1. |
Adhihetty PJ,
Uguccioni G,
Leick L,
Hidalgo J,
Pilegaard H,
Hood DA.
The role of PGC‐1alpha on mitochondrial function and apoptotic susceptibility in muscle.
Am J Physiol: Cell Physiol
297:
C217–C225,
2009.
|
2. |
Akimoto T,
Li P,
Yan Z.
Functional interaction of regulatory factors with the PGC‐1 a promoter in response to exercise by in vivo imaging.
Am J Physiol: Cell Physiol
295:
C288–C292,
2008.
|
3. |
Akimoto T,
Pohnert SC,
Li P,
Zhang M,
Gumbs C,
Rosenberg PB,
Williams RS,
Yan Z.
Exercise stimulates Pgc‐1 a transcription in skeletal muscle through activation of the p38 MAPK pathway.
J Biol Chem
280:
19587–19593,
2005.
|
4. |
Akimoto T,
Ribar TJ,
Williams RS,
Yan Z.
Skeletal muscle adaptation in response to voluntary running in Ca2+/calmodulin‐dependent protein kinase IV‐deficient mice.
Am J Physiol Cell Physiol
287:
C1311–C1219,
2004.
|
5. |
Akimoto T,
Sorg BS,
Yan Z.
Real‐time imaging of peroxisome proliferator‐activated receptor‐gamma coactivator‐1 a promoter activity in skeletal muscles of living mice.
Am J Physiol
287:
C790–C796,
2004.
|
6. |
Andersen P,
Henriksson J.
Capillary supply of the quadriceps femoris muscle of man: Adaptive response to exercise.
J Physiol Lond
270:
677–690,
1977.
|
7. |
Andersson U,
Scarpulla RC.
PGC‐1‐related coactivator, a novel, serum‐inducible coactivator of nuclear respiratory factor 1‐dependent transcription in mammalian cells.
Mol Cell Biol
21:
3738–3749,
2001.
|
8. |
Baar K,
Song Z,
Semenkovich CF,
Jones TE,
Han D‐H,
Nolte LA,
Ojuka EO,
Chen M,
Holloszy JO.
Skeletal muscle overexpression of nuclear respiratory factor 1 increases glucose transport capacity.
FASEB J
17:
1666–1673,
2003.
|
9. |
Baar K,
Wende AR,
Jones TE,
Marison M,
Nolte LA,
Chen M,
Kelly DP,
Holloszy JO.
Adaptations of skeletal muscle to exercise: Rapid increase in the transcriptional coactivator PGC‐1.
FASEB J
16:
1879–1886,
2002.
|
10. |
Bagby GJ,
Sembrowich WL,
Gollnick PD.
Myosin ATPase and fiber composition from trained and untrained rat skeletal muscle.
Am J Physiol
223:
1415–1417,
1972.
|
11. |
Baldwin KM,
Klinkerfuss GH,
Terjung RL,
Molé PA,
Holloszy JO.
Respiratory capacity of white, red, and intermediate muscle: Adaptive response to exercise.
Am J Physiol
222:
373–378,
1972.
|
12. |
Baldwin KM,
Reitman JS,
Terjung RL,
Winder WW,
Holloszy JO.
Substrate depletion in different types of muscle and in liver during prolonged running.
Am J Physiol
225:
1045–1050,
1973.
|
13. |
Barnard RJ,
Edgerton VR,
Peter JB.
Effect of exercise on skeletal muscle. II. Contractile properties.
J Appl Physiol
28:
767–770,
1970a.
|
14. |
Barnard RJ,
Edgerton VR,
Peter JB.
Effect of exercise on skeletal muscle. I. Biochemical and histochemical properties.
J Appl Physiol
28:
762–766,
1970b.
|
15. |
Befroy DE,
Petersen KF,
Dufour S,
Mason GF,
Rothman DL,
Shulman GI.
Increased substrate oxidation and mitochondrial uncoupling in skeletal muscle of endurance‐trained individuals.
Proc Natl Acad Sci U S A
105:
16701–16706,
2008.
|
16. |
Bergström J,
Hermansen L,
Hultman E,
Saltin B.
Diet, muscle glycogen and physical performance.
Acta Physiol Scand
71:
140–150,
1967.
|
17. |
Bergström J,
Hultman E.
Muscle glycogen synthesis after exercise: An enhancing factor localized to the muscle cells in man.
Nature Lond
210:
309–310,
1966.
|
18. |
Bergström J,
Hultman E,
Saltin B.
Muscle glycogen consumption during cross‐country skiing (the Vasa Ski Race).
Int Z Angew Physiol
31:
71–75,
1973.
|
19. |
Booth FW,
Holloszy JO.
Cytochrome c turnover in rat skeletal muscles.
J Biol Chem
252:
416–419,
1977.
|
20. |
Brostrom CO,
Hunkeler FL,
Krebs EG.
The regulation of skeletal muscle phosphorylase kinase by Ca2+.
J Biol Chem
246:
1961–1967,
1971.
|
21. |
Brozinick JT Jr,
Etgen GJ Jr,
Yaspelkis BBI,
Kang HY,
Ivy JL.
Effects of exercise training on muscle GLUT‐4 protein content and translocation in obese Zucker rats.
Am J Physiol
265:
E419–E427,
1993.
|
22. |
Calvo JA,
Daniels TG,
Wang X,
Paul A,
Lin J,
Spiegelman BM,
Stevenson SC,
Rangwala SM.
Muscle‐specific expression of PPARgamma coactivator‐1 a improves exercise performance and increases peak oxygen uptake.
J Appl Physiol
104:
1304–1312,
2008.
|
23. |
Cao W,
Daniel KW,
Robidoux J,
Puigserver P,
Medvedev AV,
Bai X,
Floering LM,
Spiegelman BM,
Collins S.
p38 mitogen‐activated protein kinase is the central regulator of cyclic AMP‐dependent transcription of the brown fat uncoupling protein 1 gene.
Mol Cell Biol
24:
3057–3067,
2004.
|
24. |
Carling D,
Clarke PR,
Zammit VA,
Hardie DG.
Purification and characterization of the AMP‐activated protein kinase. Copurification of acetyl‐CoA carboxylase kinase and 3‐hydroxy‐3‐methylglutaryl‐CoA reductase kinase activities.
Eur J Biochem
186:
129–136,
1989.
|
25. |
Chasiotis D.
The regulation of glycogen phosphorylase and glycogen breakdown in human skeletal muscle.
Acta Physiol Scand Suppl
518:
1–68,
1983.
|
26. |
Chasiotis D,
Sahlin K,
Hultman E.
Regulation of glycogenolysis in human muscle in response to epinephrine infusion.
J Appl Physiol
54:
45–50,
1983.
|
27. |
Chow LS,
Greenlund LJ,
Asmann YW,
Short KR,
McCrady SK,
Levine JA,
Nair KS.
Impact of endurance training on murine spontaneous activity, muscle mitochondrial DNA abundance, gene transcripts, and function.
J Appl Physiol
102:
1078–1089,
2007.
|
28. |
Christensen EH,
Hansen O.
Respiratorischen Quotient und O2—Aufnahme.
Skand Arch Physiol
81:
180–189,
1939.
|
29. |
Coggan AR,
Kohrt WM,
Spina RJ,
Bier DM,
Holloszy JO.
Endurance training decreases plasma glucose turnover and oxidation during moderate‐intensity exercise in men.
J Appl Physiol
68:
990–996,
1990.
|
30. |
Coggan AR,
Spina RJ,
King DS,
Rogers MA,
Brown M,
Nemeth PM,
Holloszy JO.
Skeletal muscle adaptations to endurance‐training in 60‐ to 70‐year old men and women.
J Appl Physiol
72:
1780–1786,
1992.
|
31. |
Coggan AR,
Spina RJ,
Rogers MA,
King DS,
Brown M,
Nemeth PM,
Holloszy JO.
Histochemical and enzymatic characteristics of skeletal muscle in master athletes.
J Appl Physiol
68:
1896–1901,
1990.
|
32. |
Conlee RK,
Hickson RC,
Winder WW,
Hagberg JM,
Holloszy JO.
Regulation of glycogen resynthesis in muscle of rats following exercise.
Am J Physiol
235:
R145–R150,
1978.
|
33. |
Conlee RK,
McLane JA,
Rennie MJ,
Winder WW,
Holloszy JO.
Reversal of phosphorylase activation in muscle despite continued contractile activity.
Am J Physiol
237:
R291–R296,
1979.
|
34. |
Constable SH,
Favier RJ,
Holloszy JO.
Exercise and glycogen depletion: Effects on ability to activate muscle phosphorylase.
J Appl Physiol
60:
1518–1523,
1986.
|
35. |
Constable SH,
Favier RJ,
McLane JA,
Fell RD,
Chen M,
Holloszy JO.
Energy metabolism in contracting rat skeletal muscle: Adaptation to exercise‐training.
Am J Physiol
253:
C316–C322,
1987.
|
36. |
Costill DL,
Coyle E,
Dalsky G,
Evans W,
Fink W,
Hoopes D.
Effects of elevated plasma FFA and insulin on muscle glycogen usage during exercise.
J Appl Physiol
43:
695–699,
1977.
|
37. |
Cox JH,
Cortright RN,
Dohm GL,
Houmard JA.
Effect of aging on response to exercise training in humans: Skeletal muscle GLUT‐4 and insulin sensitivity.
J Appl Physiol
86:
2019–2025,
1999.
|
38. |
Coyle EF,
Martin WH III,
Bloomfield SA,
Lowry OH,
Holloszy JO.
Effects of detraining on responses to submaximal exercise.
J Appl Physiol
59:
853–859,
1985.
|
39. |
Coyle EF,
Martin WH III,
Sinacore DR,
Joyner MJ,
Hagberg JM,
Holloszy JO.
Time‐course of loss of adaptations after stopping prolonged intense endurance‐training.
J Appl Physiol
57:
1857–1864,
1984.
|
40. |
Czubryt MP,
McAnnally J,
Fishman GI,
Olson EN.
Regulation of peroxisome proliferator‐activated receptor gamma coactivator 1 alpha (PGC‐1alpha) and mitochondrial function by MEF2 and HDAC5.
Proc Natl Acad Sci U S A
100:
1711–1716,
2003.
|
41. |
Danforth WH,
Helmreich E.
Regulation of glycolysis in muscle. I. The conversion of phosphorylase b to phosphorylase a in frog sartorius muscle.
J Biol Chem
239:
3133–3138,
1964.
|
42. |
Danforth WH,
Helmreich E,
Cori CF.
The effect of contraction and of epinephrine on the phosphorylase activity of frog sartorius muscle.
Proc Natl Acad Sci U S A
48:
1191–1199,
1962.
|
43. |
Dawson MJ,
Gadian DG,
Wilkie DR.
Contraction and recovery of living muscles studied by 31P nuclear magnetic resonance.
J Physiol Lond
267:
703–735,
1977.
|
44. |
Dudley GA,
Tullson PC,
Terjung RL.
Influence of mitochondrial content on the sensitivity of respiratory control.
J Biol Chem
262:
9109–9114,
1987.
|
45. |
Ekblom B.
Effect of physical training on the oxygen transport system in man.
Acta Physiol Scand
328:
1–45,
1969.
|
46. |
Ekblom B,
Åstrand P‐O,
Saltin B,
Stenberg J and
Wallstrom B.
Effect of training on circulatory response to exercise.
J Appl Physiol
24:
518–528,
1968.
|
47. |
Evans MJ,
Scarpulla RC.
Interaction of nuclear factors with multiple sites in the somatic cytochrome c promoter.
J Biol Chem
264:
14361–14368,
1989.
|
48. |
Evans MJ,
Scarpulla RC.
NRF‐1: A trans‐activator of nuclear‐encoded respiratory genes in animal cells.
Genes Dev
4:
1023–1034,
1990.
|
49. |
Fan M,
Rhee J,
St‐Pierre J,
Handschin C,
Puigserver P,
Lin J,
Jäeger S,
Erdjument‐Bromage H,
Tempst P,
Spiegelman BM.
Suppression of mitochondrial respiration through recruitment of p160 myb binding protein to PGC‐1 a: Modulation by p38 MAPK.
Genes Dev
18:
278–289,
2004.
|
50. |
Favier RJ,
Constable SH,
Chen M,
Holloszy JO.
Endurance exercise‐training reduces lactate production.
J Appl Physiol
61:
885–889,
1986.
|
51. |
Finck BN,
Bernal‐Mizrachi C,
Han D‐H,
Coleman T,
Sambandam N,
LaRiviere L,
Holloszy JO,
Semenkovich C,
Kelly DP.
A potential link between muscle peroxisome proliferator‐activated receptor‐a signaling and obesity‐related diabetes.
Cell Metabolism
1:
133–144,
2005.
|
52. |
Fisher RP,
Parisi MA,
Clayton DA.
Flexible recognition of rapidly evolving promoter sequences by mitochondrial transcription factor 1.
Genes Dev
3:
2202–2217,
1989.
|
53. |
Fitch CD,
Jellinek M,
Fitts RH,
Baldwin KM,
Holloszy JO.
Phosphorylated b‐guanidinopropionate as a substitute for phosphocreatine in rat muscle.
Am J Physiol
228:
1123–1125,
1975.
|
54. |
Fitch CD,
Jellinek M,
Mueller EJ.
Experimental depletion of creatine and phosphocreatine from skeletal muscle.
J Biol Chem
249:
1060–1063,
1974.
|
55. |
Fitch CD,
Shields RP.
Creatine metabolism in skeletal muscle. I. Creatine movement across muscle membranes.
J Biol Chem
241:
3611–3614,
1966.
|
56. |
Fitch CD,
Shields RP,
Payne WF,
Dacus JM.
Creatine metabolism in skeletal muscle. III. Specificity of the creatine entry process.
J Biol Chem
243:
2024–2027,
1968.
|
57. |
Fitts RH,
Booth FW,
Winder WW,
Holloszy JO.
Skeletal muscle respiratory capacity, endurance and glycogen utilization.
Am J Physiol
228:
1029–1033,
1975.
|
58. |
Fitts RH,
Troup JP,
Witzmann FA,
Holloszy JO.
The effect of ageing and exercise on skeletal muscle function.
Mech Ageing Develop
27:
161–172,
1984.
|
59. |
Fitts RH,
Widrick JJ.
Muscle mechanics: Adaptations with exercise‐training. In:
Holloszy JO, editor.
Exercise and Sports Sciences Reviews.
Baltimore:
Williams and Wilkins,
1996, p.
427–473.
|
60. |
Forman BM,
Chen J,
Evans RM.
Hypolipidemic drugs, polyunsaturated fatty acids, and eicosanoids are ligands for peroxisome proliferator‐activated receptors a and d.
Proc Natl Acad Sci U S A
94:
4312–4317,
1997.
|
61. |
Freyssenet D,
DiCarlo M,
Hood DA.
Calcium‐dependent regulation of cytochrome c gene expression in skeletal muscle cells.
J Biol Chem
274:
9305–9311,
1999.
|
62. |
Freyssenet D,
Irrcher I,
Connor MK,
Di Carlo M,
Hood DA.
Calcium‐regulated changes in mitochondrial phenotype in skeletal muscle cells.
Am J Physiol: Cell Physiol
286:
C1053–C1061,
2004.
|
63. |
Friedman JE,
Sherman WM,
Reed MJ,
Elton CW,
Dohm GL.
Exercise‐training increases glucose transporter protein GLUT4 in skeletal muscle of obese Zucker (fa/fa) rats.
FEBS Lett
268:
13–16,
1990.
|
64. |
Froberg SO,
Mossfeldt F.
Effect of prolonged strenuous exercise on the concentration of triglycerides, phospholipids, and glycogen in muscles of man.
Acta Physiol Scand
82:
167–171,
1971.
|
65. |
Garcia‐Roves PM,
Han D‐H,
Song Z,
Jones TE,
Hucker KA,
Holloszy JO.
Prevention of glycogen supercompensation prolongs the increase in muscle GLUT4 after exercise.
Am J Physiol
285:
E729–E736,
2003.
|
66. |
Garcia‐Roves PM,
Huss J,
Holloszy JO.
Role of calcineurin in exercise‐induced mitochondrial biogenesis.
Am J Physiol: Endocrin Metab
290:
1172–1179,
2006.
|
67. |
Garcia‐Roves PM,
Huss JM,
Han D‐H,
Hancock CR,
Iglesias‐Gutierrez E,
Chen M,
Holloszy JO.
Raising plasma fatty acid concentration induces increased biogenesis of mitochondria in skeletal muscle.
Proc Natl Acad Sci U S A
104:
10709–10713,
2007.
|
68. |
Garcia‐Roves PM,
Jones TE,
Otani K,
Han D‐H,
Holloszy JO.
Calcineurin does not mediate the exercise‐induced increase in muscle GLUT4.
Diabetes
54:
624–628,
2005.
|
69. |
Garcia‐Roves PM,
Osler ME,
Holmström MH,
Zierath JR.
Gain‐of‐function R225Q mutation in AMP‐activated protein kinase gamma3 subunit increases mitochondrial biogenesis in glycolytic skeletal muscle.
J Biol Chem
283:
35724–35734,
2008.
|
70. |
Gardner OS,
Shiau CW,
Chen CS,
Graves LM.
Peroxisome proliferator‐activated receptor gamma‐independent activation of p38 MAPK by thiazolidinediones involves calcium/calmodulin‐dependent protein kinase II and protein kinase R: Correlation with endoplasmic reticulum stress.
J Biol Chem
280:
10109–10118,
2005.
|
71. |
Geng T,
Li P,
Okutsu M,
Yin X,
Kwek J,
Zhang M,
Yan Z.
PGC‐1alpha plays a functional role in exercise‐induced mitochondrial biogenesis and angiogenesis but not fiber‐type transformation in mouse skeletal muscle.
Am J Physiol Cell Physiol
298:
C572–C579,
2010.
|
72. |
Gollnick PD,
Armstrong RB,
Saltin B,
Saubert CW IV,
Sembrowich WL,
Shepherd RE.
Effect of training on enzyme activity and fiber composition of human skeletal muscle.
J Appl Physiol
34:
107–111,
1973.
|
73. |
Gollnick PD,
Armstrong RB,
Saubert CW,
Piehl K,
Saltin B.
Enzyme activity and fiber composition of human skeletal muscle.
J Appl Physiol
33:
312–319,
1972.
|
74. |
Gollnick PD,
King DW.
Effect of exercise and training on mitochondria of rat skeletal muscle.
Am J Physiol
216:
1502–1509,
1969.
|
75. |
Gopalakrishnan L,
Scarpulla RC.
Differential regulation of respiratory chain subunits by a CREB‐dependent signal transduction pathway.
J Biol Chem
269:
105–113,
1994.
|
76. |
Goto M,
Terada S,
Kato M,
Katoh M,
Yokozeki T,
Tabata I,
Shimokawa T.
cDNA cloning and mRNA analysis of PGC‐1 in epitrochlearis muscle in swimming‐exercised rats.
Biochem Biophys Res Commun
274:
350–354,
2000.
|
77. |
Greiwe JS,
Hickner RC,
Hansen PA,
Racette SB,
Chen MM,
Holloszy JO.
Effects of endurance exercise training on muscle glycogen accumulation in humans.
J Appl Physiol
87:
222–226,
1999.
|
78. |
Greiwe JS,
Holloszy JO,
Semenkovich CF.
Exercise induces lipoprotein lipase and GLUT‐4 protein in muscle independent of adrenergic‐receptor signaling.
J Appl Physiol
89:
176–181,
2000.
|
79. |
Gulick T,
Cresci S,
Caira T,
Moore DD,
Kelly DP.
The peroxisome proliferator activated receptor regulates mitochondrial fatty acid oxidative enzyme gene expression.
Proc Natl Acad Sci U S A
91:
11012–11016,
1994.
|
80. |
Gulve EA,
Spina RJ.
Effect of 7‐10 days of cycle ergometer exercise on skeletal muscle GLUT‐4 protein content.
J Appl Physiol
79:
1562–1566,
1995.
|
81. |
Hancock CR,
Han D‐H,
Chen M,
Terada S,
Yasuda T,
Wright DC,
Holloszy JO.
High fat diets cause insulin resistance despite an increase in muscle mitochondria.
Proc Natl Acad Sci U S A
105:
7815–7820,
2008.
|
82. |
Handschin C,
Rhee J,
Lin J,
Tarr PT,
Spiegelman BM.
An autoregulatory loop controls peroxisome proliferator‐activated receptor gamma coactivator 1 a expression in muscle.
Proc Natl Acad Sci U S A
100:
7111–7116,
2003.
|
83. |
Hansen PA,
Gulve EA,
Marshall BA,
Gao J,
Pessin JE,
Holloszy JO,
Mueckler M.
Skeletal muscle glucose transport and metabolism are enhanced in transgenic mice overexpressing the GLUT4 glucose transporter.
J Biol Chem
270:
1679–1684,
1995.
|
84. |
Hardie DG,
Carling D.
The AMP‐activated protein kinase‐fuel gauge of the mammalian cell?
Eur J Biochem
246:
259–273,
1997.
|
85. |
Hardie DG,
Salt IP,
Hawley SA,
Davies SP.
AMP‐activated protein kinase: An ultrasensitive system for monitoring cellular energy charge.
Biochem J
338:
717–722,
1999.
|
86. |
Hedman A,
Berglund L,
Essén‐Gustavsson B,
Reneland R,
Lithell H.
Relationships between muscle morphology and insulin sensitivity are improved after adjustment for intra‐individual variability in 70‐year‐old men.
Acta Physiol Scand
169:
125–132,
2000.
|
87. |
Heilmeyer LMG Jr,
Meyer F,
Haschke RH,
Fischer EH.
Control of phosphorylase activity in muscle glycogen particle. II. Activation by calcium.
J Biol Chem
245:
6649–6656,
1970.
|
88. |
Henriksen EJ,
Bourey RE,
Rodnick KJ,
Koranyi L,
Permutt MA,
Holloszy JO.
Glucose transporter protein content and glucose transport capacity in rat skeletal muscles.
Am J Physiol
259:
E593–E598,
1990.
|
89. |
Henriksson J.
Training‐induced adaptations of skeletal muscle and metabolism during submaximal exercise.
J Physiol Lond
270:
661–675,
1977.
|
90. |
Hermansen L,
Hultman E,
Saltin B.
Muscle glycogen during prolonged severe exercise.
Acta Physiol Scand
71:
129–139,
1967.
|
91. |
Hickner RC,
Fisher JS,
Hansen PA,
Racette SB,
Mier CM,
Turner MJ,
Holloszy JO.
Muscle glycogen accumulation after endurance exercise in trained and untrained individuals.
J Appl Physiol
83:
897–903,
1997.
|
92. |
Hickson RC,
Rennie MJ,
Conlee RK,
Winder WW,
Holloszy JO.
Effects of increased plasma fatty acids on glycogen utilization and endurance.
J Appl Physiol
43:
829–833,
1977.
|
93. |
Hoeks J,
Briede JJ,
de Vogel J,
Schaart G,
Nabben M,
Moonen‐Kornips E,
Hesselink MKC,
Schrauwen P.
Mitochondrial function, content and ROS production in rat skeletal muscle: Effect of high‐fat feeding.
FEBS Letts
582:
510–516,
2008.
|
94. |
Holloszy JO.
Biochemical adaptations in muscle. Effects of exercise on mitochondrial O2 uptake and respiratory enzyme activity in skeletal muscle.
J Biol Chem
242:
2278–2282,
1967.
|
95. |
Holloszy JO.
Biochemical adaptations to exercise: Aerobic metabolism. In:
Wilmore J, editor.
Exercise and Sports Sciences Reviews.
New York:
Academic,
1973, p.
45–71.
|
96. |
Holloszy JO.
A forty‐year memoir of research on the regulation of glucose transport into muscle.
Am J Physiol
284:
E453–E467,
2003.
|
97. |
Holloszy JO.
Skeletal muscle “mitochondrial deficiency” does not mediate insulin resistance.
Am J Clin Nutr
89:
463S–466S,
2009.
|
98. |
Holloszy JO,
Coyle EF.
Adaptations of skeletal muscle to endurance exercise and their metabolic consequences.
J Appl Physiol
56:
831–839,
1984.
|
99. |
Holloszy JO,
Hansen PA.
Regulation of glucose transport into skeletal muscle. In:
Blaustein MP,
Grunicke H,
Habermann E,
Pette D,
Schultz G,
Schweiger M, editors.
Reviews of Physiology, Biochemistry and Pharmacology.
Berlin:
Springer‐Verlag,
1996, p.
99–193.
|
100. |
Holloszy JO,
Oscai LB,
Don IJ,
Molé PA.
Mitochondrial citric acid cycle and related enzymes: Adaptive response to exercise.
Biochem Biophys Res Commun
40:
1368–1373,
1970.
|
101. |
Holloszy JO,
Winder WW.
Induction of d‐aminolevulinic acid synthetase in muscle by exercise or thyroxine.
Am J Physiol
236:
R180–R183,
1979.
|
102. |
Holmes BF,
Kurth‐Kraczek EJ,
Winder WW.
Chronic activation of 5'‐AMP‐activated protein kinase increases GLUT‐4, hexokinase, and glycogen in muscle.
J Appl Physiol
87:
1990–1995,
1999.
|
103. |
Holmes BF,
Sparling DP,
Olson AL,
Winder WW,
Dohm GL.
Regulation of muscle GLUT4 enhancer factor and myocyte enhancer factor 2 by AMP‐activated protein kinase.
Am J Physiol Endocrin Metab
289:
E1071–E1076,
2008.
|
104. |
Hoppeler H,
Lüthi P,
Claassen H,
Weibel ER,
Howald H.
The ultrastructure of normal human skeletal muscle. morphometric analysis on untrained men, women and well‐trained orienteers A.
Pfluegers Arch
344:
217–232,
1973.
|
105. |
Host HH,
Hansen PA,
Nolte LA,
Chen MM,
Holloszy JO.
Rapid reversal of adaptive increases in muscle GLUT4 and glucose transport capacity after training cessation.
J Appl Physiol
84:
798–802,
1998.
|
106. |
Hurley BF,
Hagberg JM,
Allen WK,
Seals DR,
Young JC,
Cudihee RW,
Holloszy JO.
Effect of training on blood lactate levels during submaximal exercise.
J Appl Physiol
56:
1260–1264,
1984.
|
107. |
Hurley BF,
Nemeth PM,
Martin WH III,
Hagberg JM,
Dalsky GP,
Holloszy JO.
Muscle triglyceride utilization during exercise: Effect of training.
J Appl Physiol
60:
562–567,
1986.
|
108. |
Huss JM,
Kopp RP,
Kelly DP.
Peroxisome proliferator‐activated receptor coactivator‐1 a (PGC‐1a) coactivates the cardiac‐enriched nuclear receptors estrogen‐related receptor‐alpha and ‐gamma.
J Biol Chem
277:
40265–40274,
2002.
|
109. |
Hutber CA,
Hardie DG,
Winder WW.
Electrical stimulation inactivates muscle acetyl‐CoA carboxylase and increases AMP‐activated protein kinase.
Am J Physiol
272:
E262–E266,
1997.
|
110. |
Ingier F.
Effects of endurance training on muscle fibre ATP‐ase activity, capillary supply and mitochondrial content in man.
J Physiol Lond
294:
419–432,
1979.
|
111. |
Irrcher I,
Ljubicic V,
Kirwan AF,
Hood DA.
AMP‐activated protein‐kinase‐regulated activation of the PGC‐1alpha promoter in skeletal muscle cells.
PLoS ONE
3:
e3614,
2008.
|
112. |
Ivy JL,
Withers RT,
Van Handel PJ,
Elger DH,
Costill DL.
Muscle respiratory capacity and fiber type as determinants of the lactate threshold.
J Appl Physiol Respirat Environ Exerc Physiol
48:
523–527,
1980.
|
113. |
Jacobus WE,
Moreadith RW,
Vandegaer KM.
Mitochondrial respiratory control. against the regulation of respiration by extramitochondrial phosphorylation potentials or by [ATP]/[ADP] ratios Evidence.
J Biol Chem
257:
2397–2402,
1982.
|
114. |
Jäger S,
Handschin C,
St‐Pierre J,
Spiegelman BM.
AMP‐activated protein kinase (AMPK) action in skeletal muscle via direct phosphorylation of PGC‐1 a.
Proc Natl Acad Sci U S A
104:
12017–12022,
2007.
|
115. |
Jorgensen SB,
Jensen TE,
Richter EA.
Role of AMPK in skeletal muscle gene adaptation in relation to exercise.
Appl Physiol Nutr Metab
32:
904–911,
2007.
|
116. |
Jorgensen SB,
Treebak JT,
Viollet B,
Schjerling P,
Vaulont S,
Wojtaszewski JF,
Richter EA.
Role of AMPKa2 in basal, training‐, and AICAR‐induced GLUT4, hexokinase II, and mitochondrial protein expression in mouse muscle.
Am J Physiol
292:
E331–E339,
2007.
|
117. |
Jorgensen SB,
Wojtaszewski JF,
Viollet B,
Andreelli F,
Birk JB,
Hellsten Y,
Schjerling P,
Vaulont S,
Neufer PD,
Richter EA,
Pilegaard H.
Effects of alpha‐AMPK knockout on exercise‐induced gene activation in mouse skeletal muscle.
FASEB J
19:
1146–1148,
2005.
|
118. |
Juhlin‐Dannfelt AC,
Terblanche SE,
Fell RD,
Young JC,
Holloszy JO.
Effects of b‐adrenergic receptor blockade on glycogenolysis during exercise.
J Appl Physiol
53:
549–554,
1982.
|
119. |
Kanaley JA,
Mottram CD,
Scanlon D,
Jensen MD.
Fatty acid kinetic responses to running above or below lactate threshold.
J Appl Physiol
79:
439–447,
1995.
|
120. |
Karlsson J,
Nordsejo L‐O,
Jorfeldt L,
Saltin B.
Muscle lactate, ATP, and CP levels during exercise after physical training in man.
J Appl Physiol
33:
199–203,
1972.
|
121. |
Karlsson J,
Nordesjo L‐O,
Saltin B.
Muscle glycogen utilization during exercise after physical training.
Acta Physiol Scand
90:
210–217,
1974.
|
122. |
Karlsson J,
Saltin B.
Diet, muscle glycogen, and endurance performance.
J Appl Physiol
31:
203–206,
1971.
|
123. |
Kasapis C,
Thompson PD.
The effects of physical activity on serum C‐reactive protein and inflammatory markers: A systemic review.
J Am Coll Cardiol
45:
1563–1569,
2005.
|
124. |
Kern M,
Wells JA,
Stephens JM,
Elton CW,
Friedman JE,
Tapscott EB,
Pekala PH,
Dohm GL.
Insulin responsiveness in skeletal muscle is determined by glucose transporter (GLUT 4) protein level.
Biochem J
270:
397–440,
1990.
|
125. |
Kiens B,
Essen‐Gustavsson B,
Christensen NJ,
Saltin B.
Skeletal muscle substrate utilization during submaximal exercise in man: Effect of endurance training.
J Physiol
469:
459–478,
1993.
|
126. |
Knutti D,
Kressler D,
Kralli A.
Regulation of the transcriptional coactivator PGC‐1 via MAPK‐sensitive interaction with a repressor.
Proc Natl Acad Sci U S A
98:
9713–9718,
2001.
|
127. |
Lawrie RA.
The activity of the cytochrome system in muscle and its relation to myoglobin.
Biochem J
55:
298–305,
1953.
|
128. |
Lehman JJ,
Barger PM,
Kovacs A,
Saffitz J,
Medeiros DM,
Kelly DP.
Peroxisome proliferator‐activated receptor gamma coactivator‐1 promotes cardiac mitochondrial biogenesis.
J Clin Invest
106:
847–856,
2000.
|
129. |
Leick L,
Wojtaszewski JF,
Johansen ST,
Kiilerich K,
Comes G,
Hellsten Y,
Hidalgo J,
Pilegaard H.
PGC‐1alpha is not mandatory for exercise‐ and training‐induced adaptive gene responses in mouse skeletal muscle.
Am J Physiol: Endocrin Metab
294:
E463–E474,
2008.
|
130. |
Li B,
Holloszy JO,
Semenkovich CF.
Respiratory uncoupling induces delta‐aminolevulinate synthase expression through a nuclear respiratory factor‐1‐dependent mechanism in HeLa cells.
J Biol Chem
274:
17534–17540,
1999.
|
131. |
Lillioja S,
Young AA,
Cutler CL,
Ivy JL,
Abbott WGH,
Zawadski JK,
Yki‐Järvinen H,
Christin L,
Secomb TW,
Bogardus C.
Skeletal muscle capillary density and fiber type are possible determinants of in vivo insulin resistance in man.
J Clin Invest
80:
415–424,
1987.
|
132. |
Lin J,
Puigserver P,
Donovan J,
Tarr P,
Spiegelman BM.
Peroxisome proliferator‐activated receptor gamma coactivator 1beta (PGC‐1beta), a novel PGC‐1‐related transcription coactivator associated with host cell factor.
J Biol Chem
277:
1645–1648,
2002.
|
133. |
Liu ML,
Olson AL,
Edgington NP,
Moye‐Rowley WS,
Pessin JE.
Myocyte enhancer factor 2 (MEF2) binding site is essential for C2C12 myotube‐specific expression of the rat GLUT4/muscle‐adipose facilitative glucose transporter gene.
J Biol Chem
269:
28514–28521,
1994.
|
134. |
Long YC,
Glund S,
Garcia‐Roves PM,
Zierath JR.
Calcineurin regulates skeletal muscle metabolism via coordinated changes in gene expression.
J Biol Chem
282:
1607–1614,
2007.
|
135. |
Lowell BB,
Shulman GI.
Mitochondrial dysfunction and type 2 diabetes.
Science
307:
384–387,
2005.
|
136. |
Luquet S,
Lopez‐Soriano J,
Holst D,
Fredenrich A,
Melki J,
Rassoulzadegan M,
Grimaldi PA.
Peroxisome proliferator‐activated receptor delta controls muscle development and oxydative capability.
FASEB J
17:
2299–2301,
2003.
|
137. |
Martin WH,
Dalsky GP,
Hurley BF,
Matthews DE,
Bier DM,
Hagberg JM,
Rogers MA,
King DS,
Holloszy JO.
Effect of endurance‐training on plasma free fatty acid turnover and oxidation during exercise.
Am J Physiol
265:
E708–E714,
1993.
|
138. |
McGee SL,
Fairlie E,
Garnham AP,
Hargreaves M.
Exercise‐induced histone modifications in human skeletal muscle.
J Physiol
587:
5951–5958,
2009.
|
139. |
McGee SL,
van Denderen BJ,
Howlett KF,
Mollica J,
Schertzer JD,
Kemp BE,
Hargreaves M.
AMP‐activated protein kinase regulates GLUT4 transcription by phosphorylating histone deacetylase 5.
Diabetes
57:
860–867,
2008.
|
140. |
McKinsey TA,
Zhang C‐L,
Lu J,
Olson EN.
Signal‐dependent nuclear export of a histone deacetylase regulates muscle differentiation.
Nature
408:
106–111,
2000.
|
141. |
Meissner JD,
Gros G,
Scheibe RJ,
Scholz M,
Kubis H‐P.
Calcineurin regulates slow myosin, but not fast myosin or metabolic enzymes, during fast‐to‐slow transformation in rabbit skeletal muscle cell culture.
J Physiol
533
(Pt 1):
215–226,
2001.
|
142. |
Merrill GF,
Kurth EJ,
Hardie DG,
Winder WW.
AICA riboside increases AMP‐activated protein kinase, fatty acid oxidation, and glucose uptake in rat muscle.
Am J Physiol
273:
E1107–E1112,
1997.
|
143. |
Michael LF,
Wu Z,
Cheatham RB,
Puigserver P,
Adelmant G,
Lehman JJ,
Kelly DP,
Spiegelman BM.
Restoration of insulin‐sensitive glucose transporter (GLUT4) gene expression in muscle cells by the transcriptional coactivator PGC‐1.
Proc Natl Acad Sci U S A
98:
3820–3825,
2001.
|
144. |
Molé PA,
Oscai LB,
Holloszy JO.
Adaptation of muscle to exercise. in levels of palmityl CoA synthetase, and in the capacity to oxidize fatty acids Increase.
J Clin Invest
50:
2323–2330,
1971.
|
145. |
Monsalve M,
Wu Z,
Adelmant G,
Puigserver P,
Fan M,
Spiegelman BM.
Direct coupling of transcription and mRNA processing through the thermogenic coactivator PGC‐1.
Mol Cell
6:
307–316,
2000.
|
146. |
Mora S,
Pessin JE.
The MEF2 A isoform is required for striated muscle‐specific expression of the insulin‐responsive GLUT4 glucose transporter.
J Biol Chem
275:
16323–16328,
2000.
|
147. |
Mortensen OH,
Plomgaard P,
Fischer CP,
Hansen AK,
Pilegaard H,
Pedersen BK.
PGC‐1b is downregulated by training in human skeletal muscle: No effect of training twice every second day vs. daily on expression of the PGC‐1 family once.
J Appl Physiol
103:
1536–1542,
2007.
|
148. |
Mukwevho E,
Kohn TA,
Lang D,
Nyatia E,
Smith J,
Ojuka EO.
Caffeine induces hyperacetylation of histones at the MEF2 site on the Glut4 promoter and increases MEF2 A binding to the site via a CaMK‐dependent mechanism.
Am J Physiol Endocrinol Metab
294:
E582–E588,
2008.
|
149. |
Munday MR,
Carling D,
Hardie DG.
Negative interactions between phosphorylation of acetyl‐CoA carboxylase by the cyclic AMP‐dependent and AMP‐activated protein kinases.
FEBS Lett
235:
144–148,
1988.
|
150. |
Nakatani A,
Han D‐H,
Hansen PA,
Nolte LA,
Host HH,
Hickner RC,
Holloszy JO.
Effect of endurance exercise training on muscle glycogen supercompensation in rats.
J Appl Physiol
82:
711–715,
1997.
|
151. |
Naya FJ,
Mercer B,
Shelton J,
Richardson JA,
Williams RS,
Olson EN.
Stimulation of slow skeletal muscle fiber gene expression by calcineurin in vivo.
J Biol Chem
275:
4545–4548,
2000.
|
152. |
Nazar K,
Brzezinska A,
Kowalski W.
Mechanism of impaired capacity for prolonged muscular work following beta‐adrenergic blockade in dogs.
Pfluegers Arch
336:
72–78,
1972.
|
153. |
Norrbom J,
Sundberg CJ,
Ameln H,
Kraus WE,
Jansson E,
Gustafsson T.
PGC‐1 a mRNA expression is influenced by metabolic perturbation in exercising human skeletal muscle.
J Appl Physiol
96:
189–194,
2004.
|
154. |
Ojuka EO,
Jones TE,
Han D‐H,
Chen M,
Holloszy JO.
Raising Ca2+ in L6 myotubes mimics effects of exercise on mitochondrial biogenesis in muscle.
FASEB J
17:
675–681,
2003.
|
155. |
Ojuka EO,
Jones TE,
Han D‐H,
Chen M,
Wamhoff BR,
Sturek M,
Holloszy JO.
Intermittent increases in cytosolic Ca2+ stimulate mitochondrial biogenesis in muscle cells.
Am J Physiol
283:
E1040–E1045,
2002.
|
156. |
Ojuka EO,
Jones TE,
Nolte LA,
Chen M,
Wamhoff BR,
Sturek M,
Holloszy JO.
Regulation of GLUT4 biogenesis in muscle: Evidence for involvement of AMPK and Ca2+.
Am J Physiol
282:
E1008–E1013,
2002.
|
157. |
Ojuka EO,
Nolte LA,
Holloszy JO.
Increased expression of GLUT‐4 and hexokinase in rat epitrochlearis muscles exposed to AICAR in vitro.
J Appl Physiol
88:
1072–1075,
2000.
|
158. |
Olson EN,
Williams RS.
Calcineurin signaling and muscle remodeling.
Cell
101:
689–692,
2000.
|
159. |
Oscai LB,
Holloszy JO.
Biochemical adaptations in muscle II. Response of mitochondrial ATPase, creatine phosphokinase, and adenylate kinase activities in skeletal muscle to exercise.
J Biol Chem
246:
6968–6972,
1971.
|
160. |
Oscai LB,
Molé PA,
Brei B,
Holloszy JO.
Cardiac growth and respiratory enzyme levels in male rats subjected to a running program.
Am J Physiol
220:
1238–1241,
1971.
|
161. |
Pattengale PK,
Holloszy JO.
Augmentation of skeletal muscle myoglobin by a program of treadmill running.
Am J Physiol
213:
783–785,
1967.
|
162. |
Paul MH,
Sperling E.
Cyclophorase system XXIII. of cyclophorase activity and mitochondrial density in striated muscle Correlation.
Proc Soc Exp Biol Med
79:
352–354,
1952.
|
163. |
Phillips SM,
Green HJ,
Tarnopolsky MA,
Heigenhauser GJF,
Grant SM.
Progressive effect of endurance training on metabolic adaptations in working skeletal muscle.
Am J Physiol Endocrin Metab
270:
E265–E272,
1996.
|
164. |
Phillips SM,
Green HJ,
Tarnopolsky MA,
Heigenhauser GJF,
Hill RE,
Grant SM.
Effects of training duration on substrate turnover and oxidation during exercise.
J Appl Physiol
81:
2182–2191,
1996.
|
165. |
Pilegaard H,
Saltin B,
Neufer PD.
Exercise induces transient transcriptional activation of the PGC‐1 a gene in human skeletal muscle.
J Physiol
546:
851–858,
2003.
|
166. |
Ploug T,
Stallknecht BM,
Pedersen O,
Kahn BB,
Ohkuwa T,
Vinten J,
Galbo H.
Effect of endurance‐training on glucose transport capacity and glucose transporter expression in rat skeletal muscle.
Am J Physiol
259:
E778–E786,
1990.
|
167. |
Posner Jb,
Stern R,
Krebs E.
Effects of electrical stimulation and epinephrine on muscle phosphorylase, phosphorylase b kinase, and adenosine, 3′,5′‐phosphate.
J Biol Chem
240:
982–985,
1965.
|
168. |
Puigserver P,
Adelmant G,
Wu Z,
Fan M,
Xu J,
O'Malley B,
Spiegelman BM.
Activation of PPARgamma coactivator‐1 through transcription factor docking.
Science
286:
1368–1371,
1999.
|
169. |
Puigserver P,
Rhee J,
Lin J,
Wu Z,
Yoon JC,
Zhang C‐Y,
Krauss S,
Mootha VK,
Lowell BB,
Spiegelman BM.
Cytokine stimulation of energy expenditure through p38 MAP kinase activation of PPARgamma coactivator‐1.
Mol Cell
8:
971–982,
2001.
|
170. |
Puigserver P,
Wu Z,
Park CW,
Graves R,
Wright M,
Spiegelman BM.
A cold‐inducible coactivator of nuclear receptors linked to adaptive thermogenesis.
Cell
92:
829–839,
1998.
|
171. |
Putman CT,
Kiricsi M,
Pearcey J,
MacLean IM,
Bamford JA,
Murdoch GK,
Dixon WT,
Pette D.
AMPK activation increases uncoupling protein‐3 expression and mitochondrial enzyme activities in rat muscle without fibre type transitions.
J Physiol
551:
169–178,
2003.
|
172. |
Ramachandran B,
Yu G,
Gulick T.
Nuclear respiratory factor 1 controls myocyte enhancer factor 2 A transcription to provide a mechanism for coordinate expression of respiratory chain subunits.
J Biol Chem
283:
11935–11946,
2008.
|
173. |
Randle PJ,
Newsholme EA,
Garland PB.
Regulation of glucose uptake by muscle: 8. Effects of fatty acids, ketone bodies and pyruvate, and of alloxan diabetes and starvation, on the uptake and metabolic rate of glucose in rat heart and diaphragm muscles.
Biochem J
93:
652–665,
1964.
|
174. |
Reitman J,
Baldwin KM,
Holloszy JO.
Intramuscular triglyceride utilization by red, white, and intermediate skeletal muscle and heart during exhausting exercise.
Proc Soc Exp Biol Med
142:
628–631,
1973.
|
175. |
Ren JM,
Gulve EA,
Cartee GD,
Holloszy JO.
Hypoxia causes glycogenolysis without an increase in percent phosphorylase a in rat skeletal muscle.
Am J Physiol
263:
E1086–E1091,
1992.
|
176. |
Ren JM,
Marshall BA,
Gulve EA,
Gao J,
Johnson DW,
Holloszy JO,
Mueckler M.
Evidence from transgenic mice that glucose transport is rate‐limiting for glycogen deposition and glycolysis in skeletal muscle.
J Biol Chem
268:
16113–16115,
1993.
|
177. |
Ren JM,
Semenkovich CF,
Holloszy JO.
Adaptation of muscle to creatine depletion: Effect on GLUT‐4 glucose transporter expression.
Am J Physiol
264:
C146–C150,
1993.
|
178. |
Ren JM,
Semenkovich CF,
Gulve EA,
Gao J,
Holloszy JO.
Exercise induces rapid increases in GLUT4 expression, glucose transport capacity, and insulin‐stimulated glycogen storage in muscle.
J Biol Chem
269:
14396–14401,
1994.
|
179. |
Rennie MJ,
Fell RD,
Ivy JL,
Holloszy JO.
Adrenaline reactivation of muscle phosphorylase after deactivation during phasic contractile activity.
Biosci Rep
2:
323–331,
1982.
|
180. |
Rennie MJ,
Holloszy JO.
Inhibition of glucose uptake and glycogen utilization in well‐oxygenated skeletal muscle by the availability of exogenous oleate.
Biochem J
168:
161–170,
1977.
|
181. |
Rennie MJ,
Winder WW,
Holloszy JO.
A sparing effect of increased plasma fatty acids on muscle and liver glycogen content in the exercising rat.
Biochem J
156:
647–655,
1976.
|
182. |
Richter EA,
Ruderman NB,
Gavras H,
Belur ER,
Galbo H.
Muscle glycogenolysis during exercise: Dual control by epinephrine and contractions.
Am J Physiol
242:
E25–E32,
1982.
|
183. |
Robbins JL,
Duscha BD,
Bensimhon DR,
Wasserman K,
Hansen JE,
Houmard JA,
Annex BH,
Kraus WE.
A sex‐specific relationship between capillary density and anaerobic threshold.
J Appl Physiol
106:
1181–1186,
2009.
|
184. |
Roberts TJ,
Weber J‐M,
Hoppeler H,
Weibel ER,
Taylor CR.
Design of the oxygen and substrate pathways. II. Defining the upper limits of carbohydrate and fat oxidation.
J Exp Biol
199:
1651–1658,
1996.
|
185. |
Robinson S,
Harmon PM.
The lactic acid mechanism and certain properties of the blood in relation to training.
Am J Physiol
132:
757–769,
1941.
|
186. |
Rodnick KJ,
Henriksen EJ,
James DE,
Holloszy JO.
Exercise‐training, glucose transporters and glucose transport in rat skeletal muscles.
Am J Physiol
262:
C9–C14,
1992.
|
187. |
Rodnick KJ,
Holloszy JO,
Mondon CE,
James DE.
Effects of exercise‐training on insulin‐regulatable glucose‐transporter protein levels in rat skeletal muscle.
Diabetes
39:
1425–1429,
1990.
|
188. |
Romijn JA,
Coyle EF,
Sidossis LS,
Gastaldelli A,
Horowitz JF,
Endert E,
Wolfe RR.
Regulation of endogenous fat and carbohydrate metabolism in relation to exercise intensity and duration.
Am J Physiol
265:
E380–E391,
1993.
|
189. |
Rose AJ,
Hargreaves M.
Exercise increases Ca2+‐calmodulin‐dependent protein kinase II activity in human skeletal muscle.
J Physiol
553:
303–309,
2003.
|
190. |
Rose AJ,
Kiens B,
Richter EA.
Ca2+‐calmodulin dependent protein kinase expression and signaling in skeletal muscle during exercise.
J Physiol
574:
889–903,
2006.
|
191. |
Russell AP,
Feilchenfeldt J,
Schreiber S,
Praz M,
Crettenand A,
Gobelet C,
Meier CA,
Bell DR,
Kralli A,
Giacobino JP,
Dériaz O.
Endurance training in humans leads to fiber type‐specific increases in levels of peroxisome proliferator‐activated receptor‐gamma coactivator‐1 and peroxisome proliferator‐activated receptor‐alpha in skeletal muscle.
Diabetes
52:
2874–2881,
2003.
|
192. |
Russell AP,
Hesselink MKC,
Lo SK,
Schrauwen P.
Regulation of metabolic transcriptional co‐activators and transcription factors with acute exercise.
FASEB J
19:
986–988,
2005.
|
193. |
Ryder JW,
Bassel‐Duby R,
Olson EN,
Zierath JR.
Skeletal muscle reprogramming by activation of calcineurin improves insulin action on metabolic pathways.
J Biol Chem
278:
44298–44304,
2003.
|
194. |
Saltin B.
The interplay between peripheral and central factors in the adaptive response to exercise and training.
Ann NY Acad Sci
301:
224–232,
1977.
|
195. |
Saltin B,
Blomquist G,
Mitchell JH,
Johnson RL,
Wildenthal K,
Chapman CB.
Response to exercise after bed rest and after training.
Circulation
38:
1–78,
1968.
|
196. |
Scarpulla RC.
Transcriptional paradigms in mammalian mitochondrial biogenesis and function.
Physiol Rev
88:
611–638,
2008.
|
197. |
Schaeffer PJ,
Wende AR,
Magee CJ,
Neilson JR,
Leone TC,
Chen F,
Kelly DP.
Calcineurin and calcium/calmoduln‐dependent protein kinase activate distinct metabolic gene regulatory programs in cardiac muscle.
J Biol Chem
279:
39593–39603,
2004.
|
198. |
Schimke RT.
Regulation of protein degradation in mammalian tissues. In:
Munro HNM, editor.
Mammalian Protein Metabolism.
New York:
Academic,
1970, p.
177–228.
|
199. |
Schrauwen P,
van Aggel‐Leijssen DPC,
Hul G,
Wagenmakers AJM,
Vidal H,
Saris WHM,
van Baak MA.
The effect of a 3‐month low‐intensity endurance training program on fat oxidation and acetyl‐CoA carboxylase‐2 expression.
Diabetes
51:
2220–2226,
2002.
|
200. |
Schrauwen‐Hinderling VB,
Hesselink MKC,
Schrauwen P,
Kooi ME.
Intramyocellular lipid content in human skeletal muscle.
Obesity
14:
357–367,
2006.
|
201. |
Schreiber SN,
Knutti D,
Brogli K,
Uhlmann T,
Kralli A.
The transcriptional coactivator PGC‐1 regulates the expression and activity of the orphan nuclear receptor estrogen‐related receptor alpha (ERRalpha).
J Biol Chem
278:
9013–9018,
2003.
|
202. |
Shadel GS,
Clayton DA.
Mitochondrial DNA maintenance in vertebrates.
Annu Rev Biochem
66:
409–435,
1997.
|
203. |
Short KR,
Vittone JL,
Bigelow ML,
Proctor DN,
Rizza RA,
Coenen‐Schimke JM,
Nair KS.
Impact of aerobic exercise training on age‐related changes in insulin sensitivity and muscle oxidative capacity.
Diabetes
52:
1888–1896,
2003.
|
204. |
Shoubridge EA,
Challis AJ,
Hayes DJ,
Radda GK.
Biochemical adaptation in the skeletal muscle of rats depleted of creatine with the substrate analogue beta‐guanidinopropionic acid.
Biochem J
232:
125–131,
1985.
|
205. |
Sim AT,
Hardie DG.
The low activity of acetyl‐CoA carboxylase in basal and glucagon‐stimulated hepatocytes is due to phosphorylation by the AMP‐activated protein kinase and not cyclic AMP‐dependent protein kinase.
FEBS Lett
233:
294–298,
1988.
|
206. |
Smith JA,
Collins M,
Grobler LA,
Magee CJ,
Ojuka EO.
Exercise and CaMK activation both increase the binding of MEF2A to the Glut4 promoter in skeletal muscle in vivo.
Am J Physiol Endocrinol Metab
292:
E413–E420,
2007.
|
207. |
Smith JA,
Kohn TA,
Chetty AK,
Ojuka EO.
CaMK activation during exercise is required for histone hyperacetylation and MEF2A binding at the MEF2 site onthe Glut4 gene.
Am J Physiol Endocrinol Metab
295:
E698–E704,
2008.
|
208. |
Spina RJ,
Chi MMY,
Hopkins MG,
Nemeth PM,
Lowry OH,
Holloszy JO.
Mitochondrial enzymes increase in muscle in response to 7‐10 days of cycle exercise.
J Appl Physiol
80:
2250–2254,
1996.
|
209. |
Talanian JL,
Holloway GP,
Snook LA,
Heigenhauser GJF,
Bonen A,
Spriet LL.
Exercise training increases sarcolemmal and mitochondrial fatty acid transport proteins in human skeletal muscle.
Am J Physiol Endocrin Metab
299:
E180–E188,
2010.
|
210. |
Tanner CJ,
Barakat HA,
Dohm GL,
Pories WJ,
MacDonald KG,
Cunningham PR,
Swanson MS,
Houmard JA.
Muscle fiber type is associated with obesity and weight loss.
Am J Physiol Endocrinol Metab
282:
E1191–E1196,
2002.
|
211. |
Terada S,
Goto M,
Kato M,
Kawanaka K,
Shimokawa T,
Tabata I.
Effects of low‐intensity prolonged exercise on PGC‐1 mRNA expression in rat epitrochlearis muscle.
Biochem Biophys Res Commun
296:
350–354,
2002.
|
212. |
Terada S,
Kawanaka K,
Goto M,
Shimokawa T,
Tabata I.
Effects of high‐intensity intermittent swimming on PGC‐1a protein expression in rat skeletal muscle.
Acta Physiol Scand
184:
59–65,
2005.
|
213. |
Terada S,
Nakagawa H,
Nakamura Y,
Muraoka I.
Calcineurin is not involved in some mitochondrial enzyme adaptations to endurance exercise training in rat skeletal muscle.
Eur J Appl Physiol
90:
210–217,
2003.
|
214. |
Thai MV,
Guruswamy S,
Cao KT,
Pessin JE,
Olson AL.
Myocyte enhancer factor‐2 (MEF2)‐binding site is required for GLUT4 gene expression in transgenic mice.
J Biol Chem
273:
14285–14292,
1998.
|
215. |
Turner N,
Bruce CR,
Beale SM,
Hoehn KL,
So T,
Rolph MS,
Cooney GJ.
Excess lipid availability increases mitochondrial fatty acid oxidative capacity in muscle. against a role for reduced fatty acid oxidation in lipid‐induced insulin resistance in rodents Evidence.
Diabetes
56:
2085–2092,
2007.
|
216. |
van Loon LJC.
Use of intramuscular triacylglycerol as a substrate source during exercise in humans.
J Appl Physiol
97:
1170–1187,
2004.
|
217. |
Vega R,
Huss JM,
Kelly DP.
The coactivator PGC‐1 cooperates with peroxisome proliferator‐activated receptor a in transcriptional control of nuclear genes encoding mitochondrial fatty acid oxidation enzymes.
Mol Cell Biol
20:
1868–1876,
2000.
|
218. |
Virbasius JV,
Scarpulla RC.
Activation of the human mitochondrial transcription factor A gene by nuclear respiratory factors: A potential regulatory link between nuclear and mitochondrial gene expression in organelle biogenesis.
Proc Natl Acad Sci U S A
91:
1309–1313,
1994.
|
219. |
Virbasius JV,
Virbasius CA,
Scarpulla RC.
Identity of GABP with NRF‐2, a multisubunit activator of cytochrome oxidase expression, reveals a cellular role for an ETS domain activator of viral promoters.
Genes Dev
7:
380–392,
1993.
|
220. |
Wagner PD.
Determinants of maximal oxygen transport and utilization.
Ann Rev Physiol
58:
21–50,
1996.
|
221. |
Wang Y‐X,
Zhang C‐L,
Yu RT,
Cho HK,
Nelson MC,
Bayuga‐Ocampo CR,
Ham J,
Kang H,
Evans RM.
Regulation of muscle fiber type and running endurance by PPARdelta.
PLOS Biology
2:
1532–1539,
2004.
|
222. |
Wasserman K,
Whipp BJ,
Koyl SN,
Beaver WL.
Anaerobic threshold and respiratory gas exchange during exercise.
J Appl Physiol
35:
236–243,
1973.
|
223. |
Watt MJ,
Heigenhauser GJF,
Spriet LL.
Intramuscular triacylglycerol utilization in human skeletal muscle during exercise: Is there a controversy?
J Appl Physiol
93:
1185–1195,
2002.
|
224. |
Wende AR,
Schaeffer PJ,
Parker GJ,
Zechner C,
Han D‐H,
Chen M,
Hancock CR,
Lehman JJ,
Huss JM,
McClain DA,
Holloszy JO,
Kelly DP.
A role for the transcriptional coactivator PGC‐1a in muscle refueling.
J Biol Chem
282:
36642–36651,
2007.
|
225. |
Winder WW,
Baldwin KM,
Holloszy JO.
Enzymes involved in ketone utilization in different types of muscle: Adaptation to exercise.
Eur J Biochem
47:
461–467,
1974.
|
226. |
Winder WW,
Baldwin KM,
Holloszy JO.
Exercise‐induced increase in the capacity of rat skeletal muscle to oxidize ketones.
Can J Physiol Pharmacol
53:
86–91,
1975.
|
227. |
Winder WW,
Hardie DG.
Inactivation of acetyl‐CoA carboxylase and activation of AMP‐activated protein kinase in muscle during exercise.
Am J Physiol
270:
E299–E304,
1996.
|
228. |
Winder WW,
Hickson RC,
Hagberg JM,
Ehsani AA,
McLane JA.
Training‐induced changes in hormonal and metabolic responses to submaximal exercise.
J Appl Physiol Respirat Environ Exerc Physiol
46:
766–771,
1979.
|
229. |
Winder WW,
Holmes BF,
Rudink DS,
Jensen EB,
Chen M,
Holloszy JO.
Activation of AMP‐activated protein kinase increases mitochondrial enzymes in skeletal muscle.
J Appl Physiol
88:
2219–2226,
2000.
|
230. |
Wright DC,
Geiger PC,
Han D‐H,
Jones TE,
Holloszy JO.
Calcium induces increases in peroxisome proliferator‐activated receptor gamma coactivator‐1a and mitochondrial biogenesis by a pathway leading to p38 mitogen‐activated protein kinase activation.
J Biol Chem
282:
18793–18799,
2007.
|
231. |
Wright DC,
Han D‐H,
Garcia‐Roves PM,
Geiger PC,
Jones TE,
Holloszy JO.
Exercise‐induced mitochondrial biogenesis begins before the increase in muscle PGC‐1alpha expression.
J Biol Chem
282:
194–199,
2007.
|
232. |
Wright DC,
Hucker KA,
Holloszy JO,
Han D‐H.
Ca2+ and AMPK both mediate stimulation of glucose transport by muscle contractions.
Diabetes
53:
330–335,
2004.
|
233. |
Wu H,
Kanatous SB,
Thurmond FA,
Gallardo T,
Isotani E,
Bassel‐Duby R,
Williams RS.
Regulation of mitochondrial biogenesis in skeletal muscle by CaMK.
Science
296:
349–352,
2002.
|
234. |
Wu Z,
Puigserver P,
Andersson U,
Zhang C,
Adelmant G,
Mootha V,
Troy A,
Cinti S,
Lowell B,
Scarpulla RC,
Spiegelman BM.
Mechanisms controlling mitochondrial biogenesis and respiration through the thermogenic coactivator PGC‐1.
Cell
98:
115–124,
1999.
|
235. |
Youn JH,
Gulve EA,
Holloszy JO.
Calcium stimulates glucose transport in skeletal muscle by a pathway independent of contraction.
Am J Physiol
260:
C555–C561,
1991.
|
236. |
Zaid A,
Li R,
Luciakova K,
Barath P,
Nery S,
Nelson BD.
On the role of the general transcription factor Sp1 in the activation and repression of diverse mammalian oxidative phosphorylation genes.
J Bioenerg Biomembr
31:
129–135,
1999.
|
237. |
Zhang Y,
Huypens P,
Adamson AW,
Chang JS,
Henagan TM,
Boudreau A,
Lenard NR,
Burk D,
Klein J,
Perwitz N,
Shin J,
Fasshauer M,
Kralli A,
Gettys TW.
Alternative mRNA splicing produces a novel biologically active short isoform of PGC‐1a.
J Biol Chem
284:
32813–32826,
2009.
|
238. |
Zheng D,
MacLean PS,
Pohnert SC,
Knight JB,
Olson AL,
Winder WW,
Dohm GL.
Regulation of muscle GLUT‐4 transcription by AMP‐activated protein kinase.
J Appl Physiol
91:
1073–1083,
2001.
|
239. |
Zong H,
Ren JM,
Young LH,
Pypaert M,
Mu J,
Birnbaum MJ,
Shulman GI.
AMP kinase is required for mitochondrial biogenesis in skeletal muscle in response to chronic energy deprivation.
Proc Nalt Acad Sci U S A
99:
15983–15987,
2002.
|
Further Reading |
1. |
Hood DA.
Mechanisms of exercise‐induced mitochondrial biogenesis in skeletal muscle.
Appl Physiol Nutr Metab
34:
465–472,
2009. |
2. |
Jensen TE,
Wojtaszewski JFP,
Richter EA.
AMP‐activated protein kinase in contraction regulation of skeletal muscle metabolism: Necessary and/or sufficient.
Acta Physiol
196:
155–174,
2009. |
3. |
Lanza IR,
Nair KS.
Muscle mitochondrial changes with aging and exercise.
Am J Clin Nutr
89:
467S–471S,
2009. |
4. |
Lanza IR,
Short DK,
Short KR,
Raghavakaimal S,
Basu R,
Joyner MJ,
McConnell JP,
Nair KS.
Endurance exercise as a countermeasure for aging.
Diabetes
57:
2933–2942,
2008. |
5. |
Lira VA,
Benton CR,
Yan Z,
Bonen A.
PGC‐1 a regulation by exercise training and its influences on muscle function and insulin sensitivity.
Am J Physiol Endocrinol Metab
299:
E145–E161,
2010. |
6. |
Ljubicic V,
Joseph AM,
Saleem A,
Uguccioni G,
Collu‐Marchese M,
Lai RY,
Nguyen LM,
Hood DA.
Transcriptional and post‐transcriptional regulation of mitochondrial biogenesis in skeletal muscle: Effects of exercise and aging.
Biochim Biophys Acta
1800:
223–234,
2010. |
7. |
Scarpulla RC.
Transcriptional paradigms in mammalian mitochondrial biogenesis and function.
Physiol Rev
88:
611–638,
2008. |