References |
1. |
Appel M,
Hizlan D,
Vinothkumar KR,
Ziegler C,
Kuhlbrandt W.
Conformations of NhaA, the Na+/H+ exchanger from Escherichia coli, in the pH‐activated and ion‐translocating states.
J Mol Biol
388:
659‐672,
2009.
|
2. |
Apse MP,
Blumwald E.
Na+ transport in plants.
FEBS Lett
581:
2247‐2254,
2007.
|
3. |
Arkin IT,
Xu H,
Jensen MO,
Arbely E,
Bennett ER,
Bowers KJ,
Chow E,
Dror RO,
Eastwood MP,
Flitman‐Tene R,
Gregersen BA,
Klepeis JL,
Kolossvary I,
Shan Y,
Shaw DE.
Mechanism of Na+/H+ antiporting.
Science
317:
799‐803,
2007.
|
4. |
Battaglino RA,
Pham L,
Morse LR,
Vokes M,
Sharma A,
Odgren PR,
Yang M,
Sasaki H,
Stashenko P.
NHA‐oc/NHA2: A mitochondrial cation‐proton antiporter selectively expressed in osteoclasts.
Bone
42:
180‐192,
2008.
|
5. |
Brett CL,
Donowitz M,
Rao R.
Evolutionary origins of eukaryotic sodium/proton exchangers.
Am J Physiol Cell Physiol
288:
223‐239,
2005.
|
6. |
Bury‐Mone S,
Skouloubris S,
Labigne A,
De Reuse H.
The Helicobacter pylori UreI protein: Role in adaptation to acidity and identification of residues essential for its activity and for acid activation.
Mol Microbiol
42:
1021‐1034,
2001.
|
7. |
Casey JR,
Grinstein S,
Orlowski J.
Sensors and regulators of intracellular pH.
Nat Rev Mol Cell Biol
11:
50‐61,
2010.
|
8. |
Day JP,
Wan S,
Allen AK,
Kean L,
Davies SA,
Gray JV,
Dow JA.
Identification of two partners from the bacteria Kef exchanger family for the apical plasma membrane V‐ATPase of metazoa.
J Cell Sci
121:
2612‐2619,
2008.
|
9. |
Fliegel L.
Molecular biology of the myocardial Na+/H+ exchanger.
J Mol Cell Cardiol
44:
228‐237,
2008.
|
10. |
Fuster DG,
Zhang J,
Shi M,
Bobulescu IA,
Andersson S,
Moe OW.
Characterization of the sodium/hydrogen exchanger NHA2.
J Am Soc Nephrol
19:
1547‐1556,
2008.
|
11. |
Galili L,
Herz K,
Dym O,
Padan E.
Unraveling functional and structural interactions between transmembrane domains IV and XI of NhaA Na+/H+ antiporter of Escherichia coli.
J Biol Chem
279:
23104‐23113,
2004.
|
12. |
Galili L,
Rothman A,
Kozachkov L,
Rimon A,
Padan E.
Trans membrane domain IV is involved in ion transport activity and pH regulation of the NhaA‐Na+/H+ antiporter of Escherichia coli.
Biochemistry
41:
609‐617,
2002.
|
13. |
Gerchman Y,
Olami Y,
Rimon A,
Taglicht D,
Schuldiner S,
Padan E.
Histidine‐226 is part of the pH sensor of NhaA, a Na+/H+ antiporter in Escherichia coli.
Proc Natl Acad Sci USA
90:
1212‐1216,
1993.
|
14. |
Gerchman Y,
Rimon A,
Padan E.
A pH‐dependent conformational change of NhaA Na+/H+ antiporter of Escherichia coli involves loop VIII‐IX, plays a role in the pH response of the protein, and is maintained by the pure protein in dodecyl maltoside.
J Biol Chem
274:
24617‐24624,
1999.
|
15. |
Gonzales EB,
Kawate T,
Gouaux E.
Pore architecture and ion sites in acid‐sensing ion channels and P2X receptors.
Nature
460:
599‐604,
2009.
|
16. |
Goswami P,
Paulino C,
Hizlan D,
Vonck J,
Yildiz O,
Kuhlbrandt W.
Structure of the archaeal Na(+)/H(+) antiporter NhaP1 and functional role of transmembrane helix 1.
Embo J
30:
439‐449,
2011 |
17. |
Guan L,
Kaback HR.
Site‐directed alkylation of cysteine to test solvent accessibility of membrane proteins.
Nat Protoc
2:
2012‐2017,
2007.
|
18. |
Harel‐Bronstein M,
Dibrov P,
Olami Y,
Pinner E,
Schuldiner S,
Padan E.
MH1, a second‐site revertant of an Escherichia coli mutant lacking Na+/H+ antiporters (delta nhaA delta nhaB), regains Na+ resistance and a capacity to excrete Na+ in a delta microH(+)‐independent fashion.
J Biol Chem
270:
3816‐3822,
1995.
|
19. |
Hayashi H,
Szaszi K,
Coady‐Osberg N,
Orlowski J,
Kinsella JL,
Grinstein S.
A slow pH‐dependent conformational transition underlies a novel mode of activation of the epithelial Na+/H+ exchanger‐3 isoform.
J Biol Chem
277:
11090‐11096,
2002.
|
20. |
Herz K,
Rimon A,
Olkhova E,
Kozachkov L,
Padan E.
Transmembrane segment II of NhaA Na+/H+ antiporter lines the cation passage, and Asp65 is critical for pH activation of the antiporter.
J Biol Chem
285:
2211‐2220,
2010 |
21. |
Hilger D,
Jung H,
Padan E,
Wegener C,
Vogel KP,
Steinhoff HJ,
Jeschke G.
Assessing oligomerization of membrane proteins by four‐pulse DEER: pH‐dependent dimerization of NhaA Na+/H+ antiporter of E. coli.
Biophys J
89:
1328‐1338,
2005.
|
22. |
Hunte C,
Screpanti M,
Venturi M,
Rimon A,
Padan E,
Michel H.
Structure of a Na+/H+ antiporter and insights into mechanism of action and regulation by pH.
Nature
534:
1197‐1202,
2005.
|
23. |
Ivey DM,
Guffanti AA,
Zemsky J,
Pinner E,
Karpel R,
Padan E,
Schuldiner S,
Krulwich TA.
Cloning and characterization of a putative Ca2+/H+ antiporter gene from Escherichia coli upon functional complementation of Na+/H+ antiporter‐deficient strains by the overexpressed gene.
J Biol Chem
268:
11296‐11303,
1993.
|
24. |
Kozachkov L,
Herz K, and
Padan E.
Functional and Structural Interactions of the Transmembrane Domain X of NhaA, Na+/H+ Antiporter of Escherichia coli, at Physiological pH.
Biochemistry
46:
2419‐2430,
2007.
|
25. |
Krishnamurthy H,
Piscitelli CL,
Gouaux E.
Unlocking the molecular secrets of sodium‐coupled transporters.
Nature
459:
347‐355,
2009.
|
26. |
Landau M,
Herz K,
Padan E,
Ben‐Tal N.
Model structure of the Na+/H+ exchanger 1 (NHE1): Functional and clinical implications.
J Biol Chem
282:
37854‐37863,
2007.
|
27. |
Liechti LA,
Berneche S,
Bargeton B,
Iwaszkiewicz J,
Roy S,
Michielin O,
Kellenberger S.
A combined computational and functional approach identifies new residues involved in pH‐dependent gating of ASIC1a.
J Biol Chem
285:
16315‐16329,
2010.
|
28. |
Malo ME,
Fliegel L.
Physiological role and regulation of the Na+/H+ exchanger.
Can J Physiol Pharmacol
84:
1081‐1095,
2006.
|
29. |
Menezes ME,
Roepe PD,
Kaback HR.
Design of a membrane transport protein for fluorescence spectroscopy.
Proc Natl Acad Sci U S A
87:
1638‐1642,
1990.
|
30. |
Mollenhauer‐Rektorschek M,
Hanauer G,
Sachs G,
Melchers K.
Expression of UreI is required for intragastric transit and colonization of gerbil gastric mucosa by Helicobacter pylori.
Res Microbiol
153:
659‐666,
2002.
|
31. |
Nygaard EB,
Lagerstedt JO,
Bjerre G,
Shi B,
Budamagunta M,
Poulsen KA,
Meinild S,
Rigor RR,
Voss JC,
Cala PM,
Pedersen SF.
Structural modeling and electron paramagnetic resonance spectroscopy of the human Na+/H+ exchanger isoform 1, NHE1.
J Biol Chem
286:
634‐648,
2011. |
32. |
Ohyama T,
Igarashi K,
Kobayashi H.
Physiological role of the chaA gene in sodium and calcium circulations at a high pH in Escherichia coli.
J Bacteriol
176:
4311‐4315,
1994.
|
33. |
Olami Y,
Rimon A,
Gerchman Y,
Rothman A,
Padan E.
Histidine 225, a residue of the NhaA‐Na+/H+ antiporter of Escherichia coli is exposed and faces the cell exterior.
J Biol Chem
272:
1761‐1768,
1997.
|
34. |
Olkhova E,
Hunte C,
Screpanti E,
Padan E,
Michel H.
Multiconformation continuum electrostatics analysis of the NhaA Na+/H+ antiporter of Escherichia coli with functional implications.
Proc Natl Acad Sci U S A
103:
2629‐2634,
2006.
|
35. |
Olkhova E,
Kozachkov L,
Padan E,
Michel H.
Combined computational and biochemical study reveals the importance of electrostatic interactions between the “pH sensor” and the cation binding site of the sodium/proton antiporter NhaA of Escherichia coli.
Proteins
76:
548‐559,
2009.
|
36. |
Olkhova E,
Padan E,
Michel H.
The influence of protonation states on the dynamics of the NhaA antiporter from Escherichia coli.
Biophysics J
92:
3784‐3791,
2007.
|
37. |
Orlowski J,
Grinstein S.
Diversity of the mammalian sodium/proton exchanger SLC9 gene family.
Pflug Arch
447:
549‐565,
2004.
|
38. |
Orlowski J,
Grinstein S.
Emerging roles of alkali cation/proton exchangers in organellar homeostasis.
Curr Opin Cell Biol
19:
483‐492,
2007.
|
39. |
Padan E.
The enlightening encounter between structure and function in the NhaA Na+‐H+ antiporter.
Trends Biochem Sci
33:
435‐443,
2008.
|
40. |
Padan E,
Bibi E,
Masahiro I,
Krulwich TA.
Alkaline pH homeostasis in bacteria: New insights.
Biochim Biophys Acta
1717:
67‐88,
2005.
|
41. |
Padan E,
Kozachkov L,
Herz K,
Rimon A
NhaA crystal structure: Functional‐structural insights.
J Exp Biol
212:
1593‐1603,
2009.
|
42. |
Padan E,
Tzubery T,
Herz K,
Kozachkov L,
Rimon A,
Galili L.
NhaA of Escherichia coli, as a model of a pH‐regulated Na+/H+ antiporter.
Biochim Biophys Acta
1658:
2‐13,
2004.
|
43. |
Padan E,
Venturi M,
Michel H,
Hunte C.
Production and characterization of monoclonal antibodies directed against native epitopes of NhaA, the Na+/H+ antiporter of Escherichia coli.
FEBS Lett
441:
53‐58,
1998.
|
44. |
Padan E,
Zilberstein D,
Rottenberg H.
The proton electrochemical gradient in Escherichia coli cells.
Eur J Biochem
63:
533‐541,
1976.
|
45. |
Pham L,
Purcell P,
Morse L,
Stashenko P,
Battaglino RA.
Expression analysis of nha‐oc/NHA2: A novel gene selectively expressed in osteoclasts.
Gene Expr Patterns
7:
846‐851,
2007.
|
46. |
Pinner E,
Kotler Y,
Padan E,
Schuldiner S.
Physiological role of nhaB, a specific Na+/H+ antiporter in Escherichia coli.
J Biol Chem
268:
1729‐1734,
1993.
|
47. |
Putney LK,
Denker SP,
Barber DL.
The changing face of the Na+/H+ exchanger, NHE1: Structure, regulation, and cellular actions.
Annu Rev Pharmacol Toxicol
42:
527‐552,
2002.
|
48. |
Ramsey IS,
Mokrab Y,
Carvacho I,
Sands ZA,
Sansom MS,
Clapham DE.
An aqueous H+ permeation pathway in the voltage‐gated proton channel Hv1.
Nat Struct Mol Biol
17:
869‐875,
2009.
|
49. |
Ramsey IS,
Ruchti E,
Kaczmarek JS,
Clapham DE.
Hv1 proton channels are required for high‐level NADPH oxidase‐dependent superoxide production during the phagocyte respiratory burst.
Proc Natl Acad Sci U S A
106:
7642‐7647,
2009.
|
50. |
Rheault MR,
Okech BA,
Keen SB,
Miller MM,
Meleshkevitch EA,
Linser PJ,
Boudko DY,
Harvey WR.
Molecular cloning, phylogeny and localization of AgNHA1: The first Na+/H+ antiporter (NHA) from a metazoan, Anopheles gambiae.
J Exp Biol
210:
3848‐3861,
2007.
|
51. |
Rimon A,
Gerchman Y,
Kariv Z,
Padan E.
A point mutation (G338S) and its suppressor mutations affect both the pH response of the NhaA‐Na+/H+ antiporter as well as the growth phenotype of Escherichia coli.
J Biol Chem
273:
26470‐26476,
1998.
|
52. |
Sachs G,
Weeks DL,
Wen Y,
Marcus EA,
Scott DR,
Melchers K.
Acid acclimation by Helicobacter pylori.
Physiology (Bethesda)
20:
429‐38,
2005.
|
53. |
Schushan M,
Xiang M,
Bogomiakov P,
Padan E,
Rao R,
Ben‐Tal N.
Model‐guided mutagenesis drives functional studies of human NHA2, implicated in hypertension.
J Mol Biol
396:
1181‐1196,
2009.
|
54. |
Screpanti E,
Padan E,
Rimon A,
Michel H,
Hunte C.
Crucial steps in the structure determination of the Na+/H+ antiporter NhaA in its native conformation.
J Mol Biol
362:
192‐202,
2006.
|
55. |
Slonczewski JL,
Fujisawa M,
Dopson M,
Krulwich TA.
Cytoplasmic pH measurement and homeostasis in bacteria and archaea.
Adv Microb Physiol
55:
1‐79, 317,
2009.
|
56. |
Smirnova I,
Kasho V,
Sugihara J,
Kaback HR.
Probing of the rates of alternating access in LacY with Trp fluorescence.
Proc Natl Acad Sci U S A
106:
21561‐21566,
2009.
|
57. |
Taglicht D,
Padan E,
Schuldiner S.
Overproduction and purification of a functional Na+/H+ antiporter coded by nhaA (ant) from Escherichia coli.
J Biol Chem
266:
11289‐11294,
1991.
|
58. |
Taglicht D,
Padan E,
Schuldiner S.
Proton‐sodium stoichiometry of NhaA, an electrogenic antiporter from Escherichia coli.
J Biol Chem
268:
5382‐5387,
1993.
|
59. |
Tzubery T. The relationship between structure, pH sensing and pH regulation of NhaA‐Na+/H+ antiporter of Escherichia coli PhD. Hebrew University Jerusalem, 2008.
|
60. |
Tzubery T,
Rimon A,
Padan E.
Mutation E252C increases drastically the Km value for Na+ and causes an alkaline shift of the pH dependence of NhaA Na+/H+ antiporter of Escherichia coli.
J Biol Chem
279:
3265‐3272,
2003.
|
61. |
Tzubery T,
Rimon A,
Padan E.
Structure‐based functional study reveals multiple roles of TMS IX and loop VIII‐IX in NhaA Na+/H+ antiporter of Escherichia coli at physiological pH
J Biol Chem
283:
15975‐15987,
2008.
|
62. |
Venturi M,
Rimon A,
Gerchman Y,
Hunte C,
Padan E,
Michel H.
The monoclonal antibody 1F6 identifies a pH‐dependent conformational change in the hydrophilic NH2 terminus of NhaA Na+/H+ antiporter of Escherichia coli.
J Biol Chem
275:
4734‐4742,
2000.
|
63. |
Wakabayashi S,
Pang T,
Hisamitsu T,
Shigekawa M
The sodium‐ Hydrogen Exchange, from Molecule to its Role in Disease.
Boston,
Kluwer Academic Publisher,
2003.
|
64. |
Weeks DL,
Eskandari S,
Scott DR,
Sachs G.
A H+‐gated urea channel: The link between Helicobacter pylori urease and gastric colonization.
Science
287:
482‐485,
2000.
|
65. |
Weeks DL,
Gushansky G,
Scott DR,
Sachs G.
Mechanism of proton gating of a urea channel.
J Biol Chem
279:
9944‐9950,
2004.
|
66. |
Weitzman C,
Consler TG,
Kaback HR.
Fluorescence of native single‐Trp mutants in the lactose permease from Escherichia coli: Structural properties and evidence for a substrate‐induced conformational change.
Protein Sci
4:
2310‐2318,
1995.
|
67. |
West IC,
Mitchell P.
Proton/sodium ion antiport in Escherichia coli.
Biochem J
144:
87‐90,
1974.
|
68. |
Xiang M,
Feng M,
Muend S,
Rao R.
A human Na+/H+ antiporter sharing evolutionary origins with bacterial NhaA may be a candidate gene for essential hypertension.
Proc Natl Acad Sci U S A
104:
18677‐18681,
2007.
|
69. |
Yamaguchi T,
Aharon GS,
Sottosanto JB,
Blumwald E.
Vacuolar Na+/H+ antiporter cation selectivity is regulated by calmodulin from within the vacuole in a Ca2+‐ and pH‐dependent manner.
Proc Natl Acad Sci U S A
102:
16107‐16112,
2005.
|
70. |
Yu XJ,
McGourty K,
Liu M,
Unsworth KE,
Holden DW.
pH sensing by intracellular Salmonella induces effector translocation.
Science
328:
1040‐1043,
2010.
|
71. |
Zilberstein D,
Agmon V,
Schuldiner S,
Padan E.
Escherichia coli intracellular pH, membrane potential, and cell growth.
J Bacteriol
158:
246‐252,
1984.
|