References |
1. |
Abbott CP,
De Burgh Daly M ,
Howe A.
Early ultrastructural changes in the carotid body after degenerative section of the carotid sinus nerve in the cat.
Acta Anat
83:
161‐183,
1972.
|
2. |
Abraham A.
Electron microscopic investigations on the human carotid body. (Preliminary communication).
Z Mikrosk Anat Forsch
79:
309‐315,
1968.
|
3. |
Abu‐Soud HM,
Rousseau DL,
Stuehr DJ.
Nitric oxide binding to the heme of neuronal nitric‐oxide synthase links its activity to changes in oxygen tension.
J Biol Chem
271:
32515‐32518,
1996.
|
4. |
Abudara V,
Garces G,
Saez JC.
Cells of the carotid body express connexin43 which is up‐regulated by cAMP.
Brain Res
849:
25‐33,
1999.
|
5. |
Abudara V,
Jiang RG,
Eyzaguirre C.
Acidic regulation of junction channels between glomus cells in the rat carotid body. Possible role of [Ca(2+)](i).
Brain Res
916:
50‐60,
2001.
|
6. |
Abudara V,
Jiang RG,
Eyzaguirre C.
Behavior of junction channels between rat glomus cells during normoxia and hypoxia.
J Neurophysiol
88:
639‐649,
2002.
|
7. |
Acker H.
The meaning of tissue pO2 and local blood flow for the chemoreceptive process of the carotid body.
Fed Proc
39:
2641‐2647,
1980.
|
8. |
Acker H.
Mechanisms and meaning of cellular oxygen sensing in the organism.
Respir Physiol
95:
1‐10,
1994.
|
9. |
Acker H,
Bolling B,
Delpiano MA,
Dufau E,
Gorlach A,
Holtermann G.
The meaning of H2O2 generation in carotid body cells for PO2 chemoreception.
J Auton Nerv Syst
41:
41‐51,
1992.
|
10. |
Acker H,
Lubbers DW.
The kinetics of local tissue PO2 decrease after perfusion stop within the carotid body of the cat in vivo and in vitro.
Pflugers Arch
369:
135‐140,
1977.
|
11. |
Acker H,
Lubbers DW,
Durst H.
The relationship between local flow and total flow of the cat carotid body at changes of blood pressure, arterial pO2 and pCO2.
Bibl Anat:
395‐398,
1977.
|
12. |
Acker H,
Lubbers DW,
Purves MJ.
Local oxygen tension field in the glomus caroticum of the cat and its change at changing arterial PO2.
Pflugers Arch
329:
136‐155,
1971a.
|
13. |
Acker H,
Lubbers DW,
Purves MJ.
The distribution of oxygen tension in the carotid body of the cat.
J Physiol
216:
78P‐79P,
1971b.
|
14. |
Acker H,
O'Regan RG.
The effects of stimulation of autonomic nerves on carotid body blood flow in the cat.
J Physiol
315:
99‐110,
1981.
|
15. |
Acker H,
Starlinger H.
Adenosine triphosphate content in the cat carotid body under different arterial O2 and CO2 conditions.
Neurosci Lett
50:
175‐179,
1984.
|
16. |
Adams E.
The Comparative Morphology of the Carotid Body and Carotid Sinus.
Sprigfield, Illinois:
Thomas,
1958.
|
17. |
Agapito MT,
Sanz‐Alfayate G,
Gomez‐Nino A,
Gonzalez C,
Obeso A.
General redox environment and carotid body chemoreceptor function.
Am J Physiol Cell Physiol
296:
C620‐C631,
2009.
|
18. |
Ahmad HR,
Loeschcke HH.
Transient and steady state responses of pulmonary ventilation to the medullary extracellular pH after approximately rectangular changes in alveolar PCO2.
Pflugers Arch
395:
285‐292,
1982.
|
19. |
Aickin CC.
Direct measurement of intracellular pH and buffering power in smooth muscle cells of guinea‐pig vas deferens.
J Physiol
349:
571‐585,
1984.
|
20. |
Aickin CC,
Thomas RC.
An investigation of the ionic mechanism of intracellular pH regulation in mouse soleus muscle fibres.
J Physiol
273:
295‐316,
1977.
|
21. |
Alcayaga J,
Barrios M,
Bustos F,
Miranda G,
Molina MJ,
Iturriaga R.
Modulatory effect of nitric oxide on acetylcholine‐induced activation of cat petrosal ganglion neurons in vitro.
Brain Res
825:
194‐198,
1999.
|
22. |
Alcayaga J,
Cerpa V,
Retamal M,
Arroyo J,
Iturriaga R,
Zapata P.
Adenosine triphosphate‐induced peripheral nerve discharges generated from the cat petrosal ganglion in vitro.
Neurosci Lett
282:
185‐188,
2000.
|
23. |
Alcayaga J,
Iturriaga R,
Ramirez J,
Readi R,
Quezada C,
Salinas P.
Cat carotid body chemosensory responses to non‐hypoxic stimuli are inhibited by sodium nitroprusside in situ and in vitro.
Brain Res
767:
384‐387,
1997.
|
24. |
Alcayaga J,
Iturriaga R,
Varas R,
Arroyo J,
Zapata P.
Selective activation of carotid nerve fibers by acetylcholine applied to the cat petrosal ganglion in vitro.
Brain Res
786:
47‐54,
1998.
|
25. |
Alcayaga J,
Retamal M,
Cerpa V,
Arroyo J,
Zapata P.
Dopamine inhibits ATP‐induced responses in the cat petrosal ganglion in vitro.
Brain Res
966:
283‐287,
2003.
|
26. |
Alcayaga J,
Sanhueza Y,
Zapata P.
Thermal dependence of chemosensory activity in the carotid body superfused in vitro.
Brain Res
600:
103‐111,
1993.
|
27. |
Alcayaga J,
Soto CR,
Vargas RV,
Ortiz FC,
Arroyo J,
Iturriaga R.
Carotid body transmitters actions on rabbit petrosal ganglion in vitro.
Adv Exp Med Biol
580:
331‐337; discussion
351‐339,
2006.
|
28. |
Alcayaga J,
Varas R,
Arroyo J,
Iturriaga R,
Zapata P.
Dopamine modulates carotid nerve responses induced by acetylcholine on the cat petrosal ganglion in vitro.
Brain Res
831:
97‐103,
1999a.
|
29. |
Alcayaga J,
Varas R,
Arroyo J,
Iturriaga R,
Zapata P.
Responses to hypoxia of petrosal ganglia in vitro.
Brain Res
845:
28‐34,
1999b.
|
30. |
Allen AM.
Angiotensin AT1 receptor‐mediated excitation of rat carotid body chemoreceptor afferent activity.
J Physiol
510(Pt 3):
773‐781,
1998.
|
31. |
Almaraz L,
Obeso A,
Gonzalez C.
Metabolic dissociation of carotid body chemoreceptor responses to different types of stimulation: Preliminary findings. In:
Pallot DJ, editor.
The Peripheral Arterial Chemoreceptors.
London:
Croom Helm,
1984,
p. 141‐151.
|
32. |
Almaraz L,
Perez‐Garcia MT,
Gomez‐Nino A,
Gonzalez C.
Mechanisms of alpha2‐adrenoceptor‐mediated inhibition in rabbit carotid body.
Am J Physiol
272:
C628‐C637,
1997.
|
33. |
Almaraz L,
Wang ZZ,
Stensaas LJ,
Fidone SJ.
Release of dopamine from carotid sinus nerve fibers innervating type I cells in the cat carotid body.
Biol Signals
2:
16‐26,
1993.
|
34. |
Alvarez‐Buylla R.
Oscillographic study on activity of chemoreceptors of the carotid glomus in decerebrated cats.
Arch Inst Cardiol Mex
21:
724‐739,
1951.
|
35. |
Alvarez‐Buylla R and
de Alvarez‐Buylla ER.
Carotid sinus receptors participate in glucose homeostasis.
Respir Physiol
72:
347‐359,
1988.
|
36. |
Ambrosio G,
Zweier JL,
Duilio C,
Kuppusamy P,
Santoro G,
Elia PP,
Tritto I,
Cirillo P,
Condorelli M,
Chiariello M,
et al.
Evidence that mitochondrial respiration is a source of potentially toxic oxygen free radicals in intact rabbit hearts subjected to ischemia and reflow.
J Biol Chem
268:
18532‐18541,
1993.
|
37. |
Anderson DJ.
Molecular control of cell fate in the neural crest: The sympathoadrenal lineage.
Annu Rev Neurosci
16:
129‐158,
1993.
|
38. |
Andersson PO,
Bloom SR,
Edwards AV,
Jarhult J.
Effects of stimulation of the chorda tympani in bursts on submaxillary responses in the cat.
J Physiol
322:
469‐483,
1982.
|
39. |
Andrews WH,
Deane BM,
Howe A,
Orbach J.
Abdominal chemoreceptors in the rat.
J Physiol
222:
84P‐85P,
1972.
|
40. |
Angel P,
Karin M.
The role of Jun, Fos and the AP‐1 complex in cell‐proliferation and transformation.
Biochim Biophys Acta
1072:
129‐157,
1991.
|
41. |
Angell‐James JE,
Clarke JA,
Daly MD,
Taton A.
Respiratory and cardiovascular responses to hyperoxia, hypoxia and hypercapnia in the renal hypertensive rabbit: Role of carotid body chemoreceptors.
J Hypertens
3:
213‐223,
1985.
|
42. |
Anichkov SV,
Belen'kii ML.
Pharmacology of the Carotid Body Chemoreceptors.
Oxford:
Pergamon Press,
1963.
|
43. |
Arias‐Stella J,
Valcarcel J.
Chief cell hyperplasia in the human carotid body at high altitudes; physiologic and pathologic significance.
Hum Pathol
7:
361‐373,
1976.
|
44. |
Arjona V,
Minguez‐Castellanos A,
Montoro RJ,
Ortega A,
Escamilla F,
Toledo‐Aral JJ,
Pardal R,
Mendez‐Ferrer S,
Martin JM,
Perez M,
Katati MJ,
Valencia E,
Garcia T,
Lopez‐Barneo J.
Autotransplantation of human carotid body cell aggregates for treatment of Parkinson's disease.
Neurosurgery
53:
321‐328; discussion
328‐330,
2003.
|
45. |
Augustine GJ,
Neher E.
Calcium requirements for secretion in bovine chromaffin cells.
J Physiol
450:
247‐271,
1992.
|
46. |
Bairam A,
Dauphin C,
Rousseau F,
Khandjian EW.
Expression of dopamine D2‐receptor mRNA isoforms at the peripheral chemoreflex afferent pathway in developing rabbits.
Am J Respir Cell Mol Biol
15:
374‐381,
1996.
|
47. |
Bairam A,
De Grandpre P,
Dauphin C,
Marchal F.
Effects of caffeine on carotid sinus nerve chemosensory discharge in kittens and cats.
J Appl Physiol
82:
413‐418,
1997.
|
48. |
Bairam A,
Frenette J,
Dauphin C,
Carroll JL,
Khandjian EW.
Expression of dopamine D1‐receptor mRNA in the carotid body of adult rabbits, cats and rats.
Neurosci Res
31:
147‐154,
1998.
|
49. |
Bairam A,
Neji H,
Kinkead R,
Marchal F.
Carbachol effect on carotid body dopamine in vitro release in response to hypoxia in adult and pup rabbit.
Neurosci Res
40:
183‐188,
2001.
|
50. |
Bairam A,
Neji H,
Marchal F.
Cholinergic dopamine release from the in vitro rabbit carotid body.
J Appl Physiol
88:
1737‐1742,
2000.
|
51. |
Ballard KJ,
Jones JV.
The fine structural localization of cholinesterases in the carotid body of the cat.
J Physiol
219:
747‐753,
1971.
|
52. |
Ballard KJ,
Jones JV.
Demonstration of choline acetyltransferase activity in the caotid body of the cat.
J Physiol
227:
87‐94,
1972.
|
53. |
Ballard T,
Blakeman N,
Pallot DJ,
Al‐Neamy KA.
Quantitative ultrastructural studies of the cat carotid body. I. General stereology of tissue components.
Acta Anat (Basel)
113:
47‐52,
1982.
|
54. |
Band DM,
Linton RA.
The effect of potassium on carotid body chemoreceptor discharge in the anaesthetized cat.
J Physiol
381:
39‐47,
1986.
|
55. |
Band DM,
Linton RA.
The effect of hypoxia on the response of the carotid body chemoreceptor to potassium in the anaesthetized cat.
Respir Physiol
72:
295‐301,
1988.
|
56. |
Band DM,
Linton RA,
Kent R,
Kurer FL.
The effect of peripheral chemodenervation on the ventilatory response to potassium.
Respir Physiol
60:
217‐225,
1985.
|
57. |
Band DM,
McClelland M,
Phillips DL,
Saunders KB,
Wolff CB.
Sensitivity of the carotid body to within‐breath changes in arterial PCO2.
J Appl Physiol
45:
768‐777,
1978.
|
58. |
Band DM,
Wolff CB,
Ward J,
Cochrane GM,
Prior J.
Respiratory oscillations in arterial carbon dioxide tension as a control signal in exercise.
Nature
283:
84‐85,
1980.
|
59. |
Barnard P,
Andronikou S,
Pokorski M,
Smatresk N,
Mokashi A,
Lahiri S.
Time‐dependent effect of hypoxia on carotid body chemosensory function.
J Appl Physiol
63:
685‐691,
1987.
|
60. |
Barnett S,
Mulligan E,
Wagerle LC,
Lahiri S.
Measurement of carotid body blood flow in cats by use of radioactive microspheres.
J Appl Physiol
65:
2484‐2489,
1988.
|
61. |
Baron M,
Eyzaguirre C.
Thermal responses of carotid body cells.
J Neurobiol
6:
521‐527,
1975.
|
62. |
Baron M,
Eyzaguirre C.
Effects of temperature on some membrane characteristics of carotid body cells.
Am J Physiol
233:
C35‐C46,
1977.
|
63. |
Bartels H,
Witzleb E.
Effect of arterial carbon dioxide pressure on chemoreceptor action potentials in the carotid sinus nerves.
Pflugers Arch
262:
466‐472,
1956.
|
64. |
Bavis RW,
Wenninger JM,
Miller BM,
Dmitrieff EF,
Olson EB Jr,
Mitchell GS,
Bisgard GE.
Respiratory plasticity after perinatal hyperoxia is not prevented by antioxidant supplementation.
Respir Physiol Neurobiol
160:
301‐312,
2008.
|
65. |
Bayliss DA,
Sirois JE,
Talley EM.
The TASK family: Two‐pore domain background K+ channels.
Mol Interv
3:
205‐219,
2003.
|
66. |
Belmonte C,
Rigual R,
Gallego R.
Responses of carotid nerve fibres regenerating into the superior cervical ganglion. In:
Belmonte C,
Pallot D,
Acker H,
Fidone S, editors.
Arterial Chemoreceptors.
Leicester:
Leicester University Press,
1981,
p. 125‐132.
|
67. |
Benot AR,
Lopez‐Barneo J.
Feedback inhibition of Ca2+ currents by dopamine in glomus cells of the carotid body.
Eur J Neurosci
2:
809‐812,
1990.
|
68. |
Berger AJ.
Distribution of carotid sinus nerve afferent fibers to solitary tract nuclei of the cat using transganglionic transport of horseradish peroxidase.
Neurosci Lett
14:
153‐158,
1979.
|
69. |
Bernthal T,
Weeks WF.
Respiratory and vasomotor effects of variations in carotid body temperature. A study of the mechanism of chemoreceptor stimulation.
Am J Physiol
127:
94‐105,
1939.
|
70. |
Bin‐Jaliah I,
Maskell PD,
Kumar P.
Indirect sensing of insulin‐induced hypoglycaemia by the carotid body in the rat.
J Physiol
556:
255‐266,
2004.
|
71. |
Bin‐Jaliah I,
Maskell PD,
Kumar P.
Carbon dioxide sensitivity during hypoglycaemia‐induced, elevated metabolism in the anaesthetized rat.
J Physiol
563:
883‐893,
2005.
|
72. |
Biscoe TJ.
Some effects of drugs on the isolated superfused carotid body.
Nature
208:
294‐295,
1965.
|
73. |
Biscoe TJ.
Carotid body: Structure and function.
Physiol Rev
51:
437‐495,
1971.
|
74. |
Biscoe TJ,
Bradley GW,
Purves MJ.
The relation between carotid body chemoreceptor discharge, carotid sinus pressure and carotid body venous flow.
J Physiol
208:
99‐120,
1970.
|
75. |
Biscoe TJ,
Duchen MR.
Electrophysiological responses of dissociated type I cells of the rabbit carotid body to cyanide.
J Physiol
413:
447‐468,
1989.
|
76. |
Biscoe TJ,
Duchen MR.
Cellular basis of transduction in carotid chemoreceptors.
Am J Physiol
258:
L271‐L278,
1990a.
|
77. |
Biscoe TJ,
Duchen MR.
Responses of type I cells dissociated from the rabbit carotid body to hypoxia.
J Physiol
428:
39‐59,
1990b.
|
78. |
Biscoe TJ,
Duchen MR,
Eisner DA,
O'Neill SC,
Valdeolmillos M.
Measurements of intracellular Ca2+ in dissociated type I cells of the rabbit carotid body.
J Physiol
416:
421‐434,
1989.
|
79. |
Biscoe TJ,
Lall A,
Sampson SR.
Electron microscopic and electrophysiological studies on the carotid body following intracranial section of the glossopharyngeal nerve.
J Physiol
208:
133‐152,
1970.
|
80. |
Biscoe TJ,
Purves MJ,
Sampson SR.
The frequency of nerve impulses in single carotid body chemoreceptor afferent fibres recorded in vivo with intact circulation.
J Physiol
208:
121‐131,
1970.
|
81. |
Biscoe TJ,
Sampson SR.
Spontaneous activity recorded from the central cut end of the carotid sinus nerve of the cat.
Nature
216:
294‐295,
1967a.
|
82. |
Biscoe TJ,
Sampson SR.
Stimulus response curves of single carotid body chemoreceptor afferent fibres.
Nature
215:
654‐655,
1967b.
|
83. |
Biscoe TJ,
Sampson SR.
Rhythmical and non‐rhythmical spontaneous activity recorded from the central cut end of the sinus nerve.
J Physiol
196:
327‐338,
1968.
|
84. |
Biscoe TJ,
Silver A.
The distribution of cholinesterases in the cat carotid body.
J Physiol
183:
501‐512,
1966.
|
85. |
Biscoe TJ,
Stehbens WE.
Ultrastructure of the carotid body.
J Cell Biol
30:
563‐578,
1966.
|
86. |
Bisgard GE.
Carotid body mechanisms in acclimatization to hypoxia.
Respir Physiol
121:
237‐246,
2000.
|
87. |
Bisgard GE,
Forster HV,
Klein JP.
Recovery of peripheral chemoreceptor function after denervation in ponies.
J Appl Physiol
49:
964‐970,
1980.
|
88. |
Bisgard GE,
Mitchell RA,
Herbert DA.
Effects of dopamine, norepinephrine and 5‐hydroxytryptamine on the carotid body of the dog.
Respir Physiol
37:
61‐80,
1979.
|
89. |
Bisgard GE,
Olson EB Jr,
Wang ZY,
Bavis RW,
Fuller DD,
Mitchell GS.
Adult carotid chemoafferent responses to hypoxia after 1, 2, and 4 wk of postnatal hyperoxia.
J Appl Physiol
95:
946‐952,
2003.
|
90. |
Black AM,
McCloskey DI,
Torrance RW.
The responses of carotid body chemoreceptors in the cat to sudden changes of hypercapnic and hypoxic stimuli.
Respir Physiol
13:
36‐49,
1971.
|
91. |
Blain GM,
Smith CA,
Henderson KS,
Dempsey JA.
Contribution of the carotid body chemoreceptors to eupneic ventilation in the intact, unanesthetized dog.
J Appl Physiol
106:
1564‐1573,
2009.
|
92. |
Blain GM,
Smith CA,
Henderson KS,
Dempsey JA.
Peripheral chemoreceptors determine the respiratory sensitivity of central chemoreceptors to CO(2).
J Physiol
588:
2455‐2471,
2010.
|
93. |
Blanco CE,
Dawes GS,
Hanson MA,
McCooke HB.
The response to hypoxia of arterial chemoreceptors in fetal sheep and new‐born lambs.
J Physiol
351:
25‐37,
1984.
|
94. |
Bock P.
Adenine nucleotides in the carotid body.
Cell Tissue Res
206:
279‐290,
1980a.
|
95. |
Bock P.
Histochemical demonstration of adenine nucleotides in carotid body type I cells.
Adv Biochem Psychopharmacol
25:
235‐239,
1980b.
|
96. |
Bolle T,
Lauweryns JM,
Lommel AV.
Postnatal maturation of neuroepithelial bodies and carotid body innervation: A quantitative investigation in the rabbit.
J Neurocytol
29:
241‐248,
2000.
|
97. |
Botre F,
Botre C,
Greco A,
Data PG,
Di Giulio C,
Morelli L.
Potentiometric determination of carbonic anhydrase activity in rabbit carotid bodies: Comparison among normoxic, hyperoxic and hypoxic animals.
Neurosci Lett
166:
126‐130,
1994.
|
98. |
Brazier SP,
Telezhkin V,
Mears R,
Muller CT,
Riccardi D,
Kemp PJ.
Cysteine residues in the C‐terminal tail of the human BK(Ca)alpha subunit are important for channel sensitivity to carbon monoxide.
Adv Exp Med Biol
648:
49‐56,
2009.
|
99. |
Bright GR,
Agani FH,
Haque U,
Overholt JL,
Prabhakar NR.
Heterogeneity in cytosolic calcium responses to hypoxia in carotid body cells.
Brain Res
706:
297‐302,
1996.
|
100. |
Bruce EN,
Cherniack NS.
Central chemoreceptors.
J Appl Physiol
62:
389‐402,
1987.
|
101. |
Buckler KJ.
A novel oxygen‐sensitive potassium current in rat carotid body type I cells.
J Physiol
498(Pt 3):
649‐662,
1997.
|
102. |
Buckler KJ.
TASK‐like potassium channels and oxygen sensing in the carotid body.
Respir Physiol Neurobiol
157:
55‐64,
2007.
|
103. |
Buckler KJ,
Honore E.
The lipid‐activated two‐pore domain K+ channel TREK‐1 is resistant to hypoxia: Implication for ischaemic neuroprotection.
J Physiol
562:
213‐222,
2005.
|
104. |
Buckler KJ,
Vaughan‐Jones RD.
Application of a new pH‐sensitive fluoroprobe (carboxy‐SNARF‐1) for intracellular pH measurement in small, isolated cells.
Pflugers Arch
417:
234‐239,
1990.
|
105. |
Buckler KJ,
Vaughan‐Jones RD.
Effects of acidic stimuli on intracellular calcium in isolated type I cells of the neonatal rat carotid body.
Pflugers Arch
425:
22‐27,
1993.
|
106. |
Buckler KJ,
Vaughan‐Jones RD.
Effects of hypercapnia on membrane potential and intracellular calcium in rat carotid body type I cells.
J Physiol
478(Pt 1):
157‐171,
1994a.
|
107. |
Buckler KJ,
Vaughan‐Jones RD.
Effects of hypoxia on membrane potential and intracellular calcium in rat neonatal carotid body type I cells.
J Physiol
476:
423‐428,
1994b.
|
108. |
Buckler KJ,
Vaughan‐Jones RD.
Role of intracellular pH and [Ca2+]i in acid chemoreception in type‐I cells of the carotid body.
Adv Exp Med Biol
360:
41‐55,
1994c.
|
109. |
Buckler KJ,
Vaughan‐Jones RD.
Effects of mitochondrial uncouplers on intracellular calcium, pH and membrane potential in rat carotid body type I cells.
J Physiol
513(Pt 3):
819‐833,
1998.
|
110. |
Buckler KJ,
Vaughan‐Jones RD,
Peers C,
Lagadic‐Gossmann D,
Nye PC.
Effects of extracellular pH, PCO2 and HCO3‐ on intracellular pH in isolated type‐I cells of the neonatal rat carotid body.
J Physiol
444:
703‐721,
1991.
|
111. |
Buckler KJ,
Vaughan‐Jones RD,
Peers C,
Nye PC.
Intracellular pH and its regulation in isolated type I carotid body cells of the neonatal rat.
J Physiol
436:
107‐129,
1991.
|
112. |
Buckler KJ,
Williams BA,
Honore E.
An oxygen‐, acid‐ and anaesthetic‐sensitive TASK‐like background potassium channel in rat arterial chemoreceptor cells.
J Physiol
525:
135‐142,
2000.
|
113. |
Buerk DG,
Nair PK,
Whalen WJ.
Evidence for second metabolic pathway for O2 from PtiO2 measurements in denervated cat carotid body.
J Appl Physiol
67:
1578‐1584,
1989.
|
114. |
Buniel M,
Glazebrook PA,
Ramirez‐Navarro A,
Kunze DL.
Distribution of voltage‐gated potassium and hyperpolarization‐activated channels in sensory afferent fibers in the rat carotid body.
J Comp Neurol
510:
367‐377,
2008.
|
115. |
Buniel MC,
Schilling WP,
Kunze DL.
Distribution of transient receptor potential channels in the rat carotid chemosensory pathway.
J Comp Neurol
464:
404‐413,
2003.
|
116. |
Bunn HF,
Poyton RO.
Oxygen sensing and molecular adaptation to hypoxia.
Physiol Rev
76:
839‐885,
1996.
|
117. |
Burcelin R,
Knauf C,
Cani PD.
Pancreatic alpha‐cell dysfunction in diabetes.
Diabetes Metab
34
Suppl 2:
S49‐S55,
2008.
|
118. |
Burdakov D,
Jensen LT,
Alexopoulos H,
Williams RH,
Fearon IM,
O'Kelly I,
Gerasimenko O,
Fugger L,
Verkhratsky A.
Tandem‐pore K+ channels mediate inhibition of orexin neurons by glucose.
Neuron
50:
711‐722,
2006.
|
119. |
Burdakov D,
Luckman SM,
Verkhratsky A.
Glucose‐sensing neurons of the hypothalamus.
Philos Trans R Soc Lond B Biol Sci
360:
2227‐2235,
2005.
|
120. |
Burger RE,
Estavillo JA,
Kumar P,
Nye PC,
Paterson DJ.
Effects of potassium, oxygen and carbon dioxide on the steady‐state discharge of cat carotid body chemoreceptors.
J Physiol
401:
519‐531,
1988.
|
121. |
Burleson ML,
Milsom WK.
Comparative aspects of O2 chemoreception. In:
Lahiri S,
Semenza GL,
Prabhakar N, editors.
Oxygen Sensing. Responses and Adaptation to Hypoxia.
New York:
Marcel Dekker,
2003,
p. 685‐707.
|
122. |
Buttigieg J,
Nurse CA.
Detection of hypoxia‐evoked ATP release from chemoreceptor cells of the rat carotid body.
Biochem Biophys Res Commun
322:
82‐87,
2004.
|
123. |
Caceres AI,
Gonzalez‐Obeso E,
Gonzalez C,
Rocher A.
RT‐PCR and pharmacological analysis of L‐and T‐type calcium channels in rat carotid body.
Adv Exp Med Biol
648:
105‐112,
2009.
|
124. |
Caceres AI,
Obeso A,
Gonzalez C,
Rocher A.
Molecular identification and functional role of voltage‐gated sodium channels in rat carotid body chemoreceptor cells. Regulation of expression by chronic hypoxia in vivo.
J Neurochem
102:
231‐245,
2007.
|
125. |
Cadenas JL,
Montero SA,
Leal C,
Lemus M,
Portilla‐de Buen E,
Alvarado BA,
de Alvarez‐Buylla ER.
Nitric oxide in the hypothalamus‐pituitary axis mediates increases in brain glucose retention induced by carotid chemoreceptor stimulation with cyanide in rats.
Nitric Oxide
22:
296‐303,
2010.
|
126. |
Calder NA,
Kumar P,
Hanson MA.
Development of carotid chemoreceptor dynamic and steady‐state sensitivity to CO2 in the newborn lamb.
J Physiol
503(Pt 1):
187‐194,
1997.
|
127. |
Calder NA,
Williams BA,
Kumar P,
Hanson MA.
The respiratory response of healthy term infants to breath‐by‐breath alternations in inspired oxygen at two postnatal ages.
Pediatr Res
35:
321‐324,
1994.
|
128. |
Calder NA,
Williams BA,
Smyth J,
Boon AW,
Kumar P,
Hanson MA.
Absence of ventilatory responses to alternating breaths of mild hypoxia and air in infants who have had bronchopulmonary dysplasia: Implications for the risk of sudden infant death.
Pediatr Res
35:
677‐681,
1994.
|
129. |
Campanucci VA,
Fearon IM,
Nurse CA.
O2‐sensing mechanisms in efferent neurons to the rat carotid body.
Adv Exp Med Biol
536:
179‐185,
2003.
|
130. |
Campanucci VA,
Nurse CA.
Biophysical characterization of whole‐cell currents in O2‐sensitive neurons from the rat glossopharyngeal nerve.
Neuroscience
132:
437‐451,
2005.
|
131. |
Campanucci VA,
Nurse CA.
Autonomic innervation of the carotid body: Role in efferent inhibition.
Respir Physiol Neurobiol
157:
83‐92,
2007.
|
132. |
Campanucci VA,
Zhang M,
Vollmer C,
Nurse CA.
Expression of multiple P2X receptors by glossopharyngeal neurons projecting to rat carotid body O2‐chemoreceptors: Role in nitric oxide‐mediated efferent inhibition.
J Neurosci
26:
9482‐9493,
2006.
|
133. |
Campbell DL,
Stamler JS,
Strauss HC.
Redox modulation of L‐type calcium channels in ferret ventricular myocytes. Dual mechanism regulation by nitric oxide and S‐nitrosothiols.
J Gen Physiol
108:
277‐293,
1996.
|
134. |
Cardot V,
Chardon K,
Tourneux P,
Micallef S,
Stephan E,
Leke A,
Bach V,
Libert JP,
Telliez F.
Ventilatory response to a hyperoxic test is related to the frequency of short apneic episodes in late preterm neonates.
Pediatr Res
62:
591‐596,
2007.
|
135. |
Carpenter E,
Bee D,
Peers C.
Ionic currents in carotid body type I cells isolated from normoxic and chronically hypoxic adult rats.
Brain Res
811:
79‐87,
1998.
|
136. |
Carpenter E,
Peers C.
Swelling‐ and cAMP‐activated Cl‐ currents in isolated rat carotid body type I cells.
J Physiol
503(Pt 3):
497‐511,
1997.
|
137. |
Carpenter E,
Peers C.
A standing Na+ conductance in rat carotid body type I cells.
Neuroreport
12:
1421‐1425,
2001.
|
138. |
Carroll JL.
Developmental plasticity in respiratory control.
J Appl Physiol
94:
375‐389,
2003.
|
139. |
Chalmers JP,
Korner PI,
White SW.
The relative roles of the aortic and carotid sinus nerves in the rabbit in the control of respiration and circulation during arterial hypoxia and hypercapnia.
J Physiol
188:
435‐450,
1967.
|
140. |
Chen, II,
Yates RD,
Hansen JT.
Substance P‐like immunoreactivity in rat and cat carotid bodies: Light and electron microscopic studies.
Histol Histopathol
1:
203‐212,
1986.
|
141. |
Chen I,
Mascorro JA,
Yates RD.
Autoradiographic localization of alpha‐bungarotoxin‐binding sites in the carotid body of the rat.
Cell Tissue Res
219:
609‐618,
1981.
|
142. |
Chen IL,
Yates RD.
Two types of glomus cell in the rat carotid body as revealed by alpha‐bungarotoxin binding.
J Neurocytol
13:
281‐302,
1984.
|
143. |
Chen J,
Dinger B,
Fidone SJ.
cAMP production in rabbit carotid body: Role of adenosine.
J Appl Physiol
82:
1771‐1775,
1997.
|
144. |
Chen J,
He L,
Dinger B,
Fidone S.
Cellular mechanisms involved in rabbit carotid body excitation elicited by endothelin peptides.
Respir Physiol
121:
13‐23,
2000a.
|
145. |
Chen J,
He L,
Dinger B,
Fidone S.
Pharmacological effects of endothelin in rat carotid body. Activation of second messenger pathways and potentiation of chemoreceptor activity.
Adv Exp Med Biol
475:
517‐525,
2000b.
|
146. |
Chen J,
He L,
Dinger B,
Stensaas L,
Fidone S.
Chronic hypoxia upregulates connexin43 expression in rat carotid body and petrosal ganglion.
J Appl Physiol
92:
1480‐1486,
2002.
|
147. |
Chen J,
He L,
Liu X,
Dinger B,
Stensaas L,
Fidone S.
Effect of the endothelin receptor antagonist bosentan on chronic hypoxia‐induced morphological and physiological changes in rat carotid body.
Am J Physiol Lung Cell Mol Physiol
292:
L1257‐L1262,
2007.
|
148. |
Cheng PM,
Donnelly DF.
Relationship between changes of glomus cell current and neural response of rat carotid body.
J Neurophysiol
74:
2077‐2086,
1995.
|
149. |
Chiodi H,
Dill DB,
Consolazio F,
Horvath SM.
Respiratory and circulatory responses to acute CO poisoning.
Am J Physiol
134:
683‐693,
1941.
|
150. |
Chou CL,
Sham JS,
Schofield B,
Shirahata M.
Electrophysiological and immunocytological demonstration of cell‐type specific responses to hypoxia in the adult cat carotid body.
Brain Res
789:
229‐238,
1998.
|
151. |
Chou CL,
Shirahata M.
Two types of voltage‐gated K channels in carotid body cells of adult cats.
Brain Res
742:
34‐42,
1996.
|
152. |
Chua TP,
Ponikowski P,
Webb‐Peploe K,
Harrington D,
Anker SD,
Piepoli M,
Coats AJ.
Clinical characteristics of chronic heart failure patients with an augmented peripheral chemoreflex.
Eur Heart J
18:
480‐486,
1997.
|
153. |
Chugh DK,
Katayama M,
Mokashi A,
Bebout DE,
Ray DK,
Lahiri S.
Nitric oxide‐related inhibition of carotid chemosensory nerve activity in the cat.
Respir Physiol
97:
147‐156,
1994.
|
154. |
Chugh SS,
Chua TP,
Coats AJ.
Peripheral chemoreflex in chronic heart failure: Friend and foe.
Am Heart J
132:
900‐904,
1996.
|
155. |
Ciarka A,
Cuylits N,
Vachiery JL,
Lamotte M,
Degaute JP,
Naeije R,
van de Borne P.
Increased peripheral chemoreceptors sensitivity and exercise ventilation in heart transplant recipients.
Circulation
113:
252‐257,
2006.
|
156. |
Cistulli PA,
Sullivan CE.
Pathophysiology of sleep apnoea. In:
Saunders NA,
Sullivan CE, editors.
Sleep and Breathing.
New York:
Marcel Dekker,
1994,
p. 405‐448.
|
157. |
Claps A,
Torrealba F.
The carotid body connections: A WGA‐HRP study in the cat.
Brain Res
455:
123‐133,
1988.
|
158. |
Clarke JA and
de Burgh Daly M.
A comparative study of the distribution of carotid body type‐I cells and periadventitial type‐I cells in the carotid bifurcation regions of the rabbit, rat, guinea‐pig and mouse.
Cell Tissue Res
220:
753‐772,
1981.
|
159. |
Clarke JA,
de Burgh Daly M.
Distribution of carotid body type I cells and other periadventitial type I cells in the carotid bifurcation regions of the rabbit.
Cell Tissue Res
216:
603‐614,
1981.
|
160. |
Clarke JA,
de Burgh Daly M,
Ead HW.
Dimensions and volume of the carotid body in the adult cat, and their relation to the specific blood flow through the organ. A histological and morphometric study.
Acta Anat (Basel)
126:
84‐86,
1986.
|
161. |
Clarke JA,
de Burgh Daly M,
Ead HW.
Comparison of the size of the vascular compartment of the carotid body of the fetal, neonatal and adult cat.
Acta Anat (Basel)
138:
166‐174,
1990.
|
162. |
Clarke JA,
de Burgh Daly M,
Ead HW,
Kreclovic G.
A morphological study of the size of the vascular compartment of the carotid body in a non‐human primate (Cercopithecus ethiopus), and a comparison with the cat and rat.
Acta Anat (Basel)
147:
240‐247,
1993.
|
163. |
Cocchia D,
Michetti F.
S‐100 antigen in satellite cells of the adrenal medulla and the superior cervical ganglion of the rat. An immunochemical and immunocytochemical study.
Cell Tissue Res
215:
103‐112,
1981.
|
164. |
Cohen G,
Han ZY,
Grailhe R,
Gallego J,
Gaultier C,
Changeux JP,
Lagercrantz H.
beta 2 nicotinic acetylcholine receptor subunit modulates protective responses to stress: A receptor basis for sleep‐disordered breathing after nicotine exposure.
Proc Natl Acad Sci U S A
99:
13272‐13277,
2002.
|
165. |
Coleridge H,
Coleridge J,
Howe A.
Search for pulmonary artery chemoreceptors in the cat with a comparison of the blood supply of the aortic bodies in the newborn and adult animal.
J Physiol
191:
353‐374,
1967.
|
166. |
Comline R,
Silver M.
Response of the adrenal medulla of the sheep foetus to asphyxia.
Nature
181:
283‐284,
1958.
|
167. |
Comroe JH Jr,
Schmidt CF.
The part played by reflexes from the carotid body in the chemical regulation of respiration in the dog.
Am J Physiol
121:
75‐97,
1938.
|
168. |
Conde SV,
Gonzalez C,
Batuca JR,
Monteiro EC,
Obeso A.
An antagonistic interaction between A2B adenosine and D2 dopamine receptors modulates the function of rat carotid body chemoreceptor cells.
J Neurochem
107:
1369‐1381,
2008.
|
169. |
Conde SV,
Monteiro EC.
Hypoxia induces adenosine release from the rat carotid body.
J Neurochem
89:
1148‐1156,
2004.
|
170. |
Conde SV,
Monteiro EC.
Activation of nicotinic ACh receptors with alpha4 subunits induces adenosine release at the rat carotid body.
Br J Pharmacol
147:
783‐789,
2006.
|
171. |
Conde SV,
Monteiro EC,
Obeso A,
Gonzalez C.
Adenosine in peripheral chemoreception: New insights into a historically overlooked molecule–invited article.
Adv Exp Med Biol
648:
145‐159,
2009.
|
172. |
Conde SV,
Obeso A,
Gonzalez C.
Low glucose effects on rat carotid body chemoreceptor cells’ secretory responses and action potential frequency in the carotid sinus nerve.
J Physiol
585:
721‐730,
2007.
|
173. |
Conde SV,
Obeso A,
Vicario I,
Rigual R,
Rocher A,
Gonzalez C.
Caffeine inhibition of rat carotid body chemoreceptors is mediated by A2A and A2B adenosine receptors.
J Neurochem
98:
616‐628,
2006.
|
174. |
Corton JM,
Gillespie JG,
Hawley SA,
Hardie DG.
5‐aminoimidazole‐4‐carboxamide ribonucleoside. A specific method for activating AMP‐activated protein kinase in intact cells?
Eur J Biochem
229:
558‐565,
1995.
|
175. |
Cragg PA,
Runold M,
Kou YR,
Prabhakar NR.
Tachykinin antagonists in carotid body responses to hypoxia and substance P in the rat.
Respir Physiol
95:
295‐310,
1994.
|
176. |
Crivellato E,
Guidolin D,
Nico B,
Nussdorfer GG,
Ribatti D.
Fine ultrastructure of chromaffin granules in rat adrenal medulla indicative of a vesicle‐mediated secretory process.
Anat Embryol (Berl)
211:
79‐86,
2006.
|
177. |
Cross BA,
Grant BJ,
Guz A,
Jones PW,
Semple SJ,
Stidwill RP.
Dependence of phrenic motoneurone output on the oscillatory component of arterial blood gas composition.
J Physiol
290:
163‐184,
1979.
|
178. |
Cummings KJ,
Wilson RJ.
Time‐dependent modulation of carotid body afferent activity during and after intermittent hypoxia.
Am J Physiol Regul Integr Comp Physiol
288:
R1571‐R1580,
2005.
|
179. |
Czyzyk‐Krzeska MF,
Bayliss DA,
Lawson EE,
Millhorn DE.
Regulation of tyrosine hydroxylase gene expression in the rat carotid body by hypoxia.
J Neurochem
58:
1538‐1546,
1992.
|
180. |
Czyzyk‐Krzeska MF,
Lawson EE,
Millhorn DE.
Expression of D2 dopamine receptor mRNA in the arterial chemoreceptor afferent pathway.
J Auton Nerv Syst
41:
31‐39,
1992.
|
181. |
Dahan A,
Nieuwenhuijs D,
Teppema L.
Plasticity of central chemoreceptors: Effect of bilateral carotid body resection on central CO2 sensitivity.
PLoS Med
4:
e239,
2007.
|
182. |
Daly M,
Ungar A.
Comparison of the reflex responses elicited by stimulation of the separately perfused carotid and aortic body chemoreceptors in the dog.
J Physiol
182:
379‐403,
1966.
|
183. |
Dasso LL,
Buckler KJ,
Vaughan‐Jones RD.
Muscarinic and nicotinic receptors raise intracellular Ca2+ levels in rat carotid body type I cells.
J Physiol
498(Pt 2):
327‐338,
1997.
|
184. |
Dasso LL,
Buckler KJ,
Vaughan‐Jones RD.
Interactions between hypoxia and hypercapnic acidosis on calcium signaling in carotid body type I cells.
Am J Physiol Lung Cell Mol Physiol
279:
L36‐L42,
2000.
|
185. |
Davies RO,
Kalia M.
Carotid sinus nerve projections to the brain stem in the cat.
Brain Res Bull
6:
531‐541,
1981.
|
186. |
De Burgh Daly M.
Peripheral Arterial Chemoreceptors and Respiratory‐Cardiovascular Integration.
Oxford:
Clarendon Press,
1997.
|
187. |
De Burgh Daly M,
Lambertsen CJ,
Schweitzer A.
Observations on the volume of blood flow and oxygen utilization of the carotid body in the cat.
J Physiol
125:
67‐89,
1954.
|
188. |
De Camilli P,
Jahn R.
Pathways to regulated exocytosis in neurons.
Annu Rev Physiol
52:
625‐645,
1990.
|
189. |
De Castro F.
Sur la structure et l'innervation de la glande intercarotidienne (glomus caroticum) de l'homme et des mammiferes et sur un nouveau systeme de l'innervation autonome du nerf glossopharyngien.
Trav Lab Rech Biol
24:
365‐432,
1926.
|
190. |
De Castro F.
Sur la structure de la synapse dans les chemorecepteurs: Leur mechanism d'excitation et role dans la circulation sanguine locale.
Acta Physiol Scand
22:
14‐43,
1951.
|
191. |
de Castro F.
Towards the sensory nature of the carotid body: Hering, de Castro and Heymans.
Front Neuroanat
3:
1‐11,
2009.
|
192. |
De Castro F,
Rubio M.
The anatomy and innervation of the blood vessels of the carotid body and the role of chemoreceptive reactions in the autoregulation of blood flow. In:
Torrance RW, editor.
Arterial Chemoreceptors.
Oxford:
Blackwell,
1968,
p. 267‐277.
|
193. |
De Kock LL.
Histology of the carotid body.
Nature
167:
611‐612,
1951.
|
194. |
De Kock LL.
The intra‐glomerular tissues of the carotid body.
Acta Anat (Basel)
21:
101‐116,
1954.
|
195. |
De Kock LL,
Dunn AE.
An electron microscopic study of the carotid body.
Acta Anatomica
64:
163‐173,
1966.
|
196. |
De Kock LL,
Dunn AE.
Electron‐microscopic investigation of the nerve endings in the carotid body. In:
Torrance RW, editor.
Arterial Chemoreceptors.
Oxford:
Blackwell,
1968,
p. 179‐187.
|
197. |
Del Toro R,
Levitsky KL,
Lopez‐Barneo J,
Chiara MD.
Induction of T‐type calcium channel gene expression by chronic hypoxia.
J Biol Chem
278:
22316‐22324,
2003.
|
198. |
Delpiano MA,
Acker H.
Extracellular pH responses to different stimuli in the superfused cat carotid body.
Adv Exp Med Biol
191:
709‐717,
1985.
|
199. |
Dempsey JA,
Forster HV.
Mediation of ventilatory adaptations.
Physiol Rev
62:
262‐346,
1982.
|
200. |
Dempsey JA,
Smith CA.
Do carotid chemoreceptors inhibit the hyperventilatory response to heavy exercise?
Can J Appl Physiol
19:
350‐359,
1994.
|
201. |
Dhillon DP,
Barer GR,
Walsh M.
The enlarged carotid body of the chronically hypoxic and chronically hypoxic and hypercapnic rat: A morphometric analysis.
Q J Exp Physiol
69:
301‐317,
1984.
|
202. |
Di Giulio C,
Bianchi G,
Cacchio M,
Artese L,
Rapino C,
Macri MA,
Di Ilio C.
Oxygen and life span: Chronic hypoxia as a model for studying HIF‐1alpha, VEGF and NOS during aging.
Respir Physiol Neurobiol
147:
31‐38,
2005.
|
203. |
Di Giulio C,
Di Muzio M,
Sabatino G,
Spoletini L,
Amicarelli F,
Di Ilio C,
Modesti A.
Effect of chronic hyperoxia on young and old rat carotid body ultrastructure.
Exp Gerontol
33:
319‐329,
1998.
|
204. |
Di Giulio C,
Grilli A,
De Lutiis MA,
Di Natale F,
Sabatino G,
Felaco M.
Does chronic hypoxia increase rat carotid body nitric oxide?
Comp Biochem Physiol A Mol Integr Physiol
120:
243‐247,
1998.
|
205. |
Diamond J.
Observations on the excitation by acetylcholine and by pressure of sensory receptors in the cat's carotid sinus.
J Physiol
130:
513‐532,
1955.
|
206. |
Ding Y,
Li YL,
Schultz HD.
Downregulation of carbon monoxide as well as nitric oxide contributes to peripheral chemoreflex hypersensitivity in heart failure rabbits.
J Appl Physiol
105:
14‐23,
2008.
|
207. |
Ding Y,
Li YL,
Schultz HD.
Role of blood flow in carotid body chemoreflex function in heart failure.
J Physiol
589:
245‐258,
2011.
|
208. |
Dinger B,
Gonzalez C,
Yoshizaki K,
Fidone S.
[3H]Spiroperidol binding in normal and denervated carotid bodies.
Neurosci Lett
21:
51‐55,
1981.
|
209. |
Dinger B,
Gonzalez C,
Yoshizaki K,
Fidone S.
Localization and function of cat carotid body nicotinic receptors.
Brain Res
339:
295‐304,
1985.
|
210. |
Dinger BG,
Almaraz L,
Hirano T,
Yoshizaki K,
Gonzalez C,
Gomez‐Nino A,
Fidone SJ.
Muscarinic receptor localization and function in rabbit carotid body.
Brain Res
562:
190‐198,
1991.
|
211. |
Dinger BG,
Hirano T,
Fidone SJ.
Autoradiographic localization of muscarinic receptors in rabbit carotid body.
Brain Res
367:
328‐331,
1986.
|
212. |
Docherty RJ,
McQueen DS.
The effects of acetylcholine and dopamine on carotid chemosensory activity in the rabbit.
J Physiol
288:
411‐423,
1979.
|
213. |
Dodge FA Jr,
Rahamimoff R.
Co‐operative action a calcium ions in transmitter release at the neuromuscular junction.
J Physiol
193:
419‐432,
1967.
|
214. |
Donnelly DF.
Modulation of glomus cell membrane currents of intact rat carotid body.
J Physiol
489(Pt 3):
677‐688,
1995.
|
215. |
Donnelly DF.
Chemoreceptor nerve excitation may not be proportional to catecholamine secretion.
J Appl Physiol
81:
657‐664,
1996.
|
216. |
Donnelly DF.
Are oxygen dependent K+ channels essential for carotid body chemo‐transduction?
Respir Physiol
110:
211‐218,
1997.
|
217. |
Donnelly DF.
Developmental aspects of oxygen sensing by the carotid body.
J Appl Physiol
88:
2296‐2301,
2000.
|
218. |
Donnelly DF.
Orthodromic spike generation from electrical stimuli in the rat carotid body: Implications for the afferent spike generation process.
J Physiol
580:
275‐284,
2007.
|
219. |
Donnelly DF.
Nicotinic acetylcholine receptors do not mediate excitatory transmission in young rat carotid body.
J Appl Physiol
107:
1806‐1816,
2009.
|
220. |
Donnelly DF,
Bavis RW,
Kim I,
Dbouk HA,
Carroll JL.
Time course of alterations in pre‐ and post‐synaptic chemoreceptor function during developmental hyperoxia.
Respir Physiol Neurobiol
168:
189‐197,
2009.
|
221. |
Donnelly DF,
Kim I,
Carle C,
Carroll JL.
Perinatal hyperoxia for 14 days increases nerve conduction time and the acute unitary response to hypoxia of rat carotid body chemoreceptors.
J Appl Physiol
99:
114‐119,
2005.
|
222. |
Donnelly DF,
Panisello JM,
Boggs D.
Effect of sodium perturbations on rat chemoreceptor spike generation: Implications for a Poisson model.
J Physiol
511(Pt 1):
301‐311,
1998.
|
223. |
Donovan CM,
Halter JB,
Bergman RN.
Importance of hepatic glucoreceptors in sympathoadrenal response to hypoglycemia.
Diabetes
40:
155‐158,
1991.
|
224. |
Dontas AS.
Effects of energy donors, metabolic inhibitors and substrates on carotid chemoreceptor activity.
J Pharmacol Exp Ther
115:
46‐54,
1955.
|
225. |
Douglas WW.
Is there chemical transmission at chemoreceptors?
Pharmacol Rev
6:
81‐83,
1954.
|
226. |
Doyle TP,
Donnelly DF.
Effect of Na+ and K+ channel blockade on baseline and anoxia‐induced catecholamine release from rat carotid body.
J Appl Physiol
77:
2606‐2611,
1994.
|
227. |
Duchen MR,
Biscoe TJ.
Mitochondrial function in type I cells isolated from rabbit arterial chemoreceptors.
J Physiol
450:
13‐31,
1992a.
|
228. |
Duchen MR,
Biscoe TJ.
Relative mitochondrial membrane potential and [Ca2+]i in type I cells isolated from the rabbit carotid body.
J Physiol
450:
33‐61,
1992b.
|
229. |
Duchen MR,
Caddy KW,
Kirby GC,
Patterson DL,
Ponte J,
Biscoe TJ.
Biophysical studies of the cellular elements of the rabbit carotid body.
Neuroscience
26:
291‐311,
1988.
|
230. |
Duke HN,
Green JH,
Neil E.
Carotid chemoceptor impulse activity during inhalation of carbon monoxide mixtures.
J Physiol
118:
520‐527,
1952.
|
231. |
Dupont G,
Combettes L,
Leybaert L.
Calcium dynamics: Spatio‐temporal organization from the subcellular to the organ level.
Int Rev Cytol
261:
193‐245,
2007.
|
232. |
Duprat F,
Lauritzen I,
Patel A,
Honore E.
The TASK background K2P channels: Chemo‐ and nutrient sensors.
Trends Neurosci
30:
573‐580,
2007.
|
233. |
Duprat F,
Lesage F,
Fink M,
Reyes R,
Heurteaux C,
Lazdunski M.
TASK, a human background K+ channel to sense external pH variations near physiological pH.
EMBO J
16:
5464‐5471,
1997.
|
234. |
Dvorakova M,
Hohler B,
Vollerthun R,
Fischbach T,
Kummer W.
Macrophages: A major source of cytochrome b558 in the rat carotid body.
Brain Res
852:
349‐354,
2000.
|
235. |
e Silva MJ,
Lewis DL.
L‐ and N‐type Ca2+ channels in adult rat carotid body chemoreceptor type I cells.
J Physiol
489(Pt 3):
689‐699,
1995.
|
236. |
Easton J,
Howe A.
The distribution of thoracic glomus tissue (aortic bodies) in the rat.
Cell Tissue Res
232:
349‐356,
1983.
|
237. |
Edwards MW Jr,
Mills E.
Arterial chemoreceptor oxygen utilization and oxygen tension.
J Appl Physiol
27:
291‐294,
1969.
|
238. |
El‐Fadaly AB,
Kummer W.
The spatial relationship between type I glomus cells and arteriolar myocytes in the mouse carotid body.
Ann Anat
185:
507‐515,
2003.
|
239. |
Eldridge FL,
Gill‐Kumar P,
Millhorn DE.
Input‐output relationships of central neural circuits involved in respiration in cats.
J Physiol
311:
81‐95,
1981.
|
240. |
Ellis D,
Thomas RC.
Direct measurement of the intracellular pH of mammalian cardiac muscle.
J Physiol
262:
755‐771,
1976.
|
241. |
Ellsworth ML.
The red blood cell as an oxygen sensor: What is the evidence?
Acta Physiol Scand
168:
551‐559,
2000.
|
242. |
Erickson JT,
Mayer C,
Jawa A,
Ling L,
Olson EB Jr,
Vidruk EH,
Mitchell GS,
Katz DM.
Chemoafferent degeneration and carotid body hypoplasia following chronic hyperoxia in newborn rats.
J Physiol
509(Pt 2):
519‐526,
1998.
|
243. |
Esler M,
Kaye D,
Lambert G,
Esler D,
Jennings G.
Adrenergic nervous system in heart failure.
Am J Cardiol
80:
7L‐14L,
1997.
|
244. |
Espejo EF,
Montoro RJ,
Armengol JA,
Lopez‐Barneo J.
Cellular and functional recovery of Parkinsonian rats after intrastriatal transplantation of carotid body cell aggregates.
Neuron
20:
197‐206,
1998.
|
245. |
Evans AM.
AMP‐activated protein kinase and the regulation of Ca2+ signalling in O2‐sensing cells.
J Physiol
574:
113‐123,
2006.
|
246. |
Evans AM,
Hardie DG,
Peers C,
Wyatt CN,
Viollet B,
Kumar P,
Dallas ML,
Ross F,
Ikematsu N,
Jordan HL,
Barr BL,
Rafferty JN,
Ogunbayo O.
Ion channel regulation by AMPK: the route of hypoxia‐response coupling in thecarotid body and pulmonary artery.
Ann N Y Acad Sci
1177:
89‐100,
2009.
|
247. |
Evans AM,
Mustard KJ,
Wyatt CN,
Peers C,
Dipp M,
Kumar P,
Kinnear NP,
Hardie DG.
Does AMP‐activated protein kinase couple inhibition of mitochondrial oxidative phosphorylation by hypoxia to calcium signaling in O2‐sensing cells?
J Biol Chem
280:
41504‐41511,
2005.
|
248. |
Eyzaguirre C.
Electric synapses in the carotid body‐nerve complex.
Respir Physiol Neurobiol
157:
116‐122,
2007.
|
249. |
Eyzaguirre C,
Abudara V.
Carotid body glomus cells: Chemical secretion and transmission (modulation?) across cell‐nerve ending junctions.
Respir Physiol
115:
135‐149,
1999.
|
250. |
Eyzaguirre C,
Abudara V.
Possible role of coupling between glomus cells in carotid body chemoreception.
Biol Signals
4:
263‐270,
1995.
|
251. |
Eyzaguirre C,
Fidone S,
Nishi K.
Recent studies on the generation of chemoreceptor impulses. In:
Purves MJ, editor.
The Peripheral Arterial Chemoreceptors.
London:
Cambridge University Press,
1975,
p. 175‐192.
|
252. |
Eyzaguirre C,
Koyano H.
Effects of electrical stimulation on the frequency of chemoreceptor discharges.
J Physiol
178:
438‐462,
1965a.
|
253. |
Eyzaguirre C,
Koyano H.
Effects of hypoxia, hypercapnia, and pH on the chemoreceptor activity of the carotid body in vitro.
J Physiol
178:
385‐409,
1965b.
|
254. |
Eyzaguirre C,
Lewin J.
Chemoreceptor activity of the carotid body of the cat.
J Physiol
159:
222‐237,
1961a.
|
255. |
Eyzaguirre C,
Lewin J.
Effect of different oxygen tensions on the carotid body in vitro.
J Physiol
159:
238‐250,
1961b.
|
256. |
Eyzaguirre C,
Lewin J.
The effect of sympathetic stimulation on carotid nerve activity.
J Physiol
159:
251‐267,
1961c.
|
257. |
Eyzaguirre C,
Monti‐Bloch L.
Similarities and differences in the physiology and pharmacology of cat and rabbit carotid bodies.
Fed Proc
39:
2653‐2656,
1980.
|
258. |
Eyzaguirre C,
Monti‐Bloch L,
Baron M,
Hayashida Y,
Woodbury JW.
Changes in glomus cell membrane properties in response to stimulants and depressants of carotid nerve discharge.
Brain Res
477:
265‐279,
1989.
|
259. |
Eyzaguirre C,
Uchizono K.
Observations on the fibre content of nerves reaching the carotid body of the cat.
J Physiol
159:
268‐281,
1961.
|
260. |
Eyzaguirre C,
Zapata P.
The release of acetylcholine from carotid body tissues. Further study on the effects of acetylcholine and cholinergic blocking agents on the chemosensory discharge.
J Physiol
195:
589‐607,
1968.
|
261. |
Fagerlund MJ,
Kahlin J,
Ebberyd A,
Schulte G,
Mkrtchian S,
Eriksson LI.
The human carotid body: Expression of oxygen sensing and signaling genes of relevance for anesthesia.
Anesthesiology
113:
1270‐1279.
|
262. |
Fan J,
Zhang B,
Shu HF,
Zhang XY,
Wang X,
Kuang F,
Liu L,
Peng ZW,
Wu R,
Zhou Z,
Wang BR.
Interleukin‐6 increases intracellular Ca2+ concentration and induces catecholamine secretion in rat carotid body glomus cells.
J Neurosci Res
87:
2757‐2762,
2009.
|
263. |
Faustino EV,
Donnelly DF.
An important functional role of persistent Na+ current in carotid body hypoxia transduction.
J Appl Physiol
101:
1076‐1084,
2006.
|
264. |
Fay FS.
Oxygen consumption of the carotid body.
Am J Physiol
218:
518‐523,
1970.
|
265. |
Fearon IM,
Zhang M,
Vollmer C,
Nurse CA.
GABA mediates autoreceptor feedback inhibition in the rat carotid body via presynaptic GABAB receptors and TASK‐1.
J Physiol
553:
83‐94,
2003.
|
266. |
Fedde MR,
Kiley JP,
Powell FL,
Scheid P.
Intrapulmonary CO2 receptors and control of breathing in ducks: Effects of prolonged circulation time to carotid bodies and brain.
Respir Physiol
47:
121‐140,
1982.
|
267. |
Fernandez R,
Gonzalez S,
Rey S,
Cortes PP,
Maisey KR,
Reyes EP,
Larrain C,
Zapata P.
Lipopolysaccharide‐induced carotid body inflammation in cats: Functional manifestations, histopathology and involvement of tumour necrosis factor‐alpha.
Exp Physiol
93:
892‐907,
2008.
|
268. |
Fidone S,
Gonzalez C.
Catecholamine synthesis in rabbit carotid body in vitro.
J Physiol
333:
69‐79,
1982.
|
269. |
Fidone S,
Gonzalez C.
Initiation and control of chemoreceptor activity in the carotid body. In:
Fishman AP,
Cherniack NS,
Widdicombe JG,
Geiger SR, editors.
Handbook of Physiology. The Respiratory System. Volume
II. Control of Breathing Part 1.
Bethesda, Maryland:
American Physiological Society,
1986, sect. 3, p.
247‐312.
|
270. |
Fidone S,
Gonzalez C,
Yoshizaki K.
Effects of hypoxia on catecholamine synthesis in rabbit carotid body in vitro.
J Physiol
333:
81‐91,
1982a.
|
271. |
Fidone S,
Gonzalez C,
Yoshizaki K.
Effects of low oxygen on the release of dopamine from the rabbit carotid body in vitro.
J Physiol
333:
93‐110,
1982b.
|
272. |
Fidone SJ,
Sato A.
A study of chemoreceptor and baroreceptor A and C‐fibres in the cat carotid nerve.
J Physiol
205:
527‐548,
1969.
|
273. |
Fidone SJ,
Weintraub ST,
Stavinoha WB.
Acetylcholine content of normal and denervated cat carotid bodies measured by pyrolysis gas chromatography/mass fragmentometry.
J Neurochem
26:
1047‐1049,
1976.
|
274. |
Fidone SJ,
Zapata P,
Stensaas LJ.
Axonal transport of labeled material into sensory nerve ending of cat carotid body.
Brain Res
124:
9‐28,
1977.
|
275. |
Fieber LA,
McCleskey EW.
L‐type calcium channels in type I cells of the rat carotid body.
J Neurophysiol
70:
1378‐1384,
1993.
|
276. |
Finley JC,
Katz DM.
The central organization of carotid body afferent projections to the brainstem of the rat.
Brain Res
572:
108‐116,
1992.
|
277. |
Finley JC,
Polak J,
Katz DM.
Transmitter diversity in carotid body afferent neurons: Dopaminergic and peptidergic phenotypes.
Neuroscience
51:
973‐987,
1992.
|
278. |
Fishman MC,
Schaffner AE.
Carotid body cell culture and selective growth of glomus cells.
Am J Physiol
246:
C106‐C113,
1984.
|
279. |
Fitzgerald RS.
Oxygen and carotid body chemotransduction: The cholinergic hypothesis ‐ a brief history and new evaluation.
Respir Physiol
120:
89‐104,
2000.
|
280. |
Fitzgerald RS,
Dehghani GA.
Neural responses of the cat carotid and aortic bodies to hypercapnia and hypoxia.
J Appl Physiol
52:
596‐601,
1982.
|
281. |
Fitzgerald RS,
Leitner LM,
Liaubet MJ.
Carotid chemoreceptor response to intermittent or sustained stimulation in the cat.
Respir Physiol
6:
395‐402,
1969.
|
282. |
Fitzgerald RS,
Parks DC.
Effect of hypoxia on carotid chemoreceptor response to carbon dioxide in cats.
Respir Physiol
12:
218‐229,
1971.
|
283. |
Fitzgerald RS,
Shirahata M,
Chang I,
Kostuk E.
The impact of hypoxia and low glucose on the release of acetylcholine and ATP from the incubated cat carotid body.
Brain Res
1270:
39‐44,
2009.
|
284. |
Fitzgerald RS,
Shirahata M,
Ide T.
Cholinergic aspects of carotid body chemotransduction.
Adv Exp Med Biol
360:
213‐215,
1994.
|
285. |
Fitzgerald RS,
Shirahata M,
Ide T.
Further cholinergic aspects of carotid body chemotransduction of hypoxia in cats.
J Appl Physiol
82:
819‐827,
1997.
|
286. |
Fitzgerald RS,
Shirahata M,
Wang HY.
Acetylcholine release from cat carotid bodies.
Brain Res
841:
53‐61,
1999.
|
287. |
Fletcher EC.
Invited review: Physiological consequences of intermittent hypoxia: Systemic blood pressure.
J Appl Physiol
90:
1600‐1605,
2001.
|
288. |
Floyd WF,
Neil E.
The influence of the sympathetic innervation of the carotid bifurcation on chemoceptor and baroceptor activity in the cat.
Arch Int Pharmacodyn Ther
91:
230‐239,
1952.
|
289. |
Forster HV,
Bisgard GE,
Klein JP.
Effect of peripheral chemoreceptor denervation on acclimatization of goats during hypoxia.
J Appl Physiol
50:
392‐398,
1981.
|
290. |
Forster HV,
Dempsey JA,
Birnbaum ML,
Reddan WG,
Thoden J,
Grover RF,
Rankin J.
Effect of chronic exposure to hypoxia on ventilatory response to CO2 and hypoxia.
J Appl Physiol
31:
586‐592,
1971.
|
291. |
Forster HV,
Pan LG.
The role of the carotid chemoreceptors in the control of breathing during exercise.
Med Sci Sports Exerc
26:
328‐336,
1994.
|
292. |
Fredholm BB,
Abbracchio MP,
Burnstock G,
Daly JW,
Harden TK,
Jacobson KA,
Leff P,
Williams M.
Nomenclature and classification of purinoceptors.
Pharmacol Rev
46:
143‐156,
1994.
|
293. |
Frizzell RT,
Jones EM,
Davis SN,
Biggers DW,
Myers SR,
Connolly CC,
Neal DW,
Jaspan JB,
Cherrington AD.
Counterregulation during hypoglycemia is directed by widespread brain regions.
Diabetes
42:
1253‐1261,
1993.
|
294. |
Fukuda Y,
Sato A,
Trzebski A.
Carotid chemoreceptor discharge responses to hypoxia and hypercapnia in normotensive and spontaneously hypertensive rats.
J Auton Nerv Syst
19:
1‐11,
1987.
|
295. |
Funder J,
Wieth JO.
Chloride and hydrogen ion distribution between human red cells and plasma.
Acta Phys Scand
68:
234‐245,
1966.
|
296. |
Fung ML,
Lam SY,
Chen Y,
Dong X,
Leung PS.
Functional expression of angiotensin II receptors in type‐I cells of the rat carotid body.
Pflugers Arch
441:
474‐480,
2001.
|
297. |
Fung ML,
Lam SY,
Wong TP,
Tjong YW,
Leung PS.
Carotid body AT(4) receptor expression and its upregulation in chronic hypoxia.
Open Cardiovasc Med J
1:
1‐7,
2007.
|
298. |
Fung ML,
Ye JS,
Fung PC.
Acute hypoxia elevates nitric oxide generation in rat carotid body in vitro.
Pflugers Arch
442:
903‐909,
2001.
|
299. |
Gadalla MM,
Snyder SH.
Hydrogen sulfide as a gasotransmitter.
J Neurochem
113:
14‐26,
2010.
|
300. |
Gallego R,
Belmonte C.
The effects of blood osmolality changes on cat carotid body chemoreceptors in vivo.
Pflugers Arch
380:
53‐58,
1979.
|
301. |
Gallego R,
Eyzaguirre C,
Monti‐Bloch L.
Thermal and osmotic responses of arterial receptors.
J Neurophysiol
42:
665‐680,
1979.
|
302. |
Ganfornina MD,
Lopez‐Barneo J.
Single K+ channels in membrane patches of arterial chemoreceptor cells are modulated by O2 tension.
Proc Natl Acad Sci U S A
88:
2927‐2930,
1991.
|
303. |
Garcia‐Fernandez M,
Ortega‐Saenz P,
Castellano A,
Lopez‐Barneo J.
Mechanisms of low‐glucose sensitivity in carotid body glomus cells.
Diabetes
56:
2893‐2900,
2007.
|
304. |
Garland RJ,
Kinkead R,
Milsom WK.
The ventilatory response of rodents to changes in arterial oxygen content.
Respir Physiol
96:
199‐211,
1994.
|
305. |
Gauda EB,
Bamford OS,
Northington FJ.
Lack of induction of substance P gene expression by hypoxia and absence of neurokinin 1‐receptor mRNAs in the rat carotid body.
J Auton Nerv Syst
74:
100‐108,
1998.
|
306. |
Gauda EB,
Cooper R,
Johnson SM,
McLemore GL,
Marshall C.
Autonomic microganglion cells: A source of acetylcholine in the rat carotid body.
J Appl Physiol
96:
384‐391,
2004.
|
307. |
Gauda EB,
Northington FJ,
Linden J,
Rosin DL.
Differential expression of a(2a), A(1)‐adenosine and D(2)‐dopamine receptor genes in rat peripheral arterial chemoreceptors during postnatal development.
Brain Res
872:
1‐10,
2000.
|
308. |
Gerard MW,
Billingsley PR.
The innervation of the carotid body.
Anat Rec
26:
391‐400,
1923.
|
309. |
Gestreau C,
Heitzmann D,
Thomas J,
Dubreuil V,
Bandulik S,
Reichold M,
Bendahhou S,
Pierson P,
Sterner C,
Peyronnet‐Roux J,
Benfriha C,
Tegtmeier I,
Ehnes H,
Georgieff M,
Lesage F,
Brunet JF,
Goridis C,
Warth R,
Barhanin J.
Task2 potassium channels set central respiratory CO2 and O2 sensitivity.
Proc Natl Acad Sci U S A
107:
2325‐2330,
2010.
|
310. |
Gnaiger E,
Lassnig B,
Kuznetsov A,
Rieger G,
Margreiter R.
Mitochondrial oxygen affinity, respiratory flux control and excess capacity of cytochrome c oxidase.
J Exp Biol
201:
1129‐1139,
1998.
|
311. |
Godfrey S,
Edwards R,
Copland G,
Gross P.
Chemosensitivity in normal subjects, atheletes, and patients with chronic airways obstruction.
J Appl Physiol
30:
193‐199,
1971.
|
312. |
Gomez‐Nino A,
Dinger B,
Gonzalez C,
Fidone SJ.
Differential stimulus coupling to dopamine and norepinephrine stores in rabbit carotid body type I cells.
Brain Res
525:
160‐164,
1990.
|
313. |
Gomez‐Nino A,
Obeso A,
Baranda JA,
Santo‐Domingo J,
Lopez‐Lopez JR,
Gonzalez C.
MaxiK potassium channels in the function of chemoreceptor cells of the rat carotid body.
Am J Physiol Cell Physiol
297:
C715‐C722,
2009.
|
314. |
Gonzalez C,
Agapito MT,
Rocher A,
Gonzalez‐Martin MC,
Vega‐Agapito V,
Gomez‐Nino A,
Rigual R,
Castaneda J,
Obeso A.
Chemoreception in the context of the general biology of ROS.
Respir Physiol Neurobiol
157:
30‐44,
2007.
|
315. |
Gonzalez C,
Almaraz L,
Obeso A,
Rigual R.
Carotid body chemoreceptors: From natural stimuli to sensory discharges.
Physiol Rev
74:
829‐898,
1994.
|
316. |
Gonzalez C,
Sanz‐Alfayate G,
Agapito MT,
Gomez‐Nino A,
Rocher A,
Obeso A.
Significance of ROS in oxygen sensing in cell systems with sensitivity to physiological hypoxia.
Respir Physiol Neurobiol
132:
17‐41,
2002.
|
317. |
Gonzalez‐Guerrero PR,
Rigual R,
Gonzalez C.
Opioid peptides in the rabbit carotid body: Identification and evidence for co‐utilization and interactions with dopamine.
J Neurochem
60:
1762‐1768,
1993.
|
318. |
Goodman NW,
McCloskey DI.
Intracellular potentials in the carotid body.
Brain Res
39:
501‐504,
1972.
|
319. |
Grabner CP,
Price SD,
Lysakowski A,
Fox AP.
Mouse chromaffin cells have two populations of dense core vesicles.
J Neurophysiol
94:
2093‐2104,
2005.
|
320. |
Gray BA.
Response of the perfused carotid body to changes in pH and PCO2.
Respir Physiol
4:
229‐245,
1968.
|
321. |
Gray BA.
On the speed of the carotid chemoreceptor response in relation to the kinetics of CO2 hydration.
Respir Physiol
11:
235‐246,
1971.
|
322. |
Grimes PA,
Mokashi A,
Stone RA,
Lahiri S.
Nitric oxide synthase in autonomic innervation of the cat carotid body.
J Auton Nerv Syst
54:
80‐86,
1995.
|
323. |
Gronblad M.
Improved demonstration of exocytotic profiles in glomus cells of rat carotid body after perfusion with glutaraldehyde fixative containing a high concentration of potassium.
Cell Tissue Res
229:
627‐637,
1983.
|
324. |
Gronblad M,
Akerman KE,
Eranko O.
Ultrastructural evidence of exocytosis from glomus cells after incubation of adult rat carotid bodies in potassium‐rich calcium‐containing media.
Brain Res
189:
576‐581,
1980.
|
325. |
Gual A,
Stensaas LJ.
Structural and functional changes of cat carotid body following superfusion with Ca2+ and/or Ba2+.
Brain Res
336:
321‐325,
1985.
|
326. |
Guillemot F,
Lo LC,
Johnson JE,
Auerbach A,
Anderson DJ,
Joyner AL.
Mammalian achaete‐scute homolog 1 is required for the early development of olfactory and autonomic neurons.
Cell
75:
463‐476,
1993.
|
327. |
Guz A,
Noble MI,
Widdicombe JG,
Trenchard D,
Mushin WW.
Peripheral chemoreceptor block in man.
Respir Physiol
1:
38‐40,
1966.
|
328. |
Habeck JO.
Peripheral arterial chemoreceptors and hypertension.
J Auton Nerv Syst
34:
1‐7,
1991.
|
329. |
Habeck JO,
Przybylski J.
Carotid and aortic bodies in chronically anemic normotensive and spontaneously hypertensive rats.
J Auton Nerv Syst
28:
219‐225,
1989.
|
330. |
Halliwell B,
Gutteridge JM.
Role of free radicals and catalytic metal ions in human disease: An overview.
Methods Enzymol
186:
1‐85,
1990.
|
331. |
Hanbauer I.
Regulation of tyrosine hydroxylase in carotid body.
Adv Biochem Psychopharmacol
16:
275‐280,
1977.
|
332. |
Hanbauer I,
Hellstrom S.
The regulation of dopamine and noradrenaline in the rat carotid body and its modification by denervation and by hypoxia.
J Physiol
282:
21‐34,
1978.
|
333. |
Hanbauer I,
Karoum F,
Hellstrom S,
Lahiri S.
Effects of hypoxia lasting up to one month on the catecholamine content in rat carotid body.
Neuroscience
6:
81‐86,
1981.
|
334. |
Hannhart B,
Pickett CK,
Weil JV,
Moore LG.
Influence of pregnancy on ventilatory and carotid body neural output responsiveness to hypoxia in cats.
J Appl Physiol
67:
797‐803,
1989.
|
335. |
Hansen JT.
Ultrastructure of the primate carotid body: A morphometric study of the glomus cells and nerve endings in the monkey (Macaca fascicularis).
J Neurocytol
14:
13‐32,
1985.
|
336. |
Hansen JT,
Brokaw J,
Christie D,
Karasek M.
Localization of enkephalin‐like immunoreactivity in the cat carotid and aortic body chemoreceptors.
Anat Rec
203:
405‐410,
1982.
|
337. |
Hanson G,
Jones L,
Fidone S.
Physiological chemoreceptor stimulation decreases enkephalin and substance P in the carotid body.
Peptides
7:
767‐769,
1986.
|
338. |
Hanson MA,
Eden GJ,
Nijhuis JG,
Moore PJ.
Peripheral chemoreceptors and other oxygen sensors in the fetus and newborn. In:
Lahiri S,
Forster RE,
Davies RO,
Pack AI, editors.
Chemoreceptors and Reflexes in Breathing: Cellular and Molecular Aspects.
New York:
Oxford University Press,
1989,
p. 113‐120.
|
339. |
Hanson MA,
Kumar P,
Williams BA.
The effect of chronic hypoxia upon the development of respiratory chemoreflexes in the newborn kitten.
J Physiol
411:
563‐574,
1989.
|
340. |
Hanson MA,
Nye PC,
Rao PS,
Torrance RW.
Effects of acetazolamide and benzolamide on the response of the carotid chemoreceptors to CQ2 [proceedings].
J Physiol
284:
165P‐166P,
1978.
|
341. |
Hanson MA,
Nye PCG,
Torrance RW.
The exodus of an extracellular bicarbonate theory of chemoreception and the genesis of an intracellular one. In:
Belmonte C,
Pallot D,
Acker A,
Fidone S, editors.
Arterial Chemoreceptors.
Leicester:
Leicester University Press,
1981,
p. 403‐416.
|
342. |
Hanson MA,
Rao PS,
Torrance RW.
Aortic nerve chemoreceptors are sensitive to changes in PaCO2.
Adv Exp Med Biol
99:
269‐273,
1978.
|
343. |
Hardie DG,
Hawley SA.
AMP‐activated protein kinase: The energy charhge hypothesis revisited.
Bioessays
23:
1112‐1119,
2001.
|
344. |
Hardie DG,
Hawley SA,
Scott JW.
AMP‐activated protein kinase ‐ development of the energy sensor concept.
J Physiol
574:
7‐15,
2006.
|
345. |
Hartness ME,
Brazier SP,
Peers C,
Bateson AN,
Ashford ML,
Kemp PJ.
Post‐transcriptional control of human maxiK potassium channel activity and acute oxygen sensitivity by chronic hypoxia.
J Biol Chem
278:
51422‐51432,
2003.
|
346. |
Hatcher JD,
Chiu LK,
Jennings DB.
Anemia as a stimulus to aortic and carotid chemoreceptors in the cat.
J Appl Physiol
44:
696‐702,
1978.
|
347. |
Hatton CJ,
Carpenter E,
Pepper DR,
Kumar P,
Peers C.
Developmental changes in isolated rat type I carotid body cell K+ currents and their modulation by hypoxia.
J Physiol
501(Pt 1):
49‐58,
1997.
|
348. |
Hatton CJ,
Peers C.
Hypoxic inhibition of K+ currents in isolated rat type I carotid body cells: Evidence against the involvement of cyclic nucleotides.
Pflugers Arch
433:
129‐135,
1996.
|
349. |
Hatton CJ,
Peers C.
Electrochemical detection of K(+)‐evoked quantal secretory events from isolated rat type I carotid body cells.
Exp Physiol
82:
415‐418,
1997.
|
350. |
Hawley SA,
Boudeau J,
Reid JL,
Mustard KJ,
Udd L,
Makela TP,
Alessi DR,
Hardie DG.
Complexes between the LKB1 tumor suppressor, STRAD alpha/beta and MO25 alpha/beta are upstream kinases in the AMP‐activated protein kinase cascade.
J Biol
2:
28,
2003.
|
351. |
Hawley SA,
Selbert MA,
Goldstein EG,
Edelman AM,
Carling D,
Hardie DG.
5′‐AMP activates the AMP‐activated protein kinase cascade, and Ca2+/calmodulin activates the calmodulin‐dependent protein kinase I cascade, via three independent mechanisms.
J Biol Chem
270:
27186‐27191,
1995.
|
352. |
Hayashida Y,
Koyano H,
Eyzaguirre C.
An intracellular study of chemosensory fibers and endings.
J Neurophysiol
44:
1077‐1088,
1980.
|
353. |
He L,
Chen J,
Dinger B,
Sanders K,
Sundar K,
Hoidal J,
Fidone S.
Characteristics of carotid body chemosensitivity in NADPH oxidase‐deficient mice.
Am J Physiol Cell Physiol
282:
C27‐C33,
2002.
|
354. |
He L,
Chen J,
Dinger B,
Stensaas L,
Fidone S.
Endothelin modulates chemoreceptor cell function in mammalian carotid body.
Adv Exp Med Biol
410:
305‐311,
1996.
|
355. |
He L,
Chen J,
Dinger B,
Stensaas L,
Fidone S.
Effect of chronic hypoxia on purinergic synaptic transmission in rat carotid body.
J Appl Physiol
100:
157‐162,
2006.
|
356. |
He L,
Chen J,
Liu X,
Dinger B,
Fidone S.
Enhanced nitric oxide‐mediated chemoreceptor inhibition and altered cyclic GMP signaling in rat carotid body following chronic hypoxia.
Am J Physiol Lung Cell Mol Physiol
293:
L1463‐L1468,
2007.
|
357. |
He L,
Dinger B,
Fidone S.
Effect of chronic hypoxia on cholinergic chemotransmission in rat carotid body.
J Appl Physiol
98:
614‐619,
2005.
|
358. |
He L,
Dinger B,
Sanders K,
Hoidal J,
Obeso A,
Stensaas L,
Fidone S,
Gonzalez C.
Effect of p47phox gene deletion on ROS production and oxygen sensing in mouse carotid body chemoreceptor cells.
Am J Physiol Lung Cell Mol Physiol
289:
L916‐L924,
2005.
|
359. |
He L,
Liu X,
Chen J,
Dinger B,
Stensaas L,
Fidone S.
Modulation of chronic hypoxia‐induced chemoreceptor hypersensitivity by NADPH oxidase subunits in rat carotid body.
J Appl Physiol
108:
1304‐1310,
2010.
|
360. |
He SF,
Wei JY,
Eyzaguirre C.
Intracellular pH and some membrane characteristics of cultured carotid body glomus cells.
Brain Res
547:
258‐266,
1991.
|
361. |
Heath D,
Edwards C,
Harris P.
Post‐mortem size and structure of the human carotid body.
Thorax
25:
129‐140,
1970.
|
362. |
Heath D,
Lowe P,
Smith P.
Mast cells in the human carotid body.
J Clin Pathol
40:
9‐12,
1987.
|
363. |
Heath D,
Smith P,
Fitch R,
Harris P.
Comparative pathology of the enlarged carotid body.
J Comp Pathol
95:
259‐271,
1985.
|
364. |
Heath D,
Smith P,
Jago R.
Hyperplasia of the carotid body.
J Pathol
138:
115‐127,
1982.
|
365. |
Heeringa J,
Berkenbosch A,
de Goede J,
Olievier CN.
Relative contribution of central and peripheral chemoreceptors to the ventilatory response to CO2 during hyperoxia.
Respir Physiol
37:
365‐379,
1979.
|
366. |
Hellstrom S.
Morphometric studies of dense‐cored vesicles in type I cells of rat carotid body.
J Neurocytol
4:
77‐86,
1975.
|
367. |
Hellstrom S,
Pequignot J‐M.
Morphometric studies on intact and sympathectomised carotid bodies of long‐termhypoxic rats: A light and electron microscopial study. In:
Pallot D, editor.
The Peripheral Arterial Chemoreceptors.
London:
Croom Helm,
1982,
p. 293‐301.
|
368. |
Hempleman SC.
Increased calcium current in carotid body glomus cells following in vivo acclimatization to chronic hypoxia.
J Neurophysiol
76:
1880‐1886,
1996.
|
369. |
Herdegen T,
Leah JD.
Inducible and constitutive transcription factors in the mammalian nervous system: Control of gene expression by Jun, Fos and Krox, and CREB/ATF proteins.
Brain Res Brain Res Rev
28:
370‐490,
1998.
|
370. |
Hescheler J,
Delpiano MA,
Acker H,
Pietruschka F.
Ionic currents on type‐I cells of the rabbit carotid body measured by voltage‐clamp experiments and the effect of hypoxia.
Brain Res
486:
79‐88,
1989.
|
371. |
Hess A.
Electron microscopic observations of normal and experimental cat carotid bodies. In:
Torrance RW, editor.
Arterial Chemoreceptors.
Oxford:
Blackwell,
1968,
p. 51‐56.
|
372. |
Hess A.
The significance of the ultrastructure of the rat carotid body in structure and function of chemoreceptors. In:
Purves MJ, editor.
The Peripheral Arterial Chemoreceptors.
London:
Cambridge University Press,
1975,
p. 51‐73.
|
373. |
Hess A,
Zapata P.
Innervation of the cat carotid body: Normal and experimental studies.
Fed Proc
31:
1365‐1382,
1972.
|
374. |
Hevener AL,
Bergman RN,
Donovan CM.
Novel glucosensor for hypoglycemic detection localized to the portal vein.
Diabetes
46:
1521‐1525,
1997.
|
375. |
Heymans C.
The part played by vascular presso‐ and chemo‐receptors in respiratory control. In:
Nobel Lectures ‐ Physiology or Medicine (1922‐1941).
Amsterdam:
Elsevier,
1965,
p. 460‐481.
|
376. |
Heymans C,
Neil E.
Reflexogenic Areas of the Cardiovascular System.
London:
Churchill,
1958.
|
377. |
Heymans J,
Heymans C.
Sur les modifications directes et sur la regulationreflexede l'activite du centre respiratoire de la tete isolee du chien.
Arch Int Pharmacodyn Ther
33:
273‐372,
1927.
|
378. |
Higashi T,
McIntosh JM,
Shirahata M.
Characterization of nicotinic acetylcholine receptors in cultured arterial chemoreceptor cells of the cat.
Brain Res
974:
167‐175,
2003.
|
379. |
Hilsmann J,
Degner F,
Acker H.
Local flow velocities in the cat carotid body tissue.
Pflugers Arch
410:
204‐211,
1987.
|
380. |
Hodges RD,
King AS,
King DZ,
French EI.
The general ultrastructure of the carotid body of the domestic fowl.
Cell Tissue Res
162:
483‐497,
1975.
|
381. |
Hohler B,
Mayer B,
Kummer W.
Nitric oxide synthase in the rat carotid body and carotid sinus.
Cell Tissue Res
276:
559‐564,
1994.
|
382. |
Holmes A,
Hauton D,
Kumar P.
Interaction between hypoxia and glucose in the rat carotid body, in vitro.
Proc Physiol Soc
20:
C09,
2010.
|
383. |
Holton P,
Wood JB.
The effects of bilateral removal of the carotid bodies and denervation of the carotid sinuses in two human subjects.
J Physiol
181:
365‐378,
1965.
|
384. |
Honda Y.
Role of carotid chemoreceptors in control of breathing at rest and in exercise: Studies on human subjects with bilateral carotid body resection.
Jpn J Physiol
35:
535‐544,
1985.
|
385. |
Honda Y.
Respiratory and circulatory activities in carotid body‐resected humans.
J Appl Physiol
73:
1‐8,
1992.
|
386. |
Honda Y,
Hashizume I.
Evidence for hypoxic depression of CO2‐ventilation response in carotid body‐resected humans.
J Appl Physiol
70:
590‐593,
1991.
|
387. |
Honda Y,
Watanabe S,
Hashizume I,
Satomura Y,
Hata N,
Sakakibara Y,
Severinghaus JW.
Hypoxic chemosensitivity in asthmatic patients two decades after carotid body resection.
J Appl Physiol
46:
632‐638,
1979.
|
388. |
Hornbein TF.
The relation between stimulus to chemoreceptors and their response. In:
Torrance RW, editor.
Arterial Chemoreceptors.
Oxford:
Blackwell Scientific Publications,
1968,
p. 65‐76.
|
389. |
Hornbein TF,
Griffo ZJ,
Roos A.
Quantitation of chemoreceptor activity: Interrelation of hypoxia and hypercapnia.
J Neurophysiol
24:
561‐568,
1961.
|
390. |
Hornbein TF,
Roos A.
Specificity of H ion concentration as a carotid chemoreceptor stimulus.
J Appl Physiol
18:
580‐584,
1963.
|
391. |
Hoshi T,
Heinemann S.
Regulation of cell function by methionine oxidation and reduction.
J Physiol
531:
1‐11,
2001.
|
392. |
Housley GD,
Martin‐Body RL,
Dawson NJ,
Sinclair JD.
Brain stem projections of the glossopharyngeal nerve and its carotid sinus branch in the rat.
Neuroscience
22:
237‐250,
1987.
|
393. |
Howe A,
Pack RJ,
Wise J.
Arterial chemoreceptor‐like activity in the abdominal vagus of thec rat.
J Physiol
320:
309‐318,
1981.
|
394. |
Hudgel DW,
Weil JV.
Depression of hypoxic and hypercapnic ventilatory drives in severe asthma.
Chest
68:
493‐497,
1975.
|
395. |
Huey KA,
Powell FL.
Time‐dependent changes in dopamine D(2)‐receptor mRNA in the arterial chemoreflex pathway with chronic hypoxia.
Brain Res Mol Brain Res
75:
264‐270,
2000.
|
396. |
Ichikawa H.
Innervation of the carotid body: Immunohistochemical, denervation, retrograde tracing studies.
Microsc Res Tech
59:
188‐195,
2002.
|
397. |
Ichikawa H,
Helke CJ.
Distribution, origin and plasticity of galanin‐immunoreactivity in the rat carotid body.
Neuroscience
52:
757‐767,
1993.
|
398. |
Iggo A.
Cutaneous mechanoreceptors with afferent C fibers.
J Physiol
152:
337‐353,
1960.
|
399. |
Ishii K,
Kusakabe T.
The glomus cell of the carotid labyrinth of Xenopus laevis.
Cell Tissue Res
224:
459‐463,
1982.
|
400. |
Iturriaga R,
Alcayaga J.
Effects of CO2‐HCO3‐ on catecholamine efflux from cat carotid body.
J Appl Physiol
84:
60‐68,
1998.
|
401. |
Iturriaga R,
Alcayaga J.
Neurotransmission in the carotid body: Transmitters and modulators between glomus cells and petrosal ganglion nerve terminals.
Brain Res Brain Res Rev
47:
46‐53,
2004.
|
402. |
Iturriaga R,
Alcayaga J,
Zapata P.
Dissociation of hypoxia‐induced chemosensory responses and catecholamine efflux in cat carotid body superfused in vitro.
J Physiol
497(Pt 2):
551‐564,
1996.
|
403. |
Iturriaga R,
Larrain C,
Zapata P.
Effects of dopaminergic blockade upon carotid chemosensory activity and its hypoxia‐induced excitation.
Brain Res
663:
145‐154,
1994.
|
404. |
Iturriaga R,
Mokashi A,
Lahiri S.
Dynamics of carotid body responses in vitro in the presence of CO2‐HCO3‐: Role of carbonic anhydrase.
J Appl Physiol
75:
1587‐1594,
1993.
|
405. |
Iyer NV,
Kotch LE,
Agani F,
Leung SW,
Laughner E,
Wenger RH,
Gassmann M,
Gearhart JD,
Lawler AM,
Yu AY,
Semenza GL.
Cellular and developmental control of O2 homeostasis by hypoxia‐inducible factor 1 alpha.
Genes Dev
12:
149‐162,
1998.
|
406. |
Izal‐Azcarate A,
Belzunegui S,
San Sebastian W,
Garrido‐Gil P,
Vazquez‐Claverie M,
Lopez B,
Marcilla I,
Luquin MA.
Immunohistochemical characterization of the rat carotid body.
Respir Physiol Neurobiol
161:
95‐99,
2008.
|
407. |
Jackson A,
Nurse C.
Plasticity in cultured carotid body chemoreceptors: Environmental modulation of GAP‐43 and neurofilament.
J Neurobiol
26:
485‐496,
1995.
|
408. |
Jackson A,
Nurse C.
Dopaminergic properties of cultured rat carotid body chemoreceptors grown in normoxic and hypoxic environments.
J Neurochem
69:
645‐654,
1997.
|
409. |
Jacobs L,
Comroe JH Jr
Stimulation of the carotid chemoreceptors of the dog by dopamine.
Proc Natl Acad Sci U S A
59:
1187‐1193,
1968.
|
410. |
Jacono FJ,
Peng YJ,
Kumar GK,
Prabhakar NR.
Modulation of the hypoxic sensory response of the carotid body by 5‐hydroxytryptamine: Role of the 5‐HT2 receptor.
Respir Physiol Neurobiol
145:
135‐142,
2005.
|
411. |
Jan LY,
Jan YN.
Peptidergic transmission in sympathetic ganglia of the frog.
J Physiol
327:
219‐246,
1982.
|
412. |
Jarisch A,
Landgren S,
Neil E,
Zotterman Y.
Impulse activity in the carotid sinus nerve following intra‐carotid injection of potassium chloride, veratrine, sodium citrate, adenosine‐triphosphate and alpha‐dinitrophenol.
Acta Physiol Scand
25:
195‐211,
1952.
|
413. |
Jennings DB,
Lockett HJ.
Angiotensin stimulates respiration in spontaneously hypertensive rats.
Am J Physiol Regul Integr Comp Physiol
278:
R1125‐R1133,
2000.
|
414. |
Jiang RG,
Eyzaguirre C.
Calcium channels of cultured rat glomus cells in normoxia and acute hypoxia.
Brain Res
1031:
56‐66,
2005.
|
415. |
Jiang RG,
Eyzaguirre C.
Dye and electric coupling between carotid nerve terminals and glomus cells.
Adv Exp Med Biol
536:
247‐253,
2003.
|
416. |
Jiang RG,
Eyzaguirre C.
Effects of hypoxia and putative transmitters on [Ca2+]i of rat glomus cells.
Brain Res
995:
285‐296,
2004.
|
417. |
Jiang X,
Rowitch DH,
Soriano P,
McMahon AP,
Sucov HM.
Fate of the mammalian cardiac neural crest.
Development
127:
1607‐1616,
2000.
|
418. |
Joels N,
Neil E.
The idea of a sensory transmitter. In:
Torrance RW, editor.
Arterial Chemoreceptors.
Oxford:
Blackwell Scientific Publishing,
1968,
p. 153‐176.
|
419. |
Johnson RP,
O'Kelly IM,
Fearon IM.
System‐specific O2 sensitivity of the tandem pore domain K+ channel TASK‐1.
Am J Physiol Cell Physiol
286:
C391‐C397,
2004.
|
420. |
Jones JV.
Localization and quantitation of carotid body enzymes: Their relevance to the cholinergic transmitter hypothesis. In:
Purves MJ, editor.
The Peripheral Arterial Chemoreceptors.
London:
Cambridge University Press,
1975,
p. 143‐162.
|
421. |
Jordan D.
Central integration of chemoreceptor afferent activity.
Adv Exp Med Biol
360:
87‐98,
1994.
|
422. |
Jyung RW,
LeClair EE,
Bernat RA,
Kang TS,
Ung F,
McKenna MJ,
Tuan RS.
Expression of angiogenic growth factors in paragangliomas.
Laryngoscope
110:
161‐167,
2000.
|
423. |
Kahlin J,
Eriksson LI,
Ebberyd A,
Fagerlund MJ.
Presence of nicotinic, purinergic and dopaminergic receptors and the TASK‐1 K(+)‐channel in the mouse carotid body.
Respir Physiol Neurobiol
172:
122‐128,
2010.
|
424. |
Kalia M,
Davies RO.
A neuroanatomical search for glossopharyngeal efferents to the carotid body using the retrograde transport of horseradish peroxidase.
Brain Res
149:
477‐481,
1978.
|
425. |
Kameda Y.
Immunoelectron microscopic localization of vimentin in sustentacular cells of the carotid body and the adrenal medulla of guinea pigs.
J Histochem Cytochem
44:
1439‐1449,
1996.
|
426. |
Kameda Y.
Mash1 is required for glomus cell formation in the mouse carotid body.
Dev Biol
283:
128‐139,
2005.
|
427. |
Kanagy NL,
Walker BR,
Nelin LD.
Role of endothelin in intermittent hypoxia‐induced hypertension.
Hypertension
37:
511‐515,
2001.
|
428. |
Kara T,
Narkiewicz K,
Somers VK.
Chemoreflexes–physiology and clinical implications.
Acta Physiol Scand
177:
377‐384,
2003.
|
429. |
Karasawa N,
Kondo Y,
Nagatsu I.
Immunohistocytochemical and immunofluorescent localization of catecholamine‐synthesizing enzymes in the carotid body of the bat and dog.
Arch Histol Jpn
45:
429‐435,
1982.
|
430. |
Katz DM,
White ME,
Hall AK.
Lectin binding distinguishes between neuroendocrine and neuronal derivatives of the sympathoadrenal neural crest.
J Neurobiol
26:
241‐252,
1995.
|
431. |
Katz‐Salamon M,
Lagercrantz H.
Hypoxic ventilatory defence in very preterm infants: Attenuation after long term oxygen treatment.
Arch Dis Child Fetal Neonatal Ed
70:
F90‐F95,
1994.
|
432. |
Kellog R.
Historical perspectives. In:
Hornbein T, editor.
Regulation of Breathing.
New York:
Marcel Dekker,
1981,
p. 3‐66.
|
433. |
Kelly RB.
Storage and release of neurotransmitters.
Cell
72:
45‐53,
1993.
|
434. |
Kemp PJ.
Detecting acute changes in oxygen: Will the real sensor please stand up?
Exp Physiol
91:
829‐834,
2006.
|
435. |
Kemp PJ,
Telezhkin V,
Wilkinson WJ,
Mears R,
Hanmer SB,
Gadeberg HC,
Muller CT,
Riccardi D,
Brazier SP.
Enzyme‐linked oxygen sensing by potassium channels.
Ann N Y Acad Sci
1177:
112‐118,
2009.
|
436. |
Khan S,
Nanduri J,
Yuan G,
Kinsman B,
Kumar GK,
Joseph J,
Kalyanaraman B,
Prabhakar NR.
Nox2 mediates intermittent hypoxia‐induced mitochondrial complex I inhibition: Relevance to blood pressure changes in rats.
Antioxid Redox Signal,
14:
533‐542,
2011.
|
437. |
Kholwadwala D,
Donnelly DF.
Maturation of carotid chemoreceptor sensitivity to hypoxia: In vitro studies in the newborn rat.
J Physiol
453:
461‐473,
1992.
|
438. |
Kim D,
Cavanaugh EJ,
Kim I,
Carroll JL.
Heteromeric TASK‐1/TASK‐3 is the major oxygen‐sensitive background K+ channel in rat carotid body glomus cells.
J Physiol
587:
2963‐2975,
2009.
|
439. |
Kim DK,
Oh EK,
Summers BA,
Prabhakar NR,
Kumar GK.
Release of substance P by low oxygen in the rabbit carotid body: Evidence for the involvement of calcium channels.
Brain Res
892:
359‐369,
2001.
|
440. |
Kim DK,
Prabhakar NR,
Kumar GK.
Acetylcholine release from the carotid body by hypoxia: Evidence for the involvement of autoinhibitory receptors.
J Appl Physiol
96:
376‐383,
2004.
|
441. |
Kim I,
Kim JH,
Carroll JL.
Postnatal changes in gene expression of subfamilies of TASK K+ channels in rat carotid body.
Adv Exp Med Biol
580:
43‐47; discussion
351‐359,
2006.
|
442. |
Kim I,
Yang DJ,
Donnelly DF,
Carroll JL.
Fluoresceinated peanut agglutinin (PNA) is a marker for live O(2) sensing glomus cells in rat carotid body.
Adv Exp Med Biol
648:
185‐190,
2009.
|
443. |
Kimura H,
Nagai Y,
Umemura K,
Kimura Y.
Physiological roles of hydrogen sulfide: Synaptic modulation, neuroprotection, and smooth muscle relaxation.
Antioxid Redox Signal
7:
795‐803,
2005.
|
444. |
Kirby GC,
McQueen DS.
Characterization of opioid receptors in the cat carotid body involved in chemosensory depression in vivo.
Br J Pharmacol
88:
889‐898,
1986.
|
445. |
Kline DD,
Peng YJ,
Manalo DJ,
Semenza GL,
Prabhakar NR.
Defective carotid body function and impaired ventilatory responses to chronic hypoxia in mice partially deficient for hypoxia‐inducible factor 1 alpha.
Proc Natl Acad Sci U S A
99:
821‐826,
2002.
|
446. |
Kline DD,
Yang T,
Huang PL,
Prabhakar NR.
Altered respiratory responses to hypoxia in mutant mice deficient in neuronal nitric oxide synthase.
J Physiol
511(Pt 1):
273‐287,
1998.
|
447. |
Kline DD,
Yang T,
Premkumar DR,
Thomas AJ,
Prabhakar NR.
Blunted respiratory responses to hypoxia in mutant mice deficient in nitric oxide synthase‐3.
J Appl Physiol
88:
1496‐1508,
2000.
|
448. |
Kobayashi S.
Fine structure of the carotid body of the dog.
Arch Histol Jpn
30:
95‐120,
1968.
|
449. |
Kobayashi S.
Comparative cytological studies of the carotid body. 2. Ultrastructure of the synapses on the chief cell.
Arch Histol Jpn
33:
397‐420,
1971.
|
450. |
Kobayashi S.
An autoradiographic study of the mouse carotid body using tritiated leucine, dopa, dopamine and ATP with special reference to the chief cell as a paraneuron.
Arch Histol Jpn
39:
295‐317,
1976.
|
451. |
Kobayashi S,
Conforti L,
Millhorn DE.
Gene expression and function of adenosine A(2A) receptor in the rat carotid body.
Am J Physiol Lung Cell Mol Physiol
279:
L273‐L282,
2000.
|
452. |
Kobayashi S,
Uehara M.
Occurrence of afferent synaptic complexes in the carotid body of the mouse.
Arch Histol Jpn
32:
193‐201,
1970.
|
453. |
Koerner P,
Hesslinger C,
Schaefermeyer A,
Prinz C,
Gratzl M.
Evidence for histamine as a transmitter in rat carotid body sensor cells.
J Neurochem
91:
493‐500,
2004.
|
454. |
Kohn A.
Ueber den bau und die entwicklund der sogenannten carotisdruse.
Archiv Mik Anat Entwick
56:
81‐148,
1900.
|
455. |
Kondo H.
A light and electron microscopic study on the embryonic development of the rat carotid body.
Am J Anat
144:
275‐293,
1975.
|
456. |
Kondo H.
An electron microscopic study on innervation of the carotid body of guinea pig.
J Ultrastruct Res
37:
544‐562,
1971.
|
457. |
Kondo H.
An electron microscopic study on the development of synapses in the rat carotid body.
Neurosci Lett
3:
197‐200,
1976a.
|
458. |
Kondo H.
Innervation of the carotid body of the adult rat. A serial ultrathin section analysis.
Cell Tissue Res
173:
1‐15,
1976b.
|
459. |
Kondo H.
Innervation of the chief cells of the carotid body: An ultrastructural review.
Arch Histol Jpn
40:
221‐230,
1977.
|
460. |
Kondo H.
Are there gap junctions between chief (glomus, type I) cells in the carotid body chemoreceptor? A review.
Microsc Res Tech
59:
227‐233,
2002.
|
461. |
Kondo H,
Iwanaga T,
Nakajima T.
Immunocytochemical study on the localization of neuron‐specific enolase and S‐100 protein in the carotid body of rats.
Cell Tissue Res
227:
291‐295,
1982.
|
462. |
Kondo H,
Kuramoto H,
Fujita T.
Neuropeptide tyrosine‐like immunoreactive nerve fibers in the carotid body chemoreceptor of rats.
Brain Res
372:
353‐356,
1986.
|
463. |
Korkala O,
Hervonen A.
Origin and development of the catecholamine‐storing cells of the human fetal carotid body.
Histochemie
37:
287‐297,
1973.
|
464. |
Kou YR,
Ernsberger P,
Cragg PA,
Cherniack NS,
Prabhakar NR.
Role of alpha 2‐adrenergic receptors in the carotid body response to isocapnic hypoxia.
Respir Physiol
83:
353‐364,
1991.
|
465. |
Koyama Y,
Coker RH,
Denny JC,
Lacy DB,
Jabbour K,
Williams PE,
Wasserman DH.
Role of carotid bodies in control of the neuroendocrine response to exercise.
Am J Physiol Endocrinol Metab
281:
E742‐E748,
2001.
|
466. |
Koyama Y,
Coker RH,
Stone EE,
Lacy DB,
Jabbour K,
Williams PE,
Wasserman DH.
Evidence that carotid bodies play an important role in glucoregulation in vivo.
Diabetes
49:
1434‐1442,
2000.
|
467. |
Krammer EB.
Carotid body chemoreceptor function: Hypothesis based on a new circuit model.
Proc Natl Acad Sci U S A
75:
2507‐2511,
1978.
|
468. |
Kreneisz O,
Benoit JP,
Bayliss DA,
Mulkey DK.
AMP‐activated protein kinase inhibits TREK channels.
J Physiol
587:
5819‐5830,
2009.
|
469. |
Krylov SS,
Anichkov SV.
The effect of metabolic inhibitors on carotid chemoreceptors. In:
Torrance RW, editor.
Arterial Chemoreceptors.
Oxford:
Blackwell Scientific Publications,
1968,
p. 103‐109.
|
470. |
Kumar GK.
Neuropeptide processing enzymes of the carotid body. Biochemical and immunological characterization of carboxypeptidase activity.
Adv Exp Med Biol
410:
319‐323,
1996.
|
471. |
Kumar GK.
Peptidases of the peripheral chemoreceptors: Biochemical, immunological, in vitro hydrolytic studies and electron microscopic analysis of neutral endopeptidase‐like activity of the carotid body.
Brain Res
748:
39‐50,
1997.
|
472. |
Kumar GK,
Kou YR,
Overholt JL,
Prabhakar NR.
Involvement of substance P in neutral endopeptidase modulation of carotid body sensory responses to hypoxia.
J Appl Physiol
88:
195‐202,
2000.
|
473. |
Kumar GK,
Rai V,
Sharma SD,
Ramakrishnan DP,
Peng YJ,
Souvannakitti D,
Prabhakar NR.
Chronic intermittent hypoxia induces hypoxia‐evoked catecholamine efflux in adult rat adrenal medulla via oxidative stress.
J Physiol
575:
229‐239,
2006.
|
474. |
Kumar GK,
Yu RK,
Overholt JL,
Prabhakar NR.
Role of substance P in neutral endopeptidase modulation of hypoxic response of the carotid body.
Adv Exp Med Biol
475:
705‐713,
2000.
|
475. |
Kumar P.
Maturation of chemoreceptor O2 and CO2 sensitivity. In:
Lahiri S,
Semenza GL,
Prabhakar N, editors.
Oxygen Sensing. Responses and Adaptation to Hypoxia.
New York:
Marcel Dekker,
2003,
p. 273‐288.
|
476. |
Kumar P.
How sweet it is: Sensing low glucose in the carotid body.
J Physiol
578:
627,
2007a.
|
477. |
Kumar P.
Sensing hypoxia in the carotid body: From stimulus to response.
Essays Biochem
43:
43‐60,
2007b.
|
478. |
Kumar P,
Bin‐Jaliah I.
Adequate stimuli of the carotid body: More than an oxygen sensor?
Respir Physiol Neurobiol
157:
12‐21,
2007.
|
479. |
Kumar P,
Hanson MA.
Re‐setting of the hypoxic sensitivity of aortic chemoreceptors in the new‐born lamb.
J Dev Physiol
11:
199‐206,
1989.
|
480. |
Kumar P,
Nye PCG,
Torrance RW.
Do oxygen tension variations contribute to the respiratory oscillations of chemoreceptor discharge in the cat?
J Physiol
395:
531‐552,
1988.
|
481. |
Kummer W.
Retrograde neuronal labelling and double‐staining immunohistochemistry of tachykinin‐ and calcitonin gene‐related peptide‐immunoreactive pathways in the carotid sinus nerve of the guinea pig.
J Auton Nerv Syst
23:
131‐141,
1988.
|
482. |
Kummer W,
Acker H.
Immunohistochemical demonstration of four subunits of neutrophil NAD(P)H oxidase in type I cells of carotid body.
J Appl Physiol
78:
1904‐1909,
1995.
|
483. |
Kummer W,
Fischer A,
Heym C.
Ultrastructure of calcitonin gene‐related peptide‐ and substance P‐like immunoreactive nerve fibres in the carotid body and carotid sinus of the guinea pig.
Histochemistry
92:
433‐439,
1989.
|
484. |
Kummer W,
Habeck JO.
Substance P‐ and calcitonin gene‐related peptide‐like immunoreactivities in the human carotid body studied at light and electron microscopical level.
Brain Res
554:
286‐292,
1991.
|
485. |
Kummer W,
Yamamoto Y.
Cellular distribution of oxygen sensor candidates‐oxidases, cytochromes, K+‐channels–in the carotid body.
Microsc Res Tech
59:
234‐242,
2002.
|
486. |
Kusakabe T,
Hayashida Y,
Matsuda H,
Gono Y,
Powell FL,
Ellisman MH,
Kawakami T,
Takenaka T.
Hypoxic adaptation of the peptidergic innervation in the rat carotid body.
Brain Res
806:
165‐174,
1998.
|
487. |
Kusakabe T,
Hirakawa H,
Oikawa S,
Matsuda H,
Kawakami T,
Takenaka T,
Hayashida Y.
Morphological changes in the rat carotid body 1, 2, 4, and 8 weeks after the termination of chronically hypocapnic hypoxia.
Histol Histopathol
19:
1133‐1140,
2004.
|
488. |
Kusakabe T,
Ishii K.
A possible role of the glomus cell in controlling vascular tone of the carotid labyrinth of Xenopus laevis.
Tohoku J Exp Med
151:
395‐408,
1987.
|
489. |
Kusakabe T,
Kawakami T,
Tanabe Y,
Fujii S,
Takenaka T.
Distribution of substance P‐containing and catecholaminergic nerve fibers in the rabbit carotid body: An immunohistochemical study in combination with catecholamine fluorescent histochemistry.
Arch Histol Cytol
57:
193‐199,
1994.
|
490. |
Kwak DJ,
Kwak SD,
Gauda EB.
The effect of hyperoxia on reactive oxygen species (ROS) in rat petrosal ganglion neurons during development using organotypic slices.
Pediatr Res
60:
371‐376,
2006.
|
491. |
Lahiri S.
Introductory remarks: Oxygen linked response of carotid chemoreceptors.
Adv Exp Med Biol
78:
185‐202,
1977.
|
492. |
Lahiri S.
Historical perspectives of cellular oxygen sensing and responses to hypoxia.
J Appl Physiol
88:
1467‐1473,
2000.
|
493. |
Lahiri S,
DeLaney RG.
Stimulus interaction in the responses of carotid body chemoreceptor single afferent fibers.
Respir Physiol
24:
249‐266,
1975.
|
494. |
Lahiri S,
Forster RE, II.
CO2/H(+) sensing: Peripheral and central chemoreception.
Int J Biochem Cell Biol
35:
1413‐1435,
2003.
|
495. |
Lahiri S,
Mokashi A,
Mulligan E,
Nishino T.
Comparison of aortic and carotid chemoreceptor responses to hypercapnia and hypoxia.
J Appl Physiol
51:
55‐61,
1981.
|
496. |
Lahiri S,
Mulligan E,
Andronikou S,
Shirahata M,
Mokashi A.
Carotid body chemosensory function in prolonged normobaric hyperoxia in the cat.
J Appl Physiol
62:
1924‐1931,
1987.
|
497. |
Lahiri S,
Mulligan E,
Nishino T,
Mokashi A.
Aortic body chemoreceptor responses to changes in PCO2 and PO2 in the cat.
J Appl Physiol
47:
858‐866,
1979.
|
498. |
Lahiri S,
Mulligan E,
Nishino T,
Mokashi A,
Davies RO.
Relative responses of aortic body and carotid body chemoreceptors to carboxyhemoglobinemia.
J Appl Physiol
50:
580‐586,
1981.
|
499. |
Lahiri S,
Nishino T,
Mokashi A,
Mulligan E.
Relative responses of aortic body and carotid body chemoreceptors to hypotension.
J Appl Physiol
48:
781‐788,
1980.
|
500. |
Lahiri S,
Osanai S,
Buerk DG,
Mokashi A,
Chugh DK.
Thapsigargin enhances carotid body chemosensory discharge in response to hypoxia in zero [Ca2+]e: Evidence for intracellular Ca2+ release.
Brain Res
709:
141‐144,
1996.
|
501. |
Lahiri S,
Roy A,
Baby SM,
Hoshi T,
Semenza GL,
Prabhakar NR.
Oxygen sensing in the body.
Prog Biophys Mol Biol
91:
249‐286,
2006.
|
502. |
Lahiri S,
Rumsey WL,
Wilson DF,
Iturriaga R.
Contribution of in vivo microvascular PO2 in the cat carotid body chemotransduction.
J Appl Physiol
75:
1035‐1043,
1993.
|
503. |
Lahiri S,
Smatresk N,
Pokorski M,
Barnard P,
Mokashi A,
McGregor KH.
Dopaminergic efferent inhibition of carotid body chemoreceptors in chronically hypoxic cats.
Am J Physiol
247:
R24‐R28,
1984.
|
504. |
Laidler P,
Kay JM.
A quantitative morphological study of the carotid bodies of rats living at a simulated altitude of 4300 metres.
J Pathol
117:
183‐191,
1975.
|
505. |
Laidler P,
Kay JM.
A quantitative study of some ultrastructural features of the type I cells in the carotid bodies of rats living at a simulated altitude of 4300 metres.
J Neurocytol
7:
183‐192,
1978.
|
506. |
Lam SY,
Fung ML,
Leung PS.
Regulation of the angiotensin‐converting enzyme activity by a time‐course hypoxia in the carotid body.
J Appl Physiol
96:
809‐813,
2004.
|
507. |
Lam SY,
Leung PS.
A locally generated angiotensin system in rat carotid body.
Regul Pept
107:
97‐103,
2002.
|
508. |
Lam SY,
Leung PS.
Chronic hypoxia activates a local angiotensin‐generating system in rat carotid body.
Mol Cell Endocrinol
203:
147‐153,
2003.
|
509. |
Lam SY,
Tipoe GL,
Liong EC,
Fung ML.
Chronic hypoxia upregulates the expression and function of proinflammatory cytokines in the rat carotid body.
Histochem Cell Biol
130:
549‐559,
2008a.
|
510. |
Lam SY,
Tipoe GL,
Liong EC,
Fung ML.
Differential expressions and roles of hypoxia‐inducible factor‐1alpha, ‐2alpha and ‐3alpha in the rat carotid body during chronic and intermittent hypoxia.
Histol Histopathol
23:
271‐280,
2008b.
|
511. |
Landauer RC,
Pepper DR,
Kumar P.
Effect of chronic hypoxaemia from birth upon chemosensitivity in the adult rat carotid body in vitro.
J Physiol
485(Pt 2):
543‐550,
1995a.
|
512. |
Landauer RC,
Pepper DR,
Kumar P.
Interaction of temperature and CO2 in the adult rat carotid body, in vitro.
J Physiol
489P:
162P‐163P,
1995b.
|
513. |
Landgren S,
Neil E.
Chemoreceptor impulse activity following haemorrhage.
Acta Physiol Scand
23:
158‐167,
1951.
|
514. |
Latini S,
Pedata F.
Adenosine in the central nervous system: Release mechanisms and extracellular concentrations.
J Neurochem
79:
463‐484,
2001.
|
515. |
Le Douarin N,
Le Lievre C,
Fontaine J.
Experimental research on the embryologic origin of the carotid body in birds.
C R Acad Sci Hebd Seances Acad Sci D
275:
583‐586,
1972.
|
516. |
Lee KD,
Mayou RA,
Torrance RW.
The effect of blood pressure upon chemoreceptor discharge to hypoxia, and the modification of this effect by the sympathetic‐adrenal system.
Q J Exp Physiol Cogn Med Sci
49:
171‐183,
1964.
|
517. |
Leitner LM,
Liaubet MJ.
Carotid body oxygen consumption of the cat in vitro.
Pflugers Arch
323:
315‐322,
1971.
|
518. |
Lemus M,
Montero S,
Cadenas JL,
Lara JJ,
Tejeda‐Chavez HR,
Alvarez‐Buylla R,
de Alvarez‐Buylla ER.
GabaB receptors activation in the NTS blocks the glycemic responses induced by carotid body receptor stimulation.
Auton Neurosci
141:
73‐82,
2008.
|
519. |
Leniger‐Follert E,
Lubbers DW,
Wrabetz W.
Regulation of local tissue PO2 of the brain cortex at different arterial O2 pressures.
Pflugers Arch
359:
81‐95,
1975.
|
520. |
Lesske J,
Fletcher EC,
Bao G,
Unger T.
Hypertension caused by chronic intermittent hypoxia–influence of chemoreceptors and sympathetic nervous system.
J Hypertens
15:
1593‐1603,
1997.
|
521. |
Leung PS,
Fung ML,
Tam MS.
Renin‐angiotensin system in the carotid body.
Int J Biochem Cell Biol
35:
847‐854,
2003.
|
522. |
Lever JD,
Boyd JD.
Osmiophile granules in the glomus cells of the rabbit carotid body.
Nature
179:
1082‐1083,
1957.
|
523. |
Lever JD,
Lewis PR,
Boyd JD.
Observations on the fine structure and histochemistry of the carotid body in the cat and rabbit.
J Anat
93:
478‐490,
1959.
|
524. |
Lewis A,
Peers C,
Ashford ML,
Kemp PJ.
Hypoxia inhibits human recombinant large conductance, Ca(2+)‐activated K(+) (maxi‐K) channels by a mechanism which is membrane delimited and Ca(2+) sensitive.
J Physiol
540:
771‐780,
2002.
|
525. |
Lewis C,
Neidhart S,
Holy C,
North RA,
Buell G,
Surprenant A.
Coexpression of P2X2 and P2X3 receptor subunits can account for ATP‐gated currents in sensory neurons.
Nature
377:
432‐435,
1995.
|
526. |
Li Q,
Sun B,
Wang X,
Jin Z,
Zhou Y,
Dong L,
Jiang LH,
Rong W.
A crucial role for hydrogen sulfide in oxygen sensing via modulating large conductance calcium‐activated potassium channels.
Antioxid Redox Signal
12:
1179‐1189,
2010.
|
527. |
Li YL,
Gao L,
Zucker IH,
Schultz HD.
NADPH oxidase‐derived superoxide anion mediates angiotensin II‐enhanced carotid body chemoreceptor sensitivity in heart failure rabbits.
Cardiovasc Res
75:
546‐554,
2007.
|
528. |
Li YL,
Li YF,
Liu D,
Cornish KG,
Patel KP,
Zucker IH,
Channon KM,
Schultz HD.
Gene transfer of neuronal nitric oxide synthase to carotid body reverses enhanced chemoreceptor function in heart failure rabbits.
Circ Res
97:
260‐267,
2005.
|
529. |
Li YL,
Schultz HD.
Enhanced sensitivity of Kv channels to hypoxia in the rabbit carotid body in heart failure: Role of angiotensin II.
J Physiol
575:
215‐227,
2006.
|
530. |
Li YL,
Sun SY,
Overholt JL,
Prabhakar NR,
Rozanski GJ,
Zucker IH,
Schultz HD.
Attenuated outward potassium currents in carotid body glomus cells of heart failure rabbit: Involvement of nitric oxide.
J Physiol
555:
219‐229,
2004.
|
531. |
Li YL,
Xia XH,
Zheng H,
Gao L,
Li YF,
Liu D,
Patel KP,
Wang W,
Schultz HD.
Angiotensin II enhances carotid body chemoreflex control of sympathetic outflow in chronic heart failure rabbits.
Cardiovasc Res
71:
129‐138,
2006.
|
532. |
Ling L,
Olson EB Jr,
Vidruk EH,
Mitchell GS.
Integrated phrenic responses to carotid afferent stimulation in adult rats following perinatal hyperoxia.
J Physiol
500(Pt 3):
787‐796,
1997.
|
533. |
Linton RA,
Band DM.
The effect of potassium on carotid chemoreceptor activity and ventilation in the cat.
Respir Physiol
59:
65‐70,
1985.
|
534. |
Linton RA,
Band DM,
Wolff CB.
Carotid chemoreceptor discharge during epinephrine infusion in anesthetized cats.
J Appl Physiol
73:
2420‐2424,
1992.
|
535. |
Liu M,
King BF,
Dunn PM,
Rong W,
Townsend‐Nicholson A,
Burnstock G.
Coexpression of P2X(3) and P2X(2) receptor subunits in varying amounts generates heterogeneous populations of P2X receptors that evoke a spectrum of agonist responses comparable to that seen in sensory neurons.
J Pharmacol Exp Ther
296:
1043‐1050,
2001.
|
536. |
Liu X,
He L,
Stensaas L,
Dinger B,
Fidone S.
Adaptation to chronic hypoxia involves immune cell invasion and increased expression of inflammatory cytokines in rat carotid body.
Am J Physiol Lung Cell Mol Physiol
296:
L158‐L166,
2009.
|
537. |
Llados F,
Zapata P.
Effects of adrenoceptor stimulating and blocking agents on carotid body chemosensory inhibition.
J Physiol
274:
501‐509,
1978a.
|
538. |
Llados F,
Zapata P.
Effects of dopamine analogues and antagonists on carotid body chemosensors in situ.
J Physiol
274:
487‐499,
1978b.
|
539. |
Lopez‐Barneo J.
Oxygen and glucose sensing by carotid body glomus cells.
Curr Opin Neurobiol
13:
493‐499,
2003.
|
540. |
Lopez‐Barneo J,
Lopez‐Lopez JR,
Urena J,
Gonzalez C.
Chemotransduction in the carotid body: K+ current modulated by PO2 in type I chemoreceptor cells.
Science
241:
580‐582,
1988.
|
541. |
Lopez‐Lopez J,
Gonzalez C,
Urena J,
Lopez‐Barneo J.
Low pO2 selectively inhibits K channel activity in chemoreceptor cells of the mammalian carotid body.
J Gen Physiol
93:
1001‐1015,
1989.
|
542. |
Lopez‐Lopez JR,
De Luis DA,
Gonzalez C.
Properties of a transient K+ current in chemoreceptor cells of rabbit carotid body.
J Physiol
460:
15‐32,
1993.
|
543. |
Lopez‐Lopez JR,
Perez‐Garcia MT.
Oxygen sensitive Kv channels in the carotid body.
Respir Physiol Neurobiol
157:
65‐74,
2007.
|
544. |
Lowry TF,
Forster HV,
Pan LG,
Serra A,
Wenninger J,
Nash R,
Sheridan D,
Franciosi RA.
Effects on breathing of carotid body denervation in neonatal piglets.
J Appl Physiol
87:
2128‐2135,
1999.
|
545. |
Lugliani R,
Whipp BJ,
Seard C,
Wasserman K.
Effect of bilateral carotid body resection on ventilatory control at rest and during exercise in man.
New Eng J Med
286:
1105‐1111,
1971.
|
546. |
Luquin MR,
Montoro RJ,
Guillen J,
Saldise L,
Insausti R,
Del Rio J,
Lopez‐Barneo J.
Recovery of chronic parkinsonian monkeys by autotransplants of carotid body cell aggregates into putamen.
Neuron
22:
743‐750,
1999.
|
547. |
Machacek DW,
Garraway SM,
Shay BL,
Hochman S.
Serotonin 5‐HT(2) receptor activation induces a long‐lasting amplification of spinal reflex actions in the rat.
J Physiol
537:
201‐207,
2001.
|
548. |
Maines MD.
The heme oxygenase system: A regulator of second messenger gases.
Annu Rev Pharmacol Toxicol
37:
517‐554,
1997.
|
549. |
Majcherczyk S,
Chruscielewski L,
Trzebski A.
Effect of stimulation of carotid body chemoreceptors upon ganglioglomerular nerve activity and on chemoreceptor discharges in contralateral sinus nerve.
Brain Res
76:
167‐170,
1974.
|
550. |
Malik MT,
Peng YJ,
Kline DD,
Adhikary G,
Prabhakar NR.
Impaired ventilatory acclimatization to hypoxia in mice lacking the immediate early gene fos B.
Respir Physiol Neurobiol
145:
23‐31,
2005.
|
551. |
Mark Evans A,
Ward JP.
Hypoxic pulmonary vasoconstriction–invited article.
Adv Exp Med Biol
648:
351‐360,
2009.
|
552. |
Martin‐Body RL,
Robson GJ,
Sinclair JD.
Restoration of hypoxic respiratory responses in the awake rat after carotid body denervation by sinus nerve section.
J Physiol
380:
61‐73,
1986.
|
553. |
Maskell PD,
Rusius CJ,
Whitehead KJ,
Kumar P.
Adrenaline increases carotid body CO2 sensitivity: An in vivo study.
Adv Exp Med Biol
580:
245‐250; discussion
351‐249,
2006.
|
554. |
Massari VJ,
Shirahata M,
Johnson TA,
Gatti PJ.
Carotid sinus nerve terminals which are tyrosine hydroxylase immunoreactive are found in the commissural nucleus of the tractus solitarius.
J Neurocytol
25:
197‐208,
1996.
|
555. |
Matsumoto S,
Mokashi A,
Lahiri S.
Influence of ganglioglomerular nerve on carotid chemoreceptor activity in the cat.
J Auton Nerv Syst
15:
7‐20,
1986.
|
556. |
Matsuoka T,
Saiki C,
Mortola JP.
Metabolic and ventilatory responses to anemic hypoxia in conscious rats.
J Appl Physiol
77:
1067‐1072,
1994.
|
557. |
Matteoli M,
Haimann C,
Torri‐Tarelli F,
Polak JM,
Ceccarelli B,
De Camilli P.
Differential effect of alpha‐latrotoxin on exocytosis from small synaptic vesicles and from large dense‐core vesicles containing calcitonin gene‐related peptide at the frog neuromuscular junction.
Proc Natl Acad Sci U S A
85:
7366‐7370,
1988.
|
558. |
Mauelshagen J,
Sherff CM,
Carew TJ.
Differential induction of long‐term synaptic facilitation by spaced and massed applications of serotonin at sensory neuron synapses of Aplysia californica.
Learn Mem
5:
246‐256,
1998.
|
559. |
McBride A,
Ghilagaber S,
Nikolaev A,
Hardie DG.
The glycogen‐binding domain on the AMPK beta subunit allows the kinase to act as a glycogen sensor.
Cell Metab
9:
23‐34,
2009.
|
560. |
McCloskey DI.
Mechanisms of autonomic control of carotid chemoreceptor activity.
Respir Physiol
25:
53‐61,
1975.
|
561. |
McDonald DM.
Peripheral chemoreceptors: Structure‐function relations of the carotid body. In:
Hornbein TF, editor.
Lung Biology in Health and Disease. The Regulation of Breathing.
New York:
Dekker,
1981,
p. 105‐319.
|
562. |
McDonald DM.
A morphometric analysis of blood vessels and perivascular nerves in the rat carotid body.
J Neurocytol
12:
155‐199,
1983.
|
563. |
McDonald DM,
Haskell A.
Morphology of connections between arterioles and capillaries in the rat carotid body analysed by reconstructing serial sections. In:
Pallot DJ, editor.
The Peripheral Arterial Chemoreceptors,
London:
Croom Helm,
1984,
p. 195‐201.
|
564. |
McDonald DM,
Larue DT.
The ultrastructure and connections of blood vessels supplying the rat carotid body and carotid sinus.
J Neurocytol
12:
117‐153,
1983.
|
565. |
McDonald DM,
Mitchell RA.
A quantitative analysis of synaptic connections in the rat carotid body. In:
Purves MJ, editor.
The Peripheral Arterial Chemoreceptors.
London:
Cambridge University Press,
1975a,
p. 101‐131.
|
566. |
McDonald DM,
Mitchell RA.
The innervation of glomus cells, ganglion cells and blood vessels in the rat carotid body: A quantitative ultrastructural analysis.
J Neurocytol
4:
177‐230,
1975b.
|
567. |
McEwen BS.
Invited review: Estrogens effects on the brain: Multiple sites and molecular mechanisms.
J Appl Physiol
91:
2785‐2801,
2001.
|
568. |
McGregor KH,
Gil J,
Lahiri S.
A morphometric study of the carotid body in chronically hypoxic rats.
J Appl Physiol
57:
1430‐1438,
1984.
|
569. |
McQueen DS.
A quantitative study of the effects of cholinergic drugs on carotid chemoreceptors in the cat.
J Physiol
273:
515‐532,
1977.
|
570. |
McQueen DS.
Effects of substance P on carotid chemoreceptor activity in the cat.
J Physiol
302:
31‐47,
1980.
|
571. |
McQueen DS,
Bond SM,
Moores C,
Chessell I,
Humphrey PP,
Dowd E.
Activation of P2X receptors for adenosine triphosphate evokes cardiorespiratory reflexes in anaesthetized rats.
J Physiol
507(Pt 3):
843‐855,
1998.
|
572. |
McQueen DS,
Eyzaguirre C.
Effects of temperature on carotid chemoreceptor and baroreceptor activity.
J Neurophysiol
37:
1287‐1296,
1974.
|
573. |
McQueen DS,
Ribeiro JA.
Effect of adenosine on carotid chemoreceptor activity in the cat.
Br J Pharmacol
74:
129‐136,
1981.
|
574. |
McQueen DS,
Ribeiro JA.
On the specificity and type of receptor involved in carotid body chemoreceptor activation by adenosine in the cat.
Br J Pharmacol
80:
347‐354,
1983.
|
575. |
McQueen DS,
Ribeiro JA.
Pharmacological characterization of the receptor involved in chemoexcitation induced by adenosine.
Br J Pharmacol
88:
615‐620,
1986.
|
576. |
Medbo JI,
Sejersted OM.
Plasma potassium changes with high intensity exercise.
J Physiol
421:
105‐122,
1990.
|
577. |
Migita CT,
Matera KM,
Ikeda‐Saito M,
Olson JS,
Fujii H,
Yoshimura T,
Zhou H,
Yoshida T.
The oxygen and carbon monoxide reactions of heme oxygenase.
J Biol Chem
273:
945‐949,
1998.
|
578. |
Millhorn DE,
Raymond R,
Conforti L,
Zhu W,
Beitner‐Johnson D,
Filisko T,
Genter MB,
Kobayashi S,
Peng M.
Regulation of gene expression for tyrosine hydroxylase in oxygen sensitive cells by hypoxia.
Kidney Int
51:
527‐535,
1997.
|
579. |
Mills E,
Edwards MW Jr.
Stimulation of aortic and carotid chemoreceptors during carbon monoxide inhalation.
J Appl Physiol
25:
494‐502,
1968.
|
580. |
Mills E,
Jobsis FF.
Simultaneous measurement of cytochrome a3 reduction and chemoreceptor afferent activity in the carotid body.
Nature
225:
1147‐1149,
1970.
|
581. |
Mills E,
Jobsis FF.
Mitochondrial respiratory chain of carotid body and chemoreceptor response to changes in oxygen tension.
J Neurophysiol
35:
405‐428,
1972.
|
582. |
Milsom WK,
Burleson ML.
Peripheral arterial chemoreceptors and the evolution of the carotid body.
Respir Physiol Neurobiol
157:
4‐11,
2007.
|
583. |
Minguez‐Castellanos A,
Escamilla‐Sevilla F,
Hotton GR,
Toledo‐Aral JJ,
Ortega‐Moreno A,
Mendez‐Ferrer S,
Martin‐Linares JM,
Katati MJ,
Mir P,
Villadiego J,
Meersmans M,
Perez‐Garcia M,
Brooks DJ,
Arjona V,
Lopez‐Barneo J.
Carotid body autotransplantation in Parkinson disease: A clinical and positron emission tomography study.
J Neurol Neurosurg Psychiatry
78:
825‐831,
2007.
|
584. |
Mitchell GS,
Johnson SM.
Neuroplasticity in respiratory motor control.
J Appl Physiol
94:
358‐374,
2003.
|
585. |
Mitchell JH,
McCloskey DI.
Chemoreceptor responses to sympathetic stimulation and changes in blood pressure.
Respir Physiol
20:
297‐302,
1974.
|
586. |
Mitchell RA,
McDonald DM.
Adjustment of chemosensitivity in the cat carotid body by reciprocal synapses. In:
Purves M, editor.
The Peripheral Arterial Chemoreceptors.
London:
Cambridge University Press,
1975,
p. 269‐282.
|
587. |
Mitchell RA,
Sinha AK,
McDonald DM.
Chemoreceptive properties of regenerated endings of the carotid sinus nerve.
Brain Res
43:
681‐685,
1972.
|
588. |
Mokashi A,
Li J,
Roy A,
Baby SM,
Lahiri S.
ATP causes glomus cell [Ca2+]c increase without corresponding increases in CSN activity.
Respir Physiol Neurobiol
138:
1‐18,
2003.
|
589. |
Mokashi A,
Roy A,
Rozanov C,
Osanai S,
Storey BT,
Lahiri S.
High PCO does not alter pHi, but raises [Ca2+]i in cultured rat carotid body glomus cells in the absence and presence of CdC12.
Brain Res
803:
194‐197,
1998.
|
590. |
Molnar Z,
Petheo GL,
Fulop C,
Spat A.
Effects of osmotic changes on the chemoreceptor cell of rat carotid body.
J Physiol
546:
471‐481,
2003.
|
591. |
Moncada S,
Palmer RM,
Higgs EA.
Nitric oxide: physiology, pathophysiology, and pharmacology.
Pharmacol Rev
43:
109‐142,
1991.
|
592. |
Monteiro EC,
Ribeiro JA.
Ventilatory effects of adenosine mediated by carotid body chemoreceptors in the rat.
Naunyn Schmiedebergs Arch Pharmacol
335:
143‐148,
1987.
|
593. |
Monteiro EC,
Ribeiro JA.
Adenosine deaminase and adenosine uptake inhibitions facilitate ventilation in rats.
Naunyn Schmiedebergs Arch Pharmacol
340:
230‐238,
1989.
|
594. |
Montero S,
Mendoza H,
Valles V,
Lemus M,
Alvarez‐Buylla R,
de Alvarez‐Buylla ER.
Arginine‐vasopressin mediates central and peripheral glucose regulation in response to carotid body receptor stimulation with Na‐cyanide.
J Appl Physiol
100:
1902‐1909,
2006.
|
595. |
Monti‐Bloch L,
Eyzaguirre C.
Effects of methionine‐enkephalin and substance P on the chemosensory discharge of the cat carotid body.
Brain Res
338:
297‐307,
1985.
|
596. |
Monti‐Bloch L,
Stensaas LJ,
Eyzaguirre C.
Carotid body grafts induce chemosensitivity in muscle nerve fibers of the cat.
Brain Res
270:
77‐92,
1983a.
|
597. |
Monti‐Bloch L,
Stensaas LJ,
Eyzaguirre C.
Effects of ischemia on the function and structure of the cat carotid body.
Brain Res
270:
63‐76,
1983b.
|
598. |
Montoro RJ,
Urena J,
Fernandez‐Chacon R,
Alvarez de Toledo G,
Lopez‐Barneo J.
Oxygen sensing by ion channels and chemotransduction in single glomus cells.
J Gen Physiol
107:
133‐143,
1996.
|
599. |
Moore LG,
McCullough RE,
Weil JV.
Increased HVR in pregnancy: Relationship to hormonal and metabolic changes.
J Appl Physiol
62:
158‐163,
1987.
|
600. |
Moore PJ,
Clarke JA,
Hanson MA,
Daly MD,
Ead HW.
Quantitative studies of the vasculature of the carotid body in fetal and newborn sheep.
J Dev Physiol
15:
211‐214,
1991.
|
601. |
Morita E,
Chiocchio SR,
Tramezzani JH.
Four types of main cells in the carotid body of the cat.
J Ultrastruct Res
28:
399‐410,
1969.
|
602. |
Mortola JP,
Frappell PB.
Ventilatory responses to changes in temperature in mammals and other vertebrates.
Annu Rev Physiol
62:
847‐874,
2000.
|
603. |
Moudgil R,
Michelakis ED,
Archer SL.
Hypoxic pulmonary vasoconstriction.
J Appl Physiol
98:
390‐403,
2005.
|
604. |
Mulligan E,
Lahiri S.
Dependence of carotid chemoreceptor stimulation by metabolic agents on PaO2 and PaCO2.
J Appl Physiol
50:
884‐891,
1981.
|
605. |
Mulligan E,
Lahiri S,
Storey BT.
Carotid body O2 chemoreception and mitochondrial oxidative phosphorylation.
J Appl Physiol
51:
438‐446,
1981.
|
606. |
Mustafa AK,
Gadalla MM,
Snyder SH.
Signaling by gasotransmitters.
Sci Signal
2:
re2,
2009.
|
607. |
Nair PK,
Buerk DG,
Whalen WJ.
Cat carotid body oxygen metabolism and chemoreception described by a two‐cytochrome model.
Am J Physiol
250:
H202‐H207,
1986.
|
608. |
Nanduri J,
Wang N,
Yuan G,
Khan SA,
Souvannakitti D,
Peng YJ,
Kumar GK,
Garcia JA,
Prabhakar NR.
Intermittent hypoxia degrades HIF‐2alpha via calpains resulting in oxidative stress: Implications for recurrent apnea‐induced morbidities.
Proc Natl Acad Sci U S A
106:
1199‐1204,
2009.
|
609. |
Narkiewicz K,
Pesek CA,
van de Borne PJ,
Kato M,
Somers VK.
Enhanced sympathetic and ventilatory responses to central chemoreflex activation in heart failure.
Circulation
100:
262‐267,
1999.
|
610. |
Narkiewicz K,
van de Borne PJ,
Pesek CA,
Dyken ME,
Montano N,
Somers VK.
Selective potentiation of peripheral chemoreflex sensitivity in obstructive sleep apnea.
Circulation
99:
1183‐1189,
1999.
|
611. |
Nattie E.
CO2, brainstem chemoreceptors and breathing.
Prog Neurobiol
59:
299‐331,
1999.
|
612. |
Neil E,
Joels N.
The carotid glomus sensory mechanism. In:
Cunningham DA,
Lloyd BB, editor.
The Regulation of Human Respiration.
Oxford:
Blackwell,
1963,
p. 163‐171.
|
613. |
Neil E,
O'Regan RG.
Efferent and afferent impulse activity in the “intact” sinus nerve.
J Physiol
205:
20P‐21P,
1969.
|
614. |
Neil E,
O'Regan RG.
Efferent and afferent impulse activity recorded from few‐fibre preparations of otherwise intact sinus and aortic nerves.
J Physiol
215:
33‐47,
1971a.
|
615. |
Neil E,
O'Regan RG.
The effects of electrical stimulation of the distal end of the cut sinus and aortic nerves on peripheral arterial chemoreceptor activity in the cat.
J Physiol
215:
15‐32,
1971b.
|
616. |
Neil E,
Redwood CR,
Schweitzer A.
Effects of electrical stimulation of the aortic nerve on blood pressure and respiration in cats and rabbits under chloralose and nembutal anaesthesia.
J Physiol
109:
392‐401,
1949.
|
617. |
Nielsen AM,
Bisgard GE,
Vidruk EH.
Carotid chemoreceptor activity during acute and sustained hypoxia in goats.
J Appl Physiol
65:
1796‐1802,
1988.
|
618. |
Nielsen M,
Smith H.
Studies on the regulation of respiration in acute hypoxia; with a appendix on respiratory control during prolonged hypoxia.
Acta Physiol Scand
24:
293‐313,
1952.
|
619. |
Nieto FJ,
Young TB,
Lind BK,
Shahar E,
Samet JM,
Redline S,
D'Agostino RB,
Newman AB,
Lebowitz MD,
Pickering TG.
Association of sleep‐disordered breathing, sleep apnea, and hypertension in a large community‐based study. Sleep Heart Health Study.
JAMA
283:
1829‐1836,
2000.
|
620. |
Ninomiya Y,
Kishimoto T,
Yamazawa T,
Ikeda H,
Miyashita Y,
Kasai H.
Kinetic diversity in the fusion of exocytotic vesicles.
EMBO J
16:
929‐934,
1997.
|
621. |
Nishi K,
Eyzaguirre C.
Effects of atropine on chemoreceptor discharges in the carotid body of the cat.
Brain Res
23:
292‐297,
1970.
|
622. |
Nishi K,
Okajima Y,
Ito H,
Sugahara K.
Alteration of chemoreceptor responses and ultrastructural features of ischemic carotid body of the cat.
Jpn J Physiol
31:
677‐694,
1981.
|
623. |
Nishi K,
Stensaas LJ.
The ultrastructure and source of nerve endings in the carotid body.
Cell Tissue Res
154:
303‐319,
1974.
|
624. |
Nock ML,
Difiore JM,
Arko MK,
Martin RJ.
Relationship of the ventilatory response to hypoxia with neonatal apnea in preterm infants.
J Pediatr
144:
291‐295,
2004.
|
625. |
North RA,
Surprenant A.
Pharmacology of cloned P2X receptors.
Annu Rev Pharmacol Toxicol
40:
563‐580,
2000.
|
626. |
Nurse CA.
Localization of acetylcholinesterase in dissociated cell cultures of the carotid body of the rat.
Cell Tissue Res
250:
21‐27,
1987.
|
627. |
Nurse CA.
Neurotransmission and neuromodulation in the chemosensory carotid body.
Auton Neurosci
120:
1‐9,
2005.
|
628. |
Nurse CA,
Fearon IM.
Carotid body chemoreceptors in dissociated cell culture.
Microsc Res Tech
59:
249‐255,
2002.
|
629. |
Nurse CA,
Vollmer C.
Role of basic FGF and oxygen in control of proliferation, survival, and neuronal differentiation in carotid body chromaffin cells.
Dev Biol
184:
197‐206,
1997.
|
630. |
Nurse CA,
Zhang M.
Acetylcholine contributes to hypoxic chemotransmission in co‐cultures of rat type 1 cells and petrosal neurons.
Respir Physiol
115:
189‐199,
1999.
|
631. |
Nye PC.
Identification of peripheral chemoreceptor stimuli.
Med Sci Sports Exerc
26:
311‐318,
1994.
|
632. |
Nye PC,
Torrance RW,
Folgering H.
Arterial chemoreceptor inhibition by a single inspirate containing carbon monoxide is accounted for by raised arterial PO2.
Pflugers Arch
393:
313‐317,
1982.
|
633. |
O'Regan RG.
Oxygen usage of the cat carotid body perfused with cell‐free solutions.
Ir J Med Sci
148:
69‐77,
1979.
|
634. |
O'Regan RG.
The influences exerted by the centrifugal innervation of the carotid sinus nerve. In:
Purves MJ, editor.
The Peripheral Arterial Chemoreceptors.
London:
Cambridge University Press,
1975,
p. 221‐240.
|
635. |
O'Regan RG.
Responses of carotid body chemosensory activity and blood flow to stimulation of sympathetic nerves in the cat.
J Physiol
315:
81‐98,
1981.
|
636. |
O'Regan RG,
Ennis S,
Kennedt M,
Bannigan J.
Assessment of the diameter of blood vessels linking the arterial and venous systems in the carotid body of the anaesthetized cat. In:
Lahiri S,
Forster RE II,
Davies RO,
Pack AI, editors.
Chemoreceptors and Reflexes in Breathing: Cellular and Molecular Aspects.
New York:
Oxford University Press,
1989,
p. 12‐23.
|
637. |
Obeso A,
Almaraz L,
Gonzalez C.
Correlation between adenosine triphosphate levels, dopamine release and electrical activity in the carotid body: Support for the metabolic hypothesis of chemoreception.
Brain Res
348:
64‐68,
1985.
|
638. |
Obeso A,
Almaraz L,
Gonzalez C.
Effects of 2‐deoxy‐D‐glucose on in vitro cat carotid body.
Brain Res
371:
25‐36,
1986.
|
639. |
Obeso A,
Almaraz L,
Gonzalez C.
Effects of cyanide and uncouplers on chemoreceptor activity and ATP content of the cat carotid body.
Brain Res
481:
250‐257,
1989.
|
640. |
Obeso A,
Gomez‐Nino A,
Gonzalez C.
NADPH oxidase inhibition does not interfere with low PO2 transduction in rat and rabbit CB chemoreceptor cells.
Am J Physiol
276:
C593‐C601,
1999.
|
641. |
Obeso A,
Gomez‐Nino MA,
Almaraz L,
Dinger B,
Fidone S,
Gonzalez C.
Evidence for two types of nicotinic receptors in the cat carotid body chemoreceptor cells.
Brain Res
754:
298‐302,
1997.
|
642. |
Obeso A,
Gonzalez C,
Dinger B,
Fidone S.
Metabolic activation of carotid body glomus cells by hypoxia.
J Appl Physiol
67:
484‐487,
1989.
|
643. |
Obeso A,
Gonzalez C,
Rigual R,
Dinger B,
Fidone S.
Effect of low O2 on glucose uptake in rabbit carotid body.
J Appl Physiol
74:
2387‐2393,
1993.
|
644. |
Obeso A,
Rocher A,
Fidone S,
Gonzalez C.
The role of dihydropyridine‐sensitive Ca2+ channels in stimulus‐evoked catecholamine release from chemoreceptor cells of the carotid body.
Neuroscience
47:
463‐472,
1992.
|
645. |
Oka Y,
Ibuki T,
Matsumura K,
Namba M,
Yamazaki Y,
Poole S,
Tanaka Y,
Kobayashi S.
Interleukin‐6 is a candidate molecule that transmits inflammatory information to the CNS.
Neuroscience
145:
530‐538,
2007.
|
646. |
Olson KR,
Dombkowski RA,
Russell MJ,
Doellman MM,
Head SK,
Whitfield NL,
Madden JA.
Hydrogen sulfide as an oxygen sensor/transducer in vertebrate hypoxic vasoconstriction and hypoxic vasodilation.
J Exp Biol
209:
4011‐4023,
2006.
|
647. |
Olson KR,
Healy MJ,
Qin Z,
Skovgaard N,
Vulesevic B,
Duff DW,
Whitfield NL,
Yang G,
Wang R,
Perry SF.
Hydrogen sulfide as an oxygen sensor in trout gill chemoreceptors.
Am J Physiol Regul Integr Comp Physiol
295:
R669‐R680,
2008.
|
648. |
Olson KR,
Whitfield NL,
Bearden SE,
St Leger J,
Nilson E,
Gao Y,
Madden JA.
Hypoxic pulmonary vasodilation: A paradigm shift with a hydrogen sulfide mechanism.
Am J Physiol Regul Integr Comp Physiol
298:
R51‐R60.
|
649. |
Olson LG,
Saunders NA.
Effect of a dopamine antagonist on ventilation during sustained hypoxia in mice.
J Appl Physiol
62:
1222‐1226,
1987.
|
650. |
Oomori Y,
Nakaya K,
Tanaka H,
Iuchi H,
Ishikawa K,
Satoh Y,
Ono K.
Immunohistochemical and histochemical evidence for the presence of noradrenaline, serotonin and gamma‐aminobutyric acid in chief cells of the mouse carotid body.
Cell Tissue Res
278:
249‐254,
1994.
|
651. |
Ortega‐Saenz P,
Levitsky KL,
Marcos‐Almaraz MT,
Bonilla‐Henao V,
Pascual A,
Lopez‐Barneo J.
Carotid body chemosensory responses in mice deficient of TASK channels.
J Gen Physiol
135:
379‐392,
2010.
|
652. |
Ortega‐Saenz P,
Pardal R,
Garcia‐Fernandez M,
Lopez‐Barneo J.
Rotenone selectively occludes sensitivity to hypoxia in rat carotid body glomus cells.
J Physiol
548:
789‐800,
2003.
|
653. |
Ortega‐Saenz P,
Pascual A,
Gomez‐Diaz R,
Lopez‐Barneo J.
Acute oxygen sensing in heme oxygenase‐2 null mice.
J Gen Physiol
128:
405‐411,
2006.
|
654. |
Ortiz F,
Iturriaga R,
Varas R.
Sustained hypoxia enhances TASK‐like current inhibition by acute hypoxia in rat carotid body type‐I cells.
Adv Exp Med Biol
648:
83‐88,
2009.
|
655. |
Ortiz FC,
Varas R.
Muscarinic modulation of TASK‐like background potassium channel in rat carotid body chemoreceptor cells.
Brain Res,
2010.
|
656. |
Osanai S,
Buerk DG,
Mokashi A,
Chugh DK,
Lahiri S.
Cat carotid body chemosensory discharge (in vitro) is insensitive to charybdotoxin.
Brain Res
747:
324‐327,
1997.
|
657. |
Osborne MP,
Butler PJ.
New theory for receptor mechanism of carotid body chemoreceptors.
Nature
254:
701‐703,
1975.
|
658. |
Overholt JL,
Ficker E,
Yang T,
Shams H,
Bright GR,
Prabhakar NR.
HERG‐Like potassium current regulates the resting membrane potential in glomus cells of the rabbit carotid body.
J Neurophysiol
83:
1150‐1157,
2000.
|
659. |
Overholt JL,
Prabhakar NR.
Ca2+ current in rabbit carotid body glomus cells is conducted by multiple types of high‐voltage‐activated Ca2+ channels.
J Neurophysiol
78:
2467‐2474,
1997.
|
660. |
Overholt JL,
Prabhakar NR.
Norepinephrine inhibits a toxin resistant Ca2+ current in carotid body glomus cells: evidence for a direct G protein mechanism.
J Neurophysiol
81:
225‐233,
1999.
|
661. |
Oyama Y,
Walker JL,
Eyzaguirre C.
Intracellular potassium activity, potassium equilibrium potential and membrane potential of carotid body glomus cells.
Brain Res
381:
405‐408,
1986.
|
662. |
Paciga M,
Vollmer C,
Nurse C.
Role of ET‐1 in hypoxia‐induced mitosis of cultured rat carotid body chemoreceptors.
Neuroreport
10:
3739‐3744,
1999.
|
663. |
Paintal AS.
Mechanism of stimulation of aortic chemoreceptors by natural stimuli and chemical substances.
J Physiol
189:
63‐84,
1967.
|
664. |
Palacios‐Callender M,
Quintero M,
Hollis VS,
Springett RJ,
Moncada S.
Endogenous NO regulates superoxide production at low oxygen concentrations by modifying the redox state of cytochrome c oxidase.
Proc Natl Acad Sci U S A
101:
7630‐7635,
2004.
|
665. |
Pan LG,
Forster HV,
Martino P,
Strecker PJ,
Beales J,
Serra A,
Lowry TF,
Forster MM,
Forster AL.
Important role of carotid afferents in control of breathing.
J Appl Physiol
85:
1299‐1306,
1998.
|
666. |
Pang L,
Eyzaguirre C.
Hypoxia affects differently the intracellular pH of clustered and isolated glomus cells of the rat carotid body.
Brain Res
623:
349‐355,
1993.
|
667. |
Pani G,
Bedogni B,
Colavitti R,
Anzevino R,
Borrello S,
Galeotti T.
Cell compartmentalization in redox signaling.
IUBMB Life
52:
7‐16,
2001.
|
668. |
Panneton WM,
Loewy AD.
Projections of the carotid sinus nerve to the nucleus of the solitary tract in the cat.
Brain Res
191:
239‐244,
1980.
|
669. |
Pardal R,
Lopez‐Barneo J.
Low glucose‐sensing cells in the carotid body.
Nat Neurosci
5:
197‐198,
2002.
|
670. |
Pardal R,
Ludewig U,
Garcia‐Hirschfeld J,
Lopez‐Barneo J.
Secretory responses of intact glomus cells in thin slices of rat carotid body to hypoxia and tetraethylammonium.
Proc Natl Acad Sci U S A
97:
2361‐2366,
2000.
|
671. |
Pardal R,
Ortega‐Saenz P,
Duran R,
Lopez‐Barneo J.
Glia‐like stem cells sustain physiologic neurogenesis in the adult mammalian carotid body.
Cell
131:
364‐377,
2007.
|
672. |
Paterson DJ.
Potassium and ventilation in exercise.
J Appl Physiol
72:
811‐820,
1992.
|
673. |
Paterson DJ,
Friedland JS,
Bascom DA,
Clement ID,
Cunningham DA,
Painter R,
Robbins PA.
Changes in arterial K+ and ventilation during exercise in normal subjects and subjects with McArdle's syndrome.
J Physiol
429:
339‐348,
1990.
|
674. |
Patterson PH.
Control of cell fate in a vertebrate neurogenic lineage.
Cell
62:
1035‐1038,
1990.
|
675. |
Pawar A,
Nanduri J,
Yuan G,
Khan SA,
Wang N,
Kumar GK,
Prabhakar NR.
Reactive oxygen species‐dependent endothelin signaling is required for augmented hypoxic sensory response of the neonatal carotid body by intermittent hypoxia.
Am J Physiol Regul Integr Comp Physiol
296:
R735‐R742,
2009.
|
676. |
Pawar A,
Peng YJ,
Jacono FJ,
Prabhakar NR.
Comparative analysis of neonatal and adult rat carotid body responses to chronic intermittent hypoxia.
J Appl Physiol
104:
1287‐1294,
2008.
|
677. |
Pearse AG,
Polak JM,
Rost FW,
Fontaine J,
Le Lievre C,
Le Douarin N.
Demonstration of the neural crest origin of type I (APUD) cells in the avian carotid body, using a cytochemical marker system.
Histochemie
34:
191‐203,
1973.
|
678. |
Peers C.
Effects of D600 on hypoxic suppression of K+ currents in isolated type I carotid body cells of the neonatal rat.
FEBS Lett
271:
37‐40,
1990a.
|
679. |
Peers C.
Hypoxic suppression of K+ currents in type I carotid body cells: Selective effect on the Ca2(+)‐activated K+ current.
Neurosci Lett
119:
253‐256,
1990b.
|
680. |
Peers C.
Interactions of chemostimuli at the single cell level: Studies in a model system.
Exp Physiol
89:
60‐65,
2004.
|
681. |
Peers C,
Carpenter E,
Hatton CJ,
Wyatt CN,
Bee D.
Ca2+ channel currents in type I carotid body cells of normoxic and chronically hypoxic neonatal rats.
Brain Res
739:
251‐257,
1996.
|
682. |
Peers C,
Green FK.
Inhibition of Ca(2+)‐activated K+ currents by intracellular acidosis in isolated type I cells of the neonatal rat carotid body.
J Physiol
437:
589‐602,
1991.
|
683. |
Peers C,
Wyatt CN.
The role of maxiK channels in carotid body chemotransduction.
Respir Physiol Neurobiol
157:
75‐82,
2007.
|
684. |
Peng YJ,
Nanduri J,
Raghuraman G,
Souvannakitti D,
Gadalla MM,
Kumar GK,
Snyder SH,
Prabhakar NR.
H2S mediates O2 sensing in the carotid body.
Proc Natl Acad Sci U S A
107:
10719‐10724,
2010.
|
685. |
Peng YJ,
Nanduri J,
Yuan G,
Wang N,
Deneris E,
Pendyala S,
Natarajan V,
Kumar GK,
Prabhakar NR.
NADPH oxidase is required for the sensory plasticity of the carotid body by chronic intermittent hypoxia.
J Neurosci
29:
4903‐4910,
2009.
|
686. |
Peng YJ,
Overholt JL,
Kline D,
Kumar GK,
Prabhakar NR.
Induction of sensory long‐term facilitation in the carotid body by intermittent hypoxia: Implications for recurrent apneas.
Proc Natl Acad Sci U S A
100:
10073‐10078,
2003.
|
687. |
Peng YJ,
Prabhakar NR.
Effect of two paradigms of chronic intermittent hypoxia on carotid body sensory activity.
J Appl Physiol
96:
1236‐1242,
2004.
|
688. |
Peng YJ,
Rennison J,
Prabhakar NR.
Intermittent hypoxia augments carotid body and ventilatory response to hypoxia in neonatal rat pups.
J Appl Physiol
97:
2020‐2025,
2004.
|
689. |
Peng YJ,
Yuan G,
Jacono FJ,
Kumar GK,
Prabhakar NR.
5‐HT evokes sensory long‐term facilitation of rodent carotid body via activation of NADPH oxidase.
J Physiol
576:
289‐295,
2006.
|
690. |
Peng YJ,
Yuan G,
Ramakrishnan D,
Sharma SD,
Bosch‐Marce M,
Kumar GK,
Semenza GL,
Prabhakar NR.
Heterozygous HIF‐1alpha deficiency impairs carotid body‐mediated systemic responses and reactive oxygen species generation in mice exposed to intermittent hypoxia.
J Physiol
577:
705‐716,
2006.
|
691. |
Pepper DR,
Kumar P.
Inhibition of adult rat carotid body type I cell K+ currents by combined hypoxic and acidotic stimuli.
J Physiol
504.P:
202P,
1997.
|
692. |
Pepper DR,
Landauer RC,
Kumar P.
Effect of charybdotoxin on hypoxic chemosensitivity in the adult rat carotid body in vitro.
J Physiol
487.P:
177‐178P,
1995.
|
693. |
Pepper DR,
Landauer RC,
Kumar P.
Postnatal development of CO2‐O2 interaction in the rat carotid body in vitro.
J Physiol
485(Pt 2):
531‐541,
1995.
|
694. |
Pepper DR,
Landauer RC,
Kumar P.
Extracellular potassium and chemosensitivity in the rat carotid body, in vitro.
J Physiol
493(Pt 3):
833‐843,
1996.
|
695. |
Pequignot JM,
Hellstrom S,
Johansson C.
Intact and sympathectomized carotid bodies of long‐term hypoxic rats: A morphometric ultrastructural study.
J Neurocytol
13:
481‐493,
1984.
|
696. |
Perez‐Garcia MT,
Almaraz L,
Gonzalez C.
Cyclic AMP modulates differentially the release of dopamine induced by hypoxia and other stimuli and increases dopamine synthesis in the rabbit carotid body.
J Neurochem
57:
1992‐2000,
1991.
|
697. |
Perez‐Garcia MT,
Colinas O,
Miguel‐Velado E,
Moreno‐Dominguez A,
Lopez‐Lopez JR.
Characterization of the Kv channels of mouse carotid body chemoreceptor cells and their role in oxygen sensing.
J Physiol
557:
457‐471,
2004.
|
698. |
Perez‐Garcia MT,
Obeso A,
Lopez‐Lopez JR,
Herreros B,
Gonzalez C.
Characterization of cultured chemoreceptor cells dissociated from adult rabbit carotid body.
Am J Physiol
263:
C1152‐C1159,
1992.
|
699. |
Phillis JW.
Adenosine in the control of the cerebral circulation.
Cerebrovasc Brain Metab Rev
1:
26‐54,
1989.
|
700. |
Pickkers P,
Garcha RS,
Schachter M,
Smits P,
Hughes AD.
Inhibition of carbonic anhydrase accounts for the direct vascular effects of hydrochlorothiazide.
Hypertension
33:
1043‐1048,
1999.
|
701. |
Pickkers P,
Hughes AD,
Russel FG,
Thien T,
Smits P.
In vivo evidence for K(Ca) channel opening properties of acetazolamide in the human vasculature.
Br J Pharmacol
132:
443‐450,
2001.
|
702. |
Pietruschka F.
Cytochemical demonstration of catecholamines in cells of the carotid body in primary tissue culture.
Cell Tissue Res
151:
317‐321,
1974.
|
703. |
Pietruschka F.
Calcium influx in cultured carotid body cells is stimulated by acetylcholine and hypoxia.
Brain Res
347:
140‐143,
1985.
|
704. |
Pietruschka F,
Acker A.
Membrane potential and Ca influx in hypoxic and normoxic carotid body type‐I cells.
Adv Exp Med Biol
191:
727‐735,
1985.
|
705. |
Pietruschka F,
Schafer D.
Fine structure of chemosensitive cells (glomus caroticum) in tissue culture.
Cell Tissue Res
168:
55‐63,
1976.
|
706. |
Piruat JI,
Pintado CO,
Ortega‐Saenz P,
Roche M,
Lopez‐Barneo J.
The mitochondrial SDHD gene is required for early embryogenesis, and its partial deficiency results in persistent carotid body glomus cell activation with full responsiveness to hypoxia.
Mol Cell Biol
24:
10933‐10940,
2004.
|
707. |
Pizarro J,
Ryan ML,
Hedrick MS,
Xue DH,
Keith IM,
Bisgard GE.
Intracarotid substance P infusion inhibits ventilation in the goat.
Respir Physiol
101:
11‐22,
1995.
|
708. |
Poets CF,
Samuels MP,
Southall DP.
Epidemiology and pathophysiology of apnoea of prematurity.
Biol Neonate
65:
211‐219,
1994.
|
709. |
Pokorski M,
Lahiri S.
Effects of naloxone on carotid body chemoreception and ventilation in the cat.
J Appl Physiol
51:
1533‐1538,
1981.
|
710. |
Pokorski M,
Lahiri S.
Relative peripheral and central chemosensory responses to metabolic alkalosis.
Am J Physiol
245:
R873‐R880,
1983.
|
711. |
Ponte J,
Purves MJ.
Frequency response of carotid body chemoreceptors in the cat to changes of PaCO2, PaO2, and pHa.
J Appl Physiol
37:
635‐647,
1974.
|
712. |
Ponte J,
Sadler CL.
Studies on the regenerated carotid sinus nerve of the rabbit.
J Physiol
410:
411‐424,
1989.
|
713. |
Potter EK,
McCloskey DI.
Excitation of carotid body chemoreceptors by neuropeptide‐Y.
Respir Physiol
67:
357‐365,
1987.
|
714. |
Powell FL,
Milsom WK,
Mitchell GS.
Time domains of the hypoxic ventilatory response.
Respir Physiol
112:
123‐134,
1998.
|
715. |
Prabhakar NR.
Neurotransmitters in the carotid body.
Adv Exp Med Biol
360:
57‐69,
1994.
|
716. |
Prabhakar NR.
NO and CO as second messengers in oxygen sensing in the carotid body.
Respir Physiol
115:
161‐168,
1999.
|
717. |
Prabhakar NR.
O2 sensing at the mammalian carotid body: Why multiple O2 sensors and multiple transmitters?
Exp Physiol
91:
17‐23,
2006.
|
718. |
Prabhakar NR,
Cao H,
Lowe JA III,
Snider RM.
Selective inhibition of the carotid body sensory response to hypoxia by the substance P receptor antagonist CP‐96,345.
Proc Natl Acad Sci U S A
90:
10041‐10045,
1993.
|
719. |
Prabhakar NR,
Dinerman JL,
Agani FH,
Snyder SH.
Carbon monoxide: A role in carotid body chemoreception.
Proc Natl Acad Sci U S A
92:
1994‐1997,
1995.
|
720. |
Prabhakar NR,
Kumar GK,
Chang CH,
Agani FH,
Haxhiu MA.
Nitric oxide in the sensory function of the carotid body.
Brain Res
625:
16‐22,
1993.
|
721. |
Prabhakar NR,
Landis SC,
Kumar GK,
Mullikin‐Kilpatrick D,
Cherniack NS,
Leeman S.
Substance P and neurokinin A in the cat carotid body: Localization, exogenous effects and changes in content in response to arterial pO2.
Brain Res
481:
205‐214,
1989.
|
722. |
Prabhakar NR,
Mitra J,
Cherniack NS.
Role of substance P in hypercapnic excitation of carotid chemoreceptors.
J Appl Physiol
63:
2418‐2425,
1987.
|
723. |
Prabhakar NR,
Peng YJ.
Peripheral chemoreceptors in health and disease.
J Appl Physiol
96:
359‐366,
2004.
|
724. |
Prabhakar NR,
Peng YJ,
Kumar GK,
Pawar A.
Altered carotid body function by intermittent hypoxia in neonates and adults: Relevance to recurrent apneas.
Respir Physiol Neurobiol
157:
148‐153,
2007.
|
725. |
Prabhakar NR,
Runold M,
Kumar GK,
Cherniack NS,
Scarpa A.
Substance P and mitochondrial oxygen consumption: Evidence for a direct intracellular role for the peptide.
Peptides
10:
1003‐1006,
1989.
|
726. |
Prabhakar NR,
Runold M,
Yamamoto Y,
Lagercrantz H,
von Euler C.
Effect of substance P antagonist on the hypoxia‐induced carotid chemoreceptor activity.
Acta Physiol Scand
121:
301‐303,
1984.
|
727. |
Prasad M,
Fearon IM,
Zhang M,
Laing M,
Vollmer C,
Nurse CA.
Expression of P2X2 and P2X3 receptor subunits in rat carotid body afferent neurones: Role in chemosensory signalling.
J Physiol
537:
667‐677,
2001.
|
728. |
Pressel DM,
Misler S.
Sodium channels contribute to action potential generation in canine and human pancreatic islet B cells.
J Membr Biol
116:
273‐280,
1990.
|
729. |
Prieto‐Lloret J,
Caceres AI,
Obeso A,
Rocher A,
Rigual R,
Agapito MT,
Bustamante R,
Castaneda J,
Perez‐Garcia MT,
Lopez‐Lopez JR,
Gonzalez C.
Ventilatory responses and carotid body function in adult rats perinatally exposed to hyperoxia.
J Physiol
554:
126‐144,
2004.
|
730. |
Purves MJ.
Carotid body blood flow and oxygen usage in the cat.
J Physiol
202:
1P‐2P,
1969.
|
731. |
Purves MJ.
The effect of hypoxia, hypercapnia and hypotension upon carotid body blood flow and oxygen consumption in the cat.
J Physiol
209:
395‐416,
1970a.
|
732. |
Purves MJ.
The role of the cervical sympathetic nerve in the regulation of oxygen consumption of the carotid body of the cat.
J Physiol
209:
417‐431,
1970a.
|
733. |
Putnam RW,
Filosa JA,
Ritucci NA.
Cellular mechanisms involved in CO(2) and acid signaling in chemosensitive neurons.
Am J Physiol Cell Physiol
287:
C1493‐C1526,
2004.
|
734. |
Qin Z,
Lewis JE,
Perry SF.
Zebrafish (Danio rerio) gill neuroepithelial cells are sensitive chemoreceptors for environmental CO2.
J Physiol
588:
861‐872,
2010.
|
735. |
Raman IM,
Sprunger LK,
Meisler MH,
Bean BP.
Altered subthreshold sodium currents and disrupted firing patterns in Purkinje neurons of Scn8a mutant mice.
Neuron
19:
881‐891,
1997.
|
736. |
Regensteiner JG,
Woodard WD,
Hagerman DD,
Weil JV,
Pickett CK,
Bender PR,
Moore LG.
Combined effects of female hormones and metabolic rate on ventilatory drives in women.
J Appl Physiol
66:
808‐813,
1989.
|
737. |
Rey S,
Del Rio R,
Alcayaga J,
Iturriaga R.
Chronic intermittent hypoxia enhances cat chemosensory and ventilatory responses to hypoxia.
J Physiol
560:
577‐586,
2004.
|
738. |
Rey S,
Del Rio R,
Iturriaga R.
Contribution of endothelin‐1 to the enhanced carotid body chemosensory responses induced by chronic intermittent hypoxia.
Brain Res
1086:
152‐159,
2006.
|
739. |
Reyes EP,
Fernandez R,
Larrain C,
Zapata P.
Carotid body chemosensory activity and ventilatory chemoreflexes in cats persist after combined cholinergic‐purinergic block.
Respir Physiol Neurobiol
156:
23‐32,
2007a.
|
740. |
Reyes EP,
Fernandez R,
Larrain C,
Zapata P.
Effects of combined cholinergic‐purinergic block upon cat carotid body chemoreceptors in vitro.
Respir Physiol Neurobiol
156:
17‐22,
2007b.
|
741. |
Ridderstrale Y,
Hanson MA.
Histochemical localization of carbonic anhydrase in the cat carotid body.
Ann N Y Acad Sci
429:
398‐400,
1984.
|
742. |
Rigual R,
Gonzalez E,
Fidone S,
Gonzalez C.
Effects of low pH on synthesis and release of catecholamines in the cat carotid body in vitro.
Brain Res
309:
178‐181,
1984.
|
743. |
Rigual R,
Gonzalez E,
Gonzalez C,
Fidone S.
Synthesis and release of catecholamines by the cat carotid body in vitro: Effects of hypoxic stimulation.
Brain Res
374:
101‐109,
1986.
|
744. |
Robbins PA.
Evidence for interaction between the contributions to ventilation from the central and peripheral chemoreceptors in man.
J Physiol
401:
503‐518,
1988.
|
745. |
Rocher A,
Caceres AI,
Almaraz L,
Gonzalez C.
EPAC signalling pathways are involved in low PO2 chemoreception in carotid body chemoreceptor cells.
J Physiol
587:
4015‐4027,
2009.
|
746. |
Rocher A,
Geijo‐Barrientos E,
Caceres AI,
Rigual R,
Gonzalez C,
Almaraz L.
Role of voltage‐dependent calcium channels in stimulus‐secretion coupling in rabbit carotid body chemoreceptor cells.
J Physiol
562:
407‐420,
2005.
|
747. |
Rocher A,
Gonzalez C,
Almaraz L.
Adenosine inhibits L‐type Ca2+ current and catecholamine release in the rabbit carotid body chemoreceptor cells.
Eur J Neurosci
11:
673‐681,
1999.
|
748. |
Rocher A,
Obeso A,
Gonzalez C,
Herreros B.
Ionic mechanisms for the transduction of acidic stimuli in rabbit carotid body glomus cells.
J Physiol
433:
533‐548,
1991.
|
749. |
Rodman JR,
Curran AK,
Henderson KS,
Dempsey JA,
Smith CA.
Carotid body denervation in dogs: Eupnea and the ventilatory response to hyperoxic hypercapnia.
J Appl Physiol
91:
328‐335,
2001.
|
750. |
Roeggla G,
Roeggla M,
Wagner A,
Laggner AN.
Poor ventilatory response to mild hypoxia may inhibit acclimatization at moderate altitude in elderly patients after carotid surgery.
Br J Sports Med
29:
110‐112,
1995.
|
751. |
Roig E,
Perez‐Villa F,
Morales M,
Jimenez W,
Orus J,
Heras M,
Sanz G.
Clinical implications of increased plasma angiotensin II despite ACE inhibitor therapy in patients with congestive heart failure.
Eur Heart J
21:
53‐57,
2000.
|
752. |
Rong W,
Gourine AV,
Cockayne DA,
Xiang Z,
Ford AP,
Spyer KM,
Burnstock G.
Pivotal role of nucleotide P2X2 receptor subunit of the ATP‐gated ion channel mediating ventilatory responses to hypoxia.
J Neurosci
23:
11315‐11321,
2003.
|
753. |
Rosamund W,
Flegal K,
Friday G,
Furie K,
Go A,
Greenlund K,
Haase N,
Ho M,
Howard V,
Kissela B,
Kittner S,
Lloyd‐Jones D,
McDermott M,
Meigs J,
Moy C,
Nichol G,
O'Donnell CJ,
TRoger V,
Rumsfeld J,
Sorlie P,
Steinberger J,
Thom T,
Wassertheil‐Smoller S,
Hong Y.
Heart disease and stroke statistics–2007 update. A report from the American Heart Association Statistics Committee and Stroke Statistics Subcommittee.
Circulation
115:
e69‐e171,
2007.
|
754. |
Ross LL.
Electron microscopic observations of the carotid body of the cat.
J Biophys Biochem Cytol
6:
253‐262,
1959.
|
755. |
Roux JC,
Brismar H,
Aperia A,
Lagercrantz H.
Developmental changes in HIF transcription factor in carotid body: Relevance for O2 sensing by chemoreceptors.
Pediatr Res
58:
53‐57,
2005.
|
756. |
Roy A,
Rozanov C,
Mokashi A,
Lahiri S.
Redox‐based inhibition of K+ channel/current is not related to hypoxic chemosensory responses in rat carotid body.
Adv Exp Med Biol
475:
645‐653,
2000.
|
757. |
Rumsey WL,
Iturriaga R,
Spergel D,
Lahiri S,
Wilson DF.
Optical measurements of the dependence of chemoreception on oxygen pressure in the cat carotid body.
Am J Physiol
261:
C614‐C622,
1991.
|
758. |
Runold M,
Cherniack NS,
Prabhakar NR.
Effect of adenosine on chemosensory activity of the cat aortic body.
Respir Physiol
80:
299‐306,
1990a.
|
759. |
Runold M,
Cherniack NS,
Prabhakar NR.
Effect of adenosine on isolated and superfused cat carotid body activity.
Neurosci Lett
113:
111‐114,
1990b.
|
760. |
Saarelainen S,
Seppala E,
Laasonen K,
Hasan J.
Circulating endothelin‐1 in obstructive sleep apnea.
Endothelium
5:
115‐118,
1997.
|
761. |
Saiki C,
Seki N,
Furuya H,
Matsumoto S.
The acute effects of insulin on the cardiorespiratory responses to hypoxia in streptozotocin‐induced diabetic rats.
Acta Physiol Scand
183:
107‐115,
2005.
|
762. |
Sampson SR.
Effects of mecamylamine on responses of carotid body chemoreceptors in vivo to physiological and pharmacological stimuli.
J Physiol
212:
655‐666,
1971.
|
763. |
Sampson SR.
Innervation of the carotid body: Another point of view.
Fed Proc
31:
1383‐1384,
1972a.
|
764. |
Sampson SR.
Mechanism of efferent inhibition of carotid body chemoreceptors in the cat.
Brain Res
45:
266‐270,
1972b.
|
765. |
Sanchez D,
Lopez‐Lopez JR,
Perez‐Garcia MT,
Sanz‐Alfayate G,
Obeso A,
Ganfornina MD,
Gonzalez C.
Molecular identification of Kvalpha subunits that contribute to the oxygen‐sensitive K+ current of chemoreceptor cells of the rabbit carotid body.
J Physiol
542:
369‐382,
2002.
|
766. |
Sato M,
Ikeda K,
Yoshizaki K,
Koyano H.
Response of cytosolic calcium to anoxia and cyanide in cultured glomus cells of newborn rabbit carotid body.
Brain Res
551:
327‐330,
1991.
|
767. |
Sato M,
Severinghaus JW,
Powell FL,
Xu FD,
Spellman MJ Jr.
Augmented hypoxic ventilatory response in men at altitude.
J Appl Physiol
73:
101‐107,
1992.
|
768. |
Schultz HD,
Li YL.
Carotid body function in heart failure.
Respir Physiol Neurobiol
157:
171‐185,
2007.
|
769. |
Schultz HD,
Sun SY.
Chemoreflex function in heart failure.
Heart Fail Rev
5:
45‐56,
2000.
|
770. |
Schweitzer A,
Wright S.
Action of prostigmine and acetylcholine on respiration.
Q J Exp Phys
28:
33‐47,
1938.
|
771. |
Schweitzer E.
Coordinated release of ATP and ACh from cholinergic synaptosomes and its inhibition by calmodulin antagonists.
J Neurosci
7:
2948‐2956,
1987.
|
772. |
Seals DR,
Johnson DG,
Fregosi RF.
Hyperoxia lowers sympathetic activity at rest but not during exercise in humans.
Am J Physiol
260:
R873‐R878,
1991.
|
773. |
Sebastiao AM,
Ribeiro JA.
Adenosine A2 receptor‐mediated excitatory actions on the nervous system.
Prog Neurobiol
48:
167‐189,
1996.
|
774. |
Sebastiao AM,
Ribeiro JA.
Fine‐tuning neuromodulation by adenosine.
Trends Pharmacol Sci
21:
341‐346,
2000.
|
775. |
Seidl E.
On the morphology of the vascular system of the carotid body of cat and rabbit and its relation to the glomus Type I cells. In:
Purves MJ, editor.
The Peripheral Arterial Chemoreceptors.
London:
Cambridge University Press,
1975,
p. 293‐299.
|
776. |
Semenza GL.
HIF‐1: Mediator of physiological and pathophysiological responses to hypoxia.
J Appl Physiol
88:
1474‐1480,
2000.
|
777. |
Senay LC Jr.
Increased blood osmolarity and its effect on respiration of dehydrating men.
Pflugers Arch
309:
165‐175,
1969.
|
778. |
Shahar E,
Whitney CW,
Redline S,
Lee ET,
Newman AB,
Javier Nieto F,
O'Connor GT,
Boland LL,
Schwartz JE,
Samet JM.
Sleep‐disordered breathing and cardiovascular disease: Cross‐sectional results of the Sleep Heart Health Study.
Am J Respir Crit Care Med
163:
19‐25,
2001.
|
779. |
Shaw K,
Montague W,
Pallot DJ.
Biochemical studies on the release of catecholamines from the rat carotid body in vitro.
Biochim Biophys Acta
1013:
42‐46,
1989.
|
780. |
Shirahata M,
Balbir A,
Otsubo T,
Fitzgerald RS.
Role of acetylcholine in neurotransmission of the carotid body.
Respir Physiol Neurobiol
157:
93‐105,
2007.
|
781. |
Shirahata M,
Fitzgerald RS.
Dependency of hypoxic chemotransduction in cat carotid body on voltage‐gated calcium channels.
J Appl Physiol
71:
1062‐1069,
1991a.
|
782. |
Shirahata M,
Fitzgerald RS.
The presence of CO2/HCO3‐ is essential for hypoxic chemotransduction in the in vivo perfused carotid body.
Brain Res
545:
297‐300,
1991b.
|
783. |
Shirahata M,
Ishizawa Y,
Rudisill M,
Schofield B,
Fitzgerald RS.
Presence of nicotinic acetylcholine receptors in cat carotid body afferent system.
Brain Res
814:
213‐217,
1998.
|
784. |
Shirahata M,
Schofield B,
Chin BY,
Guilarte TR.
Culture of arterial chemoreceptor cells from adult cats in defined medium.
Brain Res
658:
60‐66,
1994.
|
785. |
Shu HF,
Wang BR,
Wang SR,
Yao W,
Huang HP,
Zhou Z,
Wang X,
Fan J,
Wang T,
Ju G.
IL‐1beta inhibits IK and increases [Ca2+]i in the carotid body glomus cells and increases carotid sinus nerve firings in the rat.
Eur J Neurosci
25:
3638‐3647,
2007.
|
786. |
Silveira SA,
Viana Lima NR,
Haibara AS,
Coimbra CC.
The hypothalamic paraventricular nucleus and carotid receptors modulate hyperglycemia induced by hemorrhage.
Brain Res
993:
183‐191,
2003.
|
787. |
Simchowitz L,
Roos A.
Regulation of intracellular pH in human neutrophils.
J Gen Physiol
85:
443‐470,
1985.
|
788. |
Smith CA,
Rodman JR,
Chenuel BJ,
Henderson KS,
Dempsey JA.
Response time and sensitivity of the ventilatory response to CO2 in unanesthetized intact dogs: central vs. peripheral chemoreceptors.
J Appl Physiol
100:
13‐19,
2006.
|
789. |
Smith PG,
Mills E.
Autoradiographic identification of the terminations of petrosal ganglion neurons in the cat carotid body.
Brain Res
113:
174‐178,
1976.
|
790. |
Smith PG,
Mills E.
Restoration of reflex ventilatory response to hypoxia after removal of carotid bodies in the cat.
Neuroscience
5:
573‐580,
1980.
|
791. |
Sneyd JR,
Linton RA,
Band DM.
Ventilatory effects of potassium during hyperoxia, normoxia and hypoxia in anaesthetized cats.
Respir Physiol
72:
59‐64,
1988.
|
792. |
Snyder SH.
Nitric oxide: First in a new class of neurotransmitters.
Science
257:
494‐496,
1992.
|
793. |
Somers VK,
Abboud FM.
Chemoreflexes–responses, interactions and implications for sleep apnea.
Sleep
16:
S30‐S33; discussion
S33‐S34,
1993.
|
794. |
Spergel D,
Lahiri S.
Differential modulation by extracellular ATP of carotid chemosensory responses.
J Appl Physiol
74:
3052‐3056,
1993.
|
795. |
Stamler JS.
Redox signaling: Nitrosylation and related target interactions of nitric oxide.
Cell
78:
931‐936,
1994.
|
796. |
Starlinger H,
Lubbers DW.
Oxygen consumption of the isolated carotid body tissue (cat).
Pflugers Arch
366:
61‐66,
1976.
|
797. |
Stea A,
Jackson A,
Macintyre L,
Nurse CA.
Long‐term modulation of inward currents in O2 chemoreceptors by chronic hypoxia and cyclic AMP in vitro.
J Neurosci
15:
2192‐2202,
1995.
|
798. |
Stea A,
Jackson A,
Nurse CA.
Hypoxia and N6,O2′‐dibutyryladenosine 3′,5′‐cyclic monophosphate, but not nerve growth factor, induce Na+ channels and hypertrophy in chromaffin‐like arterial chemoreceptors.
Proc Natl Acad Sci U S A
89:
9469‐9473,
1992.
|
799. |
Stea A,
Nurse CA.
Chloride channels in cultured glomus cells of the rat carotid body.
Am J Physiol
257:
C174‐C181,
1989.
|
800. |
Stea A,
Nurse CA.
Whole‐cell and perforated‐patch recordings from O2‐sensitive rat carotid body cells grown in short‐ and long‐term culture.
Pflugers Arch
418:
93‐101,
1991.
|
801. |
Stefansson K,
Wollmann RL,
Moore BW.
Distribution of S‐100 protein outside the central nervous system.
Brain Res
234:
309‐317,
1982.
|
802. |
Stensaas LJ,
Stensaas SS,
Gonzalez C,
Fidone S.
Analytical electronmicroscopy of granular vesicles in the carotid body of the normal and reserpinized cat. In:
Bellmonte C,
Pallot D,
Acker H,
Fidone S, editors.
Arterial Chemoreceptors.
Leicester:
Leicester University Press,
1981,
p. 176‐186.
|
803. |
Stickland MK,
Miller JD,
Smith CA,
Dempsey JA.
Carotid chemoreceptor modulation of regional blood flow distribution during exercise in health and chronic heart failure.
Circ Res
100:
1371‐1378,
2007.
|
804. |
Stickland MK,
Morgan BJ,
Dempsey JA.
Carotid chemoreceptor modulation of sympathetic vasoconstrictor outflow during exercise in healthy humans.
J Physiol
586:
1743‐1754,
2008.
|
805. |
Stoop R,
Surprenant A,
North RA.
Different sensitivities to pH of ATP‐induced currents at four cloned P2X receptors.
J Neurophysiol
78:
1837‐1840,
1997.
|
806. |
Streller T,
Huckstorf C,
Pfeiffer C,
Acker H.
Unusual cytochrome a592 with low PO2 affinity correlates as putative oxygen sensor with rat carotid body chemoreceptor discharge.
FASEB J
16:
1277‐1279,
2002.
|
807. |
Stulbarg MS,
Winn WR,
Kellett LE.
Bilateral carotid body resection for the relief of dyspnea in severe chronic obstructive pulmonary disease. Physiologic and clinical observations in three patients.
Chest
95:
1123‐1128,
1989.
|
808. |
Summers BA,
Overholt JL,
Prabhakar NR.
Nitric oxide inhibits L‐type Ca2+ current in glomus cells of the rabbit carotid body via a cGMP‐independent mechanism.
J Neurophysiol
81:
1449‐1457,
1999.
|
809. |
Summers BA,
Overholt JL,
Prabhakar NR.
Augmentation of L‐type calcium current by hypoxia in rabbit carotid body glomus cells: Evidence for a PKC‐sensitive pathway.
J Neurophysiol
84:
1636‐1644,
2000.
|
810. |
Summers BA,
Overholt JL,
Prabhakar NR.
CO(2) and pH independently modulate L‐type Ca(2+) current in rabbit carotid body glomus cells.
J Neurophysiol
88:
604‐612,
2002.
|
811. |
Sun MK,
Reis DJ.
Dopamine or transmitter release from rat carotid body may not be essential to hypoxic chemoreception.
Am J Physiol
267:
R1632‐R1639,
1994.
|
812. |
Sun SY,
Wang W,
Zucker IH,
Schultz HD.
Enhanced activity of carotid body chemoreceptors in rabbits with heart failure: Role of nitric oxide.
J Appl Physiol
86:
1273‐1282,
1999a.
|
813. |
Sun SY,
Wang W,
Zucker IH,
Schultz HD.
Enhanced peripheral chemoreflex function in conscious rabbits with pacing‐induced heart failure.
J Appl Physiol
86:
1264‐1272,
1999b.
|
814. |
Swanson GD,
Whipp BJ,
Kaufman RD,
Aqleh KA,
Winter B,
Bellville JW.
Effect of hypercapnia on hypoxic ventilatory drive in carotid body‐resected man.
J Appl Physiol
45:
871‐877,
1978.
|
815. |
Tafil‐Klawe M,
Thiele AE,
Raschke F,
Mayer J,
Peter JH,
von Wichert W.
Peripheral chemoreceptor reflex in obstructive sleep apnea patients; a relationship between ventilatory response to hypoxia and nocturnal bradycardia during apnea events.
Pneumologie
45
Suppl 1:
309‐311,
1991.
|
816. |
Tan ZY,
Lu Y,
Whiteis CA,
Simms AE,
Paton JF,
Chapleau MW,
Abboud FM.
Chemoreceptor hypersensitivity, sympathetic excitation, and overexpression of ASIC and TASK channels before the onset of hypertension in SHR.
Circ Res
106:
536‐545,
2010.
|
817. |
Tatsumi K,
Pickett CK,
Weil JV.
Attenuated carotid body hypoxic sensitivity after prolonged hypoxic exposure.
J Appl Physiol
70:
748‐755,
1991.
|
818. |
Tatsumi K,
Pickett CK,
Weil JV.
Possible role of dopamine in ventilatory acclimatization to high altitude.
Respir Physiol
99:
63‐73,
1995.
|
819. |
Taube H.
Dissertationem inauguralem de vera nervi inter costalis origine. Gottingen,
1743.
|
820. |
Taylor CT,
Moncada S.
Nitric oxide, cytochrome C oxidase, and the cellular response to hypoxia.
Arterioscler Thromb Vasc Biol
30:
643‐647,
2010.
|
821. |
Telezhkin V,
Brazier SP,
Cayzac SH,
Wilkinson WJ,
Riccardi D,
Kemp PJ.
Mechanism of inhibition by hydrogen sulfide of native and recombinant BKCa channels.
Respir Physiol Neurobiol
172:
169‐178,
2010.
|
822. |
Teppema LJ,
Barts PW,
Evers JA.
The effect of the phase relationship between the arterial blood gas oscillations and central neural respiratory activity on phrenic motoneurone output in cats.
Respir Physiol
61:
301‐316,
1985.
|
823. |
Teppema LJ,
Bijl H,
Romberg RR,
Dahan A.
Antioxidants reverse depression of the hypoxic ventilatory response by acetazolamide in man.
J Physiol
572:
849‐856,
2006.
|
824. |
Teppema LJ,
Dahan A,
Olievier CN.
Low‐dose acetazolamide reduces CO(2)‐O(2) stimulus interaction within the peripheral chemoreceptors in the anaesthetised cat.
J Physiol
537:
221‐229,
2001.
|
825. |
Teppema LJ,
Nieuwenhuijs D,
Sarton E,
Romberg R,
Olievier CN,
Ward DS,
Dahan A.
Antioxidants prevent depression of the acute hypoxic ventilatory response by subanaesthetic halothane in men.
J Physiol
544:
931‐938,
2002.
|
826. |
Thomas‐Reetz AC,
De Camilli P.
A role for synaptic vesicles in non‐neuronal cells: Clues from pancreatic beta cells and from chromaffin cells.
FASEB J
8:
209‐216,
1994.
|
827. |
Thompson CM,
Troche K,
Jordan HL,
Barr BL,
Wyatt CN.
Evidence for functional, inhibitory, histamine H3 receptors in rat carotid body Type I cells.
Neurosci Lett
471:
15‐19,
2010.
|
828. |
Thompson RJ,
Jackson A,
Nurse CA.
Developmental loss of hypoxic chemosensitivity in rat adrenomedullary chromaffin cells.
J Physiol
498(Pt 2):
503‐510,
1997.
|
829. |
Thorens B.
GLUT2 in pancreatic and extra‐pancreatic gluco‐detection (review).
Mol Membr Biol
18:
265‐273,
2001.
|
830. |
Thorens B,
Sarkar HK,
Kaback HR,
Lodish HF.
Cloning and functional expression in bacteria of a novel glucose transporter present in liver, intestine, kidney, and beta‐pancreatic islet cells.
Cell
55:
281‐290,
1988.
|
831. |
Thureson‐Klein A.
Exocytosis from large and small dense cored vesicles in noradrenergic nerve terminals.
Neuroscience
10:
245‐259,
1983.
|
832. |
Tian H,
McKnight SL,
Russell DW.
Endothelial PAS domain protein 1 (EPAS1), a transcription factor selectively expressed in endothelial cells.
Genes Dev
11:
72‐82,
1997.
|
833. |
Timmers HJ,
Karemaker JM,
Wieling W,
Marres HA,
Folgering HT,
Lenders JW.
Baroreflex and chemoreflex function after bilateral carotid body tumor resection.
J Hypertens
21:
591‐599,
2003.
|
834. |
Timmers HJ,
Wieling W,
Karemaker JM,
Lenders JW.
Cardiovascular responses to stress after carotid baroreceptor denervation in humans.
Ann N Y Acad Sci
1018:
515‐519,
2004.
|
835. |
Tipoe GL,
Fung ML.
Expression of HIF‐1alpha, VEGF and VEGF receptors in the carotid body of chronically hypoxic rat.
Respir Physiol Neurobiol
138:
143‐154,
2003.
|
836. |
Tjong YW,
Chen Y,
Liong EC,
Tipoe GL,
Fung ML.
Chronic hypoxia modulates the function and expression of melatonin receptors in the rat carotid body.
J Pineal Res
40:
125‐134,
2006.
|
837. |
Tolkovsky AM,
Richards CD.
Na+/H+ exchange is the major mechanism of pH regulation in cultured sympathetic neurons: Measurements in single cell bodies and neurites using a fluorescent pH indicator.
Neuroscience
22:
1093‐1102,
1987.
|
838. |
Toorop RJ,
Scheltinga MR,
Moll FL,
Bleys RL.
Anatomy of the carotid sinus nerve and surgical implications in carotid sinus syndrome.
J Vasc Surg
50:
177‐182,
2009.
|
839. |
Torbati D,
Sherpa AK,
Lahiri S,
Mokashi A,
Albertine KH,
DiGiulio C.
Hyperbaric oxygenation alters carotid body ultrastructure and function.
Respir Physiol
92:
183‐196,
1993.
|
840. |
Torrance RW,
Bartels EM,
McLaren AJ.
Update on the bicarbonate hypothesis.
Adv Exp Med Biol
337:
241‐250,
1993.
|
841. |
Torrealba F.
Calcitonin gene‐related peptide immunoreactivity in the nucleus of the tractus solitarius and the carotid receptors of the cat originates from peripheral afferents.
Neuroscience
47:
165‐173,
1992.
|
842. |
Torrealba F,
Alcayaga J.
Nerve branching and terminal arborizations in the carotid body of the cat. A light microscopic study following anterograde injury filling of carotid nerve axons with horseradish peroxidase.
Neuroscience
19:
581‐595,
1986.
|
843. |
Torrealba F,
Correa R.
Ultrastructure of calcitonin gene‐related peptide‐immunoreactive, unmyelinated afferents to the cat carotid body: A case of volume transmission.
Neuroscience
64:
777‐785,
1995.
|
844. |
Trapp S,
Aller MI,
Wisden W,
Gourine AV.
A role for TASK‐1 (KCNK3) channels in the chemosensory control of breathing.
J Neurosci
28:
8844‐8850,
2008.
|
845. |
Triggle DJ.
1,4‐Dihydropyridines as calcium channel ligands and privileged structures.
Cell Mol Neurobiol
23:
293‐303,
2003.
|
846. |
Trzebski A,
Sato Y,
Suzuki A,
Sato A.
Inhibition of nitric oxide synthesis potentiates the responsiveness of carotid chemoreceptors to systemic hypoxia in the rat.
Neurosci Lett
190:
29‐32,
1995.
|
847. |
Trzebski A,
Tafil M,
Zoltwski M,
Przybylski J.
Central and peripheral chemosensitivity in early essential hypertension in man. In:
Schlaefke ME,
Koepchen HP,
See WR, editors.
Central Neurone Environment and the Control Systems of Breathing and Circulation.
New York:
Springer‐Verlag,
1983,
p. 204‐213.
|
848. |
Turrens JF.
Mitochondrial formation of reactive oxygen species.
J Physiol
552:
335‐344,
2003.
|
849. |
Urena J,
Fernandez‐Chacon R,
Benot AR,
Alvarez de Toledo GA,
Lopez‐Barneo J.
Hypoxia induces voltage‐dependent Ca2+ entry and quantal dopamine secretion in carotid body glomus cells.
Proc Natl Acad Sci U S A
91:
10208‐10211,
1994.
|
850. |
Urena J,
Lopez‐Lopez J,
Gonzalez C,
Lopez‐Barneo J.
Ionic currents in dispersed chemoreceptor cells of the mammalian carotid body.
J Gen Physiol
93:
979‐999,
1989.
|
851. |
Valdes V,
Mosqueira M,
Rey S,
Del Rio R,
Iturriaga R.
Inhibitory effects of NO on carotid body: contribution of neural and endothelial nitric oxide synthase isoforms.
Am J Physiol Lung Cell Mol Physiol
284:
L57‐L68,
2003.
|
852. |
Vandier C,
Conway AF,
Landauer RC,
Kumar P.
Presynaptic action of adenosine on a 4‐aminopyridine‐sensitive current in the rat carotid body.
J Physiol
515(Pt 2):
419‐429,
1999.
|
853. |
Varas R,
Alcayaga J,
Iturriaga R.
ACh and ATP mediate excitatory transmission in cat carotid identified chemoreceptor units in vitro.
Brain Res
988:
154‐163,
2003.
|
854. |
Varas R,
Wyatt CN,
Buckler KJ.
Modulation of TASK‐like background potassium channels in rat arterial chemoreceptor cells by intracellular ATP and other nucleotides.
J Physiol
583:
521‐536,
2007.
|
855. |
Verhage M,
McMahon HT,
Ghijsen WE,
Boomsma F,
Scholten G,
Wiegant VM,
Nicholls DG.
Differential release of amino acids, neuropeptides, and catecholamines from isolated nerve terminals.
Neuron
6:
517‐524,
1991.
|
856. |
Verkhratsky A,
Orkand RK,
Kettenmann H.
Glial calcium: Homeostasis and signaling function.
Physiol Rev
78:
99‐141,
1998.
|
857. |
Verna A.
Terminaisons nerveuses afferentes et efferentes dans la glomus carotidien du lapin.
J Microsc, Paris
16:
299‐308,
1973.
|
858. |
Verna A.
Observations on the innervation of the carotid body of the rabbit. In:
Purves MJ, editor.
The Peripheral Arterial Chemoreceptors.
London:
Cambridge University Press,
1975,
p. 75‐99.
|
859. |
Verna A.
Dense‐cored vesicles and cell types in the rabbit carotid body. In:
Acker H,
Fidone S,
Pallot D,
Eyzaguirre C,
Lubbers DW,
Torrance RW, editors.
Chemoreception in the Carotid Body.
Berlin:
Springer‐Verlag,
1977,
p. 216‐220.
|
860. |
Verna A.
Ulstrastructure of the carotid body in the mammals.
Int Rev Cytol
60:
271‐330,
1979.
|
861. |
Verna A.
Ultrastructural localizations of post‐ganglionic sympathetic nerve endings in the rabbit carotid body. In:
Belmonte C,
Pallot D,
Acker H,
Fidone S, editors.
Arterial Chemoreceptors.
Leicester: Leicester University Press,
1981,
p. 54‐63.
|
862. |
Verna A.
The mammalian carotid body: Morphological data. In:
Gonzalez C, editor.
The Carotid Body Chemoreceptors.
Heidelberg:
Springer,
1997,
p. 1‐29.
|
863. |
Verna A,
Barets A,
Salat C.
Distribution of sympathetic nerve endings within the rabbit carotid body: A histochemical and ultrastructural study.
J Neurocytol
13:
849‐865,
1984.
|
864. |
Verna A,
Roumy M,
Leitner LM.
Loss of chemoreceptive properties of the rabbit carotid body after destruction of the glomus cells.
Brain Res
100:
13‐23,
1975.
|
865. |
Verna A,
Roumy M,
Leitner LM.
Role of the carotid body cells: Long‐term consequences of their cryodestruction.
Neurosci Lett
16:
281‐285,
1980.
|
866. |
Verna A,
Talib N,
Roumy M,
Pradet A.
Effects of metabolic inhibitors and hypoxia on the ATP, ADP and AMP content of the rabbit carotid body in vitro: The metabolic hypothesis in question.
Neurosci Lett
116:
156‐161,
1990.
|
867. |
Vicario I,
Obeso A,
Rocher A,
Lopez‐Lopez JR,
Gonzalez C.
Intracellular Ca(2+) stores in chemoreceptor cells of the rabbit carotid body: Significance for chemoreception.
Am J Physiol Cell Physiol
279:
C51‐C61,
2000.
|
868. |
Vicario I,
Rigual R,
Obeso A,
Gonzalez C.
Characterization of the synthesis and release of catecholamine in the rat carotid body in vitro.
Am J Physiol Cell Physiol
278:
C490‐C499,
2000.
|
869. |
Vidruk EH,
Olson EB,
Ling L,
Mitchell GS.
Carotid sinus nerve responses to hypoxia and cyanide are attenuated in adult rats following perinatal hyperoxia.
Physiologist
39:
190,
1996.
|
870. |
Vidruk EH,
Olson EB Jr.,
Ling L,
Mitchell GS.
Responses of single‐unit carotid body chemoreceptors in adult rats.
J Physiol
531:
165‐170,
2001.
|
871. |
Vizek M,
Pickett CK,
Weil JV.
Increased carotid body hypoxic sensitivity during acclimatization to hypobaric hypoxia.
J Appl Physiol
63:
2403‐2410,
1987.
|
872. |
von Euler US,
Liljestrand G,
Zotterman Y.
The excitation mechanism of the chemoreceptors of the carotid body.
Scand Arch Physiol
83:
132‐152,
1939.
|
873. |
Wagenaar M,
Teppema L,
Berkenbosch A,
Olievier C,
Folgering H.
The effect of low‐dose acetazolamide on the ventilatory CO2 response curve in the anaesthetized cat.
J Physiol
495(Pt 1):
227‐237,
1996.
|
874. |
Wang X,
Wang BR,
Duan XL,
Zhang P,
Ding YQ,
Jia Y,
Jiao XY,
Ju G.
Strong expression of interleukin‐1 receptor type I in the rat carotid body.
J Histochem Cytochem
50:
1677‐1684,
2002.
|
875. |
Wang X,
Zhang XJ,
Xu Z,
Li X,
Li GL,
Ju G,
Wang BR.
Morphological evidence for existence of IL‐6 receptor alpha in the glomus cells of rat carotid body.
Anat Rec A Discov Mol Cell Evol Biol
288:
292‐296,
2006.
|
876. |
Wang YY,
Perrin DG,
Cutz E.
Localization of cholecystokinin‐like and calcitonin‐like peptides in infant carotid bodies: A light‐ and electron‐microscopic immunohistochemical study.
Cell Tissue Res
272:
169‐174,
1993.
|
877. |
Wang ZY,
Bisgard GE.
Chronic hypoxia‐induced morphological and neurochemical changes in the carotid body.
Microsc Res Tech
59:
168‐177,
2002.
|
878. |
Wang ZZ,
Bredt DS,
Fidone SJ,
Stensaas LJ.
Neurons synthesizing nitric oxide innervate the mammalian carotid body.
J Comp Neurol
336:
419‐432,
1993.
|
879. |
Wang ZZ,
Dinger B,
Fidone SJ,
Stensaas LJ.
Changes in tyrosine hydroxylase and substance P immunoreactivity in the cat carotid body following chronic hypoxia and denervation.
Neuroscience
83:
1273‐1281,
1998.
|
880. |
Wang ZZ,
Dinger BG,
Stensaas LJ,
Fidone SJ.
The role of nitric oxide in carotid chemoreception.
Biol Signals
4:
109‐116,
1995.
|
881. |
Wang ZZ,
He L,
Stensaas LJ,
Dinger BG,
Fidone SJ.
Localization and in vitro actions of atrial natriuretic peptide in the cat carotid body.
J Appl Physiol
70:
942‐946,
1991.
|
882. |
Wang ZZ,
Stensaas LJ,
Bredt DS,
Dinger B,
Fidone SJ.
Localization and actions of nitric oxide in the cat carotid body.
Neuroscience
60:
275‐286,
1994.
|
883. |
Wang ZZ,
Stensaas LJ,
Dinger B,
Fidone SJ.
Immunocytochemical localization of choline acetyltransferase in the carotid body of the cat and rabbit.
Brain Res
498:
131‐134,
1989.
|
884. |
Wang ZZ,
Stensaas LJ,
Dinger B,
Fidone SJ.
The co‐existence of biogenic amines and neuropeptides in the type I cells of the cat carotid body.
Neuroscience
47:
473‐480,
1992.
|
885. |
Wang ZZ,
Stensaas LJ,
Dinger BG,
Fidone SJ.
Nitric oxide mediates chemoreceptor inhibition in the cat carotid body.
Neuroscience
65:
217‐229,
1995.
|
886. |
Ward DS,
Voter WA,
Karan S.
The effects of hypo‐ and hyperglycaemia on the hypoxic ventilatory response in humans.
J Physiol
582:
859‐869,
2007.
|
887. |
Ward JP.
Oxygen sensors in context.
Biochim Biophys Acta
1777:
1‐14,
2008.
|
888. |
Ward SA.
Peripheral and central chemoreceptor control of ventilation during exercise in humans.
Can J Appl Physiol
19:
305‐333,
1994.
|
889. |
Warner MM,
Mitchell GS.
Ventilatory responses to hyperkalemia and exercise in normoxic and hypoxic goats.
Respir Physiol
82:
239‐249,
1990.
|
890. |
Wasicko MJ,
Breitwieser GE,
Kim I,
Carroll JL.
Postnatal development of carotid body glomus cell response to hypoxia.
Respir Physiol Neurobiol
154:
356‐371,
2006.
|
891. |
Wasicko MJ,
Sterni LM,
Bamford OS,
Montrose MH,
Carroll JL.
Resetting and postnatal maturation of oxygen chemosensitivity in rat carotid chemoreceptor cells.
J Physiol
514(Pt 2):
493‐503,
1999.
|
892. |
Wasserman K,
Whipp BJ,
Casaburi R.
Respiratory control during exercise. In:
Fishman AP,
Cherniack NS,
Widdicombe JG, editors.
Handbook of Physiology. The Respiratory System. Control of Breathingvol II, pt 2.
Bethesda:
American Physiological Society,
1986, sect. 3,
p. 595‐620.
|
893. |
Wasserman K,
Whipp BJ,
Koyal SN,
Cleary MG.
Effect of carotid body resection on ventilatory and acid‐base control during exercise.
J Appl Physiol
39:
354‐358,
1975.
|
894. |
Watanabe T,
Kumar P,
Hanson MA.
Elevation of metabolic rate by pyrogen administration does not affect the gain of respiratory peripheral chemoreflexes in unanesthetized kittens.
Pediatr Res
44:
357‐362,
1998.
|
895. |
Watkins LR,
Maier SF.
Beyond neurons: Evidence that immune and glial cells contribute to pathological pain states.
Physiol Rev
82:
981‐1011,
2002.
|
896. |
Watt AH,
Reid PG,
Stephens MR,
Routledge PA.
Adenosine‐induced respiratory stimulation in man depends on site of infusion. Evidence for an action on the carotid body?
Br J Clin Pharmacol
23:
486‐490,
1987.
|
897. |
Watt AH,
Routledge PA.
Adenosine stimulates respiration in man.
Br J Clin Pharmacol
20:
503‐506,
1985.
|
898. |
Waypa GB,
Schumacker PT.
Hypoxic pulmonary vasoconstriction: Redox events in oxygen sensing.
J Appl Physiol
98:
404‐414,
2005.
|
899. |
Weaver DR.
A2a adenosine receptor gene expression in developing rat brain.
Brain Res Mol Brain Res
20:
313‐327,
1993.
|
900. |
Weil JV.
Ventilatory control at high altitude. In:
Fishman AP,
Cherniack NS,
Widdicombe JG, editors.
Handbook of Physiology. The Respiratory System. Control of Breathing, vol II, pt 2.
Bethesda MD: American Physiological Society,
1986, sect. 3, p.
703‐728. |
901. |
Weil JV,
Zwillich CW.
Control of breathing in endocrine and metabolic disorders and in obesity. In: Altose MD, Kawakami Y, editors.
Control of Breathing in Health and Disease.
New York:
Dekker,
1999,
p. 581‐608.
|
902. |
Whalen WJ,
Nair P.
PO2 in the carotid body perfused and/or superfused with cell‐free media.
J Appl Physiol
41:
180‐184,
1976.
|
903. |
Whalen WJ,
Nair P.
Oxidative metabolism and tissue PO2 of the carotid body. In:
Acker H,
O'Regan RG, editors.
Physiology of the Peripheral Arterial Chemoreceptors.
Amsterdam:
Elsevier,
1983,
p. 117‐132.
|
904. |
Whalen WJ,
Nair P,
Sidebotham T,
Spande J,
Lacerna M.
Cat carotid body: Oxygen consumption and other parameters.
J Appl Physiol
50:
129‐133,
1981.
|
905. |
Whalen WJ,
Savoca J,
Nair P.
Oxygen tension measurements in carotid body of the cat.
Am J Physiol
225:
986‐991,
1973.
|
906. |
Whipp BJ.
Carotid bodies and breathing in humans.
Thorax
49:
1081‐1084a,
1994a.
|
907. |
Whipp BJ.
Peripheral chemoreceptor control of exercise hyperpnea in humans.
Med Sci Sports Exerc
26:
337‐347,
1994b.
|
908. |
Whipp BJ,
Wasserman K.
Carotid bodies and ventilatory control dynamics in man.
Fed Proc
39:
2668‐2673,
1980.
|
909. |
Wightman RM,
Jankowski JA,
Kennedy RT,
Kawagoe KT,
Schroeder TJ,
Leszczyszyn DJ,
Near JA,
Diliberto EJ Jr,
Viveros OH.
Temporally resolved catecholamine spikes correspond to single vesicle release from individual chromaffin cells.
Proc Natl Acad Sci U S A
88:
10754‐10758,
1991.
|
910. |
Wilding TJ,
Cheng B,
Roos A.
pH regulation in adult rat carotid body glomus cells. Importance of extracellular pH, sodium, and potassium.
J Gen Physiol
100:
593‐608,
1992.
|
911. |
Williams BA,
Buckler KJ.
Biophysical properties and metabolic regulation of a TASK‐like potassium channel in rat carotid body type 1 cells.
Am J Physiol Lung Cell Mol Physiol
286:
L221‐L230,
2004.
|
912. |
Williams BA,
Smyth J,
Boon AW,
Hanson MA,
Kumar P,
Blanco CE.
Development of respiratory chemoreflexes in response to alternations of fractional inspired oxygen in the newborn infant.
J Physiol
442:
81‐90,
1991.
|
913. |
Williams SE,
Wootton P,
Mason HS,
Bould J,
Iles DE,
Riccardi D,
Peers C,
Kemp PJ.
Hemoxygenase‐2 is an oxygen sensor for a calcium‐sensitive potassium channel.
Science
306:
2093‐2097,
2004.
|
914. |
Winkler H.
The adrenal chromaffin granule: A model for large dense core vesicles of endocrine and nervous tissue.
J Anat
183(Pt 2):
237‐252,
1993.
|
915. |
Winn HR,
Rubio R,
Berne RM.
Brain adenosine concentration during hypoxia in rats.
Am J Physiol
241:
H235‐H242,
1981.
|
916. |
Woods A,
Dickerson K,
Heath R,
Hong SP,
Momcilovic M,
Johnstone SR,
Carlson M,
Carling D.
Ca2+/calmodulin‐dependent protein kinase kinase‐beta acts upstream of AMP‐activated protein kinase in mammalian cells.
Cell Metab
2:
21‐33,
2005.
|
917. |
Woods RI.
Penetration of horseradish peroxidase between all elements of the carotid body. In:
Purves MJ, editors.
The Peripheral Arterial Chemoreceptors.
London:
Cambridge University Press,
1975,
p. 195‐205.
|
918. |
Wyatt CN,
Buckler KJ.
The effect of mitochondrial inhibitors on membrane currents in isolated neonatal rat carotid body type I cells.
J Physiol
556:
175‐191,
2004.
|
919. |
Wyatt CN,
Mustard KJ,
Pearson SA,
Dallas ML,
Atkinson L,
Kumar P,
Peers C,
Hardie DG,
Evans AM.
AMP‐activated protein kinase mediates carotid body excitation by hypoxia.
J Biol Chem
282:
8092‐8098,
2007.
|
920. |
Wyatt CN,
Peers C.
Nicotinic acetylcholine receptors in isolated type I cells of the neonatal rat carotid body.
Neuroscience
54:
275‐281,
1993.
|
921. |
Wyatt CN,
Peers C.
Ca(2+)‐activated K+ channels in isolated type I cells of the neonatal rat carotid body.
J Physiol
483(Pt 3):
559‐565,
1995.
|
922. |
Wyatt CN,
Wright C,
Bee D,
Peers C.
O2‐sensitive K+ currents in carotid body chemoreceptor cells from normoxic and chronically hypoxic rats and their roles in hypoxic chemotransduction.
Proc Natl Acad Sci U S A
92:
295‐299,
1995.
|
923. |
Xu J,
Tse FW,
Tse A.
ATP triggers intracellular Ca2+ release in type II cells of the rat carotid body.
J Physiol
549:
739‐747,
2003.
|
924. |
Xu J,
Xu F,
Tse FW,
Tse A.
ATP inhibits the hypoxia response in type I cells of rat carotid bodies.
J Neurochem
92:
1419‐1430,
2005.
|
925. |
Yamaguchi S,
Lande B,
Kitajima T,
Hori Y,
Shirahata M.
Patch clamp study of mouse glomus cells using a whole carotid body.
Neurosci Lett
357:
155‐157,
2004.
|
926. |
Yamamoto WS.
Mathematical analysis of the time course of alveolar carbon dioxide.
J Appl Physiol
15:
215‐219,
1960.
|
927. |
Yamamoto Y,
Konig P,
Henrich M,
Dedio J,
Kummer W.
Hypoxia induces production of nitric oxide and reactive oxygen species in glomus cells of rat carotid body.
Cell Tissue Res
325:
3‐11,
2006.
|
928. |
Yamamoto Y,
Kummer W,
Atoji Y,
Suzuki Y.
TASK‐1, TASK‐2, TASK‐3 and TRAAK immunoreactivities in the rat carotid body.
Brain Res
950:
304‐307,
2002.
|
929. |
Yamamoto Y,
Taniguchi K.
Expression of tandem P domain K+ channel, TREK‐1, in the rat carotid body.
J Histochem Cytochem
54:
467‐472,
2006.
|
930. |
Ye JS,
Tipoe GL,
Fung PC,
Fung ML.
Augmentation of hypoxia‐induced nitric oxide generation in the rat carotid body adapted to chronic hypoxia: An involvement of constitutive and inducible nitric oxide synthases.
Pflugers Arch
444:
178‐185,
2002.
|
931. |
Yokota H,
Kreuzer F.
Alveolar to arterial transmission of oxygen fluctuations due to respiration in anesthetized dogs.
Pflugers Arch
340:
291‐306,
1973.
|
932. |
Yu G,
Fournier C,
Hess DC,
Borlongan CV.
Transplantation of carotid body cells in the treatment of neurological disorders.
Neurosci Biobehav Rev
28:
803‐810,
2005.
|
933. |
Yu G,
Xu L,
Hadman M,
Hess DC,
Borlongan CV.
Intracerebral transplantation of carotid body in rats with transient middle cerebral artery occlusion.
Brain Res
1015:
50‐56,
2004.
|
934. |
Yuan G,
Khan SA,
Luo W,
Nanduri J,
Semenza GL,
Prabhakar NR.
Hypoxia‐inducible factor 1 mediates increased expression of NADPH oxidase‐2 in response to intermittent hypoxia.
J Cell Physiol
2011 Feb 1. doi: 10.1002/jcp.22640. [Epub ahead of print].
|
935. |
Yuan G,
Nanduri J,
Bhasker CR,
Semenza GL,
Prabhakar NR.
Ca2+/calmodulin kinase‐dependent activation of hypoxia inducible factor 1 transcriptional activity in cells subjected to intermittent hypoxia.
J Biol Chem
280:
4321‐4328,
2005.
|
936. |
Yuan G,
Nanduri J,
Khan S,
Semenza GL,
Prabhakar NR.
Induction of HIF‐1alpha expression by intermittent hypoxia: Involvement of NADPH oxidase, Ca2+ signaling, prolyl hydroxylases, and mTOR.
J Cell Physiol
217:
674‐685,
2008.
|
937. |
Zapata P.
Effects of dopamine on carotid chemo‐ and baroreceptors in vitro.
J Physiol
244:
235‐251,
1975.
|
938. |
Zapata P.
From oxygen sensing to chemosensory activity. In:
Lahiri S,
Semenza GL,
Prabhakar N, editors.
Oxygen Sensing. Responses and Adaptation to Hypoxia.
New York:
Marcel Dekker,
2003,
p. 353‐363.
|
939. |
Zapata P.
Is ATP a suitable co‐transmitter in carotid body arterial chemoreceptors?
Respir Physiol Neurobiol
157:
106‐115,
2007.
|
940. |
Zapata P,
Hess A,
Bliss EL,
Eyzaguirre C.
Chemical, electron microscopic and physiological observations on the role of catecholamines in the carotid body.
Brain Res
14:
473‐496,
1969.
|
941. |
Zapata P,
Hess A,
Eyzaguirre C.
Reinnervation of carotid body and sinus with superior laryngeal nerve fibers.
J Neurophysiol
32:
215‐228,
1969.
|
942. |
Zapata P,
Larrain C,
Iturriaga R,
Alcayaga J.
The carotid bodies as thermosensors: Experiments in vitro and in situ, and importance for ventilatory regulation.
Adv Exp Med Biol
360:
253‐255,
1994.
|
943. |
Zapata P,
Stensaas LJ,
Eyzaguirre C.
Recovery of chemosensory function of regenerating carotid nerve fibres. In:
Acker H,
Fidone S,
Pallot D,
Eyzaguirre C,
Lubbers DW,
Torrance RW, editors.
Chemoreception in the Carotid Body.
Berlin:
Springer‐Verlag,
1977,
p. 44‐50.
|
944. |
Zhang M,
Buttigieg J,
Nurse CA.
Neurotransmitter mechanisms mediating low‐glucose signalling in cocultures and fresh tissue slices of rat carotid body.
J Physiol
578:
735‐750,
2007.
|
945. |
Zhang M,
Nurse CA.
Does endogenous 5‐HT mediate spontaneous rhythmic activity in chemoreceptor clusters of rat carotid body?
Brain Res
872:
199‐203,
2000.
|
946. |
Zhang M,
Nurse CA.
CO2/pH chemosensory signaling in co‐cultures of rat carotid body receptors and petrosal neurons: Role of ATP and ACh.
J Neurophysiol
92:
3433‐3445,
2004.
|
947. |
Zhang M,
Zhong H,
Vollmer C,
Nurse CA.
Co‐release of ATP and ACh mediates hypoxic signalling at rat carotid body chemoreceptors.
J Physiol
525(Pt 1):
143‐158,
2000.
|
948. |
Zhang XJ,
Wang X,
Xiong LZ,
Fan J,
Duan XL,
Wang BR.
Up‐regulation of IL‐1 receptor type I and tyrosine hydroxylase in the rat carotid body following intraperitoneal injection of IL‐1beta.
Histochem Cell Biol
128:
533‐540,
2007.
|
949. |
Zhang XQ,
Pang L,
Eyzaguirre C.
Effects of hypoxia on the intracellular K+ of clustered and isolated glomus cells of mice and rats.
Brain Res
676:
413‐420,
1995.
|
950. |
Zhong H,
Nurse CA.
Nicotinic acetylcholine sensitivity of rat petrosal sensory neurons in dissociated cell culture.
Brain Res
766:
153‐161,
1997.
|
951. |
Zhong H,
Zhang M,
Nurse CA.
Synapse formation and hypoxic signalling in co‐cultures of rat petrosal neurones and carotid body type 1 cells.
J Physiol
503(Pt 3):
599‐612,
1997.
|
952. |
Zhou Z,
Misler S.
Amperometric detection of stimulus‐induced quantal release of catecholamines from cultured superior cervical ganglion neurons.
Proc Natl Acad Sci U S A
92:
6938‐6942,
1995.
|
953. |
Zinker BA,
Namdaran K,
Wilson R,
Lacy DB,
Wasserman DH.
Acute adaptation of carbohydrate metabolism to decreased arterial PO2.
Am J Physiol
266:
E921‐E929,
1994.
|
954. |
Zotterman Y.
Action potentials in the glossopharyngeal nerve and in the chorda timpani.
Skand Arch Physio
72:
73‐77,
1935.
|
955. |
Zucker IH,
Schultz HD,
Li YF,
Wang Y,
Wang W,
Patel KP.
The origin of sympathetic outflow in heart failure: The roles of angiotensin II and nitric oxide.
Prog Biophys Mol Biol
84:
217‐232,
2004.
|
956. |
Zupanc GK.
Peptidergic transmission: From morphological correlates to functional implications.
Micron
27:
35‐91,
1996.
|