Comprehensive Physiology Wiley Online Library

Regulation of Ion Channels by Membrane Lipids

Full Article on Wiley Online Library



Abstract

The major membrane lipid regulators of ion channel function include cholesterol, one of the main lipid components of the plasma membranes, phosphoinositides, a group of regulatory phospholipids that constitute a minor component of the membrane lipids but are known to play key roles in regulation of multiple proteins and sphingolipids, particularly sphingosine‐1‐phosphate, a signaling biolipid that is generated from ceramide and is known to regulate multiple cellular functions. Furthermore, specific effects of all the lipid modulators are highly heterogeneous varying significantly between different types of ion channels, as well as between different cell types. In terms of the mechanisms, three general mechanisms have been shown to underlie lipid regulation of ion channels: specific lipid‐protein interactions, changes in the physical properties of the membrane, and facilitating the association of the channel proteins with other regulatory proteins within multiproteins signaling complexes termed membrane rafts. In this article, we present comprehensive analysis of the roles of several lipid modulators, including cholesterol, bile acids, phosphoinositides, and sphingolipids on ion channel function. © 2012 American Physiological Society. Compr Physiol 2:31‐68, 2012.

Comprehensive Physiology offers downloadable PowerPoint presentations of figures for non-profit, educational use, provided the content is not modified and full credit is given to the author and publication.

Download a PowerPoint presentation of all images


Figure 1. Figure 1.

Structure of cholesterol molecule.

Figure 2. Figure 2.

Cholesterol sensitivity belt of Kir2.1 channels. Side view of a model of Kir2.1 that includes all four subunits. (A) Shown in the model are the residues whose mutation affects cholesterol sensitivity: D51 and H53 (cyan), E191 and V194 (blue), N216 and K219 (pink), L222 (red), and C311 (green). (B) Top view of the model of Kir2.1 from the membrane showing the cholesterol sensitivity belt formed by the residues whose mutation affects the cholesterol sensitivity of the channel. Adapted, with permission, from 298.

Figure 3. Figure 3.

Hydrophobic coupling between a bilayer‐embedded protein and its host lipid bilayer. (A) A protein conformational change causes a local bilayer deformation. (B) Formation of a gA channel involves local bilayer thinning. Adapted, with permission, from 202.

Figure 4. Figure 4.

Schematic diagram depicting the interaction of TRPC1 with caveolin‐1 (Cav‐1) in the lipid raft. TRPC1 interacts with the caveolin‐1 scaffolding domain within lipid rafts through its C‐terminus. This interaction is required for TRPC1‐mediated Ca2+ entry. Various lipids shown in the raft represent cholesterol, sphingolipids, and the side chains of the phospholipids highly enriched in saturated fatty acids.

Figure 5. Figure 5.

Structure of primary bile acids.

Figure 6. Figure 6.

Structure of PIP2.

Figure 7. Figure 7.

Types of residues involved in phosphoinositide‐binding sites. A histogram based on 25 complexed structures of phospoinositides bound to different proteins, as listed in Rosenhouse‐Dantsker and Logothetis 297. While the majority of the residues involved in interactions with phosphoinositides are positively charged, almost 40% of the residues that form the phosphoinositide binding site are not.

Figure 8. Figure 8.

Binding site of I(1,4,5)P3 to inositol trisphoshate (IP3) receptor. (A) Electrostatic potential of the binding site of I(1,4,5)P3 in IP3 receptor (PDB accession no. 1n4k), mapped on its molecular surface with a scale from red (negatively charged residues) to blue (positively charged residues). The core domain of the IP3 receptor is shown in ribbon presentation. (B) Detailed presentation of the binding site of I(1,4,5)P3 showing its extensive interactions with residues in the core domain of the IP3 receptor and water molecules. (C) Interactions between the core domain of IP3 receptor and I(1,4,5)P3 shown in a presentation that includes the core domain of the receptor. (D) Enlargement of the binding site of I(1,4,5)P3 depicted in C, showing the specific IP3 receptor residues that interact with the phosphoinositide.

Figure 9. Figure 9.

Structure of ceramide.

Figure 10. Figure 10.

Structure of sphingosine‐1‐phosphate (S1P).

Figure 11. Figure 11.

Model showing sphingosine‐1‐phosphate (S1P)‐induced activation of ion channels. Sphingosine kinase phosphorylates sphingosine (SPH) to generate S1P. S1P ligates with its receptor S1P1R which induces Gi activity leading to formation of inositol trisphoshate (IP3). IP3 induces Ca2+ release from endoplasmic reticulum (ER) followed by activation of Ca2+ entry through store‐operated calcium channel (SOC) (TRPC1/4). Sphingosine leads to activation of TRPM channel perhaps by inducing reactive oxidant species (ROS) generation. S1P also leads to activation of voltage‐gated Ca2+ channels as well as inward rectifying K+ channels (Kir) and large‐conductance potassium channels (BK) either directly or through S1P1 receptor pathway.

Figure 12. Figure 12.

Summary of the mechanisms for cholesterol regulation of ion channels and receptors.



Figure 1.

Structure of cholesterol molecule.



Figure 2.

Cholesterol sensitivity belt of Kir2.1 channels. Side view of a model of Kir2.1 that includes all four subunits. (A) Shown in the model are the residues whose mutation affects cholesterol sensitivity: D51 and H53 (cyan), E191 and V194 (blue), N216 and K219 (pink), L222 (red), and C311 (green). (B) Top view of the model of Kir2.1 from the membrane showing the cholesterol sensitivity belt formed by the residues whose mutation affects the cholesterol sensitivity of the channel. Adapted, with permission, from 298.



Figure 3.

Hydrophobic coupling between a bilayer‐embedded protein and its host lipid bilayer. (A) A protein conformational change causes a local bilayer deformation. (B) Formation of a gA channel involves local bilayer thinning. Adapted, with permission, from 202.



Figure 4.

Schematic diagram depicting the interaction of TRPC1 with caveolin‐1 (Cav‐1) in the lipid raft. TRPC1 interacts with the caveolin‐1 scaffolding domain within lipid rafts through its C‐terminus. This interaction is required for TRPC1‐mediated Ca2+ entry. Various lipids shown in the raft represent cholesterol, sphingolipids, and the side chains of the phospholipids highly enriched in saturated fatty acids.



Figure 5.

Structure of primary bile acids.



Figure 6.

Structure of PIP2.



Figure 7.

Types of residues involved in phosphoinositide‐binding sites. A histogram based on 25 complexed structures of phospoinositides bound to different proteins, as listed in Rosenhouse‐Dantsker and Logothetis 297. While the majority of the residues involved in interactions with phosphoinositides are positively charged, almost 40% of the residues that form the phosphoinositide binding site are not.



Figure 8.

Binding site of I(1,4,5)P3 to inositol trisphoshate (IP3) receptor. (A) Electrostatic potential of the binding site of I(1,4,5)P3 in IP3 receptor (PDB accession no. 1n4k), mapped on its molecular surface with a scale from red (negatively charged residues) to blue (positively charged residues). The core domain of the IP3 receptor is shown in ribbon presentation. (B) Detailed presentation of the binding site of I(1,4,5)P3 showing its extensive interactions with residues in the core domain of the IP3 receptor and water molecules. (C) Interactions between the core domain of IP3 receptor and I(1,4,5)P3 shown in a presentation that includes the core domain of the receptor. (D) Enlargement of the binding site of I(1,4,5)P3 depicted in C, showing the specific IP3 receptor residues that interact with the phosphoinositide.



Figure 9.

Structure of ceramide.



Figure 10.

Structure of sphingosine‐1‐phosphate (S1P).



Figure 11.

Model showing sphingosine‐1‐phosphate (S1P)‐induced activation of ion channels. Sphingosine kinase phosphorylates sphingosine (SPH) to generate S1P. S1P ligates with its receptor S1P1R which induces Gi activity leading to formation of inositol trisphoshate (IP3). IP3 induces Ca2+ release from endoplasmic reticulum (ER) followed by activation of Ca2+ entry through store‐operated calcium channel (SOC) (TRPC1/4). Sphingosine leads to activation of TRPM channel perhaps by inducing reactive oxidant species (ROS) generation. S1P also leads to activation of voltage‐gated Ca2+ channels as well as inward rectifying K+ channels (Kir) and large‐conductance potassium channels (BK) either directly or through S1P1 receptor pathway.



Figure 12.

Summary of the mechanisms for cholesterol regulation of ion channels and receptors.

References
 1. Abi‐Char Jl, Maguy A, Coulombe A, Balse E, Ratajczak P, Samuel J‐L, Nattel S, Hatem SpN. Membrane cholesterol modulates Kv1.5 potassium channel distribution and function in rat cardiomyocytes. J Physiol 582: 1205, 2007.
 2. Absi M, Burnham MP, Weston AH, Harno E, Rogers M, Edwards G. Effects of methyl beta‐cyclodextrin on EDHF responses in pig and rat arteries; association between SK(Ca) channels and caveolin‐rich domains. Br J Pharmacol, 151: 332‐340, 2007.
 3. Arendt KL, Royo M, Fernandez‐Monreal M, Knafo S, Petrok CN, Martens JR, Esteban JA. PIP3 controls synaptic function by maintaining AMPA receptor clustering at the postsynaptic membrane. Nat Neurosci 13: 36‐44, 2010.
 4. Aromataris EC, Castro J, Rychkov GY, Barritt GJ. Store‐operated Ca2+ channels and stromal interaction molecule 1 (STIM1) are targets for the actions of bile acids on liver cells. Biochim Biophys Acta 1783: 874‐885, 2008.
 5. Ase AR, Bernier LP, Blais D, Pankratov Y, Séguéla P. Modulation of heteromeric P2X1/5 receptors by phosphoinositides in astrocytes depends on the P2X1 subunit. J Neurochem 113: 1676‐1684, 2010.
 6. Babiychuk EB, Smith RD, Burdyga T, Babiychuk VS, Wray S, Draeger A. Membrane cholesterol regulates smooth muscle phasic contraction. J Membr Biol 198: 95‐101, 2004.
 7. Balijepalli RC, Foell JD, Hall DD, Hell JW, Kamp TJ. Localization of cardiac L‐type Ca2+ channels to a caveolar macromolecular signaling complex is required for beta2‐adrenergic regulation. Proc Natl Acad Sci U S A 103: 7500‐7505, 2006.
 8. Balijepalli RC, Kamp TJ. Caveolae, ion channels and cardiac arrhythmias. Prog Biophys Mol Biol 98: 149, 2008.
 9. Balut C, Steels P, Radu M, Ameloot M, Driessche WV, Jans D. Membrane cholesterol extraction decreases Na+ transport in A6 renal epithelia. Am J Physiol Cell Physiol 290: C87‐C94, 2006.
 10. Barady JD, Rich ED, Martens JR, Karpen JW, Varnum MD, Brown RL. Interplay between PIP3 and calmodulin regulation of olfactory cyclic nucleotide‐gated channels. Proc Natl Acad Sci U S A 103: 15635‐15640, 2006.
 11. Barrantes FJ. Structural‐functional correlates of the nicotinic acetylcholine receptor and its lipid microenvironment. FASEB J 7: 1460‐1467, 1993.
 12. Barrantes FJ. Lipid matters: Nicotinic acetylcholine receptor‐lipid interactions (Review). Mol Membr Biol 19: 277‐284, 2002.
 13. Barrantes FJ. Structural basis for lipid modulatioon of nicotinic acetylcholine receptor function. Brain Res Rev 47: 71‐95, 2004.
 14. Bartke N, Hannun YA. Bioactive sphingolipids: Metabolism and function. J Lipid Res 50: S91‐S96, 2009.
 15. Bats C, Groc L, Choquet D. The interaction between Stargazin and PSD‐95 regulates AMPA receptor surface trafficking. Neuron 53: 719‐734, 2007.
 16. Beech DJ. Harmony and discord in endothelial calcium entry. Circ Res 104: e22‐e23, 2009.
 17. Beech DJ, Bahnasi YM, Dedman AM, Al‐Shawaf E. TRPC channel lipid specificity and mechanisms of lipid regulation. Cell Calcium 45: 583‐588, 2009.
 18. Begenisich T, Nakamoto T, Ovitt CE, Nehrke K, Brugnara C, Alper SL, Melvin JE. Physiological roles of the intermediate conductance, Ca2+‐activated potassium channel Kcnn4. J Biol Chem 279: 47681‐47687, 2004.
 19. Benamer N, Moha Ou Maati H, Demolombe S, Cantereau A, Delwail A, Bois P, Bescond J, Faivre JF. Molecular and functional characterization of a new potassium conductance in mouse ventricular fibroblasts. J Mol Cell Cardiol 46: 508‐517, 2009.
 20. Bergdahl A, Gomez MF, Dreja K, Xu SZ, Adner M, Beech DJ, Broman J, Hellstrand P, Sward K. Cholesterol depletion impairs vascular reactivity to endothelin‐1 by reducing store‐operated Ca2+ entry dependent on TRPC1. Circ Res 93: 839‐847, 2003.
 21. Berman DE, Dall'Armi C, Voronov SV, McIntire LB, Zhang H, Moore AZ, Staniszewski A, Arancio O, Kim TW, Di Paolo G. Oligomeric amyloid‐beta peptide disrupts phosphatidylinositol‐4,5‐bisphosphate metabolism. Nat Neurosci 11: 547‐554, 2008.
 22..
 23. Bernier LP, Ase AR, Chevallier S, Blais D, Zhao Q, Boué‐Grabot E, Logothetis D, Séguéla P. Phosphoinositides regulate P2X4 ATP‐gated channels through direct interactions. J Neurosci 28: 12938‐12945 2008.
 24. Bernier LP, Ase AR, Tong X, Hamel E, Blais D, Zhao Q, Logothetis DE, Séguéla P. Direct modulation of P2X1 receptor‐channels by the lipid phosphatidylinositol 4,5‐bisphosphate. Mol Pharmacol 74: 785‐792, 2008.
 25. Bian J, Cui J, McDonald TV. HERG K(+) channel activity is regulated by changes in phosphatidyl inositol 4,5‐bisphosphate. Circ Res 89: 1168‐1176, 2001.
 26. Bian JS, Kagan A, McDonald TV. Molecular analysis of PIP2 regulation of HERG and IKr. Am J Physiol Heart Circ Physiol 287: H2154‐H2163, 2004.
 27. Bichet D, Haass FA, Jan LY. Merging functional studies with structures of inward‐rectifier K(+) channels. Nat Rev Neurosci 4: 957‐967, 2003.
 28. Bock J, Szabo I, Gamper N, Adams C, Gulbins E. Ceramide inhibits the potassium channel Kv1.3 by the formation of membrane platforms. Biochem Biophys Res Commun 305: 890, 2003.
 29. Bolotina V, Omelyanenko V, Heyes B, Ryan U, Bregestovski P. Variations of membrane cholesterol alter the kinetics of Ca2+‐dependent K+ channels and membrane fluidity in vascular smooth muscle cells. Pflugers Arch 415: 262‐268, 1989.
 30. Bond CT, Maylie J, Adelman JP. SK channels in excitability, pacemaking and synaptic integration. Curr Opin Neurobiol 15: 305‐311, 2005.
 31. Borbouse L, Dick GM, Payne GA, Berwick ZC, Neeb ZP, Alloosh M, Bratz IN, Sturek M, Tune JD. Metabolic syndrome reduces the contribution of K+ channels to ischemic coronary vasodilation. Am J Physiol Heart Circ Physiol 298: H1182‐H1189, 2010.
 32. Bosanac I, Alattia JR, Mal TK, Chan J, Talarico S, Tong FK, Tong KI, Yoshikawa F, Furuichi T, Iwai M, Michikawa T, Mikoshiba K, Ikura M. Structure of the inositol 1,4,5‐trisphosphate receptor binding core in complex with its ligand. Nature 420: 696‐700, 2002.
 33. Bowles DK, Heaps CL, Turk JR, Maddali KK, Price EM. Hypercholesterolemia inhibits L‐type calcium current in coronary macro‐, not microcirculation. J Appl Physiol 96: 2240‐2248, 2004.
 34. Bradley J, Bonigk W, Yau KW, Frings S. Calmodulin permanently associates with rat olfactory CNG channels under native conditions. Nat Neurosci 7: 705‐710, 2004.
 35. Brainard AM, Miller AJ, Martens JR, England SK. Maxi‐K channels localize to caveolae in human myometrium: A role for an actin‐channel‐caveolin complex in the regulation of myometrial smooth muscle K+ current. Am J Physiol Cell Physiol 289: C49‐C57, 2005.
 36. Bravo‐Zehnder M, Orio P, Norambuena A, Wallner M, Meera P, Toro L, Latorre R, Gonzalez A. Apical sorting of a voltage‐ and Ca2+‐activated K+ channel alpha‐subunit in Madin‐Darby canine kidney cells is independent of N‐glycosylation. Proc Natl Acad Sci U S A 97: 13114‐13119, 2000.
 37. Brazer SC, Singh BB, Liu X, Swaim W, Ambudkar IS. Caveolin‐1 contributes to assembly of store‐operated Ca2+ influx channels by regulating plasma membrane localization of TRPC1. J Biol Chem 278: 27208‐27215, 2003.
 38. Bright SR, Rich ED, Varnum MD. Regulation of human cone cyclic nucleotide‐gated channels by endogenous phospholipids and exogenously applied phosphatidylinositol 3, 4, 5‐trisphosphate. Mol Pharmacol 71: 176‐183, 2007.
 39. Browe DM, Baumgarten CM. EGFR kinase regulates volume‐sensitive chloride current elicited by integrin stretch via PI‐3K and NADPH oxidase in ventricular myocytes. J Gen Physiol 127: 237‐251, 2006.
 40. Brownlow SL, Sage SO. Transient receptor potential protein subunit assembly and membrane distribution in human platelets. Thromb Haemost 94: 839‐845, 2005.
 41. Bukiya AN, Belani JD, Rychnovsky S, Dopico AM. Specificity of cholesterol and analogs to modulate BK channels points to direct sterol‐channel protein interactions. J Gen Physiol 137: 93‐110, 2011.
 42. Bukiya AN, McMillan J, Parrill AL, Dopico AM. Structural determinants of monohydroxylated bile acids to activate beta1 subunit‐containing BK channels. J Lipid Res 49: 2441‐2451, 2008.
 43. Bukiya AN, Vaithianathan T, Toro L, Dopico AM. The second transmembrane domain of the large conductance, voltage‐ and calcium‐gated potassium channel [beta]1 subunit is a lithocholate sensor. FEBS Lett 582: 673‐678, 2008.
 44. Byfield FJ, Hoffman BD, Romanenko VG, Fang Y, Crocker JC, Levitan I. Evidence for the role of cell stiffness in modulation of volume‐regulated anion channels. Acta Physiol 187: 285‐294, 2006.
 45. Catterall WA, Goldin AL, Waxman SG. International Union of Pharmacology. XLVII. Nomenclature and structure‐function relationships of voltage‐gated sodium channels. Pharmacol Rev 57: 397‐409, 2005.
 46. Catterall WA, Perez‐Reyes E, Snutch TP, Striessnig J. International Union of Pharmacology. XLVIII. Nomenclature and structure‐function relationships of voltage‐gated calcium channels. Pharmacol Rev 57: 411‐425, 2005.
 47. Chang HM, Reitstetter R, Mason RP, Gruener R. Attenuation of channel kinetics and conductance by cholesterol: an interpretation using structural stress as a unifying concept. J Membr Biol 143: 51‐63, 1995.
 48. Chapman H, Ramstrom C, Korhonen L, Laine M, Wann KT, Lindholm D, Pasternack M, Tornquist K. Downregulation of the HERG (KCNH2) K+ channel by ceramide: Evidence for ubiquitin‐mediated lysosomal degradation. J Cell Sci 118: 5325‐5334, 2005.
 49. Cheema TA, Fisher SK. Cholesterol regulates volume‐sensitive osmolyte efflux from human SH‐SY5Y neuroblastoma cells following receptor activation. J Pharmacol Exp Ther 324: 648‐657, 2008.
 50. Chemin J, Girard C, Duprat F, Lesage F, Romey G, Lazdunski M. Mechanisms underlying excitatory effects of group I metabotropic glutamate receptors via inhibition of 2P domain K+ channels. EMBO J 22: 5403‐5411, 2003.
 51. Chemin J, Patel AJ, Duprat F, Lauritzen I, Lazdunski M, Honore E. A phospholipid sensor controls mechanogating of the K+channel TREK‐1. EMBO J 24: 44‐53, 2005.
 52. Chen S, Bhargava S, Mastroberardino L, Meijer OC, Wang J, Buse P, Firestone GL, Verrey F, Pearce D. Epithelial sodium channel regulated by aldosterone‐induced protein sgk. Proc Natl Acad Sci U S A 96: 2514‐2519, 1999.
 53. Choquette D, Hakim G, Filoteo AG, Plishker GA, Bostwick JR, Penniston JT. Regulation of plasma membrane Ca2+ ATPases by lipids of the phosphatidylinositol cycle. Biochem Biophys Res Commun 125: 908‐915 1984.
 54. Chu A, Stefani E. Phosphatidylinositol 4,5‐bisphosphate‐induced Ca2+ release from skeletal muscle sarcoplasmic reticulum terminal cisternal membranes. Ca2+ flux and single channel studies. J Biol Chem 266: 7699‐7705, 1991.
 55. Chun YS, Shin S, Kim Y, Cho H, Park MK, Kim TW, Voronov SV, Di Paolo G, Suh BC, Chung S. Cholesterol modulates ion channels via down‐regulation of phosphatidylinositol 4,5‐bisphosphate. J Neurochem 112: 1286‐1294, 2010.
 56. Coussin F, Scott RH, Nixon GF. Sphingosine 1‐phosphate induces CREB activation in rat cerebral artery via a protein kinase C‐mediated inhibition of voltage‐gated K+ channels. Biochem Pharmacol 66: 1861‐1870, 2003.
 57. Cox RH, Tulenko TN. Altered contractile and ion channel function in rabbit portal vein with dietary atherosclerosis. Am J Physiol 268: H2522‐H2530, 1995.
 58. Crousillac S, Colonna J, McMains E, Dewey JS, Gleason E. Sphingosine‐1‐phosphate elicits receptor‐dependent calcium signaling in retinal amacrine cells. J Neurophysiol 102: 3295‐3309, 2009.
 59. Crowley JJ, Treistman SN, Dopico AM. Cholesterol antagonizes ethanol potentiation of human brain BKCa channels reconstituted into phospholipid bilayers. Mol Pharmacol 64: 365‐372, 2003.
 60. D'Avanzo N, Cheng WW, Doyle DA, Nichols CG. Direct and specific activation of human inward rectifier K+ channels by membrane phosphatidylinositol 4,5‐bisphosphate. J Biol Chem 285: 37129‐37132, 2010.
 61. Dainese E, Oddi S, Maccarrone M. Interaction of endocannabinoid receptors with biological membranes. Curr Med Chem 17: 1487‐1499, 2010.
 62. Dart C. Lipid microdomains and the regulation of ion channel function. J Physiol 588: 3169‐3178, 2010.
 63. Davies PF. Flow‐mediated endothelial mechanotransduction. Physiol Rev 75: 519‐560, 1995.
 64. Davis PJ, Poznansky MJ. Modulation of 3‐hydroxy‐3‐methylglutaryl‐CoA reductase by changes in microsomal cholesterol content or phospholipid composition. Proc Natl Acad Sci U S A 84: 118‐121, 1987.
 65. de Buy Wenniger LM, Beuers U. Bile salts and cholestasis. Dig Liver Dis 42: 409‐418, 2010.
 66. de la Rosa DA, Canessa CM, Fyfe GK, Zhang P. Structure and regulation of amiloride‐sensitive sodium channels. Annu Rev Physiol 62: 573, 2000.
 67. Decher N, Gonzalez T, Streit AK, Sachse FB, Renigunta V, Soom M, Heinemann SH, Daut J, Sanguinetti MC. Structural determinants of Kvbeta1.3‐induced channel inactivation: A hairpin modulated by PIP2. EMBO J 27: 3164‐3174, 2008.
 68. Delling M, Wischmeyer E, Dityatev A, Sytnyk V, Veh RW, Karschin A, Schachner M. The neural cell adhesion molecule regulates cell‐surface delivery of G‐protein‐activated inwardly rectifying potassium channels via lipid rafts. J Neurosci 22: 7154‐7164, 2002.
 69. Delmas P, Brown DA. Pathways modulating neural KCNQ/M (Kv7) potassium channels. Nat Rev Neurosci 6: 850‐862, 2005.
 70. Demel RA, Bruckdorfer KR, van Deenen LLM. The effect of sterol structure on the permeability of liposomes to glucose, glycerol and Rb+. Biochem Biophys Acta 255: 321‐330, 1972.
 71. Dietrich A, Kalwa H, Gudermann T. TRPC channels in vascular cell function. Thromb Haemost 103: 262‐270.
 72. Dopico AM, Walsh JV, Singer JJ. Natural bile acids and synthetic analogues modulate large conductance Ca2+‐activated K+ (BKCa) channel activity in smooth muscle cells. J Gen Physiol 119: 251, 2002.
 73. Doyle DA, Cabral JM, Pfuetzner RA, Kuo A, Gulbis JM, Cohen SL, Chait BT, MacKinnon R. The structure of the potassium channel: Molecular basis of K+ conduction and selectivity. Science 280: 69‐77, 1998.
 74. Du P, Cui GB, Wang YR, Zhang XY, Ma KJ, Wei JG. Down regulated expression of the beta1 subunit of the big‐conductance Ca2+ sensitive K+ channel in sphincter of Oddi cells from rabbits fed with a high cholesterol diet. Acta Biochim Biophys Sin (Shanghai) 38: 893‐899, 2006.
 75. Du X, Zhang H, Lopes C, Mirshahi T, Rohacs T, Logothetis DE. Characteristic interactions with phosphatidylinositol 4,5‐bisphosphate determine regulation of kir channels by diverse modulators. J Biol Chem 279: 37271‐37281, 2004.
 76. Dudek SM, Jacobson JR, Chiang ET, Birukov KG, Wang P, Zhan X, Garcia JG. Pulmonary endothelial cell barrier enhancement by sphingosine 1‐phosphate: Roles for cortactin and myosin light chain kinase. J Biol Chem 279: 24692‐24700, 2004.
 77. Edidin M. Membrane cholesterol, protein phosphorylation and lipid rafts. Science's STKE 67: pe1, 2001.
 78. Edidin M. The state of lipid rafts: From model membranes to cells. Annu Rev Biophys Biomol Struct 32: 257083, 2003.
 79. Eldstrom J, Van Wagoner DR, Moore ED, Fedida D. Localization of Kv1.5 channels in rat and canine myocyte sarcolemma. FEBS Lett 580: 6039, 2006.
 80. Elias GM, Funke L, Stein V, Grant SG, Bredt DS, Nicoll RA. Synapse‐specific and developmentally regulated targeting of AMPA receptors by a family of MAGUK scaffolding proteins. Neuron 52: 307‐320, 2006.
 81. Enkvetchakul D, Jeliazkova I, Nichols CG. Direct modulation of Kir channel gating by membrane phosphatidylinositol 4,5‐bisphosphate. J Biol Chem 280: 35785‐35788, 2005.
 82. Epshtein Y, Chopra A, Rosenhouse‐Dantsker A, Kowalsky G, Logothetis DE, Levitan I. Identification of a C‐terminus domain critical for the sensitivity of Kir2.1 channels to cholesterol. Proc Natl Acad Sci U S A 106: 8055‐8060, 2009.
 83. Faletti CJ, Perrotti N, Taylor SI, Blazer‐Yost BL. Sgk: An essential convergence point for peptide and steroid hormone regulation of ENaC‐mediated Na+ transport. Am J Physiol 282: C494‐C500, 2002.
 84. Fan Z, Makielski JC. Anionic phospholipids activate ATP‐sensitive potassium channels. J Biol Chem 272: 5388‐5395, 1997.
 85. Fang Y, Mohler ER, III, Hsieh E, Osman H, Hashemi SM, Davies PF, Rothblat GH, Wilensky RL, Levitan I. Hypercholesterolemia suppresses inwardly rectifying K+ channels in aortic endothelium in vitro and in vivo. Circ Res 98: 1064‐1071, 2006.
 86. Fava C, von Wowern F, Berglund G, Carlson J, Hedblad B, Rosberg L, Burri P, Almgren P, Melander O. 24‐h ambulatory blood pressure is linked to chromosome 18q21‐22 and genetic variation of NEDD4L associates with cross‐sectional and longitudinal blood pressure in Swedes. Kidney Int 70: 562‐569, 2006.
 87. Feranchak AP, Roman RM, Doctor RB, Salter KD, Toker A, Fitz JG. The lipid products of phosphoinositide 3‐kinase contribute to regulation of cholangiocyte ATP and chloride transport. J Biol Chem 274: 30979‐30986, 1999.
 88. Feranchak AP, Roman RM, Schwiebert EM, Fitz JG. Phosphatidylinositol 3‐kinase contributes to cell volume regulation through effects on ATP release. J Biol Chem 273: 14906‐14911, 1998.
 89. Finol‐Urdaneta RK, McArthur JR, Juranka PF, French RJ, Morris CE. Modulation of KvAP unitary conductance and gating by 1‐alkanols and other surface active agents. Biophys J 98: 762, 2010.
 90. Formigli L, Sassoli C, Squecco R, Bini F, Martinesi M, Chellini F, Luciani G, Sbrana F, Zecchi‐Orlandini S, Francini F, Meacci E. Regulation of transient receptor potential canonical channel 1 (TRPC1) by sphingosine 1‐phosphate in C2C12 myoblasts and its relevance for a role of mechanotransduction in skeletal muscle differentiation. J Cell Sci 122: 1322‐1333, 2009.
 91. Foskett JK, White C, Cheung KH, Mak DO. Inositol trisphosphate receptor Ca2+ release channels. Physiol Rev 87: 593‐658, 2007.
 92. Fouladkou F, Alikhani‐Koopaei R, Vogt B, Flores SY, Malbert‐Colas L, Lecomte MC, Loffing J, Frey FJ, Frey BM, Staub O. A naturally occurring human Nedd4‐2 variant displays impaired ENaC regulation in Xenopus laevis oocytes. Am J Physiol 287: F550‐F561, 2004.
 93. Fujiwara Y, Kubo Y. Regulation of the desensitization and ion selectivity of ATP‐gated P2X2 channels by phosphoinositides. J Physiol 576: 135‐149, 2006.
 94. Furuichi T, Mikoshiba K. Inositol 1, 4, 5‐trisphosphate receptor‐mediated Ca2+ signaling in the brain. J Neurochem 64: 953‐960, 1995.
 95. Furuichi T, Yoshikawa S, Miyawaki A, Wada K, Maeda N, Mikoshiba K. Primary structure and functional expression of the inositol 1,4,5‐trisphosphate‐binding protein P400. Nature 342: 32‐38, 1989.
 96. Furukawa T, Yamane T, Terai T, Katayama Y, Hiraoka M. Functional linkage of the cardiac ATP‐sensitive K+ channel to the actin cytoskeleton. Pflügers Arch 431: 504‐512, 1996.
 97. Gambhir A, Hangyas‐Mihalyne G, Zaitseva I, Cafiso DS, Wang J, Murray D, Pentyala SN, Smith SO, McLaughlin S. Electrostatic sequestration of PIP2 on phospholipid membranes by basic/aromatic regions of proteins. Biophys J 86: 2188‐2207, 2004.
 98. Gamper N, Reznikov V, Yamada Y, Yang J, Shapiro MS. Phosphatidylinositol 4,5‐bisphosphate signals underlie receptor‐specific Gq/11‐mediated modulation of N‐type Ca2+ channels. J Neurosci 24: 10980‐10992, 2004.
 99. Ganapathi SB, Fox TE, Kester M, Elmslie KS. Ceramide modulates HERG potassium channel gating by translocation into lipid rafts. Am J Physiol Cell Physiol 299: C74‐C86, 2010.
 100. Gao L. Phosphatidylinositol‐4,5‐bisphosphate and alpha‐actinin: Two‐component hinge for the NMDA receptor. J Neurosci 27: 10321‐10322, 2007.
 101. Genda S, Miura T, Miki T, Ichikawa Y, Shimamoto K. KATP channel opening is an endogenous mechanism of protection against the no‐reflow phenomenon but its function is compromised by hypercholesterolemia. J Am Coll Cardiol 40: 1339, 2002.
 102. Ghanam K, Javellaud J, Ea‐Kim L, Oudart N. Effects of treatment with 17beta‐estradiol on the hypercholesterolemic rabbit middle cerebral artery. Maturitas 34: 249‐260, 2000.
 103. Ghanshani S, Wulff H, Miller MJ, Rohm H, Neben A, Gutman GA, Cahalan MD, Chandy KG. Up‐regulation of the IKCa1 potassium channel during T‐cell activation. Molecular mechanism and functional consequences. J Biol Chem 275: 37137‐37149, 2000.
 104. Gimpl G, Burger K, Fahrenholz F. Cholesterol as modulator of receptor function. Biochemistry 36: 10959‐10974, 1997.
 105. Glouchankova L, Krishna UM, Potter BV, Falck JR, Bezprozvanny I. Association of the inositol (1,4,5)‐trisphosphate receptor ligand binding site with phosphatidylinositol (4,5)‐bisphosphate and adenophostin. Mol Cell Biol Res Commun 3: 153‐158, 2000.
 106. Goñi FM, Alonso A. Biophysics of sphingolipids I. Membrane properties of sphingosine, ceramides and other simple sphingolipids. Biochim Biophys Acta 1758: 1902‐1921, 2006.
 107. Goñi FM, Alonso A. Effects of ceramide and other simple sphingolipids on membrane lateral structure. Biochim Biophys Acta 1788: 169‐177, 2009.
 108. Graziani A, Rosker C, Kohlwein SD, Zhu MX, Romanin C, Sattler W, Groschner K, Poteser M. Cellular cholesterol controls TRPC3 function: evidence from a novel dominant‐negative knockdown strategy. Biochem J 396: 147‐155, 2006.
 109. Grimm C, Kraft R, Schultz G, Harteneck C. Activation of the melastatin‐related cation channel TRPM3 by D‐erythro‐sphingosine [corrected]. Mol Pharmacol 67: 798‐805, 2005.
 110. Gutman GA, Chandy KG, Grissmer S, Lazdunski M, McKinnon D, Pardo LA, Robertson GA, Rudy B, Sanguinetti MC, Stuhmer W, Wang X. International Union of Pharmacology. LIII. Nomenclature and molecular relationships of voltage‐gated potassium channels. Pharmacol Rev 57: 473‐508, 2005.
 111. Haass FA, Jonikas M, Walter P, Weissman JS, Jan Y‐N, Jan LY, Schuldiner M. Identification of yeast proteins necessary for cell‐surface function of a potassium channel. Proc Natl Acad Sci U S A 104: 18079‐18084, 2007.
 112. Haider S, Tarasov A, Craig TJ, Sansom MSP, Ashcroft FM. Identification of the PIP2‐binding site on Kir6.2 by molecular modelling and functional analysis. EMBO J 26: 3749‐3759, 2007.
 113. Hajdú P, Varga Z, Pieri C, Panyi G, Gáspár RJ. Cholesterol modifies the gating of Kv1.3 in human T lymphocytes. Pflugers Arch 445: 674‐682, 2003.
 114. Halstead JR, Jalink K, Divecha N. An emerging role for PtdIns(4,5)P2‐mediated signalling in human disease. Trends Pharmacol Sci 26: 654‐660, 2005
 115. Hamill OP, Martinac B. Molecular basis of mechanotransduction in living cells. Physiol Rev 81: 685‐740, 2001.
 116. Hamill OP, McBride JDW. The pharmacology of mechanogated membrane ion channels. Pharmacol Rev 48: 231‐252, 1996.
 117. Hannun YA. Functions of ceramide in coordinating cellular responses to stress. Science 274: 1855‐1859, 1996.
 118. Hanwell D, Ishikawa T, Saleki R, Rotin D. Trafficking and cell surface stability of the epithelial Na+ channel expressed in epithelial Madin‐Darby canine kidney cells. J Biol Chem 277: 9772‐9779, 2002.
 119. Hardie RC. TRP channels and lipids: From Drosophila to mammalian physiology. J Physiol 578: 9‐24, 2007.
 120. Heaps CL, Tharp DL, Bowles DK. Hypercholesterolemia abolishes voltage‐dependent K+ channel contribution to adenosine‐mediated relaxation in porcine coronary arterioles. Am J Physiol Heart Circ Physiol 288: H568‐H576, 2005.
 121. Hernandez CC, Falkenburger B, Shapiro MS. Affinity for phosphatidylinositol 4, 5‐bisphosphate determines muscarinic agonist sensitivity of Kv7 K+ channels. J Gen Physiol 134: 437‐448, 2009.
 122. Hernandez CC, Zaika O, Shapiro MS. A carboxy‐terminal inter‐helix linker as the site of phosphatidylinositol 4,5‐bisphosphate action on Kv7 (M‐type) K+ channels. J Gen Physiol 132: 361‐381, 2008.
 123. Hesketh GG, Van Eyk JE, Tomaselli GF. Mechanisms of gap junction traffic in health and disease. J Cardiovasc Pharmacol 54: 263‐272, 2009.
 124. Hibino H, Inanobe A, Furutani K, Murakami S, Findlay I, Kurachi Y. Inwardly rectifying potassium channels: their structure, function, and physiological roles. Physiol Rev 90: 291‐366, 2010.
 125. Hibino H, Kurachi Y. Distinct detergent‐resistant membrane microdomains (lipid rafts) respectively harvest K+ and water transport systems in brain astroglia. Eur J Neurosci 26: 2539‐2555, 2007.
 126. Hilgemann DW, Ball R. Regulation of cardiac Na+,Ca2+ exchange and KATP potassium channels by PIP2. Science 273: 956‐959, 1996.
 127. Hilgemann DW, Feng S, Nasuhoglu C. The complex and intriguing lives of PIP2 with ion channels and transporters. Sci STKE 111: RE19, 2001.
 128. Hill WG, An B, Johnson JP. Endogenously expressed epithelial sodium channel is present in lipid rafts in A6 cells. J Biol Chem 277: 33541‐33544, 2002.
 129. Hill WG, Butterworth MB, Wang H, Edinger RS, Lebowitz J, Peters KW, Frizzell RA, Johnson JP. The epithelial sodium channel (ENaC) traffics to apical membrane in lipid rafts in mouse cortical collecting duct cells. J Biol Chem 282: 37402‐37411, 2007.
 130. Himmel B, Nagel G. Protein kinase‐independent activation of CFTR by phosphatidylinositol phosphates. EMBO Rep 5: 85‐90, 2004.
 131. Hla T. Signaling and biological actions of sphingosine 1‐phosphate. Pharmacol Res 47: 401‐407, 2003.
 132. Hla T. Physiological and pathological actions of sphingosine 1‐phosphate. Semin Cell Dev Biol 15: 513‐520, 2004.
 133. Hoffmann EK, Lambert IH, Pedersen SF. Physiology of cell volume regulation in vertebrates. Physiol Rev 89: 193‐277, 2009.
 134. Hoffmann EK, Simonsen LO. Membrane mechanisms in volume and pH regulation in vertebrate cells. Physiol Rev 69: 315‐382, 1989.
 135. Huang CL. Complex roles of PIP2 in the regulation of ion channels and transporters. Am J Physiol Renal Physiol 293: F1761‐F1765, 2007.
 136. Huang CL, Feng S, Hilgemann DW. Direct activation of inward rectifier potassium channels by PIP2 and its stabilization by Gbetagamma. Nature 391: 803‐806, 1998.
 137. Huber TB, Schermer B, Muller RU, Hohne M, Bartram M, Calixto A, Hagmann H, Reinhardt C, Koos F, Kunzelmann K, Shirokova E, Krautwurst D, Harteneck C, Simons M, Pavenstadt H, Kerjaschki D, Thiele C, Walz G, Chalfie M, Benzing T. Podocin and MEC‐2 bind cholesterol to regulate the activity of associated ion channels. Proc Natl Acad Sci U S A 103: 17079‐17086, 2006.
 138. Ingueneau C, Huynh UD, Marcheix B, Athias A, Gambert P, Negre‐Salvayre A, Salvayre R, Vindis C. TRPC1 is regulated by caveolin‐1 and is involved in oxidized LDL‐induced apoptosis of vascular smooth muscle cells. J Cell Mol Med 13: 1620‐1631, 2009.
 139. International‐Collaborative‐Study‐Group‐for‐Bartter‐like‐Syndromes. Mutations in the gene encoding the inwardlyrectifying renal potassium channel, ROMK, cause the antenatal variant of Bartter syndrome: Evidence for genetic heterogeneity. Hum Mol Genet 6: 17‐26, 1997.
 140. Isshiki M, Ying YS, Fujita T, Anderson RG. A molecular sensor detects signal transduction from caveolae in living cells. J Biol Chem 277: 43389‐43398, 2002.
 141. Jana A, Pahan K. Sphingolipids in multiple sclerosis. NeuroMolecular Med 12: 351‐361, 2010.
 142. Jennings LJ, Xu Q‐W, Firth TA, Nelson MT, Mawe GM. Cholesterol inhibits spontaneous action potentials and calcium currents in guinea pig gallbladder smooth muscle. Am J Physiol 277: G1017‐G1026, 1999.
 143. Jeremy RW, McCarron H. Effect of hypercholesterolemia on Ca2+‐dependent K+ channel‐mediated vasodilatation in vivo. Am J Physiol 279: H1600‐H1608, 2000.
 144. Jiang J, Thorén P, Caligiuri G, Hansson GK, Pernow J. Enhanced phenylephrine‐induced rhythmic activity in the atherosclerotic mouse aorta via an increase in opening of KCa channels: relation to Kv channels and nitric oxide. Br J Pharmacol 128: 637‐646, 1999.
 145. Jin T, Sui JL, Rosenhouse‐Dantsker A, Chan KW, Jan LY, Logothetis DE. Stoichiometry of Kir channels with phosphatidylinositol bisphosphate. Channels 2: 19‐33, 2008.
 146. Johnson CM, Rodgers W. Spatial segregation of phosphatidylinositol 4,5‐bisphosphate (PIP(2)) signaling in immune cell functions. Immunol Endocr Metab Agents Med Chem 8: 349‐357, 2008.
 147. Johnstone S, Isakson B, Locke D. Biological and biophysical properties of vascular connexin channels. Int Rev Cell Mol Biol 278: 69‐118, 2009.
 148. Kannan KB, Barlos D, Hauser CJ. Free cholesterol alters lipid raft structure and function regulating neutrophil Ca2+ entry and respiratory burst: correlations with calcium channel raft trafficking. J Immunol 178: 5253‐5261, 2007.
 149. Khan RN, Matharoo‐Ball B, Arulkumaran S, Ashford ML. Potassium channels in the human myometrium. Exp Physiol 86: 255‐264, 2001.
 150. Kim D, Cavanaugh EJ, Simkin D. Inhibition of transient receptor potential A1 channel by phosphatidylinositol‐4,5‐bisphosphate. Am J Physiol Cell Physiol 295: C92‐C99, 2008.
 151. Kim MY, Liang GH, Kim JA, Kim YJ, Oh S, Suh SH. Sphingosine‐1‐phosphate activates BKCa channels independently of G protein‐coupled receptor in human endothelial cells. Am J Physiol Cell Physiol 290: C1000‐C1008, 2006.
 152. Klausen TK, Hougaard C, Hoffmann EK, Pedersen SF. Cholesterol modulates the volume‐regulated anion current in Ehrlich‐Lettre ascites cells via effects on Rho and F‐actin. Am J Physiol Cell Physiol 291: C757‐C771, 2006.
 153. Klein RM, Ufret‐Vincenty CA, Hua L, Gordon SE. Determinants of molecular specificity in phosphoinositide regulation: PI(4,5)P2 is the endogenous lipid regulating TRPV1. J Biol Chem 283: 26208‐26216, 2008.
 154. Kobayashi M, Muroyama A, Ohizumi Y. Phosphatidylinositol 4,5‐bisphosphate enhances calcium release from sarcoplasmic reticulum of skeletal muscle. Biochem Biophys Res Commun 163: 1487‐1491, 1989.
 155. Koyrakh L, Roman MI, Brinkmann V, Wickman K. The heart rate decrease caused by acute FTY720 administration is mediated by the G protein‐gated potassium channel I. Am J Transplant 5: 529‐536, 2005.
 156. Krause M, Olsson T, Law AB, Parker RA, Lindstrom DP, Sundell HW, Cotton RB. Effect of volume recruitment on response to surfactant treatment in rabbits with lung injury. Am J Respir Crit Care Med 156: 862‐866, 1997.
 157. Kubo Y, Adelman JP, Clapham DE, Jan LY, Karschin A, Kurachi Y, Lazdunski M, Nichols CG, Seino S, Vandenberg CA. International Union of Pharmacology. LIV. Nomenclature and molecular relationships of inwardly rectifying potassium channels. Pharmacol Rev 57: 509‐526, 2005.
 158. Kunzelmann K, Bachhuber T, Regeer R, Markovich D, Sun J, Schreiber R. Purinergic inhibition of the epithelial Na+ transport via hydrolysis of PIP2. FASEB J 19: 142‐164, 2005.
 159. Kuo A, Domene C, Johnson LN, Doyle DA, Vénien‐Bryan C. Two different conformational states of the KirBac3.1 potassium channel revealed by electron crystallography. Structure 13: 1463‐1472, 2005.
 160. Kuo A, Gulbis JM, Antcliff JF, Rahman T, Lowe ED, Zimmer J, Cuthbertson J, Ashcroft FM, Ezaki T, Doyle DA. Crystal structure of the potassium channel KirBac1.1 in the closed state. Science 300: 1922‐1926, 2003.
 161. Kwiatek AM, Minshall RD, Cool DR, Skidgel RA, Malik AB, Tiruppathi C. Caveolin‐1 regulates store‐operated Ca2+ influx by binding of its scaffolding domain to transient receptor potential channel‐1 in endothelial cells. Mol Pharmacol 70: 1174‐1183, 2006.
 162. Lam RS, Shaw AR, Duszyk M. Membrane cholesterol content modulates activation of BK channels in colonic epithelia. Biochim Biophys Acta 1667: 241‐248, 2004.
 163. Lambert IH. Regulation of the cellular content of the organic osmolyte taurine in mammalian cells. Neurochem Res 29: 27‐63, 2004.
 164. Landeen LK, Dederko DA, Kondo CS, Hu BS, Aroonsakool N, Haga JH, Giles WR. Mechanisms of the negative inotropic effects of sphingosine‐1‐phosphate on adult mouse ventricular myocytes. Am J Physiol Heart Circ Physiol 294: H736‐H749, 2008.
 165. Lang F, Bohmer C, Palmada M, Seebohm G, Strutz‐Seebohm N, Vallon V. (Patho)physiological significance of the serum‐ and glucocorticoid‐inducible kinase isoforms. Physiol Rev 86: 1151‐1178, 2006.
 166. Lange Y. Disposition of intracellular cholesterol in human fibroblasts. J Lipid Res 32: 329‐339, 1991.
 167. Lange Y, Swaisgood MH, Ramos BV, Steck TL. Plasma membranes contain half the phospholipid and 90% of the cholesterol and sphingomyelin in cultured human fibroblasts. J Biol Chem 264: 3786‐3793, 1989.
 168. Large WA, Saleh SN, Albert AP. Role of phosphoinositol 4,5‐bisphosphate and diacylglycerol in regulating native TRPC channel proteins in vascular smooth muscle. Cell Calcium 45: 574‐582, 2009.
 169. Leal‐Pinto E, Gomez‐Llorente Y, Sundaram S, Tang QY, Ivanova‐Nikolova T, Mahajan R, Baki L, Zhang Z, Chavez J, Ubarretxena‐Belandia I, Logothetis DE. Gating of a G protein‐sensitive mammalian Kir3.1 ‐ prokaryotic Kir channel chimera in planar lipid bilayers. J Biol Chem 285:39790‐39800, 2010.
 170. Ledoux J, Werner ME, Brayden JE, Nelson MT. Calcium‐activated potassium channels and the regulation of vascular tone. Physiology (Bethesda) 21: 69‐78, 2006.
 171. Lee I‐H, Campbell CR, Song S‐H, Day ML, Kumar S, Cook DI, Dinudom A. The activity of the epithelial sodium channels is regulated by caveolin‐1 via a Nedd4‐2‐dependent mechanism. J Biol Chem 284: 12663‐12669, 2009.
 172. Lee J, Cha SK, Sun TJ, Huang C‐L. PIP2 activates TRPV5 and releases its inhibition by intracellular Mg2+. J Gen Physiol 126: 439‐451, 2005.
 173. Lee SY, Choi HK, Kim ST, Chung S, Park MK, Cho JH, Ho WK, Cho H. Cholesterol inhibits M‐type K+ channels via protein kinase C‐dependent phosphorylation in sympathetic neurons. J Biol Chem 285: 10939‐10950, 2010
 174. Lee S‐Y, Lee A, Chen J, MacKinnon R. Structure of the KvAP voltage‐dependent K+ channel and its dependence on the lipid membrane. Proc Natl Acad Sci U S A 102: 15441, 2005.
 175. Lee T‐M, Lin M‐S, Chou T‐F, Tsai C‐H, Chang N‐C. Effect of pravastatin on left ventricular mass by activation of myocardial KATP channels in hypercholesterolemic rabbits. Atherosclerosis 176: 273, 2004.
 176. Lemonnier L, Trebak M, Putney JWJ. Complex regulation of the TRPC3, 6 and 7 channel subfamily by diacylglycerol and phosphatidylinositol‐4,5‐bisphosphate. Cell Calcium 43: 506‐514, 2007.
 177. Levitan I. Cholesterol and Kir channels. IUBMB Life 61: 781‐790, 2009.
 178. Levitan I, Christian AE, Tulenko TN, Rothblat GH. Membrane cholesterol content modulates activation of volume‐regulated anion current (VRAC) in bovine endothelial cells. J Gen Physiol 115: 405‐416, 2000.
 179. Li Y, Gamper N, Hilgemann DW, Shapiro MS. Regulation of Kv7 (KCNQ) K+channel open probability by phosphatidylinositol 4, 5‐bisphosphate. J Neurosci 25: 9825‐9835, 2005.
 180. Lim CH, Schoonderwoerd K, Kleijer WJ, de Jonge HR, Tilly BC. Regulation of the cell swelling‐activated chloride conductance by cholesterol‐rich membrane domains. Acta Physiologica 187: 295‐303, 2006.
 181. Lin MW, Wu AZ, Ting WH, Li CL, Cheng KS, Wu SN. Changes in membrane cholesterol of pituitary tumor (GH3) cells regulate the activity of large‐conductance Ca2+‐activated K +channels. Chin J Physiol 49: 1‐13, 2006.
 182. Lin YW, MacMullen C, Ganguly A, Stanley CA, Shyng SL. A novel KCNJ11 mutation associated with congenital hyperinsulinism reduces the intrinsic open probability of beta‐cell ATPsensitive potassium channels. J Biol Chem 281: 3006‐3012, 2006.
 183. Liou HH, Zhou SS, Huang CL. Regulation of ROMK1 channel by protein kinase A via a phosphatidylinositol 4,5‐bisphosphate‐dependent mechanism. Proc Natl Acad Sci U S A 96: 5820‐5825, 1999.
 184. Liou J, Kim ML, Heo WD, Jones JT, Myers JW, Ferrell JE, Jr., Meyer T. STIM is a Ca2+ sensor essential for Ca2+‐store‐depletion‐triggered Ca2+ influx. Curr Biol 15: 1235‐1241, 2005.
 185. Liu B, Qin F. Functional control of cold‐ and menthol‐sensitive TRPM8 ion channels by phosphatidylinositol 4,5‐bisphosphate. J Neurosci 25: 1674‐1681, 2005.
 186. Liu B, Zhang C, Qin F. Functional recovery from desensitization of vanilloid receptor TRPV1 requires resynthesis of phosphatidylinositol 4,5‐bisphosphate,. J Neurosci 25: 4835‐4843, 2005.
 187. Liu D, Liman ER. Intracellular Ca2+ and the phospholipid PIP2 regulate the taste transduction ion channel TRPM5. Proc Natl Acad Sci U S A 100: 15160‐15165, 2003.
 188. Liu M, Huang W, Wu D, Priestley JV. TRPV1, but not P2X, requires cholesterol for its function and membrane expression in rat nociceptors. Eur J Neurosci 24: 1‐6, 2006.
 189. Lockwich TP, Liu X, Singh BB, Jadlowiec J, Weiland S, Ambudkar IS. Assembly of Trp1 in a signaling complex associated with caveolin‐scaffolding lipid raft domains. J Biol Chem 275: 11934‐11942, 2000.
 190. Logothetis DE, Jin T, Lupyan D, Rosenhouse‐Dantsker A. Phosphoinositide‐mediated gating of inwardly rectifying K(+) channels. Pflugers Arch 455: 83‐95, 2007.
 191. Logothetis DE, Lupyan D, Rosenhouse‐Dantsker A. Diverse Kir modulators act in close proximity to residues implicated in phosphoinositide binding. J Physiol 582: 953‐965, 2007.
 192. Logothetis DE, Petrou VI, Adney SK, Mahajan R. Channelopathies linked to plasma membrane phosphoinositides. Pflugers Arch 460: 321‐341, 2010.
 193. London E. How principles of domain formation in model membranes may explain ambiguities concerning lipid raft formation in cells. Biochim Biophys Acta 1746: 203, 2005.
 194. Lopes CM, Remon JI, Matavel A, Sui JL, Keselman I, Medei E, Shen Y, Rosenhouse‐Dantsker A, Rohacs T, Logothetis DE. Protein kinase A modulates PLC‐dependent regulation and PIP2‐sensitivity of K+ channels. Channels (Austin) 1: 124‐134, 2007.
 195. Lopes CM, Rohács T, Czirják G, Balla T, Enyedi P, Logothetis DE. PIP2 hydrolysis underlies agonist‐induced inhibition and regulates voltage gating of two‐pore domain K+ channels. J Physiol 564: 117‐129, 2005.
 196. Lopes CM, Zhang H, Rohacs T, Jin T, Yang J, Logothetis DE. Alterations in conserved Kir channel‐PIP2 interactions underlie channelopathies. Neuron 34: 933‐944, 2002.
 197. Loussouarn G, Park KH, Bellocq C, Baro I, Charpentier F, Escande D. Phosphatidylinositol‐4,5‐bisphosphate, PIP2, controls KCNQ1/KCNE1 voltage‐gated potassium channels: A functional homology between voltage‐gated and inward rectifier K+ channels. EMBO J 22: 5412‐5421, 2003.
 198. Lukacs V, Thyagarajan B, Balla A, Varnai P, Balla T, Rohacs T. Dual regulation of TRPV1 by phosphoinositides. J Neurosci 27: 7070‐7080, 2007.
 199. Lundbaek JA, Birn P, Hansen AJ, Andersen OS. Membrane stiffness and channel function. Biochemistry 35: 3825‐3830, 1996.
 200. Lundbaek JA, Birn P, Hansen AJ, Sogaard R, Nielsen C, Girshman J, Bruno MJ, Tape SE, Egebjerg J, Greathouse DV, Mattice GL, Koeppe RE, II, Andersen OS. Regulation of sodium channel function by bilayer elasticity: The importance of hydrophobic coupling. Effects of micelle‐forming amphiphiles and cholesterol. J Gen Physiol 123: 599‐621, 2004.
 201. Lundbaek JA, Birn P, Tape SE, Toombes GES, Søgaard R, Koeppe RE, Gruner SM, Hansen AJ, Andersen OS. Capsaicin regulates voltage‐dependent sodium channels by altering lipid bilayer elasticity. Mol Pharmacol 68: 680, 2005.
 202. Lundbaek JA, Collingwood SA, Ingólfsson HI, Kapoor R, Andersen OS. Lipid bilayer regulation of membrane protein function: Gramicidin channels as molecular force probes. J R Soc Interface 7: 373‐395, 2010.
 203. Lundbaek JA, Koeppe RE, Andersen OS. Amphiphile regulation of ion channel function by changes in the bilayer spring constant. Proc Natl Acad Sci U S A 107: 15427, 2010.
 204. Lupu VD, Kaznacheyeva E, Krishna UM, Falck JR, Bezprozvanny I. Functional coupling of phosphatidylinositol 4,5‐bisphosphate to inositol 1,4,5‐trisphosphate receptor. J Biol Chem 273: 14067‐14070, 1998.
 205. Ma HP, Saxena S, Warnock DG. Anionic phospholipids regulate native and expressed epithelial sodium channel (ENaC). J Biol Chem 277: 7641‐7644, 2002.
 206. Ma R, Li WP, Rundle D, Kong J, Akbarali HI, Tsiokas L. PKD2 functions as an epidermal growth factor‐activated plasma membrane channel. Mol Cell Biol 25: 8285‐8298, 2005.
 207. Mandal M, Yan Z. Phosphatidylinositol (4, 5)‐bisphosphate regulation of N‐methyl‐D‐aspartate receptor channels in cortical neurons. Mol Pharmacol 76: 1349‐1359, 2009.
 208. Marsh D, Barrantes FJ. Immobilized lipid in acetylcholine receptor‐rich membranes from Torpedo marmorata. Proc Natl Acad Sci U S A 75: 4329‐4333, 1978.
 209. Martens JR, Navarro‐Polanco R, Coppock EA, Nishiyama A, Parshley L, Grobaski TD, Tamkun MM. Differential targeting of Shaker‐like potassium channels to lipid rafts. J Biol Chem 275: 7443‐7446, 2000.
 210. Martens JR, Sakamoto N, Sullivan SA, Grobaski TD, Tamkun MM. Isoform‐specific localization of voltage‐gated K+ channels to distinct lipid raft populations. Targeting of Kv1.5 to caveolae. J Biol Chem 276: 8409‐8414, 2001.
 211. Martínez‐Mármol R, Villalonga N, Solé L, Vicente R, Tamkun MM, Soler C, Felipe A. Multiple Kv1.5 targeting to membrane surface microdomains. J Cell Physiol 217: 667‐673, 2008.
 212. Mathew V, Lerman A. Altered effects of potassium channel modulation in the coronary circulation in experimental hypercholesterolemia. Atherosclerosis 154: 329‐335, 2001.
 213. Matsushita Y, Ohya S, Suzuki Y, Itoda H, Kimura T, Yamamura H, Imaizumi Y. Inhibition of Kv1.3 potassium current by phosphoinositides and stromal‐derived factor‐1alfa in Jurkat T cells. Am J Physiol Cell Physiol 296: C1079‐C1085, 2009.
 214. McEwen DP, Li Q, Jackson S, Jenkins PM, Martens JR. Caveolin regulates Kv1.5 trafficking to cholesterol‐rich membrane microdomains. Mol Pharmacol 73: 678‐685, 2008.
 215. McKemy DD, Neuhausser WM, Julius D. Identification of a cold receptor reveals a general role for TRP channels in thermosensation. Nature 416: 52‐58, 2002.
 216. McLaughlin S, Murray, D. Plasma membrane phosphoinositide organization by protein electrostatics. Nature 438: 605‐611, 2005.
 217. McLaughlin S, Wang J, Gambhir A, Murray D. PIP(2) and proteins: Interactions, organization, and information flow. Annu Rev Biophys Biomol Struct 31: 151‐175, 2002.
 218. Mehta D, Konstantoulaki M, Ahmmed GU, Malik AB. Sphingosine‐1‐phosphate mobilizes intracellular Ca2+ to induce Rac activation and adherens junction assembly in endothelial cells. J Biol Chem 280: 17320‐17328, 2005.
 219. Mejillano M, Yamamoto M, Rozelle AL, Sun HQ, Wang X, Yin HL. Regulation of apoptosis by phosphatidylinositol 4,5‐bisphosphate inhibition of caspases, and caspase inactivation of phosphatidylinositol phosphate 5‐kinases. J Biol Chem 276: 1865‐1872, 2001.
 220. Michailidis IE, Helton TD, Petrou VI, Mirshahi T, Ehlers MD, Logothetis DE. Phosphatidylinositol‐4, 5‐bisphosphate regulates NMDA receptor activity through alfa‐actinin. J Neurosci 27: 5523‐5532, 2007.
 221. Michailidis IE, Zhang Y, Yang J. The lipid connection‐regulation of voltage‐gated Ca2+ channels by phosphoinositides. Pflugers Arch 455: 147‐155, 2007.
 222. Mignery GA, Südhof TC. The ligand binding site and transduction mechanism in the inositol‐1,4,5‐triphosphate receptor. EMBO J 9: 3893‐3898, 1990.
 223. Milescu M, Bosmans F, Lee S, Alabi AA, Kim JI, Swartz KJ. Interactions between lipids and voltage sensor paddles detected with tarantula toxins. Nat Struct Mol Biol 16: 1080‐1085, 2009.
 224. Miyawaki A, Furuichi T, Ryou Y, Yoshikawa S, Nakagawa T, Saitoh T, Mikoshiba K. Structure‐function relationships of the mouse inositol 1,4,5‐trisphosphate receptor. Proc Natl Acad Sci U S A 88: 4911‐4915, 1991.
 225. Mo G, Bernier LP, Zhao Q, Chabot‐Dore AJ, Ase AR, Logothetis D, Cao CQ, Seguela P. Subtype‐specific regulation of P2X3 and P2X2/3 receptors by phosphoinositides in peripheral nociceptors. Mol Pain 5: 47, 2009.
 226. Mohler ER, III, Fang Y, Gusic Shaffer R, Moore J, Wilensky RL, Parmacek M, Levitan I. Hypercholesterolemia suppresses Kir channels in porcine bone marrow progenitor cells in vivo. Biochem Biophys Res Commun 358: 317‐324, 2007.
 227. Moore KJ, Kunjathoor VV, Koehn SL, Manning JJ, Tseng AA, Silver JM, McKee M, Freeman MW. Loss of receptor‐mediated lipid uptake via scavenger receptor A or CD36 pathways does not ameliorate atherosclerosis in hyperlipidemic mice. J Clin Invest 115: 2192‐2201, 2005.
 228. Morachevskaya E, Sudarikova A, Negulyaev Y. Mechanosensitive channel activity and F‐actin organization in cholesterol‐depleted human leukaemia cells. Cell Biol Int 31: 374‐381, 2007.
 229. Morenilla‐Palao C, Pertusa M, Meseguer V, Cabedo H, Viana F. Lipid raft segregation modulates TRPM8 channel activity. J Biol Chem 284: 9215‐9224, 2009.
 230. Murata T, Lin MI, Stan RV, Bauer PM, Yu J, Sessa WC. Genetic evidence supporting caveolae microdomain regulation of calcium entry in endothelial cells. J Biol Chem 282: 16631‐16643, 2007.
 231. Murbartián J, Lei Q, Sando JJ, Bayliss DA. Sequential phosphorylation mediates receptor‐ and kinase‐induced inhibition of TREK‐1 background potassium channels. J Biol Chem 280: 30175‐30184, 2005.
 232. Najibi S, Cohen RA. Enhanced role of K+ channels in relaxations of hypercholesterolemic rabbit carotid artery to NO. Am J Physiol Heart Circ Physiol 269: H805‐H811, 1995.
 233. Najibi S, Cowan CL, Palacino JJ, Cohen RA. Enhanced role of potassium channels in relaxations to acetylcholine in hypercholesterolemic rabbit carotid artery. Am J Physiol Heart Circ Physiol 266: H2061‐H2067, 1994.
 234. Nam JH, Lee H‐S, Nguyen YH, Kang TM, Lee SW, Kim H‐Y, Kim SJ, Earm YE, Kim SJ. Mechanosensitive activation of K+ channel via phospholipase C‐induced depletion of phosphatidylinositol 4,5‐bisphosphate in B lymphocytes. J Physiol 582: 977, 2007.
 235. Naray‐Fejes‐Toth A, Canessa C, Cleaveland ES, Aldrich G, Fejes‐Toth G. Sgk is an aldosterone‐induced kinase in the renal collecting duct. Effects on epithelial Na+ channels. J Biol Chem 274: 16973‐16978, 1999.
 236. Natsume T, Hirota J, Yoshikawa F, Furuichi T, Mikoshiba K. Real time analysis of interaction between inositol 1,4, 5‐trisphosphate receptor type I and its ligand. Biochem Biophys Res Commun 260: 527‐533, 1999.
 237. Nawaz S, Kippert A, Saab AS, Werner HB, Lang T, Nave KA, Simons M. Phosphatidylinositol 4, 5‐bisphosphatedependent interaction of myelin basic protein with the plasma membrane in oligodendroglial cells and its rapid perturbation by elevated calcium. J Neurosci 29: 4794‐4807, 2009.
 238. Newton CL, Mignery GA, Südhof TC. Co‐expression in vertebrate tissues and cell lines of multiple inositol 1,4,5‐trisphosphate (InsP3) receptors with distinct affinities for InsP3. J Biol Chem 269: 28613‐28619, 1994.
 239. Nichols C, Lopatin A. Inward rectifier potassium channels. Annu Rev Physiol 59: 268‐277, 1997.
 240. Nichols CG. KATP channels as molecular sensors of cellular metabolism. Nature 440: 470, 2006.
 241. Nilius B, Droogmans G. Ion channels and their functional role in vascular endothelium. Physiol Rev 81: 1415‐1459, 2001.
 242. Nilius B, Droogmans G, Wondergem R. Transient receptor potential channels in endothelium: Solving the calcium entry puzzle? Endothelium 10: 5‐15, 2003.
 243. Nilius B, Mahieu F, Prenen J, Janssens A, Owsianik G, Vennekens R, Voets T. The Ca2+‐activated cation channel TRPM4 is regulated by phosphatidylinositol 4,5‐biphosphate. EMBO J 25: 467‐478, 2006.
 244. Nilius B, Owsianik G, Voets T, Peters JA. Transient receptor potential cation channels in disease. Physiol Rev 87: 165‐217, 2007.
 245. Nishida M, Cadene M, Chait BT, MacKinnon R. Crystal structure of a Kir3.1‐prokaryotic Kir channel chimera. EMBO J 26: 4005‐4015, 2007.
 246. Norman E, Cutler RG, Flannery R, Wang Y, Mattson MP. Plasma membrane sphingomyelin hydrolysis increases hippocampal neuron excitability by sphingosine‐1‐phosphate mediated mechanisms. J Neurochem 114: 430‐439, 2010.
 247. Norris FA, Wilson MP, Wallis TS, Galyov EE, Majerus PW. SopB, a protein required for virulence of Salmonella dublin, is an inositol phosphate phosphatase. Proc Natl Acad Sci U S A 95: 14057‐14059, 1998.
 248. Nuriya M, Oh S, Huganir RL. Phosphorylation‐dependent interactions of alpha‐actinin‐1/IQGAP1 with the AMPA receptor subunit GluR4. J Neurochem 95: 544‐552, 2005.
 249. O'Connell KM, Martens JR, Tamkun MM. Localization of ion channels to lipid Raft domains within the cardiovascular system. Trends Cardiovasc Med 14: 37‐42, 2004.
 250. O'Connell KMS, Tamkun MM. Targeting of voltage‐gated potassium channel isoforms to distinct cell surface microdomains. J Cell Sci 118: 2155‐2166, 2005.
 251. O'Connell KMS, Whitesell JD, Tamkun MM. Localization and mobility of the delayed‐rectifer K+ channel Kv2.1 in adult cardiomyocytes. Am J Physiol Heart Circ Physiol 294: H229‐H237, 2008.
 252. Ogawa Y, Harafuji H. Ca‐release by phosphoinositides from sarcoplasmic reticulum of frog skeletal muscle. J Biochem (Tokyo) 106: 864‐867, 1989.
 253. Ohizumi Y, Hirata Y, Suzuki A, Kobayashi M. Two novel types of calcium release from skeletal sarcoplasmic reticulum by phosphatidylinositol 4,5‐biphosphate. Can J Physiol Pharmacol 77: 276‐285, 1999.
 254. Ohvo‐Rekilä H, Ramstedt B, Leppimäki P, Slotte JP. Cholesterol interactions with phospholipids in membranes. Prog Lipid Res 41: 66‐97, 2002.
 255. Olesen S‐P, Clapham DE, Davies PF. Hemodynamic shear stress activates a K+ current in vascular endothelial cells. Nature 331: 168‐170, 1988.
 256. Oliver D, Lien CC, Soom M, Baukrowitz T, Jonas P, Fakler B. Functional conversion between A‐Type and delayed rectifier K+ channels by membrane lipids. Science 304: 265‐270, 2004.
 257. Ortenblad N, Young JF, Oksbjerg N, Nielsen JH, Lambert IH. Reactive oxygen species are important mediators of taurine release from skeletal muscle cells. Am J Physiol Cell Physiol 284: C1362‐C1373, 2003.
 258. Otsuguro K, Tang J, Tang Y, Xiao R, Freichel M, Tsvilovskyy V, Ito S, Flockerzi V, Zhu M, Zholos AV. Isoform‐specific inhibition of TRPC4 channel by phosphatidylinositol 4,5‐ bisphosphate. J Biol Chem 283: 10026‐10036, 2008.
 259. Palygin OA, Pettus JM, Shibata EF. Regulation of caveolar cardiac sodium current by a single Gs{alpha} histidine residue. Am J Physiol Heart Circ Physiol 294: H1693‐H1699, 2008.
 260. Pan CY, Lee H, Chen CL. Lysophospholipids elevate [Ca2+]i and trigger exocytosis in bovine chromaffin cells. Neuropharmacology 51: 18‐26, 2006.
 261. Pani B, Singh BB. Lipid rafts/caveolae as microdomains of calcium signaling. Cell Calcium 45: 625‐633, 2009.
 262. Panyi G, Vamosi G, Bacso Z, Bagdany M, Bodnar A, Varga Z, Gaspar R, Matyus L, Damjanovich S. Kv1.3 potassium channels are localized in the immunological synapse formed between cytotoxic and target cells. Proc Natl Acad Sci U S A 101: 1285‐1290, 2004.
 263. Park KH, Piron J, Dahimene S, Merot J, Baro I, Escande D, Loussouarn G. Impaired KCNQ1‐KCNE1 and phosphatidylinositol‐4, 5‐bisphosphate interaction underlies the long QT syndrome. Circ Res 96: 730‐739, 2005.
 264. Pendaries C, Tronchère H, Plantavid M, Payrastre B. Phosphoinositide signaling disorders in human diseases. 546: 25‐31, 2003.
 265. Peng X, Hassoun PM, Sammani S, McVerry BJ, Burne MJ, Rabb H, Pearse D, Tuder RM, Garcia JG. Protective effects of sphingosine 1‐phosphate in murine endotoxin‐induced inflammatory lung injury. Am J Respir Crit Care Med 169: 1245‐1251, 2004.
 266. Pian P, Bucchi A, Decostanzo A, Robinson RB, Siegelbaum SA. Modulation of cyclic nucleotide‐regulated HCN channels by PIP(2) and receptors coupled to phospholipase C. Pflugers Arch 455: 125‐145, 2007.
 267. Pian P, Bucchi A, Robinson RB, Siegelbaum SA. Regulation of gating and rundown of HCN hyperpolarization‐activated channels by exogenous and endogenous PIP2. J Gen Physiol 128: 593‐604, 2006.
 268. Pike L, Casey L. Localization and turnover of phosphatidylinositol 4,5‐bisphospate in caveolin‐enriched membrane domains. J Biol Chem 271: 26453‐26456, 1996.
 269. Pike LJ. Lipid rafts: Bringing order to chaos. J Lipid Res 44: 655‐667, 2003.
 270. Pike LJ. Rafts defined: A report on the Keystone symposium on lipid rafts and cell function. J Lipid Res 47: 1597‐1598, 2006.
 271. Plaster NM, Tawil R, Tristani‐Firouzi M, Canun S, Bendahhou S, Tsunoda A, Donaldson MR, Iannaccone ST, Brunt E, Barohn R, Clark J, Deymeer F, George AL Jr, Fish FA, Hahn A, Nitu A, Ozdemir C, Serdaroglu P, Subramony SH, Wolfe G, Fu YH, Ptácek LJ. Mutations in Kir2.1 cause the developmental and episodic electrical phenotypes of Andersen's syndrome. Cell 105: 511‐519, 2001.
 272. Pochynyuk O, Bugaj V, Stockand JD. Physiologic regulation of the epithelial sodium channel by phosphatidylinositides. Curr Opin Nephrol Hypertens 17: 533‐540, 2008.
 273. Pochynyuk O, Bugaj V, Vandewalle A, Stockand JD. Purinergic control of apical plasma membrane PI(4,5)P2 levels sets ENaC activity in principal cells. Am J Physiol 294: F38‐F46, 2008.
 274. Pochynyuk O, Medina J, Gamper N, Genth H, Stockand JD, Staruschenko A. Rapid translocation and insertion of the epithelial Na+ channel in response to RhoA signaling. J Biol Chem 281: 26520‐26527, 2006.
 275. Pochynyuk O, Tong Q, Medina J, Vandewalle A, Staruschenko A, Bugaj V, Stockand JD. Molecular determinants of PI(4,5)P2 and PI(3,4,5)P3 regulation of the epithelial Na+ channel. J Gen Physiol 130: 399‐413, 2007.
 276. Pongo E, Balla Z, Mubagwa K, Flameng W, Edes I, Szilvassy Z, Ferdinandy P. Deterioration of the protein kinase C‐KATP channel pathway in regulation of coronary flow in hypercholesterolaemic rabbits. Eur J Pharmacol 418: 217, 2001.
 277. Pouvreau S, Berthier C, Blaineau S, Amsellem J, Coronado R, Strube C. Membrane cholesterol modulates dihydropyridine receptor function in mice fetal skeletal muscle cells. J Physiol (Lond) 555: 365‐381, 2004.
 278. Prince LS, Welsh MJ. Effect of subunit composition and Liddle's syndrome mutations on biosynthesis of ENaC. Am J Physiol Cell Physiol 276: C1346‐C1351, 1999.
 279. Quinn PJ, Wolf C. The liquid‐ordered phase in membranes. Biochim Biophys Acta 1788: 33‐46, 2009.
 280. Ramu Y, Xu Y, Lu Z. Enzymatic activation of voltage‐gated potassium channels. Nature 442: 696‐699, 2006.
 281. Ramu Y, Xu Y, Lu Z. Inhibition of CFTR Cl− channel function caused by enzymatic hydrolysis of sphingomyelin. Proc Natl Acad Sci U S A 104: 6448‐6453, 2007.
 282. Rapedius M, Fowler PW, Shang L, Sansom MS, Tucker SJ, Baukrowitz T. H bonding at the helix‐bundle crossing controls gating in Kir potassium channels. Neuron 55: 602‐614, 2007.
 283. Reid G, Babes A, Pluteanu F. A cold‐ and menthol‐activated current in rat dorsal root ganglion neurones: Properties and role in cold transduction. J Physiol 545: 595‐614, 2002.
 284. Ren YJ, Xu XH, Zhong CB, Feng N, Wang XL. Hypercholesterolemia alters vascular functions and gene expression of potassium channels in rat aortic smooth muscle cells. Acta Pharmacol Sin 22: 274‐278, 2001.
 285. Rodgers W, Farris D, Mishra S. Merging complexes: Properties of membrane raft assembly during lymphocyte signaling. Trends Immunol 26: 97‐103, 2005.
 286. Rohacs T. Phosphoinositide regulation of non‐canonical transient receptor potential channels. Cell Calcium 45: 554‐565, 2009
 287. Rohacs T, Chen J, Prestwich GD, Logothetis DE. Distinct specificities of inwardly rectifying K(+) channels for phosphoinositides. J Biol Chem 274: 36065‐36072, 1999.
 288. Rohács T, Lopes CM, Jin T, Ramdya PP, Molnár Z, Logothetis DE. Specificity of activation by phosphoinositides determines lipid regulation of Kir channels. Proc Natl Acad Sci U S A 100: 745‐750, 2003.
 289. Rohacs T, Lopes CMB, Michailidis I, Logothetis DE. PI(4,5)2 regulates the activation and desensitization of TRPM8 channels through the TRP domain. Nat Neurosci 8: 626‐634, 2005.
 290. Roma P, Catapano AL, Bertulli SM, Varesi L, Fumagalli R, Bernini F. Oxidized LDL increase free cholesterol and fail to stimulate cholesterol esterification in murine macrophages. Biochem Biophys Res Commun 171: 123, 1990.
 291. Romanenko VG, Fang Y, Byfield F, Travis AJ, Vandenberg CA, Rothblat GH, Levitan I. Cholesterol sensitivity and lipid raft targeting of Kir2.1 channels. Biophys J 87: 3850‐3861, 2004.
 292. Romanenko VG, Roser KS, Melvin JE, Begenisich T. The role of cell cholesterol and the cytoskeleton in the interaction between IK1 and maxi‐K channels. Am J Physiol Cell Physiol 296: C878‐C888, 2009.
 293. Romanenko VG, Rothblat GH, Levitan I. Modulation of endothelial inward rectifier K+ current by optical isomers of cholesterol. Biophys J 83: 3211‐3222, 2002.
 294. Romanenko VG, Rothblat GH, Levitan I. Sensitivity of volume‐regulated anion current to cholesterol structural analogues. J Gen Physiol 123: 77‐88, 2004.
 295. Roos J, DiGregorio PJ, Yeromin AV, Ohlsen K, Lioudyno M, Zhang S, Safrina O, Kozak JA, Wagner SL, Cahalan MD, Velicelebi G, Stauderman KA. STIM1, an essential and conserved component of store‐operated Ca2+ channel function. J Cell Biol 169: 435‐445, 2005.
 296. Rosenhouse‐Dantsker A, Leal‐Pinto E, Logothetis DE, Levitan I. Comparative analysis of cholesterol sensitivity of Kir channels: Role of the CD loop. Channels (Austin) 4: 63‐66, 2010.
 297. Rosenhouse‐Dantsker A, Logothetis DE. Molecular characteristics of phosphoinositide binding. Pflugers Arch 455: 45‐53, 2007.
 298. Rosenhouse‐Dantsker A, Logothetis DE, Levitan I. Cholesterol sensitivity of Kir2.1 is contolled by a belt of residues around the cytosolic pore. Biophys J 100, 381‐389 2011.
 299. Rousset M, Cens T, Gouin‐Charnet A, Scamps F, Charnet P. Ca2+ and phosphatidylinositol 4,5‐bisphosphate stabilize a Gbeta gamma‐sensitive state of Ca V2 Ca 2+ channels. J Biol Chem 279: 14619‐14630, 2004.
 300. Runnels LW, Yue L, Clapham DE. The TRPM7 channel is inactivated by PIP2 hydrolysis. Nat Cell Biol 4: 329‐336, 2002.
 301. Russo CJ, Melista E, Cui J, DeStefano AL, Bakris GL, Manolis AJ, Gavras H, Baldwin CT. Association of NEDD4L ubiquitin ligase with essential hypertension. Hypertension 46: 488‐491, 2005.
 302. Ryan DP, da Silva MR, Soong TW, Fontaine B, Donaldson MR, Kung AW, Jongjaroenprasert W, Liang MC, Khoo DH, Cheah JS, Ho SC, Bernstein HS, Maciel RM, Brown RHJ, Ptacek LJ. Mutations in potassium channel Kir2.6 cause susceptibility to thyrotoxic hypokalemic periodic paralysis. Cell 140: 88‐98, 2010.
 303. Saba JD, Hla T. Point‐counterpoint of sphingosine 1‐phosphate metabolism. Circ Res 94: 724‐734, 2004.
 304. Sachs F, Morris C. Mechanosensitive ion channels in non specialized cells. Rev Physiol Biochem Pharmacol 132: 1‐78, 1998.
 305. Saleh SN, Albert AP, Large WA. Activation of native TRPC1/C5/C6 channels by endothelin‐1 is mediated by both PIP3 and PIP2 in rabbit coronary artery myocytes. J Physiol 587: 5361‐5375, 2009.
 306. Salkoff L, Butler A, Ferreira G, Santi C, Wei A. High‐conductance potassium channels of the SLO family. Nat Rev Neurosci 7: 921‐931, 2006.
 307. Sampson LJ, Davies LM, Barrett‐Jolley R, Standen NB, Dart C. Angiotensin II‐activated protein kinase C targets caveolae to inhibit aortic ATP‐sensitive potassium channels. Cardiovasc Res 76: 61‐70, 2007.
 308. Sampson LJ, Hayabuchi Y, Standen NB, Dart C. Caveolae localize protein kinase A signaling to arterial ATP‐sensitive potassium channels. Circ Res 95: 1012‐1018, 2004.
 309. Saslowsky DE, Tanaka N, Reddy KP, Lencer WI. Ceramide activates JNK to inhibit a cAMP‐gated K +conductance and Cl− secretion in intestinal epithelia. FASEB J 23: 259‐270, 2009.
 310. Schultz BD, Bridges RJ, Frizzell RA. Lack of conventional ATPase properties in CFTR chloride channel gating. J Membr Biol 151: 63‐75, 1996.
 311. Schulz TW, Nakagawa T, Licznerski P, Pawlak V, Kolleker A, Rozov A, Kim J, Dittgen T, Kohr G, Sheng M, Seeburg PH, Osten P. Actin/alfa‐actinin‐dependent transport of AMPA receptors in dendritic spines: Role of the PDZ‐LIM protein RIL. J Neurosci 24: 8584‐8594, 2004.
 312. Schulze D, Krauter T, Fritzenschaft H, Soom M, Baukrowitz T. Phosphatidylinositol 4, 5‐bisphosphate (PIP2) modulation of ATP and pH sensitivity in Kir channels. A tale of an active and a silent PIP2 site in the N terminus. J Biol Chem 278: 10500‐10505, 2003.
 313. Schwalbe RA, Bianchi L, Accili EA, Brown AM. Functional consequences of ROMK mutants linked to antenatal Bartter's syndrome and implications for treatment. Hum Mol Genet 7: 975‐980, 1998.
 314. Segal‐Hayoun Y, Cohen A, Zilberberg N. Molecular mechanisms underlying membrane‐potential‐mediated regulation of neuronal K2P2.1 channels. Mol Cell Neurosci 43: 117‐126, 2010.
 315. Shennan DB. Swelling‐induced taurine transport: Relationship with chloride channels, anion‐exchangers and other swelling‐activated transport pathways. Cell Physiol Biochem 21: 15‐28, 2008.
 316. Shi C, Barnes S, Coca‐Prados M, Kelly ME. Protein tyrosine kinase and protein phosphatase signaling pathways regulate volume‐sensitive chloride currents in a nonpigmented ciliary epithelial cell line. Invest Ophthalmol Vis Sci 43: 1525‐1532, 2002.
 317. Shlyonsky VG, Mies F, Sariban‐Sohraby S. Epithelial sodium channel activity in detergent‐resistant membrane microdomains. Am J Physiol Renal Physiol 284: F182‐F188, 2003.
 318. Shmygol A, Noble K, Wray S. Depletion of membrane cholesterol eliminates the Ca2+‐activated component of outward potassium current and decreases membrane capacitance in rat uterine myocytes. J Physiol 581: 445‐456, 2007.
 319. Simons K, Ikonen E. How cells handle cholesterol. Science 290: 1721‐1726, 2000.
 320. Singh DK, Rosenhouse‐Dantsker A, Nichols CG, Enkvetchakul D, Levitan I. Direct regulation of prokaryotic Kir channel by cholesterol. J Biol Chem 284: 30727‐30736, 2009.
 321. Slotte JP, Bierman EL. Depletion of plasma‐membrane sphingomyelin rapidly alters the distribution of cholesterol between plasma membranes and intracellular cholesterol pools in cultured fibroblasts. Biochem J 250: 653‐658, 1988.
 322. Snyder PM. Minireview: Regulation of epithelial Na+ channel trafficking. Endocrinology 146: 5079‐5085, 2005.
 323. Snyder PM, Price MP, McDonald FJ, Adams CM, Volk KA, Zeiher BG, Stokes JB, Welsh MJ. Mechanism by which Liddle's syndrome mutations increase activity of a human epithelial Na+ channel. Cell 83: 969‐978, 1995.
 324. Sobey CG. Potassium channel function in vascular disease. Arterioscler Thromb Vasc Biol 21: 28‐38, 2001.
 325. Spehr M, Wetzel CH, Hatt H, Ache BW. 3‐Phosphoinositides modulate cyclic nucleotide signaling in olfactory receptor neurons. Neuron 33: 731‐739, 2002.
 326. Spiegel S, Milstien S. Exogenous and intracellularly generated sphingosine 1‐phosphate can regulate cellular processes by divergent pathways. Biochem Soc Trans 31: 1216‐1219, 2003.
 327. Sprossmann F, Pankert P, Sausbier U, Wirth A, Zhou XB, Madlung J, Zhao H, Bucurenciu I, Jakob A, Lamkemeyer T, Neuhuber W, Offermanns S, Shipston MJ, Korth M, Nordheim A, Ruth P, Sausbier M. Inducible knockout mutagenesis reveals compensatory mechanisms elicited by constitutive BK channel deficiency in overactive murine bladder. Febs J 276: 1680‐1697, 2009.
 328. Stansfeld PJ, Hopkinson R, Ashcroft FM, Sansom MS. PIP(2)‐binding site in Kir channels: Definition by multiscale biomolecular simulations. Biochemistry 48: 10926‐10933, 2009.
 329. Staruschenko A, Pochynyuk O, Vandewalle A, Bugaj V, Stockand JD. Acute regulation of the epithelial Na+ channel by phosphatidylinositide 3‐OH kinase signaling in native collecting duct principal cells. J Am Soc Nephrol 18: 1652‐1661, 2007.
 330. Staub O, Abriel H, Plant P, Ishikawa T, Kanelis V, Saleki R, Horisberger JD, Schild L, Rotin D. Regulation of the epithelial Na+ channel by Nedd4 and ubiquitination. Kidney Int 57: 809‐815, 2000.
 331. Staub O, Dho S, Henry P, Correa J, Ishikawa T, McGlade J, Rotin D. WW domains of Nedd4 bind to the proline‐rich PY motifs in the epithelial Na+ channel deleted in Liddle's syndrome. EMBO J 15: 2371‐2380, 1996.
 332. Stein AT, Ufret‐Vincenty CA, Hua L, Santana LF, Gordon SE. Phosphoinositide 3‐kinase binds to TRPV1 and mediates NGF‐stimulated TRPV1 trafficking to the plasma membrane. J Gen Physiol 128: 509‐522.
 333. Strub GM, Maceyka M, Hait NC, Milstien S, Spiegel S. Extracellular and intracellular actions of sphingosine‐1‐phosphate. Adv Exp Med Biol 688: 141‐155.
 334. Stutzin A, Hoffmann EK. Swelling‐activated ion channels: Functional regulation in cell‐swelling, proliferation and apoptosis. Acta Physiol (Oxf) 187: 27‐42, 2006.
 335. Suchy SF, Nussbaum RL. The deficiency of PIP2 5‐phosphatase in Lowe syndrome affects actin polymerization. Am J Hum Genet 71: 1420‐1427, 2002.
 336. Suh BC, Hille B. Recovery from muscarinic modulation of M current channels requires phosphatidylinositol 4,5‐bisphosphate synthesis. Neuron 35: 507‐520, 2002.
 337. Suh BC, Inoue T, Meyer T, Hille B. Rapid chemically induced changes of PtdIns(4, 5)P2 gate KCNQ ion channels. Science 314: 1454‐1457, 2006.
 338. Suh BC, Leal K, Hille B. Modulation of high‐voltage activated Ca(2+) channels by membrane phosphatidylinositol 4,5‐bisphosphate. Neuron 67: 224‐238, 2010.
 339. Sundivakkam PC, Kwiatek AM, Sharma TT, Minshall RD, Malik AB, Tiruppathi C. Caveolin‐1 scaffold domain interacts with TRPC1 and IP3R3 to regulate Ca2+ store release‐induced Ca2+ entry in endothelial cells. Am J Physiol Cell Physiol 296: C403‐C413, 2009.
 340. Szoke E, Borzsei R, Toth DM, Lengl O, Helyes Z, Sandor Z, Szolcsanyi J. Effect of lipid raft disruption on TRPV1 receptor activation of trigeminal sensory neurons and transfected cell line. Eur J Pharmacol 628: 67‐74.
 341. Tall EG, Spector I, Pentyala SN, Bitter I, Rebecchi MJ. Dynamics of phosphatidylinositol 4,5‐bisphosphate in actin‐rich structures. Curr Biol 10: 743‐746, 2000.
 342. Tang QY, Zhang Z, Xia J, Ren D, Logothetis DE. Phosphatidylinositol 4,5‐bisphosphate activates Slo3 currents and its hydrolysis underlies the epidermal growth factor‐induced current inhibition. J Biol Chem 285: 19259‐19266, 2010.
 343. Taverna E, Saba E, Rowe J, Francolini M, Clementi F, Rosa P. Role of lipid microdomains in P/Q‐type calcium channel (Cav2.1) clustering and function in presynaptic membranes. J Biol Chem 279: 5127‐5134, 2004.
 344. Terebiznik MR, Vieira OV, Marcus SL, Slade A, Yip CM, Trimble WS, Meyer T, Finlay BB, Grinstein S. Elimination of host cell PtdIns(4,5)P(2) by bacterial SigD promotes membrane fission during invasion by Salmonella. Nat Cell Biol 4: 766‐773, 2002.
 345. Thomas AM, Harmer SC, Khambra T, Tinker A. Characterisation of a binding site for anionic phospholipids on KCNQ1. J Biol Chem 286: 2088‐2100, 2010.
 346. Thyagarajan B, Lukacs V, Rohacs T. Hydrolysis of phosphatidylinositol 4,5‐bisphosphate mediates calcium induced inactivation of TRPV6 channels. J Biol Chem 283: 14980‐14987, 2008.
 347. Tikku S, Epshtein Y, Collins H, Travis AJ, Rothblat GH, Levitan I. Relationship between Kir2.1/Kir2.3 activity and their distribution between cholesterol‐rich and cholesterol‐poor membrane domains. Am J Physiol Cell Physiol 293: C440‐C450, 2007.
 348. Toselli M, Biella G, Taglietti V, Cazzaniga E, Parenti M. Caveolin‐1 expression and membrane cholesterol content modulate N‐type calcium channel activity in NG108‐15 cells. Biophys J 89: 2443‐2457, 2005.
 349. Toyama K, Wulff H, Chandy KG, Azam P, Raman G, Saito T, Fujiwara Y, Mattson DL, Das S, Melvin JE, Pratt PF, Hatoum OA, Gutterman DD, Harder DR, Miura H. The intermediate‐conductance calcium‐activated potassium channel KCa3.1 contributes to atherogenesis in mice and humans. J Clin Invest 118: 3025, 2008.
 350. Trebak M, Lemonnier L, Dehaven WI, Wedel BJ, Bird GS, Putney JWJ. Complex functions of phosphatidylinositol‐4,5‐bisphosphate on regulation of TRPC5 cation channels. Pflugers Arch 457: 757‐769, 2008.
 351. Trouet D, Hermans D, Droogmans G, Nilius B, Eggermont J. Inhibition of volume‐regulated anion channels by dominant‐negative caveolin‐1. Biochem Biophys Res Commun 284: 461, 2001.
 352. Trouet D, Nilius B, Jacobs A, Remacle C, Droogmans G, Eggermont J. Caveolin‐1 modulates the activity of the volume‐regulated chloride channel. J Physiol 520 Pt 1: 113‐119, 1999.
 353. Tseng PH, Lin HP, Hu H, Wang C, Zhu MX, Chen CS. The canonical transient receptor potential 6 channel as a putative phosphatidylinositol‐3,4,5‐trisphosphate‐sensitive calcium entry system. Biochemistry 43: 11701‐11708, 2004.
 354. Tucker SJ, Baukrowitz T. How highly charged anionic lipids bind and regulate ion channels. J Gen Physiol 131: 431‐438, 2008.
 355. Tulenko TN, Lapotofsky D, Cox RH, Mason RP. Cholesterol and cell plasma membranes. In: Encyclopedia of Gerontology, Edited by JE Birren; Academic Press, San Diego, 1996, p. 279‐287.
 356. Ullrich N, Caplanusi A, Brone B, Hermans D, Lariviere E, Nilius B, Van Driessche W, Eggermont J. Stimulation by caveolin‐1 of the hypotonicity‐induced release of taurine and ATP at basolateral, but not apical, membrane of Caco‐2 cells. Am J Physiol Cell Physiol 290: C1287‐C1296, 2006.
 357. Vaithianathan T, Bukiya A, Liu J, Liu P, Asuncion‐Chin M, Fan Z, Dopico A. Direct regulation of BK channels by phosphatidylinositol 4,5‐bisphosphate as a novel signaling pathway. J Gen Physiol 132: 13‐28, 2008.
 358. van Zeijl L, Ponsioen B, Giepmans BNG, Ariaens A, Postma FR, Varnai P, Balla T, Divecha N, Jalink K, Moolenaar WH. Regulation of connexin43 gap junctional communication by phosphatidylinositol 4, 5‐bisphosphate. J Cell Biol 177: 881‐891, 2007.
 359. Vandorpe DH, Shmukler BE, Jiang L, Lim B, Maylie J, Adelman JP, de Franceschi L, Cappellini MD, Brugnara C, Alper SL. cDNA cloning and functional characterization of the mouse Ca2+‐gated K+ channel, mIK1. Roles in regulatory volume decrease and erythroid differentiation. J Biol Chem 273: 21542‐21553, 1998.
 360. Venkatachalam K, Montell C. TRP channels. Annu Rev Biochem 76: 387‐417, 2007.
 361. Vessey JP, Shi C, Jollimore CA, Stevens KT, Coca‐Prados M, Barnes S, Kelly ME. Hyposmotic activation of ICl, swell in rabbit nonpigmented ciliary epithelial cells involves increased ClC‐3 trafficking to the plasma membrane. Biochem Cell Biol 82: 708‐718, 2004.
 362. Vicente R, Villalonga N, Calvo M, Escalada A, Solsona C, Soler C, Tamkun MM, Felipe A. Kv1.5 association modifies Kv1.3 traffic and membrane localization. J Biol Chem 283: 8756‐8764, 2008.
 363. Vivaudou M, Chan KW, Sui J‐L, Jan LY, Reuveny E, Logothetis DE. Probing the G‐protein regulation of GIRK1 and GIRK4, the two subunits of the KACh channel, using functional homomeric mutants. J Biol Chem 272: 31553‐31560, 1997.
 364. Voets T, Nilius B. Modulation of TRPs by PIPs. J Physiol 582: 939‐944, 2007.
 365. Voronov SV, Frere SG, Giovedi S, Pollina EA, Borel C, Zhang H, Schmidt C, Akeson EC, Wenk MR, Cimasoni L, Arancio O, Davisson MT, Antonarakis SE, Gardiner K, DeCamilli P, Di Paolo G. Synaptojanin 1‐linked phosphoinositide dyshomeostasis and cognitive deficits in mouse models of Down's syndrome. Proc Natl Acad Sci U S A 105: 9415‐9420, 2008.
 366. Wang GX, McCrudden C, Dai YP, Horowitz B, Hume JR, Yamboliev IA. Hypotonic activation of volumesensitive outwardly rectifying chloride channels in cultured PASMCs is modulated by SGK. Am J Physiol Heart Circ Physiol 287: H533‐H544, 2004.
 367. Wang H, Traub LM, Weixel KM, Hawryluk MJ, Shah N, Edinger RS, Perry CJ, Kester L, Butterworth MB, Peters KW, Kleyman TR, Frizzell RA, Johnson JP. Clathrin‐mediated endocytosis of the epithelial sodium channel. Role of epsin. J Biol Chem 281: 14129‐14135, 2006.
 368. Wang J, Barbry P, Maiyar AC, Rozansky DJ, Bhargava A, Leong M, Firestone GL, Pearce D. SGK integrates insulin and mineralocorticoid regulation of epithelial sodium transport. Am J Physiol 280: F303‐F313, 2001.
 369. Wang J, Carbone LD, Watsky MA. Receptor‐mediated activation of a Cl(‐) current by LPA and S1P in cultured corneal keratocytes. Invest Ophthalmol Vis Sci 43: 3202‐3208, 2002.
 370. Wang L, Sigworth FJ. Structure of the BK potassium channel in a lipid membrane from electron cryomicroscopy. Nature 461: 292‐295, 2009.
 371. Wang X‐L, Ye D, Peterson TE, Cao S, Shah VH, Katusic ZS, Sieck GC, Lee H‐C. Caveolae targeting and regulation of large conductance Ca2+‐activated K+ channels in vascular endothelial cells. J Biol Chem 280: 11656‐11664, 2005.
 372. Weaver AK, Olsen ML, McFerrin MB, Sontheimer H. BK channels are linked to inositol 1,4,5‐triphosphate receptors via lipid rafts: A novel mechanism for coupling [Ca(2+)](i) to ion channel activation. J Biol Chem 282: 31558‐31568, 2007.
 373. Weerth SH, Holtzclaw LA, Russell JT. Signaling proteins in raft‐like microdomains are essential for Ca2+ wave propagation in glial cells. Cell Calcium 41: 155‐167, 2007.
 374. Wei S‐P, Li X‐Q, Chou C‐F, Liang Y‐Y, Peng J‐B, Warnock D, Ma H‐P. Membrane tension modulates the effects of apical cholesterol on the renal epithelial sodium channel. J Membr Biol 220: 21, 2007.
 375. West A, Blazer‐Yost B. Modulation of basal and peptide hormone‐stimulated Na transport by membrane cholesterol content in the A6 epithelial cell line. Cell Physiol Biochem 16: 263‐270, 2005.
 376. Wiecha J, Schläger B, Voisard R, Hannekum A, Mattfeldt T, Hombach V. Ca(2+)‐activated K+ channels in human smooth muscle cells of coronary atherosclerotic plaques and coronary media segments. Basic Res Cardiol 92: 233‐239, 1997.
 377. Womack KB, Gordon SE, He F, Wensel TG, Lu CC, Hilgemann DW. Do phosphatidylinositides modulate vertebrate phototransduction?. J Neurosci 20: 2792‐2799, 2000.
 378. Wu CC, Su MJ, Chi JF, Chen WJ, Hsu HC, Lee YT. The effect of hypercholesterolemia on the sodium inward currents in cardiac myocyte. J Mol Cell Cardiol 27: 1263‐1269, 1995.
 379. Wu L, Bauer CS, Zhen XG, Xie C, Yang J. Dual regulation of voltage‐gated calcium channels by PtdIns(4,5)P2. Nature 419: 947‐952, 2002.
 380. Wu SN, Lo YK, Kuo BI, Chiang HT. Ceramide inhibits the inwardly rectifying potassium current in GH(3) lactotrophs. Endocrinology 142: 4785‐4794, 2001.
 381. Xia F, Gao X, Kwan E, Lam PPL, Chan L, Sy K, Sheu L, Wheeler MB, Gaisano HY, Tsushima RG. Disruption of pancreatic {beta}‐cell lipid rafts Modifies Kv2.1 channel gating and insulin exocytosis. J Biol Chem 279: 24685‐24691, 2004.
 382. Xiao J, Zhen XG, Yang J. Localization of PIP2 activation gate in inward rectifier K+ channels. Nat Neurosci 6: 811‐818, 2003.
 383. Xie LH, John SA, Ribalet B, Weiss JN. Phosphatidylinositol‐4,5‐bisphosphate (PIP2) regulation of strong inward rectifier Kir2.1 channels: Multilevel positive cooperativity. J Physiol 586: 1833‐1848, 2008.
 384. Xu SZ, Muraki K, Zeng F, Li J, Sukumar P, Shah S, Dedman AM, Flemming PK, McHugh D, Naylor J, Cheong A, Bateson AN, Munsch CM, Porter KE, Beech DJ. A sphingosine‐1‐phosphate‐activated calcium channel controlling vascular smooth muscle cell motility. Circ Res 98: 1381‐1389, 2006.
 385. Xu X, London E. The effect of sterol structure on membrane lipid domains reveals how cholesterol can induce lipid domain formation. Biochemistry 39: 843‐849, 2000.
 386. Xu Y, Ramu Y, Lu Z. Removal of phospho‐head groups of membrane lipids immobilizes voltage sensors of K+ channels. Nature 451: 826‐829, 2008.
 387. Yamaguchi H, Yoshida S, Muroi E, Kawamura M, Kouchi Z, Nakamura Y, Sakai R, Fukami K. Phosphatidylinositol 4,5‐bisphosphate and PIP5‐kinase Ialpha are required for invadopodia formation in human breast cancer cells. Cancer Sci 101: 1632‐1638, 2010
 388. Yamamoto S, Ichishima K, Ehara T. Regulation of volume‐regulated outwardly rectifying anion channels by phosphatidylinositol 3,4,5‐trisphosphate in mouse ventricular cells. Biomed Res 29: 307‐315, 2008.
 389. Yamamoto S, Ichishima K, Ehara T. Reduced volume‐regulated outwardly rectifying anion channel activity in ventricular myocyte of type 1 diabetic mice. J Physiol Sci 59: 87‐96, 2009.
 390. Yarbrough TL, Lu T, Lee H‐C, Shibata EF. Localization of cardiac sodium channels in caveolin‐rich membrane domains: Regulation of sodium current amplitude. Circ Res 90: 443‐449, 2002.
 391. Ye S, Tan L, Ma J, Shi Q, Li J. Polyunsaturated docosahexaenoic acid suppresses oxidative stress induced endothelial cell calcium influx by altering lipid composition in membrane caveolar rafts. Prostaglandins Leukot Essent Fatty Acids 83: 37‐43, 2010.
 392. Yeagle PL. Cholesterol and the cell membrane. Biochimica et Biophysica Acta 822: 267‐287, 1985.
 393. Yeagle PL. Modulation of membrane function by cholesterol. Biochimie 73: 1303, 1991.
 394. Yin Z, Watsky MA. Chloride channel activity in human lung fibroblasts and myofibroblasts. Am J Physiol Lung Cell Mol Physiol 288: L1110‐L1116, 2005.
 395. Yoshikawa F, Morita M, Monkawa T, Michikawa T, Furuichi T, Mikoshiba K. Mutational analysis of the ligand binding site of the inositol 1,4,5‐trisphosphate receptor. J Biol Chem 271: 18277‐18284, 1996.
 396. Yoshikawa F, Uchiyama T, Iwasaki H, Tomomori‐Satoh C, Tanaka T, Furuichi T, Mikoshiba K. High efficient expression of the functional ligand binding site of the inositol 1,4,5‐triphosphate receptor in Escherichia coli. Biochem Biophys Res Commun 257: 792‐797, 1999.
 397. Yuan J, Verna LK, Wang NP, Liao HL, Ma Y, Wang Y, Zhu Y, Stemerman MB. Cholesterol enrichment upregulates intercellular adhesion molecule‐1 in human vascular endothelial cells. Biochim Biophys Acta 1534: 139‐148, 2001.
 398. Yue G, Malik B, Yue G, Eaton DC. Phosphatidylinositol 4,5‐bisphosphate (PIP2) stimulates epithelial sodium channel activity in A6 cells. J Biol Chem 277: 11965‐11969, 2002.
 399. Zakharian E, Cao C, Rohacs T. Gating of transient receptor potential melastatin 8 (TRPM8) channels activated by cold and chemical agonists in planar lipid bilayers. J Neurosci 30: 12526‐12534, 2010.
 400. Zeng WZ, Liou HH, Krishna UM, Falck JR, Huang CL. Structural determinants and specificities for ROMK1‐phosphoinositide interaction. Am J Physiol Renal Physiol 282: F826‐F834, 2002.
 401. Zerangue N, Schwappach B, Jan YN, Jan LY. A new ER trafficking signal regulates the subunit stoichiometry of plasma membrane K(ATP) channels. Neuron 22: 537‐548, 1999.
 402. Zhainazarov AB, Spehr M, Wetzel CH, Hatt H, Ache BW. Modulation of the olfactory CNG channel by Ptdlns(3,4,5)P3. J Membr Biol 201: 51‐57, 2004.
 403. Zhang H, Craciun LC, Mirshahi T, Rohacs T, Lopes CM, Jin T, Logothetis DE. PIP(2) activates KCNQ channels, and its hydrolysis underlies receptor‐mediated inhibition of M currents. Neuron 37: 963‐975, 2003.
 404. Zhang H, He C, Yan X, Mirshahi T, Logothetis DE. Activation of inwardly rectifying K+ channels by distinct PtdIns(4,5)P2 interactions. Nat Cell Biol 1: 183‐188, 1999.
 405. Zhang X, Hartz PA, Philip E, Racusen LC, Majerus PW. Cell lines from kidney proximal tubules of a patient with Lowe syndrome lack OCRL inositol polyphosphate 5‐phosphatase and accumulate phosphatidylinositol 4,5‐bisphosphate. J Biol Chem 273: 1574‐1582, 1998.
 406. Zhang Z, Okawa H, Wang Y, Liman ER. Phosphatidylinositol 4,5‐bisphosphate rescues TRPM4 channels from desensitization. J Biol Chem 280: 39185‐39192, 2005.
 407. Zhao Q, Logothetis DE, Séguéla P. Regulation of ATP‐gated P2X receptors by phosphoinositides. Pflugers Arch 455: 181‐185, 2007.
 408. Zhao Q, Yang M, Ting AT, Logothetis DE. PIP2 regulates the ionic current of P2X receptors and P2X7 receptor‐mediated cell death. Channels 1: 46‐55, 2007.
 409. Zhen XG, Xie C, Yamada Y, Zhang Y, Doyle C, Yang J. A single amino acid mutation attenuates rundown of voltage‐gated calcium channels. FEBS Lett 580: 5733‐5738, 2006.
 410. Zhou Z, Jiang DJ, Jia SJ, Xiao HB, Xiao B, Li YJ. Down‐regulation of endogenous nitric oxide synthase inhibitors on endothelial SK3 expression. Vascul Pharmacol 47: 265‐271, 2007.
 411. Zidovetzki R, Levitan I. Use of cyclodextrins to manipulate plasma membrane cholesterol content: Evidence, misconceptions and control strategies. Biochim Biophys Acta 1768: 1311, 2007.
 412. Zingman LV, Alekseev AE, Hodgson‐Zingman DM, Terzic A. ATP‐sensitive potassium channels: Metabolic sensing and cardioprotection. J Appl Physiol 103: 1888‐1893, 2007.
 413. Zolles G, Klocker N, Wenzel D, Weisser‐Thomas J, Fleischmann BK, Roeper J, Fakler B. Pacemaking by HCN channels requires interaction with phosphoinositides. Neuron 52: 1027‐1036, 2006.

Contact Editor

Submit a note to the editor about this article by filling in the form below.

* Required Field

How to Cite

Avia Rosenhouse‐Dantsker, Dolly Mehta, Irena Levitan. Regulation of Ion Channels by Membrane Lipids. Compr Physiol 2012, 2: 31-68. doi: 10.1002/cphy.c110001