References |
1. |
Abel ED,
Kaulbach HC,
Tian R,
Hopkins JC,
Duffy J,
Doetschman T,
Minnemann T,
Boers ME,
Hadro E,
Oberste‐Berghaus C,
Quist W,
Lowell BB,
Ingwall JS,
Kahn BB.
Cardiac hypertrophy with preserved contractile function after selective deletion of GLUT4 from the heart.
J Clin Invest
104:
1703‐1714,
1999.
|
2. |
Abel ED,
Peroni O,
Kim JK,
Kim YB,
Boss O,
Hadro E,
Minnemann T,
Shulman GI,
Kahn BB.
Adipose‐selective targeting of the GLUT4 gene impairs insulin action in muscle and liver.
Nature
409:
729‐733,
2001.
|
3. |
Abramson J,
Smirnova I,
Kasho V,
Verner G,
Kaback HR,
Iwata S.
Structure and mechanism of the lactose permease of Escherichia coli.
Science
301:
610‐615,
2003.
|
4. |
Accardi A,
Miller C.
Secondary active transport mediated by a prokaryotic homologue of ClC Cl‐ channels.
Nature
427:
803‐807,
2004.
|
5. |
Adachi A.
Electrophysiological study of hepatic vagal projection to the medulla.
Neurosci Lett
24:
19‐23,
1981.
|
6. |
Ahern CA,
Kobertz WR.
Chemical tools for K+ channel biology.
Biochemistry
48:
517‐526,
2008.
|
7. |
Ahren B.
Autonomic regulation of islet hormone secretion–implications for health and disease.
Diabetologia
43:
393‐410,
2000.
|
8. |
Akkerman JW.
Regulation of carbohydrate metabolism in platelets. A review.
Thromb Haemost
39:
712‐724,
1978.
|
9. |
Albarracin JL,
Fernandez‐Novell JM,
Ballester J,
Rauch MC,
Quintero‐Moreno A,
Pena A,
Mogas T,
Rigau T,
Yanez A,
Guinovart JJ,
Slebe JC,
Concha II,
Rodriguez‐Gil JE.
Gluconeogenesis‐linked glycogen metabolism is important in the achievement of in vitro capacitation of dog spermatozoa in a medium without glucose.
Biol Reprod
71:
1437‐1445,
2004.
|
10. |
Albarracin JL,
Mogas T,
Palomo MJ,
Pena A,
Rigau T,
Rodriguez‐Gil JE.
In vitro capacitation and acrosome reaction of dog spermatozoa can be feasibly attained in a defined medium without glucose.
Reprod Domest Anim
39:
129‐135,
2004.
|
11. |
Albiston AL,
Yeatman HR,
Pham V,
Fuller SJ,
Diwakarla S,
Fernando RN,
Chai SY.
Distinct distribution of GLUT4 and insulin regulated aminopeptidase in the mouse kidney.
Regul Pept
166:
83‐89,
2011.
|
12. |
Alm A,
Tornquist P.
Lactate transport through the blood‐retinal and the blood‐brain barrier in rats.
Ophthalmic Res
17:
181‐184,
1985.
|
13. |
Alm A,
Tornquist P,
Maepea O.
The uptake index method applied to studies on the blood‐retinal barrier. II. Transport of several hexoses by a common carrier.
Acta Physiol Scand
113:
81‐84,
1981.
|
14. |
Alquier T,
Leloup C,
Arnaud E,
Magnan C,
Penicaud L.
Altered Glut4 mRNA levels in specific brain areas of hyperglycemic‐hyperinsulinemic rats.
Neurosci Lett
308:
75‐78,
2001.
|
15. |
Alvarez J,
Lee DC,
Baldwin SA,
Chapman D.
Fourier transform infrared spectroscopic study of the structure and conformational changes of the human erythrocyte glucose transporter.
J Biol Chem
262:
3502‐3509,
1987.
|
16. |
Amato PA,
Loizzi RF.
The effects of cytochalasin B on glucose transport and lactose synthesis in lactating mammary gland slices.
Eur J Cell Biol
20:
150‐155,
1979.
|
17. |
Anand BK,
Chhina GS,
Sharma KN,
Dua S,
Singh B.
Activity of single neurons in the hypothalamic feeding centers: Effect of glucose.
Am J Physiol
207:
1146‐1154,
1964.
|
18. |
Ando M,
Edamatsu M,
Fukuizumi S,
Takeuchi S.
Cellular localization of facilitated glucose transporter 1 (GLUT‐1) in the cochlear stria vascularis: Its possible contribution to the transcellular glucose pathway.
Cell Tissue Res
331:
763‐769,
2008.
|
19. |
Angulo C,
Rauch MC,
Droppelmann A,
Reyes AM,
Slebe JC,
Delgado‐Lopez F,
Guaiquil VH,
Vera JC,
Concha II.
Hexose transporter expression and function in mammalian spermatozoa: Cellular localization and transport of hexoses and vitamin C.
J Cell Biochem
71:
189‐203,
1998.
|
20. |
Antonetti DA,
Wolpert EB.
Isolation and characterization of retinal endothelial cells.
Methods Mol Med
89:
365‐374,
2003.
|
21. |
Apelt J,
Mehlhorn G,
Schliebs R.
Insulin‐sensitive GLUT4 glucose transporters are colocalized with GLUT3‐expressing cells and demonstrate a chemically distinct neuron‐specific localization in rat brain.
J Neurosci Res
57:
693‐705,
1999.
|
22. |
Appleman JR,
Lienhard GE.
Rapid kinetics of the glucose transporter from human erythrocytes. Detection and measurement of a half‐turnover of the purified transporter.
J Biol Chem
260:
4575‐4578,
1985.
|
23. |
Arbuckle MI,
Kane S,
Porter LM,
Seatter MJ,
Gould GW.
Structure‐function analysis of liver‐type (GLUT2) and brain‐type (GLUT3) glucose transporters: Expression of chimeric transporters in Xenopus oocytes suggests an important role for putative transmembrane helix 7 in determining substrate selectivity.
Biochemistry
35:
16519‐16527,
1996.
|
24. |
Arden C,
Harbottle A,
Baltrusch S,
Tiedge M,
Agius L.
Glucokinase is an integral component of the insulin granules in glucose‐responsive insulin secretory cells and does not translocate during glucose stimulation.
Diabetes
53:
2346‐2352,
2004.
|
25. |
Armstrong DT,
Greep RO.
Effect of gonadotrophic hormones on glucose metabolism by luteinized rat ovaries.
Endocrinology
70:
701‐710,
1962.
|
26. |
Asano T,
Katagiri H,
Takata K,
Lin JL,
Ishihara H,
Inukai K,
Tsukuda K,
Kikuchi M,
Hirano H,
Yazaki Y.
The role of N‐glycosylation of GLUT1 for glucose transport activity.
J Biol Chem
266:
24632‐24636,
1991.
|
27. |
Asplin C,
Raghu P,
Dornan T,
Palmer JP.
Glucose regulation of glucagon secretion independent of B cell activity.
Metabolism
32:
292‐295,
1983.
|
28. |
Augustin R,
Carayannopoulos MO,
Dowd LO,
Phay JE,
Moley JF,
Moley KH.
Identification and characterization of human glucose transporter‐like protein‐9 (GLUT9): Alternative splicing alters trafficking.
J Biol Chem
279:
16229‐16236,
2004.
|
29. |
Augustin R,
Riley J,
Moley KH.
GLUT8 contains a [DE]XXXL[LI] sorting motif and localizes to a late endosomal/lysosomal compartment.
Traffic
6:
1196‐1212,
2005.
|
30. |
Bachelard HS.
Deoxyglucose and brain glycolysis.
Biochem J
127:
83P,
1972.
|
31. |
Baker GF,
Widdas WF.
The asymmetry of the facilitated transfer system for hexoses in human red cells and the simple kinetics of a two component model.
J Physiol
231:
143‐165,
1973.
|
32. |
Baker GF,
Naftalin RJ.
Evidence of multiple operational affinities for D‐glucose inside the human erythrocyte membrane.
Biochim Biophys Acta
550:
474‐484,
1979.
|
33. |
Baker PF,
Carruthers A.
3‐O‐methylglucose transport in internally dialysed giant axons of Loligo.
J Physiol (Lond)
316:
503‐525,
1981.
|
34. |
Bakirtzi K,
Belfort G,
Lopez‐Coviella I,
Kuruppu D,
Cao L,
Abel ED,
Brownell AL,
Kandror KV.
Cerebellar neurons possess a vesicular compartment structurally and functionally similar to Glut4‐storage vesicles from peripheral insulin‐sensitive tissues.
J Neurosci
29:
5193‐5201,
2009.
|
35. |
Balint E,
Szabo P,
Marshall CF,
Sprague SM.
Glucose‐induced inhibition of in vitro bone mineralization.
Bone
28:
21‐28,
2001.
|
36. |
Barathi S,
Angayarkanni N,
Sumantran VN.
GLUT‐1 expression in bovine retinal capillary endothelial cells and pericytes exposed to advanced glycation end products.
Invest Ophthalmol Vis Sci
51:
6810‐6814,
2010.
|
37. |
Barbosa FB,
Capito K,
Kofod H,
Thams P.
Pancreatic islet insulin secretion and metabolism in adult rats malnourished during neonatal life.
Br J Nutr
87:
147‐155,
2002.
|
38. |
Barger PM,
Kelly DP.
Fatty acid utilization in the hypertrophied and failing heart: Molecular regulatory mechanisms.
Am J Med Sci
318:
36‐42,
1999.
|
39. |
Barnett JE,
Holman GD,
Chalkley RA,
Munday KA.
Evidence for two asymmetric conformational states in the human erythrocyte sugar‐transport system.
Biochem J
145:
417‐429,
1975.
|
40. |
Barnett JE,
Holman GD,
Munday KA.
Structural requirements for binding to the sugar‐transport system of the human erythrocyte.
Biochem J
131:
211‐221,
1973.
|
41. |
Barrett EJ,
Ferrannini E,
Gusberg R,
Bevilacqua S,
DeFronzo RA.
Hepatic and extrahepatic splanchnic glucose metabolism in the postabsorptive and glucose fed dog.
Metabolism
34:
410‐420,
1985.
|
42. |
Barros LF,
Courjaret R,
Jakoby P,
Loaiza A,
Lohr C,
Deitmer JW.
Preferential transport and metabolism of glucose in Bergmann glia over Purkinje cells: A multiphoton study of cerebellar slices.
Glia
57:
962‐970,
2009.
|
43. |
Basketter DA,
Widdas WF.
Asymmetry of the hexose transfer system in human erythrocytes. Comparison of the effects of cytochalasin B, phloretin and maltose as competitive inhibitors.
J Physiol
278:
389‐401,
1978.
|
44. |
Baumann MU,
Deborde S,
Illsley NP.
Placental glucose transfer and fetal growth.
Endocrine
19:
13‐22,
2002.
|
45. |
Bell AW,
Hay WWJ,
Ehrhardt RA.
Placental transport of nutrients and its implications for fetal growth.
J Reprod Fertil Suppl
54:
401‐410,
1999.
|
46. |
Belyantseva IA,
Adler HJ,
Curi R,
Frolenkov GI,
Kachar B.
Expression and localization of prestin and the sugar transporter GLUT‐5 during development of electromotility in cochlear outer hair cells.
J Neurosci
20:
RC116,
2000.
|
47. |
Benirschke K,
Kaufmann P, eds.
Pathology of Human Placenta.
New York:
Springer‐Verlag,
2006.
|
48. |
Bentley J,
Itchayanan D,
Barnes K,
McIntosh E,
Tang X,
Downes CP,
Holman GD,
Whetton AD,
Owen‐Lynch PJ,
Baldwin SA.
Interleukin‐3‐mediated cell survival signals include phosphatidylinositol 3‐kinase‐dependent translocation of the glucose transporter GLUT1 to the cell surface.
J Biol Chem
278:
39337‐39348,
2003.
|
49. |
Bergstrom J,
Hermansen L,
Hultman E,
Saltin B.
Diet, muscle glycogen and physical performance.
Acta Physiol Scand
71:
140‐150,
1967.
|
50. |
Betz AL,
Bowman PD,
Goldstein GW.
Hexose transport in microvascular endothelial cells cultured from bovine retina.
Exp Eye Res
36:
269‐277,
1983.
|
51. |
Betz AL,
Iannotti F.
Simultaneous determination of regional cerebral blood flow and blood–brain glucose transport kinetics in the gerbil.
J Cereb Blood Flow Metab S
3:
193‐199,
1983.
|
52. |
Bianchi J,
Rose RC.
Glucose‐independent transport of dehydroascorbic acid in human erythrocytes.
Proc Soc Exp Biol Med
181:
333‐337,
1986.
|
53. |
Biggee BA,
Blinn CM,
Nuite M,
Silbert JE,
McAlindon TE.
Effects of oral glucosamine sulphate on serum glucose and insulin during an oral glucose tolerance test of subjects with osteoarthritis.
Ann Rheum Dis
66:
260‐262,
2007.
|
54. |
Bilezikian JP,
Raisz LG,
Martin TJ, eds.
Principles of Bone Biology, Two‐Volume Set, Volume 1‐2, Third Edition (Bilezikian, Principles of Bone Biology 2 Vol Set).
Amsterdam:
Academic Press,
2008.
|
55. |
Birnbaum MJ,
Haspel HC,
Rosen OM.
Cloning and characterization of a cDNA encoding the rat brain glucose‐transporter protein.
Proc Natl Acad Sci U S A
83:
5784‐5788,
1986.
|
56. |
Birnbaum MJ.
Activating AMP‐activated protein kinase without AMP.
Mol Cell
19:
289‐290,
2005.
|
57. |
Blanc L,
Liu J,
Vidal M,
Chasis JA,
An X,
Mohandas N.
The water channel aquaporin‐1 partitions into exosomes during reticulocyte maturation: Implication for the regulation of cell volume.
Blood
114:
3928‐3934,
2009.
|
58. |
Bloch R.
Inhibition of glucose transport in the human erythrocyte by cytochalasin B.
Biochemistry
12:
4799‐4801,
1973.
|
59. |
Blodgett DM,
Carruthers A.
Conventional transport assays underestimate sugar transport rates in human red cells.
Blood Cells Mol Dis
32:
401‐407,
2004.
|
60. |
Blodgett DM,
Carruthers A.
Quench‐flow analysis reveals multiple phases of GluT1‐mediated sugar transport.
Biochemistry
44:
2650‐2660,
2005.
|
61. |
Blodgett DM,
De Zutter JK,
Levine KB,
Karim P,
Carruthers A.
Structural basis of GLUT1 inhibition by cytoplasmic ATP.
J Gen Physiol
130:
157‐168,
2007.
|
62. |
Blodgett DM,
Graybill C,
Carruthers A.
Analysis of glucose transporter topology and structural dynamics.
J Biol Chem
283:
36416‐36424,
2008.
|
63. |
Boado RJ,
Pardridge WM.
Glucose deprivation and hypoxia increase the expression of the GLUT1 glucose transporter via a specific mRNA cis‐acting regulatory element.
J Neurochem
80:
552‐554,
2002.
|
64. |
Boado RJ,
Wu D,
Windisch M.
In vivo upregulation of the blood‐brain barrier GLUT1 glucose transporter by brain‐derived peptides.
Neurosci Res
34:
217‐224,
1999.
|
65. |
Borg MA,
Sherwin RS,
Borg WP,
Tamborlane WV,
Shulman GI.
Local ventromedial hypothalamus glucose perfusion blocks counterregulation during systemic hypoglycemia in awake rats.
J Clin Invest
99:
361‐365,
1997.
|
66. |
Borg WP,
Sherwin RS,
During MJ,
Borg MA,
Shulman GI.
Local ventromedial hypothalamus glucopenia triggers counterregulatory hormone release.
Diabetes
44:
180‐184,
1995.
|
67. |
Broer S,
Schneider HP,
Broer A,
Rahman B,
Hamprecht B,
Deitmer JW.
Characterization of the monocarboxylate transporter 1 expressed in Xenopus laevis oocytes by changes in cytosolic pH.
Biochem J
333:
167‐174,
1998.
|
68. |
Brooks GA.
Lactate shuttles in nature.
Biochem Soc Trans
30:
258‐264,
2002.
|
69. |
Bryant NJ,
Govers R,
James DE.
Regulated transport of the glucose transporter GLUT4.
Nat Rev Mol Cell Biol
3:
267‐277,
2002.
|
70. |
Bucci D,
Isani G,
Spinaci M,
Tamanini C,
Mari G,
Zambelli D,
Galeati G.
Comparative immunolocalization of GLUTs 1, 2, 3 and 5 in boar, stallion and dog spermatozoa.
Reprod Domest Anim
45:
315‐322,
2010.
|
71. |
Bucci D,
Rodriguez‐Gil JE,
Vallorani C,
Spinaci M,
Galeati G,
Tamanini C.
GLUTs and mammalian sperm metabolism.
J Androl
32,
348‐355,
2011.
|
72. |
Buckley RH.
Molecular defects in human severe combined immunodeficiency and approaches to immune reconstitution.
Annu Rev Immunol
22:
625‐655,
2004.
|
73. |
Burant CF,
Takeda J,
Brot LE,
Bell GI,
Davidson NO.
Fructose transporter in human spermatozoa and small intestine is GLUT5.
J Biol Chem
267:
14523‐14526,
1992.
|
74. |
Burant CF,
Bell GI.
Mammalian facilitative glucose transporters: Evidence for similar substrate recognition sites in functionally monomeric proteins.
Biochemistry
31:
10414‐10420,
1992.
|
75. |
Burcelin R,
Crivelli V,
Perrin C, Da
Costa A,
Mu J,
Kahn BB,
Birnbaum MJ,
Kahn CR,
Vollenweider P,
Thorens B.
GLUT4, AMP kinase, but not the insulin receptor, are required for hepatoportal glucose sensor‐stimulated muscle glucose utilization.
J Clin Invest
111:
1555‐1562,
2003.
|
76. |
Burcelin R,
del Carmen Munoz M,
Guillam MT,
Thorens B.
Liver hyperplasia and paradoxical regulation of glycogen metabolism and glucose‐sensitive gene expression in GLUT2‐null hepatocytes. Further evidence for the existence of a membrane‐based glucose release pathway.
J Biol Chem
275:
10930‐10936,
2000.
|
77. |
Burcelin R,
Dolci W,
Thorens B.
Glucose sensing by the hepatoportal sensor is GLUT2‐dependent: In vivo analysis in GLUT2‐null mice.
Diabetes
49:
1643‐1648,
2000a.
|
78. |
Burcelin R,
Dolci W,
Thorens B.
Portal glucose infusion in the mouse induces hypoglycemia: Evidence that the hepatoportal glucose sensor stimulates glucose utilization.
Diabetes
49:
1635‐1642,
2000b.
|
79. |
Burcelin R,
Thorens B.
Evidence that extrapancreatic GLUT2‐dependent glucose sensors control glucagon secretion.
Diabetes
50:
1282‐1289,
2001.
|
80. |
Burdakov D,
Jensen LT,
Alexopoulos H,
Williams RH,
Fearon IM,
O'Kelly I,
Gerasimenko O,
Fugger L,
Verkhratsky A.
Tandem‐pore K+ channels mediate inhibition of orexin neurons by glucose.
Neuron
50:
711‐722,
2006.
|
81. |
Burdakov D,
Luckman SM,
Verkhratsky A.
Glucose‐sensing neurons of the hypothalamus.
Philos Trans R Soc Lond B Biol Sci
360:
2227‐2235,
2005.
|
82. |
Burnol AF,
Leturque A,
Loizeau M,
Postic C,
Girard J.
Glucose transporter expression in rat mammary gland.
Biochem J
270:
277‐279,
1990.
|
83. |
Cabantchik ZI,
Ginsburg H.
Transport of uridine in human red blood cells. Demonstration of a simple carrier‐mediated process.
J Gen Physiol
69:
75‐96,
1977.
|
84. |
Camps M,
Vilaro S,
Testar X,
Palacin M,
Zorzano A.
High and polarized expression of GLUT1 glucose transporters in epithelial cells from mammary gland: Acute down‐regulation of GLUT1 carriers by weaning.
Endocrinology
134:
924‐934,
1994.
|
85. |
Camps M,
Castello A,
Munoz P,
Monfar M,
Testar X,
Palacin M,
Zorzano A.
Effect of diabetes and fasting on GLUT‐4 (muscle/fat) glucose‐transporter expression in insulin‐sensitive tissues. Heterogeneous response in heart, red and white muscle.
Biochem J
282:
765‐772,
1992.
|
86. |
Cani PD,
Holst JJ,
Drucker DJ,
Delzenne NM,
Thorens B,
Burcelin R,
Knauf C.
GLUT2 and the incretin receptors are involved in glucose‐induced incretin secretion.
Mol Cell Endocrinol
276:
18‐23,
2007.
|
87. |
Carayannopoulos MO,
Chi MM,
Cui Y,
Pingsterhaus JM,
McKnight RA,
Mueckler M,
Devaskar SU,
Moley KH.
GLUT8 is a glucose transporter responsible for insulin‐stimulated glucose uptake in the blastocyst.
Proc Natl Acad Sci U S A
97:
7313‐7318,
2000.
|
88. |
Carayannopoulos MO,
Schlein A,
Wyman A,
Chi M,
Keembiyehetty C,
Moley KH.
GLUT9 is differentially expressed and targeted in the preimplantation embryo.
Endocrinology
145:
1435‐1443,
2004.
|
89. |
Carbo R,
Guarner V.
Insulin effect on glucose transport in thymocytes and splenocytes from rats with metabolic syndrome.
Diabetol Metab Syndr
2:
64,
2010.
|
90. |
Carruthers A.
Anomalous asymmetric kinetics of human red cell hexose transfer: Role of cytosolic adenosine 5’‐triphosphate. Biochemistry
25:
3592‐3602,
1986a.
|
91. |
Carruthers A.
ATP regulation of the human red cell sugar transporter. J Biol Chem
261:
11028‐11037,
1986b.
|
92. |
Carruthers A.
Facilitated diffusion of glucose. Physiol Rev
70:
1135‐1176,
1990.
|
93. |
Carruthers A.
Mechanisms for the facilitated diffusion of substrates across cell membranes. Biochemistry
30:
3898‐3906,
1991.
|
94. |
Carruthers A,
Helgerson AL.
The human erythrocyte sugar transporter is also a nucleotide binding protein. Biochemistry
28:
8337‐8346,
1989.
|
95. |
Carruthers A,
Helgerson AL.
Inhibitions of sugar transport produced by ligands binding at opposite sides of the membrane. Evidence for simultaneous occupation of the carrier by maltose and cytochalasin B. Biochemistry
30:
3907‐3915,
1991.
|
96. |
Carruthers A,
Melchior DL.
Transport of α‐ and β‐D‐glucose by the intact human red cell. Biochemistry
24:
4244‐4250,
1985.
|
97. |
Carruthers A,
Naftalin RJ.
Altered GLUT1 substrate selectivity in human erythropoiesis? Cell
137:
200‐201,
2009.
|
98. |
Carruthers A,
Zottola RJ.
Erythrocyte sugar transport. In:
Konings WN,
Kaback HR,
Lolkema JS, editors.
Handbook of Biological Physics. “Transport Processes in Eukaryotic and Prokaryotic Organisms”.(2).
Amsterdam:
Elsevier,
1996,
p. 311‐342.
|
99. |
Casey JR,
Reithmeier RA.
Analysis of the oligomeric state of Band 3, the anion transport protein of the human erythrocyte membrane, by size exclusion high performance liquid chromatography. Oligomeric stability and origin of heterogeneity.
J Biol Chem
266:
15726‐15737,
1991.
|
100. |
Castellini MA,
Costa DP,
Castellini JM.
Blood glucose distribution, brain size and diving in small odontocetes.
Mar Mam Sci
8:
294‐298,
1992.
|
101. |
Castro MA,
Beltran FA,
Brauchi S,
Concha II.
A metabolic switch in brain: Glucose and lactate metabolism modulation by ascorbic acid.
J Neurochem
110:
423‐440,
2009.
|
102. |
Caulfield MJ,
Munroe PB,
O'Neill D,
Witkowska K,
Charchar FJ,
Doblado M,
Evans S,
Eyheramendy S,
Onipinla A,
Howard P,
Shaw‐Hawkins S,
Dobson RJ,
Wallace C,
Newhouse SJ,
Brown M,
Connell JM,
Dominiczak A,
Farrall M,
Lathrop GM,
Samani NJ,
Kumari M,
Marmot M,
Brunner E,
Chambers J,
Elliott P,
Kooner J,
Laan M,
Org E,
Veldre G,
Viigimaa M,
Cappuccio FP,
Ji C,
Iacone R,
Strazzullo P,
Moley KH,
Cheeseman C.
SLC2A9 is a high‐capacity urate transporter in humans.
PLoS Med
5:
e197,
2008.
|
103. |
Chang G,
Spencer RH,
Lee AT,
Barclay MT,
Rees DC.
Structure of the MscL homolog from mycobacterium tuberculosis: A gated mechanosensitive ion channel.
Science
282:
2220‐2226,
1998.
|
104. |
Chang L,
Chiang SH,
Saltiel AR.
Insulin signaling and the regulation of glucose transport.
Mol Med
10:
65‐71,
2004.
|
105. |
Chasis JA,
Mohandas N.
Erythroblastic islands: Niches for erythropoiesis.
Blood
112:
470‐478,
2008.
|
106. |
Cheeseman C.
GLUT7: A new intestinal facilitated hexose transporter.
Am J Physiol Endocrinol Metab
295:
E238‐E241,
2008.
|
107. |
Chen G,
Liu P,
Thurmond DC,
Elmendorf JS.
Glucosamine‐induced insulin resistance is coupled to O‐linked glycosylation of Munc18c.
FEBS Lett
534:
54‐60,
2003.
|
108. |
Chen SY,
Pan CJ,
Nandigama K,
Mansfield BC,
Ambudkar SV,
Chou JY.
The glucose‐6‐phosphate transporter is a phosphate‐linked antiporter deficient in glycogen storage disease type Ib and Ic.
FASEB J
22:
2206‐2213,
2008.
|
109. |
Cheng A,
van Hoek AN,
Yeager M,
Verkman AS,
Mitra AK.
Three‐dimensional organization of a human water channel.
Nature
387:
627‐630,
1997.
|
110. |
Chin E,
Zhou J,
Bondy C.
Anatomical and developmental patterns of facilitative glucose transporter gene expression in the rat kidney.
J Clin Invest
91:
1810‐1815,
1993.
|
111. |
Chin JJ,
Jung EK,
Chen V,
Jung CY.
Structural basis of human erythrocyte glucose transporter function in proteoliposome vesicles: Circular dichroism measurements.
Proc Natl Acad Sci U S A
84:
4113‐4116,
1987.
|
112. |
Chin JJ,
Jung EK,
Jung CY.
Structural basis of human erythrocyte glucose transporter function in reconstituted vesicles.
J Biol Chem
261:
7101‐7104,
1986.
|
113. |
Choeiri C,
Staines W,
Messier C.
Immunohistochemical localization and quantification of glucose transporters in the mouse brain.
Neuroscience
111:
19‐34,
2002.
|
114. |
Choi YK,
Kim KW.
Blood‐neural barrier: Its diversity and coordinated cell‐to‐cell communication.
BMB Rep
41:
345‐352,
2008.
|
115. |
Clarke DD,
Sokoloff L.
Circulation and energy metabolism of the brain. In:
Siegel GJ,
Agranoff BW,
Albers RW, editors.
Basic Neurochemistry.
Philadelphia:
Lippincott‐Raven,
1999,
p. 637‐669.
|
116. |
Cloherty EK,
Diamond DL,
Heard KS,
Carruthers A.
Regulation of GLUT1‐mediated sugar transport by an antiport/uniport switch mechanism.
Biochemistry
35:
13231‐13239,
1996.
|
117. |
Cloherty EK,
Heard KS,
Carruthers A.
Human erythrocyte sugar transport is incompatible with available carrier models.
Biochemistry
35:
10411‐10421,
1996.
|
118. |
Cloherty EK,
Levine KB,
Carruthers A.
The red blood cell glucose transporter presents multiple, nucleotide‐sensitive sugar exit sites.
Biochemistry
40:
15549‐15561,
2001.
|
119. |
Cloherty EK,
Sultzman LA,
Zottola RJ,
Carruthers A.
Net sugar transport is a multistep process. Evidence for cytosolic sugar binding sites in erythrocytes.
Biochemistry
34:
15395‐15406,
1995.
|
120. |
Coderre PE,
Cloherty EK,
Zottola RJ,
Carruthers A.
Rapid substrate translocation by the multisubunit, erythroid glucose transporter requires subunit associations but not cooperative ligand binding.
Biochemistry
34:
9762‐9773,
1995.
|
121. |
Coerver KA,
Gray SM,
Barnes JE,
Armstrong DL,
McCabe ER.
Developmental expression of hexokinase 1 and 3 in rats.
Histochem Cell Biol
109:
75‐86,
1998.
|
122. |
Colville CA,
Seatter MJ,
Gould GW.
Analysis of the structural requirements of sugar binding to the liver, brain and insulin‐responsive glucose transporters expressed in oocytes.
Biochem J
294:
753‐760,
1993.
|
123. |
Colville CA,
Seatter MJ,
Jess TJ,
Gould GW,
Thomas HM.
Kinetic analysis of the liver‐type (GLUT2) and brain‐type (GLUT3) glucose transporters in Xenopus oocytes: Substrate specificities and effects of transport inhibitors.
Biochem J
290:
701‐706,
1993.
|
124. |
Combes B,
Adams RH,
Strickland W,
Madison LL.
The physiological significance of the secretion of endogenous insulin into the portal circulation. IV. Hepatic uptake of glucose during glucose infusion in non‐diabetic dogs.
J Clin Invest
40:
1706‐1718,
1961.
|
125. |
Concha II,
Velasquez FV,
Martinez JM,
Angulo C,
Droppelmann A,
Reyes AM,
Slebe JC,
Vera JC,
Golde DW.
Human erythrocytes express GLUT5 and transport fructose.
Blood
89:
4190‐4195,
1997.
|
126. |
Cook DL,
Hales CN.
Intracellular ATP directly blocks K+ channels in pancreatic B‐cells.
Nature
311:
271‐273,
1984.
|
127. |
Coombe NB,
Smith RH.
Absorption of glucose and galactose and digestion and absorption of lactose by the prepruminant calf.
Br J Nutr
30:
331‐344,
1973.
|
128. |
Coomber BL,
Stewart PA.
Morphometric analysis of CNS microvascular endothelium.
Microvasc Res
30:
99‐115,
1985.
|
129. |
Cooper DR,
Khalakdina A,
Watson JE.
Chronic effects of glucose on insulin signaling in A‐10 vascular smooth muscle cells.
Arch Bioche Biophys
302:
490‐498,
1993.
|
130. |
Cope DL,
Holman GD,
Baldwin SA,
Wolstenholme AJ.
Domain assembly of the GLUT1 glucose transporter.
Biochem J
300:
291‐294,
1994.
|
131. |
Cornford EM,
Hyman S,
Pardridge WM.
An electron microscopic immunogold analysis of developmental up‐regulation of the blood‐brain barrier GLUT1 glucose transporter.
J Cereb Blood Flow Metab
13:
841‐854,
1993.
|
132. |
Cornford EM,
Nguyen EV,
Landaw EM.
Acute upregulation of blood‐brain barrier glucose transporter activity in seizures.
Am J Physiol Heart Circ Physiol S
279:
H1346‐H1354,
2000.
|
133. |
Coucke PJ,
Willaert A,
Wessels MW,
Callewaert B,
Zoppi N,
De Backer J,
Fox JE,
Mancini GMS,
Kambouris M,
Gardella R,
Facchetti F,
Willems PJ,
Forsyth R,
Dietz HC,
Barlati S,
Colombi M,
Loeys B,
De Paepe A.
Mutations in the facilitative glucose transporter GLUT10 alter angiogenesis and cause arterial tortuosity syndrome.
Nat Genet
38:
452‐457,
2006.
|
134. |
Craik JD,
Cheeseman CI,
Young JD.
Rapid entry of D‐glucose into erythrocytes from bottlenose dolphins (Tursiops truncatus).
Mar Mam Sci
11:
584‐589,
1995.
|
135. |
Craik JD,
Elliott KR.
Kinetics of 3‐O‐methyl‐D‐glucose transport in isolated rat hepatocytes.
Biochem J S
182:
503‐508,
1979.
|
136. |
Craik JD,
Markovich D.
Rapid GLUT‐1 mediated glucose transport in erythrocytes from the grey‐headed fruit bat (Pteropus poliocephalus).
Comp Biochem Physiol A Mol Integr Physiol
126:
45‐55,
2000.
|
137. |
Craik JD,
Stewart M,
Cheeseman CI.
GLUT‐3 (brain‐type) glucose transporter polypeptides in human blood platelets.
Thromb Res
79:
461‐469,
1995.
|
138. |
Craik JD,
Young JD,
Cheeseman CI.
GLUT‐1 mediation of rapid glucose transport in dolphin (Tursiops truncatus) red blood cells.
Am J Physiol
274:
R112‐R119,
1998.
|
139. |
Cramer SC,
Pardridge WM,
Hirayama BA,
Wright EM.
Colocalization of GLUT2 glucose transporter, sodium/glucose cotransporter, and gamma‐glutamyl transpeptidase in rat kidney with double‐peroxidase immunocytochemistry.
Diabetes
41:
766‐770,
1992.
|
140. |
Crone C.
Facilitated transfer of glucose from blood into brain tissue.
J Physiol
181:
103‐113,
1965.
|
141. |
Cunningham P,
Afzal‐Ahmed I,
Naftalin RJ.
Docking studies show that D‐glucose and quercetin slide through the transporter GLUT1.
J Biol Chem
281:
5797‐5803,
2006.
|
142. |
Cura AJ,
Carruthers A.
Acute modulation of sugar transport in brain capillary endothelial cell cultures during activation of the metabolic stress pathway.
J Biol Chem
285:
15430‐15439,
2010.
|
143. |
D'Angelo G.
Evidence for an Erythrocyte Glucose Transport System in the Belukha Whale (Delphinapterus Leucas).
Biological Systems, Cetology,
42:
1‐9,
1982.
|
144. |
Dang S,
Sun L,
Huang Y,
Lu F,
Liu Y,
Gong H,
Wang J,
Yan N.
Structure of a fucose transporter in an outward‐open conformation.
Nature
467:
734‐738,
2010.
|
145. |
Darakhshan F,
Hajduch E,
Kristiansen S,
Richter EA,
Hundal HS.
Biochemical and functional characterization of the GLUT5 fructose transporter in rat skeletal muscle.
Biochem J
336:
361‐366,
1998.
|
146. |
Datta NS,
Abou‐Samra AB.
PTH and PTHrP signaling in osteoblasts.
Cell Signal
21:
1245‐1254,
2009.
|
147. |
Davidson NO,
Hausman AM,
Ifkovits CA,
Buse JB,
Gould GW,
Burant CF,
Bell GI.
Human intestinal glucose transporter expression and localization of GLUT5.
Am J Physiol
262:
C795‐C800,
1992.
|
148. |
Davis AJ,
Fleet IR,
Goode JA,
Hamon MH,
Walker FM,
Peaker M.
Changes in mammary function at the onset of lactation in the goat: Correlation with hormonal changes.
J Physiol
288:
33‐44,
1979.
|
149. |
Dawson PA,
Mychaleckyj JC,
Fossey SC,
Mihic SJ,
Craddock AL,
Bowden DW.
Sequence and functional analysis of glut10: A glucose transporter in the type 2 diabetes‐linked region of chromosome 20q12‐13.1.
Mol Genet Metab
74:
186‐99,
2001.
|
150. |
de Graaf RA,
Pan JW,
Telang F,
Lee JH,
Brown P,
Novotny EJ,
Hetherington HP,
Rothman DL.
Differentiation of glucose transport in human brain gray and white matter.
J Cereb Blood Flow Metab S
21:
483‐492,
2001.
|
151. |
Dejana E.
Endothelial cell‐cell junctions: Happy together.
Nat Rev Mol Cell Biol
5:
261‐270,
2004.
|
152. |
Dhar‐Mascareno M,
Chen J,
Zhang RH,
Carcamo JM,
Golde DW.
Granulocyte‐macrophage colony‐stimulating factor signals for increased glucose transport via phosphatidylinositol 3‐kinase‐ and hydrogen peroxide‐dependent mechanisms.
J Biol Chem
278:
11107‐11114,
2003.
|
153. |
Diamond D,
Carruthers A.
Metabolic control of sugar transport by derepression of cell surface glucose transporters: An insulin‐independent, recruitment‐independent mechanism of regulation.
J Biol Chem
268:
6437‐6444,
1993.
|
154. |
Dick AP,
Harik SI,
Klip A,
Walker DM.
Identification and characterization of the glucose transporter of the blood‐brain barrier by cytochalasin B binding and immunological reactivity.
Proc Natl Acad Sci U S A
81:
7233‐7237,
1984.
|
155. |
Dietrich HH,
Ellsworth ML,
Sprague RS,
Dacey RGJ.
Red blood cell regulation of microvascular tone through adenosine triphosphate.
Am J Physiol Heart Circ Physiol
278:
H1294‐H1298,
2000.
|
156. |
Doblado M,
Moley KH.
Facilitative glucose transporter 9, a unique hexose and urate transporter.
Am J Physiol Endocrinol Metab
297:
E831‐E835,
2009.
|
157. |
Doege H,
Bocianski A,
Joost HG,
Schurmann A.
Activity and genomic organization of human glucose transporter 9 (GLUT9), a novel member of the family of sugar‐transport facilitators predominantly expressed in brain and leucocytes.
Biochem J
350
Pt 3:
771‐776,
2000.
|
158. |
Doege H,
Schurmann A,
Bahrenberg G,
Brauers A,
Joost HG.
GLUT8, a novel member of the sugar transport facilitator family with glucose transport activity.
J Biol Chem
275:
16275‐16280,
2000.
|
159. |
Doege H,
Schurmann A,
Ohnimus H,
Monser V,
Holman GD,
Joost HG.
Serine‐294 and threonine‐295 in the exofacial loop domain between helices 7 and 8 of glucose transporters (GLUT) are involved in the conformational alterations during the transport process.
Biochem J
329:
289‐293,
1998.
|
160. |
Doege H,
Bocianski A,
Scheepers A,
Axer H,
Eckel J,
Joost HG,
Schurmann A.
Characterization of human glucose transporter (GLUT) 11 (encoded by SLC2A11), a novel sugar‐transport facilitator specifically expressed in heart and skeletal muscle.
Biochem J
359:
443‐49,
2001.
|
161. |
Dolznig H,
Boulme F,
Stangl K,
Deiner EM,
Mikulits W,
Beug H,
Mullner EW.
Establishment of normal, terminally differentiating mouse erythroid progenitors: Molecular characterization by cDNA arrays.
FASEB J
15:
1442‐1444,
2001.
|
162. |
Douard V,
Ferraris RP.
Regulation of the fructose transporter GLUT5 in health and disease.
Am J Physiol Endocrinol Metab
295:
E227‐E237,
2008.
|
163. |
Drewes LR,
Horton RW,
Betz AL,
Gilboe DD.
Cytochalasin B inhibition of brain glucose transport and the influence of blood components on inhibitor concentration.
Biochim Biophys Acta
471:
477‐486,
1977.
|
164. |
Drucker DJ,
Nauck MA.
The incretin system: Glucagon‐like peptide‐1 receptor agonists and dipeptidyl peptidase‐4 inhibitors in type 2 diabetes.
Lancet
368:
1696‐1705,
2006.
|
165. |
Duara R,
Grady C,
Haxby J,
Ingvar D,
Sokoloff L,
Margolin RA,
Manning RG,
Cutler NR,
Rapoport SI.
Human brain glucose utilization and cognitive function in relation to age.
Ann Neurol
16:
703‐713,
1984.
|
166. |
Duelli R,
Kuschinsky W.
Brain glucose transporters: Relationship to local energy demand.
News Physiol Sci
16:
71‐76,
2001.
|
167. |
Duelli R,
Maurer MH,
Staudt R,
Sokoloff L,
Kuschinsky W.
Correlation between local glucose transporter densities and local 3‐O‐methylglucose transport in rat brain.
Neurosci Lett
310:
101‐104,
2001.
|
168. |
Dwyer DS.
Model of the 3‐D structure of the GLUT3 glucose transporter and molecular dynamics simulation of glucose transport.
Proteins
42:
531‐41,
2001.
|
169. |
Edamatsu M,
Kondo Y,
Ando M.
Multiple expression of glucose transporters in the lateral wall of the cochlear duct studied by quantitative real‐time PCR assay.
Neurosci Lett
490:
72‐77,
2011.
|
170. |
Eddy EM,
Toshimori K,
O'Brien DA.
Fibrous sheath of mammalian spermatozoa.
Microsc Res Tech
61:
103‐115,
2003.
|
171. |
El Messari S,
Leloup C,
Quignon M,
Brisorgueil MJ,
Penicaud L,
Arluison M.
Immunocytochemical localization of the insulin‐responsive glucose transporter 4 (Glut4) in the rat central nervous system.
J Comp Neurol
399:
492‐512,
1998.
|
172. |
Engel A,
Fujiyoshi Y,
Agre P.
The importance of aquaporin water channel protein structures.
Embo J
19:
800‐806,
2000.
|
173. |
Ericsson A,
Hamark B,
Jansson N,
Johansson BR,
Powell TL,
Jansson T.
Hormonal regulation of glucose and system A amino acid transport in first trimester placental villous fragments.
Am J Physiol Regul Integr Comp Physiol
288:
R656‐R662,
2005.
|
174. |
Estrada DE,
Elliott E,
Zinman B,
Poon I,
Liu Z,
Klip A,
Daneman D.
Regulation of glucose transport and expression of GLUT3 transporters in human circulating mononuclear cells: Studies in cells from insulin‐dependent diabetic and nondiabetic individuals.
Metabolism
43:
591‐598,
1994.
|
175. |
Evans SA,
Doblado M,
Chi MM,
Corbett JA,
Moley KH.
Facilitative glucose transporter 9 expression affects glucose sensing in pancreatic beta‐cells.
Endocrinology
150:
5302‐5310,
2009.
|
176. |
Farrell CL,
Pardridge WM.
Blood‐brain barrier glucose transporter is asymmetrically distributed on brain capillary endothelial lumenal and ablumenal membranes: An electron microscopic immunogold study.
Proc Natl Acad Sci U S A
88:
5779‐5783,
1991.
|
177. |
Faulkner A,
Blatchford DR,
Pollock HT.
The transport of hexoses across the apical membrane of the mammary gland of the goat.
Biochem Soc Trans
13:
689‐690,
1985.
|
178. |
Faulkner A,
Chaiyabutr N,
Peaker M,
Carrick DT,
Kuhn NJ.
Metabolic significance of milk glucose.
J Dairy Res
48:
51‐56,
1981.
|
179. |
Fawcett HA,
Baldwin SA,
Flint DJ.
Hormonal regulation of the glucose transporter GLUT I in the lactating rat mammary gland.
Bioch Soc Trans
20:
17S,
1992.
|
180. |
Fazakerley DJ,
Holman GD,
Marley A,
James DE,
Stockli J,
Coster AC.
Kinetic evidence for unique regulation of GLUT4 trafficking by insulin and AMP‐activated protein kinase activators in L6 myotubes.
J Biol Chem
285:
1653‐1660,
2010.
|
181. |
Fernando RN,
Albiston AL,
Chai SY.
The insulin‐regulated aminopeptidase IRAP is colocalised with GLUT4 in the mouse hippocampus–potential role in modulation of glucose uptake in neurones?
Eur J Neurosci
28:
588‐598,
2008.
|
182. |
Fernando RN,
Larm J,
Albiston AL,
Chai SY.
Distribution and cellular localization of insulin‐regulated aminopeptidase in the rat central nervous system.
J Comp Neurol
487:
372‐390,
2005.
|
183. |
Fernando RN,
Luff SE,
Albiston AL,
Chai SY.
Sub‐cellular localization of insulin‐regulated membrane aminopeptidase, IRAP to vesicles in neurons.
J Neurochem
102:
967‐976,
2007.
|
184. |
Fettiplace R,
Hackney CM.
The sensory and motor roles of auditory hair cells.
Nat Rev Neurosci
7:
19‐29,
2006.
|
185. |
Flier JS,
Mueckler M,
McCall AL,
Lodish HF.
Distribution of glucose transporter messenger RNA transcripts in tissues of rat and man.
J Clin Invest
79:
657‐661,
1987.
|
186. |
Ford WC.
Glycolysis and sperm motility: Does a spoonful of sugar help the flagellum go round?
Hum Reprod Update
12:
269‐274,
2006.
|
187. |
Fowden AL,
Ward JW,
Wooding FP,
Forhead AJ,
Constancia M.
Programming placental nutrient transport capacity.
J Physiol
572:
5‐15,
2006.
|
188. |
Franklin I,
Gromada J,
Gjinovci A,
Theander S,
Wollheim CB.
Beta‐cell secretory products activate alpha‐cell ATP‐dependent potassium channels to inhibit glucagon release.
Diabetes
54:
1808‐1815,
2005.
|
189. |
Frizzell RT,
Jones EM,
Davis SN,
Biggers DW,
Myers SR,
Connolly CC,
Neal DW,
Jaspan JB,
Cherrington AD.
Counterregulation during hypoglycemia is directed by widespread brain regions.
Diabetes
42:
1253‐1261,
1993.
|
190. |
Frohnert PP,
Hohmann B,
Zwiebel R,
Baumann K.
Free flow micropuncture studies of glucose transport in the rat nephron.
Pflugers Arch
315:
66‐85,
1970.
|
191. |
Fry DC,
Kuby SA,
Mildvan AS.
ATP‐binding site of adenylate kinase: Mechanistic implications of its homology with ras‐encoded p21, F1‐ATPase, and other nucleotide‐binding proteins.
Proc Natl Acad Sci U S A
83:
907‐911,
1986.
|
192. |
Fu Y,
Maianu L,
Melbert BR,
Garvey WT.
Facilitative glucose transporter gene expression in human lymphocytes, monocytes, and macrophages: A role for GLUT isoforms 1, 3, and 5 in the immune response and foam cell formation.
Blood Cells Mol Dis
32:
182‐190,
2004.
|
193. |
Fujii N,
Hayashi T,
Hirshman MF,
Smith JT,
Habinowski SA,
Kaijser L,
Mu J,
Ljungqvist O,
Birnbaum MJ,
Witters LA,
Thorell A,
Goodyear LJ.
Exercise induces isoform‐specific increase in 5'AMP‐activated protein kinase activity in human skeletal muscle.
Biochem Biophys Res Commun
273:
1150‐1155,
2000.
|
194. |
Gaposchkin CG,
Garcia‐Diaz JF.
Modulation of cultured brain, adrenal, and aortic endothelial cell glucose transport.
Biochim Biophys Acta S
1285:
255‐266,
1996.
|
195. |
Garcia MA,
Millan C,
Balmaceda‐Aguilera C,
Castro T,
Pastor P,
Montecinos H,
Reinicke K,
Zuniga F,
Vera JC,
Onate SA,
Nualart F.
Hypothalamic ependymal‐glial cells express the glucose transporter GLUT2, a protein involved in glucose sensing.
J Neurochem
86:
709‐724,
2003.
|
196. |
Gardner TW,
Antonetti DA,
Barber AJ,
Lieth E,
Tarbell JA.
The molecular structure and function of the inner blood‐retinal barrier. Penn State Retina Research Group.
Doc Ophthalmol
97:
229‐237,
1999.
|
197. |
Geleoc GS,
Casalotti SO,
Forge A,
Ashmore JF.
A sugar transporter as a candidate for the outer hair cell motor.
Nat Neurosci
2:
713‐719,
1999.
|
198. |
Gerhart DZ,
Broderius MA,
Borson ND,
Drewes LR.
Neurons and microvessels express the brain glucose transporter protein GLUT3.
Proc Natl Acad Sci U S A
89:
733‐737,
1992.
|
199. |
Gerhart DZ,
Leino RL,
Borson ND,
Taylor WE,
Gronlund KM,
McCall AL,
Drewes LR.
Localization of glucose transporter GLUT 3 in brain: Comparison of rodent and dog using species‐specific carboxyl‐terminal antisera.
Neuroscience
66:
237‐246,
1995.
|
200. |
Gerhart DZ,
Leino RL,
Taylor WE,
Borson ND,
Drewes LR.
GLUT1 and GLUT3 gene expression in gerbil brain following brief ischemia: An in situ hybridization study.
Brain Res Mol Brain Res
25:
313‐322,
1994.
|
201. |
Gerhart DZ,
LeVasseur RJ,
Broderius MA,
Drewes LR.
Glucose transporter localization in brain using light and electron immunocytochemistry.
J Neurosci Res
22:
464‐472,
1989.
|
202. |
Gerich JE,
Meyer C,
Woerle HJ,
Stumvoll M.
Renal gluconeogenesis: Its importance in human glucose homeostasis.
Diabetes Care
24:
382‐391,
2001.
|
203. |
Gerritsen ME,
Burke TM,
Allen LA.
Glucose starvation is required for insulin stimulation of glucose uptake and metabolism in cultured microvascular endothelial cells.
Microvasc Res
35:
153‐166,
1988.
|
204. |
Gillespie DS.
Overview of species needing dietary vitamin C.
J Zoo Anim Med
11:
88‐91,
1980.
|
205. |
Ginsburg H,
Stein WD.
Zero‐trans and infinite‐cis uptake of galactose in human erythrocytes.
Biochim Biophys Acta
382:
353‐368,
1975.
|
206. |
Gjedde A.
Blood–brain glucose transfer. In:
Bradbury M, editor.
Physiology and Pharmacology of the Blood–Brain Barrier.
New York:
Springer‐Verlag,
1992,
p. 65‐117.
|
207. |
Golay A,
DeFronzo RA,
Ferrannini E,
Simonson DC,
Thorin D,
Acheson K,
Thiebaud D,
Curchod B,
Jequier E,
Felber JP.
Oxidative and non‐oxidative glucose metabolism in non‐obese type 2 (non‐insulin‐dependent) diabetic patients.
Diabetologia
31:
585‐591,
1988.
|
208. |
Gomez O,
Romero A,
Terrado J,
Mesonero JE.
Differential expression of glucose transporter GLUT8 during mouse spermatogenesis.
Reproduction
131:
63‐70,
2006.
|
209. |
Gonzalez JA,
Jensen LT,
Doyle SE,
Miranda‐Anaya M,
Menaker M,
Fugger L,
Bayliss DA,
Burdakov D.
Deletion of TASK1 and TASK3 channels disrupts intrinsic excitability but does not abolish glucose or pH responses of orexin/hypocretin neurons.
Eur J Neurosci
30:
57‐64,
2009.
|
210. |
Goodyear LJ,
Hirshman MF,
Valyou PM,
Horton ES.
Glucose transporter number, function, and subcellular distribution in rat skeletal muscle after exercise training.
Diabetes
41:
1091‐1099,
1992.
|
211. |
Gorga FR,
Baldwin SA,
Lienhard GE.
The monosaccharide transporter from human erythrocytes is heterogeneously glycosylated. Biochem Biophys Res Commun
91:
955‐961,
1979.
|
212. |
Gorga FR,
Lienhard GE.
Equilibria and kinetics of ligand binding to the human erythrocyte glucose transporter. Evidence for an alternating conformation model for transport. Biochemistry
20:
5108‐5113,
1981.
|
213. |
Gorga FR,
Lienhard GE.
Changes in the intrinsic fluorescence of the human erythrocyte monosaccharide transporter upon ligand binding. Biochemistry
21:
1905‐1908,
1982.
|
214. |
Gorus FK,
Malaisse WJ,
Pipeleers DG.
Differences in glucose handling by pancreatic A‐ and B‐cells.
J Biol Chem
259:
1196‐1200,
1984.
|
215. |
Graybill C,
van Hoek AN,
Desai D,
Carruthers AM,
Carruthers A.
Ultrastructure of human erythrocyte GLUT1.
Biochemistry
45:
8096‐8107,
2006.
|
216. |
Grdisa M,
White MK.
Regulation of glucose transport in differentiating HD3 cells.
Cell Biochem Funct
18:
293‐297,
2000a.
|
217. |
Grdisa M,
White MK.
Erythrocytic differentiation and glyceraldehyde‐3‐phosphate dehydrogenase expression are regulated by protein phosphorylation and cAMP in HD3 cells.
Int J Biochem Cell Biol
32:
589‐595,
2000b.
|
218. |
Grdisa M,
White MK.
Molecular and biochemical events during differentiation of the HD3 chicken erythroblastic cell line.
Int J Biochem Cell Biol
35:
422‐431,
2003.
|
219. |
Gromada J,
Bokvist K,
Ding WG,
Barg S,
Buschard K,
Renstrom E,
Rorsman P.
Adrenaline stimulates glucagon secretion in pancreatic A‐cells by increasing the Ca2+ current and the number of granules close to the L‐type Ca2+ channels.
J Gen Physiol
110:
217‐228,
1997.
|
220. |
Gronowicz G,
Swift H,
Steck TL.
Maturation of the reticulocyte in vitro.
J Cell Sci
71:
177‐197,
1984.
|
221. |
Gross LS,
Li L,
Ford ES,
Liu S.
Increased consumption of refined carbohydrates and the epidemic of type 2 diabetes in the United States: An ecologic assessment.
Am J Clin Nutr
79:
774‐779,
2004.
|
222. |
Gruetter R,
Novotny EJ,
Boulware SD,
Rothman DL,
Shulman RG.
1H NMR studies of glucose transport in the human brain.
J Cereb Blood Flow Metab
16:
427‐438,
1996.
|
223. |
Gruetter R,
Ugurbil K,
Seaquist ER.
Steady‐state cerebral glucose concentrations and transport in the human brain.
J Neurochem
70:
397‐408,
1998.
|
224. |
Gude NM,
Stevenson JL,
Rogers S,
Best JD,
Kalionis B,
Huisman MA,
Erwich JJ,
Timmer A,
King RG.
GLUT12 expression in human placenta in first trimester and term.
Placenta
24:
566‐570,
2003.
|
225. |
Guillam MT,
Burcelin R,
Thorens B.
Normal hepatic glucose production in the absence of GLUT2 reveals an alternative pathway for glucose release from hepatocytes.
Proc Natl Acad Sci U S A
95:
12317‐12321,
1998.
|
226. |
Haber RS,
Weinstein SP,
O'Boyle E,
Morgello S.
Tissue distribution of the human GLUT3 glucose transporter.
Endocrinology
132:
2538‐2543,
1993.
|
227. |
Hahn TJ,
Westbrook SL,
Sullivan TL,
Goodman WG,
Halstead LR.
Glucose transport in osteoblast‐enriched bone explants: Characterization and insulin regulation.
J Bone Miner Res
3:
359‐365,
1988.
|
228. |
Hamill S,
Cloherty EK,
Carruthers A.
The human erythrocyte sugar transporter presents two sugar import sites.
Biochemistry
38:
16974‐16983,
1999.
|
229. |
Haney PM.
Localization of the GLUT1 glucose transporter to brefeldin A‐sensitive vesicles of differentiated CIT3 mouse mammary epithelial cells.
Cell Biol Int
25:
277‐288,
2001.
|
230. |
Haney PM.
Glucose transport in lactation.
Adv Exp Med Biol
554:
253‐261,
2004.
|
231. |
Hankin BL,
Lieb WR,
Stein WD.
Rejection criteria for the asymmetric carrier and their application to glucose transport in the human red blood cell.
Biochim Biophys Acta
288:
114‐126,
1972.
|
232. |
Hansen P,
Gulve E,
Gao J,
Schluter J,
Mueckler M,
Holloszy J.
Kinetics of 2‐deoxyglucose transport in skeletal muscle: Effects of insulin and contractions.
Am J Physiol
268:
C30‐C35,
1995.
|
233. |
Harhaj NS,
Antonetti DA.
Regulation of tight junctions and loss of barrier function in pathophysiology.
Int J Biochem Cell Biol
36:
1206‐1237,
2004.
|
234. |
Harik SI.
Changes in the glucose transporter of brain capillaries.
Can J Physiol Pharmacol
70:
S113‐S17,
1992.
|
235. |
Harik SI,
Behmand RA,
Murphy JR.
Stability of the glucose transporter in plasma membranes of human erythrocytes [letter].
Diabetologia
37:
730,
1994.
|
236. |
Harik SI,
Kalaria RN,
Andersson L,
Lundahl P,
Perry G.
Immunocytochemical localization of the erythroid glucose transporter: Abundance in tissues with barrier functions.
J Neurosci
10:
3862‐3872,
1990.
|
237. |
Harik SI,
Kalaria RN,
Whitney PM,
Andersson L,
Lundahl P,
Ledbetter SR,
Perry G.
Glucose transporters are abundant in cells with “occluding” junctions at the blood‐eye barriers.
Proc Natl Acad Sci U S A
87:
4261‐4264,
1990.
|
238. |
Harkness DR,
Grayson V.
Erythrocyte metabolism in the bottle‐nosed dolphin, Tursiops truncatus.
Comp Biochem Physiol
28:
1289‐1301,
1969.
|
239. |
Hasselbalch SG,
Holm S,
Pedersen HS,
Svarer C,
Knudsen GM,
Madsen PL,
Paulson OB.
The (18)F‐fluorodeoxyglucose lumped constant determined in human brain from extraction fractions of (18)F‐fluorodeoxyglucose and glucose.
J Cereb Blood Flow Metab S
21:
995‐1002,
2001.
|
240. |
Hauguel‐de Mouzon S,
Challier JC,
Kacemi A,
Cauzac M,
Malek A,
Girard J.
The GLUT3 glucose transporter isoform is differentially expressed within human placental cell types.
J Clin Endocrinol Metab
82:
2689‐2694,
1997.
|
241. |
Haworth RA,
Berkoff HA.
The control of sugar uptake by metabolic demand in isolated heart cells.
Circ Res
58:
157‐165,
1986.
|
242. |
Heard KS,
Diguette M,
Heard AC,
Carruthers A.
Membrane‐bound glyceraldehyde‐3‐phosphate dehydrogenase and multiphasic erythrocyte sugar transport.
Exp Physiol
83:
195‐202,
1998.
|
243. |
Heard KS,
Fidyk N,
Carruthers A.
ATP‐dependent substrate occlusion by the human erythrocyte sugar transporter.
Biochemistry
39:
3005‐3014,
2000.
|
244. |
Hebert DN,
Carruthers A.
Cholate‐solubilized erythrocyte glucose transporters exist as a mixture of homodimers and homotetramers.
Biochemistry
30:
4654‐4658,
1991a.
|
245. |
Hebert DN,
Carruthers A.
Uniporters and anion antiporters.
Curr Opin Cell Biol
3:
702‐709,
1991b.
|
246. |
Hebert DN,
Carruthers A.
Glucose transporter oligomeric structure determines transporter function. Reversible redox‐dependent interconversions of tetrameric and dimeric GLUT1.
J Biol Chem
267:
23829‐23838,
1992.
|
247. |
Heijnen HF,
Oorschot V,
Sixma JJ,
Slot JW,
James DE.
Thrombin stimulates glucose transport in human platelets via the translocation of the glucose transporter GLUT‐3 from alpha‐granules to the cell surface.
J Cell Biol
138:
323‐330,
1997.
|
248. |
Heimberg H,
De Vos A,
Pipeleers D,
Thorens B,
Schuit F.
Differences in glucose transporter gene expression between rat pancreatic alpha‐ and beta‐cells are correlated to differences in glucose transport but not in glucose utilization.
J Biol Chem
270:
8971‐8975,
1995.
|
249. |
Heimberg H,
De Vos A,
Vandercammen A,
Van Schaftingen E,
Pipeleers D,
Schuit F.
Heterogeneity in glucose sensitivity among pancreatic beta‐cells is correlated to differences in glucose phosphorylation rather than glucose transport.
EMBO J
12:
2873‐2879,
1993.
|
250. |
Helgerson AL,
Carruthers A.
Equilibrium ligand binding to the human erythrocyte sugar transporter. Evidence for two sugar‐binding sites per carrier.
J Biol Chem
262:
5464‐5475,
1987.
|
251. |
Helgerson AL,
Carruthers A.
Analysis of protein‐mediated 3‐O‐methylglucose transport in rat erythrocytes: Rejection of the alternating conformation carrier model for sugar transport.
Biochemistry
28:
4580‐4594,
1989.
|
252. |
Helgerson AL,
Hebert DN,
Naderi S,
Carruthers A.
Characterization of two independent modes of action of ATP on human erythrocyte sugar transport.
Biochemistry
28:
6410‐6417,
1989.
|
253. |
Hellwig B,
Joost HG.
Differentiation of erythrocyte‐(GLUT1), liver‐(GLUT2), and adipocyte‐type (GLUT4) glucose transporters by binding of the inhibitory ligands cytochalasin B, forskolin, dipyridamole, and isobutylmethylxanthine.
Mol Pharmacol
40:
383‐389,
1991.
|
254. |
Henderson PJ,
Maiden MC.
Homologous sugar transport proteins in Escherichia coli and their relatives in both prokaryotes and eukaryotes. [Review].
Philos Trans R Soc Lond B Biol Sci
326:
391‐410,
1990.
|
255. |
Henderson PJF.
The homologous glucose transport proteins of prokaryotes and eukaryotes.
Res Microbiol
141:
316‐328,
1990.
|
256. |
Henderson PJF,
Maiden MCJ.
Homologous sugar transport proteins in Escherichia coli and their relatives in both prokaryotes and eukaryotes.
Philos Trans R Soc Lond B Biol Sci
326:
391‐410,
1990.
|
257. |
Henquin JC.
Triggering and amplifying pathways of regulation of insulin secretion by glucose.
Diabetes
49:
1751‐1760,
2000.
|
258. |
Herculano‐Houzel S.
The human brain in numbers: A linearly scaled‐up primate brain.
Front Hum Neurosc
3:
31,
2009.
|
259. |
Hermansen L,
Hultman E,
Saltin B.
Muscle glycogen during prolonged severe exercise.
Acta Physiol Scand
71:
129‐139,
1967.
|
260. |
Hinkle PC,
Sogin DC,
Wheeler TJ,
Teleford JN.
Studies of the glucose transporter from human erythrocytes reconstituted in liposomes. In:
Quagliariello E, editor.
Function and Molecular Aspect of Biomembrane Transport.
Amsterdam:
Elsevier/North‐Holland Biomedical Press,
1979,
p. 487‐494.
|
261. |
Hirai T,
Heymann JA,
Shi D,
Sarker R,
Maloney PC,
Subramaniam S.
Three‐dimensional structure of a bacterial oxalate transporter.
Nat Struct Biol
9:
597‐600,
2002.
|
262. |
Ho YY,
Yang H,
Klepper J,
Fischbarg J,
Wang D,
De Vivo DC.
Glucose transporter type 1 deficiency syndrome (Glut1DS): Methylxanthines potentiate GLUT1 haploinsufficiency in vitro.
Pediatr Res S
50:
254‐260,
2001.
|
263. |
Holloszy JO,
Narahara HT.
Studies on tissue permeability. X. Changes in permeability to 3‐O‐methylglucose associated with contraction in frog muscle.
J Biol Chem
240:
349‐355,
1975.
|
264. |
Holman GD,
Kozka IJ,
Clark AE,
Flower CJ,
Saltis J,
Habberfield AD,
Simpson IA,
Cushman SW.
Cell surface labeling of glucose transporter isoform GLUT4 by bis‐mannose photolabel. Correlation with stimulation of glucose transport in rat adipose cells by insulin and phorbol ester.
J Biol Chem
265:
18172‐18179,
1990.
|
265. |
Holman GD.
An allosteric pore model for sugar transport in human erythrocytes.
Biochim Biophys Acta
599:
202‐213,
1980.
|
266. |
Holyoake J,
Caulfeild V,
Baldwin SA,
Sansom MS.
Modeling, docking, and simulation of the major facilitator superfamily.
Biophys J
91:
L84‐L86,
2006.
|
267. |
Hosoya K,
Tachikawa M.
Inner blood‐retinal barrier transporters: Role of retinal drug delivery.
Pharm Res
26:
2055‐2065,
2009.
|
268. |
Hosoya K,
Tomi M.
Inner blood—retinal barrier: Transport biology and methodology.
Drug Absorp Stud
321‐338,
2008.
|
269. |
Hresko RC,
Kruse M,
Strube M,
Mueckler M.
Topology of the Glut 1 glucose transporter deduced from glycosylation scanning mutagenesis.
J Biol Chem
269:
20482‐20488,
1994.
|
270. |
Hubin F,
Humblet C,
Belaid Z,
Lambert C,
Boniver J,
Thiry A,
Defresne MP.
Murine bone marrow stromal cells sustain in vivo the survival of hematopoietic stem cells and the granulopoietic differentiation of more mature progenitors.
Stem Cells
23:
1626‐1633,
2005.
|
271. |
Hudson ER,
Ma LS,
Wilde CJ,
Flint DJ,
Baldwin SA.
Regulation of GLUT1 expression in the mammary gland.
Biochem Soc Trans
25:
464S,
1997.
|
272. |
Hui H,
Huang D,
McArthur D,
Nissen N,
Boros LG,
Heaney AP.
Direct spectrophotometric determination of serum fructose in pancreatic cancer patients.
Pancreas
38:
706‐712,
2009.
|
273. |
Hussar P,
Tserentsoodol N,
Koyama H,
Yokoo‐Sugawara M,
Matsuzaki T,
Takami S,
Takata K.
The glucose transporter GLUT1 and the tight junction protein occludin in nasal olfactory mucosa.
Chem Senses
27:
7‐11,
2002.
|
274. |
Ibberson M,
Riederer BM,
Uldry M,
Guhl B,
Roth J,
Thorens B.
Immunolocalization of GLUTX1 in the testis and to specific brain areas and vasopressin‐containing neurons.
Endocrinology
143:
276‐284,
2002.
|
275. |
Ibberson M,
Uldry M,
Thorens B.
GLUTX1 (GLUT8), a novel mammalian glucose transporter expressed in the central nervous system and insulin‐sensitive tissues.
J Biol Chem
275:
4607‐4612,
2000.
|
276. |
Ikemoto A,
Bole DG,
Ueda T.
Glycolysis and glutamate accumulation into synaptic vesicles. Role of glyceraldehyde phosphate dehydrogenase and 3‐phosphoglycerate kinase.
J Biol Chem
278:
5929‐5940,
2003.
|
277. |
Illsley NP.
Glucose transporters in the human placenta.
Placenta
21:
14‐22,
2000.
|
278. |
Ingermann RL,
Stankova L,
Bigley RH.
Role of monosaccharide transporter in vitamin C uptake by placentalmembrane vesicles.
Am J Physiol
250:
C637‐C641,
1986.
|
279. |
Ituarte EA,
Ituarte HG,
Iida‐Klein A,
Hahn TJ.
Characterization of insulin binding in the UMR‐106 rat osteoblastic osteosarcoma cell.
J Bone Miner Res
4:
69‐73,
1989.
|
280. |
Iynedjian PB.
Molecular physiology of mammalian glucokinase.
Cell Mol Life Sci
66:
27‐42,
2009.
|
281. |
Jacobs SR,
Herman CE,
Maciver NJ,
Wofford JA,
Wieman HL,
Hammen JJ,
Rathmell JC.
Glucose uptake is limiting in T cell activation and requires CD28‐mediated Akt‐dependent and independent pathways.
J Immunol
180:
4476‐4486,
2008.
|
282. |
Jacquez JA.
Modulation of glucose transport in human red blood cells by ATP.
Biochim Biophys Acta
727:
367‐378,
1983.
|
283. |
Jacquez JA.
Red blood cell as glucose carrier: Significance for placental and cerebral glucose transfer.
Am J Physiol
246:
R289‐R298,
1984.
|
284. |
James DE,
Burleigh KM,
Kraegen EW.
Time dependence of insulin action in muscle and adipose tissue in the rat in vivo. An increasing response in adipose tissue with time.
Diabetes
34:
1049‐1054,
1985.
|
285. |
Jang HJ,
Kokrashvili Z,
Theodorakis MJ,
Carlson OD,
Kim BJ,
Zhou J,
Kim HH,
Xu X,
Chan SL,
Juhaszova M,
Bernier M,
Mosinger B,
Margolskee RF,
Egan JM.
Gut‐expressed gustducin and taste receptors regulate secretion of glucagon‐like peptide‐1.
Proc Natl Acad Sci U S A
104:
15069‐15074,
2007.
|
286. |
Jansson T,
Wennergren M,
Illsley NP.
Glucose transporter protein expression in human placenta throughout gestation and in intrauterine growth retardation.
J Clin Endocrinol Metab
77:
1554‐1562,
1993.
|
287. |
Jardetzky O.
Simple allosteric model for membrane pumps.
Nature
211:
969‐970,
1966.
|
288. |
Jay TM,
Dienel GA,
Cruz NF,
Mori K,
Nelson T,
Sokoloff L.
Metabolic stability of 3‐O‐methyl‐D‐glucose in brain and other tissues.
J Neurochem
55:
989‐1000,
1990.
|
289. |
Jeukendrup AE.
Regulation of fat metabolism in skeletal muscle.
Ann N Y Acad Sci
967:
217‐235,
2002.
|
290. |
Jolivet R,
Allaman I,
Pellerin L,
Magistretti PJ,
Weber B.
Comment on recent modeling studies of astrocyte‐neuron metabolic interactions.
J Cereb Blood Flow Metab
30:
1982‐1986,
2010.
|
291. |
Jones HN,
Powell TL,
Jansson T.
Regulation of placental nutrient transport–a review.
Placenta
28:
763‐774,
2007.
|
292. |
Jones PM,
George AM.
Symmetry and structure in P‐glycoprotein and ABC transporters.
Euro J Biochem
267:
5298‐5305,
2000.
|
293. |
Joost HG,
Bell GI,
Best JD,
Birnbaum MJ,
Charron MJ,
Chen YT,
Doege H,
James DE,
Lodish HF,
Moley KH,
Moley JF,
Mueckler M,
Rogers S,
Schurmann A,
Seino S,
Thorens B.
Nomenclature of the GLUT/SLC2A family of sugar/polyol transport facilitators.
Am J Physiol Endocrinol Metab
282:
E974‐E976,
2002.
|
294. |
Joost H‐G,
Thorens B.
The extended GLUT‐family of sugar/polyol transport facilitators: Nomenclature, sequence characteristics, and potential function of its novel members (review).
Mol Membr Biol
18:
247‐256,
2001.
|
295. |
Jordens I,
Molle D,
Xiong W,
Keller SR,
McGraw TE.
Insulin‐regulated aminopeptidase is a key regulator of GLUT4 trafficking by controlling the sorting of GLUT4 from endosomes to specialized insulin‐regulated vesicles.
Mol Biol Cell
21:
2034‐2044,
2010.
|
296. |
Jung CY,
Carlson LM,
Whaley DA.
Glucose transport carrier activities in extensively washed human red cell ghosts.
Biochim Biophys Acta
241:
613‐627,
1971.
|
297. |
Jung CY,
Hsu TL,
Hah JS,
Cha C,
Haas MN.
Glucose transport carrier of human erythrocytes. Radiation‐target size of glucose‐sensitive cytochalasin B binding protein.
J Biol Chem
255:
361‐364,
1980.
|
298. |
Jungermann K,
Katz N.
Functional specialization of different hepatocyte populations.
Physiol Rev
69:
708‐764,
1989.
|
299. |
Kachar B,
Brownell WE,
Altschuler R,
Fex J.
Electrokinetic shape changes of cochlear outer hair cells.
Nature
322:
365‐368,
1986.
|
300. |
Kaczmarczyk SJ,
Andrikopoulos S,
Favaloro J,
Domenighetti AA,
Dunn A,
Ernst M,
Grail D,
Fodero‐Tavoletti M,
Huggins CE,
Delbridge LM,
Zajac JD,
Proietto J.
Threshold effects of glucose transporter‐4 (GLUT4) deficiency on cardiac glucose uptake and development of hypertrophy.
J Mol Endocrinol
31:
449‐459,
2003.
|
301. |
Kalaria RN,
Gravina SA,
Schmidley JW,
Perry G,
Harik SI.
The glucose transporter of the human brain and blood‐brain barrier.
Ann Neurol
24:
757‐764,
1988.
|
302. |
Kandror KV,
Pilch PF.
The sugar is sIRVed; sorting Glut4 and its fellow travelers.
Traffic
12:
665‐671,
2011.
|
303. |
Kane S,
Seatter MJ,
Gould GW.
Functional studies of human GLUT5: Effect of pH on substrate selection and an analysis of substrate interactions.
Biochem Biophys Res Commun
238:
503‐505,
1997.
|
304. |
Karlish SJD,
Lieb WR,
Ram D,
Stein WD.
Kinetic Parameters of glucose efflux from human red blood cells under zero‐trans conditions.
Biochim Biophys Acta
255:
126‐132,
1972.
|
305. |
Kasahara M,
Hinkle PC.
Reconstitution and purification of the D‐glucose transporter from human erythrocytes.
J Biol Chem
252:
7384‐7390,
1977.
|
306. |
Katz EB,
Stenbit AE,
Hatton K,
DePinhot R,
Charron MJ.
Cardiac and adipose tissue abnormalities but not diabetes in mice deficient in GLUT4.
Nature
377:
151‐155,
1995.
|
307. |
Kayano T,
Burant CF,
Fukumoto H,
Gould GW,
Fan YS,
Eddy RL,
Byers MG,
Shows TB,
Seino S,
Bell GI.
Human facilitative glucose transporters. Isolation, functional characterization, and gene localization of cDNAs encoding an isoform (GLUT5) expressed in small intestine, kidney, muscle, and adipose tissue and an unusual glucose transporter pseudogene‐like sequence (GLUT6).
J Biol Chem
265:
13276‐13282,
1990.
|
308. |
Keenan TW,
Morre DJ,
Cheetham RD.
Lactose synthesis by a golgi apparatus fraction from rat mammary gland.
Nature
228:
1105‐1106,
1970.
|
309. |
Keller DM.
Glucose excretion in man and dog.
Nephron
5:
43‐66,
1968.
|
310. |
Kellett GL,
Brot‐Laroche E,
Mace OJ,
Leturque A.
Sugar absorption in the intestine: The role of GLUT2.
Annu Rev Nutr
28:
35‐54,
2008.
|
311. |
Khera PK,
Joiner CH,
Carruthers A,
Lindsell CJ,
Smith EP,
Franco RS,
Holmes YR,
Cohen RM.
Evidence for interindividual heterogeneity in the glucose gradient across the human red blood cell membrane and its relationship to hemoglobin glycation.
Diabetes
57:
2445‐2452,
2008.
|
312. |
Kim JM,
Jeong D,
Kang HK,
Jung SY,
Kang SS,
Min BM.
Osteoclast precursors display dynamic metabolic shifts toward accelerated glucose metabolism at an early stage of RANKL‐stimulated osteoclast differentiation.
Cell Physiol Biochem
20:
935‐946,
2007.
|
313. |
Kim YB,
Peroni OD,
Aschenbach WG,
Minokoshi Y,
Kotani K,
Zisman A,
Kahn CR,
Goodyear LJ,
Kahn BB.
Muscle‐specific deletion of the Glut4 glucose transporter alters multiple regulatory steps in glycogen metabolism.
Mol Cell Biol
25:
9713‐9723,
2005.
|
314. |
Kinne R,
Murer H,
Kinne‐Saffran E,
Thees M,
Sachs G.
Sugar transport by renal plasma membrane vesicles. Characterization of the systems in the brush‐border microvilli and basal‐lateral plasma membranes.
J Membr Biol
21:
375‐395,
1975.
|
315. |
Klausner RD,
Donaldson JG,
Lippincott‐Schwartz J.
Brefeldin A: Insights into the control of membrane traffic and organelle structure.
J Cell Biol
116:
1071‐1080,
1992.
|
316. |
Klepper J,
Leiendecker B.
GLUT1 deficiency syndrome ‐ 2007 update.
Develop Med Child Neurol
49:
707‐716,
2007.
|
317. |
Klepper J,
Voit T.
Facilitated glucose transporter protein type 1 (GLUT1) deficiency syndrome: Impaired glucose transport into brain–a review.
Eur J Pediatr
161:
295‐304,
2002.
|
318. |
Knott RM,
Robertson M,
Muckersie E,
Forrester JV.
Regulation of glucose transporters (GLUT‐1 and GLUT‐3) in human retinal endothelial cells.
Biochem J
318:
313‐317,
1996.
|
319. |
Kobayashi M,
Nikami H,
Morimatsu M,
Saito M.
Expression and localization of insulin‐regulatable glucose transporter (GLUT4) in rat brain.
Neurosci Lett
213:
103‐106,
1996.
|
320. |
Kokk K,
Verajankorva E,
Laato M,
Wu XK,
Tapfer H,
Pollanen P.
Expression of insulin receptor substrates 1‐3, glucose transporters GLUT‐1‐4, signal regulatory protein 1alpha, phosphatidylinositol 3‐kinase and protein kinase B at the protein level in the human testis.
Anat Sci Int
80:
91‐96,
2005.
|
321. |
Kokk K,
Verajankorva E,
Wu XK,
Tapfer H,
Poldoja E,
Simovart HE,
Pollanen P.
Expression of insulin signaling transmitters and glucose transporters at the protein level in the rat testis.
Ann N Y Acad Sci
1095:
262‐273,
2007.
|
322. |
Kol S,
Ben‐Shlomo I,
Ruutiainen K,
Ando M,
Davies‐Hill TM,
Rohan RM,
Simpson IA,
Adashi EY.
The midcycle increase in ovarian glucose uptake is associated with enhanced expression of glucose transporter 3. Possible role for interleukin‐1, a putative intermediary in the ovulatory process.
J Clin Invest
99:
2274‐2283,
1997.
|
323. |
Komatsu T,
Arashiki N,
Otsuka Y,
Sato K,
Inaba M.
Extrusion of Na,K‐ATPase and transferrin receptor with lipid raft‐associated proteins in different populations of exosomes during reticulocyte maturation in dogs.
Jpn J Vet Res
58:
17‐27,
2010.
|
324. |
Komori T,
Morikawa Y,
Tamura S,
Doi A,
Nanjo K,
Senba E.
Subcellular localization of glucose transporter 4 in the hypothalamic arcuate nucleus of ob/ob mice under basal conditions.
Brain Res
1049:
34‐42,
2005.
|
325. |
Kondo T,
Beutler E.
Developmental changes in glucose transport of guinea pig erythrocytes.
J Clin Invest
65:
1‐4,
1980.
|
326. |
Koumanov F,
Jin B,
Yang J,
Holman GD.
Insulin signaling meets vesicle traffic of GLUT4 at a plasma‐membrane‐activated fusion step.
Cell Metab
2:
179‐189,
2005.
|
327. |
Koury MJ,
Sawyer ST,
Brandt SJ.
New insights into erythropoiesis.
Curr Opin Hematol
9:
93‐100,
2002.
|
328. |
Kraegen EW,
Sowden JA,
Halstead MB,
Clark PW,
Rodnick KJ,
Chisholm DJ,
James DE.
Glucose transporters and in vivo glucose uptake in skeletal and cardiac muscle: Fasting, insulin stimulation and immunoisolation studies of GLUT1 and GLUT4.
Biochem J
295:
287‐293,
1993.
|
329. |
Krupka RM,
Devés R.
An experimental test for cyclic versus linear transport models. The mechanism of glucose and choline transport in erythrocytes.
J Biol Chem
256:
5410‐5416,
1981.
|
330. |
Kumagai AK.
Glucose transport in brain and retina: Implications in the management and complications of diabetes.
Diabetes Metab Res Rev
15:
261‐273,
1999.
|
331. |
Kumagai AK,
Kang YS,
Boado RJ,
Pardridge WM.
Upregulation of blood‐brain barrier GLUT1 glucose transporter protein and mRNA in experimental chronic hypoglycemia.
Diabetes
44:
1399‐1404,
1995.
|
332. |
Lachaal M,
Rampal AL,
Ryu J,
Lee W,
Hah J‐S,
Jung CY.
Characterization and partial purification of liver glucose transporter GLUT2.
Biochim Biophys Acta
1466:
379‐389,
2000.
|
333. |
Lacko L,
Wittke B,
Kromphardt H. Zur Kinetic der Glucose‐Aufname in Erythrocyten. Effekt der
Trans‐Konzentration.
Eur J Biochem
25:
447‐454,
1972.
|
334. |
Lamarche L,
Yamaguchi N,
Peronnet F.
Hepatic denervation reduces adrenal catecholamine secretion during insulin‐induced hypoglycemia.
Am J Physiol
268:
R50‐R57,
1995.
|
335. |
Lamb CA,
McCann RK,
Stockli J,
James DE,
Bryant NJ.
Insulin‐regulated trafficking of GLUT4 requires ubiquitination.
Traffic
11:
1445‐1454,
2010.
|
336. |
Larsen KI,
Falany M,
Wang W,
Williams JP.
Glucose is a key metabolic regulator of osteoclasts; glucose stimulated increases in ATP/ADP ratio and calmodulin kinase II activity.
Biochem Cell Biol
83:
667‐673,
2005.
|
337. |
Laughery M,
Todd M,
Kaplan JH.
Oligomerization of the Na,K‐ATPase in cell membranes.
J Biol Chem
279:
36339‐36348,
2004.
|
338. |
Lauritzen HP,
Galbo H,
Brandauer J,
Goodyear LJ,
Ploug T.
Large GLUT4 vesicles are stationary while locally and reversibly depleted during transient insulin stimulation of skeletal muscle of living mice: Imaging analysis of GLUT4‐enhanced green fluorescent protein vesicle dynamics.
Diabetes
57:
315‐324,
2008.
|
339. |
Lauritzen HP,
Galbo H,
Toyoda T,
Goodyear LJ.
Kinetics of contraction‐induced GLUT4 translocation in skeletal muscle fibers from living mice.
Diabetes
59:
2134‐2144,
2010.
|
340. |
Lauritzen HP,
Ploug T,
Ai H,
Donsmark M,
Prats C,
Galbo H.
Denervation and high‐fat diet reduce insulin signaling in T‐tubules in skeletal muscle of living mice.
Diabetes
57:
13‐23,
2008.
|
341. |
Lauritzen HP,
Ploug T,
Prats C,
Tavare JM,
Galbo H.
Imaging of insulin signaling in skeletal muscle of living mice shows major role of T‐tubules.
Diabetes
55:
1300‐1306,
2006.
|
342. |
Le KA,
Tappy L.
Metabolic effects of fructose.
Curr Opin Clin Nutr Metab Care
9:
469‐475,
2006.
|
343. |
Leach L,
Firth JA.
Fine structure of the paracellular junctions of terminal villous capillaries in the perfused human placenta.
Cell Tissue Res
268:
447‐452,
1992.
|
344. |
Lee NK,
Sowa H,
Hinoi E,
Ferron M,
Ahn JD,
Confavreux C,
Dacquin R,
Mee PJ,
McKee MD,
Jung DY,
Zhang Z,
Kim JK,
Mauvais‐Jarvis F,
Ducy P,
Karsenty G.
Endocrine regulation of energy metabolism by the skeleton.
Cell
130:
456‐469,
2007.
|
345. |
Lee WH,
Bondy CA.
Ischemic injury induces brain glucose transporter gene expression.
Endocrinology
133:
2540‐2544,
1993.
|
346. |
Le Fevre PG,
Marshall JK.
The attachment of phloretin and analogues to human erythrocytes in connection with inhibition of sugar transport.
J Biol Chem
234:
3022‐3027,
1959.
|
347. |
Leino RL,
Gerhart DZ,
van Bueren AM,
McCall AL,
Drewes LR.
Ultrastructural localization of GLUT 1 and GLUT 3 glucose transporters in rat brain.
J Neurosci Res S
49:
617‐626,
1997.
|
348. |
Leitch JM,
Carruthers A.
ATP‐dependent sugar transport complexity in human erythrocytes.
Am J Physiol Cell Physiol
292:
C974‐C986,
2007.
|
349. |
Leitch JM,
Carruthers A.
Alpha‐ and beta‐monosaccharide transport in human erythrocytes.
Am J Physiol Cell Physiol
296:
C151‐C161,
2009.
|
350. |
Leloup C,
Arluison M,
Kassis N,
Lepetit N,
Cartier N,
Ferre P,
Penicaud L.
Discrete brain areas express the insulin‐responsive glucose transporter GLUT4.
Brain Res Mol Brain Res
38:
45‐53,
1996.
|
351. |
Lemieux MJ,
Song J,
Kim MJ,
Huang Y,
Villa A,
Auer M,
Li XD,
Wang DN.
Three‐dimensional crystallization of the Escherichia coli glycerol‐3‐phosphate transporter: A member of the major facilitator superfamily.
Protein Sci
12:
2748‐2756,
2003.
|
352. |
Lemieux MJ.
Eukaryotic major facilitator superfamily transporter modeling based on the prokaryotic GlpT crystal structure (Review).
Mol Mem Biol
24:
333‐341,
2007.
|
353. |
Leoncini G,
Maresca M.
Glucose transport across plasma membrane in human platelets.
Ital J Biochem
35:
287‐295,
1986.
|
354. |
Levine KB,
Carruthers A.
Regulation of carrier‐mediated sugar transport by transporter quaternary structure. In:
Boles E,
Krämer R, editors.
Topics in Current Genetics Molecular Mechanisms Controling Transmembrane Transport(9).
Springer‐Berlin,
2004,
p. 67‐694.
|
355. |
Levine KB,
Cloherty EK,
Fidyk NJ,
Carruthers A.
Structural and physiologic determinants of human erythrocyte sugar transport regulation by adenosine triphosphate.
Biochemistry
37:
12221‐12232,
1998.
|
356. |
Levine KB,
Cloherty EK,
Hamill S,
Carruthers A.
Molecular determinants of sugar transport regulation by ATP.
Biochemistry
41:
12629‐12638,
2002.
|
357. |
Levine KB,
Hamill S,
Cloherty EK,
Carruthers A.
Alanine scanning mutagenesis of the human erythrocyte glucose transporter putative ATP binding domain.
Blood Cells Mol Dis
27:
139‐142,
2001.
|
358. |
Levine KB,
Robichaud TK,
Hamill S,
Sultzman LA,
Carruthers A.
Properties of the human erythrocyte glucose transport protein are determined by cellular context.
Biochemistry
44:
5606‐5616,
2005.
|
359. |
Levine KB,
DeZutter JK,
Carruthers A.
Analysis of GLUT1‐oligomerization determinants by helix‐swapping mutagenesis.
unpublished
2011.
|
360. |
Li Q,
Manolescu A,
Ritzel M,
Yao S,
Slugoski M,
Young JD,
Chen XZ,
Cheeseman CI.
Cloning and functional characterization of the human GLUT7 isoform SLC2A7 from the small intestine.
Am J Physiol Gastrointest Liver Physiol
287:
G236‐G242,
2004.
|
361. |
Lieb WR,
Stein WD.
Testing and characterizing the simple carrier.
Biochim Biophys Acta
373:
178‐196,
1974.
|
362. |
Lieb WR,
Stein WD.
Is there a high affinity site for sugar transport at the inner face of the human red cell membrane?
J Theor Biol
69:
311‐319,
1977.
|
363. |
Lin S,
Spudich JA.
Biochemical studies on the mechanism of action of cytochalasin B. Cytochalasin B binding to red cell membranes in relation to glucose transport.
J Biol Chem
249:
5778‐5783,
1974.
|
364. |
Lind AR,
Williams CA.
The control of blood flow through human forearm muscles following brief isometric contractions.
J Physiol
288:
529‐547,
1979.
|
365. |
Linder BL,
Chernoff A,
Kaplan KL,
Goodman DS.
Release of platelet‐derived growth factor from human platelets by arachidonic acid.
Proc Natl Acad Sci U S A
76:
4107‐4111,
1979.
|
366. |
Lisinski I,
Schurmann A,
Joost HG,
Cushman SW,
Al‐Hasani H.
Targeting of GLUT6 (formerly GLUT9) and GLUT8 in rat adipose cells.
Biochem J
358:
517‐22,
2001.
|
367. |
Liu F,
Soares MJ,
Audus KL.
Permeability properties of monolayers of the human trophoblast cell line BeWo.
Am J Physiol
273:
C1596‐C1604,
1997.
|
368. |
Lizunov VA,
Matsumoto H,
Zimmerberg J,
Cushman SW,
Frolov VA.
Insulin stimulates the halting, tethering, and fusion of mobile GLUT4 vesicles in rat adipose cells.
J Cell Biol
169:
481‐489,
2005.
|
369. |
Loaiza A,
Porras OH,
Barros LF.
Glutamate triggers rapid glucose transport stimulation in astrocytes as evidenced by real‐time confocal microscopy.
J Neurosci
23:
7337‐7342,
2003.
|
370. |
Loike JD,
Cao L,
Brett J,
Ogawa S,
Silverstein SC,
Stern D.
Hypoxia induces glucose transporter expression in endothelial cells.
Am J Physiol S
263:
C326‐C333,
1992.
|
371. |
Lopaschuk GD,
Belke DD,
Gamble J,
Itoi T,
Schonekess BO.
Regulation of fatty acid oxidation in the mammalian heart in health and disease.
Biochim Biophys Acta
1213:
263‐276,
1994.
|
372. |
Lopaschuk GD,
Spafford MA,
Marsh DR.
Glycolysis is predominant source of myocardial ATP production immediately after birth.
Am J Physiol
261:
H1698‐H1705,
1991.
|
373. |
Lowe AG,
Walmsley AR.
The kinetics of glucose transport in human red blood cells.
Biochim Biophys Acta
857:
146‐154,
1986.
|
374. |
Lund‐Andersen H.
Transport of glucose from blood to brain.
Physiol Rev
59:
305‐352,
1979.
|
375. |
Lundahl P,
Mascher E,
Andersson L,
Englund AK,
Greijer E,
Kameyama K,
Takagi T.
Active and monomeric human red cell glucose transporter after high performance molecular‐sieve chromatography in the presence of octyl glucoside and phosphatidylserine or phosphatidylcholine.
Biochim Biophys Acta
1067:
177‐186,
1991.
|
376. |
Lutsenko S,
Anderko R,
Kaplan JH.
Membrane disposition of the M5‐M6 hairpin of Na+,K(+)‐ATPase alpha subunit is ligand dependent.
Proc Natl Acad Sci U S A
92:
7936‐7940,
1995.
|
377. |
Lynch RM,
Paul RJ.
Energy metabolism and transduction in smooth muscle.
Experientia
41:
970‐977,
1985.
|
378. |
MacDonald PE,
De Marinis YZ,
Ramracheya R,
Salehi A,
Ma X,
Johnson PR,
Cox R,
Eliasson L,
Rorsman P.
A K ATP channel‐dependent pathway within alpha cells regulates glucagon release from both rodent and human islets of Langerhans.
PLoS Biol
5:
e143,
2007.
|
379. |
Macheda ML,
Williams ED,
Best JD,
Wlodek ME,
Rogers S.
Expression and localisation of GLUT1 and GLUT12 glucose transporters in the pregnant and lactating rat mammary gland.
Cell Tissue Res
311:
91‐97,
2003.
|
380. |
Maddox DA,
Gennari FJ.
The early proximal tubule: A high‐capacity delivery‐responsive reabsorptive site.
Am J Physiol
252:
F573‐F584,
1987.
|
381. |
Madison LL.
Role of insulin in the hepatic handling of glucose.
Arch Intern Med
123:
284‐292,
1969.
|
382. |
Madon RJ,
Martin S,
Davies A,
Fawcett HA,
Flint DJ,
Baldwin SA.
Identification and characterization of glucose transport proteins in plasma membrane‐ and Golgi vesicle‐enriched fractions prepared from lactating rat mammary gland.
Biochem J
272:
99‐105,
1990.
|
383. |
Magistretti PJ.
Brain energy metabolism. In:
Squire LR,
Bloom FE,
McConnell SK, editors.
Fundamental Neuroscience.
San Diego:
Academic Press,
2003,
p. 339‐360.
|
384. |
Magnani P,
Cherian PV,
Gould GW,
Greene DA,
Sima AA,
Brosius FCr.
Glucose transporters in rat peripheral nerve: Paranodal expression of GLUT1 and GLUT3.
Metabolism S
45:
1466‐1473,
1996.
|
385. |
Maher F,
Davies‐Hill TM,
Lysko PG,
Henneberry RC,
Simpson IA.
Expression of two glucose transporters, GLUT1 and GLUT3, in cultured cerebellar neurons: Evidence for neuron‐specific expression of GLUT3.
Mol Cell Neurosci
2:
351‐360,
1991.
|
386. |
Maher F,
Davies‐Hill TM,
Simpson IA.
Substrate specificity and kinetic parameters of GLUT3 in rat cerebellar granule neurons.
Biochem J
315:
827‐831,
1996.
|
387. |
Maher F,
Vannucci S,
Takeda J,
Simpson IA.
Expression of mouse‐GLUT3 and human‐GLUT3 glucose transporter proteins in brain.
Biochem Biophys Res Commun
182:
703‐711,
1992.
|
388. |
Maher F,
Vannucci SJ,
Simpson IA.
Glucose transporter proteins in brain.
FASEB J
8:
1003‐1011,
1994.
|
389. |
Maiden MC,
Davis EO,
Baldwin SA,
Moore DC,
Henderson PJ.
Mammalian and bacterial sugar transport proteins are homologous.
Nature
325:
641‐643,
1987.
|
390. |
Manel N,
Kim FJ,
Kinet S,
Taylor N,
Sitbon M,
Battini JL.
The ubiquitous glucose transporter GLUT‐1 is a receptor for HTLV.
Cell
115:
449‐459,
2003.
|
391. |
Mangia S,
DiNuzzo M,
Giove F,
Carruthers A,
Simpson IA,
Vannucci SJ.
Response to “Comment on recent modeling studies of astrocyte‐neuron metabolic interactions”: Much ado about nothing.
Cereb Blood Flow Metabol
31:
1346‐1353,
2011.
|
392. |
Mangia S,
Simpson IA,
Vannucci SJ,
Carruthers A.
The in vivo neuron‐to‐astrocyte lactate shuttle in human brain: Evidence from modeling of measured lactate levels during visual stimulation.
J Neurochem
109
Suppl 1:
55‐62,
2009.
|
393. |
Mann GE,
Yudilevich DL,
Sobrevia L.
Regulation of amino acid and glucose transporters in endothelial and smooth muscle cells.
Physiol Rev S
83:
183‐252,
2003.
|
394. |
Mann GV,
Newton P.
The membrane transport of ascorbic acid.
Ann N Y Acad Sci
258:
243‐252,
1975.
|
395. |
Manolescu AR,
Augustin R,
Moley K,
Cheeseman C.
A highly conserved hydrophobic motif in the exofacial vestibule of fructose transporting SLC2A proteins acts as a critical determinant of their substrate selectivity.
Mol Membr Biol
24:
455‐463,
2007.
|
396. |
Manolescu AR,
Witkowska K,
Kinnaird A,
Cessford T,
Cheeseman C.
Facilitated hexose transporters: New perspectives on form and function.
Physiology (Bethesda)
22:
234‐240,
2007.
|
397. |
Mantych GJ,
James DE,
Chung HD,
Devaskar SU.
Cellular localization and characterization of Glut 3 glucose transporter isoform in human brain.
Neurosci Lett
310:
101‐104,
1992.
|
398. |
Mantych GJ,
James DE,
Devaskar SU.
Jejunal/kidney glucose transporter isoform (Glut‐5) is expressed in the human blood‐brain barrier.
Endocrinology
132:
35‐40,
1993.
|
399. |
Maratou E,
Dimitriadis G,
Kollias A,
Boutati E,
Lambadiari V,
Mitrou P,
Raptis SA.
Glucose transporter expression on the plasma membrane of resting and activated white blood cells.
Eur J Clin Invest
37:
282‐290,
2007.
|
400. |
Marcus DC,
Thalmann R,
Marcus NY.
Respiratory rate and ATP content of stria vascularis of guinea pig in vitro.
Laryngoscope
88:
1825‐1835,
1978a.
|
401. |
Marcus DC,
Thalmann R,
Marcus NY.
Respiratory quotient of stria vascularis of guinea pig in vitro.
Arch Otorhinolaryngol
221:
97‐103,
1978b.
|
402. |
Marette A,
Burdett E,
Douen A,
Vranic M,
Klip A.
Insulin induces the translocation of GLUT4 from a unique intracellular organelle to transverse tubules in rat skeletal muscle.
Diabetes
41:
1562‐1569,
1992.
|
403. |
Marger MD,
Saier MH Jr.
A major superfamily of transmembrane facilitators that catalyse uniport, symport and antiport.
Trends Biochem Sci
18:
13‐20,
1993.
|
404. |
Marin P,
Hogh‐Kristiansen I,
Jansson S,
Krotkiewski M,
Holm G,
Bjorntorp P.
Uptake of glucose carbon in muscle glycogen and adipose tissue triglycerides in vivo in humans.
Am J Physiol
263:
E473‐E480,
1992.
|
405. |
Martin JR,
Novin D,
Vanderweele DA.
Loss of glucagon suppression of feeding after vagotomy in rats.
Am J Physiol
234:
E314‐E318,
1978.
|
406. |
Marty N,
Dallaporta M,
Foretz M,
Emery M,
Tarussio D,
Bady I,
Binnert C,
Beermann F,
Thorens B.
Regulation of glucagon secretion by glucose transporter type 2 (glut2) and astrocyte‐dependent glucose sensors.
J Clin Invest
115:
3545‐3553,
2005.
|
407. |
Marty N,
Dallaporta M,
Thorens B.
Brain glucose sensing, counterregulation, and energy homeostasis.
Physiology (Bethesda)
22:
241‐251,
2007.
|
408. |
Masud MM,
Fujimoto T,
Miyake M,
Watanuki S,
Itoh M,
Tashiro M.
Redistribution of whole‐body energy metabolism by exercise: A positron emission tomography study.
Ann Nucl Med
23:
81‐88,
2009.
|
409. |
Matschinsky FM.
Banting Lecture 1995. A lesson in metabolic regulation inspired by the glucokinase glucose sensor paradigm.
Diabetes
45:
223‐241,
1996.
|
410. |
Matsuo H,
Chiba T,
Nagamori S,
Nakayama A,
Domoto H,
Phetdee K,
Wiriyasermkul P,
Kikuchi Y,
Oda T,
Nishiyama J,
Nakamura T,
Morimoto Y,
Kamakura K,
Sakurai Y,
Nonoyama S,
Kanai Y,
Shinomiya N.
Mutations in glucose transporter 9 gene SLC2A9 cause renal hypouricemia.
Am J Hum Genet
83:
744‐751,
2008.
|
411. |
May JM,
Qu ZC,
Whitesell RR.
Ascorbic acid recycling enhances the antioxidant reserve of human erythrocytes.
Biochemistry
34:
12721‐12728,
1995.
|
412. |
Mazella J,
Zsurger N,
Navarro V,
Chabry J,
Kaghad M,
Caput D,
Ferrara P,
Vita N,
Gully D,
Maffrand JP,
Vincent JP.
The 100‐kDa neurotensin receptor is gp95/sortilin, a non‐G‐protein‐coupled receptor.
J Biol Chem
273:
26273‐26276,
1998.
|
413. |
McCall AL,
Fixman LB,
Fleming N,
Tornheim K,
Chick W,
Ruderman NB.
Chronic hypoglycemia increases brain glucose transport.
Am J Physiol
251:
E442‐E447,
1986.
|
414. |
McCall AL,
van Bueren AM,
Huang L,
Stenbit A,
Celnik E,
Charron MJ.
Forebrain endothelium expresses GLUT4, the insulin‐responsive glucose transporter.
Brain Res
744:
318‐326,
1997.
|
415. |
McCall AL,
Van Bueren AM,
Moholt‐Siebert M,
Cherry NJ,
Woodward WR.
Immunohistochemical localization of the neuron‐specific glucose transporter (GLUT3) to neuropil in adult rat brain.
Brain Res
659:
292‐297,
1994.
|
416. |
McEwen BS,
Reagan LP.
Glucose transporter expression in the central nervous system: Relationship to synaptic function.
Eur J Pharmacol
490:
13‐24,
2004.
|
417. |
McLean P,
Brown J,
Walters E,
Greenslade K.
Effect of alloxan‐diabetes on multiple forms of hexokinase in adipose tissue and lung.
Biochem J
105:
1301‐1305,
1967.
|
418. |
McVie‐Wylie AJ,
Lamson DR,
Chen YT.
Molecular cloning of a novel member of the GLUT family of transporters, SLC2a10 (GLUT10), localized on chromosome 20q13.1: A candidate gene for NIDDM susceptibility.
Genomics
72:
113‐117,
2001.
|
419. |
Mehlhorn RJ.
Ascorbate‐ and dehydroascorbic acid‐mediated reduction of free radicals in the human erythrocyte.
J Biol Chem
266:
2724‐2731,
1991.
|
420. |
Mendiratta S,
Qu ZC,
May JM.
Erythrocyte ascorbate recycling: Antioxidant effects in blood.
Free Radic Biol Med
24:
789‐797,
1998.
|
421. |
Michelle Furtado L,
Poon V,
Klip A.
GLUT4 activation: Thoughts on possible mechanisms.
Acta Physiol Scand
178:
287‐296,
2003.
|
422. |
Miki K.
Energy metabolism and sperm function.
Soc Reprod Fertil Suppl
65:
309‐325,
2007.
|
423. |
Miki K,
Qu W,
Goulding EH,
Willis WD,
Bunch DO,
Strader LF,
Perreault SD,
Eddy EM,
O'Brien DA.
Glyceraldehyde 3‐phosphate dehydrogenase‐S, a sperm‐specific glycolytic enzyme, is required for sperm motility and male fertility.
Proc Natl Acad Sci U S A
101:
16501‐16506,
2004.
|
424. |
Miller C,
Nguitragool W.
A provisional transport mechanism for a chloride channel‐type Cl−/H+ exchanger.
Philos Trans R Soc Lond B Biol Sci
364:
175‐180,
2009.
|
425. |
Miller DM.
The kinetics of selective biological transport. III. Erythrocyte‐monosaccharide transport data.
Biophys J
8:
1329‐1338,
1968a.
|
426. |
Miller DM.
The kinetics of selective biological transport. IV. Assessment of three carrier systems using the erythrocyte‐monosaccharide transport data.
Biophys J
8:
1339‐1352,
1968b.
|
427. |
Miller DM.
The kinetics of selective biological transport. V. Further data on the erythrocyte–monosaccharide transport system.
Biophys J
11:
915‐923,
1971.
|
428. |
Minokoshi Y,
Kahn CR,
Kahn BB.
Tissue‐specific ablation of the GLUT4 glucose transporter or the insulin receptor challenges assumptions about insulin action and glucose homeostasis.
J Biol Chem
278:
33609‐33612,
2003.
|
429. |
Montel‐Hagen A,
Blanc L,
Boyer‐Clavel M,
Jacquet C,
Vidal M,
Sitbon M,
Taylor N.
The Glut1 and Glut4 glucose transporters are differentially expressed during perinatal and postnatal erythropoiesis.
Blood
112:
4729‐4738,
2008.
|
430. |
Montel‐Hagen A,
Kinet S,
Manel N,
Mongellaz C,
Prohaska R,
Battini JL,
Delaunay J,
Sitbon M,
Taylor N.
Erythrocyte Glut1 triggers dehydroascorbic acid uptake in mammals unable to synthesize vitamin C.
Cell
132:
1039‐1048,
2008.
|
431. |
Montel‐Hagen A,
Sitbon M,
Taylor N.
Erythroid glucose transporters.
Curr Opin Hematol
16:
165‐172,
2009.
|
432. |
Moriya R,
Shirakura T,
Ito J,
Mashiko S,
Seo T.
Activation of sodium‐glucose cotransporter 1 ameliorates hyperglycemia by mediating incretin secretion in mice.
Am J Physiol Endocrinol Metab
297:
E1358‐E1365,
2009.
|
433. |
Morth JP,
Pedersen BP,
Toustrup‐Jensen MS,
Sorensen TL,
Petersen J,
Andersen JP,
Vilsen B,
Nissen P.
Crystal structure of the sodium‐potassium pump.
Nature
450:
1043‐1049,
2007.
|
434. |
Mu J,
Brozinick JT Jr,
Valladares O, Bucan M, Birnbaum MJ. A role for AMP‐activated protein kinase in contraction‐ and hypoxia‐ regulated glucose transport in skeletal muscle.
Mol Cell
7:
1085‐194.,
2001.
|
435. |
Mueckler M.
Facilitative glucose transporters.
Eur J Biochem
219:
713‐725,
1994.
|
436. |
Mueckler M,
Caruso C,
Baldwin SA,
Panico M,
Blench I,
Morris HR,
Allard WJ,
Lienhard GE,
Lodish HF.
Sequence and structure of a human glucose transporter.
Science
229:
941‐945,
1985.
|
437. |
Mueckler M,
Makepeace C.
Transmembrane segment 12 of the Glut1 glucose transporter is an outer helix and is not directly involved in the transport mechanism.
The J Biol Chem
281:
36993‐36998,
2006.
|
438. |
Mueckler M,
Makepeace C.
Model of the exofacial substrate‐binding site and helical folding of the human Glut1 glucose transporter based on scanning mutagenesis.
Biochemistry
48:
5934‐5942,
2009.
|
439. |
Mueckler M,
Caruso C,
Baldwin SA,
Panico M,
Blench I,
Morris HR,
Allard WJ,
Lienhard GE,
Lodish HF.
Sequence and structure of a human glucose transporter.
Science
229:
941‐945,
1985.
|
440. |
Murakami T,
Felinski EA,
Antonetti DA.
Occludin phosphorylation and ubiquitination regulate tight junction trafficking and vascular endothelial growth factor‐induced permeability.
J Biol Chem
284:
21036‐21046,
2009.
|
441. |
Naemsch LN,
Weidema AF,
Sims SM,
Underhill TM,
Dixon SJ.
P2X(4) purinoceptors mediate an ATP‐activated, non‐selective cation current in rabbit osteoclasts.
J Cell Sci
112:
4425‐4435,
1999.
|
442. |
Naftalin RJ,
Rist RJ.
3‐O‐methyl‐D‐glucose transport in rat red cells: Effects of heavy water.
Biochimica et Biophysica Acta
1064:
37‐48,
1991.
|
443. |
Naftalin RJ,
Holman GD.
Transport of sugars in human red cells. In:
Ellory JC,
Lew VL, editors.
Membrane Transport in Red Cells.
New York:
Academic Press,
1977,
p. 257‐300.
|
444. |
Naftalin RJ.
Alternating carrier models of asymmetric glucose transport violate the energy conservation laws.
Biophys J
95:
4300‐4314,
2008.
|
445. |
Nagamatsu S,
Sawa H,
Kamada K,
Nakamichi Y,
Yoshimoto K,
Hoshino T.
Neuron‐specific glucose transporter (NSGT): CNS distribution of GLUT3 rat glucose transporter (RGT3) in rat central neurons.
Febs Lett
334:
289‐295,
1993.
|
446. |
Nakazawa K,
Spicer SS,
Schulte BA.
Postnatal expression of the facilitated glucose transporter, GLUT 5, in gerbil outer hair cells.
Hear Res
82:
93‐99,
1995.
|
447. |
Naora H,
Montell DJ.
Ovarian cancer metastasis: Integrating insights from disparate model organisms.
Nat Rev Cancer
5:
355‐366,
2005.
|
448. |
Niijima A.
The effect of D‐glucose on the firing rate of glucose‐sensitive vagal afferents in the liver in comparison with the effect of 2‐deoxy‐D‐glucose.
J Auton Nerv Syst
10:
255‐260,
1984.
|
449. |
Nishimoto H,
Matsutani R,
Yamamoto S,
Takahashi T,
Hayashi KG,
Miyamoto A,
Hamano S,
Tetsuka M.
Gene expression of glucose transporter (GLUT) 1, 3 and 4 in bovine follicle and corpus luteum.
J Endocrinol
188:
111‐119,
2006.
|
450. |
Nishimura H,
Pallardo FV,
Seidner GA,
Vannucci S,
Simpson IA,
Birnbaum MJ.
Kinetics of GLUT1 and GLUT4 glucose transporters expressed in Xenopus oocytes.
J Biol Chem
268:
8514‐8520,
1993.
|
451. |
Nualart F,
Godoy A,
Reinicke K.
Expression of the hexose transporters GLUT1 and GLUT2 during the early development of the human brain.
Brain Res
824:
97‐104,
1999.
|
452. |
Ogawa E,
Hishiyama N.
Japanese Shiba dogs possessing erythrocytes with high Glut‐1 activity and high ascorbic acid recycling capacity.
Compve Clin Pathol
1618‐565X:
2011.
|
453. |
Oka Y,
Asano T,
Shibasaki Y,
Lin JL,
Tsukuda K,
Katagiri H,
Akanuma Y,
Takaku F.
C‐terminal truncated glucose transporter is locked into an inward‐facing form without transport activity.
Nature
345:
550‐553,
1990.
|
454. |
Oldendorf WH,
Cornford ME,
Brown WJ.
The large apparent work capability of the blood‐brain barrier: A study of the mitochondrial content of capillary endothelial cells in brain and other tissues of the rat.
Ann Neurol
1:
409‐417,
1977.
|
455. |
Olson AL,
Pessin JE.
Structure, function, and regulation of the mammalian facilitative glucose transporter gene family.
Annu Rev Nutr
16:
235‐256,
1996.
|
456. |
Palfreyman RW,
Clark AE,
Denton RM,
Holman GD,
Kozka IJ.
Kinetic resolution of the separate GLUT1 and GLUT4 glucose transport activities in 3T3‐L1 cells.
Biochem J
284:
275‐282,
1992.
|
457. |
Pao SS,
Paulsen IT,
Saier MH Jr.
Major facilitator superfamily.
Microbiol Mol Biol Rev
62:
1‐34,
1998.
|
458. |
Pardridge WM.
Brain metabolism: A perspective from the blood‐brain barrier.
Physiol Rev
63:
1481‐1535,
1983.
|
459. |
Pardridge WM,
Boado RJ,
Farrell CR.
Brain‐type glucose transporter (GLUT‐1) is selectively localized to the blood‐brain barrier. Studies with quantitative western blotting and in situ hybridization.
J Biol Chem
265:
18035‐18040,
1990.
|
460. |
Parker HE,
Habib AM,
Rogers GJ,
Gribble FM,
Reimann F.
Nutrient‐dependent secretion of glucose‐dependent insulinotropic polypeptide from primary murine K cells.
Diabetologia
52:
289‐298,
2009.
|
461. |
Pascual JM,
Wang D,
Lecumberri B,
Yang H,
Mao X,
Yang R,
De Vivo DC.
GLUT1 deficiency and other glucose transporter diseases.
Eur J Endocrinol
150:
627‐633,
2004.
|
462. |
Patel JR,
Brewer GJ.
Age‐related changes in neuronal glucose uptake in response to glutamate and beta‐amyloid.
J Neurosci Res
72:
527‐536,
2003.
|
463. |
Pawagi AB,
Deber CM.
D‐glucose binding increases secondary structure of human erythrocyte monosaccharide transport protein.
Biochem Biophys Res Commun
145:
1087‐1091,
1987.
|
464. |
Pellerin L,
Bonvento G,
Chatton JY,
Pierre K,
Magistretti PJ.
Role of neuron‐glia interaction in the regulation of brain glucose utilization.
Diabetes Nutr Metab
15:
268‐73; discussion
273,
2002.
|
465. |
Pereira RF,
Halford KW,
O'Hara MD,
Leeper DB,
Sokolov BP,
Pollard MD,
Bagasra O,
Prockop DJ.
Cultured adherent cells from marrow can serve as long‐lasting precursor cells for bone, cartilage, and lung in irradiated mice.
Proc Natl Acad Sci U S A
92:
4857‐4861,
1995.
|
466. |
Pessino A,
Hebert DN,
Woon CW,
Harrison SA,
Clancy BM,
Buxton JM,
Carruthers A,
Czech MP.
Evidence that functional erythrocyte‐type glucose transporters are oligomers.
J Biol Chem
266:
20213‐20217,
1991.
|
467. |
Peters BJ,
Rillema JA.
Effect of prolactin on 2‐deoxyglucose uptake in mouse mammary gland explants.
Am J Physiol
262:
E627‐E630,
1992.
|
468. |
Petersen KF,
Krssak M,
Navarro V,
Chandramouli V,
Hundal R,
Schumann WC,
Landau BR,
Shulman GI.
Contributions of net hepatic glycogenolysis and gluconeogenesis to glucose production in cirrhosis.
Am J Physiol
276:
E529,
1999.
|
469. |
Pham T,
Cornea A,
Blick KE,
Jenkins A,
Scofield RH.
Oral glucosamine in doses used to treat osteoarthritis worsens insulin resistance.
Am J Med Sci
333:
333‐339,
2007.
|
470. |
Pittenger MF,
Mackay AM,
Beck SC,
Jaiswal RK,
Douglas R,
Mosca JD,
Moorman MA,
Simonetti DW,
Craig S,
Marshak DR.
Multilineage potential of adult human mesenchymal stem cells.
Science
284:
143‐147,
1999.
|
471. |
Ploug T,
van Deurs B,
Ai H,
Cushman SW,
Ralston E.
Analysis of GLUT4 distribution in whole skeletal muscle fibers: Identification of distinct storage compartments that are recruited by insulin and muscle contractions.
J Cell Biol
142:
1429‐1446,
1998.
|
472. |
Porras OH,
Loaiza A,
Barros LF.
Glutamate mediates acute glucose transport inhibition in hippocampal neurons.
J Neurosci S
24:
9669‐9673,
2004.
|
473. |
Preitner F,
Bonny O,
Laverrière A,
Rotman S,
Firsov D,
Da Costa A,
Metref S,
Thorens B.
Glut9 is a major regulator of urate homeostasis and its genetic inactivation induces hyperuricosuria and urate nephropathy.
Proc Natl Acad Sci U S A
106:
15501‐15506,
2009.
|
474. |
Prosser CG.
Mechanism of the decrease in hexose transport by mouse mammary epithelial cells caused by fasting.
Biochem J
249:
149‐154,
1988.
|
475. |
Prosser CG,
Topper YJ.
Changes in the rate of carrier‐mediated glucose transport by mouse mammary epithelial cells during ontogeny: Hormone dependence delineated in vitro.
Endocrinology
119:
91‐96,
1986.
|
476. |
Quesada I,
Todorova MG,
Soria B.
Different metabolic responses in alpha‐, beta‐, and delta‐cells of the islet of Langerhans monitored by redox confocal microscopy.
Biophys J
90:
2641‐2650,
2006.
|
477. |
Quesada I,
Tuduri E,
Ripoll C,
Nadal A.
Physiology of the pancreatic alpha‐cell and glucagon secretion: Role in glucose homeostasis and diabetes.
J Endocrinol
199:
5‐19,
2008.
|
478. |
Quistorff B,
Secher NH,
Van Lieshout JJ.
Lactate fuels the human brain during exercise.
FASEB J
22:
3443‐3449,
2008.
|
479. |
Rabilloud T.
Membrane proteins ride shotgun.
Nat Biotech
21:
508‐510,
2003.
|
480. |
Randle PJ,
Garland PB,
Hales CN,
Newsholme EA.
The glucose fatty‐acid cycle. Its role in insulin sensitivity and the metabolic disturbances of diabetes mellitus.
Lancet
1:
785‐789,
1963.
|
481. |
Rayner DV,
Thomas ME,
Trayhurn P.
Glucose transporters (GLUTs 1‐4) and their mRNAs in regions of the rat brain: Insulin‐sensitive transporter expression in the cerebellum.
Can J Physiol Pharmacol
72:
476‐479,
1994.
|
482. |
Regen DM,
Morgan HE.
Studies of the glucose‐transport system in the rabbit erythrocyte.
Biochim Biophys Acta
79:
151‐166,
1964.
|
483. |
Reimann F.
Molecular mechanisms underlying nutrient detection by incretin‐secreting cells.
Int Dairy J
20:
236‐242,
2010.
|
484. |
Richardson S,
Neama G,
Phillips T,
Bell S,
Carter SD,
Moley KH,
Moley JF,
Vannucci SJ,
Mobasheri A.
Molecular characterization and partial cDNA cloning of facilitative glucose transporters expressed in human articular chondrocytes; stimulation of 2‐deoxyglucose uptake by IGF‐I and elevated MMP‐2 secretion by glucose deprivation.
Osteoarthr Cartilage
11:
92‐101,
2003.
|
485. |
Richter EA.
Glucose Utilization.
In: Cala P, Pederson S, editors.
Comprehensive Physiology.
New York: Wiley‐Blackwell,
2010.
|
486. |
Rieu S,
Geminard C,
Rabesandratana H,
Sainte‐Marie J,
Vidal M.
Exosomes released during reticulocyte maturation bind to fibronectin via integrin alpha4beta1.
Eur J Biochem
267:
583‐590,
2000.
|
487. |
Riquelme G.
Review: Placental syncytiotrophoblast membranes–domains, subdomains and microdomains.
Placenta
32:
S196‐S202,
2011.
|
488. |
Ritter RC,
Slusser PG,
Stone S.
Glucoreceptors controlling feeding and blood glucose: Location in the hindbrain.
Science
213:
451‐452,
1981.
|
489. |
Rivas C,
Zúñiga F,
Salas‐Burgos A,
Mardones L,
Ormazabal V,
Vera J.
Vitamin C transporters.
J Physiol Biochem
64:
357‐375,
2008.
|
490. |
Rogers S,
Chandler JD,
Clarke AL,
Petrou S,
Best JD.
Glucose transporter GLUT12‐functional characterization in Xenopus laevis oocytes.
Biochem Biophys Res Commun
308:
422‐426,
2003.
|
491. |
Rogers S,
Macheda ML,
Docherty SE,
Carty MD,
Henderson MA,
Soeller WC,
Gibbs EM,
James DE,
Best JD.
Identification of a novel glucose transporter‐like protein—GLUT‐12.
Am J Physiol Endocrinol Metab
282:
E733‐E738,
2002.
|
492. |
Romijn JA,
Coyle EF,
Sidossis LS,
Gastaldelli A,
Horowitz JF,
Endert E,
Wolfe RR.
Regulation of endogenous fat and carbohydrate metabolism in relation to exercise intensity and duration.
Am J Physiol
265:
E380‐E391,
1993.
|
493. |
Rosen ED,
Walkey CJ,
Puigserver P,
Spiegelman BM.
Transcriptional regulation of adipogenesis.
Genes Dev
14:
1293‐1307,
2000.
|
494. |
Rossetti L,
Giaccari A.
Relative contribution of glycogen synthesis and glycolysis to insulin‐mediated glucose uptake. A dose‐response euglycemic clamp study in normal and diabetic rats.
J Clin Invest
85:
1785‐1792,
1990.
|
495. |
Routh VH.
Glucose‐sensing neurons: Are they physiologically relevant?
Physiol Behav
76:
403‐413,
2002.
|
496. |
Rowland AF,
Fazakerley DJ,
James DE.
Mapping insulin/GLUT4 circuitry.
Traffic
12:
672‐681,
2011.
|
497. |
Rumsey SC,
Daruwala R,
Al‐Hasani H,
Zarnowski MJ,
Simpson IA,
Levine M.
Dehydroascorbic acid transport by GLUT4 in Xenopus oocytes and isolated rat adipocytes.
J Biol Chem
275:
28246‐28253,
2000.
|
498. |
Rumsey SC,
Kwon O,
Xu GW,
Burant CF,
Simpson I,
Levine M.
Glucose transporter isoforms GLUT1 and GLUT3 transport dehydroascorbic acid.
J Biol Chem
272:
18982‐18989,
1997.
|
499. |
Russ WP,
Engelman DM.
The GxxxG motif: A framework for transmembrane helix‐helix association.
J Mol Biol
296:
911‐99.,
2000.
|
500. |
Saier MH Jr.
Families of proteins forming transmembrane channels.
J Membr Biol
175:
165‐180,
2000.
|
501. |
Saier MH Jr,
Beatty JT,
Goffeau A,
Harley KT,
Heijne WH,
Huang SC,
Jack DL,
Jahn PS,
Lew K,
Liu J,
Pao SS,
Paulsen IT,
Tseng TT,
Virk PS.
The major facilitator superfamily.
J Mol Microbiol Biotechnol
1:
257‐279,
1999.
|
502. |
Saier MH Jr,
Eng BH,
Fard S,
Garg J,
Haggerty DA,
Hutchinson WJ,
Jack DL,
Lai EC,
Liu HJ,
Nusinew DP,
Omar AM,
Pao SS,
Paulsen IT,
Quan JA,
Sliwinski M,
Tseng TT,
Wachi S,
Young GB.
Phylogenetic characterization of novel transport protein families revealed by genome analyses.
Biochim Biophys Acta
1422:
1‐56,
1999.
|
503. |
Saito T,
Jones CC,
Huang S,
Czech MP,
Pilch PF.
The interaction of Akt with APPL1 is required for insulin‐stimulated Glut4 translocation.
J Biol Chem
282:
32280‐32287,
2007.
|
504. |
Salas‐Burgos A,
Iserovich P,
Zuniga F,
Vera JC,
Fischbarg J.
Predicting the three‐dimensional structure of the human facilitative glucose transporter glut1 by a novel evolutionary homology strategy: Insights on the molecular mechanism of substrate migration, and binding sites for glucose and inhibitory molecules.
Biophys J
87:
2990‐2999,
2004.
|
505. |
Sambandam N,
Lopaschuk GD,
Brownsey RW,
Allard MF.
Energy metabolism in the hypertrophied heart.
Heart Fail Rev
7:
161‐173,
2002.
|
506. |
Sanchez‐Ramos J,
Song S,
Cardozo‐Pelaez F,
Hazzi C,
Stedeford T,
Willing A,
Freeman TB,
Saporta S,
Janssen W,
Patel N,
Cooper DR,
Sanberg PR.
Adult bone marrow stromal cells differentiate into neural cells in vitro.
Exp Neurol
164:
247‐256,
2000.
|
507. |
Satchell SC,
Braet F.
Glomerular endothelial cell fenestrations: An integral component of the glomerular filtration barrier.
Am J Physiol Renal Physiol
296:
F947‐F956,
2009.
|
508. |
Sato M,
Mueckler M.
A conserved amino acid motif (R‐X‐G‐R‐R) in the glut1 glucose transporter is an important determinant of membrane topology [In Process Citation].
J Biol Chem
274:
24721‐24725,
1999.
|
509. |
Schatteman GC,
Dunnwald M,
Jiao C.
Biology of bone marrow‐derived endothelial cell precursors.
Am J Physiol Heart Circ Physiol
292:
H1‐18,
2007.
|
510. |
Schedin P.
Pregnancy‐associated breast cancer and metastasis.
Nat Rev Cancer
6:
281‐291,
2006.
|
511. |
Schmidt S,
Joost HG,
Schurmann A.
GLUT8, the enigmatic intracellular hexose transporter.
Am J Physiol Endocrinol Metab
296:
E614‐E618,
2009.
|
512. |
Schmidt U,
Briese S,
Leicht K,
Schurmann A,
Joost HG,
Al‐Hasani H.
Endocytosis of the glucose transporter GLUT8 is mediated by interaction of a dileucine motif with the beta2‐adaptin subunit of the AP‐2 adaptor complex.
J Cell Sci
119:
2321‐2331,
2006.
|
513. |
Schmitt M.
Influences of hepatic portal receptors on hypothalamic feeding and satiety centers.
Am J Physiol
225:
1089‐1095,
1973.
|
514. |
Schuit F,
De Vos A,
Farfari S,
Moens K,
Pipeleers D,
Brun T,
Prentki M.
Metabolic fate of glucose in purified islet cells. Glucose‐regulated anaplerosis in beta cells.
J Biol Chem
272:
18572‐18579,
1997.
|
515. |
Schurmann A.
Insight into the “odd” hexose transporters GLUT3, GLUT5, and GLUT7.
Am J Physiol Endocrinol Metab
295:
E225‐E226,
2008.
|
516. |
Seatter MJ,
de la Rue SA,
Porter LM,
Gould GW.
QLS motif in transmembrane helix VII of the glucose transporter family interacts with the C‐1 position of D‐glucose and is involved in substrate selection at the exofacial binding site.
Biochemistry
37:
1322‐1326,
1998.
|
517. |
Seidner G,
Alvarez MG,
Yeh JI,
O'Driscoll KR,
Klepper J,
Stump TS,
Wang D,
Spinner NB,
Birnbaum MJ,
De Vivo DC.
GLUT‐1 deficiency syndrome caused by haploinsufficiency of the blood‐brain barrier hexose carrier.
Nat Genet
18:
188‐191,
1998.
|
518. |
Seino S.
ATP‐sensitive potassium channels: A model of heteromultimeric potassium channel/receptor assemblies.
Annu Rev Physiol
61:
337‐362,
1999.
|
519. |
Sekine N,
Cirulli V,
Regazzi R,
Brown LJ,
Gine E,
Tamarit‐Rodriguez J,
Girotti M,
Marie S,
MacDonald MJ,
Wollheim CB,
et al.
Low lactate dehydrogenase and high mitochondrial glycerol phosphate dehydrogenase in pancreatic beta‐cells. Potential role in nutrient sensing.
J Biol Chem
269:
4895‐4902,
1994.
|
520. |
Sergeant S,
Kim HD.
Inhibition of 3‐O‐methylglucose transport in human erythrocytes by forskolin.
J Biol Chem
260:
14677‐14682,
1985.
|
521. |
Shanahan MF,
Morris DP,
Edwards BM.
[3H]forskolin. Direct photoaffinity labeling of the erythrocyte D‐glucose transporter.
J Biol Chem
262:
5978‐5984,
1987.
|
522. |
Shen J,
Cross ST,
Tang‐Liu DD,
Welty DF.
Evaluation of an immortalized retinal endothelial cell line as an in vitro model for drug transport studies across the blood‐retinal barrier.
Pharm Res
20:
1357‐1363,
2003.
|
523. |
Shennan DB,
Beechey RB.
Mechanisms involved in the uptake of D‐glucose into the milk producing cells of rat mammary tissue.
Biochem Biophys Res Commun
211:
986‐990,
1995.
|
524. |
Shennan DB,
Peaker M.
Transport of milk constituents by the mammary gland.
Physiol Rev
80:
925‐951,
2000.
|
525. |
Shetty M,
Loeb JN,
Vikstrom K,
Ismail BF.
Rapid activation of GLUT‐1 glucose transporter following inhibition of oxidative phosphorylation in clone 9 cells.
J Biol Chem
268:
17225‐17232,
1993.
|
526. |
Shewan AM,
Marsh BJ,
Melvin DR,
Martin S,
Gould GW,
James DE.
The cytosolic C‐terminus of the glucose transporter GLUT4 contains an acidic cluster endosomal targeting motif distal to the dileucine signal.
Biochem J
350
Pt 1:
99‐107,
2000.
|
527. |
Shillingford JM,
Wood IS,
Shennan DB,
Shirazi‐Beechey SP,
Beechey RB.
Determination of the sequence of a mRNA from lactating sheep mammary gland that encodes a protein identical to the Na(+)‐dependent glucose transporter (SGLT1).
Biochem Soc Trans
25:
467S,
1997.
|
528. |
Shimizu N,
Oomura Y,
Novin D,
Grijalva CV,
Cooper PH.
Functional correlations between lateral hypothalamic glucose‐sensitive neurons and hepatic portal glucose‐sensitive units in rat.
Brain Res
265:
49‐54,
1983.
|
529. |
Shin BC,
Fujikura K,
Suzuki T,
Tanaka S,
Takata K.
Glucose transporter GLUT3 in the rat placental barrier: A possible machinery for the transplacental transfer of glucose.
Endocrinology
138:
3997‐4004,
1997.
|
530. |
Shiota C,
Rocheleau JV,
Shiota M,
Piston DW,
Magnuson MA.
Impaired glucagon secretory responses in mice lacking the type 1 sulfonylurea receptor.
Am J Physiol Endocrinol Metab
289:
E570‐E577,
2005.
|
531. |
Simon RR,
Marks V,
Leeds AR,
Anderson JW.
A comprehensive review of oral glucosamine use and effects on glucose metabolism in normal and diabetic individuals.
Diabetes Metab Res Rev
27:
14‐27,
2011.
|
532. |
Simpson IA,
Appel NM,
Hokari M,
Oki J,
Holman GD,
Maher F,
Koehler‐Stec EM,
Vannucci SJ,
Smith QR.
Blood‐brain barrier glucose transporter: Effects of hypo‐ and hyperglycemia revisited. J Neurochem
72:
238‐247,
1999.
|
533. |
Simpson IA,
Carruthers A,
Vannucci SJ.
Supply and demand in cerebral energy metabolism: The role of nutrient transporters. J Cereb Blood Flow Metab
27:
1766‐1791,
2007.
|
534. |
Simpson IA,
Cushman SW.
Hormonal regulation of mammalian glucose transport. Ann Rev Biochem
55:
1059‐1089,
1986.
|
535. |
Simpson IA,
Dwyer D,
Malide D,
Moley KH,
Travis A,
Vannucci SJ.
The facilitative glucose transporter GLUT3: 20 years of distinction. Am J Physiol Endocrinol Metab
295:
E242‐E253,
2008.
|
536. |
Simpson IA,
Vannucci SJ,
DeJoseph MR,
Hawkins RA.
Glucose transporter asymmetries in the bovine blood‐brain barrier. J Biol Chem
276:
12725‐1279,
2001.
|
537. |
Sivitz W,
DeSautel S,
Walker PS,
Pessin JE.
Regulation of the glucose transporter in developing rat brain.
Endocrinology
124:
1875‐1880,
1989.
|
538. |
Sixma JJ,
Nievelstein PF,
Houdijk WP,
Van Breugel H,
Hindriks G,
de Groot PG.
Adhesion of blood platelets to isolated components of the vessel wall.
Ann N Y Acad Sci
509:
103‐117,
1987.
|
539. |
Slot JW,
Geuze HJ,
Gigengack S,
James DE,
Lienhard GE.
Translocation of the glucose transporter GLUT4 in cardiac myocytes of the rat.
Proc Natl Acad Sci U S A
88:
7815‐7819,
1991.
|
540. |
Sogin DC,
Hinkle PC.
Characterization of the glucose transporter from human erythrocytes.
J Supramol Struct
8:
447‐453,
1978.
|
541. |
Staal RG,
Mosharov EV,
Sulzer D.
Dopamine neurons release transmitter via a flickering fusion pore.
Nat Neurosci
7:
341‐346,
2004.
|
542. |
Steck TL,
Yu J.
Selective solubilization of proteins from red blood cell membranes by protein perturbants.
J Supramol Struct
1:
220‐232,
1973.
|
543. |
Stein WD, ed.
Transport and Diffusion Across Cell Membranes.
New York:
Academic Press,
1986.
|
544. |
Stenbit AE,
Burcelin R,
Katz EB,
Tsao TS,
Gautier N,
Charron MJ,
Le Marchand‐Brustel Y.
Diverse effects of Glut 4 ablation on glucose uptake and glycogen synthesis in red and white skeletal muscle.
J Clin Invest
98:
629‐634,
1996.
|
545. |
Stuart CA,
Howell ME,
Zhang Y,
Yin D.
Insulin‐stimulated translocation of glucose transporter (GLUT) 12 parallels that of GLUT4 in normal muscle.
J Clin Endocrinol Metab
94:
3535‐3542,
2009.
|
546. |
Stuart CA,
Yin D,
Howell ME,
Dykes RJ,
Laffan JJ,
Ferrando AA.
Hexose transporter mRNAs for GLUT4, GLUT5, and GLUT12 predominate in human muscle.
Am J Physiol Endocrinol Metab
291:
E1067‐E1073,
2006.
|
547. |
Stumpel F,
Jungermann K.
Sensing by intrahepatic muscarinic nerves of a portal‐arterial glucose concentration gradient as a signal for insulin‐dependent glucose uptake in the perfused rat liver.
FEBS Lett
406:
119‐122,
1997.
|
548. |
Sultzman LA,
Carruthers A.
Stop‐flow analysis of cooperative interactions between GLUT1 sugar import and export sites.
Biochemistry
38:
6640‐6650,
1999.
|
549. |
Summers SA,
Yin VP,
Whiteman EL,
Garza LA,
Cho H,
Tuttle RL,
Birnbaum MJ.
Signaling pathways mediating insulin‐stimulated glucose transport.
Ann N Y Acad Sci
892:
169‐186,
1999.
|
550. |
Suzuki M,
Kobayashi Y,
Kurata M,
Agar NS.
Substrates for glutathione regeneration in mammalian erythrocytes.
Comp Haematol Int
7:
70‐73,
1997.
|
551. |
Suzuki M,
Kurata M.
Effects of ATP level on glutathione regeneration in rabbit and guinea‐pig erythrocytes.
Comp Biochem Physiol B
103:
859‐862,
1992.
|
552. |
Swarthout JT,
D'Alonzo RC,
Selvamurugan N,
Partridge NC.
Parathyroid hormone‐dependent signaling pathways regulating genes in bone cells.
Gene
282:
1‐17,
2002.
|
553. |
Takagi H,
Tanihara H,
Seino Y,
Yoshimura N.
Characterization of glucose transporter in cultured human retinal pigment epithelial cells: Gene expression and effect of growth factors.
Invest Ophthalmol Vis Sci
35:
170‐177,
1994.
|
554. |
Takakura Y,
Kuentzel SL,
Raub TJ,
Davies A,
Baldwin SA,
Borchardt RT.
Hexose uptake in primary cultures of bovine brain microvessel endothelial cells. I. Basic characteristics and effects of D‐glucose and insulin.
Biochimica et Biophysica Acta
1070:
1‐10,
1991.
|
555. |
Takanaga H,
Frommer WB.
Facilitative plasma membrane transporters function during ER transit.
FASEB J
24:
2849‐2858,
2010.
|
556. |
Takarada T,
Hinoi E,
Kambe Y,
Sahara K,
Kurokawa S,
Takahata Y,
Yoneda Y.
Osteoblast protects osteoclast devoid of sodium‐dependent vitamin C transporters from oxidative cytotoxicity of ascorbic acid.
Eur J Pharmacol
575:
1‐11,
2007.
|
557. |
Takata K,
Hirano H,
Kasahara M.
Transport of glucose across the blood‐tissue barriers.
Int Rev Cytol S
172:
1‐53,
1997.
|
558. |
Takata K,
Kasahara T,
Kasahara M,
Ezaki O,
Hirano H.
Erythrocyte/HepG2‐type glucose transporter is concentrated in cells of blood‐tissue barriers.
Biochem Biophys Res Commun
173:
67‐73,
1990.
|
559. |
Takeuchi S,
Ando M.
Marginal cells of the stria vascularis of gerbils take up glucose via the facilitated transporter GLUT: Application of autofluorescence.
Hear Res
114:
69‐74,
1997.
|
560. |
Tal M,
Schneider DL,
Thorens B,
Lodish HF.
Restricted expression of the erythroid/brain glucose transporter isoform to perivenous hepatocytes in rats. Modulation by glucose.
J Clin Invest
86:
986‐992,
1990.
|
561. |
Tappy L,
Jequier E,
Schneiter P.
Autoregulation of glucose production.
News Physiol Sci
15:
198‐202,
2000.
|
562. |
Tappy L,
Le KA.
Metabolic effects of fructose and the worldwide increase in obesity.
Physiol Rev
90:
23‐46,
2010.
|
563. |
Tappy L,
Le KA,
Tran C,
Paquot N.
Fructose and metabolic diseases: New findings, new questions.
Nutrition
26:
1044‐1049,
2010.
|
564. |
Taverna RD,
Langdon RG.
Glucose transport in white erythrocyte ghosts and membrane derived vesicles.
Biochim Biophys Acta
298:
422‐428,
1973a.
|
565. |
Taverna RD,
Langdon RG.
Reversible association of cytochalasin B with the human erythrocyte membrane. Inhibition of glucose transport and the stoichiometry of cytochalasin binding.
Biochim Biophys Acta
323:
207‐219,
1973b.
|
566. |
Taylor LP,
Holman GD.
Symmetrical kinetic parameters for 3‐O‐methyl‐D‐glucose transport in adipocytes in the presence and in the absence of insulin.
Biochim Biophys Acta
642:
325‐335,
1981.
|
567. |
Teitelbaum SL.
Bone resorption by osteoclasts.
Science
289:
1504‐1508,
2000.
|
568. |
Thomas DM,
Maher F,
Rogers SD,
Best JD.
Expression and regulation by insulin of GLUT 3 in UMR 106‐01, a clonal rat osteosarcoma cell line.
Biochem Biophys Res Commun
218:
789‐793,
1996.
|
569. |
Thorens B.
Glucose transporters in the regulation of intestinal, renal, and liver glucose fluxes.
Am J Physiol
270:
G541‐G553,
1996.
|
570. |
Thorens B.
A gene knockout approach in mice to identify glucose sensors controlling glucose homeostasis.
Pflugers Arch
445:
482‐490,
2003.
|
571. |
Thorens B,
Guillam MT,
Beermann F,
Burcelin R,
Jaquet M.
Transgenic reexpression of GLUT1 or GLUT2 in pancreatic beta cells rescues GLUT2‐null mice from early death and restores normal glucose‐stimulated insulin secretion.
J Biol Chem
275:
23751‐23758,
2000.
|
572. |
Thorens B,
Mueckler M.
Glucose transporters in the 21st Century.
Am J Physiol Endocrinol Metab
298:
E141‐E145,
2010.
|
573. |
Thorens B,
Sarkar HK,
Kaback HR,
Lodish HF.
Cloning and functional expression in bacteria of a novel glucose transporter present in liver, intestine, kidney, and ‐pancreatic islet cells.
Cell
55:
281‐290,
1988.
|
574. |
Threadgold LC,
Coore HG,
Kuhn NJ.
Monosaccharide transport into lactating‐rat mammary acini.
Biochem J
204:
493‐501,
1982.
|
575. |
Threadgold LC,
Kuhn NJ.
Monosaccharide transport in the mammary gland of the intact lactating rat.
Biochem J
218:
213‐219,
1984.
|
576. |
Topping DL,
Mayes PA.
The concentration of fructose, glucose and lactate in the splanchnic blood vessels of rats absorbing fructose.
Nutr Metab
13:
331‐338,
1971.
|
577. |
Toyoda N,
Flanagan JE,
Kono T.
Reassessment of insulin effects on the Vmax and Km values of hexose transport in isolated rat epididymal adipocytes.
J Biol Chem
262:
2737‐2745,
1987.
|
578. |
Travis AJ,
Tutuncu L,
Jorgez CJ,
Ord TS,
Jones BH,
Kopf GS,
Williams CJ.
Requirements for glucose beyond sperm capacitation during in vitro fertilization in the mouse.
Biol Reprod
71:
139‐145,
2004.
|
579. |
Tschritter O,
Stumvoll M,
Machicao F,
Holzwarth M,
Weisser M,
Maerker E,
Teigeler A,
Haring H,
Fritsche A.
The prevalent Glu23Lys polymorphism in the potassium inward rectifier 6.2 (KIR6.2) gene is associated with impaired glucagon suppression in response to hyperglycemia.
Diabetes
51:
2854‐2860,
2002.
|
580. |
Tserentsoodol N,
Shin B,
Koyama H,
Suzuki T,
Takata K.
Immunolocalization of tight junction proteins, occludin and ZO‐1, and glucose transporter GLUT1 in the cells of the blood‐nerve barrier.
Archives Histol Cytol
62:
459‐469,
1999.
|
581. |
Uchida Y,
Ohtsuki S,
Katsukura Y,
Ikeda C,
Suzuki T,
Kamiie J,
Terasaki T.
Quantitative targeted absolute proteomics of human blood‐brain barrier transporters and receptors.
J Neurochem
117:
333‐345,
2011.
|
582. |
Ueki M,
Linn F,
Hossmann KA.
Functional activation of cerebral blood flow and metabolism before and after global ischemia of rat brain.
J Cereb Blood Flow Metab S
8:
486‐494,
1988.
|
583. |
Uldry M,
Ibberson M,
Horisberger JD,
Chatton JY,
Riederer BM,
Thorens B.
Identification of a mammalian H(+)‐myo‐inositol symporter expressed predominantly in the brain.
EMBO J
20:
4467‐4477,
2001.
|
584. |
Uldry M,
Thorens B.
The SLC2 family of facilitated hexose and polyol transporters.
Pflugers Arch
447:
480‐489,
2004.
|
585. |
Uldry M,
Ibberson M,
Hosokawa M,
Thorens B.
GLUT2 is a high affinity glucosamine transporter.
FEBS Lett
524:
199‐203,
2002.
|
586. |
Uldry M,
Steiner P,
Zurich M‐G,
Beguin P,
Hirling H,
Dolci W,
Thorens B.
Regulated exocytosis of an H+/myo‐inositol symporter at synapses and growth cones.
EMBO J
23:
531‐540,
2004.
|
587. |
Vannucci SJ.
Developmental expression of GLUT1 and GLUT3 glucose transporters in rat brain.
J Neurochem
62:
240‐246,
1994.
|
588. |
Vannucci SJ,
Koehler‐Stec EM,
Li K,
Reynolds TH,
Clark R,
Simpson IA.
GLUT4 glucose transporter expression in rodent brain: Effect of diabetes. Brain Res
797:
1‐11,
1998.
|
589. |
Vannucci SJ,
Maher F,
Koehler E,
Simpson IA.
Altered expression of GLUT‐1 and GLUT‐3 glucose transporters in neurohypophysis of water‐deprived or diabetic rats. Am J Physiol
267:
E605‐E611,
1994.
|
590. |
Vannucci SJ,
Willing LB,
Vannucci RC.
Developmental expression of glucose transporters, GLUT1 and GLUT3, in postnatal rat brain. Adv Exp Med Biol
331:
3‐7,
1993.
|
591. |
Vardhana PA,
Illsley NP.
Transepithelial glucose transport and metabolism in BeWo choriocarcinoma cells.
Placenta
23:
653‐660,
2002.
|
592. |
Vera JC,
Rivas CI,
Fischbarg J,
Golde DW.
Mammalian facilitative hexose transporters mediate the transport of dehydroascorbic acid. Nature
364:
79‐82,
1993.
|
593. |
Vera JC,
Rivas CI,
Velasquez FV,
Zhang RH,
Concha II,
Golde DW.
Resolution of the facilitated transport of dehydroascorbic acid from its intracellular accumulation as ascorbic acid. J Biol Chem
270:
23706‐23712,
1995.
|
594. |
Vera JC,
Rivas CI,
Zhang RH,
Farber CM,
Golde DW.
Human HL‐60 myeloid leukemia cells transport dehydroascorbic acid via the glucose transporters and accumulate reduced ascorbic acid. Blood
84:
1628‐1634,
1994.
|
595. |
Vieira E,
Salehi A,
Gylfe E.
Glucose inhibits glucagon secretion by a direct effect on mouse pancreatic alpha cells.
Diabetologia
50:
370‐379,
2007.
|
596. |
Vollers S,
Carruthers A. Molecular determinants of GLUT1‐mediated accelerated exchange. (unpublished)
2011.
|
597. |
Wadhwani KC,
Rapoport SI.
Transport properties of vertebrate blood‐nerve barrier: Comparison with blood‐brain barrier.
Prog Neurobiol
43:
235‐279,
1994.
|
598. |
Walmsley AR,
Lowe AG.
Comparison of the kinetics and thermodynamics of the carrier systems for glucose and leucine in human red blood cells.
Biochim Biophys Acta
901:
229‐238,
1987.
|
599. |
Walz T,
Hirai T,
Murata K,
Heymann JB,
Mitsuoka K,
Fujiyoshi Y,
Smith BL,
Agre P,
Engel A.
The three‐dimensional structure of aquaporin‐1.
Nature
387:
624‐627,
1997.
|
600. |
Wang D,
Pascual JM,
Yang H,
Engelstad K,
Mao X,
Cheng J,
Yoo J,
Noebels JL,
De Vivo DC.
A mouse model for Glut‐1 haploinsufficiency.
Hum Mol Genet
15:
1169‐1179,
2006.
|
601. |
Watson RT,
Pessin JE.
Bridging the GAP between insulin signaling and GLUT4 translocation.
Trends Biochem Sci
31:
215‐222,
2006.
|
602. |
Weidema AF,
Dixon SJ,
Sims SM.
Activation of P2Y but not P2X(4) nucleotide receptors causes elevation of [Ca2+]i in mammalian osteoclasts.
Am J Physiol Cell Physiol
280:
C1531‐C1539,
2001.
|
603. |
Weiser MB,
Razin M,
Stein WD.
Kinetic tests of models for sugar transport in human erythrocytes and a comparison of fresh and cold–stored cells.
Biochim Biophys Acta
727:
379‐388,
1983.
|
604. |
Wendt A,
Birnir B,
Buschard K,
Gromada J,
Salehi A,
Sewing S,
Rorsman P,
Braun M.
Glucose inhibition of glucagon secretion from rat alpha‐cells is mediated by GABA released from neighboring beta‐cells.
Diabetes
53:
1038‐1045,
2004.
|
605. |
Wheeler TJ,
Hinkle PC.
Kinetic properties of the reconstituted glucose transporter from human erythrocytes.
J Biol Chem
256:
8907‐8914,
1981.
|
606. |
Wheeler TJ,
Simpson IA,
Sogin DC,
Hinkle PC,
Cushman SW.
Detection of the rat adipose cell glucose transporter with antibody against the human red cell glucose transporter.
Biochem Biophys Res Commun
105:
89‐95,
1982.
|
607. |
White MD,
Kuhn NJ,
Ward S.
Permeability of lactating‐rat mammary gland Golgi membranes to monosaccharides.
Biochem J
190:
621‐624,
1980.
|
608. |
Widdas WF.
Inability of diffusion to account for placental glucose transfer in the sheep and consideration of the kinetics of a possible carrier transfer.
J Physiol (Lond)
118:
23‐39,
1952.
|
609. |
Widdas WF.
Facilitated transfer of hexoses across the human erythrocyte membrane.
J Physiol (Lond)
125:
163‐180,
1954.
|
610. |
Widdas WF.
The asymmetry of the hexose transfer system in the human red cell membrane.
Curr Top Memb Transp
14:
165‐223,
1980.
|
611. |
Widmer M,
Uldry M,
Thorens B.
GLUT8 subcellular localization and absence of translocation to the plasma membrane in PC12 cells and hippocampal neurons.
Endocrinology
146:
4727‐4736,
2005.
|
612. |
Wieman HL,
Wofford JA,
Rathmell JC.
Cytokine stimulation promotes glucose uptake via phosphatidylinositol‐3 kinase/Akt regulation of Glut1 activity and trafficking.
Mol Biol Cell
18:
1437‐1446,
2007.
|
613. |
Wightman RM,
Haynes CL.
Synaptic vesicles really do kiss and run.
Nat Neurosci
7:
321‐322,
2004.
|
614. |
Williams CA,
Phillips T,
Macdonald I.
The influence of glucose on serum galactose levels in man.
Metabolism
32:
250‐256,
1983.
|
615. |
Williams JP,
Blair HC,
McDonald JM,
McKenna MA,
Jordan SE,
Williford J,
Hardy RW.
Regulation of osteoclastic bone resorption by glucose.
Biochem Biophys Res Commun
235:
646‐651,
1997.
|
616. |
Williams SA,
Blache D,
Martin GB,
Foot R,
Blackberry MA,
Scaramuzzi RJ.
Effect of nutritional supplementation on quantities of glucose transporters 1 and 4 in sheep granulosa and theca cells.
Reproduction
122:
947‐956,
2001.
|
617. |
Wilson‐O'Brien AL,
Dehaan CL,
Rogers S.
Mitogen‐stimulated and rapamycin‐sensitive glucose transporter 12 targeting and functional glucose transport in renal epithelial cells.
Endocrinology
149:
917‐924,
2008.
|
618. |
Wilson A,
Laurenti E,
Oser G,
van der Wath RC,
Blanco‐Bose W,
Jaworski M,
Offner S,
Dunant CF,
Eshkind L,
Bockamp E,
Lio P,
Macdonald HR,
Trumpp A.
Hematopoietic stem cells reversibly switch from dormancy to self‐renewal during homeostasis and repair.
Cell
135:
1118‐1129,
2008.
|
619. |
Wilson A,
Laurenti E,
Trumpp A.
Balancing dormant and self‐renewing hematopoietic stem cells.
Curr Opin Genet Dev
19:
461‐468,
2009.
|
620. |
Wilson CM,
Cushman SW.
Insulin stimulation of glucose transport activity in rat skeletal muscle: Increase in cell surface GLUT4 as assessed by photolabelling.
Biochem J
755‐759,
1994.
|
621. |
Wittrant Y,
Gorin Y,
Woodruff K,
Horn D,
Abboud HE,
Mohan S,
Abboud‐Werner SL.
High d(+)glucose concentration inhibits RANKL‐induced osteoclastogenesis.
Bone
42:
1122‐1130,
2008.
|
622. |
Wofford JA,
Wieman HL,
Jacobs SR,
Zhao Y,
Rathmell JC.
IL‐7 promotes Glut1 trafficking and glucose uptake via STAT5‐mediated activation of Akt to support T‐cell survival.
Blood
111:
2101‐2111,
2008.
|
623. |
Wood IS,
Hunter L,
Trayhurn P.
Expression of Class III facilitative glucose transporter genes (GLUT‐10 and GLUT‐12) in mouse and human adipose tissues.
Biochem Biophys Res Commun
308:
43‐49,
2003.
|
624. |
Wood IS,
Trayhurn P.
Glucose transporters (GLUT and SGLT): Expanded families of sugar transport proteins.
Br J Nutr
89:
3‐9,
2003.
|
625. |
Wright EM.
The intestinal Na+/glucose cotransporter. [Review].
Ann Rev Physiol
55:
575‐589,
1993.
|
626. |
Wright EM.
Genetic Diseases of the Kidney.
In: Lifton RP, Sornlo S, Giebisch GH, Seldin DW, editors.
Renal Na(+)‐glucose cotransporters.
Am J Physiol Renal Physiol
Amsterdam: Elsevier,
280:
F10‐F18,
2001.
|
627. |
Wright EM.
Diseases of renal glucose handling.
Gen Dis Kid 131,
2009.
|
628. |
Wu X,
Freeze HH.
GLUT14, a duplicon of GLUT3, is specifically expressed in testis as alternative splice forms.
Genomics
80:
553‐557,
2002.
|
629. |
Wu X,
Li W,
Sharma V,
Godzik A,
Freeze HH.
Cloning and characterization of glucose transporter 11, a novel sugar transporter that is alternatively spliced in various tissues.
Mol Genet Metab
76:
37‐45,
2002.
|
630. |
Xing AY,
Challier JC,
Lepercq J,
Cauzac M,
Charron MJ,
Girard J,
Hauguel‐de Mouzon S.
Unexpected expression of glucose transporter 4 in villous stromal cells of human placenta.
J Clin Endocrinol Metab
83:
4097‐4101,
1998.
|
631. |
Yang J,
Holman GD.
Insulin and contraction stimulate exocytosis, but increased AMP‐activated protein kinase activity resulting from oxidative metabolism stress slows endocytosis of GLUT4 in cardiomyocytes.
J Biol Chem
280:
4070‐4078,
2005.
|
632. |
Yang XJ,
Kow LM,
Funabashi T,
Mobbs CV.
Hypothalamic glucose sensor: Similarities to and differences from pancreatic beta‐cell mechanisms.
Diabetes
48:
1763‐1772,
1999.
|
633. |
Yang XJ,
Kow LM,
Pfaff DW,
Mobbs CV.
Metabolic pathways that mediate inhibition of hypothalamic neurons by glucose.
Diabetes
53:
67‐73,
2004.
|
634. |
Yin Y,
He X,
Szewczyk P,
Nguyen T,
Chang G.
Structure of the multidrug transporter EmrD from Escherichia coli.
Science (New York, NY)
312:
741‐744,
2006.
|
635. |
Yoshihara T,
Satoh M,
Yamamura Y,
Itoh H,
Ishii T.
Ultrastructural localization of glucose transporter 1 (GLUT1) in guinea pig stria vascularis and vestibular dark cell areas: An immunogold study.
Acta Otolaryngol
119:
336‐340,
1999.
|
636. |
Yu J,
Fischman DA,
Steck TL.
Selective solubilization of proteins and phospholipids from red blood cell membranes by nonionic detergents.
J Supramol Struct
1:
233‐248,
1973.
|
637. |
Zhao C,
Wilson MC,
Schuit F,
Halestrap AP,
Rutter GA.
Expression and distribution of lactate/monocarboxylate transporter isoforms in pancreatic islets and the exocrine pancreas.
Diabetes
50:
361‐366,
2001.
|
638. |
Zhao FQ,
Dixon WT,
Kennelly JJ.
Localization and gene expression of glucose transporters in bovine mammary gland. Comp Biochem Physiol B Biochem Mol Biol
115:
127‐134,
1996.
|
639. |
Zhao FQ,
Glimm DR,
Kennelly JJ.
Distribution of mammalian facilitative glucose transporter messenger RNA in bovine tissues. Int J Biochem
25:
1897‐1903,
1993.
|
640. |
Zhao FQ,
Keating AF.
Expression and regulation of glucose transporters in the bovine mammary gland. J Dairy Sci
90
Suppl 1:
E76‐E86,
2007a.
|
641. |
Zhao FQ,
Keating AF.
Functional properties and genomics of glucose transporters. Curr Genomics
8:
113‐128,
2007b.
|
642. |
Zhou J,
Bondy CA.
Placental glucose transporter gene expression and metabolism in the rat.
J Clin Invest
91:
845‐852,
1993.
|
643. |
Zisman A,
Peroni OD,
Abel ED,
Michael MD,
Mauvais‐Jarvis F,
Lowell BB,
Wojtaszewski JF,
Hirshman MF,
Virkamaki A,
Goodyear LJ,
Kahn CR,
Kahn BB.
Targeted disruption of the glucose transporter 4 selectively in muscle causes insulin resistance and glucose intolerance.
Nat Med
6:
924‐928,
2000.
|
644. |
Zoccoli MA,
Baldwin SA,
Lienhard GE.
The monosaccharide transport system of the human erythrocyte. Solubilization and characterization on the basis of cytochalasin B binding.
J Biol Chem
253:
6923‐6930,
1978.
|
645. |
Zoidis E,
Ghirlanda‐Keller C,
Schmid C.
Stimulation of glucose transport in osteoblastic cells by parathyroid hormone and insulin‐like growth factor I.
Mol Cell Biochem
348:
33‐42,
2011.
|
646. |
Zola H,
Swart B,
Nicholson I,
Voss E, eds.
Leukocyte and Stromal Cell Molecules: The CD Markers.
Wiley,
2007.
|
647. |
Zottola RJ,
Cloherty EK,
Coderre PE,
Hansen A,
Hebert DN,
Carruthers A.
Glucose transporter function is controlled by transporter oligomeric structure. A single, intramolecular disulfide promotes GLUT1 tetramerization.
Biochemistry
34:
9734‐9747,
1995.
|