content in human skeletal muscle. Obesity (Silver Spring) 14: 357‐357, 2006.
 330. Scicchitano BM, Rizzuto E, Musaro A. Counteracting muscle wasting in aging and neuromuscular diseases: The critical role of IGF‐1. Aging (Albany NY) 1: 451‐451, 2009.
 331. Scott JW, Hawley SA, Green KA, Anis M, Stewart G, Scullion GA, Norman DG, Hardie DG. CBS domains form energy‐sensing modules whose binding of adenosine ligands is disrupted by disease mutations. J Clin Invest 113: 274‐274, 2004.
 332. Seale P, Polesskaya A, Rudnicki MA. Adult stem cell specification by Wnt signaling in muscle regeneration. Cell Cycle 2: 418‐418, 2003.
 333. Semenza GL. Hypoxia‐inducible factor 1: Master regulator of O2 homeostasis. Curr Opin Genet Dev 8: 588‐588, 1998.
 334. Semenza GL. Regulation of oxygen homeostasis by hypoxia‐inducible factor 1. Physiology (Bethesda) 24: 97‐97, 2009.
 335. Semple RK, Crowley VC, Sewter CP, Laudes M, Christodoulides C, Considine RV, Vidal‐Puig A, O'Rahilly S. Expression of the thermogenic nuclear hormone receptor coactivator PGC‐1alpha is reduced in the adipose tissue of morbidly obese subjects. Int J Obes Relat Metab Disord 28: 176‐176, 2004.
 336. Senf SM, Dodd SL, Judge AR. FOXO signaling is required for disuse muscle atrophy and is directly regulated by Hsp70. Am J Physiol Cell Physiol 298: C38‐C45, 2010.
 337. Seth A, Steel JH, Nichol D, Pocock V, Kumaran MK, Fritah A, Mobberley M, Ryder TA, Rowlerson A, Scott J, Poutanen M, White R, Parker M. The transcriptional corepressor RIP140 regulates oxidative metabolism in skeletal muscle. Cell Metab 6: 236‐236, 2007.
 338. Sheehan SM, Allen RE. Skeletal muscle satellite cell proliferation in response to members of the fibroblast growth factor family and hepatocyte growth factor. J Cell Physiol 181: 499‐499, 1999.
 339. Shoag J, Arany Z. Regulation of hypoxia‐inducible genes by PGC‐1 alpha. Arterioscler Thromb Vasc Biol 30: 662‐662, 2010.
 340. Simi B, Sempore B, Mayet MH, Favier RJ. Additive effects of training and high‐fat diet on energy metabolism during exercise. J Appl Physiol 71: 197‐197, 1991.
 341. Singh R, Bhasin S, Braga M, Artaza JN, Pervin S, Taylor WE, Krishnan V, Sinha SK, Rajavashisth TB, Jasuja R. Regulation of myogenic differentiation by androgens: Cross talk between androgen receptor/ beta‐catenin and follistatin/transforming growth factor‐beta signaling pathways. Endocrinology 150: 1259‐1259, 2009.
 342. Smith SA. Peroxisome proliferator‐activated receptors and the regulation of mammalian lipid metabolism. Biochem Soc Trans 30: 1086‐1086, 2002.
 343. Song XM, Fiedler M, Galuska D, Ryder JW, Fernstrom M, Chibalin AV, Wallberg‐Henriksson H, Zierath JR. 5‐Aminoimidazole‐4‐carboxamide ribonucleoside treatment improves glucose homeostasis in insulin‐resistant diabetic (ob/ob) mice. Diabetologia 45: 56‐56, 2002.
 344. Spangenburg EE, Le Roith D, Ward CW, Bodine SC. A functional insulin‐like growth factor receptor is not necessary for load‐induced skeletal muscle hypertrophy. J Physiol 586: 283‐283, 2008.
 345. Spiegelman BM. Transcriptional control of energy homeostasis through the PGC1 coactivators. Novartis Found Symp 286: 3‐3; discussion 6‐6, 162‐162, 196‐196, 2007.
 346. Spiegelman BM, Heinrich R. Biological control through regulated transcriptional coactivators. Cell 119: 157‐157, 2004.
 347. Stefanyk LE, Dyck DJ. The interaction between adipokines, diet and exercise on muscle insulin sensitivity. Curr Opin Clin Nutr Metab Care 13: 255‐255, 2010.
 348. Steinberg GR, Watt MJ, Febbraio MA. Cytokine Regulation of AMPK signalling. Front Biosci 14: 1902‐1902, 2009.
 349. Stepto NK, Coffey VG, Carey AL, Ponnampalam AP, Canny BJ, Powell D, Hawley JA. Global gene expression in skeletal muscle from well‐trained strength and endurance athletes. Med Sci Sports Exerc 41: 546‐546, 2009.
 350. Stitt TN, Drujan D, Clarke BA, Panaro F, Timofeyva Y, Kline WO, Gonzalez M, Yancopoulos GD, Glass DJ. The IGF‐1/PI3K/Akt pathway prevents expression of muscle atrophy‐induced ubiquitin ligases by inhibiting FOXO transcription factors. Mol Cell 14: 395‐395, 2004.
 351. St‐Pierre J, Buckingham JA, Roebuck SJ, Brand MD. Topology of superoxide production from different sites in the mitochondrial electron transport chain. J Biol Chem 277: 44784‐44784, 2002.
 352. Stubbings AK, Moore AJ, Dusmet M, Goldstraw P, West TG, Polkey MI, Ferenczi MA. Physiological properties of human diaphragm muscle fibres and the effect of chronic obstructive pulmonary disease. J Physiol 586: 2637‐2637, 2008.
 353. Suetta C, Hvid LG, Justesen L, Christensen U, Neergaard K, Simonsen L, Ortenblad N, Magnusson SP, Kjaer M, Aagaard P. Effects of aging on human skeletal muscle after immobilization and retraining. J Appl Physiol 107: 1172‐1172, 2009.
 354. Sugden MC, Zariwala MG, Holness MJ. PPARs and the orchestration of metabolic fuel selection. Pharmacol Res 60: 141‐141, 2009.
 355. Summermatter S, Baum O, Santos G, Hoppeler H, Handschin C. Peroxisome proliferator‐activated receptor {gamma} coactivator 1{alpha} (PGC‐1{alpha}) promotes skeletal muscle lipid refueling in vivo by activating de novo lipogenesis and the pentose phosphate pathway. J Biol Chem 285: 32793‐32793.
 356. Sun Y, Chen J. mTOR signaling: PLD takes center stage. Cell Cycle 7: 3118‐3118, 2008.
 357. Sun Y, Fang Y, Yoon MS, Zhang C, Roccio M, Zwartkruis FJ, Armstrong M, Brown HA, Chen J. Phospholipase D1 is an effector of Rheb in the mTOR pathway. Proc Natl Acad Sci U S A 105: 8286‐8286, 2008.
 358. Tamashiro KL, Moran TH. Perinatal environment and its influences on metabolic programming of offspring. Physiol Behav 100: 560‐560, 2010.
 359. Tatsumi R. Mechano‐biology of skeletal muscle hypertrophy and regeneration: Possible mechanism of stretch‐induced activation of resident myogenic stem cells. Anim Sci J 81: 11‐11, 2010.
 360. Taylor EB, Lamb JD, Hurst RW, Chesser DG, Ellingson WJ, Greenwood LJ, Porter BB, Herway ST, Winder WW. Endurance training increases skeletal muscle LKB1 and PGC‐1alpha protein abundance: Effects of time and intensity. Am J Physiol Endocrinol Metab 289: E960‐E968, 2005.
 361. Terrados N, Jansson E, Sylven C, Kaijser L. Is hypoxia a stimulus for synthesis of oxidative enzymes and myoglobin? J Appl Physiol 68: 2369‐2369, 1990.
 362. Tesch PA. Skeletal muscle adaptations consequent to long‐term heavy resistance exercise. Med Sci Sports Exerc 20: S132‐134, 1988.
 363. Thomson DM, Fick CA, Gordon SE. AMPK activation attenuates S6K1, 4E‐BP1, and eEF2 signaling responses to high‐frequency electrically stimulated skeletal muscle contractions. J Appl Physiol 104: 625‐625, 2008.
 364. Tongprasert S, Wattanapan P. Aerobic capacity of fifth‐year medical students at Chiang Mai University. J Med Assoc Thai 90: 1411‐1411, 2007.
 365. Tonna S, El‐Osta A, Cooper ME, Tikellis C. Metabolic memory and diabetic nephropathy: Potential role for epigenetic mechanisms. Nature Rev 6: 332‐332.
 366. Tremblay F, Gagnon A, Veilleux A, Sorisky A, Marette A. Activation of the mammalian target of rapamycin pathway acutely inhibits insulin signaling to Akt and glucose transport in 3T3‐L1 and human adipocytes. Endocrinology 146: 1328‐1328, 2005.
 367. Tsivitse S. Notch and Wnt signaling, physiological stimuli and postnatal myogenesis. Int J Biol Sci 6: 268‐268, 2010.
 368. Tsivitse SK, Peters MG, Stoy AL, Mundy JA, Bowen RS. The effect of downhill running on Notch signaling in regenerating skeletal muscle. Eur J Appl Physiol 106: 759‐759, 2009.
 369. Tsuchida K, Nakatani M, Uezumi A, Murakami T, Cui X. Signal transduction pathway through activin receptors as a therapeutic target of musculoskeletal diseases and cancer. Endocr J 55: 11‐11, 2008.
 370. van Hinsbergh VW, Koolwijk P. Endothelial sprouting and angiogenesis: Matrix metalloproteinases in the lead. Cardiovasc Res 78: 203‐203, 2008.
 371. van Rooij E, Quiat D, Johnson BA, Sutherland LB, Qi X, Richardson JA, Kelm RJ, Jr, Olson EN. A family of microRNAs encoded by myosin genes governs myosin expression and muscle performance. Dev Cell 17: 662‐662, 2009.
 372. Vasilaki A, McArdle F, Iwanejko LM, McArdle A. Adaptive responses of mouse skeletal muscle to contractile activity: The effect of age. Mech Ageing Dev 127: 830‐830, 2006.
 373. Vogt M, Puntschart A, Geiser J, Zuleger C, Billeter R, Hoppeler H. Molecular adaptations in human skeletal muscle to endurance training under simulated hypoxic conditions. J Appl Physiol 91: 173‐173, 2001.
 374. Vogt M, Puntschart A, Howald H, Mueller B, Mannhart C, Gfeller‐Tuescher L, Mullis P, Hoppeler H. Effects of dietary fat on muscle substrates, metabolism, and performance in athletes. Med Sci Sports Exerc 35: 952‐952, 2003.
 375. Volpi E, Kobayashi H, Sheffield‐Moore M, Mittendorfer B, Wolfe RR. Essential amino acids are primarily responsible for the amino acid stimulation of muscle protein anabolism in healthy elderly adults. Am J Clin Nutr 78: 250‐250, 2003.
 376. Wackerhage H, Rennie MJ. How nutrition and exercise maintain the human musculoskeletal mass. J Anat 208: 451‐451, 2006.
 377. Waddell DS, Baehr LM, Van Den Brandt J, Johnsen SA, Reichardt HM, Furlow JD, Bodine SC. The glucocorticoid receptor and FOXO1 synergistically activate the skeletal muscle atrophy‐associated MuRF1 gene. Am J Physiol Endocrinol Metab 295: E785‐E797, 2008.
 378. Wallberg AE, Yamamura S, Malik S, Spiegelman BM, Roeder RG. Coordination of p300‐mediated chromatin remodeling and TRAP/mediator function through coactivator PGC‐1alpha. Mol Cell 12: 1137‐1137, 2003.
 379. Wang YX, Zhang CL, Yu RT, Cho HK, Nelson MC, Bayuga‐Ocampo CR, Ham J, Kang H, Evans RM. Regulation of muscle fiber type and running endurance by PPARdelta. PLoS Biol 2: e294, 2004.
 380. Wassenegger M. The role of the RNAi machinery in heterochromatin formation. Cell 122: 13‐13, 2005.
 381. Watt MJ, Southgate RJ, Holmes AG, Febbraio MA. Suppression of plasma free fatty acids upregulates peroxisome proliferator‐activated receptor (PPAR) alpha and delta and PPAR coactivator 1alpha in human skeletal muscle, but not lipid regulatory genes. J Mol Endocrinol 33: 533‐533, 2004.
 382. Weber JM. The physiology of long‐distance migration: Extending the limits of endurance metabolism. J Exp Biol 212: 593‐593, 2009.
 383. Welle S, Burgess K, Thornton CA, Tawil R. Relation between extent of myostatin depletion and muscle growth in mature mice. Am J Physiol Endocrinol Metab 297: E935‐E940, 2009.
 384. White FC, Bloor CM, McKirnan MD, Carroll SM. Exercise training in swine promotes growth of arteriolar bed and capillary angiogenesis in heart. J Appl Physiol 85: 1160‐1160, 1998.
 385. White R, Morganstein D, Christian M, Seth A, Herzog B, Parker MG. Role of RIP140 in metabolic tissues: Connections to disease. FEBS Lett 582: 39‐39, 2008.
 386. Williams AH, Liu N, van Rooij E, Olson EN. MicroRNA control of muscle development and disease. Curr Opin Cell Biol 21: 461‐461, 2009.
 387. Winder WW. Energy‐sensing and signaling by AMP‐activated protein kinase in skeletal muscle. J Appl Physiol 91: 1017‐1017, 2001.
 388. Wittkopp PJ. Variable gene expression in eukaryotes: A network perspective. J Exp Biol 210: 1567‐1567, 2007.
 389. Wojtaszewski JF, Jorgensen SB, Hellsten Y, Hardie DG, Richter EA. Glycogen‐dependent effects of 5‐aminoimidazole‐4‐carboxamide (AICA)‐riboside on AMP‐activated protein kinase and glycogen synthase activities in rat skeletal muscle. Diabetes 51: 284‐284, 2002.
 390. Wu H, Kanatous SB, Thurmond FA, Gallardo T, Isotani E, Bassel‐Duby R, Williams RS. Regulation of mitochondrial biogenesis in skeletal muscle by CaMK. Science 296: 349‐349, 2002.
 391. Xue Y, Petrovic N, Cao R, Larsson O, Lim S, Chen S, Feldmann HM, Liang Z, Zhu Z, Nedergaard J, Cannon B, Cao Y. Hypoxia‐independent angiogenesis in adipose tissues during cold acclimation. Cell Metab 9: 99‐99, 2009.
 392. Yablonka‐Reuveni Z, Seger R, Rivera AJ. Fibroblast growth factor promotes recruitment of skeletal muscle satellite cells in young and old rats. J Histochem Cytochem 47: 23‐23, 1999.
 393. Yan Z. Exercise, PGC‐1alpha, and metabolic adaptation in skeletal muscle. Appl Physiol Nutr Metab 34: 424‐424, 2009.
 394. Yu S, Reddy JK. Transcription coactivators for peroxisome proliferator‐activated receptors. Biochim Biophys Acta 1771: 936‐936, 2007.
 395. Yudkin JS. Inflammation, obesity, and the metabolic syndrome. Horm Metab Res 39: 707‐707, 2007.
 396. Zahorska‐Markiewicz B, Janowska J, Olszanecka‐Glinianowicz M, Zurakowski A. Serum concentrations of TNF‐alpha and soluble TNF‐alpha receptors in obesity. Int J Obes Relat Metab Disord 24: 1392‐1392, 2000.
 397. Zammit PS. All muscle satellite cells are equal, but are some more equal than others? J Cell Sci 121: 2975‐2975, 2008.
 398. Zammit PS, Partridge TA, Yablonka‐Reuveni Z. The skeletal muscle satellite cell: The stem cell that came in from the cold. J Histochem Cytochem 54: 1177‐1177, 2006.
 399. Zhou AL, Egginton S, Brown MD, Hudlicka O. Capillary growth in overloaded, hypertrophic adult rat skeletal muscle: An ultrastructural study. Anat Rec 252: 49‐49, 1998.
 400. Zoll J, Ponsot E, Dufour S, Doutreleau S, Ventura‐Clapier R, Vogt M, Hoppeler H, Richard R, Fluck M. Exercise training in normobaric hypoxia in endurance runners. III. Muscular adjustments of selected gene transcripts. J Appl Physiol 100: 1258‐1258, 2006.
 401. Zwetsloot KA, Westerkamp LM, Holmes BF, Gavin TP. AMPK regulates basal skeletal muscle capillarization and VEGF expression, but is not necessary for the angiogenic response to exercise. J Physiol 586: 6021‐6021, 2008.

Contact Editor

Submit a note to the editor about this article by filling in the form below.

* Required Field

How to Cite

Hans Hoppeler, Oliver Baum, Glenn Lurman, Matthias Mueller. Molecular Mechanisms of Muscle Plasticity with Exercise. Compr Physiol 2011, 1: 1383-1412. doi: 10.1002/cphy.c100042