References |
1. |
Ach N. Über die Willenstätigkeit und das Denken. Göttingen,
1905.
|
2. |
af Klint R,
Mazzaro N,
Nielsen JB,
Sinkjaer T,
Grey MJ.
Load rather than length sensitive feedback contributes to soleus muscle activity during human treadmill walking.
J Neurophysiol
103:
2747‐2756,
2010.
|
3. |
al‐Falahe NA,
Nagaoka M,
Vallbo AB.
Response profiles of human muscle afferents during active finger movements.
Brain
113:
325‐346,
1990.
|
4. |
al‐Falahe NA,
Nagaoka M,
Vallbo AB.
Dual response from human muscle spindles in fast voluntary movements.
Acta Physiol Scand
141:
363‐371,
1991.
|
5. |
Allum JH,
Oude Nijhuis LB,
Carpenter MG.
Differences in coding provided by proprioceptive and vestibular sensory signals may contribute to lateral instability in vestibular loss subjects.
Exp Brain Res
184:
391‐410,
2008.
|
6. |
Amis A,
Prochazka A,
Short D,
Trend PS,
Ward A.
Relative displacements in muscle and tendon during human arm movements.
J Physiol
389:
37‐44,
1987.
|
7. |
Aniss AM,
Diener HC,
Hore J,
Gandevia SC,
Burke D.
Behavior of human muscle receptors when reliant on proprioceptive feedback during standing.
J Neurophysiol
64:
661‐670,
1990.
|
8. |
Appenteng K,
Prochazka A.
Tendon organ firing during active muscle lengthening in awake, normally behaiving cats.
J Physiol
353:
81‐92,
1984.
|
9. |
Arshavsky YI,
Deliagina TG,
Orlovsky GN.
Pattern generation.
Curr Opin Neurobiol
7:
781‐789,
1997.
|
10. |
Arshavsky YI,
Gelfand IM,
Orlovsky GN.
Cerebellum and Rhythmical Movements.
Berlin:
Springer,
1986.
|
11. |
Barker D,
Ip MC,
Adal MN.
A correlation between the receptor population of the cat's soleus muscle and the afferent fibre diameter spectrum of the nerve supplying it. In:
Barker D, editor.
Symposium on Muscle Receptors.
Hong Kong:
Hong Kong University Press,
1962,
pp. 257‐261.
|
12. |
Bastian HC.
The “muscular sense”: Its nature and localisation.
Brain
10:
1‐136,
1888.
|
13. |
Bell C.
The Hand. Its Mechanism and Vital Endowments as Evincing Design.
London:
William Pickering,
1834.
|
14. |
Beloozerova IN,
Sirota MG.
The role of the motor cortex in the control of accuracy of locomotor movements in the cat.
J Physiol
461:
1‐25,
1993.
|
15. |
Bennett DJ.
Torques generated at the human elbow joint in response to constant position errors imposed during voluntary movements.
Exp Brain Res
95:
488‐498,
1993.
|
16. |
Bennett DJ.
Stretch reflex responses in the human elbow joint during a voluntary movement.
J Physiol (Lond)
474:
339‐351,
1994.
|
17. |
Bennett DJ,
Gorassini M,
Prochazka A.
Catching a ball: Contributions of intrinsic muscle stiffness, reflexes, and higher order responses.
Can J Physiol Pharmacol
72:
525‐534,
1994.
|
18. |
Bergenheim M,
Johansson H,
Pedersen J,
Ohberg F,
Sjolander P.
Ensemble coding of muscle stretches in afferent populations containing different types of muscle afferents.
Brain Res
734:
157‐166,
1996.
|
19. |
Bernstein N.
The Coordination and Regulation of Movements.
Oxford:
Pergamon,
1967.
|
20. |
Bloedel JR.
Task‐dependent role of the cerebellum in motor learning.
Prog Brain Res
143:
319‐329,
2004.
|
21. |
Bosco G,
Eian J,
Poppele RE.
Kinematic and non‐kinematic signals transmitted to the cat cerebellum during passive treadmill stepping.
Exp Brain Res
167:
394‐403,
2005.
|
22. |
Bosco G,
Poppele RE.
Proprioception from a spinocerebellar perspective.
Physiol Rev
81:
539‐568,
2001.
|
23. |
Boyd IA,
Roberts TDM.
Proprioceptive discharges from stretch receptors in the knee joint of the cat.
J Physiol
122:
38‐58,
1953.
|
24. |
Brown TG.
The intrinsic factors in the act of progression in the mammal.
Proc R Soc Lond, Series B
84:
308‐319,
1911.
|
25. |
Burgess PR,
Clark FJ.
Characteristics of knee joint receptors in the cat.
J Physiol
203:
317‐335,
1969.
|
26. |
Burke D,
Hagbarth KE,
Lofstedt L.
Muscle spindle activity in man during shortening and lengthening contractions.
J Physiol
277:
131‐142,
1978.
|
27. |
Cabelguen JM.
Static and dynamic fusimotor action on the response of spindle primary endings to sinusoidal stretches in the cat.
Brain Res
169:
45‐54,
1979.
|
28. |
Capaday C,
Stein RB.
Amplitude modulation of the soleus H‐reflex in the human during walking and standing.
J Neurosci
6:
1308‐1313,
1986.
|
29. |
Carli G,
Farabollini F,
Fontani G,
Meucci M.
Slowly adapting receptors in cat hip joint.
J Neurophysiol
42:
767‐778,
1979.
|
30. |
Clark FJ,
Burgess RC,
Chapin JW,
Lipscomb WT.
Role of intramuscular receptors in the awareness of limb position.
J Neurophysiol
54:
1529‐1540,
1985.
|
31. |
Cleland CL,
Hayward L,
Rymer WZ.
Neural mechanisms underlying the clasp‐knife reflex in the cat. II. Stretch‐sensitive muscular‐free nerve endings.
J Neurophysiol
64:
1319‐1330,
1990.
|
32. |
Cleland CL,
Rymer WZ.
Neural mechanisms underlying the clasp‐knife reflex in the cat. I. Characteristics of the reflex.
J Neurophysiol
64:
1303‐1318,
1990.
|
33. |
Collins DF,
Prochazka A.
Movement illusions evoked by ensemble cutaneous input from the dorsum of the human hand.
J Physiol
496(Pt 3):
857‐871,
1996.
|
34. |
Conway BA,
Hultborn H,
Kiehn O.
Proprioceptive input resets central locomotor rhythm in the spinal cat.
Brain Res
68:
643‐656,
1987.
|
35. |
Cordo PJ,
Flores‐Vieira C,
Verschueren SM,
Inglis JT,
Gurfinke lV.
Position sensitivity of human muscle spindles: Single afferent and population representations.
J Neurophysiol
87:
1186‐1195,
2002a.
|
36. |
Cordo PJ,
Flores‐Vieira C,
Verschueren SM,
Inglis JT,
Gurfinkel V.
Position sensitivity of human muscle spindles: Single afferent and population representations.
J Neurophysiol
87:
1186‐1195,
2002b.
|
37. |
Cruse H.
What mechanisms coordinate leg movement in walking arthropods?
Trends Neurosci
13:
15‐21,
1990.
|
38. |
Day BL,
Fitzpatrick RC.
The vestibular system.
Curr Biol
15:
R583‐R586,
2005.
|
39. |
Dimitriou M,
Edin BB.
Discharges in human muscle receptor afferents during block grasping.
J Neurosci
28:
12632‐12642,
2008a.
|
40. |
Dimitriou M,
Edin BB.
Discharges in human muscle spindle afferents during a key‐pressing task.
J Physiol
586:
5455‐5470,
2008b.
|
41. |
Dimitriou M,
Edin BB.
Human muscle spindles act as forward sensory models.
Curr Biol
20:
1763‐1767,
2010.
|
42. |
Donelan JM,
McVea DA,
Pearson KG.
Force regulation of ankle extensor muscle activity in freely walking cats.
J Neurophysiol
101:
360‐371,
2009.
|
43. |
Donelan JM,
Pearson KG.
Contribution of force feedback to ankle extensor activity in decerebrate walking cats.
J Neurophysiol
92:
2093‐2104,
2004.
|
44. |
Drew T.
Motor cortical activity during voluntary gait modifications in the cat. I. Cells related to the forelimbs.
J Neurophysiol
70:
179‐199,
1993.
|
45. |
Drew T,
Andujar JE,
Lajoie K,
Yakovenko S.
Cortical mechanisms involved in visuomotor coordination during precision walking.
Brain Res Rev
57:
199‐211,
2008.
|
46. |
Edin BB.
Cutaneous afferents provide information about knee joint movements in humans.
J Physiol
531:
289‐297,
2001.
|
47. |
Edin BB.
Quantitative analyses of dynamic strain sensitivity in human skin mechanoreceptors.
J Neurophysiol
92:
3233‐3243,
2004.
|
48. |
Ekeberg O,
Pearson K.
Computer simulation of stepping in the hind legs of the cat: An examination of mechanisms regulating the stance‐to‐swing transition.
J Neurophysiol
94:
4256‐4268,
2005.
|
49. |
Elek J,
Prochazka A,
Hulliger M,
Vincent S.
In‐series compliance of gastrocnemius muscle in cat step cycle: Do spindles signal origin‐to‐insertion length?
J Physiol
429:
237‐258,
1990.
|
50. |
Ellaway PH,
Prochazka A,
Chan M,
Gauthier MJ.
The sense of movement elicited by transcranial magnetic stimulation in humans is due to sensory feedback.
J Physiol
556:
651‐660,
2004.
|
51. |
Emonet‐Denand F,
Jami L,
Laporte Y.
Skeleto‐fusimotor axons in the hind‐limb muscles of the cat.
J Physiol
249:
153‐166,
1975.
|
52. |
Feldman AG.
Functional tuning of the nervous system with control of movement and maintenance of steady posture. II. Controllable parameters of the muscle.
Biophysics
11:
565‐578,
1966.
|
53. |
Ferrell WR.
The adequacy of stretch receptors in the cat knee joint for signalling joint angle throughout a full range of movement.
J Physiol
299:
85‐100,
1980.
|
54. |
Ferrell WR,
Gandevia SC,
McCloskey DI.
The role of joint receptors in human kinaesthesia when intramuscular receptors cannot contribute.
J Physiol
386:
63‐71,
1987.
|
55. |
Forssberg H.
Stumbling corrective reaction: A phase‐dependent compensatory reaction during locomotion.
J Neurophysiol
42:
936‐953,
1979.
|
56. |
Freusberg A.
Reflexbewegungen beim Hunde.
Pflug Archiv Physiol
9:
358‐391,
1874
|
57. |
Fukunaga T,
Kubo K,
Kawakami Y,
Fukashiro S,
Kanehisa H,
Maganaris CN.
In vivo behaviour of human muscle tendon during walking.
Proc R Soc Lond B Biol Sci
268:
229‐233,
2001.
|
58. |
Gandevia S.
Kinesthesia: Roles for afferent signals and motor commands. In:
Rowell L,
Sheperd JT, editors.
Handbook of Physiology. Section 12. Exercise: Regulation and Integration of Multiple Systems.
New York:
American Physiological Society,
1996,
pp. 128‐172.
|
59. |
Geyer H,
Seyfarth A,
Blickhan R.
Positive force feedback in bouncing gaits?
Proc Biol Sci
270:
2173‐2183,
2003.
|
60. |
Gibson JJ.
A critical review of the concept of set in contemporary experimental psychology.
Psychol Bull
38:
781‐817,
1941.
|
61. |
Godwin‐Austen RB.
The mechanoreceptors of the costo‐vertebral joints.
J Physiol
202:
737‐753,
1969.
|
62. |
Goodwin GM,
Hulliger M,
Matthews PB.
Studies on muscle spindle primary endings with sinusoidal stretching.
Prog Brain Res
44:
89‐98,
1976.
|
63. |
Gorassini M,
Prochazka A,
Taylor JL.
Cerebellar ataxia and muscle spindle sensitivity.
J Neurophysiol
70:
1853‐1862,
1993.
|
64. |
Gorassini MA,
Prochazka A,
Hiebert GW,
Gauthier MJ.
Corrective responses to loss of ground support during walking. I. Intact cats.
J Neurophysiol
71:
603‐610,
1994.
|
65. |
Goslow GE, Jr.,
Reinking RM,
Stuart DG.
The cat step cycle: Hind limb joint angles and muscle lengths during unrestrained locomotion.
J Morphol
141:
1‐41,
1973.
|
66. |
Goslow GE, Stauffer EK, Nemeth WC, Stuart DG. The cat step cycle: responses of muscle spindles and tendon organs to passive stretch within the locomotor range.
Brain Res 60: 35‐54, 1973b.
|
67. |
Gregory JE,
McIntyre AK,
Proske U.
Tendon organ afferents in the knee joint nerve of the cat.
Neurosci Lett
103:
287‐292,
1989.
|
68. |
Grey M,
Ladouceur M,
Andersen JB,
Nielsen JB,
Sinkjaer T.
Contribution of group II muscle afferents to the medium latency soleus stretch reflex during walking in man.
J Physiol
534: 925‐933,
2001.
|
69. |
Grey MJ,
Nielsen JB,
Mazzaro N,
Sinkjaer T.
Positive force feedback in human walking.
J Physiol
581:
99‐105,
2007.
|
70. |
Griffiths RI.
Shortening of muscle fibres during stretch of the active cat medial gastrocnemius muscle: The role of tendon compliance.
J Physiol (Lond)
436:
219‐236,
1991.
|
71. |
Grigg P,
Greenspan BJ.
Response of primate joint afferent neurons to mechanical stimulation of knee joint.
J Neurophysiol
40:
1‐8,
1977.
|
72. |
Grillner S.
Control of locomotion in bipeds, tetrapods, and fish. In:
Handbook of physiology.The nervous system.
Bethesda:
American Physiological Society,
1981, sect. 2,
pp. 1179‐1236.
|
73. |
Grillner S,
Cangiano L,
Hu G,
Thompson R,
Hill R,
Wallen P.
The intrinsic function of a motor system–from ion channels to networks and behavior.
Brain Res
886:
224‐236,
2000.
|
74. |
Grillner S,
Zangger P.
How detailed is the central pattern generation for locomotion?
Brain Res
88:
367‐371,
1975.
|
75. |
Gritsenko V,
Kalaska JF.
Rapid online correction is selectively suppressed during movement with a visuomotor transformation.
J Neurophysiol
2010.
|
76. |
Gritsenko V,
Mushahwar V,
Prochazka A.
Adaptive changes in locomotor control after partial denervation of triceps surae muscles in the cat.
J Physiol
533:
299‐311,
2001.
|
77. |
Halbertsma JM.
The stride cycle of the cat: The modelling of locomotion by computerized analysis of automatic recordings.
Acta Physiol Scand Suppl
521:
1‐75,
1983.
|
78. |
Haridas C,
Zehr EP,
Misiaszek JE.
Adaptation of cutaneous stumble correction when tripping is part of the locomotor environment.
J Neurophysiol
99:
2789‐2797,
2008.
|
79. |
Herbert RD,
Moseley AM,
Butler JE,
Gandevia SC.
Change in length of relaxed muscle fascicles and tendons with knee and ankle movement in humans.
J Physiol
539:
637‐645,
2002.
|
80. |
Hermer‐Vazquez L,
Hermer‐Vazquez R,
Chapin JK.
The reach‐to‐grasp‐food task for rats: A rare case of modularity in animal behavior?
Behav Brain Res
177:
322‐328,
2007.
|
81. |
Hiebert GW,
Whelan PJ,
Prochazka A,
Pearson KG.
Contribution of hind limb flexor muscle afferents to the timing of phase transitions in the cat step cycle.
J Neurophysiol
75:
1126‐1137,
1996.
|
82. |
Hoang PD,
Herbert RD,
Todd G,
Gorman RB,
Gandevia SC.
Passive mechanical properties of human gastrocnemius muscle tendon units, muscle fascicles and tendons in vivo.
J Exp Biol
210:
4159‐4168,
2007.
|
83. |
Hoffer JA,
Andreassen S.
Regulation of soleus muscle stiffness in premammillary cats: Intrinsic and reflex components.
J Neurophysiol
45:
267‐285,
1981.
|
84. |
Hoffer JA,
Caputi AA,
Pose IE,
Griffiths RI.
Roles of muscle activity and load on the relationship between muscle spindle length and whole muscle length in the freely walking cat.
Prog Brain Res
80:
75‐85,
1989.
|
85. |
Horch KW,
Tuckett RP,
Burgess PR.
A key to the classification of cutaneous mechanoreceptors.
J Invest Dermatol
69:
75‐82,
1977.
|
86. |
Horn KM,
Pong M,
Gibson AR.
Discharge of inferior olive cells during reaching errors and perturbations.
Brain Res
996:
148‐158,
2004.
|
87. |
Hospod V,
Aimonetti JM,
Roll JP,
Ribot‐Ciscar E.
Changes in human muscle spindle sensitivity during a proprioceptive attention task.
J Neurosci
27:
5172‐5178,
2007.
|
88. |
Houk J,
Henneman E.
Responses of Golgi tendon organs to active contractions of the soleus muscle of the cat.
J Neurophysiol
30:
466‐481,
1967.
|
89. |
Houk JC,
Singer JJ,
Goldman MR.
An evaluation of length and force feedback to soleus muscles of decerebrate cats.
J Neurophysiol
33:
784‐811,
1970.
|
90. |
Hulliger M.
The mammalian muscle spindle and its central control.
Rev Physiol Biochem Pharmacol
101:
1‐110,
1984a.
|
91. |
Hulliger M.
The mammalian muscle spindle and its central control. [Review].
Rev Physiol Biochem Pharmacol
101:
1‐110,
1984b.
|
92. |
Iles JF,
Stokes M,
Young A.
Reflex actions of knee joint afferents during contraction of the human quadriceps.
Clin Physiol
10:
489‐500,
1990.
|
93. |
James W.
The Principles of Psychology.
New York:
Henry Holt,
1890.
|
94. |
Jami L.
Golgi tendon organs in mammalian skeletal muscle: Functional properties and central actions.
Physiol Rev
72:
623‐666,
1992.
|
95. |
Johansson H,
Sjolander P,
Sojka P.
Receptors in the knee joint ligaments and their role in the biomechanics of the joint.
CRC Crit Rev Biomed Eng
18:
341‐368,
1991.
|
96. |
Johansson RS,
Vallbo AB.
Tactile sensibility in the human hand: Relative and absolute densities of four types of mechanoreceptive units in glabrous skin.
J Physiol (Lond)
286:
283‐300,
1979.
|
97. |
Jones KE,
Wessberg J,
Vallbo AB.
Directional tuning of human forearm muscle afferents during voluntary wrist movements.
J Physiol
536:
635‐647,
2001.
|
98. |
Kakuda N,
Vallbo AB,
Wessberg J.
Fusimotor and skeletomotor activities are increased with precision finger movement in man.
J Physiol
492(Pt 3):
921‐929,
1996.
|
99. |
Kennedy WR.
Innervation of normal human muscle spindles.
Neurology
20:
463‐475,
1970.
|
100. |
Kiehn O.
Locomotor circuits in the mammalian spinal cord.
Annu Rev Neurosci
29:
279‐306,
2006.
|
101. |
Kniffki KD,
Schomburg ED,
Steffens H.
Effects from fine muscle and cutaneous afferents on spinal locomotion in cats.
J Physiol
319:
543‐554,
1981.
|
102. |
Kowalczewski J,
Prochazka A.
Interactive Receptor Model.
University of Alberta Libraries, Free Internet Access, www.library.ualberta.ca.
2006.
|
103. |
Lafreniere‐Roula M,
McCrea DA.
Deletions of rhythmic motoneuron activity during fictive locomotion and scratch provide clues to the organization of the mammalian central pattern generator.
J Neurophysiol
94:
1120‐1132,
2005.
|
104. |
Loeb GE.
Somatosensory unit input to the spinal cord during normal walking.
Can J Physiol Pharmacol
59:
627‐635,
1981.
|
105. |
Loeb GE,
Levine WS,
He J.
Understanding sensorimotor feedback through optimal control.
Cold Spring Harb Symp Quant Biol
55:
791‐803,
1990.
|
106. |
Loram ID,
Lakie M,
Di Giulio I,
Maganaris CN.
The consequences of short‐range stiffness and fluctuating muscle activity for proprioception of postural joint rotations: The relevance to human standing.
J Neurophysiol
102:
460‐474,
2009.
|
107. |
Lund JP,
Matthews B.
Responses of temporomandibular joint afferents recorded in the Gasserian ganglion of the rabbit to passive movements of the mandible. In:
Kawamura Y, editor.
Oral‐facial Sensory and Motor Functions.
Tokyo:
Quintessence,
1981,
pp. 153‐160.
|
108. |
Maganaris CN,
Paul JP.
In vivo human tendinous tissue stretch upon maximum muscle force generation.
J Biomech
33:
1453‐1459,
2000.
|
109. |
Maganaris CN,
Paul JP.
Tensile properties of the in vivo human gastrocnemius tendon.
J Biomech
35:
1639‐1646,
2002.
|
110. |
Matthews PBC.
Mammalian Muscle Receptors and Their Central Actions.
London:
Arnold,
1972.
|
111. |
McCrimmon DR,
Ramirez JM,
Alford S,
Zuperku EJ.
Unraveling the mechanism for respiratory rhythm generation.
Bioessays
22:
6‐9,
2000.
|
112. |
McIntyre AK,
Proske U,
Tracey DJ.
Afferent fibres from muscle receptors in the posterior nerve of the cat's knee joint.
Exp Brain Res
33:
415‐424,
1978.
|
113. |
Merton PA.
How we control the contraction of our muscles.
Sci Am
226:
30‐37,
1972.
|
114. |
Miall C.
Motor control: Correcting errors and learning from mistakes.
Curr Biol
20:
R596‐598,
2010.
|
115. |
Miall RC.
The cerebellum, predictive control and motor coordination.
Novartis Found Symp
218:
272‐284; discussion
284‐290,
1998.
|
116. |
Miall RC,
Weir DJ,
Wolpert DM,
Stein JF.
Is the cerebellum a Smith predictor?
J Mot Behav
25:
203‐216,
1993.
|
117. |
Murphy PR,
Martin HA.
Fusimotor discharge patterns during rhythmic movements.
Trends Neurosci
16:
273‐278,
1993.
|
118. |
Murphy PR,
Stein RB,
Taylor J.
Phasic and tonic modulation of impulse rates in gamma‐motoneurons during locomotion in premammillary cats.
J Neurophysiol
52:
228‐243,
1984.
|
119. |
Mushahwar VK,
Gillard DM,
Gauthier MJ,
Prochazka A.
Intraspinal micro stimulation generates locomotor‐like and feedback‐controlled movements.
IEEE Trans Neural Syst Rehabil Eng
10:
68‐81,
2002.
|
120. |
Newsom Davis J.
The response to stretch of human intercostal muscle spindles stduied in vitro.
J Physiol
249:
561‐579,
1975.
|
121. |
Nichols R,
Ross KT.
The implications of force feedback for the lambda model.
Adv Exp Med Biol
629:
663‐679,
2009.
|
122. |
Nichols TR,
Houk JC.
Improvement in linearity and regulation of stiffness that results from actions of stretch reflex.
J Neurophysiol
39:
119‐142,
1976.
|
123. |
Patla AE,
Niechwiej E,
Racco V,
Goodale MA.
Understanding the contribution of binocular vision to the control of adaptive locomotion.
Exp Brain Res
142:
551‐561,
2002.
|
124. |
Patla AE,
Prentice SD,
Rietdyk S,
Allard F,
Martin C.
What guides the selection of alternate foot placement during locomotion in humans.
Exp Brain Res
128:
441‐450,
1999.
|
125. |
Patla AE,
Vickers JN.
Where and when do we look as we approach and step over an obstacle in the travel path?
Neuroreport
8:
3661‐3665,
1997.
|
126. |
Pearson K,
Ekeberg O,
Buschges A.
Assessing sensory function in locomotor systems using neuro‐mechanical simulations.
Trends Neurosci
29:
625‐631,
2006.
|
127. |
Pearson KG.
Role of sensory feedback in the control of stance duration in walking cats.
Brain Res Rev
57:
222‐227,
2008.
|
128. |
Pearson KG,
Collins DF.
Reversal of the influence of group Ib afferents from plantaris on activity in medial gastrocnemius muscle during locomotor activity.
J Neurophysiol
70:
1009‐1017,
1993.
|
129. |
Perret C.
Centrally generated pattern of motoneuron activity during locomotion in the cat.
Symp Soc Exp Biol
37:
405‐422,
1983.
|
130. |
Perret C,
Buser P.
Static and dynamic fusimotor activity during locomotor movements in the cat.
Brain Res
40:
165‐169,
1972.
|
131. |
Perret C,
Cabelguen JM.
Main characteristics of the hindlimb locomotor cycle in the decorticate cat with special reference to bifunctional muscles.
Brain Res
187:
333‐352,
1980.
|
132. |
Poppele RE,
Kennedy WR.
Comparison between behavior of human and cat muscle spindles recorded in vitro.
Brain Res
75:
316‐319,
1974.
|
133. |
Poppele RE,
Terzuolo CA.
Myotatic reflex: Its input‐output relation.
Science
159:
743‐745,
1968.
|
134. |
Prochazka A.
Comparison of natural and artificial control of movement.
IEEE Trans Rehab Eng
1:
7‐17,
1993.
|
135. |
Prochazka A.
Proprioceptive feedback and movement regulation. In:
Rowell L,
Sheperd JT, editors.
Handbook of Physiology. Exercise: Regulation and Integration of Multiple Systems.
New York:
American Physiological Society,
1996, sect. 12,
pp. 89‐127.
|
136. |
Prochazka A.
Quantifying proprioception.
Prog Brain Res
123:
133‐142,
1999.
|
137. |
Prochazka A,
Gillard D,
Bennett DJ.
Implications of positive feedback in the control of movement.
J Neurophysiol
77:
3237‐3251,
1997.
|
138. |
Prochazka A,
Gorassini M.
Ensemble firing of muscle afferents recorded during normal locomotion in cats.
J Physiol
507(Pt 1):
293‐304,
1998a.
|
139. |
Prochazka A,
Gorassini M.
Ensemble firing of muscle afferents recorded during normal locomotion in cats.
J Physiol
507:
293‐304,
1998b.
|
140. |
Prochazka A,
Hulliger M,
Zangger P,
Appenteng K.
‘Fusimotor set’: New evidence for alpha‐independent control of gamma‐motoneurones during movement in the awake cat.
Brain Res
339:
136‐140,
1985.
|
141. |
Prochazka A,
Sorensen C.
Biomechanical imperatives in the neural control of locomotion.
Comp Biochem Physiol
153:
S135‐S136,
2009.
|
142. |
Prochazka A,
Yakovenko S.
The neuromechanical tuning hypothesis. In:
Cisek P,
Drew, T,
Kalaska, J, editors.
Progress in Brain Research Computational Neuroscience: Theoretical Insights into Brain Function.
NY:
Elsevier,
2007,
pp. 255‐265.
|
143. |
Proske U.
The Golgi tendon organ. Properties of the receptor and reflex action of impulses arising from tendon organs. In:
Porter R, editor.
MTP International Review of Physiology, Neurophysiology IV.
Baltimore:
MTP University Park Press,
1981,
pp. 127‐171.
|
144. |
Proske U,
Gregory JE.
Signalling properties of muscle spindles and tendon organs.
Adv Exp Med Biol
508:
5‐12,
2002.
|
145. |
Proske U,
Morgan DL.
Stiffness of cat soleus muscle and tendon during activation of part of muscle.
J Neurophysiol
52:
459‐468,
1984.
|
146. |
Rack PM,
Ross HF,
Thilmann AF,
Walters DK.
Reflex responses at the human ankle: The importance of tendon compliance.
J Physiol
344:
503‐524,
1983.
|
147. |
Ribot‐Ciscar E,
Hospod V,
Roll JP,
Aimonetti JM.
Fusimotor drive may adjust muscle spindle feedback to task requirements in humans.
J Neurophysiol
101:
633‐640,
2009.
|
148. |
Ribot‐Ciscar E,
Rossi‐Durand C,
Roll JP.
Increased muscle spindle sensitivity to movement during reinforcement manoeuvres in relaxed human subjects.
J Physiol
523(Pt 1):
271‐282,
2000.
|
149. |
Rigosa J,
Weber D,
Prochazka A,
Stein R,
Micera S.
Neuro‐fuzzy decoding of sensory information from ensembles of simultaneously recorded dorsal root ganglion neurons for FES applications.
J Neural Eng
8(4): 046019,
2011.
|
150. |
Rossignol S,
Dubuc R,
Gossard JP.
Dynamic sensorimotor interactions in locomotion.
Physiol Rev
86:
89‐154,
2006.
|
151. |
Rybak IA,
Shevtsova NA,
Lafreniere‐Roula M,
McCrea DA.
Modelling spinal circuitry involved in locomotor pattern generation: Insights from deletions during fictive locomotion.
J Physiol
577:
617‐639,
2006.
|
152. |
Rybak IA,
Stecina K,
Shevtsova NA,
McCrea DA.
Modelling spinal circuitry involved in locomotor pattern generation: Insights from the effects of afferent stimulation.
J Physiol
577:
641‐658,
2006.
|
153. |
Sechenov IM.
Reflexes of the Brain, (Refleksy Golovnogo Mozga). In:
Subkov AA, editor.
I.M. Sechenov, Selected Works.
Moscow:
State Publishing House,
1863,
pp. 264‐322.
|
154. |
Selverston AI.
Modeling of neural circuits: What have we learned?
Annu Rev Neurosci
16:
531‐546,
1993.
|
155. |
Shadmehr R,
Krakauer JW.
A computational neuroanatomy for motor control.
Exp Brain Res
185:
359‐381,
2008.
|
156. |
Sherrington CS.
On the proprio‐ceptive system, especially in its reflex aspects.
Brain
29:
467‐482,
1906.
|
157. |
Shemmell J,
Krutky MA,
Perreault EJ.
Stretch sensitive reflexes as an adaptive mechanism for maintaining limb stability.
Clin Neurophysiol
121:
1680‐1689,
2010.
|
158. |
Sherrington CS.
Flexion‐reflex of the limb, crossed extension‐reflex, and reflex stepping and standing.
J Physiol (London)
40:
28‐121,
1910.
|
159. |
Sherrington CS.
Further observations on the production of reflex stepping by combination of reflex excitation with reflex inhibition.
J Physiol
47:
196‐214,
1914.
|
160. |
Shik ML,
Severin FV,
Orlovsky GN.
Control of walking and running by means of electrical stimulation of the mid‐brain.
Biophysics
11:
756‐765,
1966.
|
161. |
Shimansky Y,
Wang JJ,
Bauer RA,
Bracha V,
Bloedel JR.
On‐line compensation for perturbations of a reaching movement is cerebellar dependent: Support for the task dependency hypothesis.
Exp Brain Res
155:
156‐172,
2004.
|
162. |
Sinkjaer T,
Andersen JB,
Ladouceur M,
Christensen LO,
Nielsen JB.
Major role for sensory feedback in soleus EMG activity in the stance phase of walking in man.
J Physiol
523:
817‐827,
2000.
|
163. |
Sinkjaer T,
Toft E,
Andreassen S,
Hornemann BC.
Muscle stiffness in human ankle dorsiflexors: Intrinsic and reflex components.
J Neurophysiol
60:
1110‐1121,
1988.
|
164. |
Smith OJM.
A controller to overcome dead time.
Instrum Soc Am J
6:
28‐33,
1959.
|
165. |
Spencer H. The principles of psychology. London: Longman, Brown, Green, and Longmans, 1855.
|
166. |
St George RJ,
Fitzpatrick RC.
The sense of self‐motion, orientation and balance explored by vestibular stimulation.
J Physiol
589: 807‐813,
2011.
|
167. |
Stein RB,
Misiaszek JE,
Pearson KG.
Functional role of muscle reflexes for force generation in the decerebrate walking cat.
J Physiol
525:
781‐791,
2000.
|
168. |
Stephens JA,
Reinking RM,
Stuart DG.
Tendon organs of cat medial gastrocnemius: Responses to active and passive forces as a function of muscle length.
J Neurophysiol
38:
1217‐1231,
1975.
|
169. |
Taga G.
A model of the neuro‐musculo‐skeletal system for human locomotion. II Real‐time adaptability under various constraints.
Biol Cybern
73:
113‐121,
1995.
|
170. |
Taga G,
Yamaguchi Y,
Shimizu H.
Self‐organized control of bipedal locomotion by neural oscillators in unpredictable environment.
Biol Cybern
65:
147‐159,
1991.
|
171. |
Takakusaki K,
Oohinata‐Sugimoto J,
Saitoh K,
Habaguchi T.
Role of basal ganglia‐brainstem systems in the control of postural muscle tone and locomotion.
Prog Brain Res
143:
231‐237,
2004.
|
172. |
Taylor A,
Cody FW.
Jaw muscle spindle activity in the cat during normal movements of eating and drinking.
Brain Res
71:
523‐530,
1974.
|
173. |
Taylor A,
Durbaba R,
Ellaway PH,
Rawlinson S.
Patterns of fusimotor activity during locomotion in the decerebrate cat deduced from recordings from hindlimb muscle spindles.
J Physiol
522:
515‐532,
2000.
|
174. |
Taylor A,
Durbaba R,
Ellaway PH,
Rawlinson S.
Static and dynamic gamma‐motor output to ankle flexor muscles during locomotion in the decerebrate cat.
J Physiol
571:
711‐723,
2006.
|
175. |
Tomovic R,
Anastasijevic R,
Vuco J,
Tepavac D.
The study of locomotion by finite state models.
Biol Cybern
63:
271‐276,
1990.
|
176. |
Tomovic R,
McGhee R.
A finite state approach to the synthesis of control systems.
IEEE Trans Hum Fac Electron
7:
122‐128,
1966.
|
177. |
Tracey DJ.
Characteristics of wrist joint receptors in the cat.
Brain Res
34:
165‐176,
1979.
|
178. |
van Beers RJ,
Wolpert DM,
Haggard P.
When feeling is more important than seeing in sensorimotor adaptation.
Curr Biol
12:
834‐837,
2002.
|
179. |
Vaziri S,
Diedrichsen J,
Shadmehr R.
Why does the brain predict sensory consequences of oculomotor commands? Optimal integration of the predicted and the actual sensory feedback.
J Neurosci
26:
4188‐4197,
2006.
|
180. |
von Holst E.
Relations between the central nervous system and the peripheral organs.
Br J Anim Behav
2:
89‐94,
1954.
|
181. |
von Holst E,
Mittelstaedt H.
Das Reafferenzprincip.
Naturwissenschaften
37:
464‐476,
1950.
|
182. |
Voss H.
Tabelle der absoluten und relativen Muskelspindelzahlen der menschlichen Skelettmuskulatur.
Anatomische Anzeiger
129:
5562‐5572,
1971.
|
183. |
Watt HJ.
Experimentelle Beiträge zu einer Theorie des Denkens.
Archiv gesamter Psychologie
4:
289‐436,
1905.
|
184. |
Weber DJ,
Stein RB,
Everaert DG,
Prochazka A.
Decoding sensory feedback from firing rates of afferent ensembles recorded in cat dorsal root ganglia in normal locomotion.
IEEE Trans Neural Syst Rehabil Eng
14:
240‐243,
2006.
|
185. |
Weber DJ,
Stein RB,
Everaert DG,
Prochazka A.
Limb‐state feedback from ensembles of simultaneously recorded dorsal root ganglion neurons.
J Neural Eng
4:
S168‐S180,
2007.
|
186. |
Widajewicz W,
Kably B,
Drew T.
Motor cortical activity during voluntary gait modifications in the cat. II. Cells related to the hindlimbs.
J Neurophysiol
72:
2070‐2089,
1994.
|
187. |
Willis WD,
Coggeshalll RE.
Sensory Mechanisms of the Spinal Cord.
N.Y.:
Plenum,
1991.
|
188. |
Wilson LR,
Gandevia SC,
Burke D.
Discharge of human muscle spindle afferents innervating ankle dorsiflexors during target isometric contractions.
J Physiol
504:
221‐232,
1997.
|
189. |
Witney AG,
Goodbody SJ,
Wolpert DM.
Predictive motor learning of temporal delays.
J Neurophysiol
82:
2039‐2048,
1999.
|
190. |
Wolpert DM,
Ghahramani Z.
Computational principles of movement neuroscience.
Nat Neurosci
3:
1212‐1217,
2000.
|
191. |
Wolpert DM,
Miall RC.
Forward Models for Physiological Motor Control.
Neural Netw
9:
1265‐1279,
1996.
|
192. |
Yakovenko S,
Drew T.
A motor cortical contribution to the anticipatory postural adjustments that precede reaching in the cat.
J Neurophysiol
102:
853‐874,
2009.
|
193. |
Yakovenko S,
Gritsenko V,
Prochazka A.
Contribution of stretch reflexes to locomotor control: A modeling study.
Biol Cybern
90:
146‐155,
2004.
|
194. |
Yakovenko S,
McCrea DA,
Stecina K,
Prochazka A.
Control of locomotor cycle durations.
J Neurophysiol
94:
1057‐1065,
2005.
|
195. |
Zalkind VI.
Method for an adequate stimulation of receptors of the cat carpo‐radialis joint.
Sechenov Physiol J USSR
57:
1123‐1127,
1971.
|
196. |
Zehr EP,
Stein RB.
What functions do reflexes serve during human locomotion?
Progress in Neurobiology
58:
185‐205,
1999.
|
197. |
Zelenin PV,
Deliagina TG,
Grillner S,
Orlovsky GN.
Postural control in the lamprey: A study with a neuro‐mechanical model.
J Neurophysiol
84:
2880‐2887,
2000.
|