References |
1. |
Adrian RH.
The effect of internal and external potassium concentration on the membrane potential of frog muscle.
J Physiol
133:
631‐658,
1956.
|
2. |
Ahn D,
Ge Y,
Stricklett PK,
Gill P,
Taylor D,
Hughes AK,
Yanagisawa M,
Miller L,
Nelson RD,
Kohan DE.
Collecting duct‐specific knockout of endothelin‐1 causes hypertension and sodium retention.
J Clin Invest
114:
504‐511,
2004.
|
3. |
Amorim JB,
Bailey MA,
Musa‐Aziz R,
Giebisch G,
Malnic G.
Role of luminal anion and pH in distal tubule potassium secretion.
Am J Physiol Renal Physiol
284:
F381‐F388,
2003.
|
4. |
Amorim JB,
Malnic G.
V(1) receptors in luminal action of vasopressin on distal K(+) secretion.
Am J Physiol Renal Physiol
278:
F809‐F816,
2000.
|
5. |
Andreucci VE,
Herrera‐Acosta J,
Rector FC, Jr.
and Seldin DW. Measurement of single‐nephron glomerular filtration rate by micropuncture: Analysis of error.
Am J Physiol
221:
1551‐1559,
1971.
|
6. |
Ares GR,
Caceres P,
varez‐Leefmans FJ,
Ortiz PA.
cGMP decreases surface NKCC2 levels in the thick ascending limb: Role of phosphodiesterase 2 (PDE2).
Am J Physiol Renal Physiol
295:
F877‐F887,
2008.
|
7. |
Babilonia E,
Li D,
Wang Z,
Sun P,
Lin DH,
Jin Y,
Wang WH.
Mitogen‐activated protein kinases inhibit the ROMK (Kir 1.1)‐like small conductance K channels in the cortical collecting duct.
J Am Soc Nephrol
17:
2687‐2696,
2006.
|
8. |
Babilonia E,
Wei Y,
Sterling H,
Kaminski P,
Wolin M,
Wang WH.
Superoxide anions are involved in mediating the effect of low K intake on c‐Src expression and renal K secretion in the cortical collecting duct.
J Biol Chem
280:
10790‐10796,
2005.
|
9. |
Bailey MA,
Cantone A,
Yan Q,
Macgregor GG,
Leng Q,
Amorim JB,
Wang T,
Hebert SC,
Giebisch G,
Malnic G.
Maxi‐K channels contribute to urinary potassium excretion in the ROMK‐deficient mouse model of Type II Bartter's syndrome and in adaptation to a high‐K diet.
Kidney Int
70:
51‐59,
2006.
|
10. |
Bailey MA,
Giebisch G,
Abbiati T,
Aronson PS,
Gawenis LR,
Shull GE,
Wang T.
NHE2‐mediated bicarbonate reabsorption in the distal tubule of NHE3 null mice.
J Physiol
561:
765‐775,
2004.
|
11. |
Bailey MA,
Unwin RJ,
Shirley DG.
In vivo inhibition of renal 11beta‐hydroxysteroid dehydrogenase in the rat stimulates collecting duct sodium reabsorption.
Clin Sci (Lond)
101:
195‐198,
2001.
|
12. |
Balaban RS,
Dennis VW,
Mandel LJ.
Microfluorometric monitoring of NAD redox state in isolated perfused renal tubules.
Am J Physiol
240:
F337‐F342,
1981.
|
13. |
Barratt LJ,
Rector FC, Jr.,
Kokko JP,
Seldin DW.
Factors governing the transepithelial potential difference across the proximal tubule of the rat kidney.
J Clin Invest
53:
454‐464,
1974.
|
14. |
Beck JS,
Hurst AM,
Lapointe J‐Y,
Laprade R.
Regulation of basolateral K channels in proximal tubule studied during continuous microperfusion.
Am J Physiol
264:
F496‐F501,
1993.
|
15. |
Bell PD,
Peti‐Peterdi J.
Angiotensin II stimulates macula densa basolateral sodium/hydrogen exchange via type 1 angiotensin II receptors.
J Am Soc Nephrol
10(Suppl 11):
S225‐S229,
1999.
|
16. |
Biagi B,
Kubota T,
Sohtell M,
Giebisch G.
Intracellular potentials in rabbit proximal tubules perfused in vitro.
Am J Physiol
240:
F200‐F210,
1981.
|
17. |
Blantz RC,
Tucker BJ.
Measurements of glomerular dynamics. In:
Martinez‐Maldonado, editor.
Methods in Pharmacology.
Plenum Publishing Corporation,
1978,
pp. 141‐163.
|
18. |
Bleich M,
Kottgen M,
Schlatter E,
Greger R.
Effect of NH4+/NH3 on cytosolic pH and the K+ channels of freshly isolated cells from the thick ascending limb of Henle's loop.
Pflugers Arch
429:
345‐354,
1995.
|
19. |
Bleich M,
Schlatter E,
Greger R.
The luminal K+ channel of the thick ascending limb of Henle's loop.
Pflugers Arch
415:
449‐460,
1990.
|
20. |
Bomsztyk K,
Calalb MB.
A new microelectrode method for simultaneous measurement of pH and PCO2.
Am J Physiol
251:
F933‐F937,
1986.
|
21. |
Bomsztyk K,
George JP,
Wright FS.
Effects of luminal fluid anions on calcium transport by proximal tubule.
Am J Physiol
246:
F600‐F608,
1984.
|
22. |
Bonny O,
Hummler E.
Dysfunction of epithelial sodium transport: From human to mouse.
Kidney Int
57:
1313‐1318,
2000.
|
23. |
Booth RE,
Johnson JP,
Stockand JD.
Aldosterone.
Adv Physiol Educ
26:
8‐20,
2002.
|
24. |
Boron WF,
Boulpaep EL.
Intracellular pH regulation in the renal proximal tubule of the Salamander.
Na‐H exchange.
J Gen Physiol
81:
29‐52,
1983a.
|
25. |
Boron WF,
Boulpaep EL.
Intracellular pH regulation in the renal proximal tubule of the Salamander.Basolateral HCO3‐ transport.
J Gen Physiol
81:
53‐94,
1983b.
|
26. |
Boulpaep EL.
Electrophysiological techniques in kidney micropuncture.
Yale J Biol Med
45:
397‐413,
1972.
|
27. |
Boulpaep EL,
Seely JF.
Electrophysiology of proximal and distal tubules in the autoperfused dog kidney.
Am J Physiol
221:
1084‐1096,
1971.
|
28. |
Bourdeau JE,
Carone FA,
Ganote CE.
Serum albumin uptake in isolated perfused renal tubules. Quantitative and electron microscope radioautographic studies in three anatomical segments of the rabbit nephron.
J Cell Biol
54:
382‐398,
1972.
|
29. |
Braam B,
Mitchell KD,
Fox J,
Navar LG.
Proximal tubular secretion of angiotensin II in rats.
Am J Physiol
264:
F891‐F898,
1993.
|
30. |
Bugaj V,
Pochynyuk O,
Mironova E,
Vandewalle A,
Medina JL,
Stockand JD.
Regulation of the epithelial Na+ channel by endothelin‐1 in rat collecting duct.
Am J Physiol Renal Physiol
295:
F1063‐F1070,
2008.
|
31. |
Bugaj V,
Pochynyuk O,
Stockand JD.
Activation of the epithelial Na+ channel in the collecting duct by vasopressin contributes to water reabsorption.
Am J Physiol Renal Physiol
297:
F1411‐F1418,
2009.
|
32. |
Burg M,
Grantham J,
Abramow M,
Orloff J.
Preparation and study of fragments of single rabbit nephrons.
Am J Physiol
210:
1293‐1298,
1966.
|
33. |
Burnstock G.
Purinergic signalling and disorders of the central nervous system.
Nat Rev Drug Discov
7:
575‐590,
2008.
|
34. |
Busjahn A,
Aydin A,
Uhlmann R,
Krasko C,
Bahring S,
Szelestei T,
Feng Y,
Dahm S,
Sharma AM,
Luft FC,
Lang F.
Serum‐ and glucocorticoid‐regulated kinase (SGK1) gene and blood pressure.
Hypertension
40:
256‐260,
2002.
|
35. |
Caceres PS,
Ares GR,
Ortiz PA.
cAMP stimulates apical exocytosis of the renal Na(+)‐K(+)‐2Cl[‐] cotransporter NKCC2 in the thick ascending limb: Role of protein kinase A.
J Biol Chem
284:
24965‐24971,
2009.
|
36. |
Canessa CM,
Horisberger JD,
Rossier BC.
Epithelial sodium channel related to proteins involved in neurodegeneration.
Nature
361:
467‐470,
1993.
|
37. |
Canessa CM,
Schild L,
Buell G,
Thorens B,
Gautschi I,
Horisberger JD,
Rossier BC.
Amiloride‐sensitive epithelial Na channel is made of three homologous subunits.
Nature
367:
463‐467,
1994.
|
38. |
Cantone A,
Yang X,
Yan Q,
Giebisch G,
Hebert SC,
Wang T.
Mouse model of type II Bartter's syndrome. I. Upregulation of thiazide‐sensitive Na‐Cl cotransport activity.
Am J Physiol Renal Physiol
294:
F1366‐F1372,
2008.
|
39. |
Carey RM,
Douglas JG,
Schweikert JR,
Liddle GW.
The syndrome of essential hypertension and suppressed plasma renin activity. Normalization of blood pressure with spironolactone.
Arch Intern Med
130:
849‐854,
1972.
|
40. |
Carone FA,
Pullman TN,
Oparil S,
Nakamura S.
Micropuncture evidence of rapid hydrolysis of bradykinin by rat proximal tubule.
Am J Physiol
230:
1420‐1424,
1976.
|
41. |
Cassola AC,
Giebisch G,
Wang W.
Vasopressin increases density of apical low‐conductance K+ channels in rat CCD.
Am J Physiol
264:
F502‐F509,
1993.
|
42. |
Chaillet JR,
Boron WF.
Intracellular calibration of a pH‐sensitive dye in isolated, perfused salamander proximal tubules.
J Gen Physiol
86:
765‐794,
1985.
|
43. |
Chang SS,
Grunder S,
Hanukoglu A,
Rosler A,
Mathew PM,
Hanukoglu I,
Schild L,
Lu Y,
Shimkets RA,
Nelson‐Williams C,
Rossier BC,
Lifton RP.
Mutations in subunits of the epithelial sodium channel causes salt wasting with hyperkalaemic acidosis, pseudohypoaldosteronism type 1.
Nature Genet
12:
248‐253,
1996.
|
44. |
Cheema‐Dhadli S,
Hamat R,
Sonnenberg H,
Halperin M.
A micromethod to measure ammonia.
Kidney Int
19:
80‐82,
1981.
|
45. |
Chen L,
Williams SK,
Schafer JA.
Differences in synergistic actions of vasopressin and deoxycorticosterone in rat and rabbit CCD.
Am J Physiol
259:
F147‐F156,
1990.
|
46. |
Chen S,
Agarwal A,
Glushakova OY,
Jorgensen MS,
Salgar SK,
Poirier A,
Flotte TR,
Croker BP,
Madsen KM,
Atkinson MA,
Hauswirth WW,
Berns KI,
Tisher CC.
Gene delivery in renal tubular epithelial cells using recombinant adeno‐associated viral vectors.
J Am Soc Nephrol
14:
947‐958,
2003.
|
47. |
Chen S,
Bhargava A,
Meijer O,
Rozansky D,
Spindler B,
Verrey F,
Pearce D.
Identification and characterization of novel mineralocorticoid‐regulated genes in tight epithelia.
J Am Soc Nephrol
9(A2030):
398A,
1998.
|
48. |
Chen S,
Bhargava S,
Mastroberardino L,
Meijer OC,
Wang J,
Firestone P,
Verrey F,
Pearce D.
Epithelial sodium channel regualted by aldosterone‐induced protein sgk.
Proc Nat Acad Sci U S A
96:
2514‐2519,
1999.
|
49. |
Cheng QL,
Chen XM,
Li F,
Lin HL,
Ye YZ,
Fu B.
Effects of ICAM‐1 antisense oligonucleotide on the tubulointerstitium in mice with unilateral ureteral obstruction.
Kidney Int
57:
183‐190,
2000.
|
50. |
Colindres RE,
Kramp RA,
Allison ME,
Gottschalk CW.
Hydrodynamic alterations during distal tubular fluid collections in the rat kidney.
Am J Physiol
232:
F497‐F506,
1977.
|
51. |
Cortell S.
Silicone rubber for renal tubular injection.
J Appl Physiol
26:
158‐159,
1969.
|
52. |
Costanzo LS.
Comparison of calcium and sodium transport in early and late rat distal tubules: Effect of amiloride.
Am J Physiol
246:
F937‐F945,
1984.
|
53. |
Darling IM,
Morris ME.
Evaluation of “true” creatinine clearance in rats reveals extensive renal secretion.
Pharm Res
8:
1318‐1322,
1991.
|
54. |
Davidman M,
Lalone RC,
Alexander EA,
Levinsky NG.
Some micropuncture techniques in the rat.
Am J Physiol
221:
1110‐1114,
1971.
|
55. |
Deen WM,
Robertson CR,
Brenner BM.
A model of glomerular ultrafiltration in the rat.
Am J Physiol
223:
1178‐1183,
1972.
|
56. |
Dhaun N,
Goddard J,
Kohan DE,
Pollock DM,
Schiffrin EL,
Webb DJ.
Role of endothelin‐1 in clinical hypertension: 20 years on.
Hypertension
52:
452‐459,
2008.
|
57. |
Dunn SR,
Qi Z,
Bottinger EP,
Breyer MD,
Sharma K.
Utility of endogenous creatinine clearance as a measure of renal function in mice.
Kidney Int
65:
1959‐1967,
2004.
|
58. |
Eisner C,
Faulhaber‐Walter R,
Wang Y,
Leelahavanichkul A,
Yuen PS,
Mizel D,
Star RA,
Briggs JP,
Levine M,
Schnermann J.
Major contribution of tubular secretion to creatinine clearance in mice.
Kidney Int
77:
519‐526,
2010.
|
59. |
Estevez R,
Boettger T,
Stein V,
Birkenhager R,
Otto E,
Hildebrandt F,
Jentsch TJ.
Barttin is a Cl‐ channel beta‐subunit crucial for renal Cl‐ reabsorption and inner ear K+ secretion.
Nature
414:
558‐561,
2001.
|
60. |
Faria NJ,
Dobbie H,
Slater JM,
Shirley DG,
Stocking CJ,
Unwin RJ.
Simultaneous determination of anions in nanoliter volumes.
Kidney Int
67:
357‐363,
2005.
|
61. |
Fejes‐Toth G,
Frindt G,
Naray‐Fejes‐Toth A,
Palmer LG.
Epithelial Na+ channel activation and processing in mice lacking SGK1.
Am J Physiol Renal Physiol
294:
F1298‐F1305,
2008.
|
62. |
Fenton RA,
Chou CL,
Ageloff S,
Brandt W,
Stokes JB,
Knepper MA.
Increased collecting duct urea transporter expression in Dahl salt‐sensitive rats.
Am J Physiol Renal Physiol
285:
F143‐F151,
2003.
|
63. |
Fenton RA,
Knepper MA.
Mouse models and the urinary concentrating mechanism in the new millennium.
Physiol Rev
87:
1083‐1112,
2007.
|
64. |
Flores SY,
Loffing‐Cueni D,
Kamynina E,
Daidie D,
Gerbex C,
Chabanel S,
Dudler J,
Loffing J,
Staub O.
Aldosterone‐induced serum and glucocorticoid‐induced kinase 1 expression is accompanied by Nedd4‐2 phosphorylation and increased Na+ transport in cortical collecting duct cells.
J Am Soc Nephrol
16:
2279‐2287,
2005.
|
65. |
Fouladkou F,
ikhani‐Koopaei R,
Vogt B,
Flores SY,
Malbert‐Colas L,
Lecomte MC,
Loffing J,
Frey FJ,
Frey BM,
Staub O.
A naturally occurring human Nedd4‐2 variant displays impaired ENaC regulation in Xenopus laevis oocytes.
Am J Physiol Renal Physiol
287:
F550‐F561,
2004.
|
66. |
Frindt G,
Burg MB.
Effect of Vasopressin on sodium transport in renal cortical collecting tubules.
Kidney International
1:
224‐231,
1972.
|
67. |
Frindt G,
Ergonul Z,
Palmer LG.
Na channel expression and activity in the medullary collecting duct of rat kidney.
Am J Physiol Renal Physiol
292:
F1190‐F1196,
2007.
|
68. |
Frindt G,
Masilamani S,
Knepper MA,
Palmer LG.
Activation of epithelial Na channels during short‐term Na deprivation.
Am J Physiol Renal Physiol
280:
F112‐F118,
2001.
|
69. |
Frindt G,
McNair T,
Dahlmann A,
Jacobs‐Palmer E,
Palmer LG.
Epithelial Na channels and short‐term renal response to salt deprivation.
Am J Physiol Renal Physiol
283:
F717‐F726,
2002.
|
70. |
Frindt G,
Palmer LG.
Ca‐activated K channels in apical membrane of mammalian CCT, and their role in K secretion.
Am J Physiol
252:
458‐467,
1987.
|
71. |
Frindt G,
Palmer LG.
Low‐conductance K channels in apical membrane of rat cortical collecting tubule.
Am J Physiol
256:
F143‐F151,
1989.
|
72. |
Frindt G,
Palmer LG.
Regulation of Na channels in the rat cortical collecting tubule: Effects of cAMP and methyl donors.
Am J Physiol
271:
F1086‐F1092,
1996.
|
73. |
Frindt G,
Palmer LG.
Apical potassium channels in the rat connecting tubule.
Am J Physiol Renal Physiol
287:
F1030‐F1037,
2004.
|
74. |
Frindt G,
Palmer LG,
Windhager EE.
Feedback regulation of Na channels in rat CCT. IV. Mediation by activation of protein kinase C.
Am J Physiol
270:
F371‐F376,
1996.
|
75. |
Frindt G,
Sackin H,
Palmer LG.
Whole‐cell currents in rat cortical collecting tubule: Low‐Na diet increases amiloride‐sensitive conductance.
Am J Physiol Renal,Fluid Electrolyte Physiol
258:
F562‐F567,
1990.
|
76. |
Frindt G,
Shah A,
Edvinsson J,
Palmer LG.
Dietary K regulates ROMK channels in connecting tubule and cortical collecting duct of rat kidney.
Am J Physiol Renal Physiol
296:
F347‐F354,
2009.
|
77. |
Frindt G,
Silver RB,
Windhager EE,
Palmer LG.
Feedback regulation of Na channels in rat CCT. II. Effects of inhibition of Na entry.
Am J Physiol
264:
F565‐F574,
1993.
|
78. |
Frindt G,
Zhou H,
Sackin H,
Palmer LG.
Dissociation of K channel density and ROMK mRNA in rat cortical collecting tubule during K adaptation.
Am J Physiol
274:
F525‐F531,
1998.
|
79. |
Fritzsch G,
Haase W,
Rumrich G,
Fasold H,
Ullrich KJ.
A stopped flow capillary perfusion method to evaluate contraluminal transport parameters of methylsuccinate from interstitium into renal proximal tubular cells.
Pflugers Arch
400:
250‐256,
1984.
|
80. |
Fromter E.
Electrophysiological analysis of rat renal sugar and amino acid transport. I. Basic phenomena.
Pflugers Arch
393:
179‐189,
1982.
|
81. |
Fromter E.
The electrophysiological analysis of tubular transport.
Kidney Int
30:
216‐228,
1986.
|
82. |
Fromter E,
Gessner K.
Active transport potentials, membrane diffusion potentials and streaming potentials across rat kidney proximal tubule.
Pflugers Arch
351:
85‐98,
1974.
|
83. |
Fromter E,
Gessner K.
Free‐flow potential profile along rat kidney proximal tubule.
J Am Soc Nephrol
12:
2197‐2206,
2001.
|
84. |
Fromter E,
Muller CW,
Wick T.
Permeability properties of proximal tubular epithelium of the rat kidney studied with electrophysiological methods. In:
Giebisch G, editor.
Electrophysiology of Epithelial Cells.
Stuttgart:
Schartauer,
1971,
pp. 119‐146.
|
85. |
Ganote CE,
Grantham JJ,
Moses HL,
Burg MB,
Orloff J.
Ultrastructural studies of vasopressin effect on isolated perfused renal collecting tubules of the rabbit.
J Cell Biol
36:
355‐367,
1968.
|
86. |
Garcia NH,
Plato CF,
Garvin JL.
Fluorescent determination of chloride in nanoliter samples.
Kidney Int
55:
321‐325,
1999.
|
87. |
Garcia NH,
Plato CF,
Stoos BA,
Garvin JL.
Nitric oxide‐induced inhibition of transport by thick ascending limbs from Dahl salt‐sensitive rats.
Hypertension
34:
508‐513,
1999.
|
88. |
Garty H,
Palmer LG.
Epithelial sodium channels: function, structure, and regulation. [Review] [451 refs].
Physiological Reviews
77:
359‐396,
1997.
|
89. |
Garvin JL.
A simple method to determine millimolar concentrations of sodium in nanoliter samples.
Kidney Int
44:
875‐880,
1993.
|
90. |
Garvin JL.
Glucose absorption by isolated perfused rat proximal straight tubules.
Am J Physiol
259:
F580‐F586,
1990.
|
91. |
Garvin JL,
Burg MB,
Knepper MA.
Ammonium replaces potassium in supporting sodium transport by the Na‐K‐ATPase of renal proximal straight tubules.
Am J Physiol
249:
F785‐F788,
1985.
|
92. |
Garvin JL,
Knepper MA.
Bicarbonate and ammonia transport in isolated perfused rat proximal straight tubules.
Am J Physiol
253:
F277‐F281,
1987.
|
93. |
Ge Y,
Ahn D,
Stricklett PK,
Hughes AK,
Yanagisawa M,
Verbalis JG,
Kohan DE.
Collecting duct‐specific knockout of endothelin‐1 alters vasopressin regulation of urine osmolality.
Am J Physiol Renal Physiol
288:
F912‐F920,
2005.
|
94. |
Ge Y,
Bagnall A,
Stricklett PK,
Strait K,
Webb DJ,
Kotelevtsev Y,
Kohan DE.
Collecting duct‐specific knockout of the endothelin B receptor causes hypertension and sodium retention.
Am J Physiol Renal Physiol
291:
F1274‐F1280,
2006.
|
95. |
Ge Y,
Bagnall A,
Stricklett PK,
Webb D,
Kotelevtsev Y,
Kohan DE.
Combined knockout of collecting duct endothelin A and B receptors causes hypertension and sodium retention.
Am J Physiol Renal Physiol
295:
F1635‐F1640,
2008.
|
96. |
Geibel J,
Volkl H,
Lang F.
A microelectrode for continuous recording of volume fluxes in isolated perfused tubule segments.
Pflugers Arch
400:
388‐392,
1984.
|
97. |
Geibel J,
Zweifach A,
White S,
Wang WH,
Giebisch G.
K+ channels of the mammalian collecting duct.
Ren Physiol Biochem
13:
59‐69,
1990.
|
98. |
Geller DS,
Farhi A,
Pinkerton N,
Fradley M,
Moritz M,
Spitzer A,
Meinke G,
Tsai FTF,
Sigler PB, and
Lifton RP.
Activating mineralocorticoid receptor mutation in hypertension exacerbated by pregnancy.
Science
289,
119‐123,
2000.
|
99. |
Geller DS,
Rodriguez‐Soriano J,
Vallo BA,
Schifter S,
Bayer M,
Chang SS,
Lifton RP.
Mutations in the mineralocorticoid receptor gene cause autosomal dominant pseudohypoaldosteronism type I.
Nat Genet
19:
279‐281,
1998.
|
100. |
Gertz KH.
Transtubulare Natriumchloridfluesse und Permeabilitaet fuer Nichtelektrolyte im proximalen und distalen Konvolut der Rattenniere.
Pflugers Arch
276:
336‐356,
1963.
|
101. |
Gertz KH,
Ullrich KJ.
Methode zur Analyse des Stofftransportes am einzelnen Tubulus der intakten Rattenniere.
Pflugers Arch
274:
61‐62,
1961.
|
102. |
Geyti CS,
Odgaard E,
Overgaard MT,
Jensen ME,
Leipziger J,
Praetorius HA.
Slow spontaneous [Ca2+] i oscillations reflect nucleotide release from renal epithelia 2.
Pflugers Arch
455:
1105‐1117,
2008.
|
103. |
Giebisch G,
Hunter M,
Kawahara K.
Apical potassium channels in Amphiuma diluting segment: Effect of barium.
J Physiol (Lond)
420:
313‐323,
1990.
|
104. |
Gogelein H.
Chloride channels in epithelia.
Biochim Biophys Acta
947:
521‐547,
1988.
|
105. |
Gogelein H.
Ion channels in mammalian proximal renal tubules.
Ren Physiol Biochem
13:
8‐25,
1990.
|
106. |
Gogelein H,
Greger R.
Single channel recordings from basolateral and apical membranes of renal proximal tubules.
Pflugers Arch
401:
424‐426,
1984.
|
107. |
Gogelein H,
Greger R.
Na+ selective channels in the apical membrane of rabbit late proximal tubules (pars recta).
Pflugers Arch
406:
198‐203,
1986.
|
108. |
Gogelein H,
Greger R.
Properties of single channels in the basolateral membrane of rabbit proximal straight tubules.
Pflugers Arch
410:
288‐295,
1987.
|
109. |
Good DW,
Vurek GG.
Picomole quantitation of ammonia by flow‐through fluorometry.
Anal Biochem
130:
199‐202,
1983.
|
110. |
Good DW,
Wright FS.
Luminal influences on potassium secretion: Transepithelial voltage.
Am J Physiol
239:
F289‐F298,
1980.
|
111. |
Gottschalk CW.
A history of renal physiology to 1950. In:
Seldin DW,
Giebisch G, editors.
The Kidney. Physiology and Pathophysiology.
New York:
Raven,
1992,
pp. 1‐29.
|
112. |
Gottschalk CW,
Morel F,
Mylle M.
Tracer microinjection studies of renal tubular permeability.
Am J Physiol
209:
173‐178,
1965.
|
113. |
Gottschalk CW,
Mylle M.
Micropuncture study of the mammalian urinary concentrating mechanism: Evidence for the countercurrent hypothesis.
Am J Physiol
196:
927‐936,
1959.
|
114. |
Grantham JJ.
Mode of water transport in mammalian renal collecting tubules.
Fed Proc
30:
14‐21,
1971.
|
115. |
Grantham JJ,
Burg MB.
Effect of vasopressin and cyclic AMP on permeability of isolated collecting tubules 6.
Am J Physiol
211:
255‐259,
1966.
|
116. |
Grantham JJ,
Ganote CE,
Burg MB,
Orloff J.
Paths of transtubular water flow in isolated renal collecting tubules.
J Cell Biol
41:
562‐576,
1969.
|
117. |
Grantham JJ,
Kurg MB,
Obloff J.
The nature of transtubular Na and K transport in isolated rabbit renal collecting tubules.
J Clin Invest
49:
1815‐1826,
1970.
|
118. |
Gray DA,
Frindt G,
Palmer LG.
Quantification of K+ secretion through apical low‐conductance K channels in the CCD.
Am J Physiol Renal Physiol
289:
F117‐F126,
2005.
|
119. |
Gray DA,
Frindt G,
Zhang YY,
Palmer LG.
Basolateral K+ conductance in principal cells of rat CCD.
Am J Physiol Renal Physiol
288:
F493‐F504,
2005.
|
120. |
Greger R,
Bleich M,
Schlatter E.
Ion channels in the thick ascending limb of Henle's loop.
Ren Physiol Biochem
13:
37‐50,
1990.
|
121. |
Greger R,
Schlatter E.
Presence of luminal K+, a prerequisite for active NaCl transport in the cortical thick ascending limb of Henle's loop of rabbit kidney.
Pflugers Arch
392:
92‐94,
1981.
|
122. |
Gross V,
Luft FC.
Adapting renal and cardiovascular physiology to the genetically hypertensive mouse.
Semin Nephrol
22:
172‐179,
2002.
|
123. |
Grunder S,
Firsov D,
Chang SS,
Jaeger NF,
Gautschi I,
Schild L,
Lifton RP,
Rossier BC.
A mutation causing pseudohypoaldosteronism type 1 identifies a conserved glycine that is involved in the gating of the epithelial sodium channel.
EMBO J
16:
899‐907,
1997.
|
124. |
Gu RM,
Yang L,
Zhang Y,
Wang L,
Kong S,
Zhang C,
Zhai Y,
Wang M,
Wu P,
Liu L,
Gu F,
Zhang J,
Wang WH.
CYP‐omega‐hydroxylation‐dependent metabolites of arachidonic acid inhibit the basolateral 10 pS chloride channel in the rat thick ascending limb.
Kidney Int
76:
849‐856,
2009.
|
125. |
Guggino WB,
London R,
Boulpaep EL,
Giebisch G.
Chloride transport across the basolateral cell membrane of the Necturus proximal tubule: Dependence on bicarbonate and sodium.
J Membr Biol
71:
227‐240,
1983.
|
126. |
Guinamard R,
Chraibi A,
Teulon J.
A small‐conductance Cl‐ channel in the mouse thick ascending limb that is activated by ATP and protein kinase A.
J Physiol
485(Pt 1):
97‐112,
1995.
|
127. |
Guzman RJ,
Lemarchand P,
Crystal RG,
Epstein SE,
Finkel T.
Efficient gene transfer into myocardium by direct injection of adenovirus vectors.
Circ Res
73:
1202‐1207,
1993.
|
128. |
Gyory AZ.
Reexamination of the split oil droplet methodas applied to kidney tubules.
Pflugers Arch
324:
328‐343,
1975.
|
129. |
Hamill OP,
Marty A,
Neher E,
Sakmann B,
Sigworth FJ.
Improved patch‐clamp techniques for high‐resolution current recording from cells and cell‐free membrane patches.
Pflugers Arch
391:
85‐100,
1981.
|
130. |
Hansson JH,
Nelson‐Williams C,
Suzuki H,
Schild L,
Shimkets R,
Lu Y,
Canessa C,
Iwasaki T,
Rossier B,
Lifton RP.
Hypertension caused by a truncated epithelial sodium channel gamma subunit: Genetic heterogeneity of Liddle syndrome.
Nat Genet
11:
76‐82,
1995.
|
131. |
Hawk CT,
Li L,
Schafer JA.
AVP and aldosterone at physiological concentrations have synergistic effects on Na+ transport in rat CCD.
Kidney Int Suppl
57:
S35‐S41,
1996.
|
132. |
Helman SI,
Grantham JJ,
Burg MB.
Effect of vasopressin on electrical resistance of renal cortical collecting tubules.
Am J Physiol
220:
1825‐1832,
1971.
|
133. |
Helman SI,
Koeppen BM,
Beyenbach KW,
Baxendale LM.
Patch clamp studies of apical membranes of renal cortical collecting ducts.
Pflugers Arch
405(Suppl 1):
S71‐S76,
1985.
|
134. |
Herget S,
Lohse MJ,
Nikolaev VO.
Real‐time monitoring of phosphodiesterase inhibition in intact cells.
Cell Signal
20:
1423‐1431,
2008.
|
135. |
Herrera M,
Hong NJ,
Ortiz PA,
Garvin JL.
Endothelin‐1 inhibits thick ascending limb transport via Akt‐stimulated nitric oxide production.
J Biol Chem
284:
1454‐1460,
2009.
|
136. |
Hirsch J,
Leipziger J,
Frobe U,
Schlatter E.
Regulation and possible physiological role of the Ca(2+)‐dependent K+ channel of cortical collecting ducts of the rat.
Pflugers Arch
422:
492‐498,
1993.
|
137. |
Hirsch J,
Schlatter E.
K+ channels in the basolateral membrane of rat cortical collecting duct.
Pflugers Arch
424:
470‐477,
1993.
|
138. |
Hirsch J,
Schlatter E.
K+ channels in the basolateral membrane of rat cortical collecting duct are regulated by a cGMP‐dependent protein kinase.
Pflugers Arch
429:
338‐344,
1995.
|
139. |
Ho K,
Nichols CG,
Lederer WJ,
Lytton J,
Vassilev PM,
Kanazirska MV,
Hebert SC.
Cloning and expression of an inwardly rectifying ATP‐regulated potassium channel.
Nature
362:
31‐38,
1993.
|
140. |
Hoenderop JG,
van Leeuwen JP,
van der Eerden BC,
Kersten FF,
van der Kemp AW,
Merillat AM,
Waarsing JH,
Rossier BC,
Vallon V,
Hummler E,
Bindels RJ.
Renal Ca2+ wasting, hyperabsorption, and reduced bone thickness in mice lacking TRPV5.
J Clin Invest
112:
1906‐1914,
2003.
|
141. |
Hong NJ,
Garvin JL.
Flow increases superoxide production by NADPH oxidase via activation of Na‐K‐2Cl cotransport and mechanical stress in thick ascending limbs.
Am J Physiol Renal Physiol
292:
F993‐F998,
2007.
|
142. |
Hong NJ,
Silva GB,
Garvin JL.
PKC‐alpha mediates flow‐stimulated superoxide production in thick ascending limbs.
Am J Physiol Renal Physiol
298:
F885‐F891,
2010.
|
143. |
Hou J,
Renigunta A,
Gomes AS,
Hou M,
Paul DL,
Waldegger S,
Goodenough DA.
Claudin‐16 and claudin‐19 interaction is required for their assembly into tight junctions and for renal reabsorption of magnesium.
Proc Natl Acad Sci U S A
106:
15350‐15355,
2009.
|
144. |
Hou J,
Shan Q,
Wang T,
Gomes AS,
Yan Q,
Paul DL,
Bleich M,
Goodenough DA.
Transgenic RNAi depletion of claudin‐16 and the renal handling of magnesium.
J Biol Chem
282:
17114‐17122,
2007.
|
145. |
Huang DY,
Osswald H,
Vallon V.
Intratubular application of sodium azide inhibits loop of Henle reabsorption and tubuloglomerular feedback response in anesthetized rats.
Naunyn Schmiedebergs Arch Pharmacol
358:
367‐373,
1998.
|
146. |
Huang DY,
Osswald H,
Vallon V.
Eukaliuric diuresis and natriuresis in response to the KATP channel blocker U37883A: Micropuncture studies on the tubular site of action.
Br J Pharmacol
127:
1811‐1818,
1999.
|
147. |
Huang DY,
Osswald H,
Vallon V.
Sodium reabsorption in thick ascending limb of Henle's loop: Effect of potassium channel blockade in vivo.
Br J Pharmacol
130:
1255‐1262,
2000.
|
148. |
Huang DY,
Wulff P,
Volkl H,
Loffing J,
Richter K,
Kuhl D,
Lang F,
Vallon V.
Impaired regulation of renal K+ elimination in the sgk1‐knockout mouse.
J Am Soc Nephrol
15:
885‐891,
2004.
|
149. |
Hummler E.
Implication of ENaC in salt‐sensitive hypertension.
J Steroid Biochem Mol Biol
69:
385‐390,
1999.
|
150. |
Hummler E,
Horisberger JD.
Genetic disorders of membrane transport. V. The epithelial sodium channel and its implication in human diseases.
Am J Physiol
276:
G567‐G571,
1999.
|
151. |
Hunter M,
Kawahara K,
Giebisch G.
Potassium channels along the nephron.
Fed Proc
45:
2723‐2726,
1986.
|
152. |
Hunter M,
Kawahara K,
Giebisch G.
Calcium‐activated epithelial potassium channels.
Miner Electrolyte Metab
14:
48‐57,
1988.
|
153. |
Hunter M,
Lopes AG,
Boulpaep EL,
Cohen B,
Giebisch G.
Single channel recordings of calcium‐activated Potassium channels in the apical membrane of rabbit cortical collecting tubules.
Proc Natl Acad Sci U S A
81:
4237‐4239,
1984.
|
154. |
Hunter M,
Lopes AG,
Boulpaep EL,
Giebisch GH.
Regulation of single potassium ion channels from apical membrane of rabbit collecting tubule.
Am J Physiol
251:
725‐733,
1986.
|
155. |
Hurst AM,
Beck JS,
Laprade R,
Lapointe J‐Y.
Na+ pump inhibition downregulates an ATP‐sensitive K+ channel in rabbit proximal convoluted tubule.
Am J Physiol
264:
F760‐F764,
1993.
|
156. |
Hurst AM,
Duplain M,
Lapointe J‐Y.
Basolateral membrane potassium channels in rabbit cortical thick ascending limb.
Am J Physiol
263:
F262‐F267,
1992.
|
157. |
Hurst AM,
Lapointe J‐Y,
Laamarti A,
Bell PD.
Basic properties and potential regulators of the apical K+ channel in macula densa cells.
J Gen Physiol
103:
1055‐1070,
1994.
|
158. |
Imai M,
Kokko JP.
Sodium chloride, urea, and water transport in the thin ascending limb of Henle. Generation of osmotic gradients by passive diffusion of solutes.
J Clin Invest
53:
393‐402,
1974.
|
159. |
Ito K,
Chen J,
Khodadadian JJ,
Vaughan ED Jr.,
Lipkowitz M,
Poppas DP,
Felsen D.
Adeno‐associated viral vector transduction of green fluorescent protein in kidney: Effect of unilateral ureteric obstruction.
BJU Int
101:
376‐381,
2008.
|
160. |
Jamison RL.
Micropuncture study of superficial and juxtamedullary nephrons in the rat.
Am J Physiol
218:
46‐55,
1970.
|
161. |
Jensen ME,
Odgaard E,
Christensen MH,
Praetorius HA,
Leipziger J.
Flow‐induced [Ca2+]i increase depends on nucleotide release and subsequent purinergic signaling in the intact nephron.
J Am Soc Nephrol
18:
2062‐2070,
2007.
|
162. |
Karlmark B,
Jaeger P,
Fein H,
Giebisch G.
Coulometric acid‐base titration in nanoliter samples with glass and antimony electrodes.
Am J Physiol
242:
F95‐F99,
1982.
|
163. |
Kawahara K,
Hunter M,
Giebisch G.
Potassium channels in necturus proximal tubule.
Am J Physiol
253:
F488‐F494,
1987.
|
164. |
Kellenberger S,
Schild L.
Epithelial sodium channel/degenerin family of ion channels: A variety of functions for a shared structure.
Physiol Rev
82:
735‐767,
2002.
|
165. |
Kibble JD,
Audsley N,
Day JP,
Green R.
A new protocol for the measurement of picomole quantities of magnesium in rat renal tubular fluid.
Exp Physiol
83:
11‐22,
1998.
|
166. |
Koeppen BM.
Electrophysiology of ion transport in renal tubule epithelia.
Seminars in Nephrology
7:
37‐47,
1987.
|
167. |
Koeppen BM,
Beyenbach KW,
Helman SI.
Single‐channel current in renal tubules.
Am J Physiol
247:
F380‐F384,
1984.
|
168. |
Kohan DE.
Endothelins in the normal and diseased kidney.
Am J Kidney Dis
29:
2‐26,
1997.
|
169. |
Kohan DE.
Biology of endothelin receptors in the collecting duct.
Kidney Int
76:
481‐486,
2009.
|
170. |
Kohan DE.
Endothelin, hypertension and chronic kidney disease: New insights.
Curr Opin Nephrol Hypertens
19:
134‐139,
2010.
|
171. |
Kokko JP.
Proximal tubule potential difference. Dependence on glucose on glucose, HCO 3, and amino acids.
J Clin Invest
52:
1362‐1367,
1973.
|
172. |
Kokko JP,
Rector FC.
Flow dependence of transtubular potential difference in isolated perfused segments of rabbit proximal convoluted tubule.
J Clin Invest
50:
2745‐2750,
1971.
|
173. |
Kone BC,
Wenzhang Z,
Zhiyuan Y.
New mechanisms for transcriptional repression of ENaC And iNOS.
Trans Am Clin Climatol Assoc
118:
45‐56,
2007.
|
174. |
Kovacs G,
Peti‐Peterdi J,
Rosivall L,
Bell PD.
Angiotensin II directly stimulates macula densa Na‐2Cl‐K cotransport via apical AT(1) receptors.
Am J Physiol Renal Physiol
282:
F301‐F306,
2002.
|
175. |
Krapf R,
Berry CA,
Verkman AS.
Estimation of intracellular chloride activity in isolated perfused rabbit proximal convoluted tubules using a fluorescent indicator.
Biophys J
53:
955‐962,
1988.
|
176. |
Kunkel MT,
Ni Q,
Tsien RY,
Zhang J,
Newton AC.
Spatio‐temporal dynamics of protein kinase B/Akt signaling revealed by a genetically encoded fluorescent reporter.
J Biol Chem
280:
5581‐5587,
2005.
|
177. |
Kuntziger H,
Antonetti A,
Couette S,
Coureau C,
Amiel C.
Ultramicro (nanoliter range) determination of calcium concentration (10‐3 M) by atomic absorption.
Anal Biochem
60:
449‐454,
1974.
|
178. |
Lachheb S,
Cluzeaud F,
Bens M,
Genete M,
Hibino H,
Lourdel S,
Kurachi Y,
Vandewalle A,
Teulon J,
Paulais M.
Kir4.1/Kir5.1 channel forms the major K+ channel in the basolateral membrane of mouse renal collecting duct principal cells.
Am J Physiol Renal Physiol
294:
F1398‐F1407,
2008.
|
179. |
Lameire NH,
Lifschitz MD,
Stein JH.
Heterogeneity of nephron function.
Annu Rev Physiol
39:
159‐184,
1977.
|
180. |
Lechene C,
Morel F.
Microinjections of tagged sodium and insulin into the renal capillaries of the hamster. I. Permeability of cortical tubular segments to sodium.
Nephron
2:
207‐218,
1965.
|
181. |
Leviel F,
Hubner CA,
Houillier P,
Morla L,
El MS,
Brideau G,
Hatim H,
Parker MD,
Kurth I,
Kougioumtzes A,
Sinning A,
Pech V,
Riemondy KA,
Miller RL,
Hummler E,
Shull GE,
Aronson PS,
Doucet A,
Wall SM,
Chambrey R,
Eladari D.
The Na+‐dependent chloride‐bicarbonate exchanger SLC4A8 mediates an electroneutral Na+ reabsorption process in the renal cortical collecting ducts of mice.
J Clin Invest
120:
1627‐1635,
2010.
|
182. |
Leyssac PP,
Baumbach L.
An oscillating intratubular pressure response to alterations in Henle loop flow in the rat kidney.
Acta Physiol Scand
117:
415‐419,
1983.
|
183. |
Li D,
Wang Z,
Sun P,
Jin Y,
Lin DH,
Hebert SC,
Giebisch G,
Wang WH.
Inhibition of MAPK stimulates the Ca2+‐dependent big‐conductance K channels in cortical collecting duct.
Proc Natl Acad Sci U S A
103:
19569‐19574,
2006.
|
184. |
Lifton RP.
Genetic determinants of human hypertension. [Review] [56 refs].
Proc Natl Acad Sci U S A
92:
8545‐8551,
1995.
|
185. |
Lifton RP,
Gharavi AG,
Geller DS.
Molecular mechanisms of human hypertension.
Cell
104:
545‐556,
2001.
|
186. |
Lin DH,
Sterling H,
Wang WH.
The protein tyrosine kinase‐dependent pathway mediates the effect of K intake on renal K secretion.
Physiology (Bethesda)
20:
140‐146,
2005.
|
187. |
Lingueglia E,
Voilley N,
Waldmann R,
Lazdunski M,
Barbry P.
Expression cloning of an epithelial amiloride‐sensitive Na+ channel. A new channel type with homologies to Caenorhabditis elegans degenerins.
FEBS Lett
318:
95‐99,
1993.
|
188. |
Lissandron V,
Terrin A,
Collini M,
D'alfonso L,
Chirico G,
Pantano S,
Zaccolo M.
Improvement of a FRET‐based indicator for cAMP by linker design and stabilization of donor‐acceptor interaction.
J Mol Biol
354:
546‐555,
2005.
|
189. |
Liu R,
Carretero OA,
Ren Y,
Garvin JL.
Increased intracellular pH at the macula densa activates nNOS during tubuloglomerular feedback.
Kidney Int
67:
1837‐1843,
2005.
|
190. |
Liu W,
Morimoto T,
Woda C,
Kleyman TR,
Satlin LM.
Ca2+ dependence of flow‐stimulated K secretion in the mammalian cortical collecting duct.
Am J Physiol Renal Physiol
293:
F227‐F235,
2007.
|
191. |
Liu W,
Wei Y,
Sun P,
Wang WH,
Kleyman TR,
Satlin LM.
Mechanoregulation of BK channel activity in the mammalian cortical collecting duct: Role of protein kinases A and C.
Am J Physiol Renal Physiol
297:
F904‐F915,
2009.
|
192. |
Loffing J,
Vallon V,
Loffing‐Cueni D,
Aregger F,
Richter K,
Pietri L,
Bloch‐Faure M,
Hoenderop JG,
Shull GE,
Meneton P,
Kaissling B.
Altered renal distal tubule structure and renal Na(+) and Ca(2+) handling in a mouse model for Gitelman's syndrome.
J Am Soc Nephrol
15:
2276‐2288,
2004.
|
193. |
Lohse MJ,
Bunemann M,
Hoffmann C,
Vilardaga JP,
Nikolaev VO.
Monitoring receptor signaling by intramolecular FRET.
Curr Opin Pharmacol
7:
547‐553,
2007.
|
194. |
Lorenz JN.
Considerations for the evaluation of renal function in genetically engineered mice.
Curr Opin Nephrol Hypertens
10:
65‐69,
2001.
|
195. |
Lorenz JN.
A practical guide to evaluating cardiovascular, renal, and pulmonary function in mice.
Am J Physiol Regul Integr Comp Physiol
282:
R1565‐R1582,
2002.
|
196. |
Lorenz JN,
Baird NR,
Judd LM,
Noonan WT,
Andringa A,
Doetschman T,
Manning PA,
Liu LH,
Miller ML,
Shull GE.
Impaired renal NaCl absorption in mice lacking the ROMK potassium channel, a model for type II Bartter's syndrome.
J Biol Chem
277:
37871‐37880,
2002.
|
197. |
Lorenz JN,
Gruenstein E.
A simple, nonradioactive method for evaluating single‐nephron filtration rate using FITC‐inulin.
Am J Physiol
276:
F172‐F177,
1999.
|
198. |
Lourdel S,
Paulais M,
Marvao P,
Nissant A,
Teulon J.
A chloride channel at the basolateral membrane of the distal‐convoluted tubule: A candidate ClC‐K channel.
J Gen Physiol
121:
287‐300,
2003.
|
199. |
Lowitz KH,
Stumpe KO,
Ochwadt B.
Micropuncturestudy of the action of angiotensin II on tubular sodium and water reabsorption in the rat.
Nephron
6:
173‐187,
1969.
|
200. |
Lu M,
Macgregor GG,
Wang W,
Giebisch G.
Extracellular ATP inhibits the small‐conductance K channel on the apical membrane of the cortical collecting duct from mouse kidney.
J Gen Physiol
116:
299‐310,
2000.
|
201. |
Lu M,
Wang T,
Yan Q,
Wang W,
Giebisch G,
Hebert SC.
ROMK is required for expression of the 70‐pS K channel in the thick ascending limb.
Am J Physiol Renal Physiol
286:
F490‐F495,
2004.
|
202. |
Lu M,
Wang T,
Yan Q,
Yang X,
Dong K,
Knepper MA,
Wang W,
Giebisch G,
Shull GE,
Hebert SC.
Absence of small conductance K+ channel (SK) activity in apical membranes of thick ascending limb and cortical collecting duct in ROMK (Bartter's) knockout mice.
J Biol Chem
277:
37881‐37887,
2002.
|
203. |
Lu M,
Wang W.
Two types of K(+) channels are present in the apical membrane of the thick ascending limb of the mouse kidney.
Kidney Blood Press Res
23:
75‐82,
2000.
|
204. |
Ludwig C.
De viribus physicis secretionem urinae adjuvantibus. Thesis, Marburg: N.G. Elwert,
1842.
|
205. |
Ludwig CFW.
Beitraege zur Lehre vom Mechanismus der Harnsekretion.
Marburg:
N.G. Elwert,
1843.
|
206. |
Malnic G.
Combined in vivo and in vitro approaches to analysis of renal tubule function.
Exp Nephrol
6:
454‐461,
1998.
|
207. |
Malnic G,
Vieira FL.
The antimony microelectrode in kidney micropuncture.
Yale J Biol Med
45:
356‐367,
1972.
|
208. |
Marsh D,
Frasier C,
Decter J.
Measurement of urea concentrations in nanoliter specimens of renal tubular fluid and capillary blood.
Anal Biochem
11:
73‐80,
1965.
|
209. |
Meneton P,
Ichikawa I,
Inagami T,
Schnermann J.
Renal physiology of the mouse.
Am J Physiol Renal Physiol
278:
F339‐F351,
2000.
|
210. |
Mick VE,
Itani OA,
Loftus RW,
Husted RF,
Schmidt TJ,
Thomas CP.
The alpha‐subunit of the epithelial sodium channel is an aldosterone‐induced transcript in mammalian collecting ducts, and this transcriptional response is mediated via distinct cis‐elements in the 5’‐flanking region of the gene.
Mol Endocrinol
15:
575‐588,
2001.
|
211. |
Misler S,
Gillis K,
Tabcharani J.
Modulation of gating of a metabolically regulated, ATP‐dependent K+ channel by intracellular pH in B cells of the pancreatic islet.
J Membr Biol
109:
135‐143,
1989.
|
212. |
Molitoris BA,
Dagher PC,
Sandoval RM,
Campos SB,
Ashush H,
Fridman E,
Brafman A,
Faerman A,
Atkinson SJ,
Thompson JD,
Kalinski H,
Skaliter R,
Erlich S,
Feinstein E.
siRNA targeted to p53 attenuates ischemic and cisplatin‐induced acute kidney injury.
J Am Soc Nephrol
20:
1754‐1764,
2009.
|
213. |
Morel F,
Mylle M,
Gottschalk CW.
Tracer microinjection studies of effect of adh on renal tubular diffusion of water.
Am J Physiol
209:
179‐187,
1965.
|
214. |
Morel F,
Roinel N,
Le GC.
Electron probe analysis of tubular fluid composition.
Nephron
6:
350‐364,
1969.
|
215. |
Moullier P,
Friedlander G,
Calise D,
Ronco P,
Perricaudet M,
Ferry N.
Adenoviral‐mediated gene transfer to renal tubular cells in vivo.
Kidney Int
45:
1220‐1225,
1994.
|
216. |
Muto S.
Potassium transport in the mammalian collecting duct.
Physiol Rev
81:
85‐116,
2001.
|
217. |
Muto S,
Asano Y,
Wang W,
Seldin D,
Giebisch G.
Activity of the basolateral K+ channels is coupled to the Na+‐K+‐ATPase in the cortical collecting duct.
Am J Physiol Renal Physiol
285:
F945‐F954,
2003.
|
218. |
Nagami GT,
Kurokawa K.
Regulation of ammonia production by mouse proximal tubules perfused in vitro. Effect of luminal perfusion.
J Clin Invest
75:
844‐849,
1985.
|
219. |
Nakajima K,
Clapp JR,
Robinson RR.
Limitationsof the shrinking‐drop micropuncture technique.
Am J Physiol
219:
345‐357,
1970.
|
220. |
Nakayama I,
Kawahara Y,
Tsuda T,
Koide M,
Yokoyama M.
Cyclic AMP elevating agents synergize with inflammatory cytokines to induce an inducible type of nitric oxide synthase in cultured vascular smooth muscle cells.
Ann NY Acad Sci U S A
748:
586‐589,
1995.
|
221. |
Naray‐Fejes‐Toth A,
Canessa C,
Cleaveland ES,
Aldrich G,
Fejes‐Toth G.
sgk is an aldosterone‐induced kinase in the renal collecting duct.
J Biol Chem
274:
16973‐16978,
1999.
|
222. |
Neher E,
Sakmann B.
Single‐channel currents recorded from membrane of denervated frog muscle fibers.
Nature
260(5554):
799‐802,
1976.
|
223. |
Nijenhuis T,
Vallon V,
van der Kemp AW,
Loffing J,
Hoenderop JG,
Bindels RJ.
Enhanced passive Ca2+ reabsorption and reduced Mg2+ channel abundance explains thiazide‐induced hypocalciuria and hypomagnesemia.
J Clin Invest
115:
1651‐1658,
2005.
|
224. |
Nikolaev VO,
Gambaryan S,
Lohse MJ.
Fluorescent sensors for rapid monitoring of intracellular cGMP.
Nat Methods
3:
23‐25,
2006.
|
225. |
Nissant A,
Paulais M,
Lachheb S,
Lourdel S,
Teulon J.
Similar chloride channels in the connecting tubule and cortical collecting duct of the mouse kidney.
Am J Physiol Renal Physiol
290:
F1421‐F1429,
2006.
|
226. |
Noonan WT,
Lorenz JN.
Clearance studies in genetically altered mice.
Methods Mol Med
86:
315‐327,
2003.
|
227. |
O'Neil RG,
Boulpaep EL.
Ionic conductives properties and electrophysiology of the rabbit cortical collecting tubule.
Am J Physiol
243:
81‐95,
1982.
|
228. |
O'Neil RG,
Hayhurst AR.
Functional differentiation of cell types of cortical collecting duct.
Am J Physiol
248:
449‐453,
1985.
|
229. |
Ortiz PA,
Garvin JL.
Interaction of O(2)[‐] and NO in the thick ascending limb.
Hypertension
39:
591‐596,
2002.
|
230. |
Ortiz PA,
Hong NJ,
Garvin JL.
NO decreases thick ascending limb chloride absorption by reducing Na(+)‐K(+)‐2Cl[‐] cotransporter activity.
Am J Physiol Renal Physiol
281:
F819‐F825,
2001.
|
231. |
Ortiz PA,
Hong NJ,
Garvin JL.
Luminal flow induces eNOS activation and translocation in the rat thick ascending limb.
Am J Physiol Renal Physiol
287:
F274‐F280,
2004a.
|
232. |
Ortiz PA,
Hong NJ,
Garvin JL.
Luminal flow induces eNOS activation and translocation in the rat thick ascending limb. II. Role of PI3‐kinase and Hsp90.
Am J Physiol Renal Physiol
287:
F281‐F288,
2004b.
|
233. |
Ortiz PA,
Hong NJ,
Plato CF,
Varela M,
Garvin JL.
An in vivo method for adenovirus‐mediated transduction of thick ascending limbs.
Kidney Int
63:
1141‐1149,
2003.
|
234. |
Ortiz PA,
Hong NJ,
Wang D,
Garvin JL.
Gene transfer of eNOS to the thick ascending limb of eNOS‐KO mice restores the effects of L‐arginine on NaCl absorption.
Hypertension
42:
674‐679,
2003.
|
235. |
Pácha J,
Frindt G,
Antonian L,
Silver RB,
Palmer LG.
Regulation of Na channels of the rat cortical collecting tubule by aldosterone.
J Gen Physiol
102:
25‐42,
1993.
|
236. |
Pácha J,
Frindt G,
Sackin H,
Palmer LG.
Apical maxi K channels in intercalated cells of CCT.
Am J Physiol
261:
F696‐F705,
1991.
|
237. |
Palmer LG,
Choe H,
Frindt G.
Is the secretory K channel in the rat CCT ROMK?
Am J Physiol
273:
F404‐F410,
1997.
|
238. |
Palmer LG,
Frindt G.
Amiloride‐sensitive Na channels from the apical membrane of the rat cortical collecting tubule.
Proc Natl Acad Sci U S A
83:
2767‐2770,
1986.
|
239. |
Palmer LG,
Frindt G.
Effects of cell Ca and pH on Na channels from rat cortical collecting tubule.
Am J Physiol
253:
333‐339,
1987.
|
240. |
Palmer LG,
Frindt G.
Gating of Na channels in the rat cortical collecting tubule: Effects of voltage and membrane stretch.
J Gen Physiol
107:
35‐45,
1996.
|
241. |
Palmer LG,
Frindt G.
Regulation of apical K channels in rat cortical collecting tubule during changes in dietary K intake.
Am J Physiol
277:
F805‐F812,
1999.
|
242. |
Palmer LG,
Frindt G.
Aldosterone and potassium secretion by the cortical collecting duct.
Kidney Int
57:
1324‐1328,
2000.
|
243. |
Palmer LG,
Frindt G.
Cl‐ channels of the distal nephron.
Am J Physiol Renal Physiol
291:
F1157‐F1168,
2006.
|
244. |
Palmer LG,
Frindt G.
High‐conductance K channels in intercalated cells of the rat distal nephron.
Am J Physiol Renal Physiol
292:
F966‐F973,
2007.
|
245. |
Panico C,
Luo Z,
Damiano S,
Artigiano F,
Gill P,
Welch WJ.
Renal proximal tubular reabsorption is reduced in adult spontaneously hypertensive rats: Roles of superoxide and Na+/H +exchanger 3.
Hypertension
54:
1291‐1297,
2009.
|
246. |
Parent L,
Cardinal J,
Sauve R.
Single‐channel analysis of a K channel at basolateral membrane of rabbit proximal convoluted tubule.
Am J Physiol
254:
F105‐F113,
1988.
|
247. |
Paulais M,
Teulon J.
cAMP‐activated chloride channel in the basolateral membrane of the thick ascending limb of the mouse kidney.
J Membr Biol
113:
253‐260,
1990.
|
248. |
Pech V,
Zheng W,
Pham TD,
Verlander JW,
Wall SM.
Angiotensin II activates H+‐ATPase in type A intercalated cells.
J Am Soc Nephrol
19:
84‐91,
2008.
|
249. |
Peti‐Peterdi J.
Multiphoton imaging of renal tissues in vitro.
Am J Physiol Renal Physiol
288:
F1079‐F1083,
2005.
|
250. |
Peti‐Peterdi J,
Bebok Z,
Lapointe JY,
Bell PD.
Novel regulation of cell [Na(+)] in macula densa cells: Apical Na(+) recycling by H‐K‐ATPase.
Am J Physiol Renal Physiol
282:
F324‐F329,
2002.
|
251. |
Peti‐Peterdi J,
Morishima S,
Bell PD,
Okada Y.
Two‐photon excitation fluorescence imaging of the living juxtaglomerular apparatus.
Am J Physiol Renal Physiol
283:
F197‐F201,
2002.
|
252. |
Pluznick J,
Wei P,
Carmines P,
Sansom SC.
Renal fluid and electrolyte handling in BKCa‐beta1 ‐/‐ mice.
Am J Physiol
284:
F1274‐F1279,
2003.
|
253. |
Pochynyuk O,
Bugaj V,
Rieg T,
Insel PA,
Mironova E,
Vallon V,
Stockand JD.
Paracrine regulation of the epithelial Na+ channel in the mammalian collecting duct by purinergic P2Y2 receptor tone.
J Biol Chem
283:
36599‐36607,
2008.
|
254. |
Pochynyuk O,
Kucher V,
Boiko N,
Mironova E,
Staruschenko A,
Karpushev AV,
Tong Q,
Hendron E,
Stockand J.
Intrinsic voltage dependence of the epithelial Na+ channel is masked by a conserved transmembrane domain tryptophan.
J Biol Chem
284:
25512‐25521,
2009.
|
255. |
Pochynyuk O,
Rieg T,
Bugaj V,
Schroth J,
Fridman A,
Boss GR,
Insel PA,
Stockand JD,
Vallon V.
Dietary Na+ inhibits the open probability of the epithelial sodium channel in the kidney by enhancing apical P2Y2‐receptor tone.
FASEB J
24:
2056‐2065,
2010.
|
256. |
Preisig PA,
Ives HE,
Cragoe EJ Jr.,
Alpern RJ,
Rector FC Jr.
Role of the Na+/H+ antiporter in rat proximal tubule bicarbonate absorption.
J Clin Invest
80:
970‐978,
1987.
|
257. |
Qi Z,
Whitt I,
Mehta A,
Jin J,
Zhao M,
Harris RC,
Fogo AB,
Breyer MD.
Serial determination of glomerular filtration rate in conscious mice using FITC‐inulin clearance.
Am J Physiol Renal Physiol
286:
F590‐F596,
2004.
|
258. |
Ramsay MA,
Brown RHJ.
Simplified apparatus and procedure for freezing point determinations upon small volumes of fluid.
J Scient Instruments
32:
372,
1955.
|
259. |
Ramsey J,
Brown R,
Croghan P.
Electrometric titration of chloride in small volume.
J Exp Biol
32:
822‐829,
1955.
|
260. |
Rao S,
Verkman AS.
Analysis of organ physiology in transgenic mice.
Am J Physiol Cell Physiol
279:
C1‐C18,
2000.
|
261. |
Reif MC,
Troutman SL,
Schafer JA.
Sustained response to vasopressin in isolated rat cortical collecting tubule.
Kidney Int
26:
725‐732,
1984.
|
262. |
Reif MC,
Troutman SL,
Schafer JA.
Sodium transport by rat cortical collecting tubule.
J Clin Invest
77:
1291‐1298,
1986.
|
263. |
Richards AN,
Walker AM.
Methods of collecting fluid from known regions of the renal tubules of Amphibia and of perfusing the lumen of a single tubule.
Am J Physiol
118:
111‐120,
1936.
|
264. |
Rieg T,
Bundey RA,
Chen Y,
Deschenes G,
Junger W,
Insel PA,
Vallon V.
Mice lacking P2Y2 receptors have salt‐resistant hypertension and facilitated renal Na+ and water reabsorption.
FASEB J
21:
3717‐3726,
2007.
|
265. |
Rieg T,
Tang T,
Murray F,
Schroth J,
Insel PA,
Fenton RA,
Hammond HK,
Vallon V.
Adenylyl cyclase 6 determines cAMP formation and aquaporin 2 phosphorylation and trafficking in renal inner medullary collecting duct.
J Am Soc Nephrol
21:
2059‐2062,
2010.
|
266. |
Rieg T,
Vallon V.
ATP and adenosine in the local regulation of water transport and homeostasis by the kidney.
Am J Physiol Regul Integr Comp Physiol
296:
R419‐R427,
2009.
|
267. |
Rieg T,
Vallon V,
Sausbier M,
Sausbier U,
Kaissling B,
Ruth P,
Osswald H.
The role of the BK channel in potassium homeostasis and flow‐induced renal potassium excretion.
Kidney Int
72:
566‐573,
2007.
|
268. |
Roch‐Ramel F.
An enzymic and fluorophotometric method for estimating urea concentrations in nanoliter specimens.
Anal Biochem
21:
372‐381,
1967.
|
269. |
Roman RJ,
Bonventre JV,
Lechene CP.
Fluorometric assay for urea in urine, plasma, and tubular fluid.
Anal Biochem
98:
136‐141,
1979.
|
270. |
Rossier BC,
Pradervand S,
Schild L,
Hummler E.
Epithelial sodium channel and the control of sodium balance: Interaction between genetic and environmental factors.
Annu Rev Physiol
64:
877‐897,
2002.
|
271. |
Rubera I,
Loffing J,
Palmer LG,
Frindt G,
Fowler‐Jaeger N,
Sauter D,
Carroll T,
McMahon A,
Hummler E,
Rossier BC.
Collecting duct‐specific gene inactivation of alphaENaC in the mouse kidney does not impair sodium and potassium balance.
J Clin Invest
112:
554‐565,
2003.
|
272. |
Sackin H,
Boulpaep EL.
Isolated perfused salamander proximal tubule: Methods, electrophysiology, and transport.
Am J Physiol
241:
F39‐F52,
1981.
|
273. |
Sackin H,
Boulpaep EL.
Rheogenic transport in the renal proximal tubule.
J Gen Physiol
82:
819‐851,
1983.
|
274. |
Sansom SC,
La B‐Q,
Carosi SL.
Double‐barreled chloride channels of collecting duct basolateral membrane.
Am J Physiol
259:
F46‐F52,
1990.
|
275. |
Satlin LM,
Palmer LG.
Apical Na+ conductance in maturing rabbit principal cell.
Am J Physiol
270:
F391‐F397,
1996.
|
276. |
Schafer JA,
Andreoli TE.
Rheogenic and passive Na+ absorption by the proximal nephron.
Annu Rev Physiol
41:
211‐227,
1979.
|
277. |
Schafer JA,
Patlak CS,
Troutman SL,
Andreoli TE.
Volume absorption in the pars recta. II. Hydraulic conductivity coefficient.
Am J Physiol
234:
F340‐F348,
1978.
|
278. |
Schafer JA,
Troutman SL.
cAMP mediates the increase in apical membrane Na+ conductance produced in rat CCD by vasopressin.
Am J Physiol
259:
F823‐F831,
1990.
|
279. |
Schafer JA,
Troutman SL,
Andreoli TE.
Volume reabsorption, transepithelial potential differences, and ionic permeability properties in mammalian superficial proximal straight tubules.
J Gen Physiol
64:
582‐607,
1974.
|
280. |
Schafer JA,
Troutman SL,
Watkins ML,
Andreoli TE.
Volume absorption in the pars recta. I. “Simple” active Na+ transport.
Am J Physiol
234:
F332‐F339,
1978.
|
281. |
Schild L,
Canessa CM,
Shimkets RA,
Gautschi I,
Lifton RP,
Rossier BC.
A mutation in the epithelial sodium channel causing Liddle disease increases channel activity in the Xenopus laevis oocyte expression system.
Proc Natl Acad Sci U S A
92:
5699‐5703,
1995.
|
282. |
Schild L,
Lu Y,
Gautschi I,
Schneeberger E,
Lifton RP,
Rossier BC.
Identification of a PY motif in the epithelial Na channel subunits as a target sequence for mutations causing channel activation found in Liddle syndrome.
EMBO J
15:
2381‐2387,
1996.
|
283. |
Schlanger LE,
Kleyman TR,
Ling BN.
K+‐sparing diuretic actions of trimethoprim: Inhibition of Na+ channels in A6 distal nephron cells.
Kidney Int
45:
1070‐1076,
1994.
|
284. |
Schlatter E.
Regulation of ion channels in the cortical collecting duct.
Renal Physiol Biochem
16:
21‐36,
1993.
|
285. |
Schlatter E,
Bleich M,
Hirsch J,
Markstahler U,
Frobe U,
Greger R.
Cation specificity and pharmacological properties of the Ca(2+)‐dependent K+ channel of rat cortical collecting ducts.
Pflugers Arch
422:
481‐491,
1993.
|
286. |
Schlatter E,
Fröbe U,
Greger R.
Ion conductances of isolated cortical collecting duct cells.
Pflugers Arch
421:
381‐387,
1992.
|
287. |
Schlatter E,
Haxelmans S,
Hirsch J,
Leipziger J.
pH dependence of K+ conductances of rat cortical collecting duct principal cells.
Pflugers Arch
428:
631‐640,
1994.
|
288. |
Schlatter E,
Schafer JA.
Electrophysiological studies in principal cells of rat cortical collecting tubules. ADH increases the apical membrane Na+‐conductance.
Pflugers Arch
409:
81‐92,
1987.
|
289. |
Schneider MP,
Ge Y,
Pollock DM,
Pollock JS,
Kohan DE.
Collecting duct‐derived endothelin regulates arterial pressure and Na excretion via nitric oxide.
Hypertension
51:
1605‐1610,
2008.
|
290. |
Schultheis PJ,
Clarke LL,
Meneton P,
Miller ML,
Soleimani M,
Gawenis LR,
Riddle TM,
Duffy JJ,
Doetschman T,
Wang T,
Giebisch G,
Aronson PS,
Lorenz JN,
Shull GE.
Renal and intestinal absorptive defects in mice lacking the NHE3 Na+/H +exchanger.
Nat Genet
19:
282‐285,
1998.
|
291. |
Shalmi M,
Kibble JD,
Day JP,
Christensen P,
Atherton JC.
Improved analysis of picomole quantities of lithium, sodium, and potassium in biological fluids.
Am J Physiol
267:
F695‐F701,
1994.
|
292. |
Sheridan E,
Rumrich G,
Ullrich KJ.
Reabsorption of dicarboxylic acids from the proximal convolution of rat kidney.
Pflugers Arch
399:
18‐28,
1983.
|
293. |
Shi LB,
Fushimi K,
Verkman AS.
Solvent drag measurement of transcellular and basolateral membrane NaCl reflection coefficient in kidney proximal tubule.
J Gen Physiol
98:
379‐398,
1991.
|
294. |
Shi PP,
Cao XR,
Sweezer EM,
Kinney TS,
Williams NR,
Husted RF,
Nair R,
Weiss RM,
Williamson RA,
Sigmund CD,
Snyder PM,
Staub O,
Stokes JB,
Yang B.
Salt‐sensitive hypertension and cardiac hypertrophy in mice deficient in the ubiquitin ligase Nedd4‐2.
Am J Physiol Renal Physiol
295:
F462‐F470,
2008.
|
295. |
Shipp J,
Hanenson I,
Windhager EE,
Schatzmann H,
Whittembury G,
Yoshimura H,
Solomon A.
Single proximal tubules of the Necturus kidney; methods for micropuncture and microperfusion.
Am J Physiol
195:
563‐569,
1958.
|
296. |
Shirley DG,
Bailey MA,
Unwin RJ.
In vivo stimulation of apical P2 receptors in collecting ducts: Evidence for inhibition of sodium reabsorption.
Am J Physiol Renal Physiol
288:
F1243‐F1248,
2005.
|
297. |
Sigworth FJ,
Neher E.
Single Na+ channel currents observed in cultured rat muscle cells.
Nature
287:
447‐449,
1980.
|
298. |
Silbernagl S,
Ganapathy V,
Leibach FH.
H+ gradient‐driven dipeptide reabsorption in proximal tubule of rat kidney. Studies in vivo and in vitro.
Am J Physiol
253:
F448‐F457,
1987.
|
299. |
Silva GB,
Garvin JL.
TRPV4 mediates hypotonicity‐induced ATP release by the thick ascending limb.
Am J Physiol Renal Physiol
295:
F1090‐F1095,
2008.
|
300. |
Silver RB,
Frindt G,
Windhager EE,
Palmer LG.
Feedback regulation of Na channels in rat CCT. I. Effects of inhibition of Na pump.
Am J Physiol
264:
F557‐F564,
1993.
|
301. |
Simon DB,
Karet FE,
Hamdan JM,
DiPietro A,
Sanjad SA,
Lifton RP.
Bartter's syndrome, hypokalaemic alkalosis with hypercalciuria, is caused by mutations in the Na‐K‐2Cl cotransporter NKCC2.
Nat Genet
13:
183‐188,
1996.
|
302. |
Simon DB,
Karet FE,
Rodriguez‐Soriano J,
Hamdan JH,
DiPietro A,
Trachtman H,
Sanjad SA,
Lifton RP.
Genetic heterogeneity of Bartter's syndrome revealed by mutations in the K+ channel, ROMK.
Nat Genet
14:
152‐156,
1996.
|
303. |
Sipos A,
Vargas SL,
Toma I,
Hanner F,
Willecke K,
Peti‐Peterdi J.
Connexin 30 deficiency impairs renal tubular ATP release and pressure natriuresis.
J Am Soc Nephrol
20:
1724‐1732,
2009.
|
304. |
Snyder PM.
Regulation of epithelial Na+ channel trafficking.
Endocrinology
146:
5079‐5085,
2005.
|
305. |
Snyder PM.
Down‐regulating destruction: Phosphorylation regulates the E3 ubiquitin ligase Nedd4‐2.
Sci Signal
2:
e41,
2009.
|
306. |
Snyder PM,
Olson DR,
Kabra R,
Zhou R,
Steines JC.
cAMP and serum and glucocorticoid‐inducible kinase (SGK) regulate the epithelial Na(+) channel through convergent phosphorylation of Nedd4‐2.
J Biol Chem
279:
45753‐45758,
2004.
|
307. |
Snyder PM,
Price MP,
McDonald FJ,
Adams CM,
Volk KA,
Zeiher BG,
Stokes JB,
Welsh MJ.
Mechanism by which Liddle's syndrome mutations increase activity of a human epithelial Na +channel.
Cell
83:
969‐978,
1995.
|
308. |
Star RA.
Quantitation of total carbon dioxide in nanoliter samples by flow‐through fluorometry.
Am J Physiol
258:
F429‐F432,
1990.
|
309. |
Star RA,
Burg MB,
Knepper MA.
Bicarbonate secretion and chloride absorption by the rabbit cortical collecting ducts.
J Clin Invest
76:
1123‐1130,
1985.
|
310. |
Staruschenko A,
Pochynyuk O,
Vandewalle A,
Bugaj V,
Stockand JD.
Acute regulation of the epithelial Na+ channel by phosphatidylinositide 3‐OH kinase signaling in native collecting duct principal cells.
J Am Soc Nephrol
18:
1652‐1661,
2007.
|
311. |
Sterling H,
Lin DH,
Chen YJ,
Wei Y,
Wang ZJ,
Lai J,
Wang WH.
PKC expression is regulated by dietary K intake and mediates internalization of SK channels in the CCD.
Am J Physiol Renal Physiol
286:
F1072‐F1078,
2004.
|
312. |
Stockand JD.
New ideas about aldosterone signaling in epithelia.
Am J Physiol Renal Physiol
282:
F559‐F576,
2002.
|
313. |
Stockand JD.
Vasopressin regulation of renal sodium excretion.
Kidney Int
78:
849‐856,
2010.
|
314. |
Stocking CJ,
Slater JM,
Unwin R,
Walter S,
Folkerd E.
An automated technique for the simultaneous determination of cations in nanoliter volumes.
Kidney Int
56:
338‐343,
1999.
|
315. |
Stokes JB,
Ingram MJ,
Williams AD,
Ingram D.
Heterogeneity of the rabbit collecting tubule: Localization of mineralocorticoid hormone action to the cortical portion.
Kidney Int
20:
340‐347,
1981.
|
316. |
Stoner LC,
Morley GE.
Effect of basolateral or apical hyposmolarity on apical maxi K channels of everted rat collecting tubule.
Am J Physiol
268:
F569‐F580,
1995.
|
317. |
Strait KA,
Stricklett PK,
Kohan JL,
Miller MB,
Kohan DE.
Calcium regulation of endothelin‐1 synthesis in rat inner medullary collecting duct.
Am J Physiol Renal Physiol
293:
F601‐F606,
2007.
|
318. |
Strieter J,
Stephenson JL,
Giebisch G,
Weinstein AM.
A mathematical model of the rabbit cortical collecting tubule.
Am J Physiol
263:
F1063‐F1075,
1992.
|
319. |
Sun Z,
Bello‐Roufai M,
Wang X.
RNAi inhibition of mineralocorticoid receptors prevents the development of cold‐induced hypertension.
Am J Physiol Heart Circ Physiol
294:
H1880‐H1887,
2008.
|
320. |
Tanner GA,
Sandoval RM,
Molitoris BA,
Bamburg JR,
Ashworth SL.
Micropuncture gene delivery and intravital two‐photon visualization of protein expression in rat kidney.
Am J Physiol Renal Physiol
289:
F638‐F643,
2005.
|
321. |
Terada Y,
Knepper MA.
Continuous‐flow quantitation of Na+ and K+ in nanoliter samples using chromogenic macrocyclic ionophores.
Am J Physiol
257:
F893‐F898,
1989.
|
322. |
Thiemann A,
Grunder S,
Pusch M,
Jentsch TJ.
A chloride channel widely expressed in epithelial and non‐epithelial cells.
Nature
346:
57‐60,
1992.
|
323. |
Thomas RC.
Construction and properties of recessed‐tip microelectrodes for sodium and chloride ions and pH. In:
Kessler R,
Clark LC,
Lubbers DW,
Silver IA,
Simon W, editors.
Ion and Enzyme Electrodes in Biology and Medicine.
Baltimore:
University Park Press,
1976,
pp. 141‐148.
|
324. |
Thomson SC,
Blantz RC.
Biophysical basis of glomerular filtration. In:
Alpern RJ,
Hebert SC, editors.
Seldin and Giebisch's The Kidney.
Waltham, Massachusetts: Academic Press,
2008,
pp. 565‐587.
|
325. |
Thomson SC,
Deng A,
Bao D,
Satriano J,
Blantz RC,
Vallon V.
Ornithine decarboxylase, kidney size, and the tubular hypothesis of glomerular hyperfiltration in experimental diabetes.
J Clin Invest
107:
217‐224,
2001.
|
326. |
Thomson SC,
Deng A,
Wead L,
Richter K,
Blantz RC,
Vallon V.
An unexpected role for angiotensin II in the link between dietary salt and proximal reabsorption.
J Clin Invest
116:
1110‐1116,
2006.
|
327. |
Tong Q,
Gamper N,
Medina JL,
Shapiro MS,
Stockand JD.
Direct activation of the epithelial Na(+) channel by phosphatidylinositol 3,4,5‐trisphosphate and phosphatidylinositol 3,4‐bisphosphate produced by phosphoinositide 3‐OH kinase.
J Biol Chem
279:
22654‐22663,
2004.
|
328. |
Vallon V.
In vivo studies of the genetically modified mouse kidney.
Nephron Physiol
94:
1‐5,
2003.
|
329. |
Vallon V.
Micropuncturing the nephron.
Pflugers Arch
458:
189‐201,
2009.
|
330. |
Vallon V,
Grahammer F,
Richter K,
Bleich M,
Lang F,
Barhanin J,
Volkl H,
Warth R.
Role of KCNE1‐dependent K+ fluxes in mouse proximal tubule.
J Am Soc Nephrol
12:
2003‐2011,
2001.
|
331. |
Vallon V,
Grahammer F,
Volkl H,
Sandu CD,
Richter K,
Rexhepaj R,
Gerlach U,
Rong Q,
Pfeifer K,
Lang F.
KCNQ1‐dependent transport in renal and gastrointestinal epithelia.
Proc Natl Acad Sci U S A
102:
17864‐17869,
2005.
|
332. |
Vallon V,
Huang DY,
Deng A,
Richter K,
Blantz RC,
Thomson S.
Salt‐sensitivity of proximal reabsorption alters macula densa salt and explains the paradoxical effect of dietary salt on glomerular filtration rate in diabetes mellitus.
J Am Soc Nephrol
13:
1865‐1871,
2002.
|
333. |
Vallon V,
Hummler E,
Rieg T,
Pochynyuk O,
Bugaj V,
Schroth J,
Dechenes G,
Rossier B,
Cunard R,
Stockand J.
Thiazolidinedione‐induced fluid retention is independent of collecting duct alphaENaC activity.
J Am Soc Nephrol
20:
721‐729,
2009.
|
334. |
Vallon V,
Osswald H,
Blantz RC,
Thomson S.
Potential role of luminal potassium in tubuloglomerular feedback.
J Am Soc Nephrol
8:
1831‐1837,
1997.
|
335. |
Vallon V,
Platt KA,
Cunard R,
Schroth J,
Whaley J,
Thomson SC,
Koepsell H,
Rieg T.
SGLT2 mediates glucose reabsorption in the early proximal tubule.
J Am Soc Nephrol
22:
104‐112,
2011.
|
336. |
Vallon V,
Richter K,
Blantz RC,
Thomson S,
Osswald H.
Glomerular hyperfiltration in experimental diabetes mellitus: Potential role of tubular reabsorption.
J Am Soc Nephrol
10:
2569‐2576,
1999.
|
337. |
Vallon V,
Richter K,
Heyne N,
Osswald H.
Effect of intratubular application of angiotensin 1‐7 on nephron function.
Kidney Blood Press Res
20:
233‐239,
1997.
|
338. |
Vallon V,
Richter K,
Huang DY,
Rieg T,
Schnermann J.
Functional consequences at the single‐nephron level of the lack of adenosine A1 receptors and tubuloglomerular feedback in mice.
Pflugers Arch
448:
214‐221,
2004.
|
339. |
Vallon V,
Schnermann J.
Tubuloglomerular feedback.
Methods Mol Med
86:
429‐441,
2003.
|
340. |
Vallon V,
Schwark JR,
Richter K,
Hropot M.
Role of Na(+)/H(+) exchanger NHE3 in nephron function: Micropuncture studies with S3226, an inhibitor of NHE3.
Am J Physiol Renal Physiol
278:
F375‐F379,
2000.
|
341. |
Vallon V,
Traynor T,
Barajas L,
Huang YG,
Briggs JP,
Schnermann J.
Feedback control of glomerular vascular tone in neuronal nitric oxide synthase knockout mice.
J Am Soc Nephrol
12:
1599‐1606,
2001.
|
342. |
Vallon V,
Verkman AS,
Schnermann J.
Luminal hypotonicity in proximal tubules of aquaporin‐1‐knockout mice.
Am J Physiol Renal Physiol
278:
F1030‐F1033,
2000.
|
343. |
van de Water FM,
Boerman OC,
Wouterse AC,
Peters JG,
Russel FG,
Masereeuw R.
Intravenously administered short interfering RNA accumulates in the kidney and selectively suppresses gene function in renal proximal tubules.
Drug Metab Dispos
34:
1393‐1397,
2006.
|
344. |
Vargas‐Poussou R,
Feldmann D,
Vollmer M,
Konrad M,
Kelly L,
van den Heuvel LP,
Tebourbi L,
Brandis M,
Karolyi L,
Hebert SC,
Lemmink HH,
Deschenes G,
Hildebrandt F,
Seyberth HW,
Guay‐Woodford LM,
Knoers NV,
Antignac C.
Novel molecular variants of the Na‐K‐2Cl cotransporter gene are responsible for antenatal Bartter syndrome.
Am J Hum Genet
62:
1332‐1340,
1998.
|
345. |
Vekaria RM,
Unwin RJ,
Shirley DG.
Intraluminal ATP concentrations in rat renal tubules.
J Am Soc Nephrol
17:
1841‐1847,
2006.
|
346. |
Velazquez H,
Wright FS.
Renal micropuncture techniques.
Comp Physiol
249‐269,
2011.
|
347. |
Verrey F.
Early aldosterone effects.
Exp Nephrol
6:
294‐301,
1998.
|
348. |
Verrey F.
Early aldosterone action: Toward filling the gap between transcription and transport.
Am J Physiol
277:
F319‐F327,
1999.
|
349. |
Violin JD,
Zhang J,
Tsien RY,
Newton AC.
A genetically encoded fluorescent reporter reveals oscillatory phosphorylation by protein kinase C.
J Cell Biol
161:
899‐909,
2003.
|
350. |
Vurek GG.
Flow‐through nanocolorimeter for measurement of picomole amounts of magnesium and phosphate.
Anal Lett
14:
261‐269,
1981a.
|
351. |
Vurek GG.
Calcium measurement: Picomole quantitation by continuous‐flow colorimetry.
Anal Biochem
114:
288‐293,
1981b.
|
352. |
Vurek GG,
Bowman RL.
Helium‐glow photometer for picomole analysis of alkali metals.
Science
149:
448‐450,
1965.
|
353. |
Vurek GG,
Knepper MA.
A colorimeter for measurement of picomole quantities of urea.
Kidney Int
21:
656‐658,
1982.
|
354. |
Vurek GG,
Warnock DG,
Corsey R.
Measurement of picomole amounts of carbon dioxide by calorimetry.
Anal Chem
47:
765‐767,
1975.
|
355. |
Waldegger S,
Jentsch TJ.
Functional and structural analysis of ClC‐K chloride channels involved in renal disease.
J Biol Chem
275:
24527‐24533,
2000.
|
356. |
Walker AM,
Bott PA,
Oliver J,
MacDowel MC.
The collection and analysis of fluid from single nephrons of the mammalian kidney.
Am J Physiol
134:
580‐595,
1941.
|
357. |
Walker AM,
Hudson CL.
The reabsorption of glucose from the renal tubule in Amphibia and the action of phlorhizin upon it.
Am J Physiol
118:
130‐143,
1936.
|
358. |
Walker AM,
Oliver J.
Methods for the collection of fluid from single glomeruli and tubules of the mammalian kidney.
Am J Physiol
134:
562‐579,
1941.
|
359. |
Walker JL.
Ion specific liquid ion exchanger microelectrodes.
Anal Chem
43:
89A‐93A,
1971.
|
360. |
Wang T,
Yang CL,
Abbiati T,
Schultheis PJ,
Shull GE,
Giebisch G,
Aronson PS.
Mechanism of proximal tubule bicarbonate absorption in NHE3 null mice.
Am J Physiol
277:
F298‐F302,
1999.
|
361. |
Wang T,
Yang CL,
Abbiati T,
Shull GE,
Giebisch G,
Aronson PS.
Essential role of NHE3 in facilitating formate‐dependent NaCl absorption in the proximal tubule.
Am J Physiol Renal Physiol
281:
F288‐F292,
2001.
|
362. |
Wang W,
Hebert SC,
Giebisch G.
Renal K+ channels: Structure and function.
Annu Rev Physiol
59:
413‐436,
1997.
|
363. |
Wang W,
Henderson RM,
Geibel J,
White S,
Giebisch G.
Mechanism of aldosterone‐induced increase of K+ conductance in early distal renal tubule cells of the frog.
J Membr Biol
111:
277‐289,
1989.
|
364. |
Wang W,
Schwab A,
Giebisch G.
Regulation of small‐conductance K+ channel in apical membrane of rat cortical collecting tubule.
Am J Physiol
259:
F494‐F502,
1990.
|
365. |
Wang W,
White S,
Geibel J,
Giebisch G.
A potassium channel in the apical membrane of rabbit thick ascending limb of Henle's loop.
Am J Physiol
258:
F244‐F253,
1990.
|
366. |
Wang WH,
Geibel J,
Giebisch G.
Mechanism of apical K+ channel modulation in principal renal tubule cells. Effect of inhibition of basolateral Na(+)‐K(+)‐ATPase.
J Gen Physiol
101:
673‐694,
1993.
|
367. |
Wang WH,
Lu M,
Hebert SC.
Cytochrome P‐450 metabolites mediate extracellular Ca(2+)‐induced inhibition of apical K+ channels in the TAL.
Am J Physiol
271:
C103‐C111,
1996.
|
368. |
Wang W‐H,
McNicholas CM,
Segal AS,
Giebisch G.
A novel approach allows identification of K channels in the lateral membrane of rat CCD.
Am J Physiol
266:
F813‐F822,
1994.
|
369. |
Wang X,
Skelley L,
Cade R,
Sun Z.
AAV delivery of mineralocorticoid receptor shRNA prevents progression of cold‐induced hypertension and attenuates renal damage.
Gene Ther
13:
1097‐1103,
2006.
|
370. |
Wang Y,
Sun Z.
Klotho gene delivery prevents the progression of spontaneous hypertension and renal damage.
Hypertension
54:
810‐817,
2009.
|
371. |
Warnock DG,
Burg MB.
Urinary acidification: CO2 transport by the rabbit proximal straight tubule.
Am J Physiol
232:
F20‐F25,
1977.
|
372. |
Wearn JT,
Richards AN.
Observations on the composition of glomerular urine, with particular reference to the problem of reabsorption in the renal tubules.
Am J Physiol
71:
209‐227,
1924.
|
373. |
Wei Y,
Babilonia E,
Sterling H,
Jin Y,
Wang WH.
Mineralocorticoids decrease the activity of the apical small‐conductance K channel in the cortical collecting duct.
Am J Physiol Renal Physiol
289:
F1065‐F1071,
2005.
|
374. |
Wei Y,
Bloom P,
Lin D,
Gu R,
Wang WH.
Effect of dietary K intake on apical small‐conductance K channel in CCD: Role of protein tyrosine kinase.
Am J Physiol Renal Physiol
281:
F206‐F212,
2001.
|
375. |
Wei Y,
Wang WH.
Role of the cytoskeleton in mediating effect of vasopressin and herbimycin A on secretory K channels in CCD.
Am J Physiol Renal Physiol
282:
F680‐F686,
2002.
|
376. |
Wei Y,
Zavilowitz B,
Satlin LM,
Wang WH.
Angiotensin II inhibits the ROMK‐like small conductance K channel in renal cortical collecting duct during dietary potassium restriction.
J Biol Chem
282:
6455‐6462,
2007.
|
377. |
Weinmann EJ,
Hardy RJ,
Kashgarian M,
Hayslett JP.
Examination of the Gertz technique as applied to the proximal tubule of the rat kidney.
Yale BioI Med
45:
289‐298,
1972.
|
378. |
Wildman SS,
Marks J,
Turner CM,
Yew‐Booth L,
Peppiatt‐Wildman CM,
King BF,
Shirley DG,
Wang W,
Unwin RJ.
Sodium‐dependent regulation of renal amiloride‐sensitive currents by apical P2 receptors.
J Am Soc Nephrol
19:
731‐742,
2008.
|
379. |
Windhager EE.
Micropuncture and microperfusion, Chapter IV, in Renal Physiology. In:
Gottschalk CW,
Berliner RW,
Giebisch GH, editors.
People and Ideas. Am Physiol Soc.
Bethesda: Maryland,
pp. 101‐129,
1987.
|
380. |
Windhager EE,
Giebisch G.
Micropuncture study of renal tubular transfer of sodium chloride in the rat.
Am J Physiol
200:
581‐590,
1961.
|
381. |
Wirz H.
Der osmotische Druck des Blutes in der Nierenpapille.
Helv Physiol Pharmacol Acta
11:
20‐29,
1953.
|
382. |
Wirz H.
Der osmotische Druck in den corticalen Tubuli der Rattenniere.
Helv Physiol Pharmacol Acta
14:
353‐362,
1956.
|
383. |
Wirz H,
Hargitay B,
Kuhn W.
Lokalisation des Konzentrierungsprozesses in der Niere durch direkte Kryoskopie.
Helv Physiol Pharmacol Acta
9:
196‐207,
1951.
|
384. |
Woda C,
Mulroney SE,
Halaihel N,
Sun L,
Wilson PV,
Levi M,
Haramati A.
Renal tubular sites of increased phosphate transport and NaPi‐2 expression in the juvenile rat.
Am J Physiol Regul Integr Comp Physiol
280:
R1524‐R1533,
2001.
|
385. |
Woda CB,
Bragin A,
Kleyman TR,
Satlin LM.
Flow‐dependent K+ secretion in the cortical collecting duct is mediated by a maxi‐K channel.
Am J Physiol Renal Physiol
280:
F786‐F793,
2001.
|
386. |
Wright FS.
Increasing magnitude of electrical potential along the renal distal tubule.
Am J Physiol
220:
624‐638,
1971.
|
387. |
Wright FS,
Giebisch G.
Glomerular filtration in single nephrons.
Kidney Int
1:
201‐209,
1972.
|
388. |
Wulff P,
Vallon V,
Huang DY,
Volkl H,
Yu F,
Richter K,
Jansen M,
Schlunz M,
Klingel K,
Loffing J,
Kauselmann G,
Bosl MR,
Lang F,
Kuhl D.
Impaired renal Na(+) retention in the sgk1‐knockout mouse.
J Clin Invest
110:
1263‐1268,
2002.
|
389. |
Wyckoff JA,
Seely EW,
Hurwitz S,
Anderson BF,
Lifton RP,
Dluhy RG.
Glucocorticoid‐remediable aldosteronism and pregnancy.
Hypertension
35:
668‐672,
2000.
|
390. |
Yang B,
Zhao D,
Qian L,
Verkman AS.
Mouse model of inducible nephrogenic diabetes insipidus produced by floxed aquaporin‐2 gene deletion.
Am J Physiol Renal Physiol
291:
F465‐F472,
2006.
|
391. |
Yip KP.
Coupling of vasopressin‐induced intracellular Ca2+ mobilization and apical exocytosis in perfused rat kidney collecting duct.
J Physiol
538:
891‐899,
2002.
|
392. |
Zhelyaskov VR,
Liu S,
Broderick MP.
Analysis of nanoliter samples of electrolytes using a flow‐through microfluorometer.
Kidney Int
57:
1764‐1769,
2000.
|
393. |
Zhu G,
Nicolson AG,
Cowley BD,
Rosen S,
Sukhatme VP.
In vivo adenovirus‐mediated gene transfer into normal and cystic rat kidneys.
Gene Ther
3:
298‐304,
1996.
|