Comprehensive Physiology Wiley Online Library

Peripheral Chemoreceptors: Function and Plasticity of the Carotid Body

Full Article on Wiley Online Library



Abstract

The discovery of the sensory nature of the carotid body dates back to the beginning of the 20th century. Following these seminal discoveries, research into carotid body mechanisms moved forward progressively through the 20th century, with many descriptions of the ultrastructure of the organ and stimulus‐response measurements at the level of the whole organ. The later part of 20th century witnessed the first descriptions of the cellular responses and electrophysiology of isolated and cultured type I and type II cells, and there now exist a number of testable hypotheses of chemotransduction. The goal of this article is to provide a comprehensive review of current concepts on sensory transduction and transmission of the hypoxic stimulus at the carotid body with an emphasis on integrating cellular mechanisms with the whole organ responses and highlighting the gaps or discrepancies in our knowledge. It is increasingly evident that in addition to hypoxia, the carotid body responds to a wide variety of blood‐borne stimuli, including reduced glucose and immune‐related cytokines and we therefore also consider the evidence for a polymodal function of the carotid body and its implications. It is clear that the sensory function of the carotid body exhibits considerable plasticity in response to the chronic perturbations in environmental O2 that is associated with many physiological and pathological conditions. The mechanisms and consequences of carotid body plasticity in health and disease are discussed in the final sections of this article. © 2012 American Physiological Society. Compr Physiol 2:141‐219, 2012.

Comprehensive Physiology offers downloadable PowerPoint presentations of figures for non-profit, educational use, provided the content is not modified and full credit is given to the author and publication.

Download a PowerPoint presentation of all images


Figure 1. Figure 1.

Ultrastructure of the carotid body. (A) Reproduction of the original drawing of Fernando de Castro published in De Castro (1926), part of the Fernando de Castro Archives. Different glomeruli are shown close to the carotid artery (A). Incoming sympathetic nerve from the superior cervical ganglion (E) is a minor contribution to the innervation of the carotid body. The same can be said about the vagus nerve (LX) in the vicinity of the carotid body. By contrast, the most relevant contingent of afferents comes from the intercarotid (sinus) nerve branch of the glossopharyngeal nerve (IX). A sympathetic microganglion can be seen within the latter nerve (cg). Adapted, with permission, from 191 by de Castro.

Figure 2. Figure 2.

Role of carotid body in ventilatory response to hypoxia. (A) Ventilatory response to progressive hypoxia in subjects after bilateral carotid body resection (BR). End tidal Po2 (PETo2) was measured by a rapid‐response O2 electrode housed in an end‐tidal sampler. PETo2 was progressively decreased at ca. 10 Torr/min, from 100 to 40 Torr. Despite advancing hypoxia, no change in ventilation was seen, as clearly reflected by unaltered profile of airway PCO2 measured by infrared CO2 analyser. Right: hypoxic ventilatory response in terms of ΔV40 (mean ± SE), that is, increment in ventilation as PETo2 decreased from 100 to 40 Torr, while PETCO2 was kept at resting level. UR, patients with unilateral carotid body resection; C, controls. ΔV40 of BR group is statistically not different from zero, whereas that of UR group is between BR and C groups. Adapted, with permission, from 385 Honda. (B) Polygraph record of a representative trial of carotid body (CB) inhibition in a dog. The left CB was denervated prior to experiment. Perfusion of the isolated right carotid sinus region with hyperoxic (>500 mmHg) and hypocapnic (ca. 20 mmHg) blood begins at time 0 (solid vertical line). VI, ventilation; EMGdi, moving‐time‐averaged electromyogram of the costal diaphragm; VT, tidal volume; BP, blood pressure; PETCO2, end tidal PCO2; PETO2, end‐tidal Po2; and ua, arbitrary units. Interruption in the BP trace is due to blood sampling. Note that the immediate hypoventilation and PETCO2 increase with CB inhibition persists for the duration of the trial. Adapted, with permission, from 91 Blain et al.

Figure 3. Figure 3.

Chemoafferent response to hypoxia. (A) The central, superimposed traces show an example of the increase in the frequency of action potentials, recorded from a slip of the rat carotid sinus nerve as Po2 was reduced from hyperoxia to hypoxia and then back to hyperoxia. The inset at top shows, on a different timescale, a composite of eight, superimposed action potentials. PCO2 = 38 mmHg. Adapted, with permission, from 693from John Wiley and Sons, Pepper et al. B. Integrated chemoreceptor response to changing arterial Po2 at one level of H+‐PCO2. Curve 1: mean arterial B.P. 130 mmHg, increasing to 160 mmHg at lowest PaO2. Adapted, with permission, from 389 Hornbein et al.

Figure 4. Figure 4.

Effect of different levels of oxygenation upon single‐unit chemoreceptor activity in the rat in vivo. Each of the dashed lines connects the data points for a given unit (n = 20 units). Note the variation in basal discharge in normoxia, the Pao2 at the point of inflexion and the sensitivity at any PaO2, between units. The continuous line is the best fit (r2 = 0.6) for all points and represents a function in which fdis = 74010 (PaO2)−2.5, where fdis is the discharge frequency (spikes s−1) and PaO2 is recorded in mmHg. r2 is the correlation coefficient. Adapted, with permission, from 870 John Wiley and Sons, Vidruk et al.

Figure 5. Figure 5.

Relationship between arterial and microvascular Po2 and consequence upon chemodischarge response curves. (A) Relationship between Pao2 and carotid body microvascular (CBM) Po2. O2 pressure in inspired gas was lowered in steps. At each step, Pao2, chemosensory nerve activity and phosphorescence images were measured ca. 3 min after end‐tidal gas values stabilized. Average CBM Po2 was calculated for central region of O2 pressure map of carotid body and this is plotted against measured Pao2. Top: data from six cats are presented. Each cat has a different symbol. Below: data from all six cats are fitted to single curve (line of identity also shown). (B) Relationship between Po2 (arterial and CBM) and chemosensory nerve activity. Measured values of chemosensory nerve activity in four different cats are plotted against Pao2 (open circles) and CBM Po2 (filled circles). imp/s, impulses per second. Modified, with permission, from 502 Lahiri et al.

Figure 6. Figure 6.

Inhibition of type I cell K+ currents by hypoxia. (A) Currents from type I cells evoked by step depolarizations from −70 to +20 mV before (control), during (hypoxia), and after (wash) lowering of perfusate Po2 to 16 to 23 mmHg. The traces are representative recordings from type I cells of adult rats. (B) Mean + SEM current density‐voltage relationships before (filled circles) and during (open circles) application of hypoxic perfusate (n = 14). Modified, with permission, from 347 John Wiley and Sons, Hatton et al.

Figure 7. Figure 7.

Effect of hypoxia upon mitochondrial membrane potential as measured by Rh 123. Top three traces: Stimulus‐response curves for three different rabbit type I cell groups. In A and B, the steady‐state maximal increase in Rh 123 fluorescence is plotted against the minimum Po2 achieved during superfusion. The trace in C shows a continuous stimulus‐response curve, as the Rh 123 fluorescence is plotted directly against the trace from a Po2 electrode placed close to the cells. Bottom trace: A continuous plot of Rh 123 fluorescence as a function of Po2 obtained from a freshly dissociated rat chromaffin cell. There was no measurable change in signal until the Po2 fell below about 5 mmHg. Modified, with permission, from 228 John Wiley and Sons, Duchen and Biscoe.

Figure 8. Figure 8.

Relation between hypoxia and intracellular [Ca2+] in rat type I cells. (A) Effects of hypoxia on [Ca2+]i in rat type I cells. Plot of the mean [Ca2+]i against Po2 for 15 recordings.; error bars are ± SEM (for each level of Po2 in each recording [Ca2+]i was averaged over a 1 min period). Continuous line is the best fit to a hyperbolic function of form [Ca2+]i = (a + c) – [(a Po2)/(b + Po2)]; where a = 820 nM, b = 2.47 Torr, and c = 54.8 nM. Inset shows averaged (n = 15) [Ca2+]i responses to three levels of hypoxia. (B) Simultaneous recordings of membrane potential and current (using the perforated‐patch recording technique) and [Ca2+]I in a single, isolated type I cell. (i) Shows [Ca2+]i, (ii) membrane potential (Em), and (iii) current (Im; current is averaged over 10 ms intervals). The experiment begins in voltage recording mode (i.e., current clamp with I = 0; noise in current trace during voltage recording is artefactual). Inset shows action potentials recorded during anoxia on a faster time base. After the first exposure to anoxia the cell is voltage clamped at approximately −60 mV (see change in voltage trace). A second exposure to anoxia is then given. Modified, with permission, from 107 John Wiley and Sons, Buckler and Vaughan‐Jones.

Figure 9. Figure 9.

Effect of cadmium on calcium currents and stimulus induced secretion of labeled catecholamine, [3H]CA. (A) Normalized I‐V relationships obtained in isolated chemoreceptor cells before (open circles) and during (filled circles) superfusion with 200 μM CdCl2 (n = 4). From a holding potential of −80 mV, currents were elicited by 20 ms depolarizing pulses in 10 mV intervals. On the right, single currents obtained in a representative cell in both conditions. (B) General protocol used in the experiments of [3H]CA release. The figure shows the actual release of [3H]CA (c.p.m) from a control carotid body (CB; left panel) incubated in normoxia, a 20% O2‐, 5% CO2‐, and 75% N2‐equilibrated solution (Po2 ca. 150 mmHg; open bars), or hypoxia, a 7% O2‐, 5% CO2‐, and 88% N2‐equilibrated solution (Po2 ca. 46 mmHg; gray bars). Hypoxia was applied twice (S1 and S2). Evoked release in every application of hypoxic stimuli corresponds to the sum of c.p.m. above dashed lines In the experimental CB (right panel), the protocol was identical except for the presence of 200 μM CdCl2 during the time indicated by the horizontal line. (C) Effect of CdCl2 (200 μM) on the evoked release induced by mild (7% O2‐equilibrated solution) and intense (2% O2‐equilibrated solution) hypoxia, hypercapnic acidosis (20% CO2‐equilibrated solution; pH 6.6), dinitrophenol (DNP; 100 μM) and 30 and 100 mM extracellular K+o. Experimental protocol as in B. For every type of stimulation, the figure shows averaged ratios of the evoked release in S2 to the evoked release in S1 (S2/S1), in control and cadmium‐treated CB (n = 5‐12 in every experimental condition, *** P<0.001). Adapted, with permission, from 746 John Wiley and Sons, Rocher et al.

Figure 10. Figure 10.

Cystathionine γ‐lyase (CSE) localization in the mouse carotid body and carotid body responses to hypoxia and hypercapnia in CSE+/+ and CSE−/− mice. (A) CSE expression in carotid bodies from CSE+/+ and CSE−/− mice. Carotid body sections were stained with antibodies specific for CSE or tyrosine hydroxylase (TH), a marker of type I cells. (Scale bar: 20 μm). (B) Sensory response of isolated carotid bodies to hypoxia (Hx) (Po2 ca. 39 mmHg; at black bar) in CSE+/+ and CSE−/− mice. Integrated carotid body sensory activity (CB activity) is presented as impulses per second (imp/s). Superimposed action potentials from the single fiber are presented in inset. (C) Carotid body responses to graded hypoxia from CSE+/+ and CSE−/− mice, measured as the difference in response between baseline and hypoxia (D imp/s). Data are mean ±SEM of n = 24 (CSE+/+) and n = 23 (CSE−/−) fibers from eight mice each. (D) H2S levels (mean± SEM) in carotid bodies from CSE+/+ and CSE−/− mice under normoxia (NOR) and hypoxia (Hx) (Po2 ca. 40 mm Hg) from four independent experiments. (E) Example illustrating carotid body responses to CO2 (PCO2 ca. 68 mmHg; at black bar) in CSE+/+ and CSE−/− mice. (F) Average data mean (± SEM) of CO2 response from n = 24 (CSE+/+) and n = 19 (CSE−/−) fibers from eight mice in each group. *** and **, P<0.001 and <0.01 respectively; n.s. (not significant), P>0.05. Adapted, with permission, from 684 Peng et al.

Figure 11. Figure 11.

Effect of respiratory acidosis upon pHi and chemodischarge. A comparison of the effects on intracellular pHi in the type I cell with carotid sinus nerve discharge rate (on the right: redrawn from Gray, 1968) of a simulated respiratory acidosis (i.e. increasing PCO2 at constant [HCO3]o). Adapted, with permission, from 110 John Wiley and Sons, Buckler et al.

Figure 12. Figure 12.

Functional cocultures of rat type I cells and petrosal neurons. (A) Immunofluorescence staining of a coculture of dissociated rat petrosal neurons and carotid body type I cells. Culture was immunostained with tyrosine hydroxylase (TH) and neurofilament (NF, 68 kDa) antibodies and visualized with a fluorescein‐ and Texas Red‐conjugated secondary antibody, respectively. The two type I cell clusters are TH positive (cytoplasmic green fluorescence), and are intimately associated with NF‐positive petrosal processes (red fluorescence); nuclei of type I cells in the clusters appear dark. The single petrosal cell body is both TH and NF positive, accounting for the yellow‐orange fluorescence; note an NF‐positive pseudounipolar process leaves the petrosal cell body and appears to bifurcate into two main branches, each of which projects to a type I cell cluster. The petrosal neuron (PN) and type I cells were together for 8 days in vitro; scale bar represents 10 μm. (B) Effects of coculture on spontaneous membrane activity recorded with the perforated‐patch technique from petrosal neurons. (i) Typical recording illustrating lack of spontaneous activity in a PN cultured without type I cells; membrane potential, indicated by the two displaced continuous traces remained relatively steady over time. Note in i‐iii the right end of the top trace is continuous with the beginning (left end) of the lower trace. (ii) In coculture, atypical PN that was juxtaposed to a type I cell cluster showed spontaneous spikes and subthreshold potentials (two displaced traces), resembling excitatory post‐synaptic potential (EPSPs) seem at chemical synapses. (iii) Perfusion of tetrodotoxin (TTX) (1 μM) to block action potentials, did not eliminate subthreshold potentials (SSPs) recorded in a different PN, juxtaposed to a type I cell cluster. Vertical scale bar (top left) represents 20 mV; horizontal bar represents 1 s in (i) and (ii) and 1.5 s in (iii). The resting membrane potential was −65 mV in (i), −60 mV in (ii), and −70 mV in (iii). Modified, with permission, from 951 John Wiley and Sons, Zhong et al.

Figure 13. Figure 13.

Ventilatory response to chronic hypoxia. Ventilatory responses during and after prolonged hypoxic exposures include hypoxic ventilatory decline (HVD), ventilatory acclimatization to hypoxia (VAH), and hypoxic desensitization (HD). Modified, with permission, from, 714 Copyright Elsevier, Powell et al.

Figure 14. Figure 14.

Chemoafferent and ventilatory responses to hypoxia in HIF‐1α deficient mice. (A) Sensory responses to hypoxia (black bars) in wild type (Hif1a+/+; left panel) and HIF‐1α deficient (Hif1a+/−; right panel) mice. Po2 = partial pressure of O2 in the perfusate. Superimposed action potential of “single” fiber from which the data were derived is shown (inset). Note the blunted carotid body response to acute hypoxia in HIF‐1α deficient mice. Adapted, with permission, from 690John Wiley and Sons, Peng et al. (B) Effect of chronic hypoxia on ventilatory response to acute hypoxia in wild type (Hif1a+/+) (left panel) and HIF‐1α deficient (Hif1a+/−; right panel) mice. Changes in minute ventilation (VE) are expressed (mean ± SEM) relative to the values obtained while breathing 100% O2. Note the absence of ventilatory adaptation to hypoxia (VAH) in HIF‐1α deficient mice. Modified, with permission, from 445 Kline et al.

Figure 15. Figure 15.

Effect of intermittent hypoxia upon chemodischarge. (A) Representative tracings showing the changes in carotid body sensory discharges [impulses/second (imp/s)] in response to hypoxia in a control rat and a rat conditioned with 10 days of intermittent hypoxia (IH). AP, raw action potentials; time calibration = 40 s. Hypoxic challenges are marked under the tracings as solid bars, and arterial Po2 (Pao2) levels during hypoxic challenges are indicated under the bars. Inset: setting of the window discriminator for selection of action potentials above the baseline. (B) Average data showing the relationships of carotid body (CB) sensory activity (expressed as % of asphyxia response) against Pao2 while arterial PCO2 (PaCO2) was maintained close to 35 Torr in control (n = 8,), IH‐conditioned (n = 8,), and recovered rats (IH‐normoxia, n = 7) that were conditioned with 10 days of IH followed by 10 days of normoxic exposure. *** P < 0.001, significantly different compared with control rats. Adapted, with permission, from 687 Peng and Prabhakar.

Figure 16. Figure 16.

Acute intermittent hypoxia (AIH) induces sensory long term facilitation (LTF) in the carotid body in chronic intermittent hypoxia (CIH) animals. (A) Carotid body sensory activity in a control (upper) and CIH‐conditioned (lower) animal. Pre‐AIH is baseline activity; AIH #1 and AIH #10 represent the first and 10th episodes of AIH; impulses (Imp) per s, integrated sensory discharge; A.P., action potentials. (B) Average changes in the sensory activity during AIH and during every 5 min of the post‐AIH period. Average data represent mean ± SEM from control (n = 7) and 10 days CIH‐conditioned (n = 7) animals. The shaded area represents the difference in baseline activity in CIH and control animals during the post‐AIH period. Adapted, with permission, from 686 Peng et al.

Figure 17. Figure 17.

Effect of CIH upon the cardiorespiratory system. Schematic illustration of the mechanisms and the consequences of chronic intermittent hypoxia (CIH)‐induced changes in the carotid body on cardiorespiratory systems. Adapted, with permission, from 724, Copyright Elsevier, Prabhakar et al.

Figure 18. Figure 18.

Effect of chronic heart failure of chemodischarge. Representative recordings of afferent discharge of carotid body (CB) chemoreceptors during normoxia and two levels of isocapnic hypoxia from a sham (left) and a chronic heart failure (CHF) rabbit (right). Adapted, with permission, from, 812 Sun et al.



Figure 1.

Ultrastructure of the carotid body. (A) Reproduction of the original drawing of Fernando de Castro published in De Castro (1926), part of the Fernando de Castro Archives. Different glomeruli are shown close to the carotid artery (A). Incoming sympathetic nerve from the superior cervical ganglion (E) is a minor contribution to the innervation of the carotid body. The same can be said about the vagus nerve (LX) in the vicinity of the carotid body. By contrast, the most relevant contingent of afferents comes from the intercarotid (sinus) nerve branch of the glossopharyngeal nerve (IX). A sympathetic microganglion can be seen within the latter nerve (cg). Adapted, with permission, from 191 by de Castro.



Figure 2.

Role of carotid body in ventilatory response to hypoxia. (A) Ventilatory response to progressive hypoxia in subjects after bilateral carotid body resection (BR). End tidal Po2 (PETo2) was measured by a rapid‐response O2 electrode housed in an end‐tidal sampler. PETo2 was progressively decreased at ca. 10 Torr/min, from 100 to 40 Torr. Despite advancing hypoxia, no change in ventilation was seen, as clearly reflected by unaltered profile of airway PCO2 measured by infrared CO2 analyser. Right: hypoxic ventilatory response in terms of ΔV40 (mean ± SE), that is, increment in ventilation as PETo2 decreased from 100 to 40 Torr, while PETCO2 was kept at resting level. UR, patients with unilateral carotid body resection; C, controls. ΔV40 of BR group is statistically not different from zero, whereas that of UR group is between BR and C groups. Adapted, with permission, from 385 Honda. (B) Polygraph record of a representative trial of carotid body (CB) inhibition in a dog. The left CB was denervated prior to experiment. Perfusion of the isolated right carotid sinus region with hyperoxic (>500 mmHg) and hypocapnic (ca. 20 mmHg) blood begins at time 0 (solid vertical line). VI, ventilation; EMGdi, moving‐time‐averaged electromyogram of the costal diaphragm; VT, tidal volume; BP, blood pressure; PETCO2, end tidal PCO2; PETO2, end‐tidal Po2; and ua, arbitrary units. Interruption in the BP trace is due to blood sampling. Note that the immediate hypoventilation and PETCO2 increase with CB inhibition persists for the duration of the trial. Adapted, with permission, from 91 Blain et al.



Figure 3.

Chemoafferent response to hypoxia. (A) The central, superimposed traces show an example of the increase in the frequency of action potentials, recorded from a slip of the rat carotid sinus nerve as Po2 was reduced from hyperoxia to hypoxia and then back to hyperoxia. The inset at top shows, on a different timescale, a composite of eight, superimposed action potentials. PCO2 = 38 mmHg. Adapted, with permission, from 693from John Wiley and Sons, Pepper et al. B. Integrated chemoreceptor response to changing arterial Po2 at one level of H+‐PCO2. Curve 1: mean arterial B.P. 130 mmHg, increasing to 160 mmHg at lowest PaO2. Adapted, with permission, from 389 Hornbein et al.



Figure 4.

Effect of different levels of oxygenation upon single‐unit chemoreceptor activity in the rat in vivo. Each of the dashed lines connects the data points for a given unit (n = 20 units). Note the variation in basal discharge in normoxia, the Pao2 at the point of inflexion and the sensitivity at any PaO2, between units. The continuous line is the best fit (r2 = 0.6) for all points and represents a function in which fdis = 74010 (PaO2)−2.5, where fdis is the discharge frequency (spikes s−1) and PaO2 is recorded in mmHg. r2 is the correlation coefficient. Adapted, with permission, from 870 John Wiley and Sons, Vidruk et al.



Figure 5.

Relationship between arterial and microvascular Po2 and consequence upon chemodischarge response curves. (A) Relationship between Pao2 and carotid body microvascular (CBM) Po2. O2 pressure in inspired gas was lowered in steps. At each step, Pao2, chemosensory nerve activity and phosphorescence images were measured ca. 3 min after end‐tidal gas values stabilized. Average CBM Po2 was calculated for central region of O2 pressure map of carotid body and this is plotted against measured Pao2. Top: data from six cats are presented. Each cat has a different symbol. Below: data from all six cats are fitted to single curve (line of identity also shown). (B) Relationship between Po2 (arterial and CBM) and chemosensory nerve activity. Measured values of chemosensory nerve activity in four different cats are plotted against Pao2 (open circles) and CBM Po2 (filled circles). imp/s, impulses per second. Modified, with permission, from 502 Lahiri et al.



Figure 6.

Inhibition of type I cell K+ currents by hypoxia. (A) Currents from type I cells evoked by step depolarizations from −70 to +20 mV before (control), during (hypoxia), and after (wash) lowering of perfusate Po2 to 16 to 23 mmHg. The traces are representative recordings from type I cells of adult rats. (B) Mean + SEM current density‐voltage relationships before (filled circles) and during (open circles) application of hypoxic perfusate (n = 14). Modified, with permission, from 347 John Wiley and Sons, Hatton et al.



Figure 7.

Effect of hypoxia upon mitochondrial membrane potential as measured by Rh 123. Top three traces: Stimulus‐response curves for three different rabbit type I cell groups. In A and B, the steady‐state maximal increase in Rh 123 fluorescence is plotted against the minimum Po2 achieved during superfusion. The trace in C shows a continuous stimulus‐response curve, as the Rh 123 fluorescence is plotted directly against the trace from a Po2 electrode placed close to the cells. Bottom trace: A continuous plot of Rh 123 fluorescence as a function of Po2 obtained from a freshly dissociated rat chromaffin cell. There was no measurable change in signal until the Po2 fell below about 5 mmHg. Modified, with permission, from 228 John Wiley and Sons, Duchen and Biscoe.



Figure 8.

Relation between hypoxia and intracellular [Ca2+] in rat type I cells. (A) Effects of hypoxia on [Ca2+]i in rat type I cells. Plot of the mean [Ca2+]i against Po2 for 15 recordings.; error bars are ± SEM (for each level of Po2 in each recording [Ca2+]i was averaged over a 1 min period). Continuous line is the best fit to a hyperbolic function of form [Ca2+]i = (a + c) – [(a Po2)/(b + Po2)]; where a = 820 nM, b = 2.47 Torr, and c = 54.8 nM. Inset shows averaged (n = 15) [Ca2+]i responses to three levels of hypoxia. (B) Simultaneous recordings of membrane potential and current (using the perforated‐patch recording technique) and [Ca2+]I in a single, isolated type I cell. (i) Shows [Ca2+]i, (ii) membrane potential (Em), and (iii) current (Im; current is averaged over 10 ms intervals). The experiment begins in voltage recording mode (i.e., current clamp with I = 0; noise in current trace during voltage recording is artefactual). Inset shows action potentials recorded during anoxia on a faster time base. After the first exposure to anoxia the cell is voltage clamped at approximately −60 mV (see change in voltage trace). A second exposure to anoxia is then given. Modified, with permission, from 107 John Wiley and Sons, Buckler and Vaughan‐Jones.



Figure 9.

Effect of cadmium on calcium currents and stimulus induced secretion of labeled catecholamine, [3H]CA. (A) Normalized I‐V relationships obtained in isolated chemoreceptor cells before (open circles) and during (filled circles) superfusion with 200 μM CdCl2 (n = 4). From a holding potential of −80 mV, currents were elicited by 20 ms depolarizing pulses in 10 mV intervals. On the right, single currents obtained in a representative cell in both conditions. (B) General protocol used in the experiments of [3H]CA release. The figure shows the actual release of [3H]CA (c.p.m) from a control carotid body (CB; left panel) incubated in normoxia, a 20% O2‐, 5% CO2‐, and 75% N2‐equilibrated solution (Po2 ca. 150 mmHg; open bars), or hypoxia, a 7% O2‐, 5% CO2‐, and 88% N2‐equilibrated solution (Po2 ca. 46 mmHg; gray bars). Hypoxia was applied twice (S1 and S2). Evoked release in every application of hypoxic stimuli corresponds to the sum of c.p.m. above dashed lines In the experimental CB (right panel), the protocol was identical except for the presence of 200 μM CdCl2 during the time indicated by the horizontal line. (C) Effect of CdCl2 (200 μM) on the evoked release induced by mild (7% O2‐equilibrated solution) and intense (2% O2‐equilibrated solution) hypoxia, hypercapnic acidosis (20% CO2‐equilibrated solution; pH 6.6), dinitrophenol (DNP; 100 μM) and 30 and 100 mM extracellular K+o. Experimental protocol as in B. For every type of stimulation, the figure shows averaged ratios of the evoked release in S2 to the evoked release in S1 (S2/S1), in control and cadmium‐treated CB (n = 5‐12 in every experimental condition, *** P<0.001). Adapted, with permission, from 746 John Wiley and Sons, Rocher et al.



Figure 10.

Cystathionine γ‐lyase (CSE) localization in the mouse carotid body and carotid body responses to hypoxia and hypercapnia in CSE+/+ and CSE−/− mice. (A) CSE expression in carotid bodies from CSE+/+ and CSE−/− mice. Carotid body sections were stained with antibodies specific for CSE or tyrosine hydroxylase (TH), a marker of type I cells. (Scale bar: 20 μm). (B) Sensory response of isolated carotid bodies to hypoxia (Hx) (Po2 ca. 39 mmHg; at black bar) in CSE+/+ and CSE−/− mice. Integrated carotid body sensory activity (CB activity) is presented as impulses per second (imp/s). Superimposed action potentials from the single fiber are presented in inset. (C) Carotid body responses to graded hypoxia from CSE+/+ and CSE−/− mice, measured as the difference in response between baseline and hypoxia (D imp/s). Data are mean ±SEM of n = 24 (CSE+/+) and n = 23 (CSE−/−) fibers from eight mice each. (D) H2S levels (mean± SEM) in carotid bodies from CSE+/+ and CSE−/− mice under normoxia (NOR) and hypoxia (Hx) (Po2 ca. 40 mm Hg) from four independent experiments. (E) Example illustrating carotid body responses to CO2 (PCO2 ca. 68 mmHg; at black bar) in CSE+/+ and CSE−/− mice. (F) Average data mean (± SEM) of CO2 response from n = 24 (CSE+/+) and n = 19 (CSE−/−) fibers from eight mice in each group. *** and **, P<0.001 and <0.01 respectively; n.s. (not significant), P>0.05. Adapted, with permission, from 684 Peng et al.



Figure 11.

Effect of respiratory acidosis upon pHi and chemodischarge. A comparison of the effects on intracellular pHi in the type I cell with carotid sinus nerve discharge rate (on the right: redrawn from Gray, 1968) of a simulated respiratory acidosis (i.e. increasing PCO2 at constant [HCO3]o). Adapted, with permission, from 110 John Wiley and Sons, Buckler et al.



Figure 12.

Functional cocultures of rat type I cells and petrosal neurons. (A) Immunofluorescence staining of a coculture of dissociated rat petrosal neurons and carotid body type I cells. Culture was immunostained with tyrosine hydroxylase (TH) and neurofilament (NF, 68 kDa) antibodies and visualized with a fluorescein‐ and Texas Red‐conjugated secondary antibody, respectively. The two type I cell clusters are TH positive (cytoplasmic green fluorescence), and are intimately associated with NF‐positive petrosal processes (red fluorescence); nuclei of type I cells in the clusters appear dark. The single petrosal cell body is both TH and NF positive, accounting for the yellow‐orange fluorescence; note an NF‐positive pseudounipolar process leaves the petrosal cell body and appears to bifurcate into two main branches, each of which projects to a type I cell cluster. The petrosal neuron (PN) and type I cells were together for 8 days in vitro; scale bar represents 10 μm. (B) Effects of coculture on spontaneous membrane activity recorded with the perforated‐patch technique from petrosal neurons. (i) Typical recording illustrating lack of spontaneous activity in a PN cultured without type I cells; membrane potential, indicated by the two displaced continuous traces remained relatively steady over time. Note in i‐iii the right end of the top trace is continuous with the beginning (left end) of the lower trace. (ii) In coculture, atypical PN that was juxtaposed to a type I cell cluster showed spontaneous spikes and subthreshold potentials (two displaced traces), resembling excitatory post‐synaptic potential (EPSPs) seem at chemical synapses. (iii) Perfusion of tetrodotoxin (TTX) (1 μM) to block action potentials, did not eliminate subthreshold potentials (SSPs) recorded in a different PN, juxtaposed to a type I cell cluster. Vertical scale bar (top left) represents 20 mV; horizontal bar represents 1 s in (i) and (ii) and 1.5 s in (iii). The resting membrane potential was −65 mV in (i), −60 mV in (ii), and −70 mV in (iii). Modified, with permission, from 951 John Wiley and Sons, Zhong et al.



Figure 13.

Ventilatory response to chronic hypoxia. Ventilatory responses during and after prolonged hypoxic exposures include hypoxic ventilatory decline (HVD), ventilatory acclimatization to hypoxia (VAH), and hypoxic desensitization (HD). Modified, with permission, from, 714 Copyright Elsevier, Powell et al.



Figure 14.

Chemoafferent and ventilatory responses to hypoxia in HIF‐1α deficient mice. (A) Sensory responses to hypoxia (black bars) in wild type (Hif1a+/+; left panel) and HIF‐1α deficient (Hif1a+/−; right panel) mice. Po2 = partial pressure of O2 in the perfusate. Superimposed action potential of “single” fiber from which the data were derived is shown (inset). Note the blunted carotid body response to acute hypoxia in HIF‐1α deficient mice. Adapted, with permission, from 690John Wiley and Sons, Peng et al. (B) Effect of chronic hypoxia on ventilatory response to acute hypoxia in wild type (Hif1a+/+) (left panel) and HIF‐1α deficient (Hif1a+/−; right panel) mice. Changes in minute ventilation (VE) are expressed (mean ± SEM) relative to the values obtained while breathing 100% O2. Note the absence of ventilatory adaptation to hypoxia (VAH) in HIF‐1α deficient mice. Modified, with permission, from 445 Kline et al.



Figure 15.

Effect of intermittent hypoxia upon chemodischarge. (A) Representative tracings showing the changes in carotid body sensory discharges [impulses/second (imp/s)] in response to hypoxia in a control rat and a rat conditioned with 10 days of intermittent hypoxia (IH). AP, raw action potentials; time calibration = 40 s. Hypoxic challenges are marked under the tracings as solid bars, and arterial Po2 (Pao2) levels during hypoxic challenges are indicated under the bars. Inset: setting of the window discriminator for selection of action potentials above the baseline. (B) Average data showing the relationships of carotid body (CB) sensory activity (expressed as % of asphyxia response) against Pao2 while arterial PCO2 (PaCO2) was maintained close to 35 Torr in control (n = 8,), IH‐conditioned (n = 8,), and recovered rats (IH‐normoxia, n = 7) that were conditioned with 10 days of IH followed by 10 days of normoxic exposure. *** P < 0.001, significantly different compared with control rats. Adapted, with permission, from 687 Peng and Prabhakar.



Figure 16.

Acute intermittent hypoxia (AIH) induces sensory long term facilitation (LTF) in the carotid body in chronic intermittent hypoxia (CIH) animals. (A) Carotid body sensory activity in a control (upper) and CIH‐conditioned (lower) animal. Pre‐AIH is baseline activity; AIH #1 and AIH #10 represent the first and 10th episodes of AIH; impulses (Imp) per s, integrated sensory discharge; A.P., action potentials. (B) Average changes in the sensory activity during AIH and during every 5 min of the post‐AIH period. Average data represent mean ± SEM from control (n = 7) and 10 days CIH‐conditioned (n = 7) animals. The shaded area represents the difference in baseline activity in CIH and control animals during the post‐AIH period. Adapted, with permission, from 686 Peng et al.



Figure 17.

Effect of CIH upon the cardiorespiratory system. Schematic illustration of the mechanisms and the consequences of chronic intermittent hypoxia (CIH)‐induced changes in the carotid body on cardiorespiratory systems. Adapted, with permission, from 724, Copyright Elsevier, Prabhakar et al.



Figure 18.

Effect of chronic heart failure of chemodischarge. Representative recordings of afferent discharge of carotid body (CB) chemoreceptors during normoxia and two levels of isocapnic hypoxia from a sham (left) and a chronic heart failure (CHF) rabbit (right). Adapted, with permission, from, 812 Sun et al.

References
 1. Abbott CP, De Burgh Daly M , Howe A. Early ultrastructural changes in the carotid body after degenerative section of the carotid sinus nerve in the cat. Acta Anat 83: 161‐183, 1972.
 2. Abraham A. Electron microscopic investigations on the human carotid body. (Preliminary communication). Z Mikrosk Anat Forsch 79: 309‐315, 1968.
 3. Abu‐Soud HM, Rousseau DL, Stuehr DJ. Nitric oxide binding to the heme of neuronal nitric‐oxide synthase links its activity to changes in oxygen tension. J Biol Chem 271: 32515‐32518, 1996.
 4. Abudara V, Garces G, Saez JC. Cells of the carotid body express connexin43 which is up‐regulated by cAMP. Brain Res 849: 25‐33, 1999.
 5. Abudara V, Jiang RG, Eyzaguirre C. Acidic regulation of junction channels between glomus cells in the rat carotid body. Possible role of [Ca(2+)](i). Brain Res 916: 50‐60, 2001.
 6. Abudara V, Jiang RG, Eyzaguirre C. Behavior of junction channels between rat glomus cells during normoxia and hypoxia. J Neurophysiol 88: 639‐649, 2002.
 7. Acker H. The meaning of tissue pO2 and local blood flow for the chemoreceptive process of the carotid body. Fed Proc 39: 2641‐2647, 1980.
 8. Acker H. Mechanisms and meaning of cellular oxygen sensing in the organism. Respir Physiol 95: 1‐10, 1994.
 9. Acker H, Bolling B, Delpiano MA, Dufau E, Gorlach A, Holtermann G. The meaning of H2O2 generation in carotid body cells for PO2 chemoreception. J Auton Nerv Syst 41: 41‐51, 1992.
 10. Acker H, Lubbers DW. The kinetics of local tissue PO2 decrease after perfusion stop within the carotid body of the cat in vivo and in vitro. Pflugers Arch 369: 135‐140, 1977.
 11. Acker H, Lubbers DW, Durst H. The relationship between local flow and total flow of the cat carotid body at changes of blood pressure, arterial pO2 and pCO2. Bibl Anat: 395‐398, 1977.
 12. Acker H, Lubbers DW, Purves MJ. Local oxygen tension field in the glomus caroticum of the cat and its change at changing arterial PO2. Pflugers Arch 329: 136‐155, 1971a.
 13. Acker H, Lubbers DW, Purves MJ. The distribution of oxygen tension in the carotid body of the cat. J Physiol 216: 78P‐79P, 1971b.
 14. Acker H, O'Regan RG. The effects of stimulation of autonomic nerves on carotid body blood flow in the cat. J Physiol 315: 99‐110, 1981.
 15. Acker H, Starlinger H. Adenosine triphosphate content in the cat carotid body under different arterial O2 and CO2 conditions. Neurosci Lett 50: 175‐179, 1984.
 16. Adams E. The Comparative Morphology of the Carotid Body and Carotid Sinus. Sprigfield, Illinois: Thomas, 1958.
 17. Agapito MT, Sanz‐Alfayate G, Gomez‐Nino A, Gonzalez C, Obeso A. General redox environment and carotid body chemoreceptor function. Am J Physiol Cell Physiol 296: C620‐C631, 2009.
 18. Ahmad HR, Loeschcke HH. Transient and steady state responses of pulmonary ventilation to the medullary extracellular pH after approximately rectangular changes in alveolar PCO2. Pflugers Arch 395: 285‐292, 1982.
 19. Aickin CC. Direct measurement of intracellular pH and buffering power in smooth muscle cells of guinea‐pig vas deferens. J Physiol 349: 571‐585, 1984.
 20. Aickin CC, Thomas RC. An investigation of the ionic mechanism of intracellular pH regulation in mouse soleus muscle fibres. J Physiol 273: 295‐316, 1977.
 21. Alcayaga J, Barrios M, Bustos F, Miranda G, Molina MJ, Iturriaga R. Modulatory effect of nitric oxide on acetylcholine‐induced activation of cat petrosal ganglion neurons in vitro. Brain Res 825: 194‐198, 1999.
 22. Alcayaga J, Cerpa V, Retamal M, Arroyo J, Iturriaga R, Zapata P. Adenosine triphosphate‐induced peripheral nerve discharges generated from the cat petrosal ganglion in vitro. Neurosci Lett 282: 185‐188, 2000.
 23. Alcayaga J, Iturriaga R, Ramirez J, Readi R, Quezada C, Salinas P. Cat carotid body chemosensory responses to non‐hypoxic stimuli are inhibited by sodium nitroprusside in situ and in vitro. Brain Res 767: 384‐387, 1997.
 24. Alcayaga J, Iturriaga R, Varas R, Arroyo J, Zapata P. Selective activation of carotid nerve fibers by acetylcholine applied to the cat petrosal ganglion in vitro. Brain Res 786: 47‐54, 1998.
 25. Alcayaga J, Retamal M, Cerpa V, Arroyo J, Zapata P. Dopamine inhibits ATP‐induced responses in the cat petrosal ganglion in vitro. Brain Res 966: 283‐287, 2003.
 26. Alcayaga J, Sanhueza Y, Zapata P. Thermal dependence of chemosensory activity in the carotid body superfused in vitro. Brain Res 600: 103‐111, 1993.
 27. Alcayaga J, Soto CR, Vargas RV, Ortiz FC, Arroyo J, Iturriaga R. Carotid body transmitters actions on rabbit petrosal ganglion in vitro. Adv Exp Med Biol 580: 331‐337; discussion 351‐339, 2006.
 28. Alcayaga J, Varas R, Arroyo J, Iturriaga R, Zapata P. Dopamine modulates carotid nerve responses induced by acetylcholine on the cat petrosal ganglion in vitro. Brain Res 831: 97‐103, 1999a.
 29. Alcayaga J, Varas R, Arroyo J, Iturriaga R, Zapata P. Responses to hypoxia of petrosal ganglia in vitro. Brain Res 845: 28‐34, 1999b.
 30. Allen AM. Angiotensin AT1 receptor‐mediated excitation of rat carotid body chemoreceptor afferent activity. J Physiol 510(Pt 3): 773‐781, 1998.
 31. Almaraz L, Obeso A, Gonzalez C. Metabolic dissociation of carotid body chemoreceptor responses to different types of stimulation: Preliminary findings. In: Pallot DJ, editor. The Peripheral Arterial Chemoreceptors. London: Croom Helm, 1984, p. 141‐151.
 32. Almaraz L, Perez‐Garcia MT, Gomez‐Nino A, Gonzalez C. Mechanisms of alpha2‐adrenoceptor‐mediated inhibition in rabbit carotid body. Am J Physiol 272: C628‐C637, 1997.
 33. Almaraz L, Wang ZZ, Stensaas LJ, Fidone SJ. Release of dopamine from carotid sinus nerve fibers innervating type I cells in the cat carotid body. Biol Signals 2: 16‐26, 1993.
 34. Alvarez‐Buylla R. Oscillographic study on activity of chemoreceptors of the carotid glomus in decerebrated cats. Arch Inst Cardiol Mex 21: 724‐739, 1951.
 35. Alvarez‐Buylla R and de Alvarez‐Buylla ER. Carotid sinus receptors participate in glucose homeostasis. Respir Physiol 72: 347‐359, 1988.
 36. Ambrosio G, Zweier JL, Duilio C, Kuppusamy P, Santoro G, Elia PP, Tritto I, Cirillo P, Condorelli M, Chiariello M, et al. Evidence that mitochondrial respiration is a source of potentially toxic oxygen free radicals in intact rabbit hearts subjected to ischemia and reflow. J Biol Chem 268: 18532‐18541, 1993.
 37. Anderson DJ. Molecular control of cell fate in the neural crest: The sympathoadrenal lineage. Annu Rev Neurosci 16: 129‐158, 1993.
 38. Andersson PO, Bloom SR, Edwards AV, Jarhult J. Effects of stimulation of the chorda tympani in bursts on submaxillary responses in the cat. J Physiol 322: 469‐483, 1982.
 39. Andrews WH, Deane BM, Howe A, Orbach J. Abdominal chemoreceptors in the rat. J Physiol 222: 84P‐85P, 1972.
 40. Angel P, Karin M. The role of Jun, Fos and the AP‐1 complex in cell‐proliferation and transformation. Biochim Biophys Acta 1072: 129‐157, 1991.
 41. Angell‐James JE, Clarke JA, Daly MD, Taton A. Respiratory and cardiovascular responses to hyperoxia, hypoxia and hypercapnia in the renal hypertensive rabbit: Role of carotid body chemoreceptors. J Hypertens 3: 213‐223, 1985.
 42. Anichkov SV, Belen'kii ML. Pharmacology of the Carotid Body Chemoreceptors. Oxford: Pergamon Press, 1963.
 43. Arias‐Stella J, Valcarcel J. Chief cell hyperplasia in the human carotid body at high altitudes; physiologic and pathologic significance. Hum Pathol 7: 361‐373, 1976.
 44. Arjona V, Minguez‐Castellanos A, Montoro RJ, Ortega A, Escamilla F, Toledo‐Aral JJ, Pardal R, Mendez‐Ferrer S, Martin JM, Perez M, Katati MJ, Valencia E, Garcia T, Lopez‐Barneo J. Autotransplantation of human carotid body cell aggregates for treatment of Parkinson's disease. Neurosurgery 53: 321‐328; discussion 328‐330, 2003.
 45. Augustine GJ, Neher E. Calcium requirements for secretion in bovine chromaffin cells. J Physiol 450: 247‐271, 1992.
 46. Bairam A, Dauphin C, Rousseau F, Khandjian EW. Expression of dopamine D2‐receptor mRNA isoforms at the peripheral chemoreflex afferent pathway in developing rabbits. Am J Respir Cell Mol Biol 15: 374‐381, 1996.
 47. Bairam A, De Grandpre P, Dauphin C, Marchal F. Effects of caffeine on carotid sinus nerve chemosensory discharge in kittens and cats. J Appl Physiol 82: 413‐418, 1997.
 48. Bairam A, Frenette J, Dauphin C, Carroll JL, Khandjian EW. Expression of dopamine D1‐receptor mRNA in the carotid body of adult rabbits, cats and rats. Neurosci Res 31: 147‐154, 1998.
 49. Bairam A, Neji H, Kinkead R, Marchal F. Carbachol effect on carotid body dopamine in vitro release in response to hypoxia in adult and pup rabbit. Neurosci Res 40: 183‐188, 2001.
 50. Bairam A, Neji H, Marchal F. Cholinergic dopamine release from the in vitro rabbit carotid body. J Appl Physiol 88: 1737‐1742, 2000.
 51. Ballard KJ, Jones JV. The fine structural localization of cholinesterases in the carotid body of the cat. J Physiol 219: 747‐753, 1971.
 52. Ballard KJ, Jones JV. Demonstration of choline acetyltransferase activity in the caotid body of the cat. J Physiol 227: 87‐94, 1972.
 53. Ballard T, Blakeman N, Pallot DJ, Al‐Neamy KA. Quantitative ultrastructural studies of the cat carotid body. I. General stereology of tissue components. Acta Anat (Basel) 113: 47‐52, 1982.
 54. Band DM, Linton RA. The effect of potassium on carotid body chemoreceptor discharge in the anaesthetized cat. J Physiol 381: 39‐47, 1986.
 55. Band DM, Linton RA. The effect of hypoxia on the response of the carotid body chemoreceptor to potassium in the anaesthetized cat. Respir Physiol 72: 295‐301, 1988.
 56. Band DM, Linton RA, Kent R, Kurer FL. The effect of peripheral chemodenervation on the ventilatory response to potassium. Respir Physiol 60: 217‐225, 1985.
 57. Band DM, McClelland M, Phillips DL, Saunders KB, Wolff CB. Sensitivity of the carotid body to within‐breath changes in arterial PCO2. J Appl Physiol 45: 768‐777, 1978.
 58. Band DM, Wolff CB, Ward J, Cochrane GM, Prior J. Respiratory oscillations in arterial carbon dioxide tension as a control signal in exercise. Nature 283: 84‐85, 1980.
 59. Barnard P, Andronikou S, Pokorski M, Smatresk N, Mokashi A, Lahiri S. Time‐dependent effect of hypoxia on carotid body chemosensory function. J Appl Physiol 63: 685‐691, 1987.
 60. Barnett S, Mulligan E, Wagerle LC, Lahiri S. Measurement of carotid body blood flow in cats by use of radioactive microspheres. J Appl Physiol 65: 2484‐2489, 1988.
 61. Baron M, Eyzaguirre C. Thermal responses of carotid body cells. J Neurobiol 6: 521‐527, 1975.
 62. Baron M, Eyzaguirre C. Effects of temperature on some membrane characteristics of carotid body cells. Am J Physiol 233: C35‐C46, 1977.
 63. Bartels H, Witzleb E. Effect of arterial carbon dioxide pressure on chemoreceptor action potentials in the carotid sinus nerves. Pflugers Arch 262: 466‐472, 1956.
 64. Bavis RW, Wenninger JM, Miller BM, Dmitrieff EF, Olson EB Jr, Mitchell GS, Bisgard GE. Respiratory plasticity after perinatal hyperoxia is not prevented by antioxidant supplementation. Respir Physiol Neurobiol 160: 301‐312, 2008.
 65. Bayliss DA, Sirois JE, Talley EM. The TASK family: Two‐pore domain background K+ channels. Mol Interv 3: 205‐219, 2003.
 66. Belmonte C, Rigual R, Gallego R. Responses of carotid nerve fibres regenerating into the superior cervical ganglion. In: Belmonte C, Pallot D, Acker H, Fidone S, editors. Arterial Chemoreceptors. Leicester: Leicester University Press, 1981, p. 125‐132.
 67. Benot AR, Lopez‐Barneo J. Feedback inhibition of Ca2+ currents by dopamine in glomus cells of the carotid body. Eur J Neurosci 2: 809‐812, 1990.
 68. Berger AJ. Distribution of carotid sinus nerve afferent fibers to solitary tract nuclei of the cat using transganglionic transport of horseradish peroxidase. Neurosci Lett 14: 153‐158, 1979.
 69. Bernthal T, Weeks WF. Respiratory and vasomotor effects of variations in carotid body temperature. A study of the mechanism of chemoreceptor stimulation. Am J Physiol 127: 94‐105, 1939.
 70. Bin‐Jaliah I, Maskell PD, Kumar P. Indirect sensing of insulin‐induced hypoglycaemia by the carotid body in the rat. J Physiol 556: 255‐266, 2004.
 71. Bin‐Jaliah I, Maskell PD, Kumar P. Carbon dioxide sensitivity during hypoglycaemia‐induced, elevated metabolism in the anaesthetized rat. J Physiol 563: 883‐893, 2005.
 72. Biscoe TJ. Some effects of drugs on the isolated superfused carotid body. Nature 208: 294‐295, 1965.
 73. Biscoe TJ. Carotid body: Structure and function. Physiol Rev 51: 437‐495, 1971.
 74. Biscoe TJ, Bradley GW, Purves MJ. The relation between carotid body chemoreceptor discharge, carotid sinus pressure and carotid body venous flow. J Physiol 208: 99‐120, 1970.
 75. Biscoe TJ, Duchen MR. Electrophysiological responses of dissociated type I cells of the rabbit carotid body to cyanide. J Physiol 413: 447‐468, 1989.
 76. Biscoe TJ, Duchen MR. Cellular basis of transduction in carotid chemoreceptors. Am J Physiol 258: L271‐L278, 1990a.
 77. Biscoe TJ, Duchen MR. Responses of type I cells dissociated from the rabbit carotid body to hypoxia. J Physiol 428: 39‐59, 1990b.
 78. Biscoe TJ, Duchen MR, Eisner DA, O'Neill SC, Valdeolmillos M. Measurements of intracellular Ca2+ in dissociated type I cells of the rabbit carotid body. J Physiol 416: 421‐434, 1989.
 79. Biscoe TJ, Lall A, Sampson SR. Electron microscopic and electrophysiological studies on the carotid body following intracranial section of the glossopharyngeal nerve. J Physiol 208: 133‐152, 1970.
 80. Biscoe TJ, Purves MJ, Sampson SR. The frequency of nerve impulses in single carotid body chemoreceptor afferent fibres recorded in vivo with intact circulation. J Physiol 208: 121‐131, 1970.
 81. Biscoe TJ, Sampson SR. Spontaneous activity recorded from the central cut end of the carotid sinus nerve of the cat. Nature 216: 294‐295, 1967a.
 82. Biscoe TJ, Sampson SR. Stimulus response curves of single carotid body chemoreceptor afferent fibres. Nature 215: 654‐655, 1967b.
 83. Biscoe TJ, Sampson SR. Rhythmical and non‐rhythmical spontaneous activity recorded from the central cut end of the sinus nerve. J Physiol 196: 327‐338, 1968.
 84. Biscoe TJ, Silver A. The distribution of cholinesterases in the cat carotid body. J Physiol 183: 501‐512, 1966.
 85. Biscoe TJ, Stehbens WE. Ultrastructure of the carotid body. J Cell Biol 30: 563‐578, 1966.
 86. Bisgard GE. Carotid body mechanisms in acclimatization to hypoxia. Respir Physiol 121: 237‐246, 2000.
 87. Bisgard GE, Forster HV, Klein JP. Recovery of peripheral chemoreceptor function after denervation in ponies. J Appl Physiol 49: 964‐970, 1980.
 88. Bisgard GE, Mitchell RA, Herbert DA. Effects of dopamine, norepinephrine and 5‐hydroxytryptamine on the carotid body of the dog. Respir Physiol 37: 61‐80, 1979.
 89. Bisgard GE, Olson EB Jr, Wang ZY, Bavis RW, Fuller DD, Mitchell GS. Adult carotid chemoafferent responses to hypoxia after 1, 2, and 4 wk of postnatal hyperoxia. J Appl Physiol 95: 946‐952, 2003.
 90. Black AM, McCloskey DI, Torrance RW. The responses of carotid body chemoreceptors in the cat to sudden changes of hypercapnic and hypoxic stimuli. Respir Physiol 13: 36‐49, 1971.
 91. Blain GM, Smith CA, Henderson KS, Dempsey JA. Contribution of the carotid body chemoreceptors to eupneic ventilation in the intact, unanesthetized dog. J Appl Physiol 106: 1564‐1573, 2009.
 92. Blain GM, Smith CA, Henderson KS, Dempsey JA. Peripheral chemoreceptors determine the respiratory sensitivity of central chemoreceptors to CO(2). J Physiol 588: 2455‐2471, 2010.
 93. Blanco CE, Dawes GS, Hanson MA, McCooke HB. The response to hypoxia of arterial chemoreceptors in fetal sheep and new‐born lambs. J Physiol 351: 25‐37, 1984.
 94. Bock P. Adenine nucleotides in the carotid body. Cell Tissue Res 206: 279‐290, 1980a.
 95. Bock P. Histochemical demonstration of adenine nucleotides in carotid body type I cells. Adv Biochem Psychopharmacol 25: 235‐239, 1980b.
 96. Bolle T, Lauweryns JM, Lommel AV. Postnatal maturation of neuroepithelial bodies and carotid body innervation: A quantitative investigation in the rabbit. J Neurocytol 29: 241‐248, 2000.
 97. Botre F, Botre C, Greco A, Data PG, Di Giulio C, Morelli L. Potentiometric determination of carbonic anhydrase activity in rabbit carotid bodies: Comparison among normoxic, hyperoxic and hypoxic animals. Neurosci Lett 166: 126‐130, 1994.
 98. Brazier SP, Telezhkin V, Mears R, Muller CT, Riccardi D, Kemp PJ. Cysteine residues in the C‐terminal tail of the human BK(Ca)alpha subunit are important for channel sensitivity to carbon monoxide. Adv Exp Med Biol 648: 49‐56, 2009.
 99. Bright GR, Agani FH, Haque U, Overholt JL, Prabhakar NR. Heterogeneity in cytosolic calcium responses to hypoxia in carotid body cells. Brain Res 706: 297‐302, 1996.
 100. Bruce EN, Cherniack NS. Central chemoreceptors. J Appl Physiol 62: 389‐402, 1987.
 101. Buckler KJ. A novel oxygen‐sensitive potassium current in rat carotid body type I cells. J Physiol 498(Pt 3): 649‐662, 1997.
 102. Buckler KJ. TASK‐like potassium channels and oxygen sensing in the carotid body. Respir Physiol Neurobiol 157: 55‐64, 2007.
 103. Buckler KJ, Honore E. The lipid‐activated two‐pore domain K+ channel TREK‐1 is resistant to hypoxia: Implication for ischaemic neuroprotection. J Physiol 562: 213‐222, 2005.
 104. Buckler KJ, Vaughan‐Jones RD. Application of a new pH‐sensitive fluoroprobe (carboxy‐SNARF‐1) for intracellular pH measurement in small, isolated cells. Pflugers Arch 417: 234‐239, 1990.
 105. Buckler KJ, Vaughan‐Jones RD. Effects of acidic stimuli on intracellular calcium in isolated type I cells of the neonatal rat carotid body. Pflugers Arch 425: 22‐27, 1993.
 106. Buckler KJ, Vaughan‐Jones RD. Effects of hypercapnia on membrane potential and intracellular calcium in rat carotid body type I cells. J Physiol 478(Pt 1): 157‐171, 1994a.
 107. Buckler KJ, Vaughan‐Jones RD. Effects of hypoxia on membrane potential and intracellular calcium in rat neonatal carotid body type I cells. J Physiol 476: 423‐428, 1994b.
 108. Buckler KJ, Vaughan‐Jones RD. Role of intracellular pH and [Ca2+]i in acid chemoreception in type‐I cells of the carotid body. Adv Exp Med Biol 360: 41‐55, 1994c.
 109. Buckler KJ, Vaughan‐Jones RD. Effects of mitochondrial uncouplers on intracellular calcium, pH and membrane potential in rat carotid body type I cells. J Physiol 513(Pt 3): 819‐833, 1998.
 110. Buckler KJ, Vaughan‐Jones RD, Peers C, Lagadic‐Gossmann D, Nye PC. Effects of extracellular pH, PCO2 and HCO3‐ on intracellular pH in isolated type‐I cells of the neonatal rat carotid body. J Physiol 444: 703‐721, 1991.
 111. Buckler KJ, Vaughan‐Jones RD, Peers C, Nye PC. Intracellular pH and its regulation in isolated type I carotid body cells of the neonatal rat. J Physiol 436: 107‐129, 1991.
 112. Buckler KJ, Williams BA, Honore E. An oxygen‐, acid‐ and anaesthetic‐sensitive TASK‐like background potassium channel in rat arterial chemoreceptor cells. J Physiol 525: 135‐142, 2000.
 113. Buerk DG, Nair PK, Whalen WJ. Evidence for second metabolic pathway for O2 from PtiO2 measurements in denervated cat carotid body. J Appl Physiol 67: 1578‐1584, 1989.
 114. Buniel M, Glazebrook PA, Ramirez‐Navarro A, Kunze DL. Distribution of voltage‐gated potassium and hyperpolarization‐activated channels in sensory afferent fibers in the rat carotid body. J Comp Neurol 510: 367‐377, 2008.
 115. Buniel MC, Schilling WP, Kunze DL. Distribution of transient receptor potential channels in the rat carotid chemosensory pathway. J Comp Neurol 464: 404‐413, 2003.
 116. Bunn HF, Poyton RO. Oxygen sensing and molecular adaptation to hypoxia. Physiol Rev 76: 839‐885, 1996.
 117. Burcelin R, Knauf C, Cani PD. Pancreatic alpha‐cell dysfunction in diabetes. Diabetes Metab 34 Suppl 2: S49‐S55, 2008.
 118. Burdakov D, Jensen LT, Alexopoulos H, Williams RH, Fearon IM, O'Kelly I, Gerasimenko O, Fugger L, Verkhratsky A. Tandem‐pore K+ channels mediate inhibition of orexin neurons by glucose. Neuron 50: 711‐722, 2006.
 119. Burdakov D, Luckman SM, Verkhratsky A. Glucose‐sensing neurons of the hypothalamus. Philos Trans R Soc Lond B Biol Sci 360: 2227‐2235, 2005.
 120. Burger RE, Estavillo JA, Kumar P, Nye PC, Paterson DJ. Effects of potassium, oxygen and carbon dioxide on the steady‐state discharge of cat carotid body chemoreceptors. J Physiol 401: 519‐531, 1988.
 121. Burleson ML, Milsom WK. Comparative aspects of O2 chemoreception. In: Lahiri S, Semenza GL, Prabhakar N, editors. Oxygen Sensing. Responses and Adaptation to Hypoxia. New York: Marcel Dekker, 2003, p. 685‐707.
 122. Buttigieg J, Nurse CA. Detection of hypoxia‐evoked ATP release from chemoreceptor cells of the rat carotid body. Biochem Biophys Res Commun 322: 82‐87, 2004.
 123. Caceres AI, Gonzalez‐Obeso E, Gonzalez C, Rocher A. RT‐PCR and pharmacological analysis of L‐and T‐type calcium channels in rat carotid body. Adv Exp Med Biol 648: 105‐112, 2009.
 124. Caceres AI, Obeso A, Gonzalez C, Rocher A. Molecular identification and functional role of voltage‐gated sodium channels in rat carotid body chemoreceptor cells. Regulation of expression by chronic hypoxia in vivo. J Neurochem 102: 231‐245, 2007.
 125. Cadenas JL, Montero SA, Leal C, Lemus M, Portilla‐de Buen E, Alvarado BA, de Alvarez‐Buylla ER. Nitric oxide in the hypothalamus‐pituitary axis mediates increases in brain glucose retention induced by carotid chemoreceptor stimulation with cyanide in rats. Nitric Oxide 22: 296‐303, 2010.
 126. Calder NA, Kumar P, Hanson MA. Development of carotid chemoreceptor dynamic and steady‐state sensitivity to CO2 in the newborn lamb. J Physiol 503(Pt 1): 187‐194, 1997.
 127. Calder NA, Williams BA, Kumar P, Hanson MA. The respiratory response of healthy term infants to breath‐by‐breath alternations in inspired oxygen at two postnatal ages. Pediatr Res 35: 321‐324, 1994.
 128. Calder NA, Williams BA, Smyth J, Boon AW, Kumar P, Hanson MA. Absence of ventilatory responses to alternating breaths of mild hypoxia and air in infants who have had bronchopulmonary dysplasia: Implications for the risk of sudden infant death. Pediatr Res 35: 677‐681, 1994.
 129. Campanucci VA, Fearon IM, Nurse CA. O2‐sensing mechanisms in efferent neurons to the rat carotid body. Adv Exp Med Biol 536: 179‐185, 2003.
 130. Campanucci VA, Nurse CA. Biophysical characterization of whole‐cell currents in O2‐sensitive neurons from the rat glossopharyngeal nerve. Neuroscience 132: 437‐451, 2005.
 131. Campanucci VA, Nurse CA. Autonomic innervation of the carotid body: Role in efferent inhibition. Respir Physiol Neurobiol 157: 83‐92, 2007.
 132. Campanucci VA, Zhang M, Vollmer C, Nurse CA. Expression of multiple P2X receptors by glossopharyngeal neurons projecting to rat carotid body O2‐chemoreceptors: Role in nitric oxide‐mediated efferent inhibition. J Neurosci 26: 9482‐9493, 2006.
 133. Campbell DL, Stamler JS, Strauss HC. Redox modulation of L‐type calcium channels in ferret ventricular myocytes. Dual mechanism regulation by nitric oxide and S‐nitrosothiols. J Gen Physiol 108: 277‐293, 1996.
 134. Cardot V, Chardon K, Tourneux P, Micallef S, Stephan E, Leke A, Bach V, Libert JP, Telliez F. Ventilatory response to a hyperoxic test is related to the frequency of short apneic episodes in late preterm neonates. Pediatr Res 62: 591‐596, 2007.
 135. Carpenter E, Bee D, Peers C. Ionic currents in carotid body type I cells isolated from normoxic and chronically hypoxic adult rats. Brain Res 811: 79‐87, 1998.
 136. Carpenter E, Peers C. Swelling‐ and cAMP‐activated Cl‐ currents in isolated rat carotid body type I cells. J Physiol 503(Pt 3): 497‐511, 1997.
 137. Carpenter E, Peers C. A standing Na+ conductance in rat carotid body type I cells. Neuroreport 12: 1421‐1425, 2001.
 138. Carroll JL. Developmental plasticity in respiratory control. J Appl Physiol 94: 375‐389, 2003.
 139. Chalmers JP, Korner PI, White SW. The relative roles of the aortic and carotid sinus nerves in the rabbit in the control of respiration and circulation during arterial hypoxia and hypercapnia. J Physiol 188: 435‐450, 1967.
 140. Chen, II, Yates RD, Hansen JT. Substance P‐like immunoreactivity in rat and cat carotid bodies: Light and electron microscopic studies. Histol Histopathol 1: 203‐212, 1986.
 141. Chen I, Mascorro JA, Yates RD. Autoradiographic localization of alpha‐bungarotoxin‐binding sites in the carotid body of the rat. Cell Tissue Res 219: 609‐618, 1981.
 142. Chen IL, Yates RD. Two types of glomus cell in the rat carotid body as revealed by alpha‐bungarotoxin binding. J Neurocytol 13: 281‐302, 1984.
 143. Chen J, Dinger B, Fidone SJ. cAMP production in rabbit carotid body: Role of adenosine. J Appl Physiol 82: 1771‐1775, 1997.
 144. Chen J, He L, Dinger B, Fidone S. Cellular mechanisms involved in rabbit carotid body excitation elicited by endothelin peptides. Respir Physiol 121: 13‐23, 2000a.
 145. Chen J, He L, Dinger B, Fidone S. Pharmacological effects of endothelin in rat carotid body. Activation of second messenger pathways and potentiation of chemoreceptor activity. Adv Exp Med Biol 475: 517‐525, 2000b.
 146. Chen J, He L, Dinger B, Stensaas L, Fidone S. Chronic hypoxia upregulates connexin43 expression in rat carotid body and petrosal ganglion. J Appl Physiol 92: 1480‐1486, 2002.
 147. Chen J, He L, Liu X, Dinger B, Stensaas L, Fidone S. Effect of the endothelin receptor antagonist bosentan on chronic hypoxia‐induced morphological and physiological changes in rat carotid body. Am J Physiol Lung Cell Mol Physiol 292: L1257‐L1262, 2007.
 148. Cheng PM, Donnelly DF. Relationship between changes of glomus cell current and neural response of rat carotid body. J Neurophysiol 74: 2077‐2086, 1995.
 149. Chiodi H, Dill DB, Consolazio F, Horvath SM. Respiratory and circulatory responses to acute CO poisoning. Am J Physiol 134: 683‐693, 1941.
 150. Chou CL, Sham JS, Schofield B, Shirahata M. Electrophysiological and immunocytological demonstration of cell‐type specific responses to hypoxia in the adult cat carotid body. Brain Res 789: 229‐238, 1998.
 151. Chou CL, Shirahata M. Two types of voltage‐gated K channels in carotid body cells of adult cats. Brain Res 742: 34‐42, 1996.
 152. Chua TP, Ponikowski P, Webb‐Peploe K, Harrington D, Anker SD, Piepoli M, Coats AJ. Clinical characteristics of chronic heart failure patients with an augmented peripheral chemoreflex. Eur Heart J 18: 480‐486, 1997.
 153. Chugh DK, Katayama M, Mokashi A, Bebout DE, Ray DK, Lahiri S. Nitric oxide‐related inhibition of carotid chemosensory nerve activity in the cat. Respir Physiol 97: 147‐156, 1994.
 154. Chugh SS, Chua TP, Coats AJ. Peripheral chemoreflex in chronic heart failure: Friend and foe. Am Heart J 132: 900‐904, 1996.
 155. Ciarka A, Cuylits N, Vachiery JL, Lamotte M, Degaute JP, Naeije R, van de Borne P. Increased peripheral chemoreceptors sensitivity and exercise ventilation in heart transplant recipients. Circulation 113: 252‐257, 2006.
 156. Cistulli PA, Sullivan CE. Pathophysiology of sleep apnoea. In: Saunders NA, Sullivan CE, editors. Sleep and Breathing. New York: Marcel Dekker, 1994, p. 405‐448.
 157. Claps A, Torrealba F. The carotid body connections: A WGA‐HRP study in the cat. Brain Res 455: 123‐133, 1988.
 158. Clarke JA and de Burgh Daly M. A comparative study of the distribution of carotid body type‐I cells and periadventitial type‐I cells in the carotid bifurcation regions of the rabbit, rat, guinea‐pig and mouse. Cell Tissue Res 220: 753‐772, 1981.
 159. Clarke JA, de Burgh Daly M. Distribution of carotid body type I cells and other periadventitial type I cells in the carotid bifurcation regions of the rabbit. Cell Tissue Res 216: 603‐614, 1981.
 160. Clarke JA, de Burgh Daly M, Ead HW. Dimensions and volume of the carotid body in the adult cat, and their relation to the specific blood flow through the organ. A histological and morphometric study. Acta Anat (Basel) 126: 84‐86, 1986.
 161. Clarke JA, de Burgh Daly M, Ead HW. Comparison of the size of the vascular compartment of the carotid body of the fetal, neonatal and adult cat. Acta Anat (Basel) 138: 166‐174, 1990.
 162. Clarke JA, de Burgh Daly M, Ead HW, Kreclovic G. A morphological study of the size of the vascular compartment of the carotid body in a non‐human primate (Cercopithecus ethiopus), and a comparison with the cat and rat. Acta Anat (Basel) 147: 240‐247, 1993.
 163. Cocchia D, Michetti F. S‐100 antigen in satellite cells of the adrenal medulla and the superior cervical ganglion of the rat. An immunochemical and immunocytochemical study. Cell Tissue Res 215: 103‐112, 1981.
 164. Cohen G, Han ZY, Grailhe R, Gallego J, Gaultier C, Changeux JP, Lagercrantz H. beta 2 nicotinic acetylcholine receptor subunit modulates protective responses to stress: A receptor basis for sleep‐disordered breathing after nicotine exposure. Proc Natl Acad Sci U S A 99: 13272‐13277, 2002.
 165. Coleridge H, Coleridge J, Howe A. Search for pulmonary artery chemoreceptors in the cat with a comparison of the blood supply of the aortic bodies in the newborn and adult animal. J Physiol 191: 353‐374, 1967.
 166. Comline R, Silver M. Response of the adrenal medulla of the sheep foetus to asphyxia. Nature 181: 283‐284, 1958.
 167. Comroe JH Jr, Schmidt CF. The part played by reflexes from the carotid body in the chemical regulation of respiration in the dog. Am J Physiol 121: 75‐97, 1938.
 168. Conde SV, Gonzalez C, Batuca JR, Monteiro EC, Obeso A. An antagonistic interaction between A2B adenosine and D2 dopamine receptors modulates the function of rat carotid body chemoreceptor cells. J Neurochem 107: 1369‐1381, 2008.
 169. Conde SV, Monteiro EC. Hypoxia induces adenosine release from the rat carotid body. J Neurochem 89: 1148‐1156, 2004.
 170. Conde SV, Monteiro EC. Activation of nicotinic ACh receptors with alpha4 subunits induces adenosine release at the rat carotid body. Br J Pharmacol 147: 783‐789, 2006.
 171. Conde SV, Monteiro EC, Obeso A, Gonzalez C. Adenosine in peripheral chemoreception: New insights into a historically overlooked molecule–invited article. Adv Exp Med Biol 648: 145‐159, 2009.
 172. Conde SV, Obeso A, Gonzalez C. Low glucose effects on rat carotid body chemoreceptor cells’ secretory responses and action potential frequency in the carotid sinus nerve. J Physiol 585: 721‐730, 2007.
 173. Conde SV, Obeso A, Vicario I, Rigual R, Rocher A, Gonzalez C. Caffeine inhibition of rat carotid body chemoreceptors is mediated by A2A and A2B adenosine receptors. J Neurochem 98: 616‐628, 2006.
 174. Corton JM, Gillespie JG, Hawley SA, Hardie DG. 5‐aminoimidazole‐4‐carboxamide ribonucleoside. A specific method for activating AMP‐activated protein kinase in intact cells? Eur J Biochem 229: 558‐565, 1995.
 175. Cragg PA, Runold M, Kou YR, Prabhakar NR. Tachykinin antagonists in carotid body responses to hypoxia and substance P in the rat. Respir Physiol 95: 295‐310, 1994.
 176. Crivellato E, Guidolin D, Nico B, Nussdorfer GG, Ribatti D. Fine ultrastructure of chromaffin granules in rat adrenal medulla indicative of a vesicle‐mediated secretory process. Anat Embryol (Berl) 211: 79‐86, 2006.
 177. Cross BA, Grant BJ, Guz A, Jones PW, Semple SJ, Stidwill RP. Dependence of phrenic motoneurone output on the oscillatory component of arterial blood gas composition. J Physiol 290: 163‐184, 1979.
 178. Cummings KJ, Wilson RJ. Time‐dependent modulation of carotid body afferent activity during and after intermittent hypoxia. Am J Physiol Regul Integr Comp Physiol 288: R1571‐R1580, 2005.
 179. Czyzyk‐Krzeska MF, Bayliss DA, Lawson EE, Millhorn DE. Regulation of tyrosine hydroxylase gene expression in the rat carotid body by hypoxia. J Neurochem 58: 1538‐1546, 1992.
 180. Czyzyk‐Krzeska MF, Lawson EE, Millhorn DE. Expression of D2 dopamine receptor mRNA in the arterial chemoreceptor afferent pathway. J Auton Nerv Syst 41: 31‐39, 1992.
 181. Dahan A, Nieuwenhuijs D, Teppema L. Plasticity of central chemoreceptors: Effect of bilateral carotid body resection on central CO2 sensitivity. PLoS Med 4: e239, 2007.
 182. Daly M, Ungar A. Comparison of the reflex responses elicited by stimulation of the separately perfused carotid and aortic body chemoreceptors in the dog. J Physiol 182: 379‐403, 1966.
 183. Dasso LL, Buckler KJ, Vaughan‐Jones RD. Muscarinic and nicotinic receptors raise intracellular Ca2+ levels in rat carotid body type I cells. J Physiol 498(Pt 2): 327‐338, 1997.
 184. Dasso LL, Buckler KJ, Vaughan‐Jones RD. Interactions between hypoxia and hypercapnic acidosis on calcium signaling in carotid body type I cells. Am J Physiol Lung Cell Mol Physiol 279: L36‐L42, 2000.
 185. Davies RO, Kalia M. Carotid sinus nerve projections to the brain stem in the cat. Brain Res Bull 6: 531‐541, 1981.
 186. De Burgh Daly M. Peripheral Arterial Chemoreceptors and Respiratory‐Cardiovascular Integration. Oxford: Clarendon Press, 1997.
 187. De Burgh Daly M, Lambertsen CJ, Schweitzer A. Observations on the volume of blood flow and oxygen utilization of the carotid body in the cat. J Physiol 125: 67‐89, 1954.
 188. De Camilli P, Jahn R. Pathways to regulated exocytosis in neurons. Annu Rev Physiol 52: 625‐645, 1990.
 189. De Castro F. Sur la structure et l'innervation de la glande intercarotidienne (glomus caroticum) de l'homme et des mammiferes et sur un nouveau systeme de l'innervation autonome du nerf glossopharyngien. Trav Lab Rech Biol 24: 365‐432, 1926.
 190. De Castro F. Sur la structure de la synapse dans les chemorecepteurs: Leur mechanism d'excitation et role dans la circulation sanguine locale. Acta Physiol Scand 22: 14‐43, 1951.
 191. de Castro F. Towards the sensory nature of the carotid body: Hering, de Castro and Heymans. Front Neuroanat 3: 1‐11, 2009.
 192. De Castro F, Rubio M. The anatomy and innervation of the blood vessels of the carotid body and the role of chemoreceptive reactions in the autoregulation of blood flow. In: Torrance RW, editor. Arterial Chemoreceptors. Oxford: Blackwell, 1968, p. 267‐277.
 193. De Kock LL. Histology of the carotid body. Nature 167: 611‐612, 1951.
 194. De Kock LL. The intra‐glomerular tissues of the carotid body. Acta Anat (Basel) 21: 101‐116, 1954.
 195. De Kock LL, Dunn AE. An electron microscopic study of the carotid body. Acta Anatomica 64: 163‐173, 1966.
 196. De Kock LL, Dunn AE. Electron‐microscopic investigation of the nerve endings in the carotid body. In: Torrance RW, editor. Arterial Chemoreceptors. Oxford: Blackwell, 1968, p. 179‐187.
 197. Del Toro R, Levitsky KL, Lopez‐Barneo J, Chiara MD. Induction of T‐type calcium channel gene expression by chronic hypoxia. J Biol Chem 278: 22316‐22324, 2003.
 198. Delpiano MA, Acker H. Extracellular pH responses to different stimuli in the superfused cat carotid body. Adv Exp Med Biol 191: 709‐717, 1985.
 199. Dempsey JA, Forster HV. Mediation of ventilatory adaptations. Physiol Rev 62: 262‐346, 1982.
 200. Dempsey JA, Smith CA. Do carotid chemoreceptors inhibit the hyperventilatory response to heavy exercise? Can J Appl Physiol 19: 350‐359, 1994.
 201. Dhillon DP, Barer GR, Walsh M. The enlarged carotid body of the chronically hypoxic and chronically hypoxic and hypercapnic rat: A morphometric analysis. Q J Exp Physiol 69: 301‐317, 1984.
 202. Di Giulio C, Bianchi G, Cacchio M, Artese L, Rapino C, Macri MA, Di Ilio C. Oxygen and life span: Chronic hypoxia as a model for studying HIF‐1alpha, VEGF and NOS during aging. Respir Physiol Neurobiol 147: 31‐38, 2005.
 203. Di Giulio C, Di Muzio M, Sabatino G, Spoletini L, Amicarelli F, Di Ilio C, Modesti A. Effect of chronic hyperoxia on young and old rat carotid body ultrastructure. Exp Gerontol 33: 319‐329, 1998.
 204. Di Giulio C, Grilli A, De Lutiis MA, Di Natale F, Sabatino G, Felaco M. Does chronic hypoxia increase rat carotid body nitric oxide? Comp Biochem Physiol A Mol Integr Physiol 120: 243‐247, 1998.
 205. Diamond J. Observations on the excitation by acetylcholine and by pressure of sensory receptors in the cat's carotid sinus. J Physiol 130: 513‐532, 1955.
 206. Ding Y, Li YL, Schultz HD. Downregulation of carbon monoxide as well as nitric oxide contributes to peripheral chemoreflex hypersensitivity in heart failure rabbits. J Appl Physiol 105: 14‐23, 2008.
 207. Ding Y, Li YL, Schultz HD. Role of blood flow in carotid body chemoreflex function in heart failure. J Physiol 589: 245‐258, 2011.
 208. Dinger B, Gonzalez C, Yoshizaki K, Fidone S. [3H]Spiroperidol binding in normal and denervated carotid bodies. Neurosci Lett 21: 51‐55, 1981.
 209. Dinger B, Gonzalez C, Yoshizaki K, Fidone S. Localization and function of cat carotid body nicotinic receptors. Brain Res 339: 295‐304, 1985.
 210. Dinger BG, Almaraz L, Hirano T, Yoshizaki K, Gonzalez C, Gomez‐Nino A, Fidone SJ. Muscarinic receptor localization and function in rabbit carotid body. Brain Res 562: 190‐198, 1991.
 211. Dinger BG, Hirano T, Fidone SJ. Autoradiographic localization of muscarinic receptors in rabbit carotid body. Brain Res 367: 328‐331, 1986.
 212. Docherty RJ, McQueen DS. The effects of acetylcholine and dopamine on carotid chemosensory activity in the rabbit. J Physiol 288: 411‐423, 1979.
 213. Dodge FA Jr, Rahamimoff R. Co‐operative action a calcium ions in transmitter release at the neuromuscular junction. J Physiol 193: 419‐432, 1967.
 214. Donnelly DF. Modulation of glomus cell membrane currents of intact rat carotid body. J Physiol 489(Pt 3): 677‐688, 1995.
 215. Donnelly DF. Chemoreceptor nerve excitation may not be proportional to catecholamine secretion. J Appl Physiol 81: 657‐664, 1996.
 216. Donnelly DF. Are oxygen dependent K+ channels essential for carotid body chemo‐transduction? Respir Physiol 110: 211‐218, 1997.
 217. Donnelly DF. Developmental aspects of oxygen sensing by the carotid body. J Appl Physiol 88: 2296‐2301, 2000.
 218. Donnelly DF. Orthodromic spike generation from electrical stimuli in the rat carotid body: Implications for the afferent spike generation process. J Physiol 580: 275‐284, 2007.
 219. Donnelly DF. Nicotinic acetylcholine receptors do not mediate excitatory transmission in young rat carotid body. J Appl Physiol 107: 1806‐1816, 2009.
 220. Donnelly DF, Bavis RW, Kim I, Dbouk HA, Carroll JL. Time course of alterations in pre‐ and post‐synaptic chemoreceptor function during developmental hyperoxia. Respir Physiol Neurobiol 168: 189‐197, 2009.
 221. Donnelly DF, Kim I, Carle C, Carroll JL. Perinatal hyperoxia for 14 days increases nerve conduction time and the acute unitary response to hypoxia of rat carotid body chemoreceptors. J Appl Physiol 99: 114‐119, 2005.
 222. Donnelly DF, Panisello JM, Boggs D. Effect of sodium perturbations on rat chemoreceptor spike generation: Implications for a Poisson model. J Physiol 511(Pt 1): 301‐311, 1998.
 223. Donovan CM, Halter JB, Bergman RN. Importance of hepatic glucoreceptors in sympathoadrenal response to hypoglycemia. Diabetes 40: 155‐158, 1991.
 224. Dontas AS. Effects of energy donors, metabolic inhibitors and substrates on carotid chemoreceptor activity. J Pharmacol Exp Ther 115: 46‐54, 1955.
 225. Douglas WW. Is there chemical transmission at chemoreceptors? Pharmacol Rev 6: 81‐83, 1954.
 226. Doyle TP, Donnelly DF. Effect of Na+ and K+ channel blockade on baseline and anoxia‐induced catecholamine release from rat carotid body. J Appl Physiol 77: 2606‐2611, 1994.
 227. Duchen MR, Biscoe TJ. Mitochondrial function in type I cells isolated from rabbit arterial chemoreceptors. J Physiol 450: 13‐31, 1992a.
 228. Duchen MR, Biscoe TJ. Relative mitochondrial membrane potential and [Ca2+]i in type I cells isolated from the rabbit carotid body. J Physiol 450: 33‐61, 1992b.
 229. Duchen MR, Caddy KW, Kirby GC, Patterson DL, Ponte J, Biscoe TJ. Biophysical studies of the cellular elements of the rabbit carotid body. Neuroscience 26: 291‐311, 1988.
 230. Duke HN, Green JH, Neil E. Carotid chemoceptor impulse activity during inhalation of carbon monoxide mixtures. J Physiol 118: 520‐527, 1952.
 231. Dupont G, Combettes L, Leybaert L. Calcium dynamics: Spatio‐temporal organization from the subcellular to the organ level. Int Rev Cytol 261: 193‐245, 2007.
 232. Duprat F, Lauritzen I, Patel A, Honore E. The TASK background K2P channels: Chemo‐ and nutrient sensors. Trends Neurosci 30: 573‐580, 2007.
 233. Duprat F, Lesage F, Fink M, Reyes R, Heurteaux C, Lazdunski M. TASK, a human background K+ channel to sense external pH variations near physiological pH. EMBO J 16: 5464‐5471, 1997.
 234. Dvorakova M, Hohler B, Vollerthun R, Fischbach T, Kummer W. Macrophages: A major source of cytochrome b558 in the rat carotid body. Brain Res 852: 349‐354, 2000.
 235. e Silva MJ, Lewis DL. L‐ and N‐type Ca2+ channels in adult rat carotid body chemoreceptor type I cells. J Physiol 489(Pt 3): 689‐699, 1995.
 236. Easton J, Howe A. The distribution of thoracic glomus tissue (aortic bodies) in the rat. Cell Tissue Res 232: 349‐356, 1983.
 237. Edwards MW Jr, Mills E. Arterial chemoreceptor oxygen utilization and oxygen tension. J Appl Physiol 27: 291‐294, 1969.
 238. El‐Fadaly AB, Kummer W. The spatial relationship between type I glomus cells and arteriolar myocytes in the mouse carotid body. Ann Anat 185: 507‐515, 2003.
 239. Eldridge FL, Gill‐Kumar P, Millhorn DE. Input‐output relationships of central neural circuits involved in respiration in cats. J Physiol 311: 81‐95, 1981.
 240. Ellis D, Thomas RC. Direct measurement of the intracellular pH of mammalian cardiac muscle. J Physiol 262: 755‐771, 1976.
 241. Ellsworth ML. The red blood cell as an oxygen sensor: What is the evidence? Acta Physiol Scand 168: 551‐559, 2000.
 242. Erickson JT, Mayer C, Jawa A, Ling L, Olson EB Jr, Vidruk EH, Mitchell GS, Katz DM. Chemoafferent degeneration and carotid body hypoplasia following chronic hyperoxia in newborn rats. J Physiol 509(Pt 2): 519‐526, 1998.
 243. Esler M, Kaye D, Lambert G, Esler D, Jennings G. Adrenergic nervous system in heart failure. Am J Cardiol 80: 7L‐14L, 1997.
 244. Espejo EF, Montoro RJ, Armengol JA, Lopez‐Barneo J. Cellular and functional recovery of Parkinsonian rats after intrastriatal transplantation of carotid body cell aggregates. Neuron 20: 197‐206, 1998.
 245. Evans AM. AMP‐activated protein kinase and the regulation of Ca2+ signalling in O2‐sensing cells. J Physiol 574: 113‐123, 2006.
 246. Evans AM, Hardie DG, Peers C, Wyatt CN, Viollet B, Kumar P, Dallas ML, Ross F, Ikematsu N, Jordan HL, Barr BL, Rafferty JN, Ogunbayo O. Ion channel regulation by AMPK: the route of hypoxia‐response coupling in thecarotid body and pulmonary artery. Ann N Y Acad Sci 1177: 89‐100, 2009.
 247. Evans AM, Mustard KJ, Wyatt CN, Peers C, Dipp M, Kumar P, Kinnear NP, Hardie DG. Does AMP‐activated protein kinase couple inhibition of mitochondrial oxidative phosphorylation by hypoxia to calcium signaling in O2‐sensing cells? J Biol Chem 280: 41504‐41511, 2005.
 248. Eyzaguirre C. Electric synapses in the carotid body‐nerve complex. Respir Physiol Neurobiol 157: 116‐122, 2007.
 249. Eyzaguirre C, Abudara V. Carotid body glomus cells: Chemical secretion and transmission (modulation?) across cell‐nerve ending junctions. Respir Physiol 115: 135‐149, 1999.
 250. Eyzaguirre C, Abudara V. Possible role of coupling between glomus cells in carotid body chemoreception. Biol Signals 4: 263‐270, 1995.
 251. Eyzaguirre C, Fidone S, Nishi K. Recent studies on the generation of chemoreceptor impulses. In: Purves MJ, editor. The Peripheral Arterial Chemoreceptors. London: Cambridge University Press, 1975, p. 175‐192.
 252. Eyzaguirre C, Koyano H. Effects of electrical stimulation on the frequency of chemoreceptor discharges. J Physiol 178: 438‐462, 1965a.
 253. Eyzaguirre C, Koyano H. Effects of hypoxia, hypercapnia, and pH on the chemoreceptor activity of the carotid body in vitro. J Physiol 178: 385‐409, 1965b.
 254. Eyzaguirre C, Lewin J. Chemoreceptor activity of the carotid body of the cat. J Physiol 159: 222‐237, 1961a.
 255. Eyzaguirre C, Lewin J. Effect of different oxygen tensions on the carotid body in vitro. J Physiol 159: 238‐250, 1961b.
 256. Eyzaguirre C, Lewin J. The effect of sympathetic stimulation on carotid nerve activity. J Physiol 159: 251‐267, 1961c.
 257. Eyzaguirre C, Monti‐Bloch L. Similarities and differences in the physiology and pharmacology of cat and rabbit carotid bodies. Fed Proc 39: 2653‐2656, 1980.
 258. Eyzaguirre C, Monti‐Bloch L, Baron M, Hayashida Y, Woodbury JW. Changes in glomus cell membrane properties in response to stimulants and depressants of carotid nerve discharge. Brain Res 477: 265‐279, 1989.
 259. Eyzaguirre C, Uchizono K. Observations on the fibre content of nerves reaching the carotid body of the cat. J Physiol 159: 268‐281, 1961.
 260. Eyzaguirre C, Zapata P. The release of acetylcholine from carotid body tissues. Further study on the effects of acetylcholine and cholinergic blocking agents on the chemosensory discharge. J Physiol 195: 589‐607, 1968.
 261. Fagerlund MJ, Kahlin J, Ebberyd A, Schulte G, Mkrtchian S, Eriksson LI. The human carotid body: Expression of oxygen sensing and signaling genes of relevance for anesthesia. Anesthesiology 113: 1270‐1279.
 262. Fan J, Zhang B, Shu HF, Zhang XY, Wang X, Kuang F, Liu L, Peng ZW, Wu R, Zhou Z, Wang BR. Interleukin‐6 increases intracellular Ca2+ concentration and induces catecholamine secretion in rat carotid body glomus cells. J Neurosci Res 87: 2757‐2762, 2009.
 263. Faustino EV, Donnelly DF. An important functional role of persistent Na+ current in carotid body hypoxia transduction. J Appl Physiol 101: 1076‐1084, 2006.
 264. Fay FS. Oxygen consumption of the carotid body. Am J Physiol 218: 518‐523, 1970.
 265. Fearon IM, Zhang M, Vollmer C, Nurse CA. GABA mediates autoreceptor feedback inhibition in the rat carotid body via presynaptic GABAB receptors and TASK‐1. J Physiol 553: 83‐94, 2003.
 266. Fedde MR, Kiley JP, Powell FL, Scheid P. Intrapulmonary CO2 receptors and control of breathing in ducks: Effects of prolonged circulation time to carotid bodies and brain. Respir Physiol 47: 121‐140, 1982.
 267. Fernandez R, Gonzalez S, Rey S, Cortes PP, Maisey KR, Reyes EP, Larrain C, Zapata P. Lipopolysaccharide‐induced carotid body inflammation in cats: Functional manifestations, histopathology and involvement of tumour necrosis factor‐alpha. Exp Physiol 93: 892‐907, 2008.
 268. Fidone S, Gonzalez C. Catecholamine synthesis in rabbit carotid body in vitro. J Physiol 333: 69‐79, 1982.
 269. Fidone S, Gonzalez C. Initiation and control of chemoreceptor activity in the carotid body. In: Fishman AP, Cherniack NS, Widdicombe JG, Geiger SR, editors. Handbook of Physiology. The Respiratory System. Volume II. Control of Breathing Part 1. Bethesda, Maryland: American Physiological Society, 1986, sect. 3, p. 247‐312.
 270. Fidone S, Gonzalez C, Yoshizaki K. Effects of hypoxia on catecholamine synthesis in rabbit carotid body in vitro. J Physiol 333: 81‐91, 1982a.
 271. Fidone S, Gonzalez C, Yoshizaki K. Effects of low oxygen on the release of dopamine from the rabbit carotid body in vitro. J Physiol 333: 93‐110, 1982b.
 272. Fidone SJ, Sato A. A study of chemoreceptor and baroreceptor A and C‐fibres in the cat carotid nerve. J Physiol 205: 527‐548, 1969.
 273. Fidone SJ, Weintraub ST, Stavinoha WB. Acetylcholine content of normal and denervated cat carotid bodies measured by pyrolysis gas chromatography/mass fragmentometry. J Neurochem 26: 1047‐1049, 1976.
 274. Fidone SJ, Zapata P, Stensaas LJ. Axonal transport of labeled material into sensory nerve ending of cat carotid body. Brain Res 124: 9‐28, 1977.
 275. Fieber LA, McCleskey EW. L‐type calcium channels in type I cells of the rat carotid body. J Neurophysiol 70: 1378‐1384, 1993.
 276. Finley JC, Katz DM. The central organization of carotid body afferent projections to the brainstem of the rat. Brain Res 572: 108‐116, 1992.
 277. Finley JC, Polak J, Katz DM. Transmitter diversity in carotid body afferent neurons: Dopaminergic and peptidergic phenotypes. Neuroscience 51: 973‐987, 1992.
 278. Fishman MC, Schaffner AE. Carotid body cell culture and selective growth of glomus cells. Am J Physiol 246: C106‐C113, 1984.
 279. Fitzgerald RS. Oxygen and carotid body chemotransduction: The cholinergic hypothesis ‐ a brief history and new evaluation. Respir Physiol 120: 89‐104, 2000.
 280. Fitzgerald RS, Dehghani GA. Neural responses of the cat carotid and aortic bodies to hypercapnia and hypoxia. J Appl Physiol 52: 596‐601, 1982.
 281. Fitzgerald RS, Leitner LM, Liaubet MJ. Carotid chemoreceptor response to intermittent or sustained stimulation in the cat. Respir Physiol 6: 395‐402, 1969.
 282. Fitzgerald RS, Parks DC. Effect of hypoxia on carotid chemoreceptor response to carbon dioxide in cats. Respir Physiol 12: 218‐229, 1971.
 283. Fitzgerald RS, Shirahata M, Chang I, Kostuk E. The impact of hypoxia and low glucose on the release of acetylcholine and ATP from the incubated cat carotid body. Brain Res 1270: 39‐44, 2009.
 284. Fitzgerald RS, Shirahata M, Ide T. Cholinergic aspects of carotid body chemotransduction. Adv Exp Med Biol 360: 213‐215, 1994.
 285. Fitzgerald RS, Shirahata M, Ide T. Further cholinergic aspects of carotid body chemotransduction of hypoxia in cats. J Appl Physiol 82: 819‐827, 1997.
 286. Fitzgerald RS, Shirahata M, Wang HY. Acetylcholine release from cat carotid bodies. Brain Res 841: 53‐61, 1999.
 287. Fletcher EC. Invited review: Physiological consequences of intermittent hypoxia: Systemic blood pressure. J Appl Physiol 90: 1600‐1605, 2001.
 288. Floyd WF, Neil E. The influence of the sympathetic innervation of the carotid bifurcation on chemoceptor and baroceptor activity in the cat. Arch Int Pharmacodyn Ther 91: 230‐239, 1952.
 289. Forster HV, Bisgard GE, Klein JP. Effect of peripheral chemoreceptor denervation on acclimatization of goats during hypoxia. J Appl Physiol 50: 392‐398, 1981.
 290. Forster HV, Dempsey JA, Birnbaum ML, Reddan WG, Thoden J, Grover RF, Rankin J. Effect of chronic exposure to hypoxia on ventilatory response to CO2 and hypoxia. J Appl Physiol 31: 586‐592, 1971.
 291. Forster HV, Pan LG. The role of the carotid chemoreceptors in the control of breathing during exercise. Med Sci Sports Exerc 26: 328‐336, 1994.
 292. Fredholm BB, Abbracchio MP, Burnstock G, Daly JW, Harden TK, Jacobson KA, Leff P, Williams M. Nomenclature and classification of purinoceptors. Pharmacol Rev 46: 143‐156, 1994.
 293. Frizzell RT, Jones EM, Davis SN, Biggers DW, Myers SR, Connolly CC, Neal DW, Jaspan JB, Cherrington AD. Counterregulation during hypoglycemia is directed by widespread brain regions. Diabetes 42: 1253‐1261, 1993.
 294. Fukuda Y, Sato A, Trzebski A. Carotid chemoreceptor discharge responses to hypoxia and hypercapnia in normotensive and spontaneously hypertensive rats. J Auton Nerv Syst 19: 1‐11, 1987.
 295. Funder J, Wieth JO. Chloride and hydrogen ion distribution between human red cells and plasma. Acta Phys Scand 68: 234‐245, 1966.
 296. Fung ML, Lam SY, Chen Y, Dong X, Leung PS. Functional expression of angiotensin II receptors in type‐I cells of the rat carotid body. Pflugers Arch 441: 474‐480, 2001.
 297. Fung ML, Lam SY, Wong TP, Tjong YW, Leung PS. Carotid body AT(4) receptor expression and its upregulation in chronic hypoxia. Open Cardiovasc Med J 1: 1‐7, 2007.
 298. Fung ML, Ye JS, Fung PC. Acute hypoxia elevates nitric oxide generation in rat carotid body in vitro. Pflugers Arch 442: 903‐909, 2001.
 299. Gadalla MM, Snyder SH. Hydrogen sulfide as a gasotransmitter. J Neurochem 113: 14‐26, 2010.
 300. Gallego R, Belmonte C. The effects of blood osmolality changes on cat carotid body chemoreceptors in vivo. Pflugers Arch 380: 53‐58, 1979.
 301. Gallego R, Eyzaguirre C, Monti‐Bloch L. Thermal and osmotic responses of arterial receptors. J Neurophysiol 42: 665‐680, 1979.
 302. Ganfornina MD, Lopez‐Barneo J. Single K+ channels in membrane patches of arterial chemoreceptor cells are modulated by O2 tension. Proc Natl Acad Sci U S A 88: 2927‐2930, 1991.
 303. Garcia‐Fernandez M, Ortega‐Saenz P, Castellano A, Lopez‐Barneo J. Mechanisms of low‐glucose sensitivity in carotid body glomus cells. Diabetes 56: 2893‐2900, 2007.
 304. Garland RJ, Kinkead R, Milsom WK. The ventilatory response of rodents to changes in arterial oxygen content. Respir Physiol 96: 199‐211, 1994.
 305. Gauda EB, Bamford OS, Northington FJ. Lack of induction of substance P gene expression by hypoxia and absence of neurokinin 1‐receptor mRNAs in the rat carotid body. J Auton Nerv Syst 74: 100‐108, 1998.
 306. Gauda EB, Cooper R, Johnson SM, McLemore GL, Marshall C. Autonomic microganglion cells: A source of acetylcholine in the rat carotid body. J Appl Physiol 96: 384‐391, 2004.
 307. Gauda EB, Northington FJ, Linden J, Rosin DL. Differential expression of a(2a), A(1)‐adenosine and D(2)‐dopamine receptor genes in rat peripheral arterial chemoreceptors during postnatal development. Brain Res 872: 1‐10, 2000.
 308. Gerard MW, Billingsley PR. The innervation of the carotid body. Anat Rec 26: 391‐400, 1923.
 309. Gestreau C, Heitzmann D, Thomas J, Dubreuil V, Bandulik S, Reichold M, Bendahhou S, Pierson P, Sterner C, Peyronnet‐Roux J, Benfriha C, Tegtmeier I, Ehnes H, Georgieff M, Lesage F, Brunet JF, Goridis C, Warth R, Barhanin J. Task2 potassium channels set central respiratory CO2 and O2 sensitivity. Proc Natl Acad Sci U S A 107: 2325‐2330, 2010.
 310. Gnaiger E, Lassnig B, Kuznetsov A, Rieger G, Margreiter R. Mitochondrial oxygen affinity, respiratory flux control and excess capacity of cytochrome c oxidase. J Exp Biol 201: 1129‐1139, 1998.
 311. Godfrey S, Edwards R, Copland G, Gross P. Chemosensitivity in normal subjects, atheletes, and patients with chronic airways obstruction. J Appl Physiol 30: 193‐199, 1971.
 312. Gomez‐Nino A, Dinger B, Gonzalez C, Fidone SJ. Differential stimulus coupling to dopamine and norepinephrine stores in rabbit carotid body type I cells. Brain Res 525: 160‐164, 1990.
 313. Gomez‐Nino A, Obeso A, Baranda JA, Santo‐Domingo J, Lopez‐Lopez JR, Gonzalez C. MaxiK potassium channels in the function of chemoreceptor cells of the rat carotid body. Am J Physiol Cell Physiol 297: C715‐C722, 2009.
 314. Gonzalez C, Agapito MT, Rocher A, Gonzalez‐Martin MC, Vega‐Agapito V, Gomez‐Nino A, Rigual R, Castaneda J, Obeso A. Chemoreception in the context of the general biology of ROS. Respir Physiol Neurobiol 157: 30‐44, 2007.
 315. Gonzalez C, Almaraz L, Obeso A, Rigual R. Carotid body chemoreceptors: From natural stimuli to sensory discharges. Physiol Rev 74: 829‐898, 1994.
 316. Gonzalez C, Sanz‐Alfayate G, Agapito MT, Gomez‐Nino A, Rocher A, Obeso A. Significance of ROS in oxygen sensing in cell systems with sensitivity to physiological hypoxia. Respir Physiol Neurobiol 132: 17‐41, 2002.
 317. Gonzalez‐Guerrero PR, Rigual R, Gonzalez C. Opioid peptides in the rabbit carotid body: Identification and evidence for co‐utilization and interactions with dopamine. J Neurochem 60: 1762‐1768, 1993.
 318. Goodman NW, McCloskey DI. Intracellular potentials in the carotid body. Brain Res 39: 501‐504, 1972.
 319. Grabner CP, Price SD, Lysakowski A, Fox AP. Mouse chromaffin cells have two populations of dense core vesicles. J Neurophysiol 94: 2093‐2104, 2005.
 320. Gray BA. Response of the perfused carotid body to changes in pH and PCO2. Respir Physiol 4: 229‐245, 1968.
 321. Gray BA. On the speed of the carotid chemoreceptor response in relation to the kinetics of CO2 hydration. Respir Physiol 11: 235‐246, 1971.
 322. Grimes PA, Mokashi A, Stone RA, Lahiri S. Nitric oxide synthase in autonomic innervation of the cat carotid body. J Auton Nerv Syst 54: 80‐86, 1995.
 323. Gronblad M. Improved demonstration of exocytotic profiles in glomus cells of rat carotid body after perfusion with glutaraldehyde fixative containing a high concentration of potassium. Cell Tissue Res 229: 627‐637, 1983.
 324. Gronblad M, Akerman KE, Eranko O. Ultrastructural evidence of exocytosis from glomus cells after incubation of adult rat carotid bodies in potassium‐rich calcium‐containing media. Brain Res 189: 576‐581, 1980.
 325. Gual A, Stensaas LJ. Structural and functional changes of cat carotid body following superfusion with Ca2+ and/or Ba2+. Brain Res 336: 321‐325, 1985.
 326. Guillemot F, Lo LC, Johnson JE, Auerbach A, Anderson DJ, Joyner AL. Mammalian achaete‐scute homolog 1 is required for the early development of olfactory and autonomic neurons. Cell 75: 463‐476, 1993.
 327. Guz A, Noble MI, Widdicombe JG, Trenchard D, Mushin WW. Peripheral chemoreceptor block in man. Respir Physiol 1: 38‐40, 1966.
 328. Habeck JO. Peripheral arterial chemoreceptors and hypertension. J Auton Nerv Syst 34: 1‐7, 1991.
 329. Habeck JO, Przybylski J. Carotid and aortic bodies in chronically anemic normotensive and spontaneously hypertensive rats. J Auton Nerv Syst 28: 219‐225, 1989.
 330. Halliwell B, Gutteridge JM. Role of free radicals and catalytic metal ions in human disease: An overview. Methods Enzymol 186: 1‐85, 1990.
 331. Hanbauer I. Regulation of tyrosine hydroxylase in carotid body. Adv Biochem Psychopharmacol 16: 275‐280, 1977.
 332. Hanbauer I, Hellstrom S. The regulation of dopamine and noradrenaline in the rat carotid body and its modification by denervation and by hypoxia. J Physiol 282: 21‐34, 1978.
 333. Hanbauer I, Karoum F, Hellstrom S, Lahiri S. Effects of hypoxia lasting up to one month on the catecholamine content in rat carotid body. Neuroscience 6: 81‐86, 1981.
 334. Hannhart B, Pickett CK, Weil JV, Moore LG. Influence of pregnancy on ventilatory and carotid body neural output responsiveness to hypoxia in cats. J Appl Physiol 67: 797‐803, 1989.
 335. Hansen JT. Ultrastructure of the primate carotid body: A morphometric study of the glomus cells and nerve endings in the monkey (Macaca fascicularis). J Neurocytol 14: 13‐32, 1985.
 336. Hansen JT, Brokaw J, Christie D, Karasek M. Localization of enkephalin‐like immunoreactivity in the cat carotid and aortic body chemoreceptors. Anat Rec 203: 405‐410, 1982.
 337. Hanson G, Jones L, Fidone S. Physiological chemoreceptor stimulation decreases enkephalin and substance P in the carotid body. Peptides 7: 767‐769, 1986.
 338. Hanson MA, Eden GJ, Nijhuis JG, Moore PJ. Peripheral chemoreceptors and other oxygen sensors in the fetus and newborn. In: Lahiri S, Forster RE, Davies RO, Pack AI, editors. Chemoreceptors and Reflexes in Breathing: Cellular and Molecular Aspects. New York: Oxford University Press, 1989, p. 113‐120.
 339. Hanson MA, Kumar P, Williams BA. The effect of chronic hypoxia upon the development of respiratory chemoreflexes in the newborn kitten. J Physiol 411: 563‐574, 1989.
 340. Hanson MA, Nye PC, Rao PS, Torrance RW. Effects of acetazolamide and benzolamide on the response of the carotid chemoreceptors to CQ2 [proceedings]. J Physiol 284: 165P‐166P, 1978.
 341. Hanson MA, Nye PCG, Torrance RW. The exodus of an extracellular bicarbonate theory of chemoreception and the genesis of an intracellular one. In: Belmonte C, Pallot D, Acker A, Fidone S, editors. Arterial Chemoreceptors. Leicester: Leicester University Press, 1981, p. 403‐416.
 342. Hanson MA, Rao PS, Torrance RW. Aortic nerve chemoreceptors are sensitive to changes in PaCO2. Adv Exp Med Biol 99: 269‐273, 1978.
 343. Hardie DG, Hawley SA. AMP‐activated protein kinase: The energy charhge hypothesis revisited. Bioessays 23: 1112‐1119, 2001.
 344. Hardie DG, Hawley SA, Scott JW. AMP‐activated protein kinase ‐ development of the energy sensor concept. J Physiol 574: 7‐15, 2006.
 345. Hartness ME, Brazier SP, Peers C, Bateson AN, Ashford ML, Kemp PJ. Post‐transcriptional control of human maxiK potassium channel activity and acute oxygen sensitivity by chronic hypoxia. J Biol Chem 278: 51422‐51432, 2003.
 346. Hatcher JD, Chiu LK, Jennings DB. Anemia as a stimulus to aortic and carotid chemoreceptors in the cat. J Appl Physiol 44: 696‐702, 1978.
 347. Hatton CJ, Carpenter E, Pepper DR, Kumar P, Peers C. Developmental changes in isolated rat type I carotid body cell K+ currents and their modulation by hypoxia. J Physiol 501(Pt 1): 49‐58, 1997.
 348. Hatton CJ, Peers C. Hypoxic inhibition of K+ currents in isolated rat type I carotid body cells: Evidence against the involvement of cyclic nucleotides. Pflugers Arch 433: 129‐135, 1996.
 349. Hatton CJ, Peers C. Electrochemical detection of K(+)‐evoked quantal secretory events from isolated rat type I carotid body cells. Exp Physiol 82: 415‐418, 1997.
 350. Hawley SA, Boudeau J, Reid JL, Mustard KJ, Udd L, Makela TP, Alessi DR, Hardie DG. Complexes between the LKB1 tumor suppressor, STRAD alpha/beta and MO25 alpha/beta are upstream kinases in the AMP‐activated protein kinase cascade. J Biol 2: 28, 2003.
 351. Hawley SA, Selbert MA, Goldstein EG, Edelman AM, Carling D, Hardie DG. 5′‐AMP activates the AMP‐activated protein kinase cascade, and Ca2+/calmodulin activates the calmodulin‐dependent protein kinase I cascade, via three independent mechanisms. J Biol Chem 270: 27186‐27191, 1995.
 352. Hayashida Y, Koyano H, Eyzaguirre C. An intracellular study of chemosensory fibers and endings. J Neurophysiol 44: 1077‐1088, 1980.
 353. He L, Chen J, Dinger B, Sanders K, Sundar K, Hoidal J, Fidone S. Characteristics of carotid body chemosensitivity in NADPH oxidase‐deficient mice. Am J Physiol Cell Physiol 282: C27‐C33, 2002.
 354. He L, Chen J, Dinger B, Stensaas L, Fidone S. Endothelin modulates chemoreceptor cell function in mammalian carotid body. Adv Exp Med Biol 410: 305‐311, 1996.
 355. He L, Chen J, Dinger B, Stensaas L, Fidone S. Effect of chronic hypoxia on purinergic synaptic transmission in rat carotid body. J Appl Physiol 100: 157‐162, 2006.
 356. He L, Chen J, Liu X, Dinger B, Fidone S. Enhanced nitric oxide‐mediated chemoreceptor inhibition and altered cyclic GMP signaling in rat carotid body following chronic hypoxia. Am J Physiol Lung Cell Mol Physiol 293: L1463‐L1468, 2007.
 357. He L, Dinger B, Fidone S. Effect of chronic hypoxia on cholinergic chemotransmission in rat carotid body. J Appl Physiol 98: 614‐619, 2005.
 358. He L, Dinger B, Sanders K, Hoidal J, Obeso A, Stensaas L, Fidone S, Gonzalez C. Effect of p47phox gene deletion on ROS production and oxygen sensing in mouse carotid body chemoreceptor cells. Am J Physiol Lung Cell Mol Physiol 289: L916‐L924, 2005.
 359. He L, Liu X, Chen J, Dinger B, Stensaas L, Fidone S. Modulation of chronic hypoxia‐induced chemoreceptor hypersensitivity by NADPH oxidase subunits in rat carotid body. J Appl Physiol 108: 1304‐1310, 2010.
 360. He SF, Wei JY, Eyzaguirre C. Intracellular pH and some membrane characteristics of cultured carotid body glomus cells. Brain Res 547: 258‐266, 1991.
 361. Heath D, Edwards C, Harris P. Post‐mortem size and structure of the human carotid body. Thorax 25: 129‐140, 1970.
 362. Heath D, Lowe P, Smith P. Mast cells in the human carotid body. J Clin Pathol 40: 9‐12, 1987.
 363. Heath D, Smith P, Fitch R, Harris P. Comparative pathology of the enlarged carotid body. J Comp Pathol 95: 259‐271, 1985.
 364. Heath D, Smith P, Jago R. Hyperplasia of the carotid body. J Pathol 138: 115‐127, 1982.
 365. Heeringa J, Berkenbosch A, de Goede J, Olievier CN. Relative contribution of central and peripheral chemoreceptors to the ventilatory response to CO2 during hyperoxia. Respir Physiol 37: 365‐379, 1979.
 366. Hellstrom S. Morphometric studies of dense‐cored vesicles in type I cells of rat carotid body. J Neurocytol 4: 77‐86, 1975.
 367. Hellstrom S, Pequignot J‐M. Morphometric studies on intact and sympathectomised carotid bodies of long‐termhypoxic rats: A light and electron microscopial study. In: Pallot D, editor. The Peripheral Arterial Chemoreceptors. London: Croom Helm, 1982, p. 293‐301.
 368. Hempleman SC. Increased calcium current in carotid body glomus cells following in vivo acclimatization to chronic hypoxia. J Neurophysiol 76: 1880‐1886, 1996.
 369. Herdegen T, Leah JD. Inducible and constitutive transcription factors in the mammalian nervous system: Control of gene expression by Jun, Fos and Krox, and CREB/ATF proteins. Brain Res Brain Res Rev 28: 370‐490, 1998.
 370. Hescheler J, Delpiano MA, Acker H, Pietruschka F. Ionic currents on type‐I cells of the rabbit carotid body measured by voltage‐clamp experiments and the effect of hypoxia. Brain Res 486: 79‐88, 1989.
 371. Hess A. Electron microscopic observations of normal and experimental cat carotid bodies. In: Torrance RW, editor. Arterial Chemoreceptors. Oxford: Blackwell, 1968, p. 51‐56.
 372. Hess A. The significance of the ultrastructure of the rat carotid body in structure and function of chemoreceptors. In: Purves MJ, editor. The Peripheral Arterial Chemoreceptors. London: Cambridge University Press, 1975, p. 51‐73.
 373. Hess A, Zapata P. Innervation of the cat carotid body: Normal and experimental studies. Fed Proc 31: 1365‐1382, 1972.
 374. Hevener AL, Bergman RN, Donovan CM. Novel glucosensor for hypoglycemic detection localized to the portal vein. Diabetes 46: 1521‐1525, 1997.
 375. Heymans C. The part played by vascular presso‐ and chemo‐receptors in respiratory control. In: Nobel Lectures ‐ Physiology or Medicine (1922‐1941). Amsterdam: Elsevier, 1965, p. 460‐481.
 376. Heymans C, Neil E. Reflexogenic Areas of the Cardiovascular System. London: Churchill, 1958.
 377. Heymans J, Heymans C. Sur les modifications directes et sur la regulationreflexede l'activite du centre respiratoire de la tete isolee du chien. Arch Int Pharmacodyn Ther 33: 273‐372, 1927.
 378. Higashi T, McIntosh JM, Shirahata M. Characterization of nicotinic acetylcholine receptors in cultured arterial chemoreceptor cells of the cat. Brain Res 974: 167‐175, 2003.
 379. Hilsmann J, Degner F, Acker H. Local flow velocities in the cat carotid body tissue. Pflugers Arch 410: 204‐211, 1987.
 380. Hodges RD, King AS, King DZ, French EI. The general ultrastructure of the carotid body of the domestic fowl. Cell Tissue Res 162: 483‐497, 1975.
 381. Hohler B, Mayer B, Kummer W. Nitric oxide synthase in the rat carotid body and carotid sinus. Cell Tissue Res 276: 559‐564, 1994.
 382. Holmes A, Hauton D, Kumar P. Interaction between hypoxia and glucose in the rat carotid body, in vitro. Proc Physiol Soc 20: C09, 2010.
 383. Holton P, Wood JB. The effects of bilateral removal of the carotid bodies and denervation of the carotid sinuses in two human subjects. J Physiol 181: 365‐378, 1965.
 384. Honda Y. Role of carotid chemoreceptors in control of breathing at rest and in exercise: Studies on human subjects with bilateral carotid body resection. Jpn J Physiol 35: 535‐544, 1985.
 385. Honda Y. Respiratory and circulatory activities in carotid body‐resected humans. J Appl Physiol 73: 1‐8, 1992.
 386. Honda Y, Hashizume I. Evidence for hypoxic depression of CO2‐ventilation response in carotid body‐resected humans. J Appl Physiol 70: 590‐593, 1991.
 387. Honda Y, Watanabe S, Hashizume I, Satomura Y, Hata N, Sakakibara Y, Severinghaus JW. Hypoxic chemosensitivity in asthmatic patients two decades after carotid body resection. J Appl Physiol 46: 632‐638, 1979.
 388. Hornbein TF. The relation between stimulus to chemoreceptors and their response. In: Torrance RW, editor. Arterial Chemoreceptors. Oxford: Blackwell Scientific Publications, 1968, p. 65‐76.
 389. Hornbein TF, Griffo ZJ, Roos A. Quantitation of chemoreceptor activity: Interrelation of hypoxia and hypercapnia. J Neurophysiol 24: 561‐568, 1961.
 390. Hornbein TF, Roos A. Specificity of H ion concentration as a carotid chemoreceptor stimulus. J Appl Physiol 18: 580‐584, 1963.
 391. Hoshi T, Heinemann S. Regulation of cell function by methionine oxidation and reduction. J Physiol 531: 1‐11, 2001.
 392. Housley GD, Martin‐Body RL, Dawson NJ, Sinclair JD. Brain stem projections of the glossopharyngeal nerve and its carotid sinus branch in the rat. Neuroscience 22: 237‐250, 1987.
 393. Howe A, Pack RJ, Wise J. Arterial chemoreceptor‐like activity in the abdominal vagus of thec rat. J Physiol 320: 309‐318, 1981.
 394. Hudgel DW, Weil JV. Depression of hypoxic and hypercapnic ventilatory drives in severe asthma. Chest 68: 493‐497, 1975.
 395. Huey KA, Powell FL. Time‐dependent changes in dopamine D(2)‐receptor mRNA in the arterial chemoreflex pathway with chronic hypoxia. Brain Res Mol Brain Res 75: 264‐270, 2000.
 396. Ichikawa H. Innervation of the carotid body: Immunohistochemical, denervation, retrograde tracing studies. Microsc Res Tech 59: 188‐195, 2002.
 397. Ichikawa H, Helke CJ. Distribution, origin and plasticity of galanin‐immunoreactivity in the rat carotid body. Neuroscience 52: 757‐767, 1993.
 398. Iggo A. Cutaneous mechanoreceptors with afferent C fibers. J Physiol 152: 337‐353, 1960.
 399. Ishii K, Kusakabe T. The glomus cell of the carotid labyrinth of Xenopus laevis. Cell Tissue Res 224: 459‐463, 1982.
 400. Iturriaga R, Alcayaga J. Effects of CO2‐HCO3‐ on catecholamine efflux from cat carotid body. J Appl Physiol 84: 60‐68, 1998.
 401. Iturriaga R, Alcayaga J. Neurotransmission in the carotid body: Transmitters and modulators between glomus cells and petrosal ganglion nerve terminals. Brain Res Brain Res Rev 47: 46‐53, 2004.
 402. Iturriaga R, Alcayaga J, Zapata P. Dissociation of hypoxia‐induced chemosensory responses and catecholamine efflux in cat carotid body superfused in vitro. J Physiol 497(Pt 2): 551‐564, 1996.
 403. Iturriaga R, Larrain C, Zapata P. Effects of dopaminergic blockade upon carotid chemosensory activity and its hypoxia‐induced excitation. Brain Res 663: 145‐154, 1994.
 404. Iturriaga R, Mokashi A, Lahiri S. Dynamics of carotid body responses in vitro in the presence of CO2‐HCO3‐: Role of carbonic anhydrase. J Appl Physiol 75: 1587‐1594, 1993.
 405. Iyer NV, Kotch LE, Agani F, Leung SW, Laughner E, Wenger RH, Gassmann M, Gearhart JD, Lawler AM, Yu AY, Semenza GL. Cellular and developmental control of O2 homeostasis by hypoxia‐inducible factor 1 alpha. Genes Dev 12: 149‐162, 1998.
 406. Izal‐Azcarate A, Belzunegui S, San Sebastian W, Garrido‐Gil P, Vazquez‐Claverie M, Lopez B, Marcilla I, Luquin MA. Immunohistochemical characterization of the rat carotid body. Respir Physiol Neurobiol 161: 95‐99, 2008.
 407. Jackson A, Nurse C. Plasticity in cultured carotid body chemoreceptors: Environmental modulation of GAP‐43 and neurofilament. J Neurobiol 26: 485‐496, 1995.
 408. Jackson A, Nurse C. Dopaminergic properties of cultured rat carotid body chemoreceptors grown in normoxic and hypoxic environments. J Neurochem 69: 645‐654, 1997.
 409. Jacobs L, Comroe JH Jr Stimulation of the carotid chemoreceptors of the dog by dopamine. Proc Natl Acad Sci U S A 59: 1187‐1193, 1968.
 410. Jacono FJ, Peng YJ, Kumar GK, Prabhakar NR. Modulation of the hypoxic sensory response of the carotid body by 5‐hydroxytryptamine: Role of the 5‐HT2 receptor. Respir Physiol Neurobiol 145: 135‐142, 2005.
 411. Jan LY, Jan YN. Peptidergic transmission in sympathetic ganglia of the frog. J Physiol 327: 219‐246, 1982.
 412. Jarisch A, Landgren S, Neil E, Zotterman Y. Impulse activity in the carotid sinus nerve following intra‐carotid injection of potassium chloride, veratrine, sodium citrate, adenosine‐triphosphate and alpha‐dinitrophenol. Acta Physiol Scand 25: 195‐211, 1952.
 413. Jennings DB, Lockett HJ. Angiotensin stimulates respiration in spontaneously hypertensive rats. Am J Physiol Regul Integr Comp Physiol 278: R1125‐R1133, 2000.
 414. Jiang RG, Eyzaguirre C. Calcium channels of cultured rat glomus cells in normoxia and acute hypoxia. Brain Res 1031: 56‐66, 2005.
 415. Jiang RG, Eyzaguirre C. Dye and electric coupling between carotid nerve terminals and glomus cells. Adv Exp Med Biol 536: 247‐253, 2003.
 416. Jiang RG, Eyzaguirre C. Effects of hypoxia and putative transmitters on [Ca2+]i of rat glomus cells. Brain Res 995: 285‐296, 2004.
 417. Jiang X, Rowitch DH, Soriano P, McMahon AP, Sucov HM. Fate of the mammalian cardiac neural crest. Development 127: 1607‐1616, 2000.
 418. Joels N, Neil E. The idea of a sensory transmitter. In: Torrance RW, editor. Arterial Chemoreceptors. Oxford: Blackwell Scientific Publishing, 1968, p. 153‐176.
 419. Johnson RP, O'Kelly IM, Fearon IM. System‐specific O2 sensitivity of the tandem pore domain K+ channel TASK‐1. Am J Physiol Cell Physiol 286: C391‐C397, 2004.
 420. Jones JV. Localization and quantitation of carotid body enzymes: Their relevance to the cholinergic transmitter hypothesis. In: Purves MJ, editor. The Peripheral Arterial Chemoreceptors. London: Cambridge University Press, 1975, p. 143‐162.
 421. Jordan D. Central integration of chemoreceptor afferent activity. Adv Exp Med Biol 360: 87‐98, 1994.
 422. Jyung RW, LeClair EE, Bernat RA, Kang TS, Ung F, McKenna MJ, Tuan RS. Expression of angiogenic growth factors in paragangliomas. Laryngoscope 110: 161‐167, 2000.
 423. Kahlin J, Eriksson LI, Ebberyd A, Fagerlund MJ. Presence of nicotinic, purinergic and dopaminergic receptors and the TASK‐1 K(+)‐channel in the mouse carotid body. Respir Physiol Neurobiol 172: 122‐128, 2010.
 424. Kalia M, Davies RO. A neuroanatomical search for glossopharyngeal efferents to the carotid body using the retrograde transport of horseradish peroxidase. Brain Res 149: 477‐481, 1978.
 425. Kameda Y. Immunoelectron microscopic localization of vimentin in sustentacular cells of the carotid body and the adrenal medulla of guinea pigs. J Histochem Cytochem 44: 1439‐1449, 1996.
 426. Kameda Y. Mash1 is required for glomus cell formation in the mouse carotid body. Dev Biol 283: 128‐139, 2005.
 427. Kanagy NL, Walker BR, Nelin LD. Role of endothelin in intermittent hypoxia‐induced hypertension. Hypertension 37: 511‐515, 2001.
 428. Kara T, Narkiewicz K, Somers VK. Chemoreflexes–physiology and clinical implications. Acta Physiol Scand 177: 377‐384, 2003.
 429. Karasawa N, Kondo Y, Nagatsu I. Immunohistocytochemical and immunofluorescent localization of catecholamine‐synthesizing enzymes in the carotid body of the bat and dog. Arch Histol Jpn 45: 429‐435, 1982.
 430. Katz DM, White ME, Hall AK. Lectin binding distinguishes between neuroendocrine and neuronal derivatives of the sympathoadrenal neural crest. J Neurobiol 26: 241‐252, 1995.
 431. Katz‐Salamon M, Lagercrantz H. Hypoxic ventilatory defence in very preterm infants: Attenuation after long term oxygen treatment. Arch Dis Child Fetal Neonatal Ed 70: F90‐F95, 1994.
 432. Kellog R. Historical perspectives. In: Hornbein T, editor. Regulation of Breathing. New York: Marcel Dekker, 1981, p. 3‐66.
 433. Kelly RB. Storage and release of neurotransmitters. Cell 72: 45‐53, 1993.
 434. Kemp PJ. Detecting acute changes in oxygen: Will the real sensor please stand up? Exp Physiol 91: 829‐834, 2006.
 435. Kemp PJ, Telezhkin V, Wilkinson WJ, Mears R, Hanmer SB, Gadeberg HC, Muller CT, Riccardi D, Brazier SP. Enzyme‐linked oxygen sensing by potassium channels. Ann N Y Acad Sci 1177: 112‐118, 2009.
 436. Khan S, Nanduri J, Yuan G, Kinsman B, Kumar GK, Joseph J, Kalyanaraman B, Prabhakar NR. Nox2 mediates intermittent hypoxia‐induced mitochondrial complex I inhibition: Relevance to blood pressure changes in rats. Antioxid Redox Signal, 14: 533‐542, 2011.
 437. Kholwadwala D, Donnelly DF. Maturation of carotid chemoreceptor sensitivity to hypoxia: In vitro studies in the newborn rat. J Physiol 453: 461‐473, 1992.
 438. Kim D, Cavanaugh EJ, Kim I, Carroll JL. Heteromeric TASK‐1/TASK‐3 is the major oxygen‐sensitive background K+ channel in rat carotid body glomus cells. J Physiol 587: 2963‐2975, 2009.
 439. Kim DK, Oh EK, Summers BA, Prabhakar NR, Kumar GK. Release of substance P by low oxygen in the rabbit carotid body: Evidence for the involvement of calcium channels. Brain Res 892: 359‐369, 2001.
 440. Kim DK, Prabhakar NR, Kumar GK. Acetylcholine release from the carotid body by hypoxia: Evidence for the involvement of autoinhibitory receptors. J Appl Physiol 96: 376‐383, 2004.
 441. Kim I, Kim JH, Carroll JL. Postnatal changes in gene expression of subfamilies of TASK K+ channels in rat carotid body. Adv Exp Med Biol 580: 43‐47; discussion 351‐359, 2006.
 442. Kim I, Yang DJ, Donnelly DF, Carroll JL. Fluoresceinated peanut agglutinin (PNA) is a marker for live O(2) sensing glomus cells in rat carotid body. Adv Exp Med Biol 648: 185‐190, 2009.
 443. Kimura H, Nagai Y, Umemura K, Kimura Y. Physiological roles of hydrogen sulfide: Synaptic modulation, neuroprotection, and smooth muscle relaxation. Antioxid Redox Signal 7: 795‐803, 2005.
 444. Kirby GC, McQueen DS. Characterization of opioid receptors in the cat carotid body involved in chemosensory depression in vivo. Br J Pharmacol 88: 889‐898, 1986.
 445. Kline DD, Peng YJ, Manalo DJ, Semenza GL, Prabhakar NR. Defective carotid body function and impaired ventilatory responses to chronic hypoxia in mice partially deficient for hypoxia‐inducible factor 1 alpha. Proc Natl Acad Sci U S A 99: 821‐826, 2002.
 446. Kline DD, Yang T, Huang PL, Prabhakar NR. Altered respiratory responses to hypoxia in mutant mice deficient in neuronal nitric oxide synthase. J Physiol 511(Pt 1): 273‐287, 1998.
 447. Kline DD, Yang T, Premkumar DR, Thomas AJ, Prabhakar NR. Blunted respiratory responses to hypoxia in mutant mice deficient in nitric oxide synthase‐3. J Appl Physiol 88: 1496‐1508, 2000.
 448. Kobayashi S. Fine structure of the carotid body of the dog. Arch Histol Jpn 30: 95‐120, 1968.
 449. Kobayashi S. Comparative cytological studies of the carotid body. 2. Ultrastructure of the synapses on the chief cell. Arch Histol Jpn 33: 397‐420, 1971.
 450. Kobayashi S. An autoradiographic study of the mouse carotid body using tritiated leucine, dopa, dopamine and ATP with special reference to the chief cell as a paraneuron. Arch Histol Jpn 39: 295‐317, 1976.
 451. Kobayashi S, Conforti L, Millhorn DE. Gene expression and function of adenosine A(2A) receptor in the rat carotid body. Am J Physiol Lung Cell Mol Physiol 279: L273‐L282, 2000.
 452. Kobayashi S, Uehara M. Occurrence of afferent synaptic complexes in the carotid body of the mouse. Arch Histol Jpn 32: 193‐201, 1970.
 453. Koerner P, Hesslinger C, Schaefermeyer A, Prinz C, Gratzl M. Evidence for histamine as a transmitter in rat carotid body sensor cells. J Neurochem 91: 493‐500, 2004.
 454. Kohn A. Ueber den bau und die entwicklund der sogenannten carotisdruse. Archiv Mik Anat Entwick 56: 81‐148, 1900.
 455. Kondo H. A light and electron microscopic study on the embryonic development of the rat carotid body. Am J Anat 144: 275‐293, 1975.
 456. Kondo H. An electron microscopic study on innervation of the carotid body of guinea pig. J Ultrastruct Res 37: 544‐562, 1971.
 457. Kondo H. An electron microscopic study on the development of synapses in the rat carotid body. Neurosci Lett 3: 197‐200, 1976a.
 458. Kondo H. Innervation of the carotid body of the adult rat. A serial ultrathin section analysis. Cell Tissue Res 173: 1‐15, 1976b.
 459. Kondo H. Innervation of the chief cells of the carotid body: An ultrastructural review. Arch Histol Jpn 40: 221‐230, 1977.
 460. Kondo H. Are there gap junctions between chief (glomus, type I) cells in the carotid body chemoreceptor? A review. Microsc Res Tech 59: 227‐233, 2002.
 461. Kondo H, Iwanaga T, Nakajima T. Immunocytochemical study on the localization of neuron‐specific enolase and S‐100 protein in the carotid body of rats. Cell Tissue Res 227: 291‐295, 1982.
 462. Kondo H, Kuramoto H, Fujita T. Neuropeptide tyrosine‐like immunoreactive nerve fibers in the carotid body chemoreceptor of rats. Brain Res 372: 353‐356, 1986.
 463. Korkala O, Hervonen A. Origin and development of the catecholamine‐storing cells of the human fetal carotid body. Histochemie 37: 287‐297, 1973.
 464. Kou YR, Ernsberger P, Cragg PA, Cherniack NS, Prabhakar NR. Role of alpha 2‐adrenergic receptors in the carotid body response to isocapnic hypoxia. Respir Physiol 83: 353‐364, 1991.
 465. Koyama Y, Coker RH, Denny JC, Lacy DB, Jabbour K, Williams PE, Wasserman DH. Role of carotid bodies in control of the neuroendocrine response to exercise. Am J Physiol Endocrinol Metab 281: E742‐E748, 2001.
 466. Koyama Y, Coker RH, Stone EE, Lacy DB, Jabbour K, Williams PE, Wasserman DH. Evidence that carotid bodies play an important role in glucoregulation in vivo. Diabetes 49: 1434‐1442, 2000.
 467. Krammer EB. Carotid body chemoreceptor function: Hypothesis based on a new circuit model. Proc Natl Acad Sci U S A 75: 2507‐2511, 1978.
 468. Kreneisz O, Benoit JP, Bayliss DA, Mulkey DK. AMP‐activated protein kinase inhibits TREK channels. J Physiol 587: 5819‐5830, 2009.
 469. Krylov SS, Anichkov SV. The effect of metabolic inhibitors on carotid chemoreceptors. In: Torrance RW, editor. Arterial Chemoreceptors. Oxford: Blackwell Scientific Publications, 1968, p. 103‐109.
 470. Kumar GK. Neuropeptide processing enzymes of the carotid body. Biochemical and immunological characterization of carboxypeptidase activity. Adv Exp Med Biol 410: 319‐323, 1996.
 471. Kumar GK. Peptidases of the peripheral chemoreceptors: Biochemical, immunological, in vitro hydrolytic studies and electron microscopic analysis of neutral endopeptidase‐like activity of the carotid body. Brain Res 748: 39‐50, 1997.
 472. Kumar GK, Kou YR, Overholt JL, Prabhakar NR. Involvement of substance P in neutral endopeptidase modulation of carotid body sensory responses to hypoxia. J Appl Physiol 88: 195‐202, 2000.
 473. Kumar GK, Rai V, Sharma SD, Ramakrishnan DP, Peng YJ, Souvannakitti D, Prabhakar NR. Chronic intermittent hypoxia induces hypoxia‐evoked catecholamine efflux in adult rat adrenal medulla via oxidative stress. J Physiol 575: 229‐239, 2006.
 474. Kumar GK, Yu RK, Overholt JL, Prabhakar NR. Role of substance P in neutral endopeptidase modulation of hypoxic response of the carotid body. Adv Exp Med Biol 475: 705‐713, 2000.
 475. Kumar P. Maturation of chemoreceptor O2 and CO2 sensitivity. In: Lahiri S, Semenza GL, Prabhakar N, editors. Oxygen Sensing. Responses and Adaptation to Hypoxia. New York: Marcel Dekker, 2003, p. 273‐288.
 476. Kumar P. How sweet it is: Sensing low glucose in the carotid body. J Physiol 578: 627, 2007a.
 477. Kumar P. Sensing hypoxia in the carotid body: From stimulus to response. Essays Biochem 43: 43‐60, 2007b.
 478. Kumar P, Bin‐Jaliah I. Adequate stimuli of the carotid body: More than an oxygen sensor? Respir Physiol Neurobiol 157: 12‐21, 2007.
 479. Kumar P, Hanson MA. Re‐setting of the hypoxic sensitivity of aortic chemoreceptors in the new‐born lamb. J Dev Physiol 11: 199‐206, 1989.
 480. Kumar P, Nye PCG, Torrance RW. Do oxygen tension variations contribute to the respiratory oscillations of chemoreceptor discharge in the cat? J Physiol 395: 531‐552, 1988.
 481. Kummer W. Retrograde neuronal labelling and double‐staining immunohistochemistry of tachykinin‐ and calcitonin gene‐related peptide‐immunoreactive pathways in the carotid sinus nerve of the guinea pig. J Auton Nerv Syst 23: 131‐141, 1988.
 482. Kummer W, Acker H. Immunohistochemical demonstration of four subunits of neutrophil NAD(P)H oxidase in type I cells of carotid body. J Appl Physiol 78: 1904‐1909, 1995.
 483. Kummer W, Fischer A, Heym C. Ultrastructure of calcitonin gene‐related peptide‐ and substance P‐like immunoreactive nerve fibres in the carotid body and carotid sinus of the guinea pig. Histochemistry 92: 433‐439, 1989.
 484. Kummer W, Habeck JO. Substance P‐ and calcitonin gene‐related peptide‐like immunoreactivities in the human carotid body studied at light and electron microscopical level. Brain Res 554: 286‐292, 1991.
 485. Kummer W, Yamamoto Y. Cellular distribution of oxygen sensor candidates‐oxidases, cytochromes, K+‐channels–in the carotid body. Microsc Res Tech 59: 234‐242, 2002.
 486. Kusakabe T, Hayashida Y, Matsuda H, Gono Y, Powell FL, Ellisman MH, Kawakami T, Takenaka T. Hypoxic adaptation of the peptidergic innervation in the rat carotid body. Brain Res 806: 165‐174, 1998.
 487. Kusakabe T, Hirakawa H, Oikawa S, Matsuda H, Kawakami T, Takenaka T, Hayashida Y. Morphological changes in the rat carotid body 1, 2, 4, and 8 weeks after the termination of chronically hypocapnic hypoxia. Histol Histopathol 19: 1133‐1140, 2004.
 488. Kusakabe T, Ishii K. A possible role of the glomus cell in controlling vascular tone of the carotid labyrinth of Xenopus laevis. Tohoku J Exp Med 151: 395‐408, 1987.
 489. Kusakabe T, Kawakami T, Tanabe Y, Fujii S, Takenaka T. Distribution of substance P‐containing and catecholaminergic nerve fibers in the rabbit carotid body: An immunohistochemical study in combination with catecholamine fluorescent histochemistry. Arch Histol Cytol 57: 193‐199, 1994.
 490. Kwak DJ, Kwak SD, Gauda EB. The effect of hyperoxia on reactive oxygen species (ROS) in rat petrosal ganglion neurons during development using organotypic slices. Pediatr Res 60: 371‐376, 2006.
 491. Lahiri S. Introductory remarks: Oxygen linked response of carotid chemoreceptors. Adv Exp Med Biol 78: 185‐202, 1977.
 492. Lahiri S. Historical perspectives of cellular oxygen sensing and responses to hypoxia. J Appl Physiol 88: 1467‐1473, 2000.
 493. Lahiri S, DeLaney RG. Stimulus interaction in the responses of carotid body chemoreceptor single afferent fibers. Respir Physiol 24: 249‐266, 1975.
 494. Lahiri S, Forster RE, II. CO2/H(+) sensing: Peripheral and central chemoreception. Int J Biochem Cell Biol 35: 1413‐1435, 2003.
 495. Lahiri S, Mokashi A, Mulligan E, Nishino T. Comparison of aortic and carotid chemoreceptor responses to hypercapnia and hypoxia. J Appl Physiol 51: 55‐61, 1981.
 496. Lahiri S, Mulligan E, Andronikou S, Shirahata M, Mokashi A. Carotid body chemosensory function in prolonged normobaric hyperoxia in the cat. J Appl Physiol 62: 1924‐1931, 1987.
 497. Lahiri S, Mulligan E, Nishino T, Mokashi A. Aortic body chemoreceptor responses to changes in PCO2 and PO2 in the cat. J Appl Physiol 47: 858‐866, 1979.
 498. Lahiri S, Mulligan E, Nishino T, Mokashi A, Davies RO. Relative responses of aortic body and carotid body chemoreceptors to carboxyhemoglobinemia. J Appl Physiol 50: 580‐586, 1981.
 499. Lahiri S, Nishino T, Mokashi A, Mulligan E. Relative responses of aortic body and carotid body chemoreceptors to hypotension. J Appl Physiol 48: 781‐788, 1980.
 500. Lahiri S, Osanai S, Buerk DG, Mokashi A, Chugh DK. Thapsigargin enhances carotid body chemosensory discharge in response to hypoxia in zero [Ca2+]e: Evidence for intracellular Ca2+ release. Brain Res 709: 141‐144, 1996.
 501. Lahiri S, Roy A, Baby SM, Hoshi T, Semenza GL, Prabhakar NR. Oxygen sensing in the body. Prog Biophys Mol Biol 91: 249‐286, 2006.
 502. Lahiri S, Rumsey WL, Wilson DF, Iturriaga R. Contribution of in vivo microvascular PO2 in the cat carotid body chemotransduction. J Appl Physiol 75: 1035‐1043, 1993.
 503. Lahiri S, Smatresk N, Pokorski M, Barnard P, Mokashi A, McGregor KH. Dopaminergic efferent inhibition of carotid body chemoreceptors in chronically hypoxic cats. Am J Physiol 247: R24‐R28, 1984.
 504. Laidler P, Kay JM. A quantitative morphological study of the carotid bodies of rats living at a simulated altitude of 4300 metres. J Pathol 117: 183‐191, 1975.
 505. Laidler P, Kay JM. A quantitative study of some ultrastructural features of the type I cells in the carotid bodies of rats living at a simulated altitude of 4300 metres. J Neurocytol 7: 183‐192, 1978.
 506. Lam SY, Fung ML, Leung PS. Regulation of the angiotensin‐converting enzyme activity by a time‐course hypoxia in the carotid body. J Appl Physiol 96: 809‐813, 2004.
 507. Lam SY, Leung PS. A locally generated angiotensin system in rat carotid body. Regul Pept 107: 97‐103, 2002.
 508. Lam SY, Leung PS. Chronic hypoxia activates a local angiotensin‐generating system in rat carotid body. Mol Cell Endocrinol 203: 147‐153, 2003.
 509. Lam SY, Tipoe GL, Liong EC, Fung ML. Chronic hypoxia upregulates the expression and function of proinflammatory cytokines in the rat carotid body. Histochem Cell Biol 130: 549‐559, 2008a.
 510. Lam SY, Tipoe GL, Liong EC, Fung ML. Differential expressions and roles of hypoxia‐inducible factor‐1alpha, ‐2alpha and ‐3alpha in the rat carotid body during chronic and intermittent hypoxia. Histol Histopathol 23: 271‐280, 2008b.
 511. Landauer RC, Pepper DR, Kumar P. Effect of chronic hypoxaemia from birth upon chemosensitivity in the adult rat carotid body in vitro. J Physiol 485(Pt 2): 543‐550, 1995a.
 512. Landauer RC, Pepper DR, Kumar P. Interaction of temperature and CO2 in the adult rat carotid body, in vitro. J Physiol 489P: 162P‐163P, 1995b.
 513. Landgren S, Neil E. Chemoreceptor impulse activity following haemorrhage. Acta Physiol Scand 23: 158‐167, 1951.
 514. Latini S, Pedata F. Adenosine in the central nervous system: Release mechanisms and extracellular concentrations. J Neurochem 79: 463‐484, 2001.
 515. Le Douarin N, Le Lievre C, Fontaine J. Experimental research on the embryologic origin of the carotid body in birds. C R Acad Sci Hebd Seances Acad Sci D 275: 583‐586, 1972.
 516. Lee KD, Mayou RA, Torrance RW. The effect of blood pressure upon chemoreceptor discharge to hypoxia, and the modification of this effect by the sympathetic‐adrenal system. Q J Exp Physiol Cogn Med Sci 49: 171‐183, 1964.
 517. Leitner LM, Liaubet MJ. Carotid body oxygen consumption of the cat in vitro. Pflugers Arch 323: 315‐322, 1971.
 518. Lemus M, Montero S, Cadenas JL, Lara JJ, Tejeda‐Chavez HR, Alvarez‐Buylla R, de Alvarez‐Buylla ER. GabaB receptors activation in the NTS blocks the glycemic responses induced by carotid body receptor stimulation. Auton Neurosci 141: 73‐82, 2008.
 519. Leniger‐Follert E, Lubbers DW, Wrabetz W. Regulation of local tissue PO2 of the brain cortex at different arterial O2 pressures. Pflugers Arch 359: 81‐95, 1975.
 520. Lesske J, Fletcher EC, Bao G, Unger T. Hypertension caused by chronic intermittent hypoxia–influence of chemoreceptors and sympathetic nervous system. J Hypertens 15: 1593‐1603, 1997.
 521. Leung PS, Fung ML, Tam MS. Renin‐angiotensin system in the carotid body. Int J Biochem Cell Biol 35: 847‐854, 2003.
 522. Lever JD, Boyd JD. Osmiophile granules in the glomus cells of the rabbit carotid body. Nature 179: 1082‐1083, 1957.
 523. Lever JD, Lewis PR, Boyd JD. Observations on the fine structure and histochemistry of the carotid body in the cat and rabbit. J Anat 93: 478‐490, 1959.
 524. Lewis A, Peers C, Ashford ML, Kemp PJ. Hypoxia inhibits human recombinant large conductance, Ca(2+)‐activated K(+) (maxi‐K) channels by a mechanism which is membrane delimited and Ca(2+) sensitive. J Physiol 540: 771‐780, 2002.
 525. Lewis C, Neidhart S, Holy C, North RA, Buell G, Surprenant A. Coexpression of P2X2 and P2X3 receptor subunits can account for ATP‐gated currents in sensory neurons. Nature 377: 432‐435, 1995.
 526. Li Q, Sun B, Wang X, Jin Z, Zhou Y, Dong L, Jiang LH, Rong W. A crucial role for hydrogen sulfide in oxygen sensing via modulating large conductance calcium‐activated potassium channels. Antioxid Redox Signal 12: 1179‐1189, 2010.
 527. Li YL, Gao L, Zucker IH, Schultz HD. NADPH oxidase‐derived superoxide anion mediates angiotensin II‐enhanced carotid body chemoreceptor sensitivity in heart failure rabbits. Cardiovasc Res 75: 546‐554, 2007.
 528. Li YL, Li YF, Liu D, Cornish KG, Patel KP, Zucker IH, Channon KM, Schultz HD. Gene transfer of neuronal nitric oxide synthase to carotid body reverses enhanced chemoreceptor function in heart failure rabbits. Circ Res 97: 260‐267, 2005.
 529. Li YL, Schultz HD. Enhanced sensitivity of Kv channels to hypoxia in the rabbit carotid body in heart failure: Role of angiotensin II. J Physiol 575: 215‐227, 2006.
 530. Li YL, Sun SY, Overholt JL, Prabhakar NR, Rozanski GJ, Zucker IH, Schultz HD. Attenuated outward potassium currents in carotid body glomus cells of heart failure rabbit: Involvement of nitric oxide. J Physiol 555: 219‐229, 2004.
 531. Li YL, Xia XH, Zheng H, Gao L, Li YF, Liu D, Patel KP, Wang W, Schultz HD. Angiotensin II enhances carotid body chemoreflex control of sympathetic outflow in chronic heart failure rabbits. Cardiovasc Res 71: 129‐138, 2006.
 532. Ling L, Olson EB Jr, Vidruk EH, Mitchell GS. Integrated phrenic responses to carotid afferent stimulation in adult rats following perinatal hyperoxia. J Physiol 500(Pt 3): 787‐796, 1997.
 533. Linton RA, Band DM. The effect of potassium on carotid chemoreceptor activity and ventilation in the cat. Respir Physiol 59: 65‐70, 1985.
 534. Linton RA, Band DM, Wolff CB. Carotid chemoreceptor discharge during epinephrine infusion in anesthetized cats. J Appl Physiol 73: 2420‐2424, 1992.
 535. Liu M, King BF, Dunn PM, Rong W, Townsend‐Nicholson A, Burnstock G. Coexpression of P2X(3) and P2X(2) receptor subunits in varying amounts generates heterogeneous populations of P2X receptors that evoke a spectrum of agonist responses comparable to that seen in sensory neurons. J Pharmacol Exp Ther 296: 1043‐1050, 2001.
 536. Liu X, He L, Stensaas L, Dinger B, Fidone S. Adaptation to chronic hypoxia involves immune cell invasion and increased expression of inflammatory cytokines in rat carotid body. Am J Physiol Lung Cell Mol Physiol 296: L158‐L166, 2009.
 537. Llados F, Zapata P. Effects of adrenoceptor stimulating and blocking agents on carotid body chemosensory inhibition. J Physiol 274: 501‐509, 1978a.
 538. Llados F, Zapata P. Effects of dopamine analogues and antagonists on carotid body chemosensors in situ. J Physiol 274: 487‐499, 1978b.
 539. Lopez‐Barneo J. Oxygen and glucose sensing by carotid body glomus cells. Curr Opin Neurobiol 13: 493‐499, 2003.
 540. Lopez‐Barneo J, Lopez‐Lopez JR, Urena J, Gonzalez C. Chemotransduction in the carotid body: K+ current modulated by PO2 in type I chemoreceptor cells. Science 241: 580‐582, 1988.
 541. Lopez‐Lopez J, Gonzalez C, Urena J, Lopez‐Barneo J. Low pO2 selectively inhibits K channel activity in chemoreceptor cells of the mammalian carotid body. J Gen Physiol 93: 1001‐1015, 1989.
 542. Lopez‐Lopez JR, De Luis DA, Gonzalez C. Properties of a transient K+ current in chemoreceptor cells of rabbit carotid body. J Physiol 460: 15‐32, 1993.
 543. Lopez‐Lopez JR, Perez‐Garcia MT. Oxygen sensitive Kv channels in the carotid body. Respir Physiol Neurobiol 157: 65‐74, 2007.
 544. Lowry TF, Forster HV, Pan LG, Serra A, Wenninger J, Nash R, Sheridan D, Franciosi RA. Effects on breathing of carotid body denervation in neonatal piglets. J Appl Physiol 87: 2128‐2135, 1999.
 545. Lugliani R, Whipp BJ, Seard C, Wasserman K. Effect of bilateral carotid body resection on ventilatory control at rest and during exercise in man. New Eng J Med 286: 1105‐1111, 1971.
 546. Luquin MR, Montoro RJ, Guillen J, Saldise L, Insausti R, Del Rio J, Lopez‐Barneo J. Recovery of chronic parkinsonian monkeys by autotransplants of carotid body cell aggregates into putamen. Neuron 22: 743‐750, 1999.
 547. Machacek DW, Garraway SM, Shay BL, Hochman S. Serotonin 5‐HT(2) receptor activation induces a long‐lasting amplification of spinal reflex actions in the rat. J Physiol 537: 201‐207, 2001.
 548. Maines MD. The heme oxygenase system: A regulator of second messenger gases. Annu Rev Pharmacol Toxicol 37: 517‐554, 1997.
 549. Majcherczyk S, Chruscielewski L, Trzebski A. Effect of stimulation of carotid body chemoreceptors upon ganglioglomerular nerve activity and on chemoreceptor discharges in contralateral sinus nerve. Brain Res 76: 167‐170, 1974.
 550. Malik MT, Peng YJ, Kline DD, Adhikary G, Prabhakar NR. Impaired ventilatory acclimatization to hypoxia in mice lacking the immediate early gene fos B. Respir Physiol Neurobiol 145: 23‐31, 2005.
 551. Mark Evans A, Ward JP. Hypoxic pulmonary vasoconstriction–invited article. Adv Exp Med Biol 648: 351‐360, 2009.
 552. Martin‐Body RL, Robson GJ, Sinclair JD. Restoration of hypoxic respiratory responses in the awake rat after carotid body denervation by sinus nerve section. J Physiol 380: 61‐73, 1986.
 553. Maskell PD, Rusius CJ, Whitehead KJ, Kumar P. Adrenaline increases carotid body CO2 sensitivity: An in vivo study. Adv Exp Med Biol 580: 245‐250; discussion 351‐249, 2006.
 554. Massari VJ, Shirahata M, Johnson TA, Gatti PJ. Carotid sinus nerve terminals which are tyrosine hydroxylase immunoreactive are found in the commissural nucleus of the tractus solitarius. J Neurocytol 25: 197‐208, 1996.
 555. Matsumoto S, Mokashi A, Lahiri S. Influence of ganglioglomerular nerve on carotid chemoreceptor activity in the cat. J Auton Nerv Syst 15: 7‐20, 1986.
 556. Matsuoka T, Saiki C, Mortola JP. Metabolic and ventilatory responses to anemic hypoxia in conscious rats. J Appl Physiol 77: 1067‐1072, 1994.
 557. Matteoli M, Haimann C, Torri‐Tarelli F, Polak JM, Ceccarelli B, De Camilli P. Differential effect of alpha‐latrotoxin on exocytosis from small synaptic vesicles and from large dense‐core vesicles containing calcitonin gene‐related peptide at the frog neuromuscular junction. Proc Natl Acad Sci U S A 85: 7366‐7370, 1988.
 558. Mauelshagen J, Sherff CM, Carew TJ. Differential induction of long‐term synaptic facilitation by spaced and massed applications of serotonin at sensory neuron synapses of Aplysia californica. Learn Mem 5: 246‐256, 1998.
 559. McBride A, Ghilagaber S, Nikolaev A, Hardie DG. The glycogen‐binding domain on the AMPK beta subunit allows the kinase to act as a glycogen sensor. Cell Metab 9: 23‐34, 2009.
 560. McCloskey DI. Mechanisms of autonomic control of carotid chemoreceptor activity. Respir Physiol 25: 53‐61, 1975.
 561. McDonald DM. Peripheral chemoreceptors: Structure‐function relations of the carotid body. In: Hornbein TF, editor. Lung Biology in Health and Disease. The Regulation of Breathing. New York: Dekker, 1981, p. 105‐319.
 562. McDonald DM. A morphometric analysis of blood vessels and perivascular nerves in the rat carotid body. J Neurocytol 12: 155‐199, 1983.
 563. McDonald DM, Haskell A. Morphology of connections between arterioles and capillaries in the rat carotid body analysed by reconstructing serial sections. In: Pallot DJ, editor. The Peripheral Arterial Chemoreceptors, London: Croom Helm, 1984, p. 195‐201.
 564. McDonald DM, Larue DT. The ultrastructure and connections of blood vessels supplying the rat carotid body and carotid sinus. J Neurocytol 12: 117‐153, 1983.
 565. McDonald DM, Mitchell RA. A quantitative analysis of synaptic connections in the rat carotid body. In: Purves MJ, editor. The Peripheral Arterial Chemoreceptors. London: Cambridge University Press, 1975a, p. 101‐131.
 566. McDonald DM, Mitchell RA. The innervation of glomus cells, ganglion cells and blood vessels in the rat carotid body: A quantitative ultrastructural analysis. J Neurocytol 4: 177‐230, 1975b.
 567. McEwen BS. Invited review: Estrogens effects on the brain: Multiple sites and molecular mechanisms. J Appl Physiol 91: 2785‐2801, 2001.
 568. McGregor KH, Gil J, Lahiri S. A morphometric study of the carotid body in chronically hypoxic rats. J Appl Physiol 57: 1430‐1438, 1984.
 569. McQueen DS. A quantitative study of the effects of cholinergic drugs on carotid chemoreceptors in the cat. J Physiol 273: 515‐532, 1977.
 570. McQueen DS. Effects of substance P on carotid chemoreceptor activity in the cat. J Physiol 302: 31‐47, 1980.
 571. McQueen DS, Bond SM, Moores C, Chessell I, Humphrey PP, Dowd E. Activation of P2X receptors for adenosine triphosphate evokes cardiorespiratory reflexes in anaesthetized rats. J Physiol 507(Pt 3): 843‐855, 1998.
 572. McQueen DS, Eyzaguirre C. Effects of temperature on carotid chemoreceptor and baroreceptor activity. J Neurophysiol 37: 1287‐1296, 1974.
 573. McQueen DS, Ribeiro JA. Effect of adenosine on carotid chemoreceptor activity in the cat. Br J Pharmacol 74: 129‐136, 1981.
 574. McQueen DS, Ribeiro JA. On the specificity and type of receptor involved in carotid body chemoreceptor activation by adenosine in the cat. Br J Pharmacol 80: 347‐354, 1983.
 575. McQueen DS, Ribeiro JA. Pharmacological characterization of the receptor involved in chemoexcitation induced by adenosine. Br J Pharmacol 88: 615‐620, 1986.
 576. Medbo JI, Sejersted OM. Plasma potassium changes with high intensity exercise. J Physiol 421: 105‐122, 1990.
 577. Migita CT, Matera KM, Ikeda‐Saito M, Olson JS, Fujii H, Yoshimura T, Zhou H, Yoshida T. The oxygen and carbon monoxide reactions of heme oxygenase. J Biol Chem 273: 945‐949, 1998.
 578. Millhorn DE, Raymond R, Conforti L, Zhu W, Beitner‐Johnson D, Filisko T, Genter MB, Kobayashi S, Peng M. Regulation of gene expression for tyrosine hydroxylase in oxygen sensitive cells by hypoxia. Kidney Int 51: 527‐535, 1997.
 579. Mills E, Edwards MW Jr. Stimulation of aortic and carotid chemoreceptors during carbon monoxide inhalation. J Appl Physiol 25: 494‐502, 1968.
 580. Mills E, Jobsis FF. Simultaneous measurement of cytochrome a3 reduction and chemoreceptor afferent activity in the carotid body. Nature 225: 1147‐1149, 1970.
 581. Mills E, Jobsis FF. Mitochondrial respiratory chain of carotid body and chemoreceptor response to changes in oxygen tension. J Neurophysiol 35: 405‐428, 1972.
 582. Milsom WK, Burleson ML. Peripheral arterial chemoreceptors and the evolution of the carotid body. Respir Physiol Neurobiol 157: 4‐11, 2007.
 583. Minguez‐Castellanos A, Escamilla‐Sevilla F, Hotton GR, Toledo‐Aral JJ, Ortega‐Moreno A, Mendez‐Ferrer S, Martin‐Linares JM, Katati MJ, Mir P, Villadiego J, Meersmans M, Perez‐Garcia M, Brooks DJ, Arjona V, Lopez‐Barneo J. Carotid body autotransplantation in Parkinson disease: A clinical and positron emission tomography study. J Neurol Neurosurg Psychiatry 78: 825‐831, 2007.
 584. Mitchell GS, Johnson SM. Neuroplasticity in respiratory motor control. J Appl Physiol 94: 358‐374, 2003.
 585. Mitchell JH, McCloskey DI. Chemoreceptor responses to sympathetic stimulation and changes in blood pressure. Respir Physiol 20: 297‐302, 1974.
 586. Mitchell RA, McDonald DM. Adjustment of chemosensitivity in the cat carotid body by reciprocal synapses. In: Purves M, editor. The Peripheral Arterial Chemoreceptors. London: Cambridge University Press, 1975, p. 269‐282.
 587. Mitchell RA, Sinha AK, McDonald DM. Chemoreceptive properties of regenerated endings of the carotid sinus nerve. Brain Res 43: 681‐685, 1972.
 588. Mokashi A, Li J, Roy A, Baby SM, Lahiri S. ATP causes glomus cell [Ca2+]c increase without corresponding increases in CSN activity. Respir Physiol Neurobiol 138: 1‐18, 2003.
 589. Mokashi A, Roy A, Rozanov C, Osanai S, Storey BT, Lahiri S. High PCO does not alter pHi, but raises [Ca2+]i in cultured rat carotid body glomus cells in the absence and presence of CdC12. Brain Res 803: 194‐197, 1998.
 590. Molnar Z, Petheo GL, Fulop C, Spat A. Effects of osmotic changes on the chemoreceptor cell of rat carotid body. J Physiol 546: 471‐481, 2003.
 591. Moncada S, Palmer RM, Higgs EA. Nitric oxide: physiology, pathophysiology, and pharmacology. Pharmacol Rev 43: 109‐142, 1991.
 592. Monteiro EC, Ribeiro JA. Ventilatory effects of adenosine mediated by carotid body chemoreceptors in the rat. Naunyn Schmiedebergs Arch Pharmacol 335: 143‐148, 1987.
 593. Monteiro EC, Ribeiro JA. Adenosine deaminase and adenosine uptake inhibitions facilitate ventilation in rats. Naunyn Schmiedebergs Arch Pharmacol 340: 230‐238, 1989.
 594. Montero S, Mendoza H, Valles V, Lemus M, Alvarez‐Buylla R, de Alvarez‐Buylla ER. Arginine‐vasopressin mediates central and peripheral glucose regulation in response to carotid body receptor stimulation with Na‐cyanide. J Appl Physiol 100: 1902‐1909, 2006.
 595. Monti‐Bloch L, Eyzaguirre C. Effects of methionine‐enkephalin and substance P on the chemosensory discharge of the cat carotid body. Brain Res 338: 297‐307, 1985.
 596. Monti‐Bloch L, Stensaas LJ, Eyzaguirre C. Carotid body grafts induce chemosensitivity in muscle nerve fibers of the cat. Brain Res 270: 77‐92, 1983a.
 597. Monti‐Bloch L, Stensaas LJ, Eyzaguirre C. Effects of ischemia on the function and structure of the cat carotid body. Brain Res 270: 63‐76, 1983b.
 598. Montoro RJ, Urena J, Fernandez‐Chacon R, Alvarez de Toledo G, Lopez‐Barneo J. Oxygen sensing by ion channels and chemotransduction in single glomus cells. J Gen Physiol 107: 133‐143, 1996.
 599. Moore LG, McCullough RE, Weil JV. Increased HVR in pregnancy: Relationship to hormonal and metabolic changes. J Appl Physiol 62: 158‐163, 1987.
 600. Moore PJ, Clarke JA, Hanson MA, Daly MD, Ead HW. Quantitative studies of the vasculature of the carotid body in fetal and newborn sheep. J Dev Physiol 15: 211‐214, 1991.
 601. Morita E, Chiocchio SR, Tramezzani JH. Four types of main cells in the carotid body of the cat. J Ultrastruct Res 28: 399‐410, 1969.
 602. Mortola JP, Frappell PB. Ventilatory responses to changes in temperature in mammals and other vertebrates. Annu Rev Physiol 62: 847‐874, 2000.
 603. Moudgil R, Michelakis ED, Archer SL. Hypoxic pulmonary vasoconstriction. J Appl Physiol 98: 390‐403, 2005.
 604. Mulligan E, Lahiri S. Dependence of carotid chemoreceptor stimulation by metabolic agents on PaO2 and PaCO2. J Appl Physiol 50: 884‐891, 1981.
 605. Mulligan E, Lahiri S, Storey BT. Carotid body O2 chemoreception and mitochondrial oxidative phosphorylation. J Appl Physiol 51: 438‐446, 1981.
 606. Mustafa AK, Gadalla MM, Snyder SH. Signaling by gasotransmitters. Sci Signal 2: re2, 2009.
 607. Nair PK, Buerk DG, Whalen WJ. Cat carotid body oxygen metabolism and chemoreception described by a two‐cytochrome model. Am J Physiol 250: H202‐H207, 1986.
 608. Nanduri J, Wang N, Yuan G, Khan SA, Souvannakitti D, Peng YJ, Kumar GK, Garcia JA, Prabhakar NR. Intermittent hypoxia degrades HIF‐2alpha via calpains resulting in oxidative stress: Implications for recurrent apnea‐induced morbidities. Proc Natl Acad Sci U S A 106: 1199‐1204, 2009.
 609. Narkiewicz K, Pesek CA, van de Borne PJ, Kato M, Somers VK. Enhanced sympathetic and ventilatory responses to central chemoreflex activation in heart failure. Circulation 100: 262‐267, 1999.
 610. Narkiewicz K, van de Borne PJ, Pesek CA, Dyken ME, Montano N, Somers VK. Selective potentiation of peripheral chemoreflex sensitivity in obstructive sleep apnea. Circulation 99: 1183‐1189, 1999.
 611. Nattie E. CO2, brainstem chemoreceptors and breathing. Prog Neurobiol 59: 299‐331, 1999.
 612. Neil E, Joels N. The carotid glomus sensory mechanism. In: Cunningham DA, Lloyd BB, editor. The Regulation of Human Respiration. Oxford: Blackwell, 1963, p. 163‐171.
 613. Neil E, O'Regan RG. Efferent and afferent impulse activity in the “intact” sinus nerve. J Physiol 205: 20P‐21P, 1969.
 614. Neil E, O'Regan RG. Efferent and afferent impulse activity recorded from few‐fibre preparations of otherwise intact sinus and aortic nerves. J Physiol 215: 33‐47, 1971a.
 615. Neil E, O'Regan RG. The effects of electrical stimulation of the distal end of the cut sinus and aortic nerves on peripheral arterial chemoreceptor activity in the cat. J Physiol 215: 15‐32, 1971b.
 616. Neil E, Redwood CR, Schweitzer A. Effects of electrical stimulation of the aortic nerve on blood pressure and respiration in cats and rabbits under chloralose and nembutal anaesthesia. J Physiol 109: 392‐401, 1949.
 617. Nielsen AM, Bisgard GE, Vidruk EH. Carotid chemoreceptor activity during acute and sustained hypoxia in goats. J Appl Physiol 65: 1796‐1802, 1988.
 618. Nielsen M, Smith H. Studies on the regulation of respiration in acute hypoxia; with a appendix on respiratory control during prolonged hypoxia. Acta Physiol Scand 24: 293‐313, 1952.
 619. Nieto FJ, Young TB, Lind BK, Shahar E, Samet JM, Redline S, D'Agostino RB, Newman AB, Lebowitz MD, Pickering TG. Association of sleep‐disordered breathing, sleep apnea, and hypertension in a large community‐based study. Sleep Heart Health Study. JAMA 283: 1829‐1836, 2000.
 620. Ninomiya Y, Kishimoto T, Yamazawa T, Ikeda H, Miyashita Y, Kasai H. Kinetic diversity in the fusion of exocytotic vesicles. EMBO J 16: 929‐934, 1997.
 621. Nishi K, Eyzaguirre C. Effects of atropine on chemoreceptor discharges in the carotid body of the cat. Brain Res 23: 292‐297, 1970.
 622. Nishi K, Okajima Y, Ito H, Sugahara K. Alteration of chemoreceptor responses and ultrastructural features of ischemic carotid body of the cat. Jpn J Physiol 31: 677‐694, 1981.
 623. Nishi K, Stensaas LJ. The ultrastructure and source of nerve endings in the carotid body. Cell Tissue Res 154: 303‐319, 1974.
 624. Nock ML, Difiore JM, Arko MK, Martin RJ. Relationship of the ventilatory response to hypoxia with neonatal apnea in preterm infants. J Pediatr 144: 291‐295, 2004.
 625. North RA, Surprenant A. Pharmacology of cloned P2X receptors. Annu Rev Pharmacol Toxicol 40: 563‐580, 2000.
 626. Nurse CA. Localization of acetylcholinesterase in dissociated cell cultures of the carotid body of the rat. Cell Tissue Res 250: 21‐27, 1987.
 627. Nurse CA. Neurotransmission and neuromodulation in the chemosensory carotid body. Auton Neurosci 120: 1‐9, 2005.
 628. Nurse CA, Fearon IM. Carotid body chemoreceptors in dissociated cell culture. Microsc Res Tech 59: 249‐255, 2002.
 629. Nurse CA, Vollmer C. Role of basic FGF and oxygen in control of proliferation, survival, and neuronal differentiation in carotid body chromaffin cells. Dev Biol 184: 197‐206, 1997.
 630. Nurse CA, Zhang M. Acetylcholine contributes to hypoxic chemotransmission in co‐cultures of rat type 1 cells and petrosal neurons. Respir Physiol 115: 189‐199, 1999.
 631. Nye PC. Identification of peripheral chemoreceptor stimuli. Med Sci Sports Exerc 26: 311‐318, 1994.
 632. Nye PC, Torrance RW, Folgering H. Arterial chemoreceptor inhibition by a single inspirate containing carbon monoxide is accounted for by raised arterial PO2. Pflugers Arch 393: 313‐317, 1982.
 633. O'Regan RG. Oxygen usage of the cat carotid body perfused with cell‐free solutions. Ir J Med Sci 148: 69‐77, 1979.
 634. O'Regan RG. The influences exerted by the centrifugal innervation of the carotid sinus nerve. In: Purves MJ, editor. The Peripheral Arterial Chemoreceptors. London: Cambridge University Press, 1975, p. 221‐240.
 635. O'Regan RG. Responses of carotid body chemosensory activity and blood flow to stimulation of sympathetic nerves in the cat. J Physiol 315: 81‐98, 1981.
 636. O'Regan RG, Ennis S, Kennedt M, Bannigan J. Assessment of the diameter of blood vessels linking the arterial and venous systems in the carotid body of the anaesthetized cat. In: Lahiri S, Forster RE II, Davies RO, Pack AI, editors. Chemoreceptors and Reflexes in Breathing: Cellular and Molecular Aspects. New York: Oxford University Press, 1989, p. 12‐23.
 637. Obeso A, Almaraz L, Gonzalez C. Correlation between adenosine triphosphate levels, dopamine release and electrical activity in the carotid body: Support for the metabolic hypothesis of chemoreception. Brain Res 348: 64‐68, 1985.
 638. Obeso A, Almaraz L, Gonzalez C. Effects of 2‐deoxy‐D‐glucose on in vitro cat carotid body. Brain Res 371: 25‐36, 1986.
 639. Obeso A, Almaraz L, Gonzalez C. Effects of cyanide and uncouplers on chemoreceptor activity and ATP content of the cat carotid body. Brain Res 481: 250‐257, 1989.
 640. Obeso A, Gomez‐Nino A, Gonzalez C. NADPH oxidase inhibition does not interfere with low PO2 transduction in rat and rabbit CB chemoreceptor cells. Am J Physiol 276: C593‐C601, 1999.
 641. Obeso A, Gomez‐Nino MA, Almaraz L, Dinger B, Fidone S, Gonzalez C. Evidence for two types of nicotinic receptors in the cat carotid body chemoreceptor cells. Brain Res 754: 298‐302, 1997.
 642. Obeso A, Gonzalez C, Dinger B, Fidone S. Metabolic activation of carotid body glomus cells by hypoxia. J Appl Physiol 67: 484‐487, 1989.
 643. Obeso A, Gonzalez C, Rigual R, Dinger B, Fidone S. Effect of low O2 on glucose uptake in rabbit carotid body. J Appl Physiol 74: 2387‐2393, 1993.
 644. Obeso A, Rocher A, Fidone S, Gonzalez C. The role of dihydropyridine‐sensitive Ca2+ channels in stimulus‐evoked catecholamine release from chemoreceptor cells of the carotid body. Neuroscience 47: 463‐472, 1992.
 645. Oka Y, Ibuki T, Matsumura K, Namba M, Yamazaki Y, Poole S, Tanaka Y, Kobayashi S. Interleukin‐6 is a candidate molecule that transmits inflammatory information to the CNS. Neuroscience 145: 530‐538, 2007.
 646. Olson KR, Dombkowski RA, Russell MJ, Doellman MM, Head SK, Whitfield NL, Madden JA. Hydrogen sulfide as an oxygen sensor/transducer in vertebrate hypoxic vasoconstriction and hypoxic vasodilation. J Exp Biol 209: 4011‐4023, 2006.
 647. Olson KR, Healy MJ, Qin Z, Skovgaard N, Vulesevic B, Duff DW, Whitfield NL, Yang G, Wang R, Perry SF. Hydrogen sulfide as an oxygen sensor in trout gill chemoreceptors. Am J Physiol Regul Integr Comp Physiol 295: R669‐R680, 2008.
 648. Olson KR, Whitfield NL, Bearden SE, St Leger J, Nilson E, Gao Y, Madden JA. Hypoxic pulmonary vasodilation: A paradigm shift with a hydrogen sulfide mechanism. Am J Physiol Regul Integr Comp Physiol 298: R51‐R60.
 649. Olson LG, Saunders NA. Effect of a dopamine antagonist on ventilation during sustained hypoxia in mice. J Appl Physiol 62: 1222‐1226, 1987.
 650. Oomori Y, Nakaya K, Tanaka H, Iuchi H, Ishikawa K, Satoh Y, Ono K. Immunohistochemical and histochemical evidence for the presence of noradrenaline, serotonin and gamma‐aminobutyric acid in chief cells of the mouse carotid body. Cell Tissue Res 278: 249‐254, 1994.
 651. Ortega‐Saenz P, Levitsky KL, Marcos‐Almaraz MT, Bonilla‐Henao V, Pascual A, Lopez‐Barneo J. Carotid body chemosensory responses in mice deficient of TASK channels. J Gen Physiol 135: 379‐392, 2010.
 652. Ortega‐Saenz P, Pardal R, Garcia‐Fernandez M, Lopez‐Barneo J. Rotenone selectively occludes sensitivity to hypoxia in rat carotid body glomus cells. J Physiol 548: 789‐800, 2003.
 653. Ortega‐Saenz P, Pascual A, Gomez‐Diaz R, Lopez‐Barneo J. Acute oxygen sensing in heme oxygenase‐2 null mice. J Gen Physiol 128: 405‐411, 2006.
 654. Ortiz F, Iturriaga R, Varas R. Sustained hypoxia enhances TASK‐like current inhibition by acute hypoxia in rat carotid body type‐I cells. Adv Exp Med Biol 648: 83‐88, 2009.
 655. Ortiz FC, Varas R. Muscarinic modulation of TASK‐like background potassium channel in rat carotid body chemoreceptor cells. Brain Res, 2010.
 656. Osanai S, Buerk DG, Mokashi A, Chugh DK, Lahiri S. Cat carotid body chemosensory discharge (in vitro) is insensitive to charybdotoxin. Brain Res 747: 324‐327, 1997.
 657. Osborne MP, Butler PJ. New theory for receptor mechanism of carotid body chemoreceptors. Nature 254: 701‐703, 1975.
 658. Overholt JL, Ficker E, Yang T, Shams H, Bright GR, Prabhakar NR. HERG‐Like potassium current regulates the resting membrane potential in glomus cells of the rabbit carotid body. J Neurophysiol 83: 1150‐1157, 2000.
 659. Overholt JL, Prabhakar NR. Ca2+ current in rabbit carotid body glomus cells is conducted by multiple types of high‐voltage‐activated Ca2+ channels. J Neurophysiol 78: 2467‐2474, 1997.
 660. Overholt JL, Prabhakar NR. Norepinephrine inhibits a toxin resistant Ca2+ current in carotid body glomus cells: evidence for a direct G protein mechanism. J Neurophysiol 81: 225‐233, 1999.
 661. Oyama Y, Walker JL, Eyzaguirre C. Intracellular potassium activity, potassium equilibrium potential and membrane potential of carotid body glomus cells. Brain Res 381: 405‐408, 1986.
 662. Paciga M, Vollmer C, Nurse C. Role of ET‐1 in hypoxia‐induced mitosis of cultured rat carotid body chemoreceptors. Neuroreport 10: 3739‐3744, 1999.
 663. Paintal AS. Mechanism of stimulation of aortic chemoreceptors by natural stimuli and chemical substances. J Physiol 189: 63‐84, 1967.
 664. Palacios‐Callender M, Quintero M, Hollis VS, Springett RJ, Moncada S. Endogenous NO regulates superoxide production at low oxygen concentrations by modifying the redox state of cytochrome c oxidase. Proc Natl Acad Sci U S A 101: 7630‐7635, 2004.
 665. Pan LG, Forster HV, Martino P, Strecker PJ, Beales J, Serra A, Lowry TF, Forster MM, Forster AL. Important role of carotid afferents in control of breathing. J Appl Physiol 85: 1299‐1306, 1998.
 666. Pang L, Eyzaguirre C. Hypoxia affects differently the intracellular pH of clustered and isolated glomus cells of the rat carotid body. Brain Res 623: 349‐355, 1993.
 667. Pani G, Bedogni B, Colavitti R, Anzevino R, Borrello S, Galeotti T. Cell compartmentalization in redox signaling. IUBMB Life 52: 7‐16, 2001.
 668. Panneton WM, Loewy AD. Projections of the carotid sinus nerve to the nucleus of the solitary tract in the cat. Brain Res 191: 239‐244, 1980.
 669. Pardal R, Lopez‐Barneo J. Low glucose‐sensing cells in the carotid body. Nat Neurosci 5: 197‐198, 2002.
 670. Pardal R, Ludewig U, Garcia‐Hirschfeld J, Lopez‐Barneo J. Secretory responses of intact glomus cells in thin slices of rat carotid body to hypoxia and tetraethylammonium. Proc Natl Acad Sci U S A 97: 2361‐2366, 2000.
 671. Pardal R, Ortega‐Saenz P, Duran R, Lopez‐Barneo J. Glia‐like stem cells sustain physiologic neurogenesis in the adult mammalian carotid body. Cell 131: 364‐377, 2007.
 672. Paterson DJ. Potassium and ventilation in exercise. J Appl Physiol 72: 811‐820, 1992.
 673. Paterson DJ, Friedland JS, Bascom DA, Clement ID, Cunningham DA, Painter R, Robbins PA. Changes in arterial K+ and ventilation during exercise in normal subjects and subjects with McArdle's syndrome. J Physiol 429: 339‐348, 1990.
 674. Patterson PH. Control of cell fate in a vertebrate neurogenic lineage. Cell 62: 1035‐1038, 1990.
 675. Pawar A, Nanduri J, Yuan G, Khan SA, Wang N, Kumar GK, Prabhakar NR. Reactive oxygen species‐dependent endothelin signaling is required for augmented hypoxic sensory response of the neonatal carotid body by intermittent hypoxia. Am J Physiol Regul Integr Comp Physiol 296: R735‐R742, 2009.
 676. Pawar A, Peng YJ, Jacono FJ, Prabhakar NR. Comparative analysis of neonatal and adult rat carotid body responses to chronic intermittent hypoxia. J Appl Physiol 104: 1287‐1294, 2008.
 677. Pearse AG, Polak JM, Rost FW, Fontaine J, Le Lievre C, Le Douarin N. Demonstration of the neural crest origin of type I (APUD) cells in the avian carotid body, using a cytochemical marker system. Histochemie 34: 191‐203, 1973.
 678. Peers C. Effects of D600 on hypoxic suppression of K+ currents in isolated type I carotid body cells of the neonatal rat. FEBS Lett 271: 37‐40, 1990a.
 679. Peers C. Hypoxic suppression of K+ currents in type I carotid body cells: Selective effect on the Ca2(+)‐activated K+ current. Neurosci Lett 119: 253‐256, 1990b.
 680. Peers C. Interactions of chemostimuli at the single cell level: Studies in a model system. Exp Physiol 89: 60‐65, 2004.
 681. Peers C, Carpenter E, Hatton CJ, Wyatt CN, Bee D. Ca2+ channel currents in type I carotid body cells of normoxic and chronically hypoxic neonatal rats. Brain Res 739: 251‐257, 1996.
 682. Peers C, Green FK. Inhibition of Ca(2+)‐activated K+ currents by intracellular acidosis in isolated type I cells of the neonatal rat carotid body. J Physiol 437: 589‐602, 1991.
 683. Peers C, Wyatt CN. The role of maxiK channels in carotid body chemotransduction. Respir Physiol Neurobiol 157: 75‐82, 2007.
 684. Peng YJ, Nanduri J, Raghuraman G, Souvannakitti D, Gadalla MM, Kumar GK, Snyder SH, Prabhakar NR. H2S mediates O2 sensing in the carotid body. Proc Natl Acad Sci U S A 107: 10719‐10724, 2010.
 685. Peng YJ, Nanduri J, Yuan G, Wang N, Deneris E, Pendyala S, Natarajan V, Kumar GK, Prabhakar NR. NADPH oxidase is required for the sensory plasticity of the carotid body by chronic intermittent hypoxia. J Neurosci 29: 4903‐4910, 2009.
 686. Peng YJ, Overholt JL, Kline D, Kumar GK, Prabhakar NR. Induction of sensory long‐term facilitation in the carotid body by intermittent hypoxia: Implications for recurrent apneas. Proc Natl Acad Sci U S A 100: 10073‐10078, 2003.
 687. Peng YJ, Prabhakar NR. Effect of two paradigms of chronic intermittent hypoxia on carotid body sensory activity. J Appl Physiol 96: 1236‐1242, 2004.
 688. Peng YJ, Rennison J, Prabhakar NR. Intermittent hypoxia augments carotid body and ventilatory response to hypoxia in neonatal rat pups. J Appl Physiol 97: 2020‐2025, 2004.
 689. Peng YJ, Yuan G, Jacono FJ, Kumar GK, Prabhakar NR. 5‐HT evokes sensory long‐term facilitation of rodent carotid body via activation of NADPH oxidase. J Physiol 576: 289‐295, 2006.
 690. Peng YJ, Yuan G, Ramakrishnan D, Sharma SD, Bosch‐Marce M, Kumar GK, Semenza GL, Prabhakar NR. Heterozygous HIF‐1alpha deficiency impairs carotid body‐mediated systemic responses and reactive oxygen species generation in mice exposed to intermittent hypoxia. J Physiol 577: 705‐716, 2006.
 691. Pepper DR, Kumar P. Inhibition of adult rat carotid body type I cell K+ currents by combined hypoxic and acidotic stimuli. J Physiol 504.P: 202P, 1997.
 692. Pepper DR, Landauer RC, Kumar P. Effect of charybdotoxin on hypoxic chemosensitivity in the adult rat carotid body in vitro. J Physiol 487.P: 177‐178P, 1995.
 693. Pepper DR, Landauer RC, Kumar P. Postnatal development of CO2‐O2 interaction in the rat carotid body in vitro. J Physiol 485(Pt 2): 531‐541, 1995.
 694. Pepper DR, Landauer RC, Kumar P. Extracellular potassium and chemosensitivity in the rat carotid body, in vitro. J Physiol 493(Pt 3): 833‐843, 1996.
 695. Pequignot JM, Hellstrom S, Johansson C. Intact and sympathectomized carotid bodies of long‐term hypoxic rats: A morphometric ultrastructural study. J Neurocytol 13: 481‐493, 1984.
 696. Perez‐Garcia MT, Almaraz L, Gonzalez C. Cyclic AMP modulates differentially the release of dopamine induced by hypoxia and other stimuli and increases dopamine synthesis in the rabbit carotid body. J Neurochem 57: 1992‐2000, 1991.
 697. Perez‐Garcia MT, Colinas O, Miguel‐Velado E, Moreno‐Dominguez A, Lopez‐Lopez JR. Characterization of the Kv channels of mouse carotid body chemoreceptor cells and their role in oxygen sensing. J Physiol 557: 457‐471, 2004.
 698. Perez‐Garcia MT, Obeso A, Lopez‐Lopez JR, Herreros B, Gonzalez C. Characterization of cultured chemoreceptor cells dissociated from adult rabbit carotid body. Am J Physiol 263: C1152‐C1159, 1992.
 699. Phillis JW. Adenosine in the control of the cerebral circulation. Cerebrovasc Brain Metab Rev 1: 26‐54, 1989.
 700. Pickkers P, Garcha RS, Schachter M, Smits P, Hughes AD. Inhibition of carbonic anhydrase accounts for the direct vascular effects of hydrochlorothiazide. Hypertension 33: 1043‐1048, 1999.
 701. Pickkers P, Hughes AD, Russel FG, Thien T, Smits P. In vivo evidence for K(Ca) channel opening properties of acetazolamide in the human vasculature. Br J Pharmacol 132: 443‐450, 2001.
 702. Pietruschka F. Cytochemical demonstration of catecholamines in cells of the carotid body in primary tissue culture. Cell Tissue Res 151: 317‐321, 1974.
 703. Pietruschka F. Calcium influx in cultured carotid body cells is stimulated by acetylcholine and hypoxia. Brain Res 347: 140‐143, 1985.
 704. Pietruschka F, Acker A. Membrane potential and Ca influx in hypoxic and normoxic carotid body type‐I cells. Adv Exp Med Biol 191: 727‐735, 1985.
 705. Pietruschka F, Schafer D. Fine structure of chemosensitive cells (glomus caroticum) in tissue culture. Cell Tissue Res 168: 55‐63, 1976.
 706. Piruat JI, Pintado CO, Ortega‐Saenz P, Roche M, Lopez‐Barneo J. The mitochondrial SDHD gene is required for early embryogenesis, and its partial deficiency results in persistent carotid body glomus cell activation with full responsiveness to hypoxia. Mol Cell Biol 24: 10933‐10940, 2004.
 707. Pizarro J, Ryan ML, Hedrick MS, Xue DH, Keith IM, Bisgard GE. Intracarotid substance P infusion inhibits ventilation in the goat. Respir Physiol 101: 11‐22, 1995.
 708. Poets CF, Samuels MP, Southall DP. Epidemiology and pathophysiology of apnoea of prematurity. Biol Neonate 65: 211‐219, 1994.
 709. Pokorski M, Lahiri S. Effects of naloxone on carotid body chemoreception and ventilation in the cat. J Appl Physiol 51: 1533‐1538, 1981.
 710. Pokorski M, Lahiri S. Relative peripheral and central chemosensory responses to metabolic alkalosis. Am J Physiol 245: R873‐R880, 1983.
 711. Ponte J, Purves MJ. Frequency response of carotid body chemoreceptors in the cat to changes of PaCO2, PaO2, and pHa. J Appl Physiol 37: 635‐647, 1974.
 712. Ponte J, Sadler CL. Studies on the regenerated carotid sinus nerve of the rabbit. J Physiol 410: 411‐424, 1989.
 713. Potter EK, McCloskey DI. Excitation of carotid body chemoreceptors by neuropeptide‐Y. Respir Physiol 67: 357‐365, 1987.
 714. Powell FL, Milsom WK, Mitchell GS. Time domains of the hypoxic ventilatory response. Respir Physiol 112: 123‐134, 1998.
 715. Prabhakar NR. Neurotransmitters in the carotid body. Adv Exp Med Biol 360: 57‐69, 1994.
 716. Prabhakar NR. NO and CO as second messengers in oxygen sensing in the carotid body. Respir Physiol 115: 161‐168, 1999.
 717. Prabhakar NR. O2 sensing at the mammalian carotid body: Why multiple O2 sensors and multiple transmitters? Exp Physiol 91: 17‐23, 2006.
 718. Prabhakar NR, Cao H, Lowe JA III, Snider RM. Selective inhibition of the carotid body sensory response to hypoxia by the substance P receptor antagonist CP‐96,345. Proc Natl Acad Sci U S A 90: 10041‐10045, 1993.
 719. Prabhakar NR, Dinerman JL, Agani FH, Snyder SH. Carbon monoxide: A role in carotid body chemoreception. Proc Natl Acad Sci U S A 92: 1994‐1997, 1995.
 720. Prabhakar NR, Kumar GK, Chang CH, Agani FH, Haxhiu MA. Nitric oxide in the sensory function of the carotid body. Brain Res 625: 16‐22, 1993.
 721. Prabhakar NR, Landis SC, Kumar GK, Mullikin‐Kilpatrick D, Cherniack NS, Leeman S. Substance P and neurokinin A in the cat carotid body: Localization, exogenous effects and changes in content in response to arterial pO2. Brain Res 481: 205‐214, 1989.
 722. Prabhakar NR, Mitra J, Cherniack NS. Role of substance P in hypercapnic excitation of carotid chemoreceptors. J Appl Physiol 63: 2418‐2425, 1987.
 723. Prabhakar NR, Peng YJ. Peripheral chemoreceptors in health and disease. J Appl Physiol 96: 359‐366, 2004.
 724. Prabhakar NR, Peng YJ, Kumar GK, Pawar A. Altered carotid body function by intermittent hypoxia in neonates and adults: Relevance to recurrent apneas. Respir Physiol Neurobiol 157: 148‐153, 2007.
 725. Prabhakar NR, Runold M, Kumar GK, Cherniack NS, Scarpa A. Substance P and mitochondrial oxygen consumption: Evidence for a direct intracellular role for the peptide. Peptides 10: 1003‐1006, 1989.
 726. Prabhakar NR, Runold M, Yamamoto Y, Lagercrantz H, von Euler C. Effect of substance P antagonist on the hypoxia‐induced carotid chemoreceptor activity. Acta Physiol Scand 121: 301‐303, 1984.
 727. Prasad M, Fearon IM, Zhang M, Laing M, Vollmer C, Nurse CA. Expression of P2X2 and P2X3 receptor subunits in rat carotid body afferent neurones: Role in chemosensory signalling. J Physiol 537: 667‐677, 2001.
 728. Pressel DM, Misler S. Sodium channels contribute to action potential generation in canine and human pancreatic islet B cells. J Membr Biol 116: 273‐280, 1990.
 729. Prieto‐Lloret J, Caceres AI, Obeso A, Rocher A, Rigual R, Agapito MT, Bustamante R, Castaneda J, Perez‐Garcia MT, Lopez‐Lopez JR, Gonzalez C. Ventilatory responses and carotid body function in adult rats perinatally exposed to hyperoxia. J Physiol 554: 126‐144, 2004.
 730. Purves MJ. Carotid body blood flow and oxygen usage in the cat. J Physiol 202: 1P‐2P, 1969.
 731. Purves MJ. The effect of hypoxia, hypercapnia and hypotension upon carotid body blood flow and oxygen consumption in the cat. J Physiol 209: 395‐416, 1970a.
 732. Purves MJ. The role of the cervical sympathetic nerve in the regulation of oxygen consumption of the carotid body of the cat. J Physiol 209: 417‐431, 1970a.
 733. Putnam RW, Filosa JA, Ritucci NA. Cellular mechanisms involved in CO(2) and acid signaling in chemosensitive neurons. Am J Physiol Cell Physiol 287: C1493‐C1526, 2004.
 734. Qin Z, Lewis JE, Perry SF. Zebrafish (Danio rerio) gill neuroepithelial cells are sensitive chemoreceptors for environmental CO2. J Physiol 588: 861‐872, 2010.
 735. Raman IM, Sprunger LK, Meisler MH, Bean BP. Altered subthreshold sodium currents and disrupted firing patterns in Purkinje neurons of Scn8a mutant mice. Neuron 19: 881‐891, 1997.
 736. Regensteiner JG, Woodard WD, Hagerman DD, Weil JV, Pickett CK, Bender PR, Moore LG. Combined effects of female hormones and metabolic rate on ventilatory drives in women. J Appl Physiol 66: 808‐813, 1989.
 737. Rey S, Del Rio R, Alcayaga J, Iturriaga R. Chronic intermittent hypoxia enhances cat chemosensory and ventilatory responses to hypoxia. J Physiol 560: 577‐586, 2004.
 738. Rey S, Del Rio R, Iturriaga R. Contribution of endothelin‐1 to the enhanced carotid body chemosensory responses induced by chronic intermittent hypoxia. Brain Res 1086: 152‐159, 2006.
 739. Reyes EP, Fernandez R, Larrain C, Zapata P. Carotid body chemosensory activity and ventilatory chemoreflexes in cats persist after combined cholinergic‐purinergic block. Respir Physiol Neurobiol 156: 23‐32, 2007a.
 740. Reyes EP, Fernandez R, Larrain C, Zapata P. Effects of combined cholinergic‐purinergic block upon cat carotid body chemoreceptors in vitro. Respir Physiol Neurobiol 156: 17‐22, 2007b.
 741. Ridderstrale Y, Hanson MA. Histochemical localization of carbonic anhydrase in the cat carotid body. Ann N Y Acad Sci 429: 398‐400, 1984.
 742. Rigual R, Gonzalez E, Fidone S, Gonzalez C. Effects of low pH on synthesis and release of catecholamines in the cat carotid body in vitro. Brain Res 309: 178‐181, 1984.
 743. Rigual R, Gonzalez E, Gonzalez C, Fidone S. Synthesis and release of catecholamines by the cat carotid body in vitro: Effects of hypoxic stimulation. Brain Res 374: 101‐109, 1986.
 744. Robbins PA. Evidence for interaction between the contributions to ventilation from the central and peripheral chemoreceptors in man. J Physiol 401: 503‐518, 1988.
 745. Rocher A, Caceres AI, Almaraz L, Gonzalez C. EPAC signalling pathways are involved in low PO2 chemoreception in carotid body chemoreceptor cells. J Physiol 587: 4015‐4027, 2009.
 746. Rocher A, Geijo‐Barrientos E, Caceres AI, Rigual R, Gonzalez C, Almaraz L. Role of voltage‐dependent calcium channels in stimulus‐secretion coupling in rabbit carotid body chemoreceptor cells. J Physiol 562: 407‐420, 2005.
 747. Rocher A, Gonzalez C, Almaraz L. Adenosine inhibits L‐type Ca2+ current and catecholamine release in the rabbit carotid body chemoreceptor cells. Eur J Neurosci 11: 673‐681, 1999.
 748. Rocher A, Obeso A, Gonzalez C, Herreros B. Ionic mechanisms for the transduction of acidic stimuli in rabbit carotid body glomus cells. J Physiol 433: 533‐548, 1991.
 749. Rodman JR, Curran AK, Henderson KS, Dempsey JA, Smith CA. Carotid body denervation in dogs: Eupnea and the ventilatory response to hyperoxic hypercapnia. J Appl Physiol 91: 328‐335, 2001.
 750. Roeggla G, Roeggla M, Wagner A, Laggner AN. Poor ventilatory response to mild hypoxia may inhibit acclimatization at moderate altitude in elderly patients after carotid surgery. Br J Sports Med 29: 110‐112, 1995.
 751. Roig E, Perez‐Villa F, Morales M, Jimenez W, Orus J, Heras M, Sanz G. Clinical implications of increased plasma angiotensin II despite ACE inhibitor therapy in patients with congestive heart failure. Eur Heart J 21: 53‐57, 2000.
 752. Rong W, Gourine AV, Cockayne DA, Xiang Z, Ford AP, Spyer KM, Burnstock G. Pivotal role of nucleotide P2X2 receptor subunit of the ATP‐gated ion channel mediating ventilatory responses to hypoxia. J Neurosci 23: 11315‐11321, 2003.
 753. Rosamund W, Flegal K, Friday G, Furie K, Go A, Greenlund K, Haase N, Ho M, Howard V, Kissela B, Kittner S, Lloyd‐Jones D, McDermott M, Meigs J, Moy C, Nichol G, O'Donnell CJ, TRoger V, Rumsfeld J, Sorlie P, Steinberger J, Thom T, Wassertheil‐Smoller S, Hong Y. Heart disease and stroke statistics–2007 update. A report from the American Heart Association Statistics Committee and Stroke Statistics Subcommittee. Circulation 115: e69‐e171, 2007.
 754. Ross LL. Electron microscopic observations of the carotid body of the cat. J Biophys Biochem Cytol 6: 253‐262, 1959.
 755. Roux JC, Brismar H, Aperia A, Lagercrantz H. Developmental changes in HIF transcription factor in carotid body: Relevance for O2 sensing by chemoreceptors. Pediatr Res 58: 53‐57, 2005.
 756. Roy A, Rozanov C, Mokashi A, Lahiri S. Redox‐based inhibition of K+ channel/current is not related to hypoxic chemosensory responses in rat carotid body. Adv Exp Med Biol 475: 645‐653, 2000.
 757. Rumsey WL, Iturriaga R, Spergel D, Lahiri S, Wilson DF. Optical measurements of the dependence of chemoreception on oxygen pressure in the cat carotid body. Am J Physiol 261: C614‐C622, 1991.
 758. Runold M, Cherniack NS, Prabhakar NR. Effect of adenosine on chemosensory activity of the cat aortic body. Respir Physiol 80: 299‐306, 1990a.
 759. Runold M, Cherniack NS, Prabhakar NR. Effect of adenosine on isolated and superfused cat carotid body activity. Neurosci Lett 113: 111‐114, 1990b.
 760. Saarelainen S, Seppala E, Laasonen K, Hasan J. Circulating endothelin‐1 in obstructive sleep apnea. Endothelium 5: 115‐118, 1997.
 761. Saiki C, Seki N, Furuya H, Matsumoto S. The acute effects of insulin on the cardiorespiratory responses to hypoxia in streptozotocin‐induced diabetic rats. Acta Physiol Scand 183: 107‐115, 2005.
 762. Sampson SR. Effects of mecamylamine on responses of carotid body chemoreceptors in vivo to physiological and pharmacological stimuli. J Physiol 212: 655‐666, 1971.
 763. Sampson SR. Innervation of the carotid body: Another point of view. Fed Proc 31: 1383‐1384, 1972a.
 764. Sampson SR. Mechanism of efferent inhibition of carotid body chemoreceptors in the cat. Brain Res 45: 266‐270, 1972b.
 765. Sanchez D, Lopez‐Lopez JR, Perez‐Garcia MT, Sanz‐Alfayate G, Obeso A, Ganfornina MD, Gonzalez C. Molecular identification of Kvalpha subunits that contribute to the oxygen‐sensitive K+ current of chemoreceptor cells of the rabbit carotid body. J Physiol 542: 369‐382, 2002.
 766. Sato M, Ikeda K, Yoshizaki K, Koyano H. Response of cytosolic calcium to anoxia and cyanide in cultured glomus cells of newborn rabbit carotid body. Brain Res 551: 327‐330, 1991.
 767. Sato M, Severinghaus JW, Powell FL, Xu FD, Spellman MJ Jr. Augmented hypoxic ventilatory response in men at altitude. J Appl Physiol 73: 101‐107, 1992.
 768. Schultz HD, Li YL. Carotid body function in heart failure. Respir Physiol Neurobiol 157: 171‐185, 2007.
 769. Schultz HD, Sun SY. Chemoreflex function in heart failure. Heart Fail Rev 5: 45‐56, 2000.
 770. Schweitzer A, Wright S. Action of prostigmine and acetylcholine on respiration. Q J Exp Phys 28: 33‐47, 1938.
 771. Schweitzer E. Coordinated release of ATP and ACh from cholinergic synaptosomes and its inhibition by calmodulin antagonists. J Neurosci 7: 2948‐2956, 1987.
 772. Seals DR, Johnson DG, Fregosi RF. Hyperoxia lowers sympathetic activity at rest but not during exercise in humans. Am J Physiol 260: R873‐R878, 1991.
 773. Sebastiao AM, Ribeiro JA. Adenosine A2 receptor‐mediated excitatory actions on the nervous system. Prog Neurobiol 48: 167‐189, 1996.
 774. Sebastiao AM, Ribeiro JA. Fine‐tuning neuromodulation by adenosine. Trends Pharmacol Sci 21: 341‐346, 2000.
 775. Seidl E. On the morphology of the vascular system of the carotid body of cat and rabbit and its relation to the glomus Type I cells. In: Purves MJ, editor. The Peripheral Arterial Chemoreceptors. London: Cambridge University Press, 1975, p. 293‐299.
 776. Semenza GL. HIF‐1: Mediator of physiological and pathophysiological responses to hypoxia. J Appl Physiol 88: 1474‐1480, 2000.
 777. Senay LC Jr. Increased blood osmolarity and its effect on respiration of dehydrating men. Pflugers Arch 309: 165‐175, 1969.
 778. Shahar E, Whitney CW, Redline S, Lee ET, Newman AB, Javier Nieto F, O'Connor GT, Boland LL, Schwartz JE, Samet JM. Sleep‐disordered breathing and cardiovascular disease: Cross‐sectional results of the Sleep Heart Health Study. Am J Respir Crit Care Med 163: 19‐25, 2001.
 779. Shaw K, Montague W, Pallot DJ. Biochemical studies on the release of catecholamines from the rat carotid body in vitro. Biochim Biophys Acta 1013: 42‐46, 1989.
 780. Shirahata M, Balbir A, Otsubo T, Fitzgerald RS. Role of acetylcholine in neurotransmission of the carotid body. Respir Physiol Neurobiol 157: 93‐105, 2007.
 781. Shirahata M, Fitzgerald RS. Dependency of hypoxic chemotransduction in cat carotid body on voltage‐gated calcium channels. J Appl Physiol 71: 1062‐1069, 1991a.
 782. Shirahata M, Fitzgerald RS. The presence of CO2/HCO3‐ is essential for hypoxic chemotransduction in the in vivo perfused carotid body. Brain Res 545: 297‐300, 1991b.
 783. Shirahata M, Ishizawa Y, Rudisill M, Schofield B, Fitzgerald RS. Presence of nicotinic acetylcholine receptors in cat carotid body afferent system. Brain Res 814: 213‐217, 1998.
 784. Shirahata M, Schofield B, Chin BY, Guilarte TR. Culture of arterial chemoreceptor cells from adult cats in defined medium. Brain Res 658: 60‐66, 1994.
 785. Shu HF, Wang BR, Wang SR, Yao W, Huang HP, Zhou Z, Wang X, Fan J, Wang T, Ju G. IL‐1beta inhibits IK and increases [Ca2+]i in the carotid body glomus cells and increases carotid sinus nerve firings in the rat. Eur J Neurosci 25: 3638‐3647, 2007.
 786. Silveira SA, Viana Lima NR, Haibara AS, Coimbra CC. The hypothalamic paraventricular nucleus and carotid receptors modulate hyperglycemia induced by hemorrhage. Brain Res 993: 183‐191, 2003.
 787. Simchowitz L, Roos A. Regulation of intracellular pH in human neutrophils. J Gen Physiol 85: 443‐470, 1985.
 788. Smith CA, Rodman JR, Chenuel BJ, Henderson KS, Dempsey JA. Response time and sensitivity of the ventilatory response to CO2 in unanesthetized intact dogs: central vs. peripheral chemoreceptors. J Appl Physiol 100: 13‐19, 2006.
 789. Smith PG, Mills E. Autoradiographic identification of the terminations of petrosal ganglion neurons in the cat carotid body. Brain Res 113: 174‐178, 1976.
 790. Smith PG, Mills E. Restoration of reflex ventilatory response to hypoxia after removal of carotid bodies in the cat. Neuroscience 5: 573‐580, 1980.
 791. Sneyd JR, Linton RA, Band DM. Ventilatory effects of potassium during hyperoxia, normoxia and hypoxia in anaesthetized cats. Respir Physiol 72: 59‐64, 1988.
 792. Snyder SH. Nitric oxide: First in a new class of neurotransmitters. Science 257: 494‐496, 1992.
 793. Somers VK, Abboud FM. Chemoreflexes–responses, interactions and implications for sleep apnea. Sleep 16: S30‐S33; discussion S33‐S34, 1993.
 794. Spergel D, Lahiri S. Differential modulation by extracellular ATP of carotid chemosensory responses. J Appl Physiol 74: 3052‐3056, 1993.
 795. Stamler JS. Redox signaling: Nitrosylation and related target interactions of nitric oxide. Cell 78: 931‐936, 1994.
 796. Starlinger H, Lubbers DW. Oxygen consumption of the isolated carotid body tissue (cat). Pflugers Arch 366: 61‐66, 1976.
 797. Stea A, Jackson A, Macintyre L, Nurse CA. Long‐term modulation of inward currents in O2 chemoreceptors by chronic hypoxia and cyclic AMP in vitro. J Neurosci 15: 2192‐2202, 1995.
 798. Stea A, Jackson A, Nurse CA. Hypoxia and N6,O2′‐dibutyryladenosine 3′,5′‐cyclic monophosphate, but not nerve growth factor, induce Na+ channels and hypertrophy in chromaffin‐like arterial chemoreceptors. Proc Natl Acad Sci U S A 89: 9469‐9473, 1992.
 799. Stea A, Nurse CA. Chloride channels in cultured glomus cells of the rat carotid body. Am J Physiol 257: C174‐C181, 1989.
 800. Stea A, Nurse CA. Whole‐cell and perforated‐patch recordings from O2‐sensitive rat carotid body cells grown in short‐ and long‐term culture. Pflugers Arch 418: 93‐101, 1991.
 801. Stefansson K, Wollmann RL, Moore BW. Distribution of S‐100 protein outside the central nervous system. Brain Res 234: 309‐317, 1982.
 802. Stensaas LJ, Stensaas SS, Gonzalez C, Fidone S. Analytical electronmicroscopy of granular vesicles in the carotid body of the normal and reserpinized cat. In: Bellmonte C, Pallot D, Acker H, Fidone S, editors. Arterial Chemoreceptors. Leicester: Leicester University Press, 1981, p. 176‐186.
 803. Stickland MK, Miller JD, Smith CA, Dempsey JA. Carotid chemoreceptor modulation of regional blood flow distribution during exercise in health and chronic heart failure. Circ Res 100: 1371‐1378, 2007.
 804. Stickland MK, Morgan BJ, Dempsey JA. Carotid chemoreceptor modulation of sympathetic vasoconstrictor outflow during exercise in healthy humans. J Physiol 586: 1743‐1754, 2008.
 805. Stoop R, Surprenant A, North RA. Different sensitivities to pH of ATP‐induced currents at four cloned P2X receptors. J Neurophysiol 78: 1837‐1840, 1997.
 806. Streller T, Huckstorf C, Pfeiffer C, Acker H. Unusual cytochrome a592 with low PO2 affinity correlates as putative oxygen sensor with rat carotid body chemoreceptor discharge. FASEB J 16: 1277‐1279, 2002.
 807. Stulbarg MS, Winn WR, Kellett LE. Bilateral carotid body resection for the relief of dyspnea in severe chronic obstructive pulmonary disease. Physiologic and clinical observations in three patients. Chest 95: 1123‐1128, 1989.
 808. Summers BA, Overholt JL, Prabhakar NR. Nitric oxide inhibits L‐type Ca2+ current in glomus cells of the rabbit carotid body via a cGMP‐independent mechanism. J Neurophysiol 81: 1449‐1457, 1999.
 809. Summers BA, Overholt JL, Prabhakar NR. Augmentation of L‐type calcium current by hypoxia in rabbit carotid body glomus cells: Evidence for a PKC‐sensitive pathway. J Neurophysiol 84: 1636‐1644, 2000.
 810. Summers BA, Overholt JL, Prabhakar NR. CO(2) and pH independently modulate L‐type Ca(2+) current in rabbit carotid body glomus cells. J Neurophysiol 88: 604‐612, 2002.
 811. Sun MK, Reis DJ. Dopamine or transmitter release from rat carotid body may not be essential to hypoxic chemoreception. Am J Physiol 267: R1632‐R1639, 1994.
 812. Sun SY, Wang W, Zucker IH, Schultz HD. Enhanced activity of carotid body chemoreceptors in rabbits with heart failure: Role of nitric oxide. J Appl Physiol 86: 1273‐1282, 1999a.
 813. Sun SY, Wang W, Zucker IH, Schultz HD. Enhanced peripheral chemoreflex function in conscious rabbits with pacing‐induced heart failure. J Appl Physiol 86: 1264‐1272, 1999b.
 814. Swanson GD, Whipp BJ, Kaufman RD, Aqleh KA, Winter B, Bellville JW. Effect of hypercapnia on hypoxic ventilatory drive in carotid body‐resected man. J Appl Physiol 45: 871‐877, 1978.
 815. Tafil‐Klawe M, Thiele AE, Raschke F, Mayer J, Peter JH, von Wichert W. Peripheral chemoreceptor reflex in obstructive sleep apnea patients; a relationship between ventilatory response to hypoxia and nocturnal bradycardia during apnea events. Pneumologie 45 Suppl 1: 309‐311, 1991.
 816. Tan ZY, Lu Y, Whiteis CA, Simms AE, Paton JF, Chapleau MW, Abboud FM. Chemoreceptor hypersensitivity, sympathetic excitation, and overexpression of ASIC and TASK channels before the onset of hypertension in SHR. Circ Res 106: 536‐545, 2010.
 817. Tatsumi K, Pickett CK, Weil JV. Attenuated carotid body hypoxic sensitivity after prolonged hypoxic exposure. J Appl Physiol 70: 748‐755, 1991.
 818. Tatsumi K, Pickett CK, Weil JV. Possible role of dopamine in ventilatory acclimatization to high altitude. Respir Physiol 99: 63‐73, 1995.
 819. Taube H. Dissertationem inauguralem de vera nervi inter costalis origine. Gottingen, 1743.
 820. Taylor CT, Moncada S. Nitric oxide, cytochrome C oxidase, and the cellular response to hypoxia. Arterioscler Thromb Vasc Biol 30: 643‐647, 2010.
 821. Telezhkin V, Brazier SP, Cayzac SH, Wilkinson WJ, Riccardi D, Kemp PJ. Mechanism of inhibition by hydrogen sulfide of native and recombinant BKCa channels. Respir Physiol Neurobiol 172: 169‐178, 2010.
 822. Teppema LJ, Barts PW, Evers JA. The effect of the phase relationship between the arterial blood gas oscillations and central neural respiratory activity on phrenic motoneurone output in cats. Respir Physiol 61: 301‐316, 1985.
 823. Teppema LJ, Bijl H, Romberg RR, Dahan A. Antioxidants reverse depression of the hypoxic ventilatory response by acetazolamide in man. J Physiol 572: 849‐856, 2006.
 824. Teppema LJ, Dahan A, Olievier CN. Low‐dose acetazolamide reduces CO(2)‐O(2) stimulus interaction within the peripheral chemoreceptors in the anaesthetised cat. J Physiol 537: 221‐229, 2001.
 825. Teppema LJ, Nieuwenhuijs D, Sarton E, Romberg R, Olievier CN, Ward DS, Dahan A. Antioxidants prevent depression of the acute hypoxic ventilatory response by subanaesthetic halothane in men. J Physiol 544: 931‐938, 2002.
 826. Thomas‐Reetz AC, De Camilli P. A role for synaptic vesicles in non‐neuronal cells: Clues from pancreatic beta cells and from chromaffin cells. FASEB J 8: 209‐216, 1994.
 827. Thompson CM, Troche K, Jordan HL, Barr BL, Wyatt CN. Evidence for functional, inhibitory, histamine H3 receptors in rat carotid body Type I cells. Neurosci Lett 471: 15‐19, 2010.
 828. Thompson RJ, Jackson A, Nurse CA. Developmental loss of hypoxic chemosensitivity in rat adrenomedullary chromaffin cells. J Physiol 498(Pt 2): 503‐510, 1997.
 829. Thorens B. GLUT2 in pancreatic and extra‐pancreatic gluco‐detection (review). Mol Membr Biol 18: 265‐273, 2001.
 830. Thorens B, Sarkar HK, Kaback HR, Lodish HF. Cloning and functional expression in bacteria of a novel glucose transporter present in liver, intestine, kidney, and beta‐pancreatic islet cells. Cell 55: 281‐290, 1988.
 831. Thureson‐Klein A. Exocytosis from large and small dense cored vesicles in noradrenergic nerve terminals. Neuroscience 10: 245‐259, 1983.
 832. Tian H, McKnight SL, Russell DW. Endothelial PAS domain protein 1 (EPAS1), a transcription factor selectively expressed in endothelial cells. Genes Dev 11: 72‐82, 1997.
 833. Timmers HJ, Karemaker JM, Wieling W, Marres HA, Folgering HT, Lenders JW. Baroreflex and chemoreflex function after bilateral carotid body tumor resection. J Hypertens 21: 591‐599, 2003.
 834. Timmers HJ, Wieling W, Karemaker JM, Lenders JW. Cardiovascular responses to stress after carotid baroreceptor denervation in humans. Ann N Y Acad Sci 1018: 515‐519, 2004.
 835. Tipoe GL, Fung ML. Expression of HIF‐1alpha, VEGF and VEGF receptors in the carotid body of chronically hypoxic rat. Respir Physiol Neurobiol 138: 143‐154, 2003.
 836. Tjong YW, Chen Y, Liong EC, Tipoe GL, Fung ML. Chronic hypoxia modulates the function and expression of melatonin receptors in the rat carotid body. J Pineal Res 40: 125‐134, 2006.
 837. Tolkovsky AM, Richards CD. Na+/H+ exchange is the major mechanism of pH regulation in cultured sympathetic neurons: Measurements in single cell bodies and neurites using a fluorescent pH indicator. Neuroscience 22: 1093‐1102, 1987.
 838. Toorop RJ, Scheltinga MR, Moll FL, Bleys RL. Anatomy of the carotid sinus nerve and surgical implications in carotid sinus syndrome. J Vasc Surg 50: 177‐182, 2009.
 839. Torbati D, Sherpa AK, Lahiri S, Mokashi A, Albertine KH, DiGiulio C. Hyperbaric oxygenation alters carotid body ultrastructure and function. Respir Physiol 92: 183‐196, 1993.
 840. Torrance RW, Bartels EM, McLaren AJ. Update on the bicarbonate hypothesis. Adv Exp Med Biol 337: 241‐250, 1993.
 841. Torrealba F. Calcitonin gene‐related peptide immunoreactivity in the nucleus of the tractus solitarius and the carotid receptors of the cat originates from peripheral afferents. Neuroscience 47: 165‐173, 1992.
 842. Torrealba F, Alcayaga J. Nerve branching and terminal arborizations in the carotid body of the cat. A light microscopic study following anterograde injury filling of carotid nerve axons with horseradish peroxidase. Neuroscience 19: 581‐595, 1986.
 843. Torrealba F, Correa R. Ultrastructure of calcitonin gene‐related peptide‐immunoreactive, unmyelinated afferents to the cat carotid body: A case of volume transmission. Neuroscience 64: 777‐785, 1995.
 844. Trapp S, Aller MI, Wisden W, Gourine AV. A role for TASK‐1 (KCNK3) channels in the chemosensory control of breathing. J Neurosci 28: 8844‐8850, 2008.
 845. Triggle DJ. 1,4‐Dihydropyridines as calcium channel ligands and privileged structures. Cell Mol Neurobiol 23: 293‐303, 2003.
 846. Trzebski A, Sato Y, Suzuki A, Sato A. Inhibition of nitric oxide synthesis potentiates the responsiveness of carotid chemoreceptors to systemic hypoxia in the rat. Neurosci Lett 190: 29‐32, 1995.
 847. Trzebski A, Tafil M, Zoltwski M, Przybylski J. Central and peripheral chemosensitivity in early essential hypertension in man. In: Schlaefke ME, Koepchen HP, See WR, editors. Central Neurone Environment and the Control Systems of Breathing and Circulation. New York: Springer‐Verlag, 1983, p. 204‐213.
 848. Turrens JF. Mitochondrial formation of reactive oxygen species. J Physiol 552: 335‐344, 2003.
 849. Urena J, Fernandez‐Chacon R, Benot AR, Alvarez de Toledo GA, Lopez‐Barneo J. Hypoxia induces voltage‐dependent Ca2+ entry and quantal dopamine secretion in carotid body glomus cells. Proc Natl Acad Sci U S A 91: 10208‐10211, 1994.
 850. Urena J, Lopez‐Lopez J, Gonzalez C, Lopez‐Barneo J. Ionic currents in dispersed chemoreceptor cells of the mammalian carotid body. J Gen Physiol 93: 979‐999, 1989.
 851. Valdes V, Mosqueira M, Rey S, Del Rio R, Iturriaga R. Inhibitory effects of NO on carotid body: contribution of neural and endothelial nitric oxide synthase isoforms. Am J Physiol Lung Cell Mol Physiol 284: L57‐L68, 2003.
 852. Vandier C, Conway AF, Landauer RC, Kumar P. Presynaptic action of adenosine on a 4‐aminopyridine‐sensitive current in the rat carotid body. J Physiol 515(Pt 2): 419‐429, 1999.
 853. Varas R, Alcayaga J, Iturriaga R. ACh and ATP mediate excitatory transmission in cat carotid identified chemoreceptor units in vitro. Brain Res 988: 154‐163, 2003.
 854. Varas R, Wyatt CN, Buckler KJ. Modulation of TASK‐like background potassium channels in rat arterial chemoreceptor cells by intracellular ATP and other nucleotides. J Physiol 583: 521‐536, 2007.
 855. Verhage M, McMahon HT, Ghijsen WE, Boomsma F, Scholten G, Wiegant VM, Nicholls DG. Differential release of amino acids, neuropeptides, and catecholamines from isolated nerve terminals. Neuron 6: 517‐524, 1991.
 856. Verkhratsky A, Orkand RK, Kettenmann H. Glial calcium: Homeostasis and signaling function. Physiol Rev 78: 99‐141, 1998.
 857. Verna A. Terminaisons nerveuses afferentes et efferentes dans la glomus carotidien du lapin. J Microsc, Paris 16: 299‐308, 1973.
 858. Verna A. Observations on the innervation of the carotid body of the rabbit. In: Purves MJ, editor. The Peripheral Arterial Chemoreceptors. London: Cambridge University Press, 1975, p. 75‐99.
 859. Verna A. Dense‐cored vesicles and cell types in the rabbit carotid body. In: Acker H, Fidone S, Pallot D, Eyzaguirre C, Lubbers DW, Torrance RW, editors. Chemoreception in the Carotid Body. Berlin: Springer‐Verlag, 1977, p. 216‐220.
 860. Verna A. Ulstrastructure of the carotid body in the mammals. Int Rev Cytol 60: 271‐330, 1979.
 861. Verna A. Ultrastructural localizations of post‐ganglionic sympathetic nerve endings in the rabbit carotid body. In: Belmonte C, Pallot D, Acker H, Fidone S, editors. Arterial Chemoreceptors. Leicester: Leicester University Press, 1981, p. 54‐63.
 862. Verna A. The mammalian carotid body: Morphological data. In: Gonzalez C, editor. The Carotid Body Chemoreceptors. Heidelberg: Springer, 1997, p. 1‐29.
 863. Verna A, Barets A, Salat C. Distribution of sympathetic nerve endings within the rabbit carotid body: A histochemical and ultrastructural study. J Neurocytol 13: 849‐865, 1984.
 864. Verna A, Roumy M, Leitner LM. Loss of chemoreceptive properties of the rabbit carotid body after destruction of the glomus cells. Brain Res 100: 13‐23, 1975.
 865. Verna A, Roumy M, Leitner LM. Role of the carotid body cells: Long‐term consequences of their cryodestruction. Neurosci Lett 16: 281‐285, 1980.
 866. Verna A, Talib N, Roumy M, Pradet A. Effects of metabolic inhibitors and hypoxia on the ATP, ADP and AMP content of the rabbit carotid body in vitro: The metabolic hypothesis in question. Neurosci Lett 116: 156‐161, 1990.
 867. Vicario I, Obeso A, Rocher A, Lopez‐Lopez JR, Gonzalez C. Intracellular Ca(2+) stores in chemoreceptor cells of the rabbit carotid body: Significance for chemoreception. Am J Physiol Cell Physiol 279: C51‐C61, 2000.
 868. Vicario I, Rigual R, Obeso A, Gonzalez C. Characterization of the synthesis and release of catecholamine in the rat carotid body in vitro. Am J Physiol Cell Physiol 278: C490‐C499, 2000.
 869. Vidruk EH, Olson EB, Ling L, Mitchell GS. Carotid sinus nerve responses to hypoxia and cyanide are attenuated in adult rats following perinatal hyperoxia. Physiologist 39: 190, 1996.
 870. Vidruk EH, Olson EB Jr., Ling L, Mitchell GS. Responses of single‐unit carotid body chemoreceptors in adult rats. J Physiol 531: 165‐170, 2001.
 871. Vizek M, Pickett CK, Weil JV. Increased carotid body hypoxic sensitivity during acclimatization to hypobaric hypoxia. J Appl Physiol 63: 2403‐2410, 1987.
 872. von Euler US, Liljestrand G, Zotterman Y. The excitation mechanism of the chemoreceptors of the carotid body. Scand Arch Physiol 83: 132‐152, 1939.
 873. Wagenaar M, Teppema L, Berkenbosch A, Olievier C, Folgering H. The effect of low‐dose acetazolamide on the ventilatory CO2 response curve in the anaesthetized cat. J Physiol 495(Pt 1): 227‐237, 1996.
 874. Wang X, Wang BR, Duan XL, Zhang P, Ding YQ, Jia Y, Jiao XY, Ju G. Strong expression of interleukin‐1 receptor type I in the rat carotid body. J Histochem Cytochem 50: 1677‐1684, 2002.
 875. Wang X, Zhang XJ, Xu Z, Li X, Li GL, Ju G, Wang BR. Morphological evidence for existence of IL‐6 receptor alpha in the glomus cells of rat carotid body. Anat Rec A Discov Mol Cell Evol Biol 288: 292‐296, 2006.
 876. Wang YY, Perrin DG, Cutz E. Localization of cholecystokinin‐like and calcitonin‐like peptides in infant carotid bodies: A light‐ and electron‐microscopic immunohistochemical study. Cell Tissue Res 272: 169‐174, 1993.
 877. Wang ZY, Bisgard GE. Chronic hypoxia‐induced morphological and neurochemical changes in the carotid body. Microsc Res Tech 59: 168‐177, 2002.
 878. Wang ZZ, Bredt DS, Fidone SJ, Stensaas LJ. Neurons synthesizing nitric oxide innervate the mammalian carotid body. J Comp Neurol 336: 419‐432, 1993.
 879. Wang ZZ, Dinger B, Fidone SJ, Stensaas LJ. Changes in tyrosine hydroxylase and substance P immunoreactivity in the cat carotid body following chronic hypoxia and denervation. Neuroscience 83: 1273‐1281, 1998.
 880. Wang ZZ, Dinger BG, Stensaas LJ, Fidone SJ. The role of nitric oxide in carotid chemoreception. Biol Signals 4: 109‐116, 1995.
 881. Wang ZZ, He L, Stensaas LJ, Dinger BG, Fidone SJ. Localization and in vitro actions of atrial natriuretic peptide in the cat carotid body. J Appl Physiol 70: 942‐946, 1991.
 882. Wang ZZ, Stensaas LJ, Bredt DS, Dinger B, Fidone SJ. Localization and actions of nitric oxide in the cat carotid body. Neuroscience 60: 275‐286, 1994.
 883. Wang ZZ, Stensaas LJ, Dinger B, Fidone SJ. Immunocytochemical localization of choline acetyltransferase in the carotid body of the cat and rabbit. Brain Res 498: 131‐134, 1989.
 884. Wang ZZ, Stensaas LJ, Dinger B, Fidone SJ. The co‐existence of biogenic amines and neuropeptides in the type I cells of the cat carotid body. Neuroscience 47: 473‐480, 1992.
 885. Wang ZZ, Stensaas LJ, Dinger BG, Fidone SJ. Nitric oxide mediates chemoreceptor inhibition in the cat carotid body. Neuroscience 65: 217‐229, 1995.
 886. Ward DS, Voter WA, Karan S. The effects of hypo‐ and hyperglycaemia on the hypoxic ventilatory response in humans. J Physiol 582: 859‐869, 2007.
 887. Ward JP. Oxygen sensors in context. Biochim Biophys Acta 1777: 1‐14, 2008.
 888. Ward SA. Peripheral and central chemoreceptor control of ventilation during exercise in humans. Can J Appl Physiol 19: 305‐333, 1994.
 889. Warner MM, Mitchell GS. Ventilatory responses to hyperkalemia and exercise in normoxic and hypoxic goats. Respir Physiol 82: 239‐249, 1990.
 890. Wasicko MJ, Breitwieser GE, Kim I, Carroll JL. Postnatal development of carotid body glomus cell response to hypoxia. Respir Physiol Neurobiol 154: 356‐371, 2006.
 891. Wasicko MJ, Sterni LM, Bamford OS, Montrose MH, Carroll JL. Resetting and postnatal maturation of oxygen chemosensitivity in rat carotid chemoreceptor cells. J Physiol 514(Pt 2): 493‐503, 1999.
 892. Wasserman K, Whipp BJ, Casaburi R. Respiratory control during exercise. In: Fishman AP, Cherniack NS, Widdicombe JG, editors. Handbook of Physiology. The Respiratory System. Control of Breathingvol II, pt 2. Bethesda: American Physiological Society, 1986, sect. 3, p. 595‐620.
 893. Wasserman K, Whipp BJ, Koyal SN, Cleary MG. Effect of carotid body resection on ventilatory and acid‐base control during exercise. J Appl Physiol 39: 354‐358, 1975.
 894. Watanabe T, Kumar P, Hanson MA. Elevation of metabolic rate by pyrogen administration does not affect the gain of respiratory peripheral chemoreflexes in unanesthetized kittens. Pediatr Res 44: 357‐362, 1998.
 895. Watkins LR, Maier SF. Beyond neurons: Evidence that immune and glial cells contribute to pathological pain states. Physiol Rev 82: 981‐1011, 2002.
 896. Watt AH, Reid PG, Stephens MR, Routledge PA. Adenosine‐induced respiratory stimulation in man depends on site of infusion. Evidence for an action on the carotid body? Br J Clin Pharmacol 23: 486‐490, 1987.
 897. Watt AH, Routledge PA. Adenosine stimulates respiration in man. Br J Clin Pharmacol 20: 503‐506, 1985.
 898. Waypa GB, Schumacker PT. Hypoxic pulmonary vasoconstriction: Redox events in oxygen sensing. J Appl Physiol 98: 404‐414, 2005.
 899. Weaver DR. A2a adenosine receptor gene expression in developing rat brain. Brain Res Mol Brain Res 20: 313‐327, 1993.
 900. Weil JV. Ventilatory control at high altitude. In: Fishman AP, Cherniack NS, Widdicombe JG, editors. Handbook of Physiology. The Respiratory System. Control of Breathing, vol II, pt 2. Bethesda MD: American Physiological Society, 1986, sect. 3, p. 703‐728.
 901. Weil JV, Zwillich CW. Control of breathing in endocrine and metabolic disorders and in obesity. In: Altose MD, Kawakami Y, editors. Control of Breathing in Health and Disease. New York: Dekker, 1999, p. 581‐608.
 902. Whalen WJ, Nair P. PO2 in the carotid body perfused and/or superfused with cell‐free media. J Appl Physiol 41: 180‐184, 1976.
 903. Whalen WJ, Nair P. Oxidative metabolism and tissue PO2 of the carotid body. In: Acker H, O'Regan RG, editors. Physiology of the Peripheral Arterial Chemoreceptors. Amsterdam: Elsevier, 1983, p. 117‐132.
 904. Whalen WJ, Nair P, Sidebotham T, Spande J, Lacerna M. Cat carotid body: Oxygen consumption and other parameters. J Appl Physiol 50: 129‐133, 1981.
 905. Whalen WJ, Savoca J, Nair P. Oxygen tension measurements in carotid body of the cat. Am J Physiol 225: 986‐991, 1973.
 906. Whipp BJ. Carotid bodies and breathing in humans. Thorax 49: 1081‐1084a, 1994a.
 907. Whipp BJ. Peripheral chemoreceptor control of exercise hyperpnea in humans. Med Sci Sports Exerc 26: 337‐347, 1994b.
 908. Whipp BJ, Wasserman K. Carotid bodies and ventilatory control dynamics in man. Fed Proc 39: 2668‐2673, 1980.
 909. Wightman RM, Jankowski JA, Kennedy RT, Kawagoe KT, Schroeder TJ, Leszczyszyn DJ, Near JA, Diliberto EJ Jr, Viveros OH. Temporally resolved catecholamine spikes correspond to single vesicle release from individual chromaffin cells. Proc Natl Acad Sci U S A 88: 10754‐10758, 1991.
 910. Wilding TJ, Cheng B, Roos A. pH regulation in adult rat carotid body glomus cells. Importance of extracellular pH, sodium, and potassium. J Gen Physiol 100: 593‐608, 1992.
 911. Williams BA, Buckler KJ. Biophysical properties and metabolic regulation of a TASK‐like potassium channel in rat carotid body type 1 cells. Am J Physiol Lung Cell Mol Physiol 286: L221‐L230, 2004.
 912. Williams BA, Smyth J, Boon AW, Hanson MA, Kumar P, Blanco CE. Development of respiratory chemoreflexes in response to alternations of fractional inspired oxygen in the newborn infant. J Physiol 442: 81‐90, 1991.
 913. Williams SE, Wootton P, Mason HS, Bould J, Iles DE, Riccardi D, Peers C, Kemp PJ. Hemoxygenase‐2 is an oxygen sensor for a calcium‐sensitive potassium channel. Science 306: 2093‐2097, 2004.
 914. Winkler H. The adrenal chromaffin granule: A model for large dense core vesicles of endocrine and nervous tissue. J Anat 183(Pt 2): 237‐252, 1993.
 915. Winn HR, Rubio R, Berne RM. Brain adenosine concentration during hypoxia in rats. Am J Physiol 241: H235‐H242, 1981.
 916. Woods A, Dickerson K, Heath R, Hong SP, Momcilovic M, Johnstone SR, Carlson M, Carling D. Ca2+/calmodulin‐dependent protein kinase kinase‐beta acts upstream of AMP‐activated protein kinase in mammalian cells. Cell Metab 2: 21‐33, 2005.
 917. Woods RI. Penetration of horseradish peroxidase between all elements of the carotid body. In: Purves MJ, editors. The Peripheral Arterial Chemoreceptors. London: Cambridge University Press, 1975, p. 195‐205.
 918. Wyatt CN, Buckler KJ. The effect of mitochondrial inhibitors on membrane currents in isolated neonatal rat carotid body type I cells. J Physiol 556: 175‐191, 2004.
 919. Wyatt CN, Mustard KJ, Pearson SA, Dallas ML, Atkinson L, Kumar P, Peers C, Hardie DG, Evans AM. AMP‐activated protein kinase mediates carotid body excitation by hypoxia. J Biol Chem 282: 8092‐8098, 2007.
 920. Wyatt CN, Peers C. Nicotinic acetylcholine receptors in isolated type I cells of the neonatal rat carotid body. Neuroscience 54: 275‐281, 1993.
 921. Wyatt CN, Peers C. Ca(2+)‐activated K+ channels in isolated type I cells of the neonatal rat carotid body. J Physiol 483(Pt 3): 559‐565, 1995.
 922. Wyatt CN, Wright C, Bee D, Peers C. O2‐sensitive K+ currents in carotid body chemoreceptor cells from normoxic and chronically hypoxic rats and their roles in hypoxic chemotransduction. Proc Natl Acad Sci U S A 92: 295‐299, 1995.
 923. Xu J, Tse FW, Tse A. ATP triggers intracellular Ca2+ release in type II cells of the rat carotid body. J Physiol 549: 739‐747, 2003.
 924. Xu J, Xu F, Tse FW, Tse A. ATP inhibits the hypoxia response in type I cells of rat carotid bodies. J Neurochem 92: 1419‐1430, 2005.
 925. Yamaguchi S, Lande B, Kitajima T, Hori Y, Shirahata M. Patch clamp study of mouse glomus cells using a whole carotid body. Neurosci Lett 357: 155‐157, 2004.
 926. Yamamoto WS. Mathematical analysis of the time course of alveolar carbon dioxide. J Appl Physiol 15: 215‐219, 1960.
 927. Yamamoto Y, Konig P, Henrich M, Dedio J, Kummer W. Hypoxia induces production of nitric oxide and reactive oxygen species in glomus cells of rat carotid body. Cell Tissue Res 325: 3‐11, 2006.
 928. Yamamoto Y, Kummer W, Atoji Y, Suzuki Y. TASK‐1, TASK‐2, TASK‐3 and TRAAK immunoreactivities in the rat carotid body. Brain Res 950: 304‐307, 2002.
 929. Yamamoto Y, Taniguchi K. Expression of tandem P domain K+ channel, TREK‐1, in the rat carotid body. J Histochem Cytochem 54: 467‐472, 2006.
 930. Ye JS, Tipoe GL, Fung PC, Fung ML. Augmentation of hypoxia‐induced nitric oxide generation in the rat carotid body adapted to chronic hypoxia: An involvement of constitutive and inducible nitric oxide synthases. Pflugers Arch 444: 178‐185, 2002.
 931. Yokota H, Kreuzer F. Alveolar to arterial transmission of oxygen fluctuations due to respiration in anesthetized dogs. Pflugers Arch 340: 291‐306, 1973.
 932. Yu G, Fournier C, Hess DC, Borlongan CV. Transplantation of carotid body cells in the treatment of neurological disorders. Neurosci Biobehav Rev 28: 803‐810, 2005.
 933. Yu G, Xu L, Hadman M, Hess DC, Borlongan CV. Intracerebral transplantation of carotid body in rats with transient middle cerebral artery occlusion. Brain Res 1015: 50‐56, 2004.
 934. Yuan G, Khan SA, Luo W, Nanduri J, Semenza GL, Prabhakar NR. Hypoxia‐inducible factor 1 mediates increased expression of NADPH oxidase‐2 in response to intermittent hypoxia. J Cell Physiol 2011 Feb 1. doi: 10.1002/jcp.22640. [Epub ahead of print].
 935. Yuan G, Nanduri J, Bhasker CR, Semenza GL, Prabhakar NR. Ca2+/calmodulin kinase‐dependent activation of hypoxia inducible factor 1 transcriptional activity in cells subjected to intermittent hypoxia. J Biol Chem 280: 4321‐4328, 2005.
 936. Yuan G, Nanduri J, Khan S, Semenza GL, Prabhakar NR. Induction of HIF‐1alpha expression by intermittent hypoxia: Involvement of NADPH oxidase, Ca2+ signaling, prolyl hydroxylases, and mTOR. J Cell Physiol 217: 674‐685, 2008.
 937. Zapata P. Effects of dopamine on carotid chemo‐ and baroreceptors in vitro. J Physiol 244: 235‐251, 1975.
 938. Zapata P. From oxygen sensing to chemosensory activity. In: Lahiri S, Semenza GL, Prabhakar N, editors. Oxygen Sensing. Responses and Adaptation to Hypoxia. New York: Marcel Dekker, 2003, p. 353‐363.
 939. Zapata P. Is ATP a suitable co‐transmitter in carotid body arterial chemoreceptors? Respir Physiol Neurobiol 157: 106‐115, 2007.
 940. Zapata P, Hess A, Bliss EL, Eyzaguirre C. Chemical, electron microscopic and physiological observations on the role of catecholamines in the carotid body. Brain Res 14: 473‐496, 1969.
 941. Zapata P, Hess A, Eyzaguirre C. Reinnervation of carotid body and sinus with superior laryngeal nerve fibers. J Neurophysiol 32: 215‐228, 1969.
 942. Zapata P, Larrain C, Iturriaga R, Alcayaga J. The carotid bodies as thermosensors: Experiments in vitro and in situ, and importance for ventilatory regulation. Adv Exp Med Biol 360: 253‐255, 1994.
 943. Zapata P, Stensaas LJ, Eyzaguirre C. Recovery of chemosensory function of regenerating carotid nerve fibres. In: Acker H, Fidone S, Pallot D, Eyzaguirre C, Lubbers DW, Torrance RW, editors. Chemoreception in the Carotid Body. Berlin: Springer‐Verlag, 1977, p. 44‐50.
 944. Zhang M, Buttigieg J, Nurse CA. Neurotransmitter mechanisms mediating low‐glucose signalling in cocultures and fresh tissue slices of rat carotid body. J Physiol 578: 735‐750, 2007.
 945. Zhang M, Nurse CA. Does endogenous 5‐HT mediate spontaneous rhythmic activity in chemoreceptor clusters of rat carotid body? Brain Res 872: 199‐203, 2000.
 946. Zhang M, Nurse CA. CO2/pH chemosensory signaling in co‐cultures of rat carotid body receptors and petrosal neurons: Role of ATP and ACh. J Neurophysiol 92: 3433‐3445, 2004.
 947. Zhang M, Zhong H, Vollmer C, Nurse CA. Co‐release of ATP and ACh mediates hypoxic signalling at rat carotid body chemoreceptors. J Physiol 525(Pt 1): 143‐158, 2000.
 948. Zhang XJ, Wang X, Xiong LZ, Fan J, Duan XL, Wang BR. Up‐regulation of IL‐1 receptor type I and tyrosine hydroxylase in the rat carotid body following intraperitoneal injection of IL‐1beta. Histochem Cell Biol 128: 533‐540, 2007.
 949. Zhang XQ, Pang L, Eyzaguirre C. Effects of hypoxia on the intracellular K+ of clustered and isolated glomus cells of mice and rats. Brain Res 676: 413‐420, 1995.
 950. Zhong H, Nurse CA. Nicotinic acetylcholine sensitivity of rat petrosal sensory neurons in dissociated cell culture. Brain Res 766: 153‐161, 1997.
 951. Zhong H, Zhang M, Nurse CA. Synapse formation and hypoxic signalling in co‐cultures of rat petrosal neurones and carotid body type 1 cells. J Physiol 503(Pt 3): 599‐612, 1997.
 952. Zhou Z, Misler S. Amperometric detection of stimulus‐induced quantal release of catecholamines from cultured superior cervical ganglion neurons. Proc Natl Acad Sci U S A 92: 6938‐6942, 1995.
 953. Zinker BA, Namdaran K, Wilson R, Lacy DB, Wasserman DH. Acute adaptation of carbohydrate metabolism to decreased arterial PO2. Am J Physiol 266: E921‐E929, 1994.
 954. Zotterman Y. Action potentials in the glossopharyngeal nerve and in the chorda timpani. Skand Arch Physio 72: 73‐77, 1935.
 955. Zucker IH, Schultz HD, Li YF, Wang Y, Wang W, Patel KP. The origin of sympathetic outflow in heart failure: The roles of angiotensin II and nitric oxide. Prog Biophys Mol Biol 84: 217‐232, 2004.
 956. Zupanc GK. Peptidergic transmission: From morphological correlates to functional implications. Micron 27: 35‐91, 1996.

Related Articles:

Sensory Function in Animals
Control of Breathing in the Fetus and the Newborn
Top cited articles of 2018

Contact Editor

Submit a note to the editor about this article by filling in the form below.

* Required Field

How to Cite

Prem Kumar, Nanduri R. Prabhakar. Peripheral Chemoreceptors: Function and Plasticity of the Carotid Body. Compr Physiol 2012, 2: 141-219. doi: 10.1002/cphy.c100069