Comprehensive Physiology Wiley Online Library

Erythropoietin

Full Article on Wiley Online Library



Abstract

The hormone erythropoietin (Epo) is the main humoral regulator of erythropoiesis. It binds to specific receptors belonging to the cytokine receptor superfamily. Epo stimulates proliferation and differentiation of erythroid precursor cells, but may also bind to and exert some additional effects in nonhemopoietic tissues. It is mainly produced in the kidneys and to minor extents also in the liver and in the brain. The plasma concentration of erthyropoietin is inversely related to the oxygen content of the blood. The secretion of Epo into the circulation and hence its plasma concentrations are mainly determined by the transcription rate of the Epo gene, which itself is essentially under control of the cellular oxygen concentration. Sinks of the oxygen concentrations increase the activity of the hypoxia‐inducible transcription factor (HIF), which in turn triggers Epo gene transcription. Disorders of kidney function lead to inappropriate Epo production, what may result in anemia or polycythemia. © 2011 American Physiological Society. Compr Physiol 1:1759‐1794, 2011.

Comprehensive Physiology offers downloadable PowerPoint presentations of figures for non-profit, educational use, provided the content is not modified and full credit is given to the author and publication.

Download a PowerPoint presentation of all images


Figure 1. Figure 1.

Three‐dimensional structure of the human erythropoietin molecule. Left panel: three‐dimensional solution structure of human Epo as determined by nuclear magnetic resonance spectroscopy. Structural data were taken from the Protein Databank (http://www.rcsb.org/pdb; PDB ID: 1BUY) and displayed using the Cn3D viewer (http://www.ncbi.nlm.nih.gov/Structure/CN3D/cn3d.shtml).

Figure 2. Figure 2.

Organization of the erythropoietin (Epo) gene. The Epo gene is schematically illustrated with 5′‐ untranslated, exons and 3′‐untranslated regions. During hypoxia, the hypoxia‐inducible transcription factor (HIF)‐α/β heterodimer is stabilized and binds to a site on the 3′‐enhancer. Downstream of this site, the nuclear receptor hepatocyte nuclear factor‐4 binds constitutively to the tandem‐repeat hormone response elements and also to the α‐subunit of HIF. Both HIF‐subunits bind to the transcriptional activator p300, providing a mechanism for triggering the Epo gene promoter to transcribe the mRNA. Between the HIF1 and HRE binding sites, an essential sequence with an as yet unknown mechanism of operation is located.

Figure 3. Figure 3.

Stimulation of erythropoiesis by Epo. Colony‐forming unit (CFU)‐granulocyte‐erythrocyte‐monocyte‐megakaryocyte (GEMM) myeloid stem cells differentiate into burst‐forming unit erythroid (BFU‐E) cells that differentiate further into CFU erythroid (CFU‐E) cells. Erythroid colony formation at this stage is Epo‐dependent. The first morphologically distinguishable cells of the erythroid lineage, the proerythroblasts, respond to Epo by increased hemoglobin synthesis. Differentiation downstream of the erythroblast stage, enucleation, intravasation, and final maturation to erythrocytes is independent of Epo.

Figure 4. Figure 4.

Relationship between hematocrit and plasma erythropoietin in rats. Anemia was induced by various maneuvers as indicated.

[Modified, with permission, from ref. 265.]
Figure 5. Figure 5.

Relationship between serum immunoreactive (ir) EPO levels and hemoglobin concentration in patients with hypo‐ and hyperregenerative nonrenal anemias (black triangles) and in patients with chronic renal failure (white triangles) (excluding patients with polycystic kidney disease). The rectangle depicts the interquartile range (dark stippled) and 95% confidence range of EPO levels in nonanemic healthy adults. [Adapted, with permission, from 250.]

Figure 6. Figure 6.

Erythropoietin receptor signaling. Binding of Epo to the Epo‐R initiates auto‐ or trans‐phosphorylation of the Janus kinase (JAK) family. JAK2 then phosphorylates several tyrosine residues of the Epo‐R intracellular domain, creating docking sites for the SH2 domains of several signal transduction proteins, including STAT5. Once bound to the Epo‐R, STAT5 and other signaling proteins become phosphorylated and activated. Phosphorylated STAT5 dissociates from the receptor, homodimerizes, moves to the nucleus, and activates gene expression.

Figure 7. Figure 7.

Upper panel: Localization of erythropoietin (Epo)‐producing cells in the kidney. Combined in situ hybridization and immunohistochemistry on the same tissue section taken from anemic rat renal cortex. Left: Demonstration of Epo mRNA. Right: Double‐labeling on the same tissue section with antibody to 5‐ectonucleotidase. Cells positively stained with either technique are indicated by arrowheads. Only a minor proportion of 5′‐ectonucleotidase‐positive interstitial cells reveal Epo mRNA expression. Double‐labeled cells typically lie in angles between adjacent tubules, or between vessels and tubules. (Magnification × 800.)

(Courtesy of S. Bachmann, Berlin.) Lower panel: Topography of the production of Epo in the rat kidney. Left: The cortical labyrinth is well visualized using an enzyme histochemical technique for 5‐nucleotidase, with the strong reaction seen as black deposits in the proximal convoluted tubule and in the fibroblasts. Right: In situ hybridization of Epo‐mRNA in the kidney of an anemic rat. The comparison of the two micrographs shows that hybridization took place in the cortical labyrinth (delimited with a dotted line), but not in the medullary rays or in the outer medulla. (Magnification: A ∼ ×62, B ∼ ×95.) [Reproduced, with permission, from ref. 265.]
Figure 8. Figure 8.

Temporal pattern of plasma EPO concentrations during acute hypoxia. Time‐dependent change in serum immunoreactive erythropoietin (Epo) in rats exposed to an inspiratory oxygen tension of 60 mmHg in a normobaric atmosphere. Total gas pressure was kept constant by balance nitrogen. Plasma Epo levels start to increase after a delay phase (1), then increase linearly (phase 2) to reach peak values (phase 3). Then Epo levels decline (phase 4) to reach a stable steady‐state level (phase 5).

Figure 9. Figure 9.

Oxygen dependency of EPO plasma peak concentrations. Peak concentrations of plasma Epo concentration in rats exposed to different inspiratory oxygen tensions for two days.

Figure 10. Figure 10.

Oxygen dependency of the number of erythropoietin (Epo)‐expressing cells in rat kidney cortex. Relationship between the number of Epo producing cells per square centimeter of renal cortex and the inspiratory oxygen tension in rats.

Figure 11. Figure 11.

Oxygen dependency of erythropoietin mRNA in primary cultured rat hepatocytes. Freshly isolated rat hepatocytes were plated on gas permeable culture supports and were exposed to different oxygen concentration in a normobaric atmosphere for 3 h.

Figure 12. Figure 12.

Oxygen sensing and Epo gene regulation. HIFα protein stability and transcriptional activity are regulated by PHD prolyl and FIH asparagine hydroxylases, respectively. This reaction needs oxygen, vitamin C, Fe(II) and 2‐oxoglutarate and is inhibited by succinate, fumarate, and reactive oxygen species (ROS). Upon stabilization, HIF‐2α translocates to the nucleus, heterodimerizes with HIFβ and transactivates the Epo gene.

Figure 13. Figure 13.

Chemical reaction scheme of HIFα prolyl‐4‐hydroxylase domain (PHD) enzymes. Prolyl residues of HIFα are hydroxylated by PHDs at the fourth carbon atom in an oxidative decarboxylation reaction that needs oxygen and 2‐oxoglutarate as co‐substrates, and ascorbate and Fe(II) as co‐factors. Succinate and CO2 are produced as co‐products. The reaction is inhibited by hypoxia, iron chelation, transition metals such as cobalt, nickel and manganese, as well as by an excess of 2‐oxoglutarate analogues such as 2‐oxalylglycine or its cell‐permeable ester dimethyloxalylglycine (DMOG).

Figure 14. Figure 14.

Renal oxygen sensing controlling the production of Epo.



Figure 1.

Three‐dimensional structure of the human erythropoietin molecule. Left panel: three‐dimensional solution structure of human Epo as determined by nuclear magnetic resonance spectroscopy. Structural data were taken from the Protein Databank (http://www.rcsb.org/pdb; PDB ID: 1BUY) and displayed using the Cn3D viewer (http://www.ncbi.nlm.nih.gov/Structure/CN3D/cn3d.shtml).



Figure 2.

Organization of the erythropoietin (Epo) gene. The Epo gene is schematically illustrated with 5′‐ untranslated, exons and 3′‐untranslated regions. During hypoxia, the hypoxia‐inducible transcription factor (HIF)‐α/β heterodimer is stabilized and binds to a site on the 3′‐enhancer. Downstream of this site, the nuclear receptor hepatocyte nuclear factor‐4 binds constitutively to the tandem‐repeat hormone response elements and also to the α‐subunit of HIF. Both HIF‐subunits bind to the transcriptional activator p300, providing a mechanism for triggering the Epo gene promoter to transcribe the mRNA. Between the HIF1 and HRE binding sites, an essential sequence with an as yet unknown mechanism of operation is located.



Figure 3.

Stimulation of erythropoiesis by Epo. Colony‐forming unit (CFU)‐granulocyte‐erythrocyte‐monocyte‐megakaryocyte (GEMM) myeloid stem cells differentiate into burst‐forming unit erythroid (BFU‐E) cells that differentiate further into CFU erythroid (CFU‐E) cells. Erythroid colony formation at this stage is Epo‐dependent. The first morphologically distinguishable cells of the erythroid lineage, the proerythroblasts, respond to Epo by increased hemoglobin synthesis. Differentiation downstream of the erythroblast stage, enucleation, intravasation, and final maturation to erythrocytes is independent of Epo.



Figure 4.

Relationship between hematocrit and plasma erythropoietin in rats. Anemia was induced by various maneuvers as indicated.

[Modified, with permission, from ref. 265.]


Figure 5.

Relationship between serum immunoreactive (ir) EPO levels and hemoglobin concentration in patients with hypo‐ and hyperregenerative nonrenal anemias (black triangles) and in patients with chronic renal failure (white triangles) (excluding patients with polycystic kidney disease). The rectangle depicts the interquartile range (dark stippled) and 95% confidence range of EPO levels in nonanemic healthy adults. [Adapted, with permission, from 250.]



Figure 6.

Erythropoietin receptor signaling. Binding of Epo to the Epo‐R initiates auto‐ or trans‐phosphorylation of the Janus kinase (JAK) family. JAK2 then phosphorylates several tyrosine residues of the Epo‐R intracellular domain, creating docking sites for the SH2 domains of several signal transduction proteins, including STAT5. Once bound to the Epo‐R, STAT5 and other signaling proteins become phosphorylated and activated. Phosphorylated STAT5 dissociates from the receptor, homodimerizes, moves to the nucleus, and activates gene expression.



Figure 7.

Upper panel: Localization of erythropoietin (Epo)‐producing cells in the kidney. Combined in situ hybridization and immunohistochemistry on the same tissue section taken from anemic rat renal cortex. Left: Demonstration of Epo mRNA. Right: Double‐labeling on the same tissue section with antibody to 5‐ectonucleotidase. Cells positively stained with either technique are indicated by arrowheads. Only a minor proportion of 5′‐ectonucleotidase‐positive interstitial cells reveal Epo mRNA expression. Double‐labeled cells typically lie in angles between adjacent tubules, or between vessels and tubules. (Magnification × 800.)

(Courtesy of S. Bachmann, Berlin.) Lower panel: Topography of the production of Epo in the rat kidney. Left: The cortical labyrinth is well visualized using an enzyme histochemical technique for 5‐nucleotidase, with the strong reaction seen as black deposits in the proximal convoluted tubule and in the fibroblasts. Right: In situ hybridization of Epo‐mRNA in the kidney of an anemic rat. The comparison of the two micrographs shows that hybridization took place in the cortical labyrinth (delimited with a dotted line), but not in the medullary rays or in the outer medulla. (Magnification: A ∼ ×62, B ∼ ×95.) [Reproduced, with permission, from ref. 265.]


Figure 8.

Temporal pattern of plasma EPO concentrations during acute hypoxia. Time‐dependent change in serum immunoreactive erythropoietin (Epo) in rats exposed to an inspiratory oxygen tension of 60 mmHg in a normobaric atmosphere. Total gas pressure was kept constant by balance nitrogen. Plasma Epo levels start to increase after a delay phase (1), then increase linearly (phase 2) to reach peak values (phase 3). Then Epo levels decline (phase 4) to reach a stable steady‐state level (phase 5).



Figure 9.

Oxygen dependency of EPO plasma peak concentrations. Peak concentrations of plasma Epo concentration in rats exposed to different inspiratory oxygen tensions for two days.



Figure 10.

Oxygen dependency of the number of erythropoietin (Epo)‐expressing cells in rat kidney cortex. Relationship between the number of Epo producing cells per square centimeter of renal cortex and the inspiratory oxygen tension in rats.



Figure 11.

Oxygen dependency of erythropoietin mRNA in primary cultured rat hepatocytes. Freshly isolated rat hepatocytes were plated on gas permeable culture supports and were exposed to different oxygen concentration in a normobaric atmosphere for 3 h.



Figure 12.

Oxygen sensing and Epo gene regulation. HIFα protein stability and transcriptional activity are regulated by PHD prolyl and FIH asparagine hydroxylases, respectively. This reaction needs oxygen, vitamin C, Fe(II) and 2‐oxoglutarate and is inhibited by succinate, fumarate, and reactive oxygen species (ROS). Upon stabilization, HIF‐2α translocates to the nucleus, heterodimerizes with HIFβ and transactivates the Epo gene.



Figure 13.

Chemical reaction scheme of HIFα prolyl‐4‐hydroxylase domain (PHD) enzymes. Prolyl residues of HIFα are hydroxylated by PHDs at the fourth carbon atom in an oxidative decarboxylation reaction that needs oxygen and 2‐oxoglutarate as co‐substrates, and ascorbate and Fe(II) as co‐factors. Succinate and CO2 are produced as co‐products. The reaction is inhibited by hypoxia, iron chelation, transition metals such as cobalt, nickel and manganese, as well as by an excess of 2‐oxoglutarate analogues such as 2‐oxalylglycine or its cell‐permeable ester dimethyloxalylglycine (DMOG).



Figure 14.

Renal oxygen sensing controlling the production of Epo.

References
 1. Abbrecht PH, Littell JK. Plasma erythropoietin in men and mice during acclimatization to different altitudes. J Appl Physiol 32: 54‐58, 1972.
 2. Acs G, Acs P, Beckwith SM, Pitts RL, Clements E, Wong K, Verma A. Erythropoietin and erythropoietin receptor expression in human cancer. Cancer Res 61: 3561‐3565, 2001.
 3. Acs G, Chen M, Xu X, Acs P, Verma A, Koch CJ. Autocrine erythropoietin signaling inhibits hypoxia‐induced apoptosis in human breast carcinoma cells. Cancer Lett 214: 243‐251, 2004.
 4. Aeberhard JM, Schneider PA, Vallotton MB, Kurtz A, Leski M. Multiple site estimates of erythropoietin and renin in polycythemic kidney transplant patients. Transplantation 50: 613‐616, 1990.
 5. Alexanian R. Erythropoietin and erythropoiesis in anemic man following androgens. Blood 33: 564‐572, 1969.
 6. Ammarguellat F, Llovera M, Kelly PA, Goffin V. Low doses of EPO activate MAP kinases but not JAK2‐STAT5 in rat vascular smooth muscle cells. Biochem Biophys Res Commun 284: 1031‐1038, 2001.
 7. Anagnostou A, Lee ES, Kessimian N, Levinson R, Steiner M. Erythropoietin has a mitogenic and positive chemotactic effect on endothelial cells. Proc Natl Acad Sci U S A 87: 5978‐5982, 1990.
 8. Anagnostou A, Liu Z, Steiner M, Chin K, Lee ES, Kessimian N, Noguchi CT. Erythropoietin receptor mRNA expression in human endothelial cells. Proc Natl Acad Sci U S A 91: 3974‐3978, 1994.
 9. Ang SO, Chen H, Hirota K, Gordeuk VR, Jelinek J, Guan Y, Liu E, Sergueeva AI, Miasnikova GY, Mole D, Maxwell PH, Stockton DW, Semenza GL, Prchal JT. Disruption of oxygen homeostasis underlies congenital Chuvash polycythemia. Nat Genet 32: 614‐621, 2002.
 10. Appelhoff RJ, Tian YM, Raval RR, Turley H, Harris AL, Pugh CW, Ratcliffe PJ, Gleadle JM. Differential function of the prolyl hydroxylases PHD1, PHD2, PHD3 in the regulation of hypoxia‐inducible factor. J Biol Chem 279: 38458‐38465, 2004.
 11. Aprelikova O, Chandramouli GV, Wood M, Vasselli JR, Riss J, Maranchie JK, Linehan WM, Barrett JC. Regulation of HIF prolyl hydroxylases by hypoxia‐inducible factors. J Cell Biochem 92: 491‐501, 2004.
 12. Asaumi Y, Kagaya Y, Takeda M, Yamaguchi N, Tada H, Ito K, Ohta J, Shiroto T, Shirato K, Minegishi N, Shimokawa H. Protective role of endogenous erythropoietin system in nonhematopoietic cells against pressure overload‐induced left ventricular dysfunction in mice. Circulation 115: 2022‐2032, 2007.
 13. Aukland K, Krog J. Renal oxygen tension. Nature 188: 671, 1960.
 14. Bachmann S, Le Hir M, Eckardt KU. Co‐localization of erythropoietin mRNA and ecto‐5′‐nucleotidase immunoreactivity in peritubular cells of rat renal cortex indicates that fibroblasts produce erythropoietin. J Histochem Cytochem 41: 335‐341, 1993.
 15. Bacon BR, Rothman SA, Ricanati ES, Rashad FA. Renal artery stenosis with erythrocytosis after renal transplantation. Arch Intern Med 140: 1206‐1211, 1980.
 16. Bahlmann FH, DeGroot K, Duckert T, Niemczyk E, Bahlmann E, Boehm SM, Haller H, Fliser D. Endothelial progenitor cell proliferation and differentiation is regulated by erythropoietin. Kidney Int 64: 1648‐1652, 2003.
 17. Bahlmann FH, Song R, Boehm SM, Mengel M, von Wasielewski R, Lindschau C, Kirsch T, de Groot K, Laudeley R, Niemczyk E, Guler F, Menne J, Haller H, Fliser D. Low‐dose therapy with the long‐acting erythropoietin analogue darbepoetin alpha persistently activates endothelial Akt and attenuates progressive organ failure. Circulation 110: 1006‐1012, 2004.
 18. Bakris GL, Sauter ER, Hussey JL, Fisher JW, Gaber AO, Winsett R. Effects of theophylline on erythropoietin production in normal subjects and in patients with erythrocytosis after renal transplantation. N Engl J Med 323: 86‐90, 1990.
 19. Bauer E, Danhauser‐Riedl S, De Riese W, Raab HR, Sandner S, Meyer HJ, Neukam D, Hanauske U, Freund M, Poliwoda H. Effects of recombinant human erythropoietin on clonogenic growth of primary human tumour specimens in vitro. Eur J Cancer 28A: 1769, 1992
 20. Baynes RD, Reddy GK, Shih YJ, Skikne BS, Cook JD. Serum form of the erythropoietin receptor identified by a sequence‐specific peptide antibody. Blood 82: 2088‐2095, 1993.
 21. Bazan JF. Structural design and molecular evolution of a cytokine receptor superfamily. Proc Natl Acad Sci U S A 87: 6934‐6938, 1990.
 22. Beall CM, Cavalleri GL, Deng L, Elston RC, Gao Y, Knight J, Li C, Li JC, Liang Y, McCormack M, Montgomery HE, Pan H, Robbins PA, Shianna KV, Tam SC, Tsering N, Veeramah KR, Wang W, Wangdui P, Weale ME, Xu Y, Xu Z, Yang L, Zaman MJ, Zeng C, Zhang L, Zhang X, Zhaxi P, Zheng YT. Natural selection on EPAS1 (HIF2α) associated with low hemoglobin concentration in Tibetan highlanders. Proc Natl Acad Sci U S A 107: 11459‐11464, 2010.
 23. Beck I, Ramirez S, Weinmann R, Caro J. Enhancer element at the 3′‐flanking region controls transcriptional response to hypoxia in the human erythropoietin gene. J Biol Chem 266: 15563‐15566, 1991.
 24. Bennett CL, Silver SM, Djulbegovic B, Samaras AT, Blau CA, Gleason KJ, Barnato SE, Elverman KM, Courtney DM, McKoy JM, Edwards BJ, Tigue CC, Raisch DW, Yarnold PR, Dorr DA, Kuzel TM, Tallman MS, Trifilio SM, West DP, Lai SY, Henke M. Venous thromboembolism and mortality associated with recombinant erythropoietin and darbepoetin administration for the treatment of cancer‐associated anemia. JAMA 299: 914‐924, 2008.
 25. Bento MC, Chang KT, Guan Y, Liu E, Caldas G, Gatti RA, Prchal JT. Congenital polycythemia with homozygous and heterozygous mutations of von Hippel‐Lindau gene: Five new Caucasian patients. Haematologica 90: 128‐129, 2005.
 26. Berchner‐Pfannschmidt U, Yamac H, Trinidad B, Fandrey J. Nitric oxide modulates oxygen sensing by hypoxia‐inducible factor 1‐dependent induction of prolyl hydroxylase 2. J Biol Chem 282: 1788‐1796, 2007.
 27. Bernaudin M, Marti HH, Roussel S, Divoux D, Nouvelot A, MacKenzie ET, Petit E. A potential role for erythropoietin in focal permanent cerebral ischemia in mice. J Cereb Blood Flow Metab 19: 643‐651, 1999.
 28. Bernhardt WM, Gottmann U, Doyon F, Buchholz B, Campean V, Schodel J, Reisenbuechler A, Klaus S, Arend M, Flippin L, Willam C, Wiesener MS, Yard B, Warnecke C, Eckardt KU. Donor treatment with a PHD‐inhibitor activating HIFs prevents graft injury and prolongs survival in an allogenic kidney transplant model. Proc Natl Acad Sci U S A 106: 21276‐21281, 2009.
 29. Berra E, Benizri E, Ginouves A, Volmat V, Roux D, Pouyssegur J. HIF prolyl‐hydroxylase 2 is the key oxygen sensor setting low steady‐state levels of HIF‐1alpha in normoxia. EMBO J 22: 4082‐4090, 2003.
 30. Berridge MV, Fraser JK, Carter JM, Lin FK. Effects of recombinant human erythropoietin on megakaryocytes and on platelet production in the rat. Blood 72: 970‐977, 1988.
 31. Beru N, McDonald J, Lacombe C, Goldwasser E. Expression of the erythropoietin gene. Mol Cell Biol 6: 2571‐2575, 1986.
 32. Beru N, Smith D, Goldwasser E. Evidence suggesting negative regulation of the erythropoietin gene by ribonucleoprotein. J Biol Chem 265: 14100‐14104, 1990.
 33. Besarab A, Caro J, Jarrell BE, Francos G, Erslev AJ. Dynamics of erythropoiesis following renal transplantation. Kidney Int 32: 526‐536, 1987.
 34. Beynon G. The influence of the autonomic nervous system in the control of erythropoietin secretion in the hypoxic rat. J Physiol 266: 347‐360, 1977.
 35. Blanchard KL, Acquaviva AM, Galson DL, Bunn HF. Hypoxic induction of the human erythropoietin gene: Cooperation between the promoter and enhancer, each of which contains steroid receptor response elements. Mol Cell Biol 12: 5373‐5385, 1992.
 36. Bondurant MC, Koury MJ. Anemia induces accumulation of erythropoietin mRNA in the kidney and liver. Mol Cell Biol 6: 2731‐2733, 1986.
 37. Bonsdorff E. On the presence of erythropoietins in the plasma from sheep foetuses during the latter half of gestation. Acta Physiol Scand 18: 51‐62, 1949.
 38. Boutin AT, Weidemann A, Fu Z, Mesropian L, Gradin K, Jamora C, Wiesener M, Eckardt KU, Koch CJ, Ellies LG, Haddad G, Haase VH, Simon MC, Poellinger L, Powell FL, Johnson RS. Epidermal sensing of oxygen is essential for systemic hypoxic response. Cell 133: 223‐234, 2008.
 39. Braliou GG, Verga Falzacappa MV, Chachami G, Casanovas G, Muckenthaler MU, Simos G. 2‐Oxoglutarate‐dependent oxygenases control hepcidin gene expression. J Hepatol 48: 801‐810, 2008.
 40. Brezis M, Rosen S, Silva P, Epstein FH. Selective vulnerability of the medullary thick ascending limb to anoxia in the isolated perfused rat kidney. J Clin Invest 73: 182‐190, 1984.
 41. Bright R. Reports on Medical Cases London, 1827.
 42. Brines M. The therapeutic potential of erythropoiesis‐stimulating agents for tissue protection: A tale of two receptors. Blood Purif 29: 86‐92, 2010.
 43. Brines M, Patel NS, Villa P, Brines C, Mennini T, De Paola M, Erbayraktar Z, Erbayraktar S, Sepodes B, Thiemermann C, Ghezzi P, Yamin M, Hand CC, Xie QW, Coleman T, Cerami A. Nonerythropoietic, tissue‐protective peptides derived from the tertiary structure of erythropoietin. Proc Natl Acad Sci U S A 105: 10925‐10930, 2008.
 44. Brines ML, Ghezzi P, Keenan S, Agnello D, de Lanerolle NC, Cerami C, Itri LM, Cerami A. Erythropoietin crosses the blood‐brain barrier to protect against experimental brain injury. Proc Natl Acad Sci U S A 97: 10526‐10531, 2000.
 45. Brown WM, Maxwell P, Graham AN, Yakkundi A, Dunlop EA, Shi Z, Johnston PG, Lappin TR. Erythropoietin receptor expression in non‐small cell lung carcinoma: A question of antibody specificity. Stem Cells 25: 718‐722, 2007.
 46. Bruick RK, McKnight SL. A conserved family of prolyl‐4‐hydroxylases that modify HIF. Science 294: 1337‐1340, 2001.
 47. Cai Z, Manalo DJ, Wei G, Rodriguez ER, Fox‐Talbot K, Lu H, Zweier JL, Semenza GL. Hearts from rodents exposed to intermittent hypoxia or erythropoietin are protected against ischemia‐reperfusion injury. Circulation 108: 79‐85, 2003.
 48. Calvillo L, Latini R, Kajstura J, Leri A, Anversa P, Ghezzi P, Salio M, Cerami A, Brines M. Recombinant human erythropoietin protects the myocardium from ischemia‐reperfusion injury and promotes beneficial remodeling. Proc Natl Acad Sci U S A 100: 4802‐4806, 2003.
 49. Cario H, Schwarz K, Jorch N, Kyank U, Petrides PE, Schneider DT, Uhle R, Debatin KM, Kohne E. Mutations in the von Hippel‐Lindau (VHL) tumor suppressor gene and VHL‐haplotype analysis in patients with presumable congenital erythrocytosis. Haematologica 90: 19‐24, 2005.
 50. Cariou A, Andre S, Claessens YE. Extra‐hematopoietic effects of erythropoietin. Cardiovasc Hematol Disord Drug Targets 8: 173‐178, 2008.
 51. Carlini RG, Alonzo EJ, Dominguez J, Blanca I, Weisinger JR, Rothstein M, Bellorin‐Font E. Effect of recombinant human erythropoietin on endothelial cell apoptosis. Kidney Int 55: 546‐553, 1999.
 52. Carlini RG, Reyes AA, Rothstein M. Recombinant human erythropoietin stimulates angiogenesis in vitro. Kidney Int 47: 740‐745, 1995.
 53. Carmena AO, Howard D, Stohlman F Jr. Regulation of erythropoiesis. XXII. Erythropoietin production in the newborn animal. Blood 32: 376‐382, 1968.
 54. Carnot MP, deFlandre MC, Bouchard M. Physiologie sur l′ activite hemopoietique du serum au cours de la regeneration du sang. C R Acad Sci 143: 384‐386, 1906.
 55. Caro J, Brown S, Miller O, Murray T, Erslev AJ. Erythropoietin levels in uremic nephric and anephric patients. J Lab Clin Med 93: 449‐458, 1979.
 56. Caro J, Erslev AJ. Biologic and immunologic erythropoietin in extracts from hypoxic whole rat kidneys and in their glomerular and tubular fractions. J Lab Clin Med 103: 922‐931, 1984.
 57. Chandra M, Clemons GK, McVicar MI. Relation of serum erythropoietin levels to renal excretory function: Evidence for lowered set point for erythropoietin production in chronic renal failure. J Pediatr 113: 1015‐1021, 1988.
 58. Chandra M, Miller ME, Garcia JF, Mossey RT, McVicar M. Serum immunoreactive erythropoietin levels in patients with polycystic kidney disease as compared with other hemodialysis patients. Nephron 39: 26‐29, 1985.
 59. Cheetham JC, Smith DM, Aoki KH, Stevenson JL, Hoeffel TJ, Syed RS, Egrie J, Harvey TS. NMR structure of human erythropoietin and a comparison with its receptor bound conformation. Nat Struct Biol 5: 861‐866, 1998.
 60. Chen J, Connor KM, Aderman CM, Smith LE. Erythropoietin deficiency decreases vascular stability in mice. J Clin Invest 118: 526‐533, 2008.
 61. Chen ZY, Asavaritikrai P, Prchal JT, Noguchi CT. Endogenous erythropoietin signaling is required for normal neural progenitor cell proliferation. J Biol Chem 282: 25875‐25883, 2007.
 62. Chikuma M, Masuda S, Kobayashi T, Nagao M, Sasaki R. Tissue‐specific regulation of erythropoietin production in the murine kidney, brain, and uterus. Am J Physiol Endocrinol Metab 279: E1242‐1248, 2000.
 63. Chilov D, Camenisch G, Kvietikova I, Ziegler U, Gassmann M, Wenger RH. Induction and nuclear translocation of hypoxia‐inducible factor‐1 (HIF‐1): Heterodimerization with ARNT is not necessary for nuclear accumulation of HIF‐1α. J Cell Sci 112: 1203‐1212, 1999.
 64. Chong ZZ, Li F, Maiese K. Erythropoietin requires NF‐κB and its nuclear translocation to prevent early and late apoptotic neuronal injury during β‐amyloid toxicity. Curr Neurovasc Res 2: 387‐399, 2005.
 65. Chong ZZ, Maiese K. Erythropoietin involves the phosphatidylinositol 3‐kinase pathway, 14‐3‐3 protein and FOXO3a nuclear trafficking to preserve endothelial cell integrity. Br J Pharmacol 150: 839‐850, 2007.
 66. Chu CY, Cheng CH, Yang CH, Huang CJ. Erythropoietins from teleosts. Cell Mol Life Sci 65: 3545‐3552, 2008.
 67. Cioffi CL, Liu XQ, Kosinski PA, Garay M, Bowen BR. Differential regulation of HIF‐1 alpha prolyl‐4‐hydroxylase genes by hypoxia in human cardiovascular cells. Biochem Biophys Res Commun 303: 947‐953, 2003.
 68. Clemons GK, De Manincor D, Fitzsimmons SL, Garcia JF. Immunoreactive erythropoietin studies in hypoxic rats and the role of the salivary glands. Exp Hematol 15: 18‐23, 1987.
 69. Clemens J, Spivak JL. Serum immunoreactive erythropoietin during the perioperative period. Surgery 115: 510‐515, 1994.
 70. Cohen RA, Miller ME, Garcia JF, Moccia G, Cronkite EP. Regulatory mechanism of erythropoietin production: Effects of hypoxemia and hypercarbia. Exp Hematol 9: 513‐521, 1981.
 71. Conrad KP, Benyo DF, Westerhausen‐Larsen A, Miles TM. Expression of erythropoietin by the human placenta. FASEB J 10: 760‐768, 1996.
 72. Cosman D, Lyman SD, Idzerda RL, Beckmann MP, Park LS, Goodwin RG, March CJ. A new cytokine receptor superfamily. Trends Biochem Sci 15: 265‐270, 1990.
 73. Cotes PM. Immunoreactive erythropoietin in serum. I. Evidence for the validity of the assay method and the physiological relevance of estimates. Br J Haematol 50: 427‐438, 1982.
 74. Cotes PM, Brozovic B. Diurnal variation of serum immunomoreactive erythropoietin in a normal subject. Clin Endocrinol (Oxf) 17: 419‐422, 1982.
 75. Cotes PM, Dore CJ, Yin JA, Lewis SM, Messinezy M, Pearson TC, Reid C. Determination of serum immunoreactive erythropoietin in the investigation of erythrocytosis. N Engl J Med 315: 283‐287, 1986.
 76. D'Andrea AD, Lodish HF, Wong GG. Expression cloning of the murine erythropoietin receptor. Cell 57: 277‐285, 1989.
 77. D'Angelo G, Duplan E, Boyer N, Vigne P, Frelin C. Hypoxia up‐regulates prolyl hydroxylase activity: A feedback mechanism that limits HIF‐1 responses during reoxygenation. J Biol Chem 278: 38183‐38187, 2003.
 78. Da Silva JL, Lacombe C, Bruneval P, Casadevall N, Leporrier M, Camilleri JP, Bariety J, Tambourin P, Varet B. Tumor cells are the site of erythropoietin synthesis in human renal cancers associated with polycythemia. Blood 75: 577‐582, 1990.
 79. Dagher FJ, Ramos E, Erslev AJ, Alongi SV, Karmi SA, Caro J. Are the native kidneys responsible for erythrocytosis in renal allorecipients? Transplantation 28: 496‐498, 1979.
 80. Dalgard CL, Lu H, Mohyeldin A, Verma A. Endogenous 2‐oxoacids differentially regulate expression of oxygen sensors. Biochem J 380: 419‐424, 2004.
 81. Dame C, Bartmann P, Wolber E, Fahnenstich H, Hofmann D, Fandrey J. Erythropoietin gene expression in different areas of the developing human central nervous system. Brain Res Dev Brain Res 125: 69‐74, 2000.
 82. Dame C, Fahnenstich H, Freitag P, Hofmann D, Abdul‐Nour T, Bartmann P, Fandrey J. Erythropoietin mRNA expression in human fetal and neonatal tissue. Blood 92: 3218‐3225, 1998.
 83. Dame C, Sola MC, Fandrey J, Rimsza LM, Freitag P, Knopfle G, Christensen RD, Bungert J. Developmental changes in the expression of transcription factors GATA‐1, ‐2 and ‐3 during the onset of human medullary haematopoiesis. Br J Haematol 119: 510‐515, 2002.
 84. Dame C, Sola MC, Lim KC, Leach KM, Fandrey J, Ma Y, Knopfle G, Engel JD, Bungert J. Hepatic erythropoietin gene regulation by GATA‐4. J Biol Chem 279: 2955‐2961, 2004.
 85. Darby IA, Evans BA, Fu P, Lim GB, Moritz KM, Wintour EM. Erythropoietin gene expression in fetal and adult sheep kidney. Br J Haematol 89: 266‐270, 1995.
 86. Davis HP. Polycythaemia following renal transplantation. J R Soc Med 80: 475‐476, 1987.
 87. de la Chapelle A, Traskelin AL, Juvonen E. Truncated erythropoietin receptor causes dominantly inherited benign human erythrocytosis. Proc Natl Acad Sci U S A 90: 4495‐4499, 1993.
 88. del Peso L, Castellanos MC, Temes E, Martin‐Puig S, Cuevas Y, Olmos G, Landazuri MO. The von Hippel Lindau/hypoxia‐inducible factor (HIF) pathway regulates the transcription of the HIF‐proline hydroxylase genes in response to low oxygen. J Biol Chem 278: 48690‐48695, 2003.
 89. Depping R, Kawakami K, Ocker H, Wagner JM, Heringlake M, Noetzold A, Sievers HH, Wagner KF. Expression of the erythropoietin receptor in human heart. J Thorac Cardiovasc Surg 130: 877‐878, 2005.
 90. Digicaylioglu M, Bichet S, Marti HH, Wenger RH, Rivas LA, Bauer C, Gassmann M. Localization of specific erythropoietin binding sites in defined areas of the mouse brain. Proc Natl Acad Sci U S A 92: 3717‐3720, 1995.
 91. Digicaylioglu M, Kaul M, Fletcher L, Dowen R, Lipton SA. Erythropoietin protects cerebrocortical neurons from HIV‐1/gp120‐induced damage. Neuroreport 15: 761‐763, 2004.
 92. Digicaylioglu M, Lipton SA. Erythropoietin‐mediated neuroprotection involves cross‐talk between Jak2 and NF‐κB signalling cascades. Nature 412: 641‐647, 2001.
 93. Dioum EM, Chen R, Alexander MS, Zhang Q, Hogg RT, Gerard RD, Garcia JA. Regulation of hypoxia‐inducible factor 2α signaling by the stress‐responsive deacetylase sirtuin 1. Science 324: 1289‐1293, 2009.
 94. DuBose TD Jr, Bidani A. Kinetics of CO2 exchange in the kidney. Annu Rev Physiol 50: 653‐667, 1988.
 95. Ebert BL, Bunn HF. Regulation of transcription by hypoxia requires a multiprotein complex that includes hypoxia‐inducible factor 1, an adjacent transcription factor, and p300/CREB binding protein. Mol Cell Biol 18: 4089‐4096, 1998.
 96. Eckardt KU, Boutellier U, Kurtz A, Schopen M, Koller EA, Bauer C. Rate of erythropoietin formation in humans in response to acute hypobaric hypoxia. J Appl Physiol 66: 1785‐1788, 1989.
 97. Eckardt KU, Dittmer J, Neumann R, Bauer C, Kurtz A. Decline of erythropoietin formation at continuous hypoxia is not due to feedback inhibition. Am J Physiol 258: F1432‐1437, 1990.
 98. Eckardt KU, Koury ST, Tan CC, Schuster SJ, Kaissling B, Ratcliffe PJ, Kurtz A. Distribution of erythropoietin producing cells in rat kidneys during hypoxic hypoxia. Kidney Int 43: 815‐823, 1993.
 99. Eckardt KU, Kurtz A, Bauer C. Regulation of erythropoietin production is related to proximal tubular function. Am J Physiol 256: F942‐947, 1989.
 100. Eckardt KU, Kurtz A, Bauer C. Triggering of erythropoietin production by hypoxia is inhibited by respiratory and metabolic acidosis. Am J Physiol 258: R678‐683, 1990.
 101. Eckardt KU, LeHir M, Tan CC, Ratcliffe PJ, Kaissling B, Kurtz A. Renal innervation plays no role in oxygen‐dependent control of erythropoietin mRNA levels. Am J Physiol 263: F925‐930, 1992.
 102. Eckardt KU, Mollmann M, Neumann R, Brunkhorst R, Burger HU, Lonnemann G, Scholz H, Keusch G, Buchholz B, Frei U, Bauer C, Kurtz A. Erythropoietin in polycystic kidneys. J Clin Invest 84: 1160‐1166, 1989.
 103. Eckardt KU, Pugh CW, Ratcliffe PJ, Kurtz A. Oxygen‐dependent expression of the erythropoietin gene in rat hepatocytes in vitro. Pflug Arch 423: 356‐364, 1993.
 104. Eckardt KU, Ratcliffe PJ, Tan CC, Bauer C, Kurtz A. Age‐dependent expression of the erythropoietin gene in rat liver and kidneys. J Clin Invest 89: 753‐760, 1992.
 105. Eckhardt KU, Frei U, Kliem V, Bauer C, Koch KM, Kurtz A. Role of excretory graft function for erythropoietin formation after renal transplantation. Eur J Clin Invest 20: 563‐572, 1990.
 106. Egrie JC, Strickland TW, Lane J, Aoki K, Cohen AM, Smalling R, Trail G, Lin FK, Browne JK, Hines DK. Characterization and biological effects of recombinant human erythropoietin. Immunobiology 172: 213‐224, 1986.
 107. Ehrenreich H, Degner D, Meller J, Brines M, Behe M, Hasselblatt M, Woldt H, Falkai P, Knerlich F, Jacob S, von Ahsen N, Maier W, Bruck W, Ruther E, Cerami A, Becker W, Siren AL. Erythropoietin: A candidate compound for neuroprotection in schizophrenia. Mol Psychiatry 9: 42‐54, 2004.
 108. Ehrenreich H, Hasselblatt M, Dembowski C, Cepek L, Lewczuk P, Stiefel M, Rustenbeck HH, Breiter N, Jacob S, Knerlich F, Bohn M, Poser W, Ruther E, Kochen M, Gefeller O, Gleiter C, Wessel TC, De Ryck M, Itri L, Prange H, Cerami A, Brines M, Siren AL. Erythropoietin therapy for acute stroke is both safe and beneficial. Mol Med 8: 495‐505, 2002.
 109. Ehrenreich H, Hinze‐Selch D, Stawicki S, Aust C, Knolle‐Veentjer S, Wilms S, Heinz G, Erdag S, Jahn H, Degner D, Ritzen M, Mohr A, Wagner M, Schneider U, Bohn M, Huber M, Czernik A, Pollmacher T, Maier W, Siren AL, Klosterkotter J, Falkai P, Ruther E, Aldenhoff JB, Krampe H. Improvement of cognitive functions in chronic schizophrenic patients by recombinant human erythropoietin. Mol Psychiatry 12: 206‐220, 2007.
 110. Ehrenreich H, Weissenborn K, Prange H, Schneider D, Weimar C, Wartenberg K, Schellinger PD, Bohn M, Becker H, Wegrzyn M, Jahnig P, Herrmann M, Knauth M, Bahr M, Heide W, Wagner A, Schwab S, Reichmann H, Schwendemann G, Dengler R, Kastrup A, Bartels C. Recombinant human erythropoietin in the treatment of acute ischemic stroke. Stroke 40: e647‐656, 2009.
 111. Elliott S. Erythropoiesis‐stimulating agents and other methods to enhance oxygen transport. Br J Pharmacol 154: 529‐541, 2008.
 112. Elliott S, Busse L, Bass MB, Lu H, Sarosi I, Sinclair AM, Spahr C, Um M, Van G, Begley CG. Anti‐Epo receptor antibodies do not predict Epo receptor expression. Blood 107: 1892‐1895, 2006.
 113. Elliott S, Busse L, McCaffery I, Rossi J, Sinclair A, Spahr C, Swift S, Begley CG. Identification of a sensitive anti‐erythropoietin receptor monoclonal antibody allows detection of low levels of EpoR in cells. J Immunol Methods 352: 126‐139, 2010.
 114. Elliott S, Lorenzini T, Asher S, Aoki K, Brankow D, Buck L, Busse L, Chang D, Fuller J, Grant J, Hernday N, Hokum M, Hu S, Knudten A, Levin N, Komorowski R, Martin F, Navarro R, Osslund T, Rogers G, Rogers N, Trail G, Egrie J. Enhancement of therapeutic protein in vivo activities through glycoengineering. Nat Biotechnol 21: 414‐421, 2003.
 115. Ema M, Taya S, Yokotani N, Sogawa K, Matsuda Y, Fujii‐Kuriyama Y. A novel bHLH‐PAS factor with close sequence similarity to hypoxia‐inducible factor 1alpha regulates the VEGF expression and is potentially involved in lung and vascular development. Proc Natl Acad Sci U S A 94: 4273‐4278, 1997.
 116. Epstein AC, Gleadle JM, McNeill LA, Hewitson KS, O'Rourke J, Mole DR, Mukherji M, Metzen E, Wilson MI, Dhanda A, Tian YM, Masson N, Hamilton DL, Jaakkola P, Barstead R, Hodgkin J, Maxwell PH, Pugh CW, Schofield CJ, Ratcliffe PJ. C. elegans EGL‐9 and mammalian homologs define a family of dioxygenases that regulate HIF by prolyl hydroxylation. Cell 107: 43‐54, 2001.
 117. Erbayraktar S, Grasso G, Sfacteria A, Xie QW, Coleman T, Kreilgaard M, Torup L, Sager T, Erbayraktar Z, Gokmen N, Yilmaz O, Ghezzi P, Villa P, Fratelli M, Casagrande S, Leist M, Helboe L, Gerwein J, Christensen S, Geist MA, Pedersen LO, Cerami‐Hand C, Wuerth JP, Cerami A, Brines M. Asialoerythropoietin is a nonerythropoietic cytokine with broad neuroprotective activity in vivo. Proc Natl Acad Sci U S A 100: 6741‐6746, 2003.
 118. Erslev AJ. Physiologic control of red cell production. Blood 10: 954‐961, 1955.
 119. Erslev AJ, Caro J. Pure erythrocytosis classified according to erythropoietin titers. Am J Med 76: 57‐61, 1984.
 120. Erslev AJ, Wilson J, Caro J. Erythropoietin titers in anemic, nonuremic patients. J Lab Clin Med 109: 429‐433, 1987.
 121. Eschbach JW, Egrie JC, Downing MR, Browne JK, Adamson JW. Correction of the anemia of end‐stage renal disease with recombinant human erythropoietin. Results of a combined phase I and II clinical trial. N Engl J Med 316: 73‐78, 1987.
 122. Eschbach JW, Kelly MR, Haley NR, Abels RI, Adamson JW. Treatment of the anemia of progressive renal failure with recombinant human erythropoietin. N Engl J Med 321: 158‐163, 1989.
 123. Fandrey J, Bunn HF. In vivo and in vitro regulation of erythropoietin mRNA: Measurement by competitive polymerase chain reaction. Blood 81: 617‐623, 1993.
 124. Fandrey J, Pagel H, Frede S, Wolff M, Jelkmann W. Thyroid hormones enhance hypoxia‐induced erythropoietin production in vitro. Exp Hematol 22: 272‐277, 1994.
 125. Faquin WC, Schneider TJ, Goldberg MA. Effect of inflammatory cytokines on hypoxia‐induced erythropoietin production. Blood 79: 1987‐1994, 1992.
 126. Feldman L, Wang Y, Rhim JS, Bhattacharya N, Loda M, Sytkowski AJ. Erythropoietin stimulates growth and STAT5 phosphorylation in human prostate epithelial and prostate cancer cells. Prostate 66: 135‐145, 2006.
 127. Fiordaliso F, Chimenti S, Staszewsky L, Bai A, Carlo E, Cuccovillo I, Doni M, Mengozzi M, Tonelli R, Ghezzi P, Coleman T, Brines M, Cerami A, Latini R. A nonerythropoietic derivative of erythropoietin protects the myocardium from ischemia‐reperfusion injury. Proc Natl Acad Sci U S A 102: 2046‐2051, 2005.
 128. Fisher JW, Koury S, Ducey T, Mendel S. Erythropoietin production by interstitial cells of hypoxic monkey kidneys. Br J Haematol 95: 27‐32, 1996.
 129. Fisher JW, Samuels AI. Relationship between renal blood flow and erythropoietin production in dogs. Proc Soc Exp Biol Med 125: 482‐485, 1967.
 130. Flake AW, Harrison MR, Adzick NS, Zanjani ED. Erythropoietin production by the fetal liver in an adult environment. Blood 70: 542‐545, 1987.
 131. Flamme I, Frohlich T, von Reutern M, Kappel A, Damert A, Risau W. HRF, a putative basic helix‐loop‐helix‐PAS‐domain transcription factor is closely related to hypoxia‐inducible factor‐1 alpha and developmentally expressed in blood vessels. Mech Dev 63: 51‐60, 1997.
 132. Fraisl P, Aragones J, Carmeliet P. Inhibition of oxygen sensors as a therapeutic strategy for ischaemic and inflammatory disease. Nat Rev Drug Discov 8: 139‐152, 2009.
 133. Franek E, Kokot F, Wiecek A, Pawlowski W, Myrta J, Szewczyk W, Bar A. Erythropoietin concentration in cyst fluid in patients with simple renal cysts. Nephron 67: 431‐435, 1994.
 134. Fraser JK, Lin FK, Berridge MV. Expression and modulation of specific, high affinity binding sites for erythropoietin on the human erythroleukemic cell line K562. Blood 71: 104‐109, 1988.
 135. Fried W. The liver as a source of extrarenal erythropoietin production. Blood 40: 671‐677, 1972.
 136. Fried W, Barone‐Varelas J, Berman M. Detection of high erythropoietin titers in renal extracts of hypoxic rats. J Lab Clin Med 97: 82‐86, 1981.
 137. Fried W, Jonasson O, Lang G, Schwartz F. The hematologic effect of androgen in uremic patients. Study of packed cell volume and erythropoietin responses. Ann Intern Med 79: 823‐827, 1973.
 138. Friman S, Nyberg G, Blohme I. Erythrocytosis after renal transplantation; treatment by removal of the native kidneys. Nephrol Dial Transplant 5: 969‐973, 1990.
 139. Fu JS, Lertora JJ, Brookins J, Rice JC, Fisher JW. Pharmacokinetics of erythropoietin in intact and anephric dogs. J Lab Clin Med 111: 669‐676, 1988.
 140. Fu QL, Wu W, Wang H, Li X, Lee VW, So KF. Up‐regulated endogenous erythropoietin/erythropoietin receptor system and exogenous erythropoietin rescue retinal ganglion cells after chronic ocular hypertension. Cell Mol Neurobiol 28: 317‐329, 2008.
 141. Furlow PW, Percy MJ, Sutherland S, Bierl C, McMullin MF, Master SR, Lappin TR, Lee FS. Erythrocytosis‐associated HIF‐2alpha mutations demonstrate a critical role for residues C‐terminal to the hydroxylacceptor proline. J Biol Chem 284: 9050‐9058, 2009.
 142. Gale DP, Harten SK, Reid CD, Tuddenham EG, Maxwell PH. Autosomal dominant erythrocytosis and pulmonary arterial hypertension associated with an activating HIF2 alpha mutation. Blood 112: 919‐921, 2008.
 143. Galson DL, Tsuchiya T, Tendler DS, Huang LE, Ren Y, Ogura T, Bunn HF. The orphan receptor hepatic nuclear factor 4 functions as a transcriptional activator for tissue‐specific and hypoxia‐specific erythropoietin gene expression and is antagonized by EAR3/COUP‐TF1. Mol Cell Biol 15: 2135‐2144, 1995.
 144. Garcia‐Ramirez M, Hernandez C, Simo R. Expression of erythropoietin and its receptor in the human retina: A comparative study of diabetic and nondiabetic subjects. Diabetes Care 31: 1189‐1194, 2008.
 145. Garcia JE, Senent C, Pascual C, Fernandez G, Perez‐Carral C, Diaz‐Tejeiro R, Gomez E, Sierra T. Anaphylactic reaction to recombinant human erythropoietin. Nephron 65: 636‐637, 1993.
 146. Gassmann M, Heinicke K, Soliz J, Ogunshola OO. Non‐erythroid functions of erythropoietin. Adv Exp Med Biol 543: 323‐330, 2003.
 147. Gerald D, Berra E, Frapart YM, Chan DA, Giaccia AJ, Mansuy D, Pouyssegur J, Yaniv M, Mechta‐Grigoriou F. JunD reduces tumor angiogenesis by protecting cells from oxidative stress. Cell 118: 781‐794, 2004.
 148. Ginouves A, Ilc K, Macias N, Pouyssegur J, Berra E. PHDs overactivation during chronic hypoxia “desensitizes” HIFalpha and protects cells from necrosis. Proc Natl Acad Sci U S A 105: 4745‐4750, 2008.
 149. Goldberg MA, Dunning SP, Bunn HF. Regulation of the erythropoietin gene: Evidence that the oxygen sensor is a heme protein. Science 242: 1412‐1415, 1988.
 150. Goldberg MA, Gaut CC, Bunn HF. Erythropoietin mRNA levels are governed by both the rate of gene transcription and posttranscriptional events. Blood 77: 271‐277, 1991.
 151. Goldberg MA, Glass GA, Cunningham JM, Bunn HF. The regulated expression of erythropoietin by two human hepatoma cell lines. Proc Natl Acad Sci U S A 84: 7972‐7976, 1987.
 152. Goldwasser E, Jacobson LO, Fried W, Plzak LF. Studies on erythropoiesis. V. The effect of cobalt on the production of erythropoietin. Blood 13: 55‐60, 1958.
 153. Goldwasser E, Kung CK, Eliason J. On the mechanism of erythropoietin‐induced differentiation. 13. The role of sialic acid in erythropoietin action. J Biol Chem 249: 4202‐4206, 1974.
 154. Gorr TA, Cahn JD, Yamagata H, Bunn HF. Hypoxia‐induced synthesis of hemoglobin in the crustacean Daphnia magna is hypoxia‐inducible factor‐dependent. J Biol Chem 279: 36038‐36047, 2004.
 155. Grimm C, Wenzel A, Groszer M, Mayser H, Seeliger M, Samardzija M, Bauer C, Gassmann M, Reme CE. HIF‐1‐induced erythropoietin in the hypoxic retina protects against light‐induced retinal degeneration. Nat Med 8: 718‐724, 2002.
 156. Grimm C, Wenzel A, Stanescu D, Samardzija M, Hotop S, Groszer M, Naash M, Gassmann M, Reme C. Constitutive overexpression of human erythropoietin protects the mouse retina against induced but not inherited retinal degeneration. J Neurosci 24: 5651‐5658, 2004.
 157. Gross M, Goldwasser E. On the mechanism of erythropoietin‐induced differentiation. VII. The relationship between stimulated deoxyribonucleic acid synthesis and ribonucleic acid synthesis. J Biol Chem 245: 1632‐1636, 1970.
 158. Gruber M, Hu CJ, Johnson RS, Brown EJ, Keith B, Simon MC. Acute postnatal ablation of Hif‐2alpha results in anemia. Proc Natl Acad Sci U S A 104: 2301‐2306, 2007.
 159. Gu YZ, Moran SM, Hogenesch JB, Wartman L, Bradfield CA. Molecular characterization and chromosomal localization of a third alpha‐class hypoxia inducible factor subunit, HIF3alpha. Gene Expr 7: 205‐213, 1998.
 160. Gupta M, Mungai PT, Goldwasser E. A new transacting factor that modulates hypoxia‐induced expression of the erythropoietin gene. Blood 96: 491‐497, 2000.
 161. Hagström L, Agbulut O, El‐Hasnaoui‐Saadani R, Marchant D, Favret F, Richalet JP, Beaudry M, Launay T. Epo is relevant neither for microvascular formation nor for the new formation and maintenance of mice skeletal muscle fibres in both normoxia and hypoxia. J Biomed Biotechnol 137817: 1‐13, 2010.
 162. Haller H, Christel C, Dannenberg L, Thiele P, Lindschau C, Luft FC. Signal transduction of erythropoietin in endothelial cells. Kidney Int 50: 481‐488, 1996.
 163. Halvorsen S. Effects of growth hormone on erythropoiesis in the intact rabbit and the polycythemic mouse. Acta Physiol Scand 66: 203‐213, 1966.
 164. Halvorsen S, Roh BL, Fisher JW. Erythropoietin production in nephrectomized and hypophysectomized animals. Am J Physiol 215: 349‐352, 1968.
 165. Hansen AJ, Fogh J, Mollgard K, Sorensen SC. Evidence against erythropoietin production by the carotid body. Respir Physiol 18: 101‐106, 1973.
 166. Hanson ES, Foot LM, Leibold EA. Hypoxia post‐translationally activates iron‐regulatory protein 2. J Biol Chem 274: 5047‐5052, 1999.
 167. Hanson ES, Leibold EA. Regulation of iron regulatory protein 1 during hypoxia and hypoxia/reoxygenation. J Biol Chem 273: 7588‐7593, 1998.
 168. Hanson ES, Rawlins ML, Leibold EA. Oxygen and iron regulation of iron regulatory protein 2. J Biol Chem 278: 40337‐40342, 2003.
 169. Heeschen C, Aicher A, Lehmann R, Fichtlscherer S, Vasa M, Urbich C, Mildner‐Rihm C, Martin H, Zeiher AM, Dimmeler S. Erythropoietin is a potent physiologic stimulus for endothelial progenitor cell mobilization. Blood 102: 1340‐1346, 2003.
 170. Heidenreich S, Rahn KH, Zidek W. Direct vasopressor effect of recombinant human erythropoietin on renal resistance vessels. Kidney Int 39: 259‐265, 1991.
 171. Henle ES, Han Z, Tang N, Rai P, Luo Y, Linn S. Sequence‐specific DNA cleavage by Fe2+‐mediated fenton reactions has possible biological implications. J Biol Chem 274: 962‐971, 1999.
 172. Hernandez C, Fonollosa A, Garcia‐Ramirez M, Higuera M, Catalan R, Miralles A, Garcia‐Arumi J, Simo R. Erythropoietin is expressed in the human retina and it is highly elevated in the vitreous fluid of patients with diabetic macular edema. Diabetes Care 29: 2028‐2033, 2006.
 173. Hickey MM, Lam JC, Bezman NA, Rathmell WK, Simon MC. von Hippel‐Lindau mutation in mice recapitulates Chuvash polycythemia via hypoxia‐inducible factor‐2alpha signaling and splenic erythropoiesis. J Clin Invest 117: 3879‐3889, 2007.
 174. Hirsila M, Koivunen P, Gunzler V, Kivirikko KI, Myllyharju J. Characterization of the human prolyl 4‐hydroxylases that modify the hypoxia‐inducible factor. J Biol Chem 278: 30772‐30780, 2003.
 175. Hirsila M, Koivunen P, Xu L, Seeley T, Kivirikko KI, Myllyharju J. Effect of desferrioxamine and metals on the hydroxylases in the oxygen sensing pathway. FASEB J 19: 1308‐1310, 2005.
 176. Hofer T, Wenger RH, Kramer MF, Ferreira GC, Gassmann M. Hypoxic up‐regulation of erythroid 5‐aminolevulinate synthase. Blood 101: 348‐350, 2003.
 177. Hogenesch JB, Chan WK, Jackiw VH, Brown RC, Gu YZ, Pray‐Grant M, Perdew GH, Bradfield CA. Characterization of a subset of the basic‐helix‐loop‐helix‐PAS superfamily that interacts with components of the dioxin signaling pathway. J Biol Chem 272: 8581‐8593, 1997.
 178. Horl WH, Cavill I, MacDougall IC, Schaefer RM, Sunder‐Plassmann G. How to diagnose and correct iron deficiency during r‐huEPO therapy—a consensus report. Nephrol Dial Transplant 11: 246‐250, 1996.
 179. Hsieh MM, Linde NS, Wynter A, Metzger M, Wong C, Langsetmo I, Lin A, Smith R, Rodgers GP, Donahue RE, Klaus SJ, Tisdale JF. HIF prolyl hydroxylase inhibition results in endogenous erythropoietin induction, erythrocytosis, and modest fetal hemoglobin expression in rhesus macaques. Blood 110: 2140‐2147, 2007.
 180. Hu B, Wright E, Campbell L, Blanchard KL. In vivo analysis of DNA‐protein interactions on the human erythropoietin enhancer. Mol Cell Biol 17: 851‐856, 1997.
 181. Huang LE, Gu J, Schau M, Bunn HF. Regulation of hypoxia‐inducible factor 1alpha is mediated by an O2‐dependent degradation domain via the ubiquitin‐proteasome pathway. Proc Natl Acad Sci U S A 95: 7987‐7992, 1998.
 182. Ianhex LE, Da Fonseca JA, Chocair PR, Maspes V, Sabbaga E. Polycythemia after kidney transplantation: Influence of the native kidneys on the production of hemoglobin. Urol Int 32: 382‐392, 1977.
 183. Ihle JN. Cytokine receptor signalling. Nature 377: 591‐594, 1995.
 184. Imagawa S, Goldberg MA, Doweiko J, Bunn HF. Regulatory elements of the erythropoietin gene. Blood 77: 278‐285, 1991.
 185. Imagawa S, Izumi T, Miura Y. Positive and negative regulation of the erythropoietin gene. J Biol Chem 269: 9038‐9044, 1994.
 186. Imagawa S, Suzuki N, Ohmine K, Obara N, Mukai HY, Ozawa K, Yamamoto M, Nagasawa T. GATA suppresses erythropoietin gene expression through GATA site in mouse erythropoietin gene promoter. Int J Hematol 75: 376‐381, 2002.
 187. Imagawa S, Yamamoto M, Miura Y. Negative regulation of the erythropoietin gene expression by the GATA transcription factors. Blood 89: 1430‐1439, 1997.
 188. Imamura R, Okumi M, Isaka Y, Ichimaru N, Moriyama T, Imai E, Nonomura N, Takahara S, Okuyama A. Carbamylated erythropoietin improves angiogenesis and protects the kidneys from ischemia‐reperfusion injury. Cell Transplant 17: 135‐141, 2008.
 189. Isaacs JS, Jung YJ, Mole DR, Lee S, Torres‐Cabala C, Chung YL, Merino M, Trepel J, Zbar B, Toro J, Ratcliffe PJ, Linehan WM, Neckers L. HIF overexpression correlates with biallelic loss of fumarate hydratase in renal cancer: Novel role of fumarate in regulation of HIF stability. Cancer Cell 8: 143‐153, 2005.
 190. Ivan M, Kondo K, Yang H, Kim W, Valiando J, Ohh M, Salic A, Asara JM, Lane WS, Kaelin WG Jr. HIFα targeted for VHL‐mediated destruction by proline hydroxylation: Implications for O2 sensing. Science 292: 464‐468, 2001.
 191. Iyer NV, Kotch LE, Agani F, Leung SW, Laughner E, Wenger RH, Gassmann M, Gearhart JD, Lawler AM, Yu AY, Semenza GL. Cellular and developmental control of O2 homeostasis by hypoxia‐inducible factor 1α. Genes Dev 12: 149‐162, 1998.
 192. Jaakkola P, Mole DR, Tian YM, Wilson MI, Gielbert J, Gaskell SJ, Kriegsheim A, Hebestreit HF, Mukherji M, Schofield CJ, Maxwell PH, Pugh CW, Ratcliffe PJ. Targeting of HIF‐alpha to the von Hippel‐Lindau ubiquitylation complex by O2‐regulated prolyl hydroxylation. Science 292: 468‐472, 2001.
 193. Jacobs K, Shoemaker C, Rudersdorf R, Neill SD, Kaufman RJ, Mufson A, Seehra J, Jones SS, Hewick R, Fritsch EF, Kawakita M, Shimizu T, Miyake T. Isolation and characterization of genomic and cDNA clones of human erythropoietin. Nature 313: 806‐810, 1985.
 194. Jacobson LO, Goldwasser E, Fried W, Plzak L. Role of the kidney in erythropoiesis. Nature 179: 633‐634, 1957.
 195. Jaquet K, Krause K, Tawakol‐Khodai M, Geidel S, Kuck KH. Erythropoietin and VEGF exhibit equal angiogenic potential. Microvasc Res 64: 326‐333, 2002.
 196. Jelkmann W. Temporal pattern of erythropoietin titers in kidney tissue during hypoxic hypoxia. Pflug Arch 393: 88‐91, 1982.
 197. Jelkmann W. Effects of erythropoietin on brain function. Curr Pharm Biotechnol 6: 65‐79, 2005.
 198. Jelkmann W. Recombinant EPO production—points the nephrologist should know. Nephrol Dial Transplant 22: 2749‐2753, 2007.
 199. Jelkmann W. Developments in the therapeutic use of erythropoiesis stimulating agents. Br J Haematol 141: 287‐297, 2008.
 200. Jelkmann W. Erythropoiesis stimulating agents and techniques: A challenge for doping analysts. Curr Med Chem 16: 1236‐1247, 2009.
 201. Jelkmann W, Bauer C. Demonstration of high levels of erythropoietin in rat kidneys following hypoxic hypoxia. Pflug Arch 392: 34‐39, 1981.
 202. Jelkmann W, Pagel H, Wolff M, Fandrey J. Monokines inhibiting erythropoietin production in human hepatoma cultures and in isolated perfused rat kidneys. Life Sci 50: 301‐308, 1992.
 203. Jelkmann W, Wagner K. Beneficial and ominous aspects of the pleiotropic action of erythropoietin. Ann Hematol 83: 673‐686, 2004.
 204. Jelkmann W, Wolff M, Fandrey J. Modulation of the production of erythropoietin by cytokines: In vitro studies and their clinical implications. Contrib Nephrol 87: 68‐77, 1990.
 205. Jeong JY, Feldman L, Solar P, Szenajch J, Sytkowski AJ. Characterization of erythropoietin receptor and erythropoietin expression and function in human ovarian cancer cells. Int J Cancer 122: 274‐280, 2008.
 206. Jeong JY, Hoxhaj G, Socha AL, Sytkowski AJ, Feldman L. An erythropoietin autocrine/paracrine axis modulates the growth and survival of human prostate cancer cells. Mol Cancer Res 7: 1150‐1157, 2009.
 207. Jewell UR, Kvietikova I, Scheid A, Bauer C, Wenger RH, Gassmann M. Induction of HIF‐1alpha in response to hypoxia is instantaneous. FASEB J 15: 1312‐1314, 2001.
 208. Jones SS, D'Andrea AD, Haines LL, Wong GG. Human erythropoietin receptor: Cloning, expression, and biologic characterization. Blood 76: 31‐35, 1990.
 209. Junk AK, Mammis A, Savitz SI, Singh M, Roth S, Malhotra S, Rosenbaum PS, Cerami A, Brines M, Rosenbaum DM. Erythropoietin administration protects retinal neurons from acute ischemia‐reperfusion injury. Proc Natl Acad Sci U S A 99: 10659‐10664, 2002.
 210. Juul SE, Anderson DK, Li Y, Christensen RD. Erythropoietin and erythropoietin receptor in the developing human central nervous system. Pediatr Res 43: 40‐49, 1998.
 211. Juul SE, Ledbetter DJ, Joyce AE, Dame C, Christensen RD, Zhao Y, DeMarco V. Erythropoietin acts as a trophic factor in neonatal rat intestine. Gut 49: 182‐189, 2001.
 212. Juul SE, Yachnis AT, Christensen RD. Tissue distribution of erythropoietin and erythropoietin receptor in the developing human fetus. Early Hum Dev 52: 235‐249, 1998.
 213. Juvonen E, Ikkala E, Fyhrquist F, Ruutu T. Autosomal dominant erythrocytosis caused by increased sensitivity to erythropoietin. Blood 78: 3066‐3069, 1991.
 214. Kaelin WG Jr, Ratcliffe PJ. Oxygen sensing by metazoans: The central role of the HIF hydroxylase pathway. Mol Cell 30: 393‐402, 2008.
 215. Kallio PJ, Wilson WJ, O'Brien S, Makino Y, Poellinger L. Regulation of the hypoxia‐inducible transcription factor 1alpha by the ubiquitin‐proteasome pathway. J Biol Chem 274: 6519‐6525, 1999.
 216. Kapitsinou PP, Liu Q, Unger TL, Rha J, Davidoff O, Keith B, Epstein JA, Moores SL, Erickson‐Miller CL, Haase VH. Hepatic HIF‐2 regulates erythropoietic responses to hypoxia in renal anemia. Blood 116: 3039‐3048, 2010.
 217. Katschinski DM. In vivo functions of the prolyl‐4‐hydroxylase domain oxygen sensors: Direct route to the treatment of anaemia and the protection of ischaemic tissues. Acta Physiol (Oxf) 195: 407‐414, 2009.
 218. Katsuoka Y, Beckman B, George WJ, Fisher JW. Increased levels of erythropoietin in kidney extracts of rats treated with cobalt and hypoxia. Am J Physiol 244: F129‐133, 1983.
 219. Katsura Y, Okano T, Matsuno K, Osako M, Kure M, Watanabe T, Iwaki Y, Noritake M, Kosano H, Nishigori H, Matsuoka T. Erythropoietin is highly elevated in vitreous fluid of patients with proliferative diabetic retinopathy. Diabetes Care 28: 2252‐2254, 2005.
 220. Kawakami M, Sekiguchi M, Sato K, Kozaki S, Takahashi M. Erythropoietin receptor‐mediated inhibition of exocytotic glutamate release confers neuroprotection during chemical ischemia. J Biol Chem 276: 39469‐39475, 2001.
 221. Khanna S, Roy S, Maurer M, Ratan RR, Sen CK. Oxygen‐sensitive reset of hypoxia‐inducible factor transactivation response: Prolyl hydroxylases tune the biological normoxic set point. Free Radic Biol Med 40: 2147‐2154, 2006.
 222. Kilic E, Kilic U, Soliz J, Bassetti CL, Gassmann M, Hermann DM. Brain‐derived erythropoietin protects from focal cerebral ischemia by dual activation of ERK‐1/‐2 and Akt pathways. Faseb J 19: 2026‐2028, 2005.
 223. Kilic U, Kilic E, Soliz J, Bassetti CI, Gassmann M, Hermann DM. Erythropoietin protects from axotomy‐induced degeneration of retinal ganglion cells by activating ERK‐1/‐2. Faseb J 19: 249‐251, 2005.
 224. Kim MJ, Bogic L, Cheung CY, Brace RA. Expression of erythropoietin mRNA, protein and receptor in ovine fetal membranes. Placenta 22: 846‐851, 2001.
 225. Kindler J, Eckardt KU, Ehmer B, Jandeleit K, Kurtz A, Schreiber A, Scigalla P, Sieberth HG. Single‐dose pharmacokinetics of recombinant human erythropoietin in patients with various degrees of renal failure. Nephrol Dial Transplant 4: 345‐349, 1989.
 226. Kirkeby A, van Beek J, Nielsen J, Leist M, Helboe L. Functional and immunochemical characterisation of different antibodies against the erythropoietin receptor. J Neurosci Methods 164: 50‐58, 2007.
 227. Kitamura H, Isaka Y, Takabatake Y, Imamura R, Suzuki C, Takahara S, Imai E. Nonerythropoietic derivative of erythropoietin protects against tubulointerstitial injury in a unilateral ureteral obstruction model. Nephrol Dial Transplant 23: 1521‐1528, 2008.
 228. Klassen DK, Spivak JL. Hepatitis‐related hepatic erythropoietin production. Am J Med 89: 684‐686, 1990.
 229. Knowles HJ, Raval RR, Harris AL, Ratcliffe PJ. Effect of ascorbate on the activity of hypoxia‐inducible factor in cancer cells. Cancer Res 63: 1764‐1768, 2003.
 230. Kobayashi T, Yanase H, Iwanaga T, Sasaki R, Nagao M. Epididymis is a novel site of erythropoietin production in mouse reproductive organs. Biochem Biophys Res Commun 296: 145‐151, 2002.
 231. Koivunen P, Tiainen P, Hyvarinen J, Williams KE, Sormunen R, Klaus SJ, Kivirikko KI, Myllyharju J. An endoplasmic reticulum transmembrane prolyl 4‐hydroxylase is induced by hypoxia and acts on hypoxia‐inducible factor alpha. J Biol Chem 282: 30544‐30552, 2007.
 232. Kokhaei P, Abdalla AO, Hansson L, Mikaelsson E, Kubbies M, Haselbeck A, Jernberg‐Wiklund H, Mellstedt H, Osterborg A. Expression of erythropoietin receptor and in vitro functional effects of epoetins in B‐cell malignancies. Clin Cancer Res 13: 3536‐3544, 2007.
 233. Konishi Y, Chui DH, Hirose H, Kunishita T, Tabira T. Trophic effect of erythropoietin and other hematopoietic factors on central cholinergic neurons in vitro and in vivo. Brain Res 609: 29‐35, 1993.
 234. Koplan JP, Sprayregan S, Ossias AL, Zanjani ED. Erythropoietin‐producing renal cyst and polycythemia vera. Clarification of their relationship. Am J Med 54: 819‐824, 1973.
 235. Koshimura K, Murakami Y, Sohmiya M, Tanaka J, Kato Y. Effects of erythropoietin on neuronal activity. J Neurochem 72: 2565‐2572, 1999.
 236. Koury MJ, Bondurant MC. Erythropoietin retards DNA breakdown and prevents programmed death in erythroid progenitor cells. Science 248: 378‐381, 1990.
 237. Koury MJ, Bondurant MC, Atkinson JB. Erythropoietin control of terminal erythroid differentiation: Maintenance of cell viability, production of hemoglobin, and development of the erythrocyte membrane. Blood Cells 13: 217‐226, 1987.
 238. Koury MJ, Bondurant MC, Graber SE, Sawyer ST. Erythropoietin messenger RNA levels in developing mice and transfer of 125I‐erythropoietin by the placenta. J Clin Invest 82: 154‐159, 1988.
 239. Koury MJ, Bondurant MC, Mueller TJ. The role of erythropoietin in the production of principal erythrocyte proteins other than hemoglobin during terminal erythroid differentiation. J Cell Physiol 126: 259‐265, 1986.
 240. Koury MJ, Bondurant MC, Rana SS. Changes in erythroid membrane proteins during erythropoietin‐mediated terminal differentiation. J Cell Physiol 133: 438‐448, 1987.
 241. Koury ST, Bondurant MC, Koury MJ. Localization of erythropoietin synthesizing cells in murine kidneys by in situ hybridization. Blood 71: 524‐527, 1988.
 242. Koury ST, Bondurant MC, Koury MJ, Semenza GL. Localization of cells producing erythropoietin in murine liver by in situ hybridization. Blood 77: 2497‐2503, 1991.
 243. Koury ST, Koury MJ, Bondurant MC, Caro J, Graber SE. Quantitation of erythropoietin‐producing cells in kidneys of mice by in situ hybridization: Correlation with hematocrit, renal erythropoietin mRNA, serum erythropoietin concentration. Blood 74: 645‐651, 1989.
 244. Krantz SB. Erythropoietin. Blood 77: 419‐434, 1991.
 245. Kretz A, Happold CJ, Marticke JK, Isenmann S. Erythropoietin promotes regeneration of adult CNS neurons via Jak2/Stat3 and PI3K/AKT pathway activation. Mol Cell Neurosci 29: 569‐579, 2005.
 246. Krugel K, Wurm A, Linnertz R, Pannicke T, Wiedemann P, Reichenbach A, Bringmann A. Erythropoietin inhibits osmotic swelling of retinal glial cells by Janus kinase‐ and extracellular signal‐regulated kinases1/2‐mediated release of vascular endothelial growth factor. Neuroscience 165: 1147‐1158, 2010.
 247. Ku H, Hirayama F, Kato T, Miyazaki H, Aritomi M, Ota Y, D'Andrea AD, Lyman SD, Ogawa M. Soluble thrombopoietin receptor (Mpl) and granulocyte colony‐stimulating factor receptor directly stimulate proliferation of primitive hematopoietic progenitors of mice in synergy with steel factor or the ligand for Flt3/Flk2. Blood 88: 4124‐4131, 1996.
 248. Kumar SM, Yu H, Fong D, Acs G, Xu X. Erythropoietin activates the phosphoinositide 3‐kinase/Akt pathway in human melanoma cells. Melanoma Res 16: 275‐283, 2006.
 249. Kurtz A, Eckardt KE, Tannahill L, Bauer C. Regulation of erythropoietin production. Contrib Nephrol 66: 1‐16, 1988.
 250. Kurtz A, Eckardt KU. Erythropoietin production in chronic renal disease before and after transplantation. Contrib Nephrol 87: 15‐25, 1990.
 251. Kurtz A, Eckardt KU, Neumann R, Kaissling B, Le Hir M, Bauer C. Site of erythropoietin formation. Contrib Nephrol 76: 14‐20; discussion 21‐13, 1989.
 252. Kurtz A, Zapf J, Eckardt KU, Clemons G, Froesch ER, Bauer C. Insulin‐like growth factor I stimulates erythropoiesis in hypophysectomized rats. Proc Natl Acad Sci U S A 85: 7825‐7829, 1988.
 253. Kvietikova I, Wenger RH, Marti HH, Gassmann M. The transcription factors ATF‐1 and CREB‐1 bind constitutively to the hypoxia‐inducible factor‐1 (HIF‐1) DNA recognition site. Nucleic Acids Res 23: 4542‐4550, 1995.
 254. Kvietikova I, Wenger RH, Marti HH, Gassmann M. The hypoxia‐inducible factor‐1 DNA recognition site is cAMP‐responsive. Kidney Int 51: 564‐566, 1997.
 255. La Ferla K, Reimann C, Jelkmann W, Hellwig‐Bürgel T. Inhibition of erythropoietin gene expression signaling involves the transcription factors GATA‐2 and NF‐κB. Faseb J 16: 1811‐1813, 2002.
 256. Lacombe C, Da Silva JL, Bruneval P, Fournier JG, Wendling F, Casadevall N, Camilleri JP, Bariety J, Varet B, Tambourin P. Peritubular cells are the site of erythropoietin synthesis in the murine hypoxic kidney. J Clin Invest 81: 620‐623, 1988.
 257. Ladroue C, Carcenac R, Leporrier M, Gad S, Le Hello C, Galateau‐Salle F, Feunteun J, Pouyssegur J, Richard S, Gardie B. PHD2 mutation and congenital erythrocytosis with paraganglioma. N Engl J Med 359: 2685‐2692, 2008.
 258. Lam SY, Tipoe GL, Fung ML. Upregulation of erythropoietin and its receptor expression in the rat carotid body during chronic and intermittent hypoxia. Adv Exp Med Biol 648: 207‐214, 2009.
 259. LaMontagne KR, Butler J, Marshall DJ, Tullai J, Gechtman Z, Hall C, Meshaw A, Farrell FX. Recombinant epoetins do not stimulate tumor growth in erythropoietin receptor‐positive breast carcinoma models. Mol Cancer Ther 5: 347‐355, 2006.
 260. Lando D, Peet DJ, Gorman JJ, Whelan DA, Whitelaw ML, Bruick RK. FIH‐1 is an asparaginyl hydroxylase enzyme that regulates the transcriptional activity of hypoxia‐inducible factor. Genes Dev 16: 1466‐1471, 2002.
 261. Lando D, Peet DJ, Whelan DA, Gorman JJ, Whitelaw ML. Asparagine hydroxylation of the HIF transactivation domain a hypoxic switch. Science 295: 858‐861, 2002.
 262. Laugsch M, Metzen E, Svensson T, Depping R, Jelkmann W. Lack of functional erythropoietin receptors of cancer cell lines. Int J Cancer 122: 1005‐1011, 2008.
 263. Law ML, Cai GY, Lin FK, Wei Q, Huang SZ, Hartz JH, Morse H, Lin CH, Jones C, Kao FT. Chromosomal assignment of the human erythropoietin gene and its DNA polymorphism. Proc Natl Acad Sci U S A 83: 6920‐6924, 1986.
 264. Le Hir M, Eckardt KU, Kaissling B. Anemia induces 5′‐nucleotidase in fibroblasts of cortical labyrinth of rat kidney. Ren Physiol Biochem 12: 313‐319, 1989.
 265. Le Hir M, Eckardt KU, Kaissling B, Koury ST, Kurtz A. Structure‐function correlations in erythropoietin formation and oxygen sensing in the kidney. Klin Wochenschr 69: 567‐575, 1991.
 266. Le Minh K, Klemm K, Abshagen K, Eipel C, Menger MD, Vollmar B. Attenuation of inflammation and apoptosis by pre‐ and posttreatment of darbepoetin‐alpha in acute liver failure of mice. Am J Pathol 170: 1954‐1963, 2007.
 267. Lechermann B, Jelkmann W. Erythropoietin production in normoxic and hypoxic rats with increased blood O2 affinity. Respir Physiol 60: 1‐8, 1985.
 268. Lee PJ, Jiang BH, Chin BY, Iyer NV, Alam J, Semenza GL, Choi AM. Hypoxia‐inducible factor‐1 mediates transcriptional activation of the heme oxygenase‐1 gene in response to hypoxia. J Biol Chem 272: 5375‐5381, 1997.
 269. Leist M, Ghezzi P, Grasso G, Bianchi R, Villa P, Fratelli M, Savino C, Bianchi M, Nielsen J, Gerwien J, Kallunki P, Larsen AK, Helboe L, Christensen S, Pedersen LO, Nielsen M, Torup L, Sager T, Sfacteria A, Erbayraktar S, Erbayraktar Z, Gokmen N, Yilmaz O, Cerami‐Hand C, Xie QW, Coleman T, Cerami A, Brines M. Derivatives of erythropoietin that are tissue protective but not erythropoietic. Science 305: 239‐242, 2004.
 270. Lester RD, Jo M, Campana WM, Gonias SL. Erythropoietin promotes MCF‐7 breast cancer cell migration by an ERK/mitogen‐activated protein kinase‐dependent pathway and is primarily responsible for the increase in migration observed in hypoxia. J Biol Chem 280: 39273‐39277, 2005.
 271. Lewczuk P, Hasselblatt M, Kamrowski‐Kruck H, Heyer A, Unzicker C, Siren AL, Ehrenreich H. Survival of hippocampal neurons in culture upon hypoxia: Effect of erythropoietin. Neuroreport 11: 3485‐3488, 2000.
 272. Liapis H, Roby J, Birkland TP, Davila RM, Ritter D, Parks WC. In situ hybridization of human erythropoietin in pre‐ and postnatal kidneys. Pediatr Pathol Lab Med 15: 875‐883, 1995.
 273. Lin CS, Lim SK, D'Agati V, Costantini F. Differential effects of an erythropoietin receptor gene disruption on primitive and definitive erythropoiesis. Genes Dev 10: 154‐164, 1996.
 274. Lin FK, Suggs S, Lin CH, Browne JK, Smalling R, Egrie JC, Chen KK, Fox GM, Martin F, Stabinsky Z, Badrawi SM, Lai P‐H, Goldwasser E. Cloning and expression of the human erythropoietin gene. Proc Natl Acad Sci U S A 82: 7580‐7584, 1985.
 275. Livnah O, Stura EA, Johnson DL, Middleton SA, Mulcahy LS, Wrighton NC, Dower WJ, Jolliffe LK, Wilson IA. Functional mimicry of a protein hormone by a peptide agonist: The EPO receptor complex at 2.8 A. Science 273: 464‐471, 1996.
 276. Livnah O, Stura EA, Middleton SA, Johnson DL, Jolliffe LK, Wilson IA. Crystallographic evidence for preformed dimers of erythropoietin receptor before ligand activation. Science 283: 987‐990, 1999.
 277. Lok CN, Ponka P. Identification of a hypoxia response element in the transferrin receptor gene. J Biol Chem 274: 24147‐24152, 1999.
 278. Longmore GD. Erythropoietin receptor mutations and Olympic glory. Nat Genet 4: 108‐110, 1993.
 279. Lorentz A, Jendrissek A, Eckardt KU, Schipplick M, Osswald PM, Kurtz A. Serial immunoreactive erythropoietin levels in autologous blood donors. Transfusion 31: 650‐654, 1991.
 280. Loya F, Yang Y, Lin H, Goldwasser E, Albitar M. Transgenic mice carrying the erythropoietin gene promoter linked to lacZ express the reporter in proximal convoluted tubule cells after hypoxia. Blood 84: 1831‐1836, 1994.
 281. Lu H, Dalgard CL, Mohyeldin A, McFate T, Tait AS, Verma A. Reversible inactivation of HIF‐1 prolyl hydroxylases allows cell metabolism to control basal HIF‐1. J Biol Chem 280: 41928‐41939, 2005.
 282. Lubbers DW, Baumgartl H. Heterogeneities and profiles of oxygen pressure in brain and kidney as examples of the pO2 distribution in the living tissue. Kidney Int 51: 372‐380, 1997.
 283. Ludwig H, Fritz E, Kotzmann H, Hocker P, Gisslinger H, Barnas U. Erythropoietin treatment of anemia associated with multiple myeloma. N Engl J Med 322: 1693‐1699, 1990.
 284. Lukowsky WA, Painter RH. Studies on the role of sialic acid in the physical and biological properties of erythropoietin. Can J Biochem 50: 909‐917, 1972.
 285. Lundby C, Achman‐Andersen NJ, Thomsen JJ, Norgaard AM, Robach P. Testing for recombinant human erythropoietin in urine: Problems associated with current anti‐doping testing. J Appl Physiol 105: 417‐419, 2008.
 286. Lundby C, Olsen NV. Effects of recombinant humant erythropoietin in normal humans. J Physiol 589: 1265‐1271, 2011.
 287. Macdougall IC. CERA (Continuous Erythropoietin Receptor Activator): A new erythropoiesis‐stimulating agent for the treatment of anemia. Curr Hematol Rep 4: 436‐440, 2005.
 288. Madan A, Lin C, Hatch SLI, Curtin PT. Regulated basal, inducible, and tissue‐specific human erythropoietin gene expression in transgenic mice requires multiple cis DNA sequences. Blood 85: 2735‐2741, 1995.
 289. Mahon PC, Hirota K, Semenza GL. FIH‐1: A novel protein that interacts with HIF‐1alpha and VHL to mediate repression of HIF‐1 transcriptional activity. Genes Dev 15: 2675‐2686, 2001.
 290. Maiese K, Li F, Chong ZZ. New avenues of exploration for erythropoietin. JAMA 293: 90‐95, 2005.
 291. Makino Y, Cao R, Svensson K, Bertilsson G, Asman M, Tanaka H, Cao Y, Berkenstam A, Poellinger L. Inhibitory PAS domain protein is a negative regulator of hypoxia‐inducible gene expression. Nature 414: 550‐554, 2001.
 292. Makino Y, Kanopka A, Wilson WJ, Tanaka H, Poellinger L. Inhibitory PAS domain protein (IPAS) is a hypoxia‐inducible splicing variant of the hypoxia‐inducible factor‐3α locus. J Biol Chem 277: 32405‐32408, 2002.
 293. Marti HH, Gassmann M, Wenger RH, Kvietikova I, Morganti‐Kossmann MC, Kossmann T, Trentz O, Bauer C. Detection of erythropoietin in human liquor: Intrinsic erythropoietin production in the brain. Kidney Int 51: 416‐418, 1997.
 294. Marti HH, Wenger RH, Rivas LA, Straumann U, Digicaylioglu M, Henn V, Yonekawa Y, Bauer C, Gassmann M. Erythropoietin gene expression in human, monkey and murine brain. Eur J Neurosci 8: 666‐676, 1996.
 295. Martin F, Linden T, Katschinski DM, Oehme F, Flamme I, Mukhopadhyay CK, Eckhardt K, Troger J, Barth S, Camenisch G, Wenger RH. Copper‐dependent activation of hypoxia‐inducible factor (HIF)‐1: Implications for ceruloplasmin regulation. Blood 105: 4613‐4619, 2005.
 296. Martini M, Teofili L, Cenci T, Giona F, Torti L, Rea M, Foa R, Leone G, Larocca LM. A novel heterozygous HIF2AM535I mutation reinforces the role of oxygen sensing pathway disturbances in the pathogenesis of familial erythrocytosis. Haematologica 93: 1068‐1071, 2008.
 297. Martino R, Oliver A, Ballarin JM, Remacha AF. Postrenal transplant erythrocytosis: Further evidence implicating erythropoietin production by the native kidneys. Ann Hematol 68: 201‐203, 1994.
 298. Marxsen JH, Stengel P, Doege K, Heikkinen P, Jokilehto T, Wagner T, Jelkmann W, Jaakkola P, Metzen E. Hypoxia‐inducible factor‐1 (HIF‐1) promotes its degradation by induction of HIF‐alpha‐prolyl‐4‐hydroxylases. Biochem J 381: 761‐767, 2004.
 299. Mastrogiannaki M, Matak P, Keith B, Simon MC, Vaulont S, Peyssonnaux C. HIF‐2alpha, but not HIF‐1alpha, promotes iron absorption in mice. J Clin Invest 119: 1159‐1166, 2009.
 300. Masuda S, Kobayashi T, Chikuma M, Nagao M, Sasaki R. The oviduct produces erythropoietin in an estrogen‐ and oxygen‐dependent manner. Am J Physiol Endocrinol Metab 278: E1038‐1044, 2000.
 301. Masuda S, Nagao M, Takahata K, Konishi Y, Gallyas F Jr, Tabira T, Sasaki R. Functional erythropoietin receptor of the cells with neural characteristics. Comparison with receptor properties of erythroid cells. J Biol Chem 268: 11208‐11216, 1993.
 302. Masuda S, Okano M, Yamagishi K, Nagao M, Ueda M, Sasaki R. A novel site of erythropoietin production. Oxygen‐dependent production in cultured rat astrocytes. J Biol Chem 269: 19488‐19493, 1994.
 303. Maxwell PH, Ferguson DJ, Nicholls LG, Iredale JP, Pugh CW, Johnson MH, Ratcliffe PJ. Sites of erythropoietin production. Kidney Int 51: 393‐401, 1997.
 304. Maxwell PH, Ferguson DJ, Osmond MK, Pugh CW, Heryet A, Doe BG, Johnson MH, Ratcliffe PJ. Expression of a homologously recombined erythopoietin‐SV40 T antigen fusion gene in mouse liver: Evidence for erythropoietin production by Ito cells. Blood 84: 1823‐1830, 1994.
 305. Maxwell PH, Osmond MK, Pugh CW, Heryet A, Nicholls LG, Tan CC, Doe BG, Ferguson DJ, Johnson MH, Ratcliffe PJ. Identification of the renal erythropoietin‐producing cells using transgenic mice. Kidney Int 44: 1149‐1162, 1993.
 306. Maxwell PH, Pugh CW, Ratcliffe PJ. Inducible operation of the erythropoietin 3′ enhancer in multiple cell lines: Evidence for a widespread oxygen‐sensing mechanism. Proc Natl Acad Sci USA 90: 2423‐2427, 1993.
 307. Maxwell PH, Wiesener MS, Chang GW, Clifford SC, Vaux EC, Cockman ME, Wykoff CC, Pugh CW, Maher ER, Ratcliffe PJ. The tumour suppressor protein VHL targets hypoxia‐inducible factors for oxygen‐dependent proteolysis. Nature 399: 271‐275, 1999.
 308. McDonald TP, Cottrell MB, Clift RE, Cullen WC, Lin FK. High doses of recombinant erythropoietin stimulate platelet production in mice. Exp Hematol 15: 719‐721, 1987.
 309. McDonough MA, Loenarz C, Chowdhury R, Clifton IJ, Schofield CJ. Structural studies on human 2‐oxoglutarate dependent oxygenases. Curr Opin Struct Biol 20: 659‐672, 2010.
 310. McMahon S, Charbonneau M, Grandmont S, Richard DE, Dubois CM. Transforming growth factor beta1 induces hypoxia‐inducible factor‐1 stabilization through selective inhibition of PHD2 expression. J Biol Chem 281: 24171‐24181, 2006.
 311. McNeill LA, Flashman E, Buck MR, Hewitson KS, Clifton IJ, Jeschke G, Claridge TD, Ehrismann D, Oldham NJ, Schofield CJ. Hypoxia‐inducible factor prolyl hydroxylase 2 has a high affinity for ferrous iron and 2‐oxoglutarate. Mol Biosyst 1: 321‐324, 2005.
 312. Mellitzer G, Wessely O, Decker T, Meinke A, Hayman MJ, Beug H. Activation of Stat 5b in erythroid progenitors correlates with the ability of ErbB to induce sustained cell proliferation. Proc Natl Acad Sci U S A 93: 9600‐9605, 1996.
 313. Metzen E, Stiehl DP, Doege K, Marxsen JH, Hellwig‐Burgel T, Jelkmann W. Regulation of the prolyl hydroxylase domain protein 2 (phd2/egln‐1) gene: Identification of a functional hypoxia‐responsive element. Biochem J 387: 711‐717, 2005.
 314. Metzen E, Zhou J, Jelkmann W, Fandrey J, Brune B. Nitric oxide impairs normoxic degradation of HIF‐1alpha by inhibition of prolyl hydroxylases. Mol Biol Cell 14: 3470‐3481, 2003.
 315. Miller CB, Jones RJ, Piantadosi S, Abeloff MD, Spivak JL. Decreased erythropoietin response in patients with the anemia of cancer. N Engl J Med 322: 1689‐1692, 1990.
 316. Miller ME, Cronkite EP, Garcia JF. Plasma levels of immunoreactive erythropoietin after acute blood loss in man. Br J Haematol 52: 545‐549, 1982.
 317. Minamishima YA, Kaelin WG Jr. Reactivation of Hepatic EPO Synthesis in Mice After PHD Loss. Science 329: 407, 2010.
 318. Minamishima YA, Moslehi J, Bardeesy N, Cullen D, Bronson RT, Kaelin WG Jr. Somatic inactivation of the PHD2 prolyl hydroxylase causes polycythemia and congestive heart failure. Blood 111: 3236‐3244, 2008.
 319. Minamishima YA, Moslehi J, Padera RF, Bronson RT, Liao R, Kaelin WG Jr. A feedback loop involving the Phd3 prolyl hydroxylase tunes the mammalian hypoxic response in vivo. Mol Cell Biol 29: 5729‐5741, 2009.
 320. Miskowiak K, Inkster B, Selvaraj S, Wise R, Goodwin GM, Harmer CJ. Erythropoietin improves mood and modulates the cognitive and neural processing of emotion 3 days post administration. Neuropsychopharmacology 33: 611‐618, 2008.
 321. Miyake T, Kung CK, Goldwasser E. Purification of human erythropoietin. J Biol Chem 252: 5558‐5564, 1977.
 322. Mladenovic J, Eschbach JW, Koup JR, Garcia JF, Adamson JW. Erythropoietin kinetics in normal and uremic sheep. J Lab Clin Med 105: 659‐663, 1985.
 323. Mohyeldin A, Dalgard CL, Lu H, McFate T, Tait AS, Patel VC, Wong K, Rushing E, Roy S, Acs G, Verma A. Survival and invasiveness of astrocytomas promoted by erythropoietin. J Neurosurg 106: 338‐350, 2007.
 324. Mohyeldin A, Lu H, Dalgard C, Lai SY, Cohen N, Acs G, Verma A. Erythropoietin signaling promotes invasiveness of human head and neck squamous cell carcinoma. Neoplasia 7: 537‐543, 2005.
 325. Moon C, Krawczyk M, Ahn D, Ahmet I, Paik D, Lakatta EG, Talan MI. Erythropoietin reduces myocardial infarction and left ventricular functional decline after coronary artery ligation in rats. Proc Natl Acad Sci U S A 100: 11612‐11617, 2003.
 326. Morishita E, Masuda S, Nagao M, Yasuda Y, Sasaki R. Erythropoietin receptor is expressed in rat hippocampal and cerebral cortical neurons, and erythropoietin prevents in vitro glutamate‐induced neuronal death. Neuroscience 76: 105‐116, 1997.
 327. Morita M, Ohneda O, Yamashita T, Takahashi S, Suzuki N, Nakajima O, Kawauchi S, Ema M, Shibahara S, Udono T, Tomita K, Tamai M, Sogawa K, Yamamoto M, Fujii‐Kuriyama Y. HLF/HIF‐2alpha is a key factor in retinopathy of prematurity in association with erythropoietin. EMBO J 22: 1134‐1146, 2003.
 328. Moritz KM, Lim GB, Wintour EM. Developmental regulation of erythropoietin and erythropoiesis. Am J Physiol 273: R1829‐1844, 1997.
 329. Mudalagiri NR, Mocanu MM, Di Salvo C, Kolvekar S, Hayward M, Yap J, Keogh B, Yellon DM. Erythropoietin protects the human myocardium against hypoxia/reoxygenation injury via phosphatidylinositol‐3 kinase and ERK1/2 activation. Br J Pharmacol 153: 50‐56, 2008.
 330. Mukhopadhyay CK, Mazumder B, Fox PL. Role of hypoxia‐inducible factor‐1 in transcriptional activation of ceruloplasmin by iron deficiency. J Biol Chem 275: 21048‐21054, 2000.
 331. Naets JP, Garcia JF, Tousaaint C, Buset M, Waks D. Radioimmunoassay of erythropoietin in chronic uraemia or anephric patients. Scand J Haematol 37: 390‐394, 1986.
 332. Nagai A, Nakagawa E, Choi HB, Hatori K, Kobayashi S, Kim SU. Erythropoietin and erythropoietin receptors in human CNS neurons, astrocytes, microglia, and oligodendrocytes grown in culture. J Neuropathol Exp Neurol 60: 386‐392, 2001.
 333. Nakano M, Satoh K, Fukumoto Y, Ito Y, Kagaya Y, Ishii N, Sugamura K, Shimokawa H. Important role of erythropoietin receptor to promote VEGF expression and angiogenesis in peripheral ischemia in mice. Circ Res 100: 662‐669, 2007.
 334. Necas E, Neuwirt J. Feedback regulation by red cell mass of the sensitivity of the erythropoietin‐producing organ to hypoxia. Blood 36: 754‐763, 1970.
 335. Neubauer H, Cumano A, Muller M, Wu H, Huffstadt U, Pfeffer K. Jak2 deficiency defines an essential developmental checkpoint in definitive hematopoiesis. Cell 93: 397‐409, 1998.
 336. Nishiya D, Omura T, Shimada K, Matsumoto R, Kusuyama T, Enomoto S, Iwao H, Takeuchi K, Yoshikawa J, Yoshiyama M. Effects of erythropoietin on cardiac remodeling after myocardial infarction. J Pharmacol Sci 101: 31‐39, 2006.
 337. Nogawa‐Kosaka N, Hirose T, Kosaka N, Aizawa Y, Nagasawa K, Uehara N, Miyazaki H, Komatsu N, Kato T. Structural and biological properties of erythropoietin in Xenopus laevis. Exp Hematol 38: 363‐372.
 338. Noguchi CT, Asavaritikrai P, Teng R, Jia Y. Role of erythropoietin in the brain. Crit Rev Oncol Hematol 64: 159‐171, 2007.
 339. Noguchi CT, Wang L, Rogers HM, Teng R, Jia Y. Survival and proliferative roles of erythropoietin beyond the erythroid lineage. Expert Rev Mol Med 10: e36, 2008.
 340. Nytko KJ, Spielmann P, Camenisch G, Wenger RH, Stiehl DP. Regulated function of the prolyl‐4‐hydroxylase domain (PHD) oxygen sensor proteins. Antioxid Redox Signal 9: 1329‐1338, 2007.
 341. Obara N, Suzuki N, Kim K, Nagasawa T, Imagawa S, Yamamoto M. Repression via the GATA box is essential for tissue‐specific erythropoietin gene expression. Blood 111: 5223‐5232, 2008.
 342. Oehme F, Ellinghaus P, Kolkhof P, Smith TJ, Ramakrishnan S, Hutter J, Schramm M, Flamme I. Overexpression of PH‐4, a novel putative proline 4‐hydroxylase, modulates activity of hypoxia‐inducible transcription factors. Biochem Biophys Res Commun 296: 343‐349, 2002.
 343. Olsen NV, Aachmann‐Andersen NJ, Oturai P, Andersen TM, Rasmussen AB, Hulston C, Holstein‐Rathlou NH, Robach P, Lundby C. Recombinant human erythropoietin in humans down‐regulates proximal renal tubular reabsorption and causes a fall in glomerular filtration rate. J Physiol 589: 1273‐1281, 2011.
 344. Pagel H, Jelkmann W, Weiss C. A comparison of the effects of renal artery constriction and anemia on the production of erythropoietin. Pflug Arch 413: 62‐66, 1988.
 345. Pagel H, Jelkmann W, Weiss C. Isolated serum‐free perfused rat kidneys release immunoreactive erythropoietin in response to hypoxia. Endocrinology 128: 2633‐2638, 1991.
 346. Paliege A, Rosenberger C, Bondke A, Sciesielski L, Shina A, Heyman SN, Flippin LA, Arend M, Klaus SJ, Bachmann S. Hypoxia‐inducible factor‐2α‐expressing interstitial fibroblasts are the only renal cells that express erythropoietin under hypoxia‐inducible factor stabilization. Kidney Int 77: 312‐318, 2010.
 347. Parganas E, Wang D, Stravopodis D, Topham DJ, Marine JC, Teglund S, Vanin EF, Bodner S, Colamonici OR, van Deursen JM, Grosveld G, Ihle JN. Jak2 is essential for signaling through a variety of cytokine receptors. Cell 93: 385‐395, 1998.
 348. Parsa CJ, Kim J, Riel RU, Pascal LS, Thompson RB, Petrofski JA, Matsumoto A, Stamler JS, Koch WJ. Cardioprotective effects of erythropoietin in the reperfused ischemic heart: A potential role for cardiac fibroblasts. J Biol Chem 279: 20655‐20662, 2004.
 349. Parsa CJ, Matsumoto A, Kim J, Riel RU, Pascal LS, Walton GB, Thompson RB, Petrofski JA, Annex BH, Stamler JS, Koch WJ. A novel protective effect of erythropoietin in the infarcted heart. J Clin Invest 112: 999‐1007, 2003.
 350. Pastore YD, Jelinek J, Ang S, Guan Y, Liu E, Jedlickova K, Krishnamurti L, Prchal JT. Mutations in the VHL gene in sporadic apparently congenital polycythemia. Blood 101: 1591‐1595, 2003.
 351. Patel NS, Sharples EJ, Cuzzocrea S, Chatterjee PK, Britti D, Yaqoob MM, Thiemermann C. Pretreatment with EPO reduces the injury and dysfunction caused by ischemia/reperfusion in the mouse kidney in vivo. Kidney Int 66: 983‐989, 2004.
 352. Patel S, Rowe MJ, Winters SA, Ohls RK. Elevated erythropoietin mRNA and protein concentrations in the developing human eye. Pediatr Res 63: 394‐397, 2008.
 353. Paus R, Bodo E, Kromminga A, Jelkmann W. Erythropoietin and the skin: A role for epidermal oxygen sensing? Bioessays 31: 344‐348, 2009.
 354. Percy MJ, Beer PA, Campbell G, Dekker AW, Green AR, Oscier D, Rainey MG, van Wijk R, Wood M, Lappin TR, McMullin MF, Lee FS. Novel exon 12 mutations in the HIF2A gene associated with erythrocytosis. Blood 111: 5400‐5402, 2008.
 355. Percy MJ, Furlow PW, Beer PA, Lappin TR, McMullin MF, Lee FS. A novel erythrocytosis‐associated PHD2 mutation suggests the location of a HIF binding groove. Blood 110: 2193‐2196, 2007.
 356. Percy MJ, Furlow PW, Lucas GS, Li X, Lappin TR, McMullin MF, Lee FS. A gain‐of‐function mutation in the HIF2A gene in familial erythrocytosis. N Engl J Med 358: 162‐168, 2008.
 357. Perrotta S, Della Ragione F. The HIF2A gene in familial erythrocytosis. N Engl J Med 358: 1966; author reply 1966‐1967, 2008.
 358. Perrotta S, Nobili B, Ferraro M, Migliaccio C, Borriello A, Cucciolla V, Martinelli V, Rossi F, Punzo F, Cirillo P, Parisi G, Zappia V, Rotoli B, Ragione FD. Von Hippel‐Lindau‐dependent polycythemia is endemic on the island of Ischia: Identification of a novel cluster. Blood 107: 514‐519, 2006.
 359. Pescador N, Cuevas Y, Naranjo S, Alcaide M, Villar D, Landazuri MO, Del Peso L. Identification of a functional hypoxia‐responsive element that regulates the expression of the egl nine homologue 3 (egln3/phd3) gene. Biochem J 390: 189‐197, 2005.
 360. Peschle C, Rappaport IA, Magli MC, Marone G, Lettieri F, Cillo C, Gordon AS. Role of the hypophysis in erythropoietin production during hypoxia. Blood 51: 1117‐1124, 1978.
 361. Peschle C, Zanjani ED, Gidari AS, McLaurin WD, Gordon AS. Mechanism of thyroxine action on erythropoiesis. Endocrinology 89: 609‐612, 1971.
 362. Peyssonnaux C, Zinkernagel AS, Schuepbach RA, Rankin E, Vaulont S, Haase VH, Nizet V, Johnson RS. Regulation of iron homeostasis by the hypoxia‐inducible transcription factors (HIFs). J Clin Invest 117: 1926‐1932, 2007.
 363. Pollard PJ, Briere JJ, Alam NA, Barwell J, Barclay E, Wortham NC, Hunt T, Mitchell M, Olpin S, Moat SJ, Hargreaves IP, Heales SJ, Chung YL, Griffiths JR, Dalgleish A, McGrath JA, Gleeson MJ, Hodgson SV, Poulsom R, Rustin P, Tomlinson IP. Accumulation of Krebs cycle intermediates and over‐expression of HIF1alpha in tumours which result from germline FH and SDH mutations. Hum Mol Genet 14: 2231‐2239, 2005.
 364. Pugh CW, O'Rourke JF, Nagao M, Gleadle JM, Ratcliffe PJ. Activation of hypoxia‐inducible factor‐1; definition of regulatory domains within the alpha subunit. J Biol Chem 272: 11205‐11214, 1997.
 365. Pugh CW, Tan CC, Jones RW, Ratcliffe PJ. Functional analysis of an oxygen‐regulated transcriptional enhancer lying 3′ to the mouse erythropoietin gene. Proc Natl Acad Sci U S A 88: 10553‐10557, 1991.
 366. Rafiee P, Shi Y, Su J, Pritchard KA Jr, Tweddell JS, Baker JE. Erythropoietin protects the infant heart against ischemia‐reperfusion injury by triggering multiple signaling pathways. Basic Res Cardiol 100: 187‐197, 2005.
 367. Rankin EB, Biju MP, Liu Q, Unger TL, Rha J, Johnson RS, Simon MC, Keith B, Haase VH. Hypoxia‐inducible factor‐2 (HIF‐2) regulates hepatic erythropoietin in vivo. J Clin Invest 117: 1068‐1077, 2007.
 368. Rankin EB, Higgins DF, Walisser JA, Johnson RS, Bradfield CA, Haase VH. Inactivation of the arylhydrocarbon receptor nuclear translocator (Arnt) suppresses von Hippel‐Lindau disease‐associated vascular tumors in mice. Mol Cell Biol 25: 3163‐3172, 2005.
 369. Ratcliffe PJ, Jones RW, Phillips RE, Nicholls LG, Bell JI. Oxygen‐dependent modulation of erythropoietin mRNA levels in isolated rat kidneys studied by RNase protection. J Exp Med 172: 657‐660, 1990.
 370. Recny MA, Scoble HA, Kim Y. Structural characterization of natural human urinary and recombinant DNA‐derived erythropoietin. Identification of des‐arginine 166 erythropoietin. J Biol Chem 262: 17156‐17163, 1987.
 371. Rege AB, Brookins J, Fisher JW. A radioimmunoassay for erythropoietin: Serum levels in normal human subjects and patients with hemopoietic disorders. J Lab Clin Med 100: 829‐843, 1982.
 372. Reissmann KR. Studies on the mechanism of erythropoietic stimulation in parabiotic rats during hypoxia. Blood 5: 372‐380, 1950.
 373. Rejman AS, Grimes AJ, Cotes PM, Mansell MA, Joekes AM. Correction of anaemia following renal transplantation: Serial changes in serum immunoreactive erythropoietin, absolute reticulocyte count and red‐cell creatine levels. Br J Haematol 61: 421‐431, 1985.
 374. Rex TS, Wong Y, Kodali K, Merry S. Neuroprotection of photoreceptors by direct delivery of erythropoietin to the retina of the retinal degeneration slow mouse. Exp Eye Res 89: 735‐740, 2009.
 375. Reynafarje C, Ramos J, Faura J, Villavicencio D. Humoral control of erythropoietic activity in man during and after altitude exposure. Proc Soc Exp Biol Med 116: 649‐650, 1964.
 376. Rodriguez H, Drouin R, Holmquist GP, Akman SA. A hot spot for hydrogen peroxide‐induced damage in the human hypoxia‐inducible factor 1 binding site of the PGK 1 gene. Arch Biochem Biophys 338: 207‐212, 1997.
 377. Roh BL, Paulo LG, Thompson J, Fisher JW. Plasma disappearance of 125 I‐labeled erythropoietin in anesthetized rabbits. Proc Soc Exp Biol Med 141: 268‐270, 1972.
 378. Rolfs A, Kvietikova I, Gassmann M, Wenger RH. Oxygen‐regulated transferrin expression is mediated by hypoxia‐inducible factor‐1. J Biol Chem 272: 20055‐20062, 1997.
 379. Rondon IJ, MacMillan LA, Beckman BS, Goldberg MA, Schneider T, Bunn HF, Malter JS. Hypoxia up‐regulates the activity of a novel erythropoietin mRNA binding protein. J Biol Chem 266: 16594‐16598, 1991.
 380. Rosenberger C, Mandriota S, Jurgensen JS, Wiesener MS, Horstrup JH, Frei U, Ratcliffe PJ, Maxwell PH, Bachmann S, Eckardt KU. Expression of hypoxia‐inducible factor‐1alpha and ‐2alpha in hypoxic and ischemic rat kidneys. J Am Soc Nephrol 13: 1721‐1732, 2002.
 381. Rössler J, Stolze I, Frede S, Freitag P, Schweigerer L, Havers W, Fandrey J. Hypoxia‐induced erythropoietin expression in human neuroblastoma requires a methylation free HIF‐1 binding site. J Cell Biochem 93: 153‐161, 2004.
 382. Roth D, Smith RD, Schulman G, Steinman TI, Hatch FE, Rudnick MR, Sloand JA, Freedman BI, Williams WW Jr, Shadur CA. Effects of recombinant human erythropoietin on renal function in chronic renal failure predialysis patients. Am J Kidney Dis 24: 777‐784, 1994.
 383. Ruschitzka FT, Wenger RH, Stallmach T, Quaschning T, de Wit C, Wagner K, Labugger R, Kelm M, Noll G, Rulicke T, Shaw S, Lindberg RL, Rodenwaldt B, Lutz H, Bauer C, Luscher TF, Gassmann M. Nitric oxide prevents cardiovascular disease and determines survival in polyglobulic mice overexpressing erythropoietin. Proc Natl Acad Sci U S A 97: 11609‐11613, 2000.
 384. Sadamoto Y, Igase K, Sakanaka M, Sato K, Otsuka H, Sakaki S, Masuda S, Sasaki R. Erythropoietin prevents place navigation disability and cortical infarction in rats with permanent occlusion of the middle cerebral artery. Biochem Biophys Res Commun 253: 26‐32, 1998.
 385. Safran M, Kim WY, O'Connell F, Flippin L, Gunzler V, Horner JW, Depinho RA, Kaelin WG Jr. Mouse model for noninvasive imaging of HIF prolyl hydroxylase activity: Assessment of an oral agent that stimulates erythropoietin production. Proc Natl Acad Sci U S A 103: 105‐110, 2006.
 386. Saito T, Fukai A, Mabuchi A, Ikeda T, Yano F, Ohba S, Nishida N, Akune T, Yoshimura N, Nakagawa T, Nakamura K, Tokunaga K, Chung UI, Kawaguchi H. Transcriptional regulation of endochondral ossification by HIF‐2α during skeletal growth and osteoarthritis development. Nat Med 16: 678‐686, 2010.
 387. Sakanaka M, Wen TC, Matsuda S, Masuda S, Morishita E, Nagao M, Sasaki R. In vivo evidence that erythropoietin protects neurons from ischemic damage. Proc Natl Acad Sci U S A 95: 4635‐4640, 1998.
 388. Salceda S and Caro J. Hypoxia‐inducible factor 1alpha (HIF‐1alpha) protein is rapidly degraded by the ubiquitin‐proteasome system under normoxic conditions. Its stabilization by hypoxia depends on redox‐induced changes. J Biol Chem 272: 22642‐22647, 1997.
 389. Sanchez M, Galy B, Muckenthaler MU, Hentze MW. Iron‐regulatory proteins limit hypoxia‐inducible factor‐2alpha expression in iron deficiency. Nat Struct Mol Biol 14: 420‐426, 2007.
 390. Sandner P, Gess B, Wolf K, Kurtz A. Divergent regulation of vascular endothelial growth factor and of erythropoietin gene expression in vivo. Pflug Arch 431: 905‐912, 1996.
 391. Sasaki H, Ochi N, Dell A, Fukuda M. Site‐specific glycosylation of human recombinant erythropoietin: Analysis of glycopeptides or peptides at each glycosylation site by fast atom bombardment mass spectrometry. Biochemistry 27: 8618‐8626, 1988.
 392. Sato H, Ohkubo M, Nagaoka T. Levels of serum colony‐stimulating factors (CSFs) in patients on long‐term haemodialysis. Cytokine 6: 187‐194, 1994.
 393. Satoh K, Kagaya Y, Nakano M, Ito Y, Ohta J, Tada H, Karibe A, Minegishi N, Suzuki N, Yamamoto M, Ono M, Watanabe J, Shirato K, Ishii N, Sugamura K, Shimokawa H. Important role of endogenous erythropoietin system in recruitment of endothelial progenitor cells in hypoxia‐induced pulmonary hypertension in mice. Circulation 113: 1442‐1450, 2006.
 394. Sawada K, Krantz SB, Dessypris EN, Koury ST, Sawyer ST. Human colony‐forming units‐erythroid do not require accessory cells, but do require direct interaction with insulin‐like growth factor I and/or insulin for erythroid development. J Clin Invest 83: 1701‐1709, 1989.
 395. Sawyer ST, Hankins WD. The functional form of the erythropoietin receptor is a 78‐kDa protein: Correlation with cell surface expression, endocytosis, and phosphorylation. Proc Natl Acad Sci U S A 90: 6849‐6853, 1993.
 396. Sawyer ST, Krantz SB, Sawada K. Receptors for erythropoietin in mouse and human erythroid cells and placenta. Blood 74: 103‐109, 1989.
 397. Scheerer N, Dunker N, Imagawa S, Yamamoto M, Suzuki N, Fandrey J. The anemia of the newborn induces erythropoietin expression in the developing mouse retina. Am J Physiol Regul Integr Comp Physiol 299: R111‐118.
 398. Schmeding M, Boas‐Knoop S, Lippert S, Ruehl M, Somasundaram R, Dagdelen T, Neuhaus P, Neumann UP. Erythropoietin promotes hepatic regeneration after extended liver resection in rats. J Gastroenterol Hepatol 23: 1125‐1131, 2008.
 399. Schmeding M, Hunold G, Ariyakhagorn V, Rademacher S, Boas‐Knoop S, Lippert S, Neuhaus P, Neumann UP. Erythropoietin reduces ischemia‐reperfusion injury after liver transplantation in rats. Transpl Int 22: 738‐746, 2009.
 400. Schmeding M, Neumann UP, Boas‐Knoop S, Spinelli A, Neuhaus P. Erythropoietin reduces ischemia‐reperfusion injury in the rat liver. Eur Surg Res 39: 189‐197, 2007.
 401. Schmid TC, Loffing J, Le Hir M, Kaissling B. Distribution of ecto‐5′‐nucleotidase in the rat liver: Effect of anaemia. Histochemistry 101: 439‐447, 1994.
 402. Schodel J, Klanke B, Weidemann A, Buchholz B, Bernhardt W, Bertog M, Amann K, Korbmacher C, Wiesener M, Warnecke C, Kurtz A, Eckardt KU, Willam C. HIF‐prolyl hydroxylases in the rat kidney: Physiologic expression patterns and regulation in acute kidney injury. Am J Pathol 174: 1663‐1674, 2009.
 403. Schofield CJ, Ratcliffe PJ. Oxygen sensing by HIF hydroxylases. Nat Rev Mol Cell Biol 5: 343‐354, 2004.
 404. Scholz H, Schurek HJ, Eckardt KU, Kurtz A, Bauer C. Oxygen‐dependent erythropoietin production by the isolated perfused rat kidney. Pflug Arch 418: 228‐233, 1991.
 405. Schooley JC, Mahlmann LJ. Extrarenal erythropoietin production by the liver in the weanling rat. Proc Soc Exp Biol Med 145: 1081‐1083, 1974.
 406. Schuler B, Arras M, Keller S, Rettich A, Lundby C, Vogel J, Gassmann M. Optimal hematocrit for maximal exercise performance in acute and chronic erythropoietin‐treated mice. Proc Natl Acad Sci U S A 107: 419‐423.
 407. Schurek HJ, Jost U, Baumgartl H, Bertram H, Heckmann U. Evidence for a preglomerular oxygen diffusion shunt in rat renal cortex. Am J Physiol 259: F910‐F915, 1990.
 408. Schurek HJ, Kriz W. Morphologic and functional evidence for oxygen deficiency in the isolated perfused rat kidney. Lab Invest 53: 145‐155, 1985.
 409. Schuster SJ, Badiavas EV, Costa‐Giomi P, Weinmann R, Erslev AJ, Caro J. Stimulation of erythropoietin gene transcription during hypoxia and cobalt exposure. Blood 73: 13‐16, 1989.
 410. Schuster SJ, Koury ST, Bohrer M, Salceda S, Caro J. Cellular sites of extrarenal and renal erythropoietin production in anaemic rats. Br J Haematol 81: 153‐159, 1992.
 411. Schuster SJ, Wilson JH, Erslev AJ, Caro J. Physiologic regulation and tissue localization of renal erythropoietin messenger RNA. Blood 70: 316‐318, 1987.
 412. Scortegagna M, Ding K, Zhang Q, Oktay Y, Bennett MJ, Bennett M, Shelton JM, Richardson JA, Moe O, Garcia JA. HIF‐2alpha regulates murine hematopoietic development in an erythropoietin‐dependent manner. Blood 105: 3133‐3140, 2005.
 413. Selak MA, Armour SM, MacKenzie ED, Boulahbel H, Watson DG, Mansfield KD, Pan Y, Simon MC, Thompson CB, Gottlieb E. Succinate links TCA cycle dysfunction to oncogenesis by inhibiting HIF‐alpha prolyl hydroxylase. Cancer Cell 7: 77‐85, 2005.
 414. Semenza GL, Dureza RC, Traystman MD, Gearhart JD, Antonarakis SE. Human erythropoietin gene expression in transgenic mice: Multiple transcription initiation sites and cis‐acting regulatory elements. Mol Cell Biol 10: 930‐938, 1990.
 415. Semenza GL, Koury ST, Nejfelt MK, Gearhart JD, Antonarakis SE. Cell‐type‐specific and hypoxia‐inducible expression of the human erythropoietin gene in transgenic mice. Proc Natl Acad Sci U S A 88: 8725‐8729, 1991.
 416. Semenza GL, Nejfelt MK, Chi SM, Antonarakis SE. Hypoxia‐inducible nuclear factors bind to an enhancer element located 3′ to the human erythropoietin gene. Proc Natl Acad Sci U S A 88: 5680‐5684, 1991.
 417. Semenza GL, Traystman MD, Gearhart JD, Antonarakis SE. Polycythemia in transgenic mice expressing the human erythropoietin gene. Proc Natl Acad Sci U S A 86: 2301‐2305, 1989.
 418. Semenza GL, Wang GL. A nuclear factor induced by hypoxia via de novo protein synthesis binds to the human erythropoietin gene enhancer at a site required for transcriptional activation. Mol Cell Biol 12: 5447‐5454, 1992.
 419. Sepodes B, Maio R, Pinto R, Sharples E, Oliveira P, McDonald M, Yaqoob M, Thiemermann C, Mota‐Filipe H. Recombinant human erythropoietin protects the liver from hepatic ischemia‐reperfusion injury in the rat. Transpl Int 19: 919‐926, 2006.
 420. Seth P, Krop I, Porter D, Polyak K. Novel estrogen and tamoxifen induced genes identified by SAGE (Serial Analysis of Gene Expression). Oncogene 21: 836‐843, 2002.
 421. Shah YM, Matsubara T, Ito S, Yim SH, Gonzalez FJ. Intestinal hypoxia‐inducible transcription factors are essential for iron absorption following iron deficiency. Cell Metab 9: 152‐164, 2009.
 422. Shalhoub RJ, Rajan U, Kim VV, Goldwasser E, Kark JA, Antoniou LD. Erythrocytosis in patients on long‐term hemodialysis. Ann Intern Med 97: 686‐690, 1982.
 423. Shannon AM, Bouchier‐Hayes DJ, Condron CM, Toomey D. Correction of anaemia through the use of darbepoetin alfa improves chemotherapeutic outcome in a murine model of Lewis lung carcinoma. Br J Cancer 93: 224‐232, 2005.
 424. Sharples EJ, Patel N, Brown P, Stewart K, Mota‐Philipe H, Sheaff M, Kieswich J, Allen D, Harwood S, Raftery M, Thiemermann C, Yaqoob MM. Erythropoietin protects the kidney against the injury and dysfunction caused by ischemia‐reperfusion. J Am Soc Nephrol 15: 2115‐2124, 2004.
 425. Shen SC, Homburger F. The anemia of cancer patients and its relation to metastases to the bone marrow. J Lab Clin Med 37: 182‐198, 1951.
 426. Sherwood JB, Goldwasser E. Extraction of erythropoietin from normal kidneys. Endocrinology 103: 866‐870, 1978.
 427. Shiels A, Wickramasinghe SN. Expression of an erythropoietin‐like gene in the trout. Br J Haematol 90: 219‐221, 1995.
 428. Shoemaker CB, Mitsock LD. Murine erythropoietin gene: Cloning, expression, and human gene homology. Mol Cell Biol 6: 849‐858, 1986.
 429. Sigounas G, Sallah S, Sigounas VY. Erythropoietin modulates the anticancer activity of chemotherapeutic drugs in a murine lung cancer model. Cancer Lett 214: 171‐179, 2004.
 430. Sinclair AM, Coxon A, McCaffery I, Kaufman S, Paweletz K, Liu L, Busse L, Swift S, Elliott S, Begley CG. Functional erythropoietin receptor is undetectable in endothelial, cardiac, neuronal, and renal cells. Blood 115: 4264‐4272, 2010.
 431. Sinclair AM, Elliott S. Glycoengineering: The effect of glycosylation on the properties of therapeutic proteins. J Pharm Sci 94: 1626‐1635, 2005.
 432. Sinclair AM, Rogers N, Busse L, Archibeque I, Brown W, Kassner PD, Watson JE, Arnold GE, Nguyen KC, Powers S, Elliott S. Erythropoietin receptor transcription is neither elevated nor predictive of surface expression in human tumour cells. Br J Cancer 98: 1059‐1067, 2008.
 433. Sinclair AM, Todd MD, Forsythe K, Knox SJ, Elliott S, Begley CG. Expression and function of erythropoietin receptors in tumors: Implications for the use of erythropoiesis‐stimulating agents in cancer patients. Cancer 110: 477‐488, 2007.
 434. Singh A, Eckardt KU, Zimmermann A, Gotz KH, Hamann M, Ratcliffe PJ, Kurtz A, Reinhart WH. Increased plasma viscosity as a reason for inappropriate erythropoietin formation. J Clin Invest 91: 251‐256, 1993.
 435. Sinor AD, Greenberg DA. Erythropoietin protects cultured cortical neurons, but not astroglia, from hypoxia and AMPA toxicity. Neurosci Lett 290: 213‐215, 2000.
 436. Siren AL, Fratelli M, Brines M, Goemans C, Casagrande S, Lewczuk P, Keenan S, Gleiter C, Pasquali C, Capobianco A, Mennini T, Heumann R, Cerami A, Ehrenreich H, Ghezzi P. Erythropoietin prevents neuronal apoptosis after cerebral ischemia and metabolic stress. Proc Natl Acad Sci U S A 98: 4044‐4049, 2001.
 437. Sohtell M. CO2 along the proximal tubules in the rat kidney. Acta Physiol Scand 105: 146‐155, 1979.
 438. Soliz J, Joseph V, Soulage C, Becskei C, Vogel J, Pequignot JM, Ogunshola O, Gassmann M. Erythropoietin regulates hypoxic ventilation in mice by interacting with brainstem and carotid bodies. J Physiol 568: 559‐571, 2005.
 439. Soliz J, Soulage C, Hermann DM, Gassmann M. Acute and chronic exposure to hypoxia alters ventilatory pattern but not minute ventilation of mice overexpressing erythropoietin. Am J Physiol Regul Integr Comp Physiol 293: R1702‐R1710, 2007.
 440. Soliz J, Thomsen JJ, Soulage C, Lundby C, Gassmann M. Sex‐dependent regulation of hypoxic ventilation in mice and humans is mediated by erythropoietin. Am J Physiol Regul Integr Comp Physiol 296: R1837‐R1846, 2009.
 441. Song YR, You SJ, Lee YM, Chin HJ, Chae DW, Oh YK, Joo KW, Han JS, Na KY. Activation of hypoxia‐inducible factor attenuates renal injury in rat remnant kidney. Nephrol Dial Transplant, 25: 77‐85, 2009.
 442. Spivak JL, Barnes DC, Fuchs E, Quinn TC. Serum immunoreactive erythropoietin in HIV‐infected patients. JAMA 261: 3104‐3107, 1989.
 443. Spivak JL, Pham T, Isaacs M, Hankins WD. Erythropoietin is both a mitogen and a survival factor. Blood 77: 1228‐1233, 1991.
 444. Steinberg SE, Garcia JF, Matzke GR, Mladenovic J. Erythropoietin kinetics in rats: Generation and clearance. Blood 67: 646‐649, 1986.
 445. Stiehl DP, Wirthner R, Koditz J, Spielmann P, Camenisch G, Wenger RH. Increased prolyl 4‐hydroxylase domain proteins compensate for decreased oxygen levels. Evidence for an autoregulatory oxygen‐sensing system. J Biol Chem 281: 23482‐23491, 2006.
 446. Stuben G, Pottgen C, Knuhmann K, Schmidt K, Stuschke M, Thews O, Vaupel P. Erythropoietin restores the anemia‐induced reduction in radiosensitivity of experimental human tumors in nude mice. Int J Radiat Oncol Biol Phys 55: 1358‐1362, 2003.
 447. Stuben G, Thews O, Pottgen C, Knuhmann K, Vaupel P, Stuschke M. Recombinant human erythropoietin increases the radiosensitivity of xenografted human tumours in anaemic nude mice. J Cancer Res Clin Oncol 127: 346‐350, 2001.
 448. Suliman HB, Majiwa PA, Feldman BF, Mertens B, Logan‐Henfrey L. Cloning of a cDNA encoding bovine erythropoietin and analysis of its transcription in selected tissues. Gene 171: 275‐280, 1996.
 449. Sun CH, Ward HJ, Paul WL, Koyle MA, Yanagawa N, Lee DB. Serum erythropoietin levels after renal transplantation. N Engl J Med 321: 151‐157, 1989.
 450. Sutter CH, Laughner E, Semenza GL. Hypoxia‐inducible factor 1alpha protein expression is controlled by oxygen‐regulated ubiquitination that is disrupted by deletions and missense mutations. Proc Natl Acad Sci U S A 97: 4748‐4753, 2000.
 451. Suzuki N, Ohneda O, Takahashi S, Higuchi M, Mukai HY, Nakahata T, Imagawa S, Yamamoto M. Erythroid‐specific expression of the erythropoietin receptor rescued its null mutant mice from lethality. Blood 100: 2279‐2288, 2002.
 452. Swift S, Ellison AR, Kassner P, McCaffery I, Rossi J, Sinclair AM, Begley CG, Elliott S. Absence of functional EpoR expression in human tumor cell lines. Blood 115: 4254‐4263, 2010.
 453. Syvertsen GR, Harris JA. Erythropoietin production in dogs exposed to high altitude and carbon monoxide. Am J Physiol 225: 293‐299, 1973.
 454. Tacchini L, Bianchi L, Bernelli‐Zazzera A, Cairo G. Transferrin receptor induction by hypoxia. HIF‐1‐mediated transcriptional activation and cell‐specific post‐transcriptional regulation. J Biol Chem 274: 24142‐24146, 1999.
 455. Takeda K, Aguila HL, Parikh NS, Li X, Lamothe K, Duan LJ, Takeda H, Lee FS, Fong GH. Regulation of adult erythropoiesis by prolyl hydroxylase domain proteins. Blood 111: 3229‐3235, 2008.
 456. Takeda K, Cowan A, Fong GH. Essential role for prolyl hydroxylase domain protein 2 in oxygen homeostasis of the adult vascular system. Circulation 116: 774‐781, 2007.
 457. Takeda K, Ho VC, Takeda H, Duan LJ, Nagy A, Fong GH. Placental but not heart defects are associated with elevated hypoxia‐inducible factor alpha levels in mice lacking prolyl hydroxylase domain protein 2. Mol Cell Biol 26: 8336‐8346, 2006.
 458. Takeuchi M, Takasaki S, Miyazaki H, Kato T, Hoshi S, Kochibe N, Kobata A. Comparative study of the asparagine‐linked sugar chains of human erythropoietins purified from urine and the culture medium of recombinant Chinese hamster ovary cells. J Biol Chem 263: 3657‐3663, 1988.
 459. Tan CC, Eckardt KU, Firth JD, Ratcliffe PJ. Feedback modulation of renal and hepatic erythropoietin mRNA in response to graded anemia and hypoxia. Am J Physiol 263: F474‐F481, 1992.
 460. Tan CC, Eckardt KU, Ratcliffe PJ. Organ distribution of erythropoietin messenger RNA in normal and uremic rats. Kidney Int 40: 69‐76, 1991.
 461. Taylor J, Mactier RA, Stewart WK, Henderson IS. Effect of erythropoietin on anaemia in patients with myeloma receiving haemodialysis. BMJ 301: 476‐477, 1990.
 462. Thevenod F, Radtke HW, Grutzmacher P, Vincent E, Koch KM, Schoeppe W, Fassbinder W. Deficient feedback regulation of erythropoiesis in kidney transplant patients with polycythemia. Kidney Int 24: 227‐232, 1983.
 463. Thews O, Kelleher DK, Vaupel P. Erythropoietin restores the anemia‐induced reduction in cyclophosphamide cytotoxicity in rat tumors. Cancer Res 61: 1358‐1361, 2001.
 464. Thews O, Koenig R, Kelleher DK, Kutzner J, Vaupel P. Enhanced radiosensitivity in experimental tumours following erythropoietin treatment of chemotherapy‐induced anaemia. Br J Cancer 78: 752‐756, 1998.
 465. Tian H, Hammer RE, Matsumoto AM, Russell DW, McKnight SL. The hypoxia‐responsive transcription factor EPAS1 is essential for catecholamine homeostasis and protection against heart failure during embryonic development. Genes Dev 12: 3320‐3324, 1998.
 466. Tian H, McKnight SL, Russell DW. Endothelial PAS domain protein 1 (EPAS1), a transcription factor selectively expressed in endothelial cells. Genes Dev 11: 72‐82, 1997.
 467. Tramontano AF, Muniyappa R, Black AD, Blendea MC, Cohen I, Deng L, Sowers JR, Cutaia MV, El‐Sherif N. Erythropoietin protects cardiac myocytes from hypoxia‐induced apoptosis through an Akt‐dependent pathway. Biochem Biophys Res Commun 308: 990‐994, 2003.
 468. Tsai PT, Ohab JJ, Kertesz N, Groszer M, Matter C, Gao J, Liu X, Wu H, Carmichael ST. A critical role of erythropoietin receptor in neurogenesis and post‐stroke recovery. J Neurosci 26: 1269‐1274, 2006.
 469. Tsuda E, Goto M, Murakami A, Akai K, Ueda M, Kawanishi G, Takahashi N, Sasaki R, Chiba H, Ishihara H, Mori H, Chiba H, Endo S, Arata Y. Comparative structural study of N‐linked oligosaccharides of urinary and recombinant erythropoietins. Biochemistry 27: 5646‐5654, 1988.
 470. van Wijk R, Sutherland S, Van Wesel AC, Huizinga EG, Percy MJ, Bierings M, Lee FS. Erythrocytosis associated with a novel missense mutation in the HIF2A gene. Haematologica 95: 829‐832, 2010.
 471. Vaziri ND, Zhou XJ, Liao SY. Erythropoietin enhances recovery from cisplatin‐induced acute renal failure. Am J Physiol 266: F360‐F366, 1994.
 472. Verdier F, Walrafen P, Hubert N, Chretien S, Gisselbrecht S, Lacombe C, Mayeux P. Proteasomes regulate the duration of erythropoietin receptor activation by controlling down‐regulation of cell surface receptors. J Biol Chem 275: 18375‐18381, 2000.
 473. Vesey DA, Cheung C, Pat B, Endre Z, Gobe G, Johnson DW. Erythropoietin protects against ischaemic acute renal injury. Nephrol Dial Transplant 19: 348‐355, 2004.
 474. Villa P, Bigini P, Mennini T, Agnello D, Laragione T, Cagnotto A, Viviani B, Marinovich M, Cerami A, Coleman TR, Brines M, Ghezzi P. Erythropoietin selectively attenuates cytokine production and inflammation in cerebral ischemia by targeting neuronal apoptosis. J Exp Med 198: 971‐975, 2003.
 475. Villa P, van Beek J, Larsen AK, Gerwien J, Christensen S, Cerami A, Brines M, Leist M, Ghezzi P, Torup L. Reduced functional deficits, neuroinflammation, and secondary tissue damage after treatment of stroke by nonerythropoietic erythropoietin derivatives. J Cereb Blood Flow Metab 27: 552‐563, 2007.
 476. Volke M, Gale DP, Maegdefrau U, Schley G, Klanke B, Bosserhoff AK, Maxwell PH, Eckardt KU, Warnecke C. Evidence for a lack of a direct transcriptional suppression of the iron regulatory peptide hepcidin by hypoxia‐inducible factors. PLoS One 4: e7875, 2009.
 477. Walle AJ, Wong GY, Clemons GK, Garcia JF, Niedermayer W. Erythropoietin‐hematocrit feedback circuit in the anemia of end‐stage renal disease. Kidney Int 31: 1205‐1209, 1987.
 478. Walrafen P, Verdier F, Kadri Z, Chretien S, Lacombe C, Mayeux P. Both proteasomes and lysosomes degrade the activated erythropoietin receptor. Blood 105: 600‐608, 2005.
 479. Wang GL, Jiang BH, Rue EA, Semenza GL. Hypoxia‐inducible factor 1 is a basic‐helix‐loop‐helix‐PAS heterodimer regulated by cellular O2 tension. Proc Natl Acad Sci U S A 92: 5510‐5514, 1995.
 480. Wang GL, Semenza GL. Desferrioxamine induces erythropoietin gene expression and hypoxia‐inducible factor 1 DNA‐binding activity: Implications for models of hypoxia signal transduction. Blood 82: 3610‐3615, 1993a.
 481. Wang GL, Semenza GL. General involvement of hypoxia‐inducible factor 1 in transcriptional response to hypoxia. Proc Natl Acad Sci U S A 90: 4304‐4308, 1993b.
 482. Wang GL, Semenza GL. Purification and characterization of hypoxia‐inducible factor 1. J Biol Chem 270: 1230‐1237, 1995.
 483. Wang V, Davis DA, Veeranna RP, Haque M, Yarchoan R. Characterization of the activation of protein tyrosine phosphatase, receptor‐type, Z polypeptide 1 (PTPRZ1) by hypoxia inducible factor‐2α. PLoS One 5: e9641, 2010.
 484. Wanner RM, Spielmann P, Stroka DM, Camenisch G, Camenisch I, Scheid A, Houck DR, Bauer C, Gassmann M, Wenger RH. Epolones induce erythropoietin expression via hypoxia‐inducible factor‐1 alpha activation. Blood 96: 1558‐1565, 2000.
 485. Warnecke C, Zaborowska Z, Kurreck J, Erdmann VA, Frei U, Wiesener M, Eckardt KU. Differentiating the functional role of hypoxia‐inducible factor (HIF)‐1alpha and HIF‐2alpha (EPAS‐1) by the use of RNA interference: Erythropoietin is a HIF‐2alpha target gene in Hep3B and Kelly cells. FASEB J 18: 1462‐1464, 2004.
 486. Watanabe D, Suzuma K, Matsui S, Kurimoto M, Kiryu J, Kita M, Suzuma I, Ohashi H, Ojima T, Murakami T, Kobayashi T, Masuda S, Nagao M, Yoshimura N, Takagi H. Erythropoietin as a retinal angiogenic factor in proliferative diabetic retinopathy. N Engl J Med 353: 782‐792, 2005.
 487. Watkins PC, Eddy R, Hoffman N, Stanislovitis P, Beck AK, Galli J, Vellucci V, Gusella JF, Shows TB. Regional assignment of the erythropoietin gene to human chromosome region 7pter—q22. Cytogenet Cell Genet 42: 214‐218, 1986.
 488. Watowich SS, Hilton DJ, Lodish HF. Activation and inhibition of erythropoietin receptor function: Role of receptor dimerization. Mol Cell Biol 14: 3535‐3549, 1994.
 489. Weidemann A, Kerdiles YM, Knaup KX, Rafie CA, Boutin AT, Stockmann C, Takeda N, Scadeng M, Shih AY, Haase VH, Simon MC, Kleinfeld D, Johnson RS. The glial cell response is an essential component of hypoxia‐induced erythropoiesis in mice. J Clin Invest 119: 3373‐3383, 2009.
 490. Wen D, Boissel JP, Tracy TE, Gruninger RH, Mulcahy LS, Czelusniak J, Goodman M, Bunn HF. Erythropoietin structure‐function relationships: High degree of sequence homology among mammals. Blood 82: 1507‐1516, 1993.
 491. Wen TC, Sadamoto Y, Tanaka J, Zhu PX, Nakata K, Ma YJ, Hata R, Sakanaka M. Erythropoietin protects neurons against chemical hypoxia and cerebral ischemic injury by up‐regulating Bcl‐xL expression. J Neurosci Res 67: 795‐803, 2002.
 492. Wenger RH. Cellular adaptation to hypoxia: O2‐sensing protein hydroxylases, hypoxia‐inducible transcription factors, and O2‐regulated gene expression. FASEB J 16: 1151‐1162, 2002.
 493. Wenger RH, Camenisch G, Stiehl DP, Katschinski DM. HIF prolyl‐4‐hydroxylase interacting proteins: Consequences for drug targeting. Curr Pharm Des 15: 3886‐3894, 2009.
 494. Wenger RH, Hoogewijs D. Regulated oxygen sensing by protein hydroxylation in renal erythropoietin‐producing cells. Am J Physiol Renal Physiol 298: F1287‐1296, 2010.
 495. Wenger RH, Kvietikova I, Rolfs A, Camenisch G, Gassmann M. Oxygen‐regulated erythropoietin gene expression is dependent on a CpG methylation‐free hypoxia‐inducible factor‐1 DNA‐binding site. Eur J Biochem 253: 771‐777, 1998.
 496. Wenger RH, Kvietikova I, Rolfs A, Gassmann M, Marti HH. Hypoxia‐inducible factor‐1α is regulated at the post‐mRNA level. Kidney Int 51: 560‐563, 1997.
 497. Wenger RH, Stiehl DP, Camenisch G. Integration of oxygen signaling at the consensus HRE. Sci STKE 2005: re12, 2005.
 498. Westenfelder C, Baranowski RL. Erythropoietin stimulates proliferation of human renal carcinoma cells. Kidney Int 58: 647‐657, 2000.
 499. Westenfelder C, Biddle DL, Baranowski RL. Human, rat, and mouse kidney cells express functional erythropoietin receptors. Kidney Int 55: 808‐820, 1999.
 500. Westgren M, Ek S, Remberger M, Ringden O, Stangenberg M. Cytokines in fetal blood and amniotic fluid in Rh‐immunized pregnancies. Obstet Gynecol 86: 209‐213, 1995.
 501. Wiesener MS, Seyfarth M, Warnecke C, Jurgensen JS, Rosenberger C, Morgan NV, Maher ER, Frei U, Eckardt KU. Paraneoplastic erythrocytosis associated with an inactivating point mutation of the von Hippel‐Lindau gene in a renal cell carcinoma. Blood 99: 3562‐3565, 2002.
 502. Winearls CG, Oliver DO, Pippard MJ, Reid C, Downing MR, Cotes PM. Effect of human erythropoietin derived from recombinant DNA on the anaemia of patients maintained by chronic haemodialysis. Lancet 2: 1175‐1178, 1986.
 503. Winkelmann JC, Penny LA, Deaven LL, Forget BG, Jenkins RB. The gene for the human erythropoietin receptor: Analysis of the coding sequence and assignment to chromosome 19p. Blood 76: 24‐30, 1990.
 504. Witthuhn BA, Quelle FW, Silvennoinen O, Yi T, Tang B, Miura O, Ihle JN. JAK2 associates with the erythropoietin receptor and is tyrosine phosphorylated and activated following stimulation with erythropoietin. Cell 74: 227‐236, 1993.
 505. Wolf‐Priessnitz J, Schooley JC, Mahlmann LJ. Inhibition of erythropoietin production in unanesthetized rabbits exposed to an acute hypoxic‐hypercapnic environment. Blood 52: 153‐162, 1978.
 506. Wolf J, Levy IJ. Treatment of sickle cell anemia with cobalt chloride. AMA Arch Intern Med 93: 387‐396, 1954.
 507. Wright GL, Hanlon P, Amin K, Steenbergen C, Murphy E, Arcasoy MO. Erythropoietin receptor expression in adult rat cardiomyocytes is associated with an acute cardioprotective effect for recombinant erythropoietin during ischemia‐reperfusion injury. Faseb J 18: 1031‐1033, 2004.
 508. Wrighton NC, Farrell FX, Chang R, Kashyap AK, Barbone FP, Mulcahy LS, Johnson DL, Barrett RW, Jolliffe LK, Dower WJ. Small peptides as potent mimetics of the protein hormone erythropoietin. Science 273: 458‐464, 1996.
 509. Wu H, Klingmuller U, Acurio A, Hsiao JG, Lodish HF. Functional interaction of erythropoietin and stem cell factor receptors is essential for erythroid colony formation. Proc Natl Acad Sci U S A 94: 1806‐1810, 1997.
 510. Wu H, Klingmuller U, Besmer P, Lodish HF. Interaction of the erythropoietin and stem‐cell‐factor receptors. Nature 377: 242‐246, 1995.
 511. Wu H, Lee SH, Gao J, Liu X, Iruela‐Arispe ML. Inactivation of erythropoietin leads to defects in cardiac morphogenesis. Development 126: 3597‐3605, 1999.
 512. Wu H, Liu X, Jaenisch R, Lodish HF. Generation of committed erythroid BFU‐E and CFU‐E progenitors does not require erythropoietin or the erythropoietin receptor. Cell 83: 59‐67, 1995.
 513. Xie Z, Wu X, Qiu Q, Gong Y, Song Y, Gu Q, Li C. Expression pattern of erythropoietin and erythropoietin receptor in experimental model of retinal detachment. Curr Eye Res 32: 757‐764, 2007.
 514. Yamaji R, Okada T, Moriya M, Naito M, Tsuruo T, Miyatake K, Nakano Y. Brain capillary endothelial cells express two forms of erythropoietin receptor mRNA. Eur J Biochem 239: 494‐500, 1996.
 515. Yamazaki T, Kanzaki M, Kamidono S, Fujisawa M. Effect of erythropoietin on Leydig cell is associated with the activation of Stat5 pathway. Mol Cell Endocrinol 213: 193‐198, 2004.
 516. Yan L, Colandrea VJ, Hale JJ. Prolyl hydroxylase domain‐containing protein inhibitors as stabilizers of hypoxia‐inducible factor: Small molecule‐based therapeutics for anemia. Expert Opin Ther Pat 20: 1219‐1245, 2010.
 517. Yang CW, Li C, Jung JY, Shin SJ, Choi BS, Lim SW, Sun BK, Kim YS, Kim J, Chang YS, Bang BK. Preconditioning with erythropoietin protects against subsequent ischemia‐reperfusion injury in rat kidney. Faseb J 17: 1754‐1755, 2003.
 518. Yasuda Y, Masuda S, Chikuma M, Inoue K, Nagao M, Sasaki R. Estrogen‐dependent production of erythropoietin in uterus and its implication in uterine angiogenesis. J Biol Chem 273: 25381‐25387, 1998.
 519. Yokomizo R, Matsuzaki S, Uehara S, Murakami T, Yaegashi N, Okamura K. Erythropoietin and erythropoietin receptor expression in human endometrium throughout the menstrual cycle. Mol Hum Reprod 8: 441‐446, 2002.
 520. Yoshimura A, Longmore G, Lodish HF. Point mutation in the exoplasmic domain of the erythropoietin receptor resulting in hormone‐independent activation and tumorigenicity. Nature 348: 647‐649, 1990.
 521. Youssoufian H, Longmore G, Neumann D, Yoshimura A, Lodish HF. Structure, function, and activation of the erythropoietin receptor. Blood 81: 2223‐2236, 1993.
 522. Yu X, Shacka JJ, Eells JB, Suarez‐Quian C, Przygodzki RM, Beleslin‐Cokic B, Lin CS, Nikodem VM, Hempstead B, Flanders KC, Costantini F, Noguchi CT. Erythropoietin receptor signalling is required for normal brain development. Development 129: 505‐516, 2002.
 523. Zanjani ED, Ascensao JL, McGlave PB, Banisadre M, Ash RC. Studies on the liver to kidney switch of erythropoietin production. J Clin Invest 67: 1183‐1188, 1981.
 524. Zhang J, Wu Y, Jin Y, Ji F, Sinclair SH, Luo Y, Xu G, Lu L, Dai W, Yanoff M, Li W, Xu GT. Intravitreal injection of erythropoietin protects both retinal vascular and neuronal cells in early diabetes. Invest Ophthalmol Vis Sci 49: 732‐742, 2008.
 525. Zhao S, Lin Y, Xu W, Jiang W, Zha Z, Wang P, Yu W, Li Z, Gong L, Peng Y, Ding J, Lei Q, Guan KL, Xiong Y. Glioma‐derived mutations in IDH1 dominantly inhibit IDH1 catalytic activity and induce HIF‐1alpha. Science 324: 261‐265, 2009.
 526. Ziel KA, Grishko V, Campbell CC, Breit JF, Wilson GL, Gillespie MN. Oxidants in signal transduction: Impact on DNA integrity and gene expression. FASEB J 19: 387‐394, 2005.
 527. Zucali JR, Lee M, Mirand EA. Carbon dioxide effects on erythropoietin and erythropoiesis. J Lab Clin Med 92: 648‐655, 1978.

Related Articles:

Blood Oxygen Transport

Contact Editor

Submit a note to the editor about this article by filling in the form below.

* Required Field

How to Cite

Roland H. Wenger, Armin Kurtz. Erythropoietin. Compr Physiol 2011, 1: 1759-1794. doi: 10.1002/cphy.c100075