References |
1. |
Bahinski A,
Nairn AC,
Greengard P,
Gadsby DC.
Chloride conductance regulated by cyclic AMP‐dependent protein kinase in cardiac myocytes.
Nature
340:
718‐721,
1989.
|
2. |
Baker MA,
Lane DJ,
Ly JD,
De Pinto V,
Lawen A.
VDAC1 is a transplasma membrane NADH‐ferricyanide reductase.
J Biol Chem
279:
4811‐4819,
2004.
|
3. |
Batthish M,
Diaz RJ,
Zeng HP,
Backx PH,
Wilson GJ.
Pharmacological preconditioning in rabbit myocardium is blocked by chloride channel inhibition.
Cardiovasc Res
55:
660‐671,
2002.
|
4. |
Baumgarten CM,
Clemo HF.
Swelling‐activated chloride channels in cardiac physiology and pathophysiology.
Prog Biophys Mol Biol
82:
25‐42,
2003.
|
5. |
Baumgarten CM,
Fozzard HA.
Intracellular chloride activity in mammalian ventricular muscle.
Am J Physiol
241:
C121‐C129,
1981.
|
6. |
Berthonneche C,
Peter B,
Schupfer F,
Hayoz P,
Kutalik Z,
Abriel H,
Pedrazzini T,
Beckmann JS,
Bergmann S,
Maurer F.
Cardiovascular response to beta‐adrenergic blockade or activation in 23 inbred mouse strains.
PLoS ONE
4:
e6610,
2009.
|
7. |
Bilder RM,
Sabb FW,
Cannon TD,
London ED,
Jentsch JD,
Parker DS,
Poldrack RA,
Evans C,
Freimer NB.
Phenomics: The systematic study of phenotypes on a genome‐wide scale.
Neuroscience
164:
30‐42,
2009.
|
8. |
Blume AJ,
Beasley J,
Goldstein NI.
The use of peptides in Diogenesis: A novel approach to drug discovery and phenomics.
Biopolymers
55:
347‐356,
2000.
|
9. |
Bogue MA,
Grubb SC.
The Mouse Phenome Project.
Genetica
122:
71‐74,
2004.
|
10. |
Borsani G,
Rugarli EI,
Taglialatela M,
Wong C,
Ballabio A.
Characterization of a human and murine gene (CLCN3) sharing similarities to voltage‐gated chloride channels and to a yeast integral membrane protein.
Genomics
27:
131‐141,
1995.
|
11. |
Boujaoude LC,
Bradshaw‐Wilder C,
Mao C,
Cohn J,
Ogretmen B,
Hannun YA,
Obeid LM.
Cystic fibrosis transmembrane regulator regulates uptake of sphingoid base phosphates and lysophosphatidic acid: Modulation of cellular activity of sphingosine 1‐phosphate.
J Biol Chem
276:
35258‐35264,
2001.
|
12. |
Bozeat N,
Dwyer L,
Ye L,
Yao T,
Duan D.
The role of ClC‐3 chloride channels in early and late ischemic preconditioning in mouse heart.
FASEB J
19(4):
A694‐A695,
2005.
|
13. |
Bozeat N,
Dwyer L,
Ye L,
Yao TY,
Hatton WJ,
Duan D.
VSOACs play an important cardioprotective role in late ischemic preconditioning in mouse heart.
Circulation
114:
272‐273 (1425), 2006. |
14. |
Britton FC,
Hatton WJ,
Rossow CF,
Duan D,
Hume JR,
Horowitz B.
Molecular distribution of volume‐regulated chloride channels (ClC‐2 and ClC‐3) in cardiac tissues.
Am J Physiol Heart Circ Physiol
279:
H2225‐H2233,
2000.
|
15. |
Britton FC,
Ohya S,
Horowitz B,
Greenwood IA.
Comparison of the properties of CLCA1 generated currents and I(Cl(Ca)) in murine portal vein smooth muscle cells.
J Physiol
539:
107‐117,
2002.
|
16. |
Britton FC,
Wang GL,
Huang ZM,
Ye L,
Horowitz B,
Hume JR,
Duan D.
Functional characterization of novel alternatively spliced ClC‐2 chloride channel variants in the heart.
J Biol Chem
280:
25871‐25880,
2005.
|
17. |
Browe DM,
Baumgarten CM.
Stretch of beta 1 integrin activates an outwardly rectifying chloride current via FAK and Src in rabbit ventricular myocytes.
J Gen Physiol
122:
689‐702,
2003.
|
18. |
Browe DM,
Baumgarten CM.
Angiotensin II (AT1) receptors and NADPH oxidase regulate Cl‐ current elicited by beta1 integrin stretch in rabbit ventricular myocytes.
J Gen Physiol
124:
273‐287,
2004.
|
19. |
Burd L,
Klug MG,
Martsolf JT,
Kerbeshian J.
Fetal alcohol syndrome: Neuropsychiatric phenomics.
Neurotoxicol Teratol
25:
697‐705,
2003.
|
20. |
Caille JP,
Ruiz‐Ceretti E,
Schanne OF.
Intracellular chloride activity in rabbit papillary muscle: Effect of ouabain.
Am J Physiol
240:
C183‐C188,
1981.
|
21. |
Caputo A,
Caci E,
Ferrera L,
Pedemonte N,
Barsanti C,
Sondo E,
Pfeffer U,
Ravazzolo R,
Zegarra‐Moran O,
Galietta LJ.
TMEM16A, a membrane protein associated with calcium‐dependent chloride channel activity.
Science
322:
590‐594,
2008.
|
22. |
Carmeliet E.
Cardiac ionic currents and acute ischemia: From channels to arrhythmias.
Physiol Rev
79:
917‐1017,
1999.
|
23. |
Chen H,
Liu LL,
Ye LL,
McGuckin C,
Tamowski S,
Scowen P,
Tian H,
Murray K,
Hatton WJ,
Duan D.
Targeted inactivation of cystic fibrosis transmembrane conductance regulator chloride channel gene prevents ischemic preconditioning in isolated mouse heart.
Circulation
110:
700‐704,
2004.
|
24. |
Chen Z,
Chua CC,
Ho YS,
Hamdy RC,
Chua BH.
Overexpression of Bcl‐2 attenuates apoptosis and protects against myocardial I/R injury in transgenic mice.
Am J Physiol Heart Circ Physiol
280:
H2313‐H2320,
2001.
|
25. |
Choi BR,
Hatton WJ,
Hume JR,
Liu T,
Salama G.
Low osmolarity transforms ventricular fibrillation from complex to highly organized, with a dominant high‐frequency source.
Heart Rhythm
3:
1210‐1220,
2006.
|
26. |
Cid LP,
Montrose‐Rafizadeh C,
Smith DI,
Guggino WB,
Cutting GR.
Cloning of a putative human voltage‐gated chloride channel (CIC‐2) cDNA widely expressed in human tissues.
Hum Mol Genet
4:
407‐413,
1995.
|
27. |
Cid LP,
Niemeyer MI,
Ramirez A,
Sepulveda FV.
Splice variants of a ClC‐2 chloride channel with differing functional characteristics.
Am J Physiol Cell Physiol
279:
C1198‐C1210,
2000.
|
28. |
Cid LP,
Ramirez A,
Niemeyer MI,
Sepulveda FV.
Characterisation of ClC‐2 chloride channel splice variants.
J Physiol (Lond)
523P:
4P,
2000.
|
29. |
Clemo HF,
Baumgarten CM.
Protein kinase C activation blocks ICl(swell) and causes myocyte swelling in a rabbit congestive heart failure model.
Circulation
98:
I‐695,
1998.
|
30. |
Clemo HF,
Danetz JS,
Baumgarten CM.
Does ClC‐3 modulate cardiac cell volume?
Biophys J
76:
A203,
1999.
|
31. |
Clemo HF,
Stambler BS,
Baumgarten CM.
Swelling‐activated chloride current is persistently activated in ventricular myocytes from dogs with tachycardia‐induced congestive heart failure.
Circ Res
84:
157‐165,
1999.
|
32. |
Collardeau‐Frachon S,
Bouvier R,
Le GC,
Rivet C,
Cabet F,
Bellon G,
Lachaux A,
Scoazec JY.
Unexpected diagnosis of cystic fibrosis at liver biopsy: A report of four pediatric cases.
Virchows Arch
451:
57‐64,
2007.
|
33. |
Collier ML,
Hume JR.
Unitary chloride channels activated by protein kinase C in guinea pig ventricular myocytes.
Circ Res
76:
317‐324,
1995.
|
34. |
Collier ML,
Levesque PC,
Kenyon JL,
Hume JR.
Unitary Cl‐ channels activated by cytoplasmic Ca2+ in canine ventricular myocytes.
Circ Res
78:
936‐944,
1996.
|
35. |
Conrad M,
Rizki MM.
The artificial worlds approach to emergent evolution.
Biosystems
23:
247‐258,
1989.
|
36. |
Cuppoletti J,
Malinowska DH,
Tewari KP,
Li QJ,
Sherry AM,
Patchen ML,
Ueno R.
SPI‐0211 activates T84 cell chloride transport and recombinant human ClC‐2 chloride currents.
Am J Physiol Cell Physiol
287:
C1173‐C1183,
2004.
|
37. |
Cuppoletti J,
Tewari KP,
Sherry AM,
Ferrante CJ,
Malinowska DH.
Sites of protein kinase A activation of the human ClC‐2 Cl(‐) channel.
J Biol Chem
279:
21849‐21856,
2004.
|
38. |
da Silva GA,
Holt JG.
Numerical taxonomy of certain coryneform bacteria.
J Bacteriol
90:
921‐927,
1965.
|
39. |
Davies WL,
Vandenberg JI,
Sayeed RA,
Trezise AE.
Post‐transcriptional regulation of the cystic fibrosis gene in cardiac development and hypertrophy.
Biochem Biophys Res Commun
319:
410‐418,
2004.
|
40. |
De Mello WC.
Heart failure: How important is cellular sequestration? The role of the renin‐angiotensin‐aldosterone system.
J Mol Cell Cardiol
37:
431‐438,
2004.
|
41. |
Deng W,
Baki L,
Baumgarten CM.
Endothelin signalling regulates volume‐sensitive Cl‐ current via NADPH oxidase and mitochondrial reactive oxygen species.
Cardiovasc Res
88:
93‐100,
2010.
|
42. |
Diaz RJ,
Batthish M,
Backx PH,
Wilson GJ.
Chloride channel inhibition does block the protection of ischemic preconditioning in myocardium.
J Mol Cell Cardiol
33:
1887‐1889,
2001.
|
43. |
Diaz RJ,
Losito VA,
Mao GD,
Ford MK,
Backx PH,
Wilson GJ.
Chloride channel inhibition blocks the protection of ischemic preconditioning and hypo‐osmotic stress in rabbit ventricular myocardium.
Circ Res
84:
763‐775,
1999.
|
44. |
DiFrancesco D.
Properties of the cardiac pacemaker (if) current.
Boll Soc Ital Biol Sper
60(Suppl 4):
29‐33,
1984.
|
45. |
DiFrancesco D.
Funny channels in the control of cardiac rhythm and mode of action of selective blockers.
Pharmacol Res
53:
399‐406,
2006.
|
46. |
Dobrzynski H,
Boyett MR,
Anderson RH.
New insights into pacemaker activity: Promoting understanding of sick sinus syndrome.
Circulation
115:
1921‐1932,
2007.
|
47. |
Du XY,
Sorota S.
Cardiac swelling‐induced chloride current depolarizes canine atrial myocytes.
Am J Physiol
272:
H1904‐H1916,
1997.
|
48. |
Duan D.
Phenomics of cardiac chloride channels: The systematic study of chloride channel function in the heart.
J Physiol
587:
2163‐2177,
2009.
|
49. |
Duan D,
Cowley S,
Horowitz B,
Hume JR.
A serine residue in ClC‐3 links phosphorylation‐dephosphorylation to chloride channel regulation by cell volume.
J Gen Physiol
113:
57‐70,
1999.
|
50. |
Duan D,
Fermini B,
Nattel S.
Sustained outward current observed after I(to1) inactivation in rabbit atrial myocytes is a novel Cl‐ current.
Am J Physiol
263:
H1967‐H1971,
1992.
|
51. |
Duan D,
Fermini B,
Nattel S.
Alpha‐adrenergic control of volume‐regulated Cl‐ currents in rabbit atrial myocytes. Characterization of a novel ionic regulatory mechanism.
Circ Res
77:
379‐393,
1995.
|
52. |
Duan D,
Hume JR,
Nattel S.
Evidence that outwardly rectifying Cl‐ channels underlie volume‐ regulated Cl‐ currents in heart.
Circ Res
80:
103‐113,
1997.
|
53. |
Duan D,
Liu L,
Wang GL,
Ye L,
Tian H,
Yao Y,
Chen A,
Duan M,
Hatton W.
Cell volume‐regulated ion channels and ionic remodeling in hypertrophied mouse heart.
J Cardiac Failure
10:
S72,
2004.
|
54. |
Duan D,
Nattel S.
Properties of single outwardly rectifying Cl‐ channels in heart.
Circ Res
75:
789‐795,
1994.
|
55. |
Duan D,
Winter C,
Cowley S,
Hume JR,
Horowitz B.
Molecular identification of a volume‐regulated chloride channel.
Nature
390:
417‐421,
1997.
|
56. |
Duan D,
Ye L,
Britton F,
Horowitz B,
Hume JR.
UltraRapid communications : A novel anionic inward rectifier in native cardiac myocytes.
Circ Res
86:
485,
2000.
|
57. |
Duan D,
Ye L,
Britton F,
Miller LJ,
Yamazaki J,
Horowitz B,
Hume JR.
Purinoceptor‐coupled Cl‐ channels in mouse heart: A novel, alternative pathway for CFTR regulation.
J Physiol
521(Pt 1):
43‐56,
1999.
|
58. |
Duan D,
Zhong J,
Hermoso M,
Satterwhite CM,
Rossow CF,
Hatton WJ,
Yamboliev I,
Horowitz B,
Hume JR.
Functional inhibition of native volume‐sensitive outwardly rectifying anion channels in muscle cells and Xenopus oocytes by anti‐ClC‐3 antibody.
J Physiol
531:
437‐444,
2001.
|
59. |
Duan DD.
Volume matters: Novel roles of the volume‐regulated CLC‐3 channels in hypertension‐induced cerebrovascular remodeling.
Hypertension
56:
346‐348,
2010.
|
60. |
Duan DY,
Liu LL,
Bozeat N,
Huang ZM,
Xiang SY,
Wang GL,
Ye L,
Hume JR.
Functional role of anion channels in cardiac diseases.
Acta Pharmacol Sin
26:
265‐278,
2005.
|
61. |
Dutzler R,
Campbell EB,
Cadene M,
Chait BT,
MacKinnon R.
X‐ray structure of a ClC chloride channel at 3.0 A reveals the molecular basis of anion selectivity.
Nature
415:
287‐294,
2002.
|
62. |
Elble RC,
Pauli BU.
Tumor suppression by a proapoptotic calcium‐activated chloride channel in mammary epithelium.
J Biol Chem
276:
40510‐40517,
2001.
|
63. |
Estevez R,
Boettger T,
Stein V,
Birkenhager R,
Otto E,
Hildebrandt F,
Jentsch TJ.
Barttin is a Cl‐ channel beta‐subunit crucial for renal Cl‐ reabsorption and inner ear K +secretion.
Nature
414:
558‐561,
2001.
|
64. |
Frace AM,
Maruoka F,
Noma A.
Control of the hyperpolarization‐activated cation current by external anions in rabbit sino‐atrial node cells.
J Physiol (Lond)
453:
307‐318,
1992.
|
65. |
Freimer N,
Sabatti C.
The human phenome project.
Nat Genet
34:
15‐21,
2003.
|
66. |
Fritsch J,
Edelman A.
Modulation of the hyperpolarization‐activated Cl‐ current in human intestinal T84 epithelial cells by phosphorylation.
J Physiol
490(Pt 1):
115‐128,
1996.
|
67. |
Furukawa T,
Horikawa S,
Terai T,
Ogura T,
Katayama Y,
Hiraoka M.
Molecular cloning and characterization of a novel truncated from (ClC‐2 beta) of ClC‐2 alpha (ClC‐2G) in rabbit heart.
FEBS Lett
375:
56‐62,
1995.
|
68. |
Furukawa T,
Ogura T,
Katayama Y,
Hiraoka M.
Characteristics of rabbit ClC‐2 current expressed in Xenopus oocytes and its contribution to volume regulation.
Am J Physiol
274:
C500‐C512,
1998.
|
69. |
Furukawa T,
Ogura T,
Zheng YJ,
Tsuchiya H,
Nakaya H,
Katayama Y,
Inagaki N.
Phosphorylation and functional regulation of ClC‐2 chloride channels expressed in Xenopus oocytes by M cyclin‐dependent protein kinase.
J Physiol
540:
883‐893,
2002.
|
70. |
Gadsby DC,
Nairn AC.
Control of CFTR channel gating by phosphorylation and nucleotide hydrolysis.
Physiol Rev
79:
S77‐S107,
1999.
|
71. |
Gao L,
Kim KJ,
Yankaskas JR,
Forman HJ.
Abnormal glutathione transport in cystic fibrosis airway epithelia.
Am J Physiol
277:
L113‐L118,
1999.
|
72. |
Gerlai R.
Phenomics: Fiction or the future?
Trends Neurosci
25:
506‐509,
2002.
|
73. |
Giles WR,
Imaizumi Y.
Comparison of potassium currents in rabbit atrial and ventricular cells.
J Physiol
405:
123‐145,
1988.
|
74. |
Guan YY,
Wang GL,
Zhou JG.
The ClC‐3 Cl‐ channel in cell volume regulation, proliferation and apoptosis in vascular smooth muscle cells.
Trends Pharmacol Sci
27:
290‐296,
2006.
|
75. |
Guggino SE.
Can we generate new hypotheses about Dent disease from gene analysis?
Exp Physiol
94:
191‐196,
2009.
|
76. |
Guggino WB,
Banks‐Schlegel SP.
Macromolecular interactions and ion transport in cystic fibrosis.
Am J Respir Crit Care Med
170:
815‐820,
2004.
|
77. |
Guggino WB,
Stanton BA.
New insights into cystic fibrosis: Molecular switches that regulate CFTR.
Nat Rev Mol Cell Biol
7:
426‐436,
2006.
|
78. |
Hagiwara N,
Masuda H,
Shoda M,
Irisawa H.
Stretch‐activated anion currents of rabbit cardiac myocytes.
J Physiol (Lond)
456:
285‐302,
1992.
|
79. |
Hartzell C,
Putzier I,
Arreola J.
Calcium‐activated chloride channels.
Annu Rev Physiol
67:
719‐758,
2005.
|
80. |
Harvey RD.
Cardiac chloride currents.
News Physiol Sci
11:
175‐181,
1996.
|
81. |
Harvey RD,
Hume JR.
Autonomic regulation of a chloride current in heart.
Science
244:
983‐985,
1989.
|
82. |
Harvey RD,
Hume JR.
Histamine activates the chloride current in cardiac ventricular myocytes.
J Cardiovas Electrophysiol
1:
309‐317,
1990.
|
83. |
Hermoso M,
Satterwhite CM,
Andrade YN,
Hidalgo J,
Wilson SM,
Horowitz B,
Hume JR.
ClC‐3 is a fundamental molecular component of volume‐sensitive outwardly rectifying Cl‐ channels and volume regulation in HeLa cells and Xenopus laevis oocytes.
J Biol Chem
277:
40066‐40074,
2002.
|
84. |
Heusch G,
Liu GS,
Rose J,
Cohen MV,
Downey JM.
No confirmation for a causal role of volume‐regulated chloride channels in ischemic preconditioning in rabbits.
J Mol Cell Cardiol
32:
2279‐2285,
2000.
|
85. |
Hiraoka M,
Kawano S,
Hirano Y,
Furukawa T.
Role of cardiac chloride currents in changes in action potential characteristics and arrhythmias.
Cardiovasc Res
40:
23‐33,
1998.
|
86. |
Houser SR,
Piacentino V, III,
Weisser J.
Abnormalities of calcium cycling in the hypertrophied and failing heart.
J Mol Cell Cardiol
32:
1595‐1607,
2000.
|
87. |
Huang X,
Godfrey TE,
Gooding WE,
McCarty KS, Jr,
Gollin SM.
Comprehensive genome and transcriptome analysis of the 11q13 amplicon in human oral cancer and synteny to the 7F5 amplicon in murine oral carcinoma.
Genes Chromosomes Cancer
45:
1058‐1069,
2006.
|
88. |
Huang ZM,
Britton FC,
An C,
Yuan C,
Ye L,
Hatton WJ,
Duan D.
Characterization of ClC‐2 channel/PKA interaction in mouse heart.
FASEB J
22,
721.5.
2008.
|
89. |
Huang ZM,
Prasad C,
Britton FC,
Ye LL,
Hatton WJ,
Duan D.
Functional role of CLC‐2 chloride inward rectifier channels in cardiac sinoatrial nodal pacemaker cells.
J Mol Cell Cardiol
47:
121‐132,
2009.
|
90. |
Hume JR,
Duan D,
Collier ML,
Yamazaki J,
Horowitz B.
Anion transport in heart.
Physiol Rev
80:
31‐81,
2000.
|
91. |
Hume JR,
Wang GX,
Yamazaki J,
Ng LC,
Duan D.
CLC‐3 chloride channels in the pulmonary vasculature.
Adv Exp Med Biol
661:
237‐247,
2010.
|
92. |
Intengan HD,
Schiffrin EL.
Vascular remodeling in hypertension: Roles of apoptosis, inflammation, and fibrosis.
Hypertension
38:
581‐587,
2001.
|
93. |
January CT,
Fozzard HA.
Delayed afterdepolarizations in heart muscle: Mechanisms and relevance.
Pharmacol Rev
40:
219‐227,
1988.
|
94. |
Jentsch TJ,
Stein V,
Weinreich F,
Zdebik AA.
Molecular structure and physiological function of chloride channels.
Physiol Rev
82:
503‐568,
2002.
|
95. |
Jordt SE,
Jentsch TJ.
Molecular dissection of gating in the ClC‐2 chloride channel.
EMBO J
16:
1582‐1592,
1997.
|
96. |
Kajita H,
Omori K,
Matsuda H.
The chloride channel ClC‐2 contributes to the inwardly rectifying Cl‐ conductance in cultured porcine choroid plexus epithelial cells.
J Physiol
523(Pt 2):
313‐324,
2000.
|
97. |
Kajita H,
Whitwell C,
Brown PD.
Properties of the inward‐rectifying Cl‐ channel in rat choroid plexus: Regulation by intracellular messengers and inhibition by divalent cations.
Pflugers Arch
440:
933‐940,
2000.
|
98. |
Kajita H,
Whitwell C,
Brown PD.
Properties of the inward‐rectifying Cl‐ channel in rat choroid plexus: Regulation by intracellular messengers and inhibition by divalent cations.
Pflugers Arch
440:
933‐940,
2000.
|
99. |
Kogan I,
Ramjeesingh M,
Li C,
Kidd JF,
Wang Y,
Leslie EM,
Cole SP,
Bear CE.
CFTR directly mediates nucleotide‐regulated glutathione flux.
EMBO J
22:
1981‐1989,
2003.
|
100. |
Komukai K,
Brette F,
Orchard CH.
Electrophysiological response of rat atrial myocytes to acidosis.
Am J Physiol Heart Circ Physiol
283:
H715‐H724,
2002.
|
101. |
Komukai K,
Brette F,
Pascarel C,
Orchard CH.
Electrophysiological response of rat ventricular myocytes to acidosis.
Am J Physiol Heart Circ Physiol
283:
H412‐H422,
2002.
|
102. |
Krieg RE,
Lockhart WR.
Classification of enterobacteria based on overall similarity.
J Bacteriol
92:
1275‐1280,
1966.
|
103. |
Kunzelmann K,
Schreiber R,
Boucherot A.
Mechanisms of the inhibition of epithelial Na(+) channels by CFTR and purinergic stimulation.
Kidney Int
60:
455‐461,
2001.
|
104. |
Kunzelmann K,
Schreiber R,
Nitschke R,
Mall M.
Control of epithelial Na+ conductance by the cystic fibrosis transmembrane conductance regulator.
Pflugers Arch
440:
193‐201,
2000.
|
105. |
Lang F,
Busch GL,
Ritter M,
Volkl H,
Waldegger S,
Gulbins E,
Haussinger D.
Functional significance of cell volume regulatory mechanisms.
Physiol Rev
78:
247‐306,
1998.
|
106. |
Lemonnier L,
Shuba Y,
Crepin A,
Roudbaraki M,
Slomianny C,
Mauroy B,
Nilius B,
Prevarskaya N,
Skryma R.
Bcl‐2‐dependent modulation of swelling‐activated Cl‐ current and ClC‐3 expression in human prostate cancer epithelial cells.
Cancer Res
64:
4841‐4848,
2004.
|
107. |
Levesque PC,
Hume JR.
ATPo but not cAMPi activates a chloride conductance in mouse ventricular myocytes.
Cardiovasc Res
29:
336‐343,
1995.
|
108. |
Li Y,
Trush MA.
Diphenyleneiodonium, an NAD(P)H oxidase inhibitor, also potently inhibits mitochondrial reactive oxygen species production.
Biochem Biophys Res Commun
253:
295‐299,
1998.
|
109. |
Linsdell P,
Hanrahan JW.
Glutathione permeability of CFTR.
Am J Physiol
275:
C323‐C326,
1998.
|
110. |
Liu J,
Noble PJ,
Xiao G,
Abdelrahman M,
Dobrzynski H,
Boyett MR,
Lei M,
Noble D.
Role of pacemaking current in cardiac nodes: Insights from a comparative study of sinoatrial node and atrioventricular node.
Prog Biophys Mol Biol
96:
294‐304,
2007.
|
111. |
Liu L,
Ye L,
McGuckin C,
Hatton WJ,
Duan D.
Disruption of Clcn3 gene in mice facilitates heart failure during pressure overload.
J Gen Physiol
122:
76,
2003.
|
112. |
Liu YJ,
Wang XG,
Tang YB,
Chen JF,
Lv XF,
Zhou JG,
Guan YY.
Simvastatin ameliorates rat cerebrovascular remodeling during hypertension via inhibition of volume‐regulated chloride channel.
Hypertension (in press),
2010.
|
113. |
Loewen ME,
MacDonald DW,
Gaspar KJ,
Forsyth GW.
Isoform‐specific exon skipping in a variant form of ClC‐2.
Biochim Biophys Acta
1493:
284‐288,
2000.
|
114. |
Malinowska DH,
Kupert EY,
Bahinski A,
Sherry AM,
Cuppoletti J.
Cloning, functional expression, and characterization of a PKA‐activated gastric Cl‐ channel.
Am J Physiol
268:
C191‐C200,
1995.
|
115. |
Miller FJ, Jr.,
Filali M,
Huss GJ,
Stanic B,
Chamseddine A,
Barna TJ,
Lamb FS.
Cytokine activation of nuclear factor kappa B in vascular smooth muscle cells requires signaling endosomes containing Nox1 and ClC‐3.
Circ Res
101:
663‐671,
2007.
|
116. |
Minagawa N,
Nagata J,
Shibao K,
Masyuk AI,
Gomes DA,
Rodrigues MA,
LeSage G,
Akiba Y,
Kaunitz JD,
Ehrlich BE,
LaRusso NF,
Nathanson MH.
Cyclic AMP regulates bicarbonate secretion in cholangiocytes through release of ATP into bile.
Gastroenterology
133:
1592‐1602,
2007.
|
117. |
Mizoguchi K,
Maeta H,
Yamamoto A,
Oe M,
Kosaka H.
Amelioration of myocardial global ischemia/reperfusion injury with volume‐regulatory chloride channel inhibitors in vivo.
Transplantation
73:
1185‐1193,
2002.
|
118. |
Moore RC,
Lee IY,
Silverman GL,
Harrison PM,
Strome R,
Heinrich C,
Karunaratne A,
Pasternak SH,
Chishti MA,
Liang Y,
Mastrangelo P,
Wang K,
Smit AF,
Katamine S,
Carlson GA,
Cohen FE,
Prusiner SB,
Melton DW,
Tremblay P,
Hood LE,
Westaway D.
Ataxia in prion protein (PrP)‐deficient mice is associated with upregulation of the novel PrP‐like protein doppel.
J Mol Biol
292:
797‐817,
1999.
|
119. |
Moss WW,
Webster WA.
Phenetics and numerical taxonomy applied to systematic nematology.
J Nematol
2:
16‐25,
1970.
|
120. |
Nagel G,
Hwang TC,
Nastiuk KL,
Nairn AC,
Gadsby DC.
The protein kinase A‐regulated cardiac Cl‐ channel resembles the cystic fibrosis transmembrane conductance regulator.
Nature
360:
81‐84,
1992.
|
121. |
Nakajima T,
Sugimoto T,
Kurachi Y.
Effects of anions on the G protein‐mediated activation of the muscarinic K+ channel in the cardiac atrial cell membrane. Intracellular chloride inhibition of the GTPase activity of GK.
J Gen Physiol
99:
665‐682,
1992.
|
122. |
Naren AP,
Kirk KL.
CFTR chloride channels: binding partners and regulatory networks.
News Physiol Sci
15:
57‐61,
2000.
|
123. |
O'Driscoll KE,
Hatton WJ,
Burkin HR,
Leblanc N,
Britton FC.
Expression, localization and functional properties of Bestrophin 3 channel isolated from mouse heart.
Am J Physiol Cell Physiol
295:
C1610‐C1624,
2008.
|
124. |
O'Driscoll KE,
Leblanc N,
Britton FC.
Molecular and functional characterization of murine Bestrophin 1 cloned from Heart.
FASEB J
22:
1201.25,
2008.
|
125. |
Ohba M.
Effects of tonicity on the pacemaker activity of guinea‐pig sino‐atrial node.
Jpn J Physiol
36:
1027‐1038,
1986.
|
126. |
Okada Y,
Shimizu T,
Maeno E,
Tanabe S,
Wang X,
Takahashi N.
Volume‐sensitive chloride channels involved in apoptotic volume decrease and cell death.
J Membr Biol
209:
21‐29,
2006.
|
127. |
Paigen K,
Eppig JT.
A mouse phenome project.
Mamm Genome
11:
715‐717,
2000.
|
128. |
Park K,
Begenisich T,
Melvin JE.
Protein kinase A activation phosphorylates the rat ClC‐2 Cl‐ channel but does not change activity.
J Membr Biol
182:
31‐37,
2001.
|
129. |
Patel DG,
Higgins RS,
Baumgarten CM.
Swelling‐activated cl current, ICl,swell, is chronically activated in diseased human atrial myocytes.
Biophys J
84:
233,
2003.
|
130. |
Rees SA,
Vandenberg JI,
Wright AR,
Yoshida A,
Powell T.
Cell swelling has differential effects on the rapid and slow components of delayed rectifier potassium current in guinea pig cardiac myocytes.
J Gen Physiol
106:
1151‐1170,
1995.
|
131. |
Reisin IL,
Prat AG,
Abraham EH,
Amara JF,
Gregory RJ,
Ausiello DA,
Cantiello HF.
The cystic fibrosis transmembrane conductance regulator is a dual ATP and chloride channel.
J Biol Chem
269:
20584‐20591,
1994.
|
132. |
Ren Z,
Raucci FJ, Jr.,
Browe DM,
Baumgarten CM.
Regulation of swelling‐activated Cl(‐) current by angiotensin II signalling and NADPH oxidase in rabbit ventricle.
Cardiovasc Res
77:
73‐80,
2008.
|
133. |
Ruiz PE,
Ponce ZA,
Schanne OF.
Early action potential shortening in hypoxic hearts: Role of chloride current(s) mediated by catecholamine release.
J Mol Cell Cardiol
28:
279‐290,
1996.
|
134. |
Sabirov RZ,
Okada Y.
ATP release via anion channels.
Purinergic Signal
1:
311‐328,
2005.
|
135. |
Sachar DB.
Genomics and phenomics in Crohn's disease.
Gastroenterology
122:
1161‐1162,
2002.
|
136. |
Schilling CH,
Edwards JS,
Palsson BO.
Toward metabolic phenomics: Analysis of genomic data using flux balances.
Biotechnol Prog
15:
288‐295,
1999.
|
137. |
Schork NJ.
Genetics of complex disease: Approaches, problems, and solutions.
Am J Respir Crit Care Med
156:
S103‐S109,
1997.
|
138. |
Schroeder BC,
Cheng T,
Jan YN,
Jan LY.
Expression cloning of TMEM16A as a calcium‐activated chloride channel subunit.
Cell
134:
1019‐1029,
2008.
|
139. |
Sherry AM,
Stroffekova K,
Knapp LM,
Kupert EY,
Cuppoletti J,
Malinowska DH.
Characterization of the human pH‐ and PKA‐activated ClC‐2G(2 alpha) Cl‐ channel.
Am J Physiol
273:
C384‐C393,
1997.
|
140. |
Skach WR.
CFTR: New members join the fold.
Cell
127:
673‐675,
2006.
|
141. |
Solbach TF,
Paulus B,
Weyand M,
Eschenhagen T,
Zolk O,
Fromm MF.
ATP‐binding cassette transporters in human heart failure.
Naunyn Schmiedebergs Arch Pharmacol
377:
231‐243,
2008.
|
142. |
Sorota S.
Swelling‐induced chloride‐sensitive current in canine atrial cells revealed by whole‐cell patch‐clamp method.
Circ Res
70:
679‐687,
1992.
|
143. |
Soule M,
Baker B.
Phenetics of natural populations. IV. The population asymmetry parameter in the butterfly Coenonympha tullia.
Heredity
23:
611‐614,
1968.
|
144. |
Spitzer KW,
Walker JL.
Intracellular chloride activity in quiescent cat papillary muscle.
Am J Physiol
238:
H487‐H493,
1980.
|
145. |
Staley K,
Smith R,
Schaack J,
Wilcox C,
Jentsch TJ.
Alteration of GABAA receptor function following gene transfer of the CLC‐2 chloride channel.
Neuron
17:
543‐551,
1996.
|
146. |
Sugita M,
Yue Y,
Foskett JK.
CFTR Cl‐ channel and CFTR‐associated ATP channel: Distinct pores regulated by common gates.
EMBO J
17:
898‐908,
1998.
|
147. |
Thiemann A,
Grunder S,
Pusch M,
Jentsch TJ.
A chloride channel widely expressed in epithelial and non‐epithelial cells.
Nature
356:
57‐60,
1992.
|
148. |
Tomaselli GF,
Marban E.
Electrophysiological remodeling in hypertrophy and heart failure.
Cardiovasc Res
42:
270‐283,
1999.
|
149. |
van Borren MM,
Verkerk AO,
Vanharanta SK,
Baartscheer A,
Coronel R,
Ravesloot JH.
Reduced swelling‐activated Cl(‐) current densities in hypertrophied ventricular myocytes of rabbits with heart failure.
Cardiovasc Res
53:
869‐878,
2002.
|
150. |
Vandenberg JI,
Bett GC,
Powell T.
Contribution of a swelling‐activated chloride current to changes in the cardiac action potential.
Am J Physiol
273:
C541‐C547,
1997.
|
151. |
Vaughan‐Jones RD.
Non‐passive chloride distribution in mammalian heart muscle: Micro‐electrode measurement of the intracellular chloride activity.
J Physiol (Lond)
295:
83‐109,
1979.
|
152. |
Vaughan‐Jones RD.
Chloride activity and its control in skeletal and cardiac muscle.
Philos Trans R Soc Lond B Biol Sci
299:
537‐548,
1982.
|
153. |
Verkerk AO,
Tan HL,
Ravesloot JH.
Ca2+‐activated Cl‐ current reduces transmural electrical heterogeneity within the rabbit left ventricle.
Acta Physiol Scand
180:
239‐247,
2004.
|
154. |
Verkerk AO,
Veldkamp MW,
Baartscheer A,
Schumacher CA,
Klopping C,
van Ginneken AC,
Ravesloot JH.
Ionic mechanism of delayed afterdepolarizations in ventricular cells isolated from human end‐stage failing hearts.
Circulation
104:
2728‐2733,
2001.
|
155. |
Verkerk AO,
Veldkamp MW,
Bouman LN,
van Ginneken AC.
Calcium‐activated Cl(‐) current contributes to delayed afterdepolarizations in single Purkinje and ventricular myocytes.
Circulation
101:
2639‐2644,
2000.
|
156. |
Verkerk AO,
Wilders R,
Coronel R,
Ravesloot JH,
Verheijck EE.
Ionic remodeling of sinoatrial node cells by heart failure.
Circulation
108:
760‐766,
2003.
|
157. |
Verkerk AO,
Wilders R,
Zegers JG,
van Borren MM,
Ravesloot JH,
Verheijck EE.
Ca(2+)‐activated Cl(‐) current in rabbit sinoatrial node cells.
J Physiol
540:
105‐117,
2002.
|
158. |
Vilela RM,
Lands LC,
Meehan B,
Kubow S.
Inhibition of IL‐8 release from CFTR‐deficient lung epithelial cells following pre‐treatment with fenretinide.
Int Immunopharmacol
6:
1651‐1664,
2006.
|
159. |
Volk AP,
Heise CK,
Hougen JL,
Artman CM,
Volk KA,
Wessels D,
Soll DR,
Nauseef WM,
Lamb FS,
Moreland JG.
CLC‐3 and ICLswell are required for normal neutrophil chemotaxis and shape change.
J Biol Chem
283:
34315‐34326,
2008.
|
160. |
Walsh KB,
Long KJ.
Properties of a protein kinase C‐activated chloride current in guinea pig ventricular myocytes.
Circ Res
74:
121‐129,
1994.
|
161. |
Wang GX,
Hatton WJ,
Wang GL,
Zhong J,
Yamboliev I,
Duan D,
Hume JR.
Functional effects of novel anti‐ClC‐3 antibodies on native volume‐sensitive osmolyte and anion channels in cardiac and smooth muscle cells.
Am J Physiol Heart Circ Physiol
285:
H1453‐H1463,
2003.
|
162. |
Wang X,
Venable J,
LaPointe P,
Hutt DM,
Koulov AV,
Coppinger J,
Gurkan C,
Kellner W,
Matteson J,
Plutner H,
Riordan JR,
Kelly JW,
Yates JR, III,
Balch WE.
Hsp90 cochaperone Aha1 downregulation rescues misfolding of CFTR in cystic fibrosis.
Cell
127:
803‐815,
2006.
|
163. |
Wei L,
Xiao AY,
Jin C,
Yang A,
Lu ZY,
Yu SP.
Effects of chloride and potassium channel blockers on apoptotic cell shrinkage and apoptosis in cortical neurons.
Pflugers Arch
448:
325‐334,
2004.
|
164. |
Wong KR,
Trezise AE,
Crozatier B,
Vandenberg JI.
Loss of the normal epicardial to endocardial gradient of cftr mRNA expression in the hypertrophied rabbit left ventricle.
Biochem Biophys Res Commun
278:
144‐149,
2000.
|
165. |
Wright J,
Morales MM,
Sousa‐Menzes J,
Ornellas D,
Sipes J,
Cui Y,
Cui I,
Hulamm P,
Cebotaru V,
Cebotaru L,
Guggino WB,
Guggino SE.
Transcriptional adaptation to Clcn5 knockout in proximal tubules of mouse kidney.
Physiol Genomics
33:
341‐354,
2008.
|
166. |
Xiang SY,
Schegg K,
Ye LL,
Hatton WJ,
Duan D.
VDAC‐1 may interact with CFTR to impart important cellular function in mouse heart.
FASEB J
21(726.3):
A799,
2007.
|
167. |
Xiang SY,
Ye LL,
Hatton WJ,
Duan D.
ATPo‐activated chloride channels play a key role in postconditioning‐induced cardioprotection in mouse heart.
FASEB J
22:
1130.10,
2008.
|
168. |
Xiong D,
Heyman NS,
Airey J,
Zhang M,
Singer CA,
Rawat S,
Ye L,
Evans R,
Burkin DJ,
Tian H,
McCloskey DT,
Valencik M,
Britton FC,
Duan D,
Hume JR.
Cardiac‐specific, inducible ClC‐3 gene deletion eliminates native volume‐sensitive chloride channels and produces myocardial hypertrophy in adult mice.
J Mol Cell Cardiol
48:
211‐219,
2010.
|
169. |
Xiong D,
Wang GX,
Burkin DJ,
Yamboliev IA,
Singer CA,
Rawat S,
Scowen P,
Evans R,
Ye L,
Hatton WJ,
Tian H,
Keller PS,
McCloskey DT,
Duan D,
Hume JR.
Cardiac‐specific overexpression of the human short CLC‐3 chloride channel isoform in mice.
Clin Exp Pharmacol Physiol
36:
386‐393,
2009.
|
170. |
Xiong D,
Ye L,
Neveux I,
Burkin DJ,
Scowen P,
Evans R,
Valencik M,
Duan D,
Hume JR.
Cardiac specific inactivation of ClC‐3 gene reveals cardiac hypertrophy and compromised heart function.
FASEB J
22:
970.25,
2008.
|
171. |
Xu Y,
Dong PH,
Zhang Z,
Ahmmed GU,
Chiamvimonvat N.
Presence of a calcium‐activated chloride current in mouse ventricular myocytes.
Am J Physiol Heart Circ Physiol
283:
H302‐H314,
2002.
|
172. |
Yamamoto S,
Ehara T.
Acidic extracellular pH‐activated outwardly rectifying chloride current in mammalian cardiac myocytes.
Am J Physiol Heart Circ Physiol
290:
H1905‐H1914,
2006.
|
173. |
Yamamoto‐Mizuma S,
Wang GX,
Hume JR.
P2Y purinergic receptor regulation of CFTR chloride channels in mouse cardiac myocytes.
J Physiol
556:
727‐737,
2004.
|
174. |
Yamamoto‐Mizuma S,
Wang GX,
Liu LL,
Schegg K,
Hatton WJ,
Duan D,
Horowitz TL,
Lamb FS,
Hume JR.
Altered properties of volume‐sensitive osmolyte and anion channels (VSOACs) and membrane protein expression in cardiac and smooth muscle myocytes from Clcn3‐/‐ mice.
J Physiol
557:
439‐456,
2004.
|
175. |
Yang YD,
Cho H,
Koo JY,
Tak MH,
Cho Y,
Shim WS,
Park SP,
Lee J,
Lee B,
Kim BM,
Raouf R,
Shin YK,
Oh U.
TMEM16A confers receptor‐activated calcium‐dependent chloride conductance.
Nature
455:
1210‐1215,
2008.
|
176. |
Ye L,
Dwyer L,
Duan D.
In vivo study of the role of cystic fibrosis transmembrane conductance regulator Cl− channels in early and late ischemic preconditioning.
Heart Disease
4(362):
91,
2005.
|
177. |
Yin Z,
Tong Y,
Zhu H,
Watsky MA.
ClC‐3 is required for LPA‐activated Cl‐ current activity and fibroblast‐to‐myofibroblast differentiation.
Am J Physiol Cell Physiol
294:
C535‐C542,
2008.
|
178. |
Zhang Z,
Xu Y,
Song H,
Rodriguez J,
Tuteja D,
Namkung Y,
Shin HS,
Chiamvimonvat N.
Functional roles of Cav1.3 ({alpha}1D) calcium channel in sinoatrial nodes: Insight gained using gene‐targeted null mutant mice.
Circ Res
90:
981‐987,
2002.
|
179. |
Zygmunt AC.
Intracellular calcium activates a chloride current in canine ventricular myocytes.
Am J Physiol
267:
H1984‐H1995,
1994.
|
180. |
Zygmunt AC,
Gibbons WR.
Calcium‐activated chloride current in rabbit ventricular myocytes.
Circ Res
68:
424‐437,
1991.
|
181. |
Zygmunt AC,
Gibbons WR.
Properties of the calcium‐activated chloride current in heart.
J Gen Physiol
99:
391‐414,
1992.
|