References |
1. |
Akizuki N,
Uchida S,
Sasaki S,
Marumo F.
Impaired solute accumulation in inner medulla of Clcnk1‐/‐ mice kidney.
Am J Physiol Renal Physiol
280:
F79‐F87,
2001.
|
2. |
Alper SL,
Stuart‐Tilley AK,
Biemesderfer D,
Shmukler BE,
Brown D.
Immunolocalization of AE2 anion exchanger in rat kidney.
Am J Physiol Renal Physiol
273:
F601‐F614,
1997.
|
3. |
Angelow S,
Ahlstrom R,
Yu ASL.
Biology of claudins. Am J Physiol Renal Physiol 295:
F867‐F876,
2008.
|
4. |
Angelow S,
El‐Husseini R,
Kanzawa SA,
Yu ASL.
Renal localization and function of the tight junction protein, claudin‐19. Am J Physiol Renal Physiol 293:
F166‐F177,
2007.
|
5. |
Bachmann S,
Kriz W.
Histotopography and ultrastructure of the thin limbs of the loop of Henle in the hamster.
Cell Tissue Res
225:
111‐127,
1982.
|
6. |
Bagnasco S,
Balaban R,
Fales HM,
Yang Y‐M,
Burg M.
Predominant osmotically active organic solutes in rat and rabbit renal medullas.
J Biol Chem
261:
5872‐5877,
1986.
|
7. |
Bailey MA,
Haton C,
Orea V,
Sassard J,
Bailly C,
Unwin RJ,
Imbert‐Teboul M.
ETA receptor‐mediated Ca2+ signaling in thin descending limbs of Henle's loop: Impairment in genetic hypertension.
Kidney Int
63:
1276‐1284,
2003.
|
8. |
Bankir L,
De Rouffignac C.
Urinary concentrating ability: Insights from comparative anatomy.
Am J Physiol
249:
R643‐R666,
1985.
|
9. |
Barlassina C,
Dal Fiume C,
Lanzani C,
Manunta P,
Guffanti G,
Ruello A,
Bianchi G,
Del Vecchio L,
Macciardi F,
Cusi D.
Common genetic variants and haplotypes in renal CLCNKA gene are associated to salt‐sensitive hypertension.
Hum Mol Genet
16:
1630‐1638,
2007.
|
10. |
Barrett JM,
Kriz W,
Kaissling B,
De Rouffignac C.
The ultrastructure of the nephrons of the desert rodent (Psammonys obesus) kidney. II. Thin limbs of Henle of long‐looped nephrons.
Am J Anat
151:
499‐514,
1978.
|
11. |
Bergler T,
Stoelcker B,
Jeblick R,
Reinhold SW,
Wolf K,
Riegger GAJ,
Kramer BK.
High osmolality induces the kidney‐specific chloride channel CLC‐K1 by a serum and glucocorticoid‐inducible kinase 1 MAPK pathway.
Kidney Int
74:
1170‐1177,
2008.
|
12. |
Beuchat CA.
Structure and concentrating ability of the mammalian kidney: Correlations with habitat.
Am J Physiol Regul Integr Comp Physiol
271:
R157‐R179,
1996.
|
13. |
Biemesderfer D,
Rutherford PA,
Nagy T,
Pizzonia JH,
Abu‐Alfa AK,
Aronson PS.
Monoclonal antibodies for high‐resolution localization of NHE3 in adult and neonatal rat kidney.
Am J Physiol Renal Physiol
273:
F289‐F299,
1997.
|
14. |
Birkenhager R,
Otto E,
Schurmann MJ,
Vollmer M,
Ruf EM,
Maier‐Lutz I,
Beekmann F,
Fekete A,
Omran H,
Feldmann D,
Milford DV,
Jeck N,
Konrad M,
Landau D,
Knoers NVAM,
Antignac C,
Sudbrak R,
Kispert A,
Hildebrandt F.
Mutation of BSND causes Bartter syndrome with sensorineural deafness and kidney failure.
Nat Genet
29:
310‐314,
2001.
|
15. |
Braun EJ,
Dantzler WH.
Vertebrate renal system. In:
Handbook of Physiology: Comparative Physiology, Vol.
1.
1997. American Physiological Society; Oxford University Press, NY.
|
16. |
Brokl OH,
Dantzler WH.
Amino acid fluxes in rat thin limb segments of Henle's loop during in vitro microperfusion.
Am J Physiol
277:
F204‐F210,
1999.
|
17. |
Brown D,
Hirsch S,
Gluck S.
Localization of a proton‐pumping ATPase in rat‐kidney.
J Clin Invest
82:
2114‐2126,
1988.
|
18. |
Brown D,
Kumpulainen T,
Roth J,
Orci L.
Immunohistochemical localization of carbonic‐anhydrase in postnatal and adult‐rat kidney.
Am J Physiol
245:
F110‐F118,
1983.
|
19. |
Bruzzi I,
Corna D,
Zoja C,
Orisio S,
Schiffrin EL,
Cavallotti D,
Remuzzi G,
Benigni A.
Time course and localization of endothelin‐1 gene expression in a model of renal disease progression.
Am J Pathol
151:
1241‐1247,
1997.
|
20. |
Carrithers SL,
Taylor B,
Cai WY,
Johnson BR,
Ott CE,
Greenberg RN,
Jackson BA.
Guanylyl cyclase‐C receptor mRNA distribution along the rat nephron.
Regul Pept
95:
65‐74,
2000.
|
21. |
Cha JH,
Woo SK,
Han KH,
Kim YH,
Handler JS,
Kim J,
Kwon HM.
Hydration status affects nuclear distribution of transcription factor tonicity responsive enhancer binding protein in rat kidney.
J Am Soc Nephrol
12:
2221‐2230,
2001.
|
22. |
Chou CL,
Knepper MA,
Layton HE.
Urinary concentrating mechanism ‐ the role of the inner medulla.
Semin Nephrol
13:
168‐181,
1993.
|
23. |
Chou CL,
Knepper MA,
Van Hoek AN,
Brown D,
Ma T,
Verkman AS.
Reduced water permeability and altered ultrastructure in thin descending limb of Henle in aquaporin‐1 null mice.
J Clin Invest
103:
491‐496,
1999.
|
24. |
Chou CL,
Yip KP,
Michea L,
Kador K,
Ferraris JD,
Wade JB,
Knepper MA.
Regulation of aquaporin‐2 trafficking by vasopressin in the renal collecting duct ‐ roles of ryanodine‐sensitive Ca2+ stores and calmodulin.
J Biol Chem
275:
36839‐36846,
2000.
|
25. |
Chou C‐L,
Knepper MA.
In vitro perfusion of chinchilla thin limb segments: Segmentation and osmotic water permeability.
Am J Physiol
263(3):
F417‐F426,
1992.
|
26. |
Chou C‐L,
Knepper MA.
In vitro perfusion of chinchilla thin limb segments: Urea and NaCl permeabilities.
Am J Physiol
264:
F337‐F343,
1993.
|
27. |
Chou C‐L,
Nielsen S,
Knepper MA.
Structural‐functional correlation in chinchilla long loop of Henle thin limbs: A novel papillary subsegment.
Am J Physiol Renal
265:
F863‐F874,
1993.
|
28. |
Cowley AW, Jr.
Role of the renal medulla in volume and arterial pressure regulation.
Am J Physiol Regul Integr Comp Physiol
273:
R1‐R15,
1997.
|
29. |
Dantzler WH,
Evans KK,
Pannabecker TL.
Osmotic water permeabilities in specific segments of rat inner medullary thin limbs of Henle's loops.
FASEB J
23:
970.3,
2009.
|
30. |
Dantzler WH,
Kim YK,
Abbott DE,
Serrano OK,
Brokl OH.
Intracellular pH in isolated rat renal papillary thin limbs of Henle's loop.
Pflugers Arch
440:
140‐148,
2000.
|
31. |
Dantzler WH,
Silbernagl S.
Amino acid transport by juxtamedullary nephrons: Distal reabsorption and recycling.
Am J Physiol
255:
F397‐F407,
1988.
|
32. |
Dantzler WH,
Silbernagl S.
Amino acid transport: Microinfusion and micropuncture of Henle's loops and vasa recta.
Am J Physiol
258:
F504‐F513,
1990.
|
33. |
Estevez R,
Bottger T,
Stein V,
Birkenhager R,
Otto E,
Hildebrandt F,
Jentsch TJ.
Barttin is a Cl‐ channel beta‐subunit crucial for renal Cl‐ reabsorption and inner ear K +secretion.
Nature
414:
558‐561,
2001.
|
34. |
Fenton RA,
Brond L,
Nielsen S,
Praetorius J.
Cellular and subcellular distribution of the type‐2 vasopressin receptor in the kidney. Am J Physiol Renal Physiol 293:
F748‐F760,
2007.
|
35. |
Fenton RA,
Chou C‐L,
Stewart GS,
Smith CP,
Knepper MA.
Urinary concentrating defect in mice with selective deletion of phloretin‐sensitive urea transporters in the renal collecting duct.
Proc Natl Acad Sci U S A
101:
7469‐7474,
2004.
|
36. |
Fenton RA,
Knepper MA.
Mouse models and the urinary concentrating mechanism in the new millennium.
Physiol Rev
87:
1083‐1112,
2007.
|
37. |
Fenton RA,
Stewart GS,
Carpenter B,
Howorth A,
Potter EA,
Cooper GJ,
Smith CP.
Characterization of mouse urea transporters UT‐A1 and UT‐A2. Am J Physiol Renal Physiol 283:
F817‐F825,
2002.
|
38. |
Fischer M,
Janssen AGH,
Fahlke C.
Barttin activates CIC‐K channel function by modulating gating.
J Am Soc Nephrol
21:
1281‐1289,
2010.
|
39. |
Fujiwara I,
Kondo Y,
Igarashi Y,
Inoue CN,
Takahashi N,
Tada K,
Abe K.
Amiloride‐sensitive Na+/H+ antiporter in basolateral membrane of hamster ascending thin limb of Henle's loop.
Am J Physiol
268:
F410‐F415,
1995.
|
40. |
Furuse M,
Tsukita S.
Claudins in occluding junctions of humans and flies.
Trends Cell Biol
16:
181‐188,
2006.
|
41. |
Gonzalez‐Mariscal L,
Namorado MC,
Martin D,
Luna J,
Alarcon L,
Islas S,
Valencia L,
Muriel P,
Ponce L,
Reyes JL.
Tight junction proteins ZO‐1, ZO‐2, and occludin along isolated renal tubules.
Kidney Int
57:
2386‐2402,
2000.
|
42. |
Gottschalk CW,
Mylle M.
Micropuncture study of the mammalian urinary concentrating mechanism: Evidence for the countercurrent hypothesis.
Am J Physiol
196:
927‐936,
1959.
|
43. |
Han JS,
Thompson KA,
Chou C‐L,
Knepper MA.
Experimental tests of three‐dimensional model of urinary concentrating mechanism.
J Am Soc Nephrol
2(12):
1677‐1688,
1992.
|
44. |
Hanner F,
Schnichels M,
Zheng‐Fischhofer Q,
Yang LE,
Toma I,
Willecke K,
McDonough AA,
Peti‐Peterdi J.
Connexin 30.3 is expressed in the kidney but not regulated by dietary salt or high blood pressure.
Cell Commun Adhes
15:
219‐230,
2008.
|
45. |
Hoffert JD,
Chou CL,
Fenton RA,
Knepper MA.
Calmodulin is required for vasopressin‐stimulated increase in cyclic AMP production in inner medullary collecting duct.
J Biol Chem
280:
13624‐13630,
2005.
|
46. |
Humbert F,
Pricam C,
Perrelet A,
Orci L.
Freeze‐fracture differences between plasma‐membranes of descending and ascending branches of rat Henles thin loop.
Lab Invest
33:
407‐411,
1975.
|
47. |
Imai M.
Function of the thin ascending limb of Henle of rats and hamsters perfused in vitro.
Am J Physiol
232:
F201‐F209,
1977.
|
48. |
Imai M.
Functional heterogeneity of the descending limbs of Henle's loop. ii. Interspecies differences among rabbits, rats, and hamsters.
Pflugers Arch
402:
393‐401,
1984.
|
49. |
Imai M,
Hayashi M,
Araki M.
Functional heterogeneity of the descending limbs of Henle's loop. I. Internephron heterogeneity in the hamster kidney.
Pflugers Arch
402:
385‐392,
1984.
|
50. |
Imai M,
Kokko JP.
Sodium chloride, urea, and water transport in the thin ascending limb of Henle. Generation of osmotic gradients by passive diffusion of solutes.
J Clin Invest
53:
393‐402,
1974.
|
51. |
Imai M,
Taniguchi J,
Tabei K.
Function of thin loops of Henle.
Kidney Int
31:
565‐579,
1987.
|
52. |
Imai M,
Taniguchi J,
Yoshitomi K.
Transition of permeability properties along the descending limb of long‐loop nephron.
Am J Physiol
254:
F323‐F328,
1988.
|
53. |
Imai M,
Yasoshima K,
Yoshitomi K.
Mechanism of water transport across the upper portion of the descending thin limb of long‐looped nephron of hamsters.
Pflugers Arch
415:
630‐637,
1990.
|
54. |
Imai M,
Yoshitomi K.
Heterogeneity of the descending thin limb of Henle's loop.
Kidney Int
38:
687‐694,
1990.
|
55. |
Iwaki T,
Kume‐Iwaki A,
Goldman JE.
Cellular distribution of αB‐crystallin in non‐lenticular tissues.
J Histochem Cytochem
38:
31‐39,
1990.
|
56. |
Jamison RL.
Short and long loop nephrons.
Kidney Int
31:
597‐605,
1987.
|
57. |
Jamison RL,
Kriz W.
Urinary Concentrating Mechanism.
New York:
Oxford University Press,
1982.
|
58. |
Jenq W,
Mathieson IM,
Ihara W,
Ramirez G.
Aquaporin‐1: An osmoinducible water channel in cultured mIMCD‐3 cells.
Biochem Biophys Res Comm
245:
804‐809,
1998.
|
59. |
Jentsch TJ,
Stein V,
Weinreich F,
Zdebik AA.
Molecular structure and physiological function of chloride channels.
Physiol Rev
82:
503‐568,
2002.
|
60. |
Johnston PA,
Battilana CA,
Lacy FB,
Jamison RL.
Evidence for a concentration gradient favoring outward movement of sodium from the thin loop of Henle.
J Clin Invest
59:
234‐240,
1977.
|
61. |
Jung JY,
Madsen KM,
Han KH,
Yang CW,
Knepper MA,
Sands JM,
Kim J.
Expression of urea transporters in potassium‐depleted mouse kidney.
Am J Physiol Renal Physiol
285:
F1210‐F1224,
2003.
|
62. |
Kaissling B,
Kriz W.
Structural analysis of the rabbit kidney.
Adv Anat Embryol Cell Biol
56:
1‐123,
1979.
|
63. |
Kaissling B,
Kriz W.
Morphology of the loop of Henle, distal tubule, and collecting duct. In:
Windhager EE, editor.
Handbook of Physiology.
New York:
Oxford University Press,
1992, Sec. 8,
pp. 109‐167.
|
64. |
Kashgarian M,
Biemesderfer D,
Caplan M,
Forbush B III.
Monoclonal antibody to Na,K‐ATPase: Immunocytochemical localization along nephron segments.
Kidney Int
28:
899‐913,
1985.
|
65. |
Kersting U,
Dantzler WH,
Oberleithner H,
Silbernagl S.
Evidence for an acid pH in rat renal inner medulla: Paired measurements with liquid ion‐exchange microelectrodes on collecting ducts and vasa recta.
Pflugers Arch
426:
354‐356,
1994.
|
66. |
Kieferle S,
Fong PY,
Bens M,
Vandewalle A,
Jentsch TJ.
Two highly homologous members of the ClC chloride channel family in both rat and human kidney.
Proc Natl Acad Sci U S A
91:
6943‐6947,
1994.
|
67. |
Kim J,
Pannabecker TL.
Two‐compartment model of inner medullary vasculature supports dual modes of vasopressin‐regulated inner medullary blood flow.
Am J Physiol Renal Physiol,
299:
F273‐F279,
2010.
|
68. |
Kim YH,
Kim DU,
Han KH,
Jung JY,
Sands JM,
Knepper MA,
Madsen KM,
Kim J.
Expression of urea transporters in the developing rat kidney.
Am J Physiol Renal Physiol
282:
F530‐F540,
2002.
|
69. |
Kiuchi‐Saishin Y,
Gotoh S,
Furuse M,
Takasuga A,
Tano Y,
Tsukita S.
Differential expression patterns of claudins, tight junction membrane proteins, in mouse nephron segments.
J Am Soc Nephrol
13:
875‐886,
2002.
|
70. |
Klein JD,
Le Quach D,
Cole JM,
Disher K,
Mongiu AK,
Wang XD,
Bernstein KE,
Sands JM.
Impaired urine concentration and absence of tissue ACE: Involvement of medullary transport proteins. Am J Physiol Renal Physiol 283:
F517‐F524,
2002.
|
71. |
Knepper MA,
Danielson RA,
Saidel GM,
Post RS.
Quantitative analysis of renal medullary anatomy in rats and rabbits.
Kidney Int
12:
313‐323,
1977.
|
72. |
Knepper MA,
Roch‐Ramel F.
Pathways of urea transport in the mammalian kidney.
Kidney Int
31:
629‐633,
1987.
|
73. |
Knepper MA,
Saidel GM,
Hascall VC,
Dwyer T.
Concentration of solutes in the renal inner medulla: Interstitial hyaluronan as a mechano‐osmotic transducer.
Am J Physiol Renal Physiol
284:
F433‐F446,
2003.
|
74. |
Kokko JP.
Sodium chloride and water transport in the descending limb of Henle.
J Clin Invest
49:
1838‐1846,
1970.
|
75. |
Kokko JP.
Urea transport in the proximal tubule and the descending limb of Henle.
J Clin Invest
51:
1999‐2008,
1972.
|
76. |
Kokko JP,
Rector FC.
Countercurrent multiplication system without active transport in inner medulla.
Kidney Int
2:
214‐223,
1972.
|
77. |
Kondo Y,
Yoshitomi K,
Imai M.
Effect of pH on Cl‐ transport in TAL of Henle's loop.
Am J Physiol
253:
F1216‐F1222,
1987.
|
78. |
Kondo Y,
Yoshitomi K,
Imai M.
Effect of Ca2+ on Cl‐ transport in thin ascending limb of Henle's loop.
Am J Physiol
254:
F232‐F239,
1988.
|
79. |
Koyama S,
Yoshitomi K,
Imai M.
Effect of protamine on ion conductance of ascending thin limb of Henle's loop from hamsters.
Am J Physiol
261:
F593‐F599,
1991a.
|
80. |
Koyama S,
Yoshitomi K,
Imai M.
Effect of protamine on ion conductance of upper portion of descending limb of long‐looped nephron from hamsters.
Am J Physiol
260:
F839‐F847,
1991b.
|
81. |
Kriz W.
Structural organization of the renal medulla: Comparative and functional aspects.
Am J Physiol
241:
R3‐R16,
1981.
|
82. |
Kriz W,
Bankir L.
A standard nomenclature for structures of the kidney.
Am J Physiol
254:
F1‐F8,
1988.
|
83. |
Kriz W,
Kaissling B.
Structural organization of the mammalian kidney. In:
Seldin DW,
Giebisch G, editors.
The Kidney: Physiology and Pathophysiology.
New York:
Raven Press Ltd.,
1992,
pp. 707‐777.
|
84. |
Kriz W,
Schnermann J,
Koepsell H.
The position of short and long loops of Henle in the rat kidney.
Z Anat Entwickl‐Gesch
138:
301‐319,
1972.
|
85. |
Kurtz I.
Apical and basolateral Na+/H+ exchange in the rabbit outer medullary thin descending limb of Henle: Role of intracellular pH regulation.
J Membr Biol
106:
253‐260,
1988.
|
86. |
Kwon O,
Myers BD,
Sibley R,
Dafoe D,
Alfrey E,
Nelson WJ.
Distribution of cell membrane‐associated proteins along the human nephron.
J Histochem Cytochem
46:
1423‐1434,
1998.
|
87. |
Lam AKM,
Ko BCB,
Tam S,
Morris R,
Yang JY,
Chung SK,
Chung SSM.
Osmotic response element‐binding protein (OREBP) is an essential regulator of the urine concentrating mechanism. J Biol Chem 279:
48048‐48054,
2004.
|
88. |
Lassiter WE,
Gottschalk CW,
Mylle M.
Micropuncture study of net transtubular movement of water and urea in nondiuretic mammalian kidney.
Am J Physiol
200:
1139‐1147,
1961.
|
89. |
Layton AT,
Layton HE.
A region‐based mathematical model of the urine concentrating mechanism in the rat outer medulla. I. Formulation and base‐case results.
Am J Physiol
289:
F1346‐F1366,
2005.
|
90. |
Layton AT,
Layton HE,
Dantzler WH,
Pannabecker TL.
The mammalian urine concentrating mechanism: Hypotheses and uncertainties.
Physiology
24:
250‐256,
2009.
|
91. |
Layton AT,
Pannabecker TL,
Dantzler WH,
Layton HE.
Two modes for concentrating urine in rat inner medulla.
Am J Physiol Renal Physiol
287:
F816‐F839,
2004.
|
92. |
Layton AT,
Pannabecker TL,
Dantzler WH,
Layton HE.
Functional implications of the three‐dimensional architecture of the rat renal inner medulla.
Am J Physiol Renal Physiol
298:
F973‐F987,
2010.
|
93. |
Layton HE.
Distribution of Henle's loops may enhance urine concentrating capability.
Biophys J
49:
1033‐1040,
1986.
|
94. |
Layton HE.
Concentrating urine in the inner medulla of the kidney.
Comments Theor Biol
1:
179‐196,
1989.
|
95. |
Layton HE,
Davies JM.
Distributed solute and water reabsorption in a central core model of the renal medulla.
Math Biosci
116:
169‐196,
1993.
|
96. |
Layton HE,
Knepper MA,
Chou CL.
Permeability criteria for effective function of passive countercurrent multiplier.
Am J Physiol
270:
F9‐F20,
1996.
|
97. |
Lemley KV,
Kriz W.
Cycles and separations: The histotopography of the urinary concentrating process.
Kidney Int
31:
538‐548,
1987.
|
98. |
Leroy C,
Basset G,
Gruel G,
Ripoche P,
Trinh‐Trang‐Tan MM,
Rousselet G.
Hyperosmotic NaCl and urea synergistically regulate the expression of the UT‐A2 urea transporter in vitro and in vivo.
Biochem Biophys Res Comm
271:
368‐373,
2000.
|
99. |
Li WY,
Huey CL,
Yu AS.
Expression of claudin‐7 and ‐8 along the mouse nephron. Am J Physiol Renal Physiol 286:
F1063‐F1071,
2004.
|
100. |
Liantonio A,
Picollo A,
Carbonara G,
Fracchiolla G,
Tortorella P,
Loiodice F,
Laghezza A,
Babini E,
Zifarelli G,
Pusch M,
Camerino DC.
Molecular switch for CLC‐K Cl‐ channel block/activation: Optimal pharmacophoric requirements towards high‐affinity ligands.
Proc Natl Acad Sci U S A
105:
1369‐1373,
2008.
|
101. |
Lim S‐W,
Han K‐H,
Jung J‐Y,
Kim W‐Y,
Yang C‐W,
Sands JM,
Knepper MA,
Madsen KM,
Kim J.
Ultrastructural localization of UT‐A, UT‐B in rat kidneys with different hydration status.
Am J Physiol Regul Integr Comp Physiol
290:
R479‐R492,
2006.
|
102. |
Liu W,
Morimoto T,
Kondo Y,
Iinuma K,
Uchida S,
Imai M.
“Avian‐type” renal medullary tubule organization causes immaturity of urine‐concentrating ability in neonates.
Kidney Int
60:
680‐693,
2001.
|
103. |
Liu W,
Morimoto T,
Kondo Y,
Iinuma K,
Uchida S,
Sasaki S,
Marumo F,
Imai M.
Analysis of NaCl transport in thin ascending limb of Henle's loop in CLC‐K1 null mice. Am J Physiol Renal Physiol 282:
F451‐F457,
2002.
|
104. |
Lopes AG,
Amzel LM,
Markakis D,
Guggino WB.
Cell‐volume regulation by the thin descending‐limb of Henles loop.
Proc Natl Acad Sci U S A
85:
2873‐2877,
1988.
|
105. |
Maeda Y,
Smith BL,
Agre P,
Knepper MA.
Quantification of aquaporin‐CHIP water channel protein in microdissected renal tubules by fluorescence‐based ELISA.
J Clin Invest
95:
422‐428,
1995.
|
106. |
Marin‐Castano ME,
Schanstra JP,
Neau E,
Praddaude F,
Pecher C,
Ader JL,
Girolami JP,
Bascands JL.
Induction of functional bradykinin B‐1‐receptors in normotensive rats and mice under chronic angiotensin‐ converting enzyme inhibitor treatment.
Circ
105:
627‐632,
2002.
|
107. |
Marsh DJ.
Solute and water flows in thin limbs of Henle's loop in the hamster kidney.
Am J Physiol
218:
824‐831,
1970.
|
108. |
Marsh DJ,
Azen SP.
Mechanism of NaCl reabsorption by hamster thin ascending limbs of Henle's loop.
Am J Physiol
228:
71‐79,
1975.
|
109. |
Marsh DJ,
Solomon S.
Analysis of electrolyte movement in thin Henle's loops of hamster papilla.
Am J Physiol
208:
1119‐1128,
1965.
|
110. |
Matsumura Y,
Uchida S,
Kondo Y,
Miyazaki H,
Ko SBH,
Hayama A,
Morimoto T,
Liu W,
Arisawa M,
Sasaki S,
Marumo F.
Overt nephrogenic diabetes insipidus in mice lacking the CLC‐K1 chloride channel.
Nat Genet
21:
95‐98,
1999.
|
111. |
Mejia R,
Wade JB.
Immunomorphometric study of rat renal inner medulla. Am J Physiol Renal Physiol 282:
F553‐F557,
2002.
|
112. |
Michl M,
Ouyang N,
Fraek ML,
Beck FX,
Neuhofer W.
Expression and regulation of alpha B‐crystallin in the kidney in vivo and in vitro.
Pflugers Archiv
452:
387‐395,
2006.
|
113. |
Moffat DB,
Fourman J.
The vascular pattern of the rat kidney.
J Anat
97:
543‐553,
1963.
|
114. |
Morel F,
Imbert‐Teboul M,
Chabardes D.
Receptors to vasopressin and other hormones in the mammalian kidney.
Kidney Int
31:
512‐520,
1987.
|
115. |
Morgan T.
A microperfusion study in the rat of the permeability of the papillary segments of the nephron to Na24.
Clin Exp Pharmacol Physiol
1:
23‐30,
1974.
|
116. |
Morgan T,
Berliner RW.
Permeability of the loop of Henle, vasa recta, and collecting duct to water, urea, and sodium.
Am J Physiol
215:
108‐115,
1968.
|
117. |
Moridaira K,
Nodera M,
Sato G,
Yanagisawa H.
Detection of Prepro‐ET‐1 mRNA in normal rat kidney by in situ RT‐PCR.
Nephron Exp Nephrol
95:
E55‐E61,
2003.
|
118. |
Nielsen S,
Frokiaer J,
Marples D,
Kwon TH,
Agre P,
Knepper MA.
Aquaporins in the kidney: From molecules to medicine.
Physiol Rev
82:
205‐244,
2002.
|
119. |
Nielsen S,
Smith BL,
Christensen EI,
Knepper MA,
Agre P.
Chip28 water channels are localized in constitutively water‐permeable segments of the nephron.
J Cell Biol
120:
371‐383,
1993.
|
120. |
Nielsen S,
Terris J,
Smith CP,
Hediger MA,
Ecelbarger CA,
Knepper MA.
Cellular and subcellular localization of the vasopressin‐ regulated urea transporter in rat kidney.
Proc Natl Acad Sci U S A
93:
5495‐5500,
1996.
|
121. |
Nishimura H.
Urine concentration and avian aquaporin water channels.
Pflugers Archiv
456:
755‐768,
2008.
|
122. |
Ong ACM,
Jowett TP,
Firth JD,
Burton S,
Karet FE,
Fine LG.
An endothelin‐1 mediated autocrine growth loop involved in human renal tubular regeneration.
Kidney Int
48:
390‐401,
1995.
|
123. |
Pallone TL,
Turner MR,
Edwards A,
Jamison RL.
Countercurrent exchange in the renal medulla.
Am J Physiol Regul Integr Comp Physiol
284:
R1153‐R1175,
2003.
|
124. |
Pannabecker TL.
Loop of Henle interaction with interstitial nodal spaces in the renal inner medulla.
Am J Physiol Renal Physiol
295:
F1744‐F1751,
2008.
|
125. |
Pannabecker TL,
Abbott DE,
Dantzler WH.
Three‐dimensional functional reconstruction of inner medullary thin limbs of Henle's loop.
Am J Physiol Renal Physiol
286:
F38‐F45,
2004.
|
126. |
Pannabecker TL,
Brokl OH,
Kim YK,
Abbott DE,
Dantzler WH.
Regulation of intracellular pH in rat renal inner medullary thin limbs of Henle's loop.
Pflugers Arch
443:
446‐457,
2002.
|
127. |
Pannabecker TL,
Dahlmann A,
Brokl OH,
Dantzler WH.
Mixed descending‐ and ascending‐type thin limbs of Henle's loop in mammalian renal inner medulla.
Am J Physiol Renal Physiol
278:
F202‐F208,
2000.
|
128. |
Pannabecker TL,
Dantzler WH.
Three‐dimensional lateral and vertical relationships of inner medullary loops of Henle and collecting ducts.
Am J Physiol Renal Physiol
287:
F767‐F774,
2004.
|
129. |
Pannabecker TL,
Dantzler WH.
Three‐dimensional architecture of inner medullary vasa recta.
Am J Physiol Renal Physiol
290:
F1355‐F1366,
2006.
|
130. |
Pannabecker TL,
Dantzler WH.
Three‐dimensional architecture of collecting ducts, loops of Henle, and blood vessels in the renal papilla.
Am J Physiol Renal Physiol
293:
F696‐F704,
2007.
|
131. |
Pannabecker TL,
Dantzler WH,
Layton HE,
Layton AT.
Role of three‐dimensional architecture in the urine concentrating mechanism of the rat renal inner medulla.
Am J Physiol Renal Physiol
295:
F1271‐F1285,
2008.
|
132. |
Pannabecker TL,
Henderson C,
Dantzler WH.
Quantitative analysis of functional reconstructions reveals lateral and axial zonation in the renal inner medulla.
Am J Physiol Renal Physiol
294:
1306‐1314,
2008.
|
133. |
Pannabecker TL,
Völker K,
Silbernagl S,
Dantzler WH.
Cycloleucine fluxes during rat vasa recta and loop microinfusions in vivo and loop microperfusions in vitro.
Pflugers Arch
439:
517‐523,
2000.
|
134. |
Pennell JP,
Lacy FB,
Jamison RL.
An in vivo study of the concentrating process in the descending limb of Henle's loop.
Kidney Int
5:
337‐347,
1974.
|
135. |
Pennell JP,
Sanjana V,
Frey NR,
Jamison RL.
The effect of urea infusion on the urinary concentrating mechanism in protein‐depleted rats.
J Clin Invest
55:
399‐409,
1975.
|
136. |
Piepenhagen PA,
Peters LL,
Lux SE,
Nelson WJ.
Differential expression of Na+‐K+‐ATPase, ankyrin, fodrin, and E‐cadherin along the kidney nephron.
Am J Physiol Cell Physiol
269:
C1417‐C1432,
1995.
|
137. |
Pihakaski‐Maunsbach K,
Vorum H,
Honore B,
Tokonabe S,
Frokiaer J,
Garty H,
Karlish SJD,
Maunsbach AB.
Locations, abundances, and possible functions of FXYD ion transport regulators in rat renal medulla. Am J Physiol Renal Physiol 291:
F1033‐F1044,
2006.
|
138. |
Preston GM,
Carroll TP,
Guggino WB,
Agre P.
Appearance of water channels in Xenopus oocytes expressing red‐cell Chip28 protein.
Sci
256:
385‐387,
1992.
|
139. |
Promeneur D,
Bankir L,
Hu MC,
Trinh‐Trang‐Tan M‐M.
Renal tubular and vascular urea transporters: Influence of antidiuretic hormone on messenger RNA expression in Brattleboro rats.
J Am Soc Nephrol
9:
1359‐1366,
1998.
|
140. |
Pupilli C.,
Brunori M,
Misciglia N,
Selli C,
Ianni L,
Yanagisawa M,
Mannelli M,
Serio M.
Presence and distribution of endothelin‐1 gene expression in human kidney.
Am J Physiol Renal Physiol
267:
F679‐F687,
1994.
|
141. |
Reinking LN,
Schmidt‐Nielsen B.
Peristaltic flow of urine in the renal papillary collecting ducts of hamsters.
Kidney Int
20:
55‐60,
1981.
|
142. |
Rollhauser H,
Kriz W,
Heinke W.
Das gefass‐system der rattenniere.
Z Zellforsch
64:
381‐403,
1964.
|
143. |
Sabolic I,
Herak‐Kramberger CM,
Breton S,
Brown D.
Na/K‐ATPase in intercalated cells along the rat nephron revealed by antigen retrieval.
J Am Soc Nephrol
10:
913‐922,
1999.
|
144. |
Sands JM,
Kokko JP,
Jacobson HR.
Intrarenal heterogeneity: Vascular and tubular. In:
Seldin DW,
Giebisch G, editors.
The Kidney: Physiology and Pathophysiology.
New York:
Raven,
1992,
pp. 1087‐1155.
|
145. |
Sands JM,
Layton HE.
The urine concentrating mechanism and urea transporters. In:
Alpern RJ,
Hebert SC, editors.
The Kidney: Physiology and Pathophysiology.
Philadelphia:
Elsevier,
2007,
pp. 1143‐1177.
|
146. |
Sands JM,
Nonoguchi H,
Knepper MA.
Vasopressin effects on urea and H2O transport in inner medullary collecting duct subsegments.
Am J Physiol
253:
F823‐F832,
1987.
|
147. |
Sands JM,
Nonoguchi H,
Knepper MA.
Hormone effects on NaCl permeability of rat inner medullary collecting duct.
Am J Physiol
255(3):
F421‐F428,
1988.
|
148. |
Sands JM,
Terada Y,
Bernard LM,
Knepper MA.
Aldose reductase activities in microdissected rat renal tubule segments.
Am J Physiol
256(4):
F563‐F569,
1989.
|
149. |
Schmidt‐Nielsen B,
Graves B.
Changes in fluid compartments in hamster renal papilla due to peristalsis in the pelvic wall.
Kidney Int
22:
613‐625,
1982.
|
150. |
Schneeberger EE,
Lynch RD.
The tight junction: A multifunctional complex.
Am J Physiol Cell Physiol
286:
C1213‐C1228,
2004.
|
151. |
Scholl U,
Hebeisen S,
Janssen AGH,
Mueller‐Newen G,
Alekov A,
Fahlke C.
Barttin modulates trafficking and function of ClC‐K channels.
Proc Natl Acad Sci U S A
103:
11411‐11416,
2006.
|
152. |
Schwartz MM,
Karnovsky MJ,
Venkatachalam MA.
Regional membrane specialization in the thin limbs of Henle loops as seen by freeze‐fracture electron‐microscopy.
Kidney Int
16:
577‐589,
1979.
|
153. |
Schwartz MM,
Venkatachalam MA.
Structural differences in thin limbs of Henle: Physiological implications.
Kidney Int
6:
193‐208,
1974.
|
154. |
Shayakul C,
Knepper MA,
Smith CP,
DiGiovanni SR,
Hediger MA.
Segmental localization of urea transporter mRNAs in rat kidney.
Am J Physiol Renal Physiol
272:
F654‐F660,
1997.
|
155. |
Smith CP,
Lee WS,
Martial S,
Knepper MA,
You GF,
Sands JM,
Hediger MA.
Cloning and regulation of expression of the rat‐kidney urea transporter (Rut2). J Clin Invest 96:
1556‐1563,
1995.
|
156. |
Stephenson JL.
Concentration of urine in a central core model of the renal counterflow system.
Kidney Int
2:
85‐94,
1972.
|
157. |
Takada T,
Yamamoto A,
Omori K,
Tashiro Y.
Quantitative immunogold localization of Na, K‐ATPase along rat nephron.
Histochem
98:
183‐197,
1992.
|
158. |
Takahashi N,
Kondo Y,
Fujiwara I,
Ito O,
Igarashi Y,
Abe K.
Characterization of Na+ transport across the cell membranes of the ascending thin limb of Henle's loop.
Kidney Int
47:
789‐794,
1995.
|
159. |
Takahashi N,
Kondo Y,
Ito O,
Igarashi Y,
Omata K,
Abe K.
Vasopressin stimulates Cl− transport in ascending thin limb of Henle's loop in hamster.
J Clin Invest
95:
1623‐1627,
1995.
|
160. |
Terada Y,
Tomita K,
Nonoguchi H,
Marumo F.
Polymerase chain reaction localization of constitutive nitric oxide synthase and soluble guanylate cyclase messenger RNAs in microdissected rat nephron segments.
J Clin Invest
90:
659‐665,
1992.
|
161. |
Terada Y,
Tomita K,
Nonoguchi H,
Yang TX,
Marumo F.
Expression of endothelin‐3 messenger‐RNA along rat nephron segments using polymerase chain‐reaction.
Kidney Int
44:
1273‐1280,
1993.
|
162. |
Thomson RB,
Igarashi P,
Biemesderfer D,
Kim R,
Abualfa A,
Soleimani M,
Aronson PS.
Isolation and cDNA cloning of Ksp‐cadherin, a novel kidney‐specific member of the cadherin multigene family. J Biol Chem 270:
17594‐17601,
1995.
|
163. |
Thorens B.
Facilitated glucose transporters in epithelial‐cells.
Annu Rev Physiol
55:
591‐608,
1993.
|
164. |
Thorens B,
Lodish HF,
Brown D.
Differential localization of two glucose transporter isoforms in rat kidney.
Am J Physiol Cell Physiol
259:
C286‐C294,
1990.
|
165. |
Tom B,
Dendorfer A,
Danser AHJ.
Bradykinin, angiotensin‐(1‐7), and ACE inhibitors: how do they interact?
Int J Biochem Cell Biol
35:
792‐801,
2003.
|
166. |
Tsukita S,
Furuse M,
Itoh M.
Multifunctional strands in tight junctions.
Nat Rev Mol Cell Biol
2:
285‐293,
2001.
|
167. |
Uchida S,
Endou H.
Substrate specificity to maintain cellular ATP along the mouse nephron.
Am J Physiol
255:
F977‐F983,
1988.
|
168. |
Uchida S,
Sasaki S,
Furakawa T,
Hiraoka M,
Imai T,
Hirata Y,
Marumo F.
Molecular cloning of a chloride channel that is regulated by dehydration and expressed predominantly in the kidney medulla.
J Biol Chem
268:
3821‐3824,
1993.
|
169. |
Uchida S,
Sasaki S,
Nitta K,
Uchida K,
Horita S,
Nihei H,
Marumo F.
Localization and functional characterization of rat kidney‐specific chloride channel.
J Clin Invest
95:
104‐113,
1995.
|
170. |
Uchida S,
Sohara E,
Rai T,
Ikawa M,
Okabe M,
Sasaki M.
Impaired urea accumulation in the inner medulla of mice lacking the urea transporter UT‐A2.
Mol Cell Biol
25:
7357‐7363,
2005.
|
171. |
Umenishi F,
Schrier RW.
Hypertonicity‐induced aquaporin‐1 (AQP1) expression is mediated by the activation of MAPK pathways and hypertonicity‐responsive element in the AQP1 gene. J Biol Chem 278:
15765‐15770,
2010.
|
172. |
Van Itallie CM,
Fanning AS,
Bridges A,
Anderson JM.
ZO‐1 stabilizes the tight junction solute barrier through coupling to the perijunctional cytoskeleton.
Mol Biol Cell
20:
3930‐3940,
2009.
|
173. |
Van Itallie CM,
Rogan S,
Yu A,
Vidal LS,
Holmes J,
Anderson JM.
Two splice variants of claudin‐10 in the kidney create paracellular pores with different ion selectivities. Am J Physiol Renal Physiol 291:
F1288‐F1299,
2006.
|
174. |
Vandewalle A,
Cluzeaud F,
Bens M,
Kieferle S,
Steinmeyer K,
Jentsch TJ.
Localization and induction by dehydration of ClC‐K chloride channels in the rat kidney.
Am J Physiol
272:
F678‐F688,
1997.
|
175. |
Verbavatz JM,
Brown D,
Sabolic I,
Valenti G,
Ausiello DA,
Vanhoek AN,
Ma T,
Verkman AS.
Tetrameric assembly of Chip28 water channels in liposomes and cell‐membranes ‐ a freeze‐fracture study. J Cell Biol 123:
605‐618,
1993.
|
176. |
Wade JB,
Lee AJ,
Liu C,
Ecelbarger C,
Mitchell C,
Bradford AD,
Terris J,
Kim G‐H,
Knepper MA.
UT‐A2: A 55‐kDa urea transporter in thin descending limb whose abundance is regulated by vasopressin.
Am J Physiol
278:
F52‐F62,
2000.
|
177. |
Waldegger S,
Busch AE,
Kern C,
Capasso G,
Murer H,
Lang F.
Function and dysfunction of renal transport molecules: Lessons from electrophysiology.
Renal Physiol Biochem
19:
155‐159,
1996.
|
178. |
Wetzel RK,
Sweadner KJ.
Immunocytochemical localization of Na‐K‐ATPase alpha‐ and gamma‐subunits in rat kidney. Am J Physiol Renal Physiol 281:
F531‐F545,
2001.
|
179. |
Wilkes BM,
Susin M,
Mento PF,
Macica CM,
Girardi EP,
Boss E,
Nord EP.
Localization of endothelin‐like immunoreactivity in rat kidneys.
Am J Physiol
260:
F913‐F920,
1991.
|
180. |
Wolf K,
Meier‐Meitinger M,
Bergler T,
Castrop H,
Vitzthum H,
Riegger GAJ,
Kurtz A,
Kramer BK.
Parallel down‐regulation of chloride channel ClC‐K1 and barttin mRNA in the thin ascending limb of the rat nephron by furosemide.
Pflugers Arch
446:
665‐671,
2003.
|
181. |
Wu F,
Park F,
Cowley AW,
Mattson DL.
Quantification of nitric oxide synthase activity in microdissected segments of the rat kidney. Am J Physiol Renal Physiol 276:
F874‐F881,
1999.
|
182. |
Yool AJ,
Brokl OH,
Pannabecker TL,
Dantzler WH,
Stamer WD.
Tetraethylammonium block of water flux in aquaporin‐1 channels expressed in kidney thin limbs of Henle's loop and a kidney‐derived cell line.
BMC Physiol
2:
4,
2002.
|
183. |
You G,
Smith CP,
Kanai Y,
Lee W‐S,
Stelzner M,
Hediger MA.
Cloning and characterization of the vasopressin‐regulated urea transporter.
Nature
365:
844‐847,
1993.
|
184. |
Zhai X‐Y,
Thomsen JS,
Birn H,
Kristoffersen IB,
Andreasen A,
Christensen EI.
Three‐dimensional reconstruction of the mouse nephron.
J Am Soc Nephrol
17:
77‐88,
2006.
|
185. |
Zhai XY,
Fenton RA,
Andreasen A,
Thomsen JS,
Christensen EI.
Aquaporin‐1 is not expressed in descending thin limbs of short‐loop nephrons.
J Am Soc Nephrol
18:
2937‐2944,
2007.
|