Comprehensive Physiology Wiley Online Library

Role of Monosaccharide Transport Proteins in Carbohydrate Assimilation, Distribution, Metabolism, and Homeostasis

Full Article on Wiley Online Library



Abstract

The facilitated diffusion of glucose, galactose, fructose, urate, myoinositol, and dehydroascorbic acid in mammals is catalyzed by a family of 14 monosaccharide transport proteins called GLUTs. These transporters may be divided into three classes according to sequence similarity and function/substrate specificity. GLUT1 appears to be highly expressed in glycolytically active cells and has been coopted in vitamin C auxotrophs to maintain the redox state of the blood through transport of dehydroascorbate. Several GLUTs are definitive glucose/galactose transporters, GLUT2 and GLUT5 are physiologically important fructose transporters, GLUT9 appears to be a urate transporter while GLUT13 is a proton/myoinositol cotransporter. The physiologic substrates of some GLUTs remain to be established. The GLUTs are expressed in a tissue specific manner where affinity, specificity, and capacity for substrate transport are paramount for tissue function. Although great strides have been made in characterizing GLUT‐catalyzed monosaccharide transport and mapping GLUT membrane topography and determinants of substrate specificity, a unifying model for GLUT structure and function remains elusive. The GLUTs play a major role in carbohydrate homeostasis and the redistribution of sugar‐derived carbons among the various organ systems. This is accomplished through a multiplicity of GLUT‐dependent glucose sensing and effector mechanisms that regulate monosaccharide ingestion, absorption, distribution, cellular transport and metabolism, and recovery/retention. Glucose transport and metabolism have coevolved in mammals to support cerebral glucose utilization. © 2012 American Physiological Society. Compr Physiol 2:863‐914, 2012.

Comprehensive Physiology offers downloadable PowerPoint presentations of figures for non-profit, educational use, provided the content is not modified and full credit is given to the author and publication.

Download a PowerPoint presentation of all images


Figure 1. Figure 1.

Putative glucose transport proteins (GLUT1) topology and helix packing. GLUT1 topology adapted from the GlpT homology model 508. Group 1 TMs are highlighted in pink. Group 2 and Group 3 TMs are highlighted in blue and green, respectively. Some TMs extend beyond the bilayer boundaries (indicated by horizontal yellow rectangle). The bilayer‐embedded region of TMs 1 to 12 comprise amino acids 17 to 39, 64 to 86, 93 to 112, 120 to 141, 157 to 178, 187 to 207, 267 to 291, 305 to 325, 335 to 356, 362 to 385, 401 to 421, and 431 to 452, respectively. GLUT1 is glycosylated at Asn45. TMs 6 and 7 are linked by the large cytoplasmic loop (L6‐L7). Amino acid residues are show using one letter code. The key indicates residues that are accessible to a variety of agents. The red, green, and purple residues indicate residues which when mutagenized to cysteine are reactive with exofacial pCMBS, whose labeling by para‐chloromercuribenzene‐sulfonate (pCMBS) is protected by substrate or whose substitution causes transport inhibition, respectively 441. The yellow residues indicate those native cysteine that are accessible to alkylation by iodoacetamide 62. The orange residues are predicted to be important in ligand binding based on docking studies 141,508. The dark blue residues are important in substrate binding as judged by mutagenesis studies 399. The black residues are known to be modified in GLUT1 deficiency syndrome (haploinsufficiency) 319. The light blue residues are accessible in native GLUT1 to trypsin and NHS‐esters 62.

Figure 2. Figure 2.

Putative glucose transport proteins (GLUT1) homology modeled structure adapted from the GlpT homology model 508 and analyzed using the software program VMD 1.8.5

(© University of Illinois 2006). GLUT1 coordinates were obtained from the RCSB Protein Data Bank (entry No. 1SUK). (A) GLUT1 viewed as a membrane spanning protein along the bilayer plane. The limits of the bilayer are indicated by the dashed lines. Membrane spanning helices [transmembrane proteins (TMs)] are color coded as in Figure 1. (B) Putative helix packing arrangement viewed from the cytoplasmic surface. TMs are numbered and colored as in Figure 1A. Cytoplasmic and exofacial loops are indicated by solid and dashed lines, respectively. A scale bar (5 nm) is indicated.
Figure 3. Figure 3.

Biochemical analysis of glucose transport proteins (GLUT1) topography. Membrane‐resident GLUT1 was digested with trypsin or, following labeling with NHS

‐LC‐biotin by α‐chymotrypsin and then analyzed by reverse phase HPLC‐ESI‐MS/MS 62. Peptides containing the indicated cleavage sites were positively identified by MS/MS. The 12 TMs are indicated in schematic form relative to the lipid bilayer. The key indicates accessible and inaccessible residues and how accessibility is modified when GLUT1 is complexed with ATP 61. Trypsin cuts GLUT1 at the C‐terminal side of accessible lysine (K) and arginine (R) residues. The figure also shows whether peptide directed IgGs interact with bilayer resident GLUT1 and how that interaction is modified in the presence of ATP 61.

Figure 4. Figure 4.

Model for ATP regulation of glucose transport proteins (GLUT1). GLUT1 experimentally determined membrane‐spanning topography 61, 62 is illustrated. The leftmost topography summarizes observations in the presence of AMP. Accessible tryptic cleavage sites (lysine or arginine residues) or sites of biotinylation (lysine residues) are shown as yellow circles (please refer to Figure 3 for specific details). Inaccessible tryptic cleavage sites (lysine or arginine residues) and inaccessible biotinylation (lysine) sites are shown as red circles. GLUT1 sequence that is inaccessible to peptide‐directed antibodies is shown in red while sequence that is accessible to peptide‐directed antibodies is shown in green. When ATP binds to GLUT1 (rightmost topography), a significant GLUT1 conformational change takes place rendering more sequence inaccessible to peptide‐directed antibodies and making specific lysine and arginine residues less accessible to trypsin and lysine residues less accessible to biotinylating probes. This conformational change is proposed to restrict glucose release (yellow arrow) from the translocation pathway (blue arrow).

Figure 5. Figure 5.

Pathways for monosaccharide metabolism in mammals. The major pathways for monosaccharide metabolism in cells and their intracellular locations are shown in schematic. The three compartments are cytoplasm, mitochondrion, and endoplasmic reticulum (ER). Glucose (Glc), Galactose (Gal), and Fructose (Frc) enter and exit the cell on Class 1, 2, and 3 glucose transport proteins (GLUTs). Lactate (produced by glycolysis) can enter or leave the cell on monocarboxylate transporters (MCTs). Galactose and glucose enter glycolysis as glucose‐6‐phosphate (G‐6‐P). Fructose enters at later steps in the glycolytic pathway as either dihydroxyacetone phosphate or glyceraldehyde‐3‐phosphate. Glycolysis produces 2 ATP molecules per entering glucose molecule. The pentose phosphate pathway produces to two Nicotinamide adenine dinucleotide phosphate (NADPH)

molecules and mitochondrial oxidative phosphorylation produces 34‐36 ATP molecules per glucose. Gluconeogenesis, which can be fed by pyruvate, amino acids or glycerol, produces G‐6‐P which is transported into the ER by a G‐6‐P/Pi antiporter (G6PT), dephosphorylated to Glc, which is then exported to the cytoplasm by ER GLUTs. G‐6‐P is converted reversibly to a useful glucose storage form (glycogen) by glycogen synthesis. Anabolic use of Glc, Gal, or Frc in membrane protein and lipid glycosylation is not shown.

Figure 6. Figure 6.

Glucose distribution pathways in mammals. The major distribution routes for monosaccharides and monosaccharide sensing/effector pathways are summarized schematically. The key illustrates glucose (blue arrows), fructose (pink arrows), and lactate flows (red arrows) between compartments; afferent input to the hypothalamus and brain stem (blue dashed arrows) from glucose sensors and effector output from the brain (autonomic) or pancreas (endocrine) to target organs.



Figure 1.

Putative glucose transport proteins (GLUT1) topology and helix packing. GLUT1 topology adapted from the GlpT homology model 508. Group 1 TMs are highlighted in pink. Group 2 and Group 3 TMs are highlighted in blue and green, respectively. Some TMs extend beyond the bilayer boundaries (indicated by horizontal yellow rectangle). The bilayer‐embedded region of TMs 1 to 12 comprise amino acids 17 to 39, 64 to 86, 93 to 112, 120 to 141, 157 to 178, 187 to 207, 267 to 291, 305 to 325, 335 to 356, 362 to 385, 401 to 421, and 431 to 452, respectively. GLUT1 is glycosylated at Asn45. TMs 6 and 7 are linked by the large cytoplasmic loop (L6‐L7). Amino acid residues are show using one letter code. The key indicates residues that are accessible to a variety of agents. The red, green, and purple residues indicate residues which when mutagenized to cysteine are reactive with exofacial pCMBS, whose labeling by para‐chloromercuribenzene‐sulfonate (pCMBS) is protected by substrate or whose substitution causes transport inhibition, respectively 441. The yellow residues indicate those native cysteine that are accessible to alkylation by iodoacetamide 62. The orange residues are predicted to be important in ligand binding based on docking studies 141,508. The dark blue residues are important in substrate binding as judged by mutagenesis studies 399. The black residues are known to be modified in GLUT1 deficiency syndrome (haploinsufficiency) 319. The light blue residues are accessible in native GLUT1 to trypsin and NHS‐esters 62.



Figure 2.

Putative glucose transport proteins (GLUT1) homology modeled structure adapted from the GlpT homology model 508 and analyzed using the software program VMD 1.8.5

(© University of Illinois 2006). GLUT1 coordinates were obtained from the RCSB Protein Data Bank (entry No. 1SUK). (A) GLUT1 viewed as a membrane spanning protein along the bilayer plane. The limits of the bilayer are indicated by the dashed lines. Membrane spanning helices [transmembrane proteins (TMs)] are color coded as in Figure 1. (B) Putative helix packing arrangement viewed from the cytoplasmic surface. TMs are numbered and colored as in Figure 1A. Cytoplasmic and exofacial loops are indicated by solid and dashed lines, respectively. A scale bar (5 nm) is indicated.


Figure 3.

Biochemical analysis of glucose transport proteins (GLUT1) topography. Membrane‐resident GLUT1 was digested with trypsin or, following labeling with NHS

‐LC‐biotin by α‐chymotrypsin and then analyzed by reverse phase HPLC‐ESI‐MS/MS 62. Peptides containing the indicated cleavage sites were positively identified by MS/MS. The 12 TMs are indicated in schematic form relative to the lipid bilayer. The key indicates accessible and inaccessible residues and how accessibility is modified when GLUT1 is complexed with ATP 61. Trypsin cuts GLUT1 at the C‐terminal side of accessible lysine (K) and arginine (R) residues. The figure also shows whether peptide directed IgGs interact with bilayer resident GLUT1 and how that interaction is modified in the presence of ATP 61.



Figure 4.

Model for ATP regulation of glucose transport proteins (GLUT1). GLUT1 experimentally determined membrane‐spanning topography 61, 62 is illustrated. The leftmost topography summarizes observations in the presence of AMP. Accessible tryptic cleavage sites (lysine or arginine residues) or sites of biotinylation (lysine residues) are shown as yellow circles (please refer to Figure 3 for specific details). Inaccessible tryptic cleavage sites (lysine or arginine residues) and inaccessible biotinylation (lysine) sites are shown as red circles. GLUT1 sequence that is inaccessible to peptide‐directed antibodies is shown in red while sequence that is accessible to peptide‐directed antibodies is shown in green. When ATP binds to GLUT1 (rightmost topography), a significant GLUT1 conformational change takes place rendering more sequence inaccessible to peptide‐directed antibodies and making specific lysine and arginine residues less accessible to trypsin and lysine residues less accessible to biotinylating probes. This conformational change is proposed to restrict glucose release (yellow arrow) from the translocation pathway (blue arrow).



Figure 5.

Pathways for monosaccharide metabolism in mammals. The major pathways for monosaccharide metabolism in cells and their intracellular locations are shown in schematic. The three compartments are cytoplasm, mitochondrion, and endoplasmic reticulum (ER). Glucose (Glc), Galactose (Gal), and Fructose (Frc) enter and exit the cell on Class 1, 2, and 3 glucose transport proteins (GLUTs). Lactate (produced by glycolysis) can enter or leave the cell on monocarboxylate transporters (MCTs). Galactose and glucose enter glycolysis as glucose‐6‐phosphate (G‐6‐P). Fructose enters at later steps in the glycolytic pathway as either dihydroxyacetone phosphate or glyceraldehyde‐3‐phosphate. Glycolysis produces 2 ATP molecules per entering glucose molecule. The pentose phosphate pathway produces to two Nicotinamide adenine dinucleotide phosphate (NADPH)

molecules and mitochondrial oxidative phosphorylation produces 34‐36 ATP molecules per glucose. Gluconeogenesis, which can be fed by pyruvate, amino acids or glycerol, produces G‐6‐P which is transported into the ER by a G‐6‐P/Pi antiporter (G6PT), dephosphorylated to Glc, which is then exported to the cytoplasm by ER GLUTs. G‐6‐P is converted reversibly to a useful glucose storage form (glycogen) by glycogen synthesis. Anabolic use of Glc, Gal, or Frc in membrane protein and lipid glycosylation is not shown.



Figure 6.

Glucose distribution pathways in mammals. The major distribution routes for monosaccharides and monosaccharide sensing/effector pathways are summarized schematically. The key illustrates glucose (blue arrows), fructose (pink arrows), and lactate flows (red arrows) between compartments; afferent input to the hypothalamus and brain stem (blue dashed arrows) from glucose sensors and effector output from the brain (autonomic) or pancreas (endocrine) to target organs.

References
 1. Abel ED, Kaulbach HC, Tian R, Hopkins JC, Duffy J, Doetschman T, Minnemann T, Boers ME, Hadro E, Oberste‐Berghaus C, Quist W, Lowell BB, Ingwall JS, Kahn BB. Cardiac hypertrophy with preserved contractile function after selective deletion of GLUT4 from the heart. J Clin Invest 104: 1703‐1714, 1999.
 2. Abel ED, Peroni O, Kim JK, Kim YB, Boss O, Hadro E, Minnemann T, Shulman GI, Kahn BB. Adipose‐selective targeting of the GLUT4 gene impairs insulin action in muscle and liver. Nature 409: 729‐733, 2001.
 3. Abramson J, Smirnova I, Kasho V, Verner G, Kaback HR, Iwata S. Structure and mechanism of the lactose permease of Escherichia coli. Science 301: 610‐615, 2003.
 4. Accardi A, Miller C. Secondary active transport mediated by a prokaryotic homologue of ClC Cl‐ channels. Nature 427: 803‐807, 2004.
 5. Adachi A. Electrophysiological study of hepatic vagal projection to the medulla. Neurosci Lett 24: 19‐23, 1981.
 6. Ahern CA, Kobertz WR. Chemical tools for K+ channel biology. Biochemistry 48: 517‐526, 2008.
 7. Ahren B. Autonomic regulation of islet hormone secretion–implications for health and disease. Diabetologia 43: 393‐410, 2000.
 8. Akkerman JW. Regulation of carbohydrate metabolism in platelets. A review. Thromb Haemost 39: 712‐724, 1978.
 9. Albarracin JL, Fernandez‐Novell JM, Ballester J, Rauch MC, Quintero‐Moreno A, Pena A, Mogas T, Rigau T, Yanez A, Guinovart JJ, Slebe JC, Concha II, Rodriguez‐Gil JE. Gluconeogenesis‐linked glycogen metabolism is important in the achievement of in vitro capacitation of dog spermatozoa in a medium without glucose. Biol Reprod 71: 1437‐1445, 2004.
 10. Albarracin JL, Mogas T, Palomo MJ, Pena A, Rigau T, Rodriguez‐Gil JE. In vitro capacitation and acrosome reaction of dog spermatozoa can be feasibly attained in a defined medium without glucose. Reprod Domest Anim 39: 129‐135, 2004.
 11. Albiston AL, Yeatman HR, Pham V, Fuller SJ, Diwakarla S, Fernando RN, Chai SY. Distinct distribution of GLUT4 and insulin regulated aminopeptidase in the mouse kidney. Regul Pept 166: 83‐89, 2011.
 12. Alm A, Tornquist P. Lactate transport through the blood‐retinal and the blood‐brain barrier in rats. Ophthalmic Res 17: 181‐184, 1985.
 13. Alm A, Tornquist P, Maepea O. The uptake index method applied to studies on the blood‐retinal barrier. II. Transport of several hexoses by a common carrier. Acta Physiol Scand 113: 81‐84, 1981.
 14. Alquier T, Leloup C, Arnaud E, Magnan C, Penicaud L. Altered Glut4 mRNA levels in specific brain areas of hyperglycemic‐hyperinsulinemic rats. Neurosci Lett 308: 75‐78, 2001.
 15. Alvarez J, Lee DC, Baldwin SA, Chapman D. Fourier transform infrared spectroscopic study of the structure and conformational changes of the human erythrocyte glucose transporter. J Biol Chem 262: 3502‐3509, 1987.
 16. Amato PA, Loizzi RF. The effects of cytochalasin B on glucose transport and lactose synthesis in lactating mammary gland slices. Eur J Cell Biol 20: 150‐155, 1979.
 17. Anand BK, Chhina GS, Sharma KN, Dua S, Singh B. Activity of single neurons in the hypothalamic feeding centers: Effect of glucose. Am J Physiol 207: 1146‐1154, 1964.
 18. Ando M, Edamatsu M, Fukuizumi S, Takeuchi S. Cellular localization of facilitated glucose transporter 1 (GLUT‐1) in the cochlear stria vascularis: Its possible contribution to the transcellular glucose pathway. Cell Tissue Res 331: 763‐769, 2008.
 19. Angulo C, Rauch MC, Droppelmann A, Reyes AM, Slebe JC, Delgado‐Lopez F, Guaiquil VH, Vera JC, Concha II. Hexose transporter expression and function in mammalian spermatozoa: Cellular localization and transport of hexoses and vitamin C. J Cell Biochem 71: 189‐203, 1998.
 20. Antonetti DA, Wolpert EB. Isolation and characterization of retinal endothelial cells. Methods Mol Med 89: 365‐374, 2003.
 21. Apelt J, Mehlhorn G, Schliebs R. Insulin‐sensitive GLUT4 glucose transporters are colocalized with GLUT3‐expressing cells and demonstrate a chemically distinct neuron‐specific localization in rat brain. J Neurosci Res 57: 693‐705, 1999.
 22. Appleman JR, Lienhard GE. Rapid kinetics of the glucose transporter from human erythrocytes. Detection and measurement of a half‐turnover of the purified transporter. J Biol Chem 260: 4575‐4578, 1985.
 23. Arbuckle MI, Kane S, Porter LM, Seatter MJ, Gould GW. Structure‐function analysis of liver‐type (GLUT2) and brain‐type (GLUT3) glucose transporters: Expression of chimeric transporters in Xenopus oocytes suggests an important role for putative transmembrane helix 7 in determining substrate selectivity. Biochemistry 35: 16519‐16527, 1996.
 24. Arden C, Harbottle A, Baltrusch S, Tiedge M, Agius L. Glucokinase is an integral component of the insulin granules in glucose‐responsive insulin secretory cells and does not translocate during glucose stimulation. Diabetes 53: 2346‐2352, 2004.
 25. Armstrong DT, Greep RO. Effect of gonadotrophic hormones on glucose metabolism by luteinized rat ovaries. Endocrinology 70: 701‐710, 1962.
 26. Asano T, Katagiri H, Takata K, Lin JL, Ishihara H, Inukai K, Tsukuda K, Kikuchi M, Hirano H, Yazaki Y. The role of N‐glycosylation of GLUT1 for glucose transport activity. J Biol Chem 266: 24632‐24636, 1991.
 27. Asplin C, Raghu P, Dornan T, Palmer JP. Glucose regulation of glucagon secretion independent of B cell activity. Metabolism 32: 292‐295, 1983.
 28. Augustin R, Carayannopoulos MO, Dowd LO, Phay JE, Moley JF, Moley KH. Identification and characterization of human glucose transporter‐like protein‐9 (GLUT9): Alternative splicing alters trafficking. J Biol Chem 279: 16229‐16236, 2004.
 29. Augustin R, Riley J, Moley KH. GLUT8 contains a [DE]XXXL[LI] sorting motif and localizes to a late endosomal/lysosomal compartment. Traffic 6: 1196‐1212, 2005.
 30. Bachelard HS. Deoxyglucose and brain glycolysis. Biochem J 127: 83P, 1972.
 31. Baker GF, Widdas WF. The asymmetry of the facilitated transfer system for hexoses in human red cells and the simple kinetics of a two component model. J Physiol 231: 143‐165, 1973.
 32. Baker GF, Naftalin RJ. Evidence of multiple operational affinities for D‐glucose inside the human erythrocyte membrane. Biochim Biophys Acta 550: 474‐484, 1979.
 33. Baker PF, Carruthers A. 3‐O‐methylglucose transport in internally dialysed giant axons of Loligo. J Physiol (Lond) 316: 503‐525, 1981.
 34. Bakirtzi K, Belfort G, Lopez‐Coviella I, Kuruppu D, Cao L, Abel ED, Brownell AL, Kandror KV. Cerebellar neurons possess a vesicular compartment structurally and functionally similar to Glut4‐storage vesicles from peripheral insulin‐sensitive tissues. J Neurosci 29: 5193‐5201, 2009.
 35. Balint E, Szabo P, Marshall CF, Sprague SM. Glucose‐induced inhibition of in vitro bone mineralization. Bone 28: 21‐28, 2001.
 36. Barathi S, Angayarkanni N, Sumantran VN. GLUT‐1 expression in bovine retinal capillary endothelial cells and pericytes exposed to advanced glycation end products. Invest Ophthalmol Vis Sci 51: 6810‐6814, 2010.
 37. Barbosa FB, Capito K, Kofod H, Thams P. Pancreatic islet insulin secretion and metabolism in adult rats malnourished during neonatal life. Br J Nutr 87: 147‐155, 2002.
 38. Barger PM, Kelly DP. Fatty acid utilization in the hypertrophied and failing heart: Molecular regulatory mechanisms. Am J Med Sci 318: 36‐42, 1999.
 39. Barnett JE, Holman GD, Chalkley RA, Munday KA. Evidence for two asymmetric conformational states in the human erythrocyte sugar‐transport system. Biochem J 145: 417‐429, 1975.
 40. Barnett JE, Holman GD, Munday KA. Structural requirements for binding to the sugar‐transport system of the human erythrocyte. Biochem J 131: 211‐221, 1973.
 41. Barrett EJ, Ferrannini E, Gusberg R, Bevilacqua S, DeFronzo RA. Hepatic and extrahepatic splanchnic glucose metabolism in the postabsorptive and glucose fed dog. Metabolism 34: 410‐420, 1985.
 42. Barros LF, Courjaret R, Jakoby P, Loaiza A, Lohr C, Deitmer JW. Preferential transport and metabolism of glucose in Bergmann glia over Purkinje cells: A multiphoton study of cerebellar slices. Glia 57: 962‐970, 2009.
 43. Basketter DA, Widdas WF. Asymmetry of the hexose transfer system in human erythrocytes. Comparison of the effects of cytochalasin B, phloretin and maltose as competitive inhibitors. J Physiol 278: 389‐401, 1978.
 44. Baumann MU, Deborde S, Illsley NP. Placental glucose transfer and fetal growth. Endocrine 19: 13‐22, 2002.
 45. Bell AW, Hay WWJ, Ehrhardt RA. Placental transport of nutrients and its implications for fetal growth. J Reprod Fertil Suppl 54: 401‐410, 1999.
 46. Belyantseva IA, Adler HJ, Curi R, Frolenkov GI, Kachar B. Expression and localization of prestin and the sugar transporter GLUT‐5 during development of electromotility in cochlear outer hair cells. J Neurosci 20: RC116, 2000.
 47. Benirschke K, Kaufmann P, eds. Pathology of Human Placenta. New York: Springer‐Verlag, 2006.
 48. Bentley J, Itchayanan D, Barnes K, McIntosh E, Tang X, Downes CP, Holman GD, Whetton AD, Owen‐Lynch PJ, Baldwin SA. Interleukin‐3‐mediated cell survival signals include phosphatidylinositol 3‐kinase‐dependent translocation of the glucose transporter GLUT1 to the cell surface. J Biol Chem 278: 39337‐39348, 2003.
 49. Bergstrom J, Hermansen L, Hultman E, Saltin B. Diet, muscle glycogen and physical performance. Acta Physiol Scand 71: 140‐150, 1967.
 50. Betz AL, Bowman PD, Goldstein GW. Hexose transport in microvascular endothelial cells cultured from bovine retina. Exp Eye Res 36: 269‐277, 1983.
 51. Betz AL, Iannotti F. Simultaneous determination of regional cerebral blood flow and blood–brain glucose transport kinetics in the gerbil. J Cereb Blood Flow Metab S 3: 193‐199, 1983.
 52. Bianchi J, Rose RC. Glucose‐independent transport of dehydroascorbic acid in human erythrocytes. Proc Soc Exp Biol Med 181: 333‐337, 1986.
 53. Biggee BA, Blinn CM, Nuite M, Silbert JE, McAlindon TE. Effects of oral glucosamine sulphate on serum glucose and insulin during an oral glucose tolerance test of subjects with osteoarthritis. Ann Rheum Dis 66: 260‐262, 2007.
 54. Bilezikian JP, Raisz LG, Martin TJ, eds. Principles of Bone Biology, Two‐Volume Set, Volume 1‐2, Third Edition (Bilezikian, Principles of Bone Biology 2 Vol Set). Amsterdam: Academic Press, 2008.
 55. Birnbaum MJ, Haspel HC, Rosen OM. Cloning and characterization of a cDNA encoding the rat brain glucose‐transporter protein. Proc Natl Acad Sci U S A 83: 5784‐5788, 1986.
 56. Birnbaum MJ. Activating AMP‐activated protein kinase without AMP. Mol Cell 19: 289‐290, 2005.
 57. Blanc L, Liu J, Vidal M, Chasis JA, An X, Mohandas N. The water channel aquaporin‐1 partitions into exosomes during reticulocyte maturation: Implication for the regulation of cell volume. Blood 114: 3928‐3934, 2009.
 58. Bloch R. Inhibition of glucose transport in the human erythrocyte by cytochalasin B. Biochemistry 12: 4799‐4801, 1973.
 59. Blodgett DM, Carruthers A. Conventional transport assays underestimate sugar transport rates in human red cells. Blood Cells Mol Dis 32: 401‐407, 2004.
 60. Blodgett DM, Carruthers A. Quench‐flow analysis reveals multiple phases of GluT1‐mediated sugar transport. Biochemistry 44: 2650‐2660, 2005.
 61. Blodgett DM, De Zutter JK, Levine KB, Karim P, Carruthers A. Structural basis of GLUT1 inhibition by cytoplasmic ATP. J Gen Physiol 130: 157‐168, 2007.
 62. Blodgett DM, Graybill C, Carruthers A. Analysis of glucose transporter topology and structural dynamics. J Biol Chem 283: 36416‐36424, 2008.
 63. Boado RJ, Pardridge WM. Glucose deprivation and hypoxia increase the expression of the GLUT1 glucose transporter via a specific mRNA cis‐acting regulatory element. J Neurochem 80: 552‐554, 2002.
 64. Boado RJ, Wu D, Windisch M. In vivo upregulation of the blood‐brain barrier GLUT1 glucose transporter by brain‐derived peptides. Neurosci Res 34: 217‐224, 1999.
 65. Borg MA, Sherwin RS, Borg WP, Tamborlane WV, Shulman GI. Local ventromedial hypothalamus glucose perfusion blocks counterregulation during systemic hypoglycemia in awake rats. J Clin Invest 99: 361‐365, 1997.
 66. Borg WP, Sherwin RS, During MJ, Borg MA, Shulman GI. Local ventromedial hypothalamus glucopenia triggers counterregulatory hormone release. Diabetes 44: 180‐184, 1995.
 67. Broer S, Schneider HP, Broer A, Rahman B, Hamprecht B, Deitmer JW. Characterization of the monocarboxylate transporter 1 expressed in Xenopus laevis oocytes by changes in cytosolic pH. Biochem J 333: 167‐174, 1998.
 68. Brooks GA. Lactate shuttles in nature. Biochem Soc Trans 30: 258‐264, 2002.
 69. Bryant NJ, Govers R, James DE. Regulated transport of the glucose transporter GLUT4. Nat Rev Mol Cell Biol 3: 267‐277, 2002.
 70. Bucci D, Isani G, Spinaci M, Tamanini C, Mari G, Zambelli D, Galeati G. Comparative immunolocalization of GLUTs 1, 2, 3 and 5 in boar, stallion and dog spermatozoa. Reprod Domest Anim 45: 315‐322, 2010.
 71. Bucci D, Rodriguez‐Gil JE, Vallorani C, Spinaci M, Galeati G, Tamanini C. GLUTs and mammalian sperm metabolism. J Androl 32, 348‐355, 2011.
 72. Buckley RH. Molecular defects in human severe combined immunodeficiency and approaches to immune reconstitution. Annu Rev Immunol 22: 625‐655, 2004.
 73. Burant CF, Takeda J, Brot LE, Bell GI, Davidson NO. Fructose transporter in human spermatozoa and small intestine is GLUT5. J Biol Chem 267: 14523‐14526, 1992.
 74. Burant CF, Bell GI. Mammalian facilitative glucose transporters: Evidence for similar substrate recognition sites in functionally monomeric proteins. Biochemistry 31: 10414‐10420, 1992.
 75. Burcelin R, Crivelli V, Perrin C, Da Costa A, Mu J, Kahn BB, Birnbaum MJ, Kahn CR, Vollenweider P, Thorens B. GLUT4, AMP kinase, but not the insulin receptor, are required for hepatoportal glucose sensor‐stimulated muscle glucose utilization. J Clin Invest 111: 1555‐1562, 2003.
 76. Burcelin R, del Carmen Munoz M, Guillam MT, Thorens B. Liver hyperplasia and paradoxical regulation of glycogen metabolism and glucose‐sensitive gene expression in GLUT2‐null hepatocytes. Further evidence for the existence of a membrane‐based glucose release pathway. J Biol Chem 275: 10930‐10936, 2000.
 77. Burcelin R, Dolci W, Thorens B. Glucose sensing by the hepatoportal sensor is GLUT2‐dependent: In vivo analysis in GLUT2‐null mice. Diabetes 49: 1643‐1648, 2000a.
 78. Burcelin R, Dolci W, Thorens B. Portal glucose infusion in the mouse induces hypoglycemia: Evidence that the hepatoportal glucose sensor stimulates glucose utilization. Diabetes 49: 1635‐1642, 2000b.
 79. Burcelin R, Thorens B. Evidence that extrapancreatic GLUT2‐dependent glucose sensors control glucagon secretion. Diabetes 50: 1282‐1289, 2001.
 80. Burdakov D, Jensen LT, Alexopoulos H, Williams RH, Fearon IM, O'Kelly I, Gerasimenko O, Fugger L, Verkhratsky A. Tandem‐pore K+ channels mediate inhibition of orexin neurons by glucose. Neuron 50: 711‐722, 2006.
 81. Burdakov D, Luckman SM, Verkhratsky A. Glucose‐sensing neurons of the hypothalamus. Philos Trans R Soc Lond B Biol Sci 360: 2227‐2235, 2005.
 82. Burnol AF, Leturque A, Loizeau M, Postic C, Girard J. Glucose transporter expression in rat mammary gland. Biochem J 270: 277‐279, 1990.
 83. Cabantchik ZI, Ginsburg H. Transport of uridine in human red blood cells. Demonstration of a simple carrier‐mediated process. J Gen Physiol 69: 75‐96, 1977.
 84. Camps M, Vilaro S, Testar X, Palacin M, Zorzano A. High and polarized expression of GLUT1 glucose transporters in epithelial cells from mammary gland: Acute down‐regulation of GLUT1 carriers by weaning. Endocrinology 134: 924‐934, 1994.
 85. Camps M, Castello A, Munoz P, Monfar M, Testar X, Palacin M, Zorzano A. Effect of diabetes and fasting on GLUT‐4 (muscle/fat) glucose‐transporter expression in insulin‐sensitive tissues. Heterogeneous response in heart, red and white muscle. Biochem J 282: 765‐772, 1992.
 86. Cani PD, Holst JJ, Drucker DJ, Delzenne NM, Thorens B, Burcelin R, Knauf C. GLUT2 and the incretin receptors are involved in glucose‐induced incretin secretion. Mol Cell Endocrinol 276: 18‐23, 2007.
 87. Carayannopoulos MO, Chi MM, Cui Y, Pingsterhaus JM, McKnight RA, Mueckler M, Devaskar SU, Moley KH. GLUT8 is a glucose transporter responsible for insulin‐stimulated glucose uptake in the blastocyst. Proc Natl Acad Sci U S A 97: 7313‐7318, 2000.
 88. Carayannopoulos MO, Schlein A, Wyman A, Chi M, Keembiyehetty C, Moley KH. GLUT9 is differentially expressed and targeted in the preimplantation embryo. Endocrinology 145: 1435‐1443, 2004.
 89. Carbo R, Guarner V. Insulin effect on glucose transport in thymocytes and splenocytes from rats with metabolic syndrome. Diabetol Metab Syndr 2: 64, 2010.
 90. Carruthers A. Anomalous asymmetric kinetics of human red cell hexose transfer: Role of cytosolic adenosine 5’‐triphosphate. Biochemistry 25: 3592‐3602, 1986a.
 91. Carruthers A. ATP regulation of the human red cell sugar transporter. J Biol Chem 261: 11028‐11037, 1986b.
 92. Carruthers A. Facilitated diffusion of glucose. Physiol Rev 70: 1135‐1176, 1990.
 93. Carruthers A. Mechanisms for the facilitated diffusion of substrates across cell membranes. Biochemistry 30: 3898‐3906, 1991.
 94. Carruthers A, Helgerson AL. The human erythrocyte sugar transporter is also a nucleotide binding protein. Biochemistry 28: 8337‐8346, 1989.
 95. Carruthers A, Helgerson AL. Inhibitions of sugar transport produced by ligands binding at opposite sides of the membrane. Evidence for simultaneous occupation of the carrier by maltose and cytochalasin B. Biochemistry 30: 3907‐3915, 1991.
 96. Carruthers A, Melchior DL. Transport of α‐ and β‐D‐glucose by the intact human red cell. Biochemistry 24: 4244‐4250, 1985.
 97. Carruthers A, Naftalin RJ. Altered GLUT1 substrate selectivity in human erythropoiesis? Cell 137: 200‐201, 2009.
 98. Carruthers A, Zottola RJ. Erythrocyte sugar transport. In: Konings WN, Kaback HR, Lolkema JS, editors. Handbook of Biological Physics. “Transport Processes in Eukaryotic and Prokaryotic Organisms”.(2). Amsterdam: Elsevier, 1996, p. 311‐342.
 99. Casey JR, Reithmeier RA. Analysis of the oligomeric state of Band 3, the anion transport protein of the human erythrocyte membrane, by size exclusion high performance liquid chromatography. Oligomeric stability and origin of heterogeneity. J Biol Chem 266: 15726‐15737, 1991.
 100. Castellini MA, Costa DP, Castellini JM. Blood glucose distribution, brain size and diving in small odontocetes. Mar Mam Sci 8: 294‐298, 1992.
 101. Castro MA, Beltran FA, Brauchi S, Concha II. A metabolic switch in brain: Glucose and lactate metabolism modulation by ascorbic acid. J Neurochem 110: 423‐440, 2009.
 102. Caulfield MJ, Munroe PB, O'Neill D, Witkowska K, Charchar FJ, Doblado M, Evans S, Eyheramendy S, Onipinla A, Howard P, Shaw‐Hawkins S, Dobson RJ, Wallace C, Newhouse SJ, Brown M, Connell JM, Dominiczak A, Farrall M, Lathrop GM, Samani NJ, Kumari M, Marmot M, Brunner E, Chambers J, Elliott P, Kooner J, Laan M, Org E, Veldre G, Viigimaa M, Cappuccio FP, Ji C, Iacone R, Strazzullo P, Moley KH, Cheeseman C. SLC2A9 is a high‐capacity urate transporter in humans. PLoS Med 5: e197, 2008.
 103. Chang G, Spencer RH, Lee AT, Barclay MT, Rees DC. Structure of the MscL homolog from mycobacterium tuberculosis: A gated mechanosensitive ion channel. Science 282: 2220‐2226, 1998.
 104. Chang L, Chiang SH, Saltiel AR. Insulin signaling and the regulation of glucose transport. Mol Med 10: 65‐71, 2004.
 105. Chasis JA, Mohandas N. Erythroblastic islands: Niches for erythropoiesis. Blood 112: 470‐478, 2008.
 106. Cheeseman C. GLUT7: A new intestinal facilitated hexose transporter. Am J Physiol Endocrinol Metab 295: E238‐E241, 2008.
 107. Chen G, Liu P, Thurmond DC, Elmendorf JS. Glucosamine‐induced insulin resistance is coupled to O‐linked glycosylation of Munc18c. FEBS Lett 534: 54‐60, 2003.
 108. Chen SY, Pan CJ, Nandigama K, Mansfield BC, Ambudkar SV, Chou JY. The glucose‐6‐phosphate transporter is a phosphate‐linked antiporter deficient in glycogen storage disease type Ib and Ic. FASEB J 22: 2206‐2213, 2008.
 109. Cheng A, van Hoek AN, Yeager M, Verkman AS, Mitra AK. Three‐dimensional organization of a human water channel. Nature 387: 627‐630, 1997.
 110. Chin E, Zhou J, Bondy C. Anatomical and developmental patterns of facilitative glucose transporter gene expression in the rat kidney. J Clin Invest 91: 1810‐1815, 1993.
 111. Chin JJ, Jung EK, Chen V, Jung CY. Structural basis of human erythrocyte glucose transporter function in proteoliposome vesicles: Circular dichroism measurements. Proc Natl Acad Sci U S A 84: 4113‐4116, 1987.
 112. Chin JJ, Jung EK, Jung CY. Structural basis of human erythrocyte glucose transporter function in reconstituted vesicles. J Biol Chem 261: 7101‐7104, 1986.
 113. Choeiri C, Staines W, Messier C. Immunohistochemical localization and quantification of glucose transporters in the mouse brain. Neuroscience 111: 19‐34, 2002.
 114. Choi YK, Kim KW. Blood‐neural barrier: Its diversity and coordinated cell‐to‐cell communication. BMB Rep 41: 345‐352, 2008.
 115. Clarke DD, Sokoloff L. Circulation and energy metabolism of the brain. In: Siegel GJ, Agranoff BW, Albers RW, editors. Basic Neurochemistry. Philadelphia: Lippincott‐Raven, 1999, p. 637‐669.
 116. Cloherty EK, Diamond DL, Heard KS, Carruthers A. Regulation of GLUT1‐mediated sugar transport by an antiport/uniport switch mechanism. Biochemistry 35: 13231‐13239, 1996.
 117. Cloherty EK, Heard KS, Carruthers A. Human erythrocyte sugar transport is incompatible with available carrier models. Biochemistry 35: 10411‐10421, 1996.
 118. Cloherty EK, Levine KB, Carruthers A. The red blood cell glucose transporter presents multiple, nucleotide‐sensitive sugar exit sites. Biochemistry 40: 15549‐15561, 2001.
 119. Cloherty EK, Sultzman LA, Zottola RJ, Carruthers A. Net sugar transport is a multistep process. Evidence for cytosolic sugar binding sites in erythrocytes. Biochemistry 34: 15395‐15406, 1995.
 120. Coderre PE, Cloherty EK, Zottola RJ, Carruthers A. Rapid substrate translocation by the multisubunit, erythroid glucose transporter requires subunit associations but not cooperative ligand binding. Biochemistry 34: 9762‐9773, 1995.
 121. Coerver KA, Gray SM, Barnes JE, Armstrong DL, McCabe ER. Developmental expression of hexokinase 1 and 3 in rats. Histochem Cell Biol 109: 75‐86, 1998.
 122. Colville CA, Seatter MJ, Gould GW. Analysis of the structural requirements of sugar binding to the liver, brain and insulin‐responsive glucose transporters expressed in oocytes. Biochem J 294: 753‐760, 1993.
 123. Colville CA, Seatter MJ, Jess TJ, Gould GW, Thomas HM. Kinetic analysis of the liver‐type (GLUT2) and brain‐type (GLUT3) glucose transporters in Xenopus oocytes: Substrate specificities and effects of transport inhibitors. Biochem J 290: 701‐706, 1993.
 124. Combes B, Adams RH, Strickland W, Madison LL. The physiological significance of the secretion of endogenous insulin into the portal circulation. IV. Hepatic uptake of glucose during glucose infusion in non‐diabetic dogs. J Clin Invest 40: 1706‐1718, 1961.
 125. Concha II, Velasquez FV, Martinez JM, Angulo C, Droppelmann A, Reyes AM, Slebe JC, Vera JC, Golde DW. Human erythrocytes express GLUT5 and transport fructose. Blood 89: 4190‐4195, 1997.
 126. Cook DL, Hales CN. Intracellular ATP directly blocks K+ channels in pancreatic B‐cells. Nature 311: 271‐273, 1984.
 127. Coombe NB, Smith RH. Absorption of glucose and galactose and digestion and absorption of lactose by the prepruminant calf. Br J Nutr 30: 331‐344, 1973.
 128. Coomber BL, Stewart PA. Morphometric analysis of CNS microvascular endothelium. Microvasc Res 30: 99‐115, 1985.
 129. Cooper DR, Khalakdina A, Watson JE. Chronic effects of glucose on insulin signaling in A‐10 vascular smooth muscle cells. Arch Bioche Biophys 302: 490‐498, 1993.
 130. Cope DL, Holman GD, Baldwin SA, Wolstenholme AJ. Domain assembly of the GLUT1 glucose transporter. Biochem J 300: 291‐294, 1994.
 131. Cornford EM, Hyman S, Pardridge WM. An electron microscopic immunogold analysis of developmental up‐regulation of the blood‐brain barrier GLUT1 glucose transporter. J Cereb Blood Flow Metab 13: 841‐854, 1993.
 132. Cornford EM, Nguyen EV, Landaw EM. Acute upregulation of blood‐brain barrier glucose transporter activity in seizures. Am J Physiol Heart Circ Physiol S 279: H1346‐H1354, 2000.
 133. Coucke PJ, Willaert A, Wessels MW, Callewaert B, Zoppi N, De Backer J, Fox JE, Mancini GMS, Kambouris M, Gardella R, Facchetti F, Willems PJ, Forsyth R, Dietz HC, Barlati S, Colombi M, Loeys B, De Paepe A. Mutations in the facilitative glucose transporter GLUT10 alter angiogenesis and cause arterial tortuosity syndrome. Nat Genet 38: 452‐457, 2006.
 134. Craik JD, Cheeseman CI, Young JD. Rapid entry of D‐glucose into erythrocytes from bottlenose dolphins (Tursiops truncatus). Mar Mam Sci 11: 584‐589, 1995.
 135. Craik JD, Elliott KR. Kinetics of 3‐O‐methyl‐D‐glucose transport in isolated rat hepatocytes. Biochem J S 182: 503‐508, 1979.
 136. Craik JD, Markovich D. Rapid GLUT‐1 mediated glucose transport in erythrocytes from the grey‐headed fruit bat (Pteropus poliocephalus). Comp Biochem Physiol A Mol Integr Physiol 126: 45‐55, 2000.
 137. Craik JD, Stewart M, Cheeseman CI. GLUT‐3 (brain‐type) glucose transporter polypeptides in human blood platelets. Thromb Res 79: 461‐469, 1995.
 138. Craik JD, Young JD, Cheeseman CI. GLUT‐1 mediation of rapid glucose transport in dolphin (Tursiops truncatus) red blood cells. Am J Physiol 274: R112‐R119, 1998.
 139. Cramer SC, Pardridge WM, Hirayama BA, Wright EM. Colocalization of GLUT2 glucose transporter, sodium/glucose cotransporter, and gamma‐glutamyl transpeptidase in rat kidney with double‐peroxidase immunocytochemistry. Diabetes 41: 766‐770, 1992.
 140. Crone C. Facilitated transfer of glucose from blood into brain tissue. J Physiol 181: 103‐113, 1965.
 141. Cunningham P, Afzal‐Ahmed I, Naftalin RJ. Docking studies show that D‐glucose and quercetin slide through the transporter GLUT1. J Biol Chem 281: 5797‐5803, 2006.
 142. Cura AJ, Carruthers A. Acute modulation of sugar transport in brain capillary endothelial cell cultures during activation of the metabolic stress pathway. J Biol Chem 285: 15430‐15439, 2010.
 143. D'Angelo G. Evidence for an Erythrocyte Glucose Transport System in the Belukha Whale (Delphinapterus Leucas). Biological Systems, Cetology, 42: 1‐9, 1982.
 144. Dang S, Sun L, Huang Y, Lu F, Liu Y, Gong H, Wang J, Yan N. Structure of a fucose transporter in an outward‐open conformation. Nature 467: 734‐738, 2010.
 145. Darakhshan F, Hajduch E, Kristiansen S, Richter EA, Hundal HS. Biochemical and functional characterization of the GLUT5 fructose transporter in rat skeletal muscle. Biochem J 336: 361‐366, 1998.
 146. Datta NS, Abou‐Samra AB. PTH and PTHrP signaling in osteoblasts. Cell Signal 21: 1245‐1254, 2009.
 147. Davidson NO, Hausman AM, Ifkovits CA, Buse JB, Gould GW, Burant CF, Bell GI. Human intestinal glucose transporter expression and localization of GLUT5. Am J Physiol 262: C795‐C800, 1992.
 148. Davis AJ, Fleet IR, Goode JA, Hamon MH, Walker FM, Peaker M. Changes in mammary function at the onset of lactation in the goat: Correlation with hormonal changes. J Physiol 288: 33‐44, 1979.
 149. Dawson PA, Mychaleckyj JC, Fossey SC, Mihic SJ, Craddock AL, Bowden DW. Sequence and functional analysis of glut10: A glucose transporter in the type 2 diabetes‐linked region of chromosome 20q12‐13.1. Mol Genet Metab 74: 186‐99, 2001.
 150. de Graaf RA, Pan JW, Telang F, Lee JH, Brown P, Novotny EJ, Hetherington HP, Rothman DL. Differentiation of glucose transport in human brain gray and white matter. J Cereb Blood Flow Metab S 21: 483‐492, 2001.
 151. Dejana E. Endothelial cell‐cell junctions: Happy together. Nat Rev Mol Cell Biol 5: 261‐270, 2004.
 152. Dhar‐Mascareno M, Chen J, Zhang RH, Carcamo JM, Golde DW. Granulocyte‐macrophage colony‐stimulating factor signals for increased glucose transport via phosphatidylinositol 3‐kinase‐ and hydrogen peroxide‐dependent mechanisms. J Biol Chem 278: 11107‐11114, 2003.
 153. Diamond D, Carruthers A. Metabolic control of sugar transport by derepression of cell surface glucose transporters: An insulin‐independent, recruitment‐independent mechanism of regulation. J Biol Chem 268: 6437‐6444, 1993.
 154. Dick AP, Harik SI, Klip A, Walker DM. Identification and characterization of the glucose transporter of the blood‐brain barrier by cytochalasin B binding and immunological reactivity. Proc Natl Acad Sci U S A 81: 7233‐7237, 1984.
 155. Dietrich HH, Ellsworth ML, Sprague RS, Dacey RGJ. Red blood cell regulation of microvascular tone through adenosine triphosphate. Am J Physiol Heart Circ Physiol 278: H1294‐H1298, 2000.
 156. Doblado M, Moley KH. Facilitative glucose transporter 9, a unique hexose and urate transporter. Am J Physiol Endocrinol Metab 297: E831‐E835, 2009.
 157. Doege H, Bocianski A, Joost HG, Schurmann A. Activity and genomic organization of human glucose transporter 9 (GLUT9), a novel member of the family of sugar‐transport facilitators predominantly expressed in brain and leucocytes. Biochem J 350 Pt 3: 771‐776, 2000.
 158. Doege H, Schurmann A, Bahrenberg G, Brauers A, Joost HG. GLUT8, a novel member of the sugar transport facilitator family with glucose transport activity. J Biol Chem 275: 16275‐16280, 2000.
 159. Doege H, Schurmann A, Ohnimus H, Monser V, Holman GD, Joost HG. Serine‐294 and threonine‐295 in the exofacial loop domain between helices 7 and 8 of glucose transporters (GLUT) are involved in the conformational alterations during the transport process. Biochem J 329: 289‐293, 1998.
 160. Doege H, Bocianski A, Scheepers A, Axer H, Eckel J, Joost HG, Schurmann A. Characterization of human glucose transporter (GLUT) 11 (encoded by SLC2A11), a novel sugar‐transport facilitator specifically expressed in heart and skeletal muscle. Biochem J 359: 443‐49, 2001.
 161. Dolznig H, Boulme F, Stangl K, Deiner EM, Mikulits W, Beug H, Mullner EW. Establishment of normal, terminally differentiating mouse erythroid progenitors: Molecular characterization by cDNA arrays. FASEB J 15: 1442‐1444, 2001.
 162. Douard V, Ferraris RP. Regulation of the fructose transporter GLUT5 in health and disease. Am J Physiol Endocrinol Metab 295: E227‐E237, 2008.
 163. Drewes LR, Horton RW, Betz AL, Gilboe DD. Cytochalasin B inhibition of brain glucose transport and the influence of blood components on inhibitor concentration. Biochim Biophys Acta 471: 477‐486, 1977.
 164. Drucker DJ, Nauck MA. The incretin system: Glucagon‐like peptide‐1 receptor agonists and dipeptidyl peptidase‐4 inhibitors in type 2 diabetes. Lancet 368: 1696‐1705, 2006.
 165. Duara R, Grady C, Haxby J, Ingvar D, Sokoloff L, Margolin RA, Manning RG, Cutler NR, Rapoport SI. Human brain glucose utilization and cognitive function in relation to age. Ann Neurol 16: 703‐713, 1984.
 166. Duelli R, Kuschinsky W. Brain glucose transporters: Relationship to local energy demand. News Physiol Sci 16: 71‐76, 2001.
 167. Duelli R, Maurer MH, Staudt R, Sokoloff L, Kuschinsky W. Correlation between local glucose transporter densities and local 3‐O‐methylglucose transport in rat brain. Neurosci Lett 310: 101‐104, 2001.
 168. Dwyer DS. Model of the 3‐D structure of the GLUT3 glucose transporter and molecular dynamics simulation of glucose transport. Proteins 42: 531‐41, 2001.
 169. Edamatsu M, Kondo Y, Ando M. Multiple expression of glucose transporters in the lateral wall of the cochlear duct studied by quantitative real‐time PCR assay. Neurosci Lett 490: 72‐77, 2011.
 170. Eddy EM, Toshimori K, O'Brien DA. Fibrous sheath of mammalian spermatozoa. Microsc Res Tech 61: 103‐115, 2003.
 171. El Messari S, Leloup C, Quignon M, Brisorgueil MJ, Penicaud L, Arluison M. Immunocytochemical localization of the insulin‐responsive glucose transporter 4 (Glut4) in the rat central nervous system. J Comp Neurol 399: 492‐512, 1998.
 172. Engel A, Fujiyoshi Y, Agre P. The importance of aquaporin water channel protein structures. Embo J 19: 800‐806, 2000.
 173. Ericsson A, Hamark B, Jansson N, Johansson BR, Powell TL, Jansson T. Hormonal regulation of glucose and system A amino acid transport in first trimester placental villous fragments. Am J Physiol Regul Integr Comp Physiol 288: R656‐R662, 2005.
 174. Estrada DE, Elliott E, Zinman B, Poon I, Liu Z, Klip A, Daneman D. Regulation of glucose transport and expression of GLUT3 transporters in human circulating mononuclear cells: Studies in cells from insulin‐dependent diabetic and nondiabetic individuals. Metabolism 43: 591‐598, 1994.
 175. Evans SA, Doblado M, Chi MM, Corbett JA, Moley KH. Facilitative glucose transporter 9 expression affects glucose sensing in pancreatic beta‐cells. Endocrinology 150: 5302‐5310, 2009.
 176. Farrell CL, Pardridge WM. Blood‐brain barrier glucose transporter is asymmetrically distributed on brain capillary endothelial lumenal and ablumenal membranes: An electron microscopic immunogold study. Proc Natl Acad Sci U S A 88: 5779‐5783, 1991.
 177. Faulkner A, Blatchford DR, Pollock HT. The transport of hexoses across the apical membrane of the mammary gland of the goat. Biochem Soc Trans 13: 689‐690, 1985.
 178. Faulkner A, Chaiyabutr N, Peaker M, Carrick DT, Kuhn NJ. Metabolic significance of milk glucose. J Dairy Res 48: 51‐56, 1981.
 179. Fawcett HA, Baldwin SA, Flint DJ. Hormonal regulation of the glucose transporter GLUT I in the lactating rat mammary gland. Bioch Soc Trans 20: 17S, 1992.
 180. Fazakerley DJ, Holman GD, Marley A, James DE, Stockli J, Coster AC. Kinetic evidence for unique regulation of GLUT4 trafficking by insulin and AMP‐activated protein kinase activators in L6 myotubes. J Biol Chem 285: 1653‐1660, 2010.
 181. Fernando RN, Albiston AL, Chai SY. The insulin‐regulated aminopeptidase IRAP is colocalised with GLUT4 in the mouse hippocampus–potential role in modulation of glucose uptake in neurones? Eur J Neurosci 28: 588‐598, 2008.
 182. Fernando RN, Larm J, Albiston AL, Chai SY. Distribution and cellular localization of insulin‐regulated aminopeptidase in the rat central nervous system. J Comp Neurol 487: 372‐390, 2005.
 183. Fernando RN, Luff SE, Albiston AL, Chai SY. Sub‐cellular localization of insulin‐regulated membrane aminopeptidase, IRAP to vesicles in neurons. J Neurochem 102: 967‐976, 2007.
 184. Fettiplace R, Hackney CM. The sensory and motor roles of auditory hair cells. Nat Rev Neurosci 7: 19‐29, 2006.
 185. Flier JS, Mueckler M, McCall AL, Lodish HF. Distribution of glucose transporter messenger RNA transcripts in tissues of rat and man. J Clin Invest 79: 657‐661, 1987.
 186. Ford WC. Glycolysis and sperm motility: Does a spoonful of sugar help the flagellum go round? Hum Reprod Update 12: 269‐274, 2006.
 187. Fowden AL, Ward JW, Wooding FP, Forhead AJ, Constancia M. Programming placental nutrient transport capacity. J Physiol 572: 5‐15, 2006.
 188. Franklin I, Gromada J, Gjinovci A, Theander S, Wollheim CB. Beta‐cell secretory products activate alpha‐cell ATP‐dependent potassium channels to inhibit glucagon release. Diabetes 54: 1808‐1815, 2005.
 189. Frizzell RT, Jones EM, Davis SN, Biggers DW, Myers SR, Connolly CC, Neal DW, Jaspan JB, Cherrington AD. Counterregulation during hypoglycemia is directed by widespread brain regions. Diabetes 42: 1253‐1261, 1993.
 190. Frohnert PP, Hohmann B, Zwiebel R, Baumann K. Free flow micropuncture studies of glucose transport in the rat nephron. Pflugers Arch 315: 66‐85, 1970.
 191. Fry DC, Kuby SA, Mildvan AS. ATP‐binding site of adenylate kinase: Mechanistic implications of its homology with ras‐encoded p21, F1‐ATPase, and other nucleotide‐binding proteins. Proc Natl Acad Sci U S A 83: 907‐911, 1986.
 192. Fu Y, Maianu L, Melbert BR, Garvey WT. Facilitative glucose transporter gene expression in human lymphocytes, monocytes, and macrophages: A role for GLUT isoforms 1, 3, and 5 in the immune response and foam cell formation. Blood Cells Mol Dis 32: 182‐190, 2004.
 193. Fujii N, Hayashi T, Hirshman MF, Smith JT, Habinowski SA, Kaijser L, Mu J, Ljungqvist O, Birnbaum MJ, Witters LA, Thorell A, Goodyear LJ. Exercise induces isoform‐specific increase in 5'AMP‐activated protein kinase activity in human skeletal muscle. Biochem Biophys Res Commun 273: 1150‐1155, 2000.
 194. Gaposchkin CG, Garcia‐Diaz JF. Modulation of cultured brain, adrenal, and aortic endothelial cell glucose transport. Biochim Biophys Acta S 1285: 255‐266, 1996.
 195. Garcia MA, Millan C, Balmaceda‐Aguilera C, Castro T, Pastor P, Montecinos H, Reinicke K, Zuniga F, Vera JC, Onate SA, Nualart F. Hypothalamic ependymal‐glial cells express the glucose transporter GLUT2, a protein involved in glucose sensing. J Neurochem 86: 709‐724, 2003.
 196. Gardner TW, Antonetti DA, Barber AJ, Lieth E, Tarbell JA. The molecular structure and function of the inner blood‐retinal barrier. Penn State Retina Research Group. Doc Ophthalmol 97: 229‐237, 1999.
 197. Geleoc GS, Casalotti SO, Forge A, Ashmore JF. A sugar transporter as a candidate for the outer hair cell motor. Nat Neurosci 2: 713‐719, 1999.
 198. Gerhart DZ, Broderius MA, Borson ND, Drewes LR. Neurons and microvessels express the brain glucose transporter protein GLUT3. Proc Natl Acad Sci U S A 89: 733‐737, 1992.
 199. Gerhart DZ, Leino RL, Borson ND, Taylor WE, Gronlund KM, McCall AL, Drewes LR. Localization of glucose transporter GLUT 3 in brain: Comparison of rodent and dog using species‐specific carboxyl‐terminal antisera. Neuroscience 66: 237‐246, 1995.
 200. Gerhart DZ, Leino RL, Taylor WE, Borson ND, Drewes LR. GLUT1 and GLUT3 gene expression in gerbil brain following brief ischemia: An in situ hybridization study. Brain Res Mol Brain Res 25: 313‐322, 1994.
 201. Gerhart DZ, LeVasseur RJ, Broderius MA, Drewes LR. Glucose transporter localization in brain using light and electron immunocytochemistry. J Neurosci Res 22: 464‐472, 1989.
 202. Gerich JE, Meyer C, Woerle HJ, Stumvoll M. Renal gluconeogenesis: Its importance in human glucose homeostasis. Diabetes Care 24: 382‐391, 2001.
 203. Gerritsen ME, Burke TM, Allen LA. Glucose starvation is required for insulin stimulation of glucose uptake and metabolism in cultured microvascular endothelial cells. Microvasc Res 35: 153‐166, 1988.
 204. Gillespie DS. Overview of species needing dietary vitamin C. J Zoo Anim Med 11: 88‐91, 1980.
 205. Ginsburg H, Stein WD. Zero‐trans and infinite‐cis uptake of galactose in human erythrocytes. Biochim Biophys Acta 382: 353‐368, 1975.
 206. Gjedde A. Blood–brain glucose transfer. In: Bradbury M, editor. Physiology and Pharmacology of the Blood–Brain Barrier. New York: Springer‐Verlag, 1992, p. 65‐117.
 207. Golay A, DeFronzo RA, Ferrannini E, Simonson DC, Thorin D, Acheson K, Thiebaud D, Curchod B, Jequier E, Felber JP. Oxidative and non‐oxidative glucose metabolism in non‐obese type 2 (non‐insulin‐dependent) diabetic patients. Diabetologia 31: 585‐591, 1988.
 208. Gomez O, Romero A, Terrado J, Mesonero JE. Differential expression of glucose transporter GLUT8 during mouse spermatogenesis. Reproduction 131: 63‐70, 2006.
 209. Gonzalez JA, Jensen LT, Doyle SE, Miranda‐Anaya M, Menaker M, Fugger L, Bayliss DA, Burdakov D. Deletion of TASK1 and TASK3 channels disrupts intrinsic excitability but does not abolish glucose or pH responses of orexin/hypocretin neurons. Eur J Neurosci 30: 57‐64, 2009.
 210. Goodyear LJ, Hirshman MF, Valyou PM, Horton ES. Glucose transporter number, function, and subcellular distribution in rat skeletal muscle after exercise training. Diabetes 41: 1091‐1099, 1992.
 211. Gorga FR, Baldwin SA, Lienhard GE. The monosaccharide transporter from human erythrocytes is heterogeneously glycosylated. Biochem Biophys Res Commun 91: 955‐961, 1979.
 212. Gorga FR, Lienhard GE. Equilibria and kinetics of ligand binding to the human erythrocyte glucose transporter. Evidence for an alternating conformation model for transport. Biochemistry 20: 5108‐5113, 1981.
 213. Gorga FR, Lienhard GE. Changes in the intrinsic fluorescence of the human erythrocyte monosaccharide transporter upon ligand binding. Biochemistry 21: 1905‐1908, 1982.
 214. Gorus FK, Malaisse WJ, Pipeleers DG. Differences in glucose handling by pancreatic A‐ and B‐cells. J Biol Chem 259: 1196‐1200, 1984.
 215. Graybill C, van Hoek AN, Desai D, Carruthers AM, Carruthers A. Ultrastructure of human erythrocyte GLUT1. Biochemistry 45: 8096‐8107, 2006.
 216. Grdisa M, White MK. Regulation of glucose transport in differentiating HD3 cells. Cell Biochem Funct 18: 293‐297, 2000a.
 217. Grdisa M, White MK. Erythrocytic differentiation and glyceraldehyde‐3‐phosphate dehydrogenase expression are regulated by protein phosphorylation and cAMP in HD3 cells. Int J Biochem Cell Biol 32: 589‐595, 2000b.
 218. Grdisa M, White MK. Molecular and biochemical events during differentiation of the HD3 chicken erythroblastic cell line. Int J Biochem Cell Biol 35: 422‐431, 2003.
 219. Gromada J, Bokvist K, Ding WG, Barg S, Buschard K, Renstrom E, Rorsman P. Adrenaline stimulates glucagon secretion in pancreatic A‐cells by increasing the Ca2+ current and the number of granules close to the L‐type Ca2+ channels. J Gen Physiol 110: 217‐228, 1997.
 220. Gronowicz G, Swift H, Steck TL. Maturation of the reticulocyte in vitro. J Cell Sci 71: 177‐197, 1984.
 221. Gross LS, Li L, Ford ES, Liu S. Increased consumption of refined carbohydrates and the epidemic of type 2 diabetes in the United States: An ecologic assessment. Am J Clin Nutr 79: 774‐779, 2004.
 222. Gruetter R, Novotny EJ, Boulware SD, Rothman DL, Shulman RG. 1H NMR studies of glucose transport in the human brain. J Cereb Blood Flow Metab 16: 427‐438, 1996.
 223. Gruetter R, Ugurbil K, Seaquist ER. Steady‐state cerebral glucose concentrations and transport in the human brain. J Neurochem 70: 397‐408, 1998.
 224. Gude NM, Stevenson JL, Rogers S, Best JD, Kalionis B, Huisman MA, Erwich JJ, Timmer A, King RG. GLUT12 expression in human placenta in first trimester and term. Placenta 24: 566‐570, 2003.
 225. Guillam MT, Burcelin R, Thorens B. Normal hepatic glucose production in the absence of GLUT2 reveals an alternative pathway for glucose release from hepatocytes. Proc Natl Acad Sci U S A 95: 12317‐12321, 1998.
 226. Haber RS, Weinstein SP, O'Boyle E, Morgello S. Tissue distribution of the human GLUT3 glucose transporter. Endocrinology 132: 2538‐2543, 1993.
 227. Hahn TJ, Westbrook SL, Sullivan TL, Goodman WG, Halstead LR. Glucose transport in osteoblast‐enriched bone explants: Characterization and insulin regulation. J Bone Miner Res 3: 359‐365, 1988.
 228. Hamill S, Cloherty EK, Carruthers A. The human erythrocyte sugar transporter presents two sugar import sites. Biochemistry 38: 16974‐16983, 1999.
 229. Haney PM. Localization of the GLUT1 glucose transporter to brefeldin A‐sensitive vesicles of differentiated CIT3 mouse mammary epithelial cells. Cell Biol Int 25: 277‐288, 2001.
 230. Haney PM. Glucose transport in lactation. Adv Exp Med Biol 554: 253‐261, 2004.
 231. Hankin BL, Lieb WR, Stein WD. Rejection criteria for the asymmetric carrier and their application to glucose transport in the human red blood cell. Biochim Biophys Acta 288: 114‐126, 1972.
 232. Hansen P, Gulve E, Gao J, Schluter J, Mueckler M, Holloszy J. Kinetics of 2‐deoxyglucose transport in skeletal muscle: Effects of insulin and contractions. Am J Physiol 268: C30‐C35, 1995.
 233. Harhaj NS, Antonetti DA. Regulation of tight junctions and loss of barrier function in pathophysiology. Int J Biochem Cell Biol 36: 1206‐1237, 2004.
 234. Harik SI. Changes in the glucose transporter of brain capillaries. Can J Physiol Pharmacol 70: S113‐S17, 1992.
 235. Harik SI, Behmand RA, Murphy JR. Stability of the glucose transporter in plasma membranes of human erythrocytes [letter]. Diabetologia 37: 730, 1994.
 236. Harik SI, Kalaria RN, Andersson L, Lundahl P, Perry G. Immunocytochemical localization of the erythroid glucose transporter: Abundance in tissues with barrier functions. J Neurosci 10: 3862‐3872, 1990.
 237. Harik SI, Kalaria RN, Whitney PM, Andersson L, Lundahl P, Ledbetter SR, Perry G. Glucose transporters are abundant in cells with “occluding” junctions at the blood‐eye barriers. Proc Natl Acad Sci U S A 87: 4261‐4264, 1990.
 238. Harkness DR, Grayson V. Erythrocyte metabolism in the bottle‐nosed dolphin, Tursiops truncatus. Comp Biochem Physiol 28: 1289‐1301, 1969.
 239. Hasselbalch SG, Holm S, Pedersen HS, Svarer C, Knudsen GM, Madsen PL, Paulson OB. The (18)F‐fluorodeoxyglucose lumped constant determined in human brain from extraction fractions of (18)F‐fluorodeoxyglucose and glucose. J Cereb Blood Flow Metab S 21: 995‐1002, 2001.
 240. Hauguel‐de Mouzon S, Challier JC, Kacemi A, Cauzac M, Malek A, Girard J. The GLUT3 glucose transporter isoform is differentially expressed within human placental cell types. J Clin Endocrinol Metab 82: 2689‐2694, 1997.
 241. Haworth RA, Berkoff HA. The control of sugar uptake by metabolic demand in isolated heart cells. Circ Res 58: 157‐165, 1986.
 242. Heard KS, Diguette M, Heard AC, Carruthers A. Membrane‐bound glyceraldehyde‐3‐phosphate dehydrogenase and multiphasic erythrocyte sugar transport. Exp Physiol 83: 195‐202, 1998.
 243. Heard KS, Fidyk N, Carruthers A. ATP‐dependent substrate occlusion by the human erythrocyte sugar transporter. Biochemistry 39: 3005‐3014, 2000.
 244. Hebert DN, Carruthers A. Cholate‐solubilized erythrocyte glucose transporters exist as a mixture of homodimers and homotetramers. Biochemistry 30: 4654‐4658, 1991a.
 245. Hebert DN, Carruthers A. Uniporters and anion antiporters. Curr Opin Cell Biol 3: 702‐709, 1991b.
 246. Hebert DN, Carruthers A. Glucose transporter oligomeric structure determines transporter function. Reversible redox‐dependent interconversions of tetrameric and dimeric GLUT1. J Biol Chem 267: 23829‐23838, 1992.
 247. Heijnen HF, Oorschot V, Sixma JJ, Slot JW, James DE. Thrombin stimulates glucose transport in human platelets via the translocation of the glucose transporter GLUT‐3 from alpha‐granules to the cell surface. J Cell Biol 138: 323‐330, 1997.
 248. Heimberg H, De Vos A, Pipeleers D, Thorens B, Schuit F. Differences in glucose transporter gene expression between rat pancreatic alpha‐ and beta‐cells are correlated to differences in glucose transport but not in glucose utilization. J Biol Chem 270: 8971‐8975, 1995.
 249. Heimberg H, De Vos A, Vandercammen A, Van Schaftingen E, Pipeleers D, Schuit F. Heterogeneity in glucose sensitivity among pancreatic beta‐cells is correlated to differences in glucose phosphorylation rather than glucose transport. EMBO J 12: 2873‐2879, 1993.
 250. Helgerson AL, Carruthers A. Equilibrium ligand binding to the human erythrocyte sugar transporter. Evidence for two sugar‐binding sites per carrier. J Biol Chem 262: 5464‐5475, 1987.
 251. Helgerson AL, Carruthers A. Analysis of protein‐mediated 3‐O‐methylglucose transport in rat erythrocytes: Rejection of the alternating conformation carrier model for sugar transport. Biochemistry 28: 4580‐4594, 1989.
 252. Helgerson AL, Hebert DN, Naderi S, Carruthers A. Characterization of two independent modes of action of ATP on human erythrocyte sugar transport. Biochemistry 28: 6410‐6417, 1989.
 253. Hellwig B, Joost HG. Differentiation of erythrocyte‐(GLUT1), liver‐(GLUT2), and adipocyte‐type (GLUT4) glucose transporters by binding of the inhibitory ligands cytochalasin B, forskolin, dipyridamole, and isobutylmethylxanthine. Mol Pharmacol 40: 383‐389, 1991.
 254. Henderson PJ, Maiden MC. Homologous sugar transport proteins in Escherichia coli and their relatives in both prokaryotes and eukaryotes. [Review]. Philos Trans R Soc Lond B Biol Sci 326: 391‐410, 1990.
 255. Henderson PJF. The homologous glucose transport proteins of prokaryotes and eukaryotes. Res Microbiol 141: 316‐328, 1990.
 256. Henderson PJF, Maiden MCJ. Homologous sugar transport proteins in Escherichia coli and their relatives in both prokaryotes and eukaryotes. Philos Trans R Soc Lond B Biol Sci 326: 391‐410, 1990.
 257. Henquin JC. Triggering and amplifying pathways of regulation of insulin secretion by glucose. Diabetes 49: 1751‐1760, 2000.
 258. Herculano‐Houzel S. The human brain in numbers: A linearly scaled‐up primate brain. Front Hum Neurosc 3: 31, 2009.
 259. Hermansen L, Hultman E, Saltin B. Muscle glycogen during prolonged severe exercise. Acta Physiol Scand 71: 129‐139, 1967.
 260. Hinkle PC, Sogin DC, Wheeler TJ, Teleford JN. Studies of the glucose transporter from human erythrocytes reconstituted in liposomes. In: Quagliariello E, editor. Function and Molecular Aspect of Biomembrane Transport. Amsterdam: Elsevier/North‐Holland Biomedical Press, 1979, p. 487‐494.
 261. Hirai T, Heymann JA, Shi D, Sarker R, Maloney PC, Subramaniam S. Three‐dimensional structure of a bacterial oxalate transporter. Nat Struct Biol 9: 597‐600, 2002.
 262. Ho YY, Yang H, Klepper J, Fischbarg J, Wang D, De Vivo DC. Glucose transporter type 1 deficiency syndrome (Glut1DS): Methylxanthines potentiate GLUT1 haploinsufficiency in vitro. Pediatr Res S 50: 254‐260, 2001.
 263. Holloszy JO, Narahara HT. Studies on tissue permeability. X. Changes in permeability to 3‐O‐methylglucose associated with contraction in frog muscle. J Biol Chem 240: 349‐355, 1975.
 264. Holman GD, Kozka IJ, Clark AE, Flower CJ, Saltis J, Habberfield AD, Simpson IA, Cushman SW. Cell surface labeling of glucose transporter isoform GLUT4 by bis‐mannose photolabel. Correlation with stimulation of glucose transport in rat adipose cells by insulin and phorbol ester. J Biol Chem 265: 18172‐18179, 1990.
 265. Holman GD. An allosteric pore model for sugar transport in human erythrocytes. Biochim Biophys Acta 599: 202‐213, 1980.
 266. Holyoake J, Caulfeild V, Baldwin SA, Sansom MS. Modeling, docking, and simulation of the major facilitator superfamily. Biophys J 91: L84‐L86, 2006.
 267. Hosoya K, Tachikawa M. Inner blood‐retinal barrier transporters: Role of retinal drug delivery. Pharm Res 26: 2055‐2065, 2009.
 268. Hosoya K, Tomi M. Inner blood—retinal barrier: Transport biology and methodology. Drug Absorp Stud 321‐338, 2008.
 269. Hresko RC, Kruse M, Strube M, Mueckler M. Topology of the Glut 1 glucose transporter deduced from glycosylation scanning mutagenesis. J Biol Chem 269: 20482‐20488, 1994.
 270. Hubin F, Humblet C, Belaid Z, Lambert C, Boniver J, Thiry A, Defresne MP. Murine bone marrow stromal cells sustain in vivo the survival of hematopoietic stem cells and the granulopoietic differentiation of more mature progenitors. Stem Cells 23: 1626‐1633, 2005.
 271. Hudson ER, Ma LS, Wilde CJ, Flint DJ, Baldwin SA. Regulation of GLUT1 expression in the mammary gland. Biochem Soc Trans 25: 464S, 1997.
 272. Hui H, Huang D, McArthur D, Nissen N, Boros LG, Heaney AP. Direct spectrophotometric determination of serum fructose in pancreatic cancer patients. Pancreas 38: 706‐712, 2009.
 273. Hussar P, Tserentsoodol N, Koyama H, Yokoo‐Sugawara M, Matsuzaki T, Takami S, Takata K. The glucose transporter GLUT1 and the tight junction protein occludin in nasal olfactory mucosa. Chem Senses 27: 7‐11, 2002.
 274. Ibberson M, Riederer BM, Uldry M, Guhl B, Roth J, Thorens B. Immunolocalization of GLUTX1 in the testis and to specific brain areas and vasopressin‐containing neurons. Endocrinology 143: 276‐284, 2002.
 275. Ibberson M, Uldry M, Thorens B. GLUTX1 (GLUT8), a novel mammalian glucose transporter expressed in the central nervous system and insulin‐sensitive tissues. J Biol Chem 275: 4607‐4612, 2000.
 276. Ikemoto A, Bole DG, Ueda T. Glycolysis and glutamate accumulation into synaptic vesicles. Role of glyceraldehyde phosphate dehydrogenase and 3‐phosphoglycerate kinase. J Biol Chem 278: 5929‐5940, 2003.
 277. Illsley NP. Glucose transporters in the human placenta. Placenta 21: 14‐22, 2000.
 278. Ingermann RL, Stankova L, Bigley RH. Role of monosaccharide transporter in vitamin C uptake by placentalmembrane vesicles. Am J Physiol 250: C637‐C641, 1986.
 279. Ituarte EA, Ituarte HG, Iida‐Klein A, Hahn TJ. Characterization of insulin binding in the UMR‐106 rat osteoblastic osteosarcoma cell. J Bone Miner Res 4: 69‐73, 1989.
 280. Iynedjian PB. Molecular physiology of mammalian glucokinase. Cell Mol Life Sci 66: 27‐42, 2009.
 281. Jacobs SR, Herman CE, Maciver NJ, Wofford JA, Wieman HL, Hammen JJ, Rathmell JC. Glucose uptake is limiting in T cell activation and requires CD28‐mediated Akt‐dependent and independent pathways. J Immunol 180: 4476‐4486, 2008.
 282. Jacquez JA. Modulation of glucose transport in human red blood cells by ATP. Biochim Biophys Acta 727: 367‐378, 1983.
 283. Jacquez JA. Red blood cell as glucose carrier: Significance for placental and cerebral glucose transfer. Am J Physiol 246: R289‐R298, 1984.
 284. James DE, Burleigh KM, Kraegen EW. Time dependence of insulin action in muscle and adipose tissue in the rat in vivo. An increasing response in adipose tissue with time. Diabetes 34: 1049‐1054, 1985.
 285. Jang HJ, Kokrashvili Z, Theodorakis MJ, Carlson OD, Kim BJ, Zhou J, Kim HH, Xu X, Chan SL, Juhaszova M, Bernier M, Mosinger B, Margolskee RF, Egan JM. Gut‐expressed gustducin and taste receptors regulate secretion of glucagon‐like peptide‐1. Proc Natl Acad Sci U S A 104: 15069‐15074, 2007.
 286. Jansson T, Wennergren M, Illsley NP. Glucose transporter protein expression in human placenta throughout gestation and in intrauterine growth retardation. J Clin Endocrinol Metab 77: 1554‐1562, 1993.
 287. Jardetzky O. Simple allosteric model for membrane pumps. Nature 211: 969‐970, 1966.
 288. Jay TM, Dienel GA, Cruz NF, Mori K, Nelson T, Sokoloff L. Metabolic stability of 3‐O‐methyl‐D‐glucose in brain and other tissues. J Neurochem 55: 989‐1000, 1990.
 289. Jeukendrup AE. Regulation of fat metabolism in skeletal muscle. Ann N Y Acad Sci 967: 217‐235, 2002.
 290. Jolivet R, Allaman I, Pellerin L, Magistretti PJ, Weber B. Comment on recent modeling studies of astrocyte‐neuron metabolic interactions. J Cereb Blood Flow Metab 30: 1982‐1986, 2010.
 291. Jones HN, Powell TL, Jansson T. Regulation of placental nutrient transport–a review. Placenta 28: 763‐774, 2007.
 292. Jones PM, George AM. Symmetry and structure in P‐glycoprotein and ABC transporters. Euro J Biochem 267: 5298‐5305, 2000.
 293. Joost HG, Bell GI, Best JD, Birnbaum MJ, Charron MJ, Chen YT, Doege H, James DE, Lodish HF, Moley KH, Moley JF, Mueckler M, Rogers S, Schurmann A, Seino S, Thorens B. Nomenclature of the GLUT/SLC2A family of sugar/polyol transport facilitators. Am J Physiol Endocrinol Metab 282: E974‐E976, 2002.
 294. Joost H‐G, Thorens B. The extended GLUT‐family of sugar/polyol transport facilitators: Nomenclature, sequence characteristics, and potential function of its novel members (review). Mol Membr Biol 18: 247‐256, 2001.
 295. Jordens I, Molle D, Xiong W, Keller SR, McGraw TE. Insulin‐regulated aminopeptidase is a key regulator of GLUT4 trafficking by controlling the sorting of GLUT4 from endosomes to specialized insulin‐regulated vesicles. Mol Biol Cell 21: 2034‐2044, 2010.
 296. Jung CY, Carlson LM, Whaley DA. Glucose transport carrier activities in extensively washed human red cell ghosts. Biochim Biophys Acta 241: 613‐627, 1971.
 297. Jung CY, Hsu TL, Hah JS, Cha C, Haas MN. Glucose transport carrier of human erythrocytes. Radiation‐target size of glucose‐sensitive cytochalasin B binding protein. J Biol Chem 255: 361‐364, 1980.
 298. Jungermann K, Katz N. Functional specialization of different hepatocyte populations. Physiol Rev 69: 708‐764, 1989.
 299. Kachar B, Brownell WE, Altschuler R, Fex J. Electrokinetic shape changes of cochlear outer hair cells. Nature 322: 365‐368, 1986.
 300. Kaczmarczyk SJ, Andrikopoulos S, Favaloro J, Domenighetti AA, Dunn A, Ernst M, Grail D, Fodero‐Tavoletti M, Huggins CE, Delbridge LM, Zajac JD, Proietto J. Threshold effects of glucose transporter‐4 (GLUT4) deficiency on cardiac glucose uptake and development of hypertrophy. J Mol Endocrinol 31: 449‐459, 2003.
 301. Kalaria RN, Gravina SA, Schmidley JW, Perry G, Harik SI. The glucose transporter of the human brain and blood‐brain barrier. Ann Neurol 24: 757‐764, 1988.
 302. Kandror KV, Pilch PF. The sugar is sIRVed; sorting Glut4 and its fellow travelers. Traffic 12: 665‐671, 2011.
 303. Kane S, Seatter MJ, Gould GW. Functional studies of human GLUT5: Effect of pH on substrate selection and an analysis of substrate interactions. Biochem Biophys Res Commun 238: 503‐505, 1997.
 304. Karlish SJD, Lieb WR, Ram D, Stein WD. Kinetic Parameters of glucose efflux from human red blood cells under zero‐trans conditions. Biochim Biophys Acta 255: 126‐132, 1972.
 305. Kasahara M, Hinkle PC. Reconstitution and purification of the D‐glucose transporter from human erythrocytes. J Biol Chem 252: 7384‐7390, 1977.
 306. Katz EB, Stenbit AE, Hatton K, DePinhot R, Charron MJ. Cardiac and adipose tissue abnormalities but not diabetes in mice deficient in GLUT4. Nature 377: 151‐155, 1995.
 307. Kayano T, Burant CF, Fukumoto H, Gould GW, Fan YS, Eddy RL, Byers MG, Shows TB, Seino S, Bell GI. Human facilitative glucose transporters. Isolation, functional characterization, and gene localization of cDNAs encoding an isoform (GLUT5) expressed in small intestine, kidney, muscle, and adipose tissue and an unusual glucose transporter pseudogene‐like sequence (GLUT6). J Biol Chem 265: 13276‐13282, 1990.
 308. Keenan TW, Morre DJ, Cheetham RD. Lactose synthesis by a golgi apparatus fraction from rat mammary gland. Nature 228: 1105‐1106, 1970.
 309. Keller DM. Glucose excretion in man and dog. Nephron 5: 43‐66, 1968.
 310. Kellett GL, Brot‐Laroche E, Mace OJ, Leturque A. Sugar absorption in the intestine: The role of GLUT2. Annu Rev Nutr 28: 35‐54, 2008.
 311. Khera PK, Joiner CH, Carruthers A, Lindsell CJ, Smith EP, Franco RS, Holmes YR, Cohen RM. Evidence for interindividual heterogeneity in the glucose gradient across the human red blood cell membrane and its relationship to hemoglobin glycation. Diabetes 57: 2445‐2452, 2008.
 312. Kim JM, Jeong D, Kang HK, Jung SY, Kang SS, Min BM. Osteoclast precursors display dynamic metabolic shifts toward accelerated glucose metabolism at an early stage of RANKL‐stimulated osteoclast differentiation. Cell Physiol Biochem 20: 935‐946, 2007.
 313. Kim YB, Peroni OD, Aschenbach WG, Minokoshi Y, Kotani K, Zisman A, Kahn CR, Goodyear LJ, Kahn BB. Muscle‐specific deletion of the Glut4 glucose transporter alters multiple regulatory steps in glycogen metabolism. Mol Cell Biol 25: 9713‐9723, 2005.
 314. Kinne R, Murer H, Kinne‐Saffran E, Thees M, Sachs G. Sugar transport by renal plasma membrane vesicles. Characterization of the systems in the brush‐border microvilli and basal‐lateral plasma membranes. J Membr Biol 21: 375‐395, 1975.
 315. Klausner RD, Donaldson JG, Lippincott‐Schwartz J. Brefeldin A: Insights into the control of membrane traffic and organelle structure. J Cell Biol 116: 1071‐1080, 1992.
 316. Klepper J, Leiendecker B. GLUT1 deficiency syndrome ‐ 2007 update. Develop Med Child Neurol 49: 707‐716, 2007.
 317. Klepper J, Voit T. Facilitated glucose transporter protein type 1 (GLUT1) deficiency syndrome: Impaired glucose transport into brain–a review. Eur J Pediatr 161: 295‐304, 2002.
 318. Knott RM, Robertson M, Muckersie E, Forrester JV. Regulation of glucose transporters (GLUT‐1 and GLUT‐3) in human retinal endothelial cells. Biochem J 318: 313‐317, 1996.
 319. Kobayashi M, Nikami H, Morimatsu M, Saito M. Expression and localization of insulin‐regulatable glucose transporter (GLUT4) in rat brain. Neurosci Lett 213: 103‐106, 1996.
 320. Kokk K, Verajankorva E, Laato M, Wu XK, Tapfer H, Pollanen P. Expression of insulin receptor substrates 1‐3, glucose transporters GLUT‐1‐4, signal regulatory protein 1alpha, phosphatidylinositol 3‐kinase and protein kinase B at the protein level in the human testis. Anat Sci Int 80: 91‐96, 2005.
 321. Kokk K, Verajankorva E, Wu XK, Tapfer H, Poldoja E, Simovart HE, Pollanen P. Expression of insulin signaling transmitters and glucose transporters at the protein level in the rat testis. Ann N Y Acad Sci 1095: 262‐273, 2007.
 322. Kol S, Ben‐Shlomo I, Ruutiainen K, Ando M, Davies‐Hill TM, Rohan RM, Simpson IA, Adashi EY. The midcycle increase in ovarian glucose uptake is associated with enhanced expression of glucose transporter 3. Possible role for interleukin‐1, a putative intermediary in the ovulatory process. J Clin Invest 99: 2274‐2283, 1997.
 323. Komatsu T, Arashiki N, Otsuka Y, Sato K, Inaba M. Extrusion of Na,K‐ATPase and transferrin receptor with lipid raft‐associated proteins in different populations of exosomes during reticulocyte maturation in dogs. Jpn J Vet Res 58: 17‐27, 2010.
 324. Komori T, Morikawa Y, Tamura S, Doi A, Nanjo K, Senba E. Subcellular localization of glucose transporter 4 in the hypothalamic arcuate nucleus of ob/ob mice under basal conditions. Brain Res 1049: 34‐42, 2005.
 325. Kondo T, Beutler E. Developmental changes in glucose transport of guinea pig erythrocytes. J Clin Invest 65: 1‐4, 1980.
 326. Koumanov F, Jin B, Yang J, Holman GD. Insulin signaling meets vesicle traffic of GLUT4 at a plasma‐membrane‐activated fusion step. Cell Metab 2: 179‐189, 2005.
 327. Koury MJ, Sawyer ST, Brandt SJ. New insights into erythropoiesis. Curr Opin Hematol 9: 93‐100, 2002.
 328. Kraegen EW, Sowden JA, Halstead MB, Clark PW, Rodnick KJ, Chisholm DJ, James DE. Glucose transporters and in vivo glucose uptake in skeletal and cardiac muscle: Fasting, insulin stimulation and immunoisolation studies of GLUT1 and GLUT4. Biochem J 295: 287‐293, 1993.
 329. Krupka RM, Devés R. An experimental test for cyclic versus linear transport models. The mechanism of glucose and choline transport in erythrocytes. J Biol Chem 256: 5410‐5416, 1981.
 330. Kumagai AK. Glucose transport in brain and retina: Implications in the management and complications of diabetes. Diabetes Metab Res Rev 15: 261‐273, 1999.
 331. Kumagai AK, Kang YS, Boado RJ, Pardridge WM. Upregulation of blood‐brain barrier GLUT1 glucose transporter protein and mRNA in experimental chronic hypoglycemia. Diabetes 44: 1399‐1404, 1995.
 332. Lachaal M, Rampal AL, Ryu J, Lee W, Hah J‐S, Jung CY. Characterization and partial purification of liver glucose transporter GLUT2. Biochim Biophys Acta 1466: 379‐389, 2000.
 333. Lacko L, Wittke B, Kromphardt H. Zur Kinetic der Glucose‐Aufname in Erythrocyten. Effekt der Trans‐Konzentration. Eur J Biochem 25: 447‐454, 1972.
 334. Lamarche L, Yamaguchi N, Peronnet F. Hepatic denervation reduces adrenal catecholamine secretion during insulin‐induced hypoglycemia. Am J Physiol 268: R50‐R57, 1995.
 335. Lamb CA, McCann RK, Stockli J, James DE, Bryant NJ. Insulin‐regulated trafficking of GLUT4 requires ubiquitination. Traffic 11: 1445‐1454, 2010.
 336. Larsen KI, Falany M, Wang W, Williams JP. Glucose is a key metabolic regulator of osteoclasts; glucose stimulated increases in ATP/ADP ratio and calmodulin kinase II activity. Biochem Cell Biol 83: 667‐673, 2005.
 337. Laughery M, Todd M, Kaplan JH. Oligomerization of the Na,K‐ATPase in cell membranes. J Biol Chem 279: 36339‐36348, 2004.
 338. Lauritzen HP, Galbo H, Brandauer J, Goodyear LJ, Ploug T. Large GLUT4 vesicles are stationary while locally and reversibly depleted during transient insulin stimulation of skeletal muscle of living mice: Imaging analysis of GLUT4‐enhanced green fluorescent protein vesicle dynamics. Diabetes 57: 315‐324, 2008.
 339. Lauritzen HP, Galbo H, Toyoda T, Goodyear LJ. Kinetics of contraction‐induced GLUT4 translocation in skeletal muscle fibers from living mice. Diabetes 59: 2134‐2144, 2010.
 340. Lauritzen HP, Ploug T, Ai H, Donsmark M, Prats C, Galbo H. Denervation and high‐fat diet reduce insulin signaling in T‐tubules in skeletal muscle of living mice. Diabetes 57: 13‐23, 2008.
 341. Lauritzen HP, Ploug T, Prats C, Tavare JM, Galbo H. Imaging of insulin signaling in skeletal muscle of living mice shows major role of T‐tubules. Diabetes 55: 1300‐1306, 2006.
 342. Le KA, Tappy L. Metabolic effects of fructose. Curr Opin Clin Nutr Metab Care 9: 469‐475, 2006.
 343. Leach L, Firth JA. Fine structure of the paracellular junctions of terminal villous capillaries in the perfused human placenta. Cell Tissue Res 268: 447‐452, 1992.
 344. Lee NK, Sowa H, Hinoi E, Ferron M, Ahn JD, Confavreux C, Dacquin R, Mee PJ, McKee MD, Jung DY, Zhang Z, Kim JK, Mauvais‐Jarvis F, Ducy P, Karsenty G. Endocrine regulation of energy metabolism by the skeleton. Cell 130: 456‐469, 2007.
 345. Lee WH, Bondy CA. Ischemic injury induces brain glucose transporter gene expression. Endocrinology 133: 2540‐2544, 1993.
 346. Le Fevre PG, Marshall JK. The attachment of phloretin and analogues to human erythrocytes in connection with inhibition of sugar transport. J Biol Chem 234: 3022‐3027, 1959.
 347. Leino RL, Gerhart DZ, van Bueren AM, McCall AL, Drewes LR. Ultrastructural localization of GLUT 1 and GLUT 3 glucose transporters in rat brain. J Neurosci Res S 49: 617‐626, 1997.
 348. Leitch JM, Carruthers A. ATP‐dependent sugar transport complexity in human erythrocytes. Am J Physiol Cell Physiol 292: C974‐C986, 2007.
 349. Leitch JM, Carruthers A. Alpha‐ and beta‐monosaccharide transport in human erythrocytes. Am J Physiol Cell Physiol 296: C151‐C161, 2009.
 350. Leloup C, Arluison M, Kassis N, Lepetit N, Cartier N, Ferre P, Penicaud L. Discrete brain areas express the insulin‐responsive glucose transporter GLUT4. Brain Res Mol Brain Res 38: 45‐53, 1996.
 351. Lemieux MJ, Song J, Kim MJ, Huang Y, Villa A, Auer M, Li XD, Wang DN. Three‐dimensional crystallization of the Escherichia coli glycerol‐3‐phosphate transporter: A member of the major facilitator superfamily. Protein Sci 12: 2748‐2756, 2003.
 352. Lemieux MJ. Eukaryotic major facilitator superfamily transporter modeling based on the prokaryotic GlpT crystal structure (Review). Mol Mem Biol 24: 333‐341, 2007.
 353. Leoncini G, Maresca M. Glucose transport across plasma membrane in human platelets. Ital J Biochem 35: 287‐295, 1986.
 354. Levine KB, Carruthers A. Regulation of carrier‐mediated sugar transport by transporter quaternary structure. In: Boles E, Krämer R, editors. Topics in Current Genetics Molecular Mechanisms Controling Transmembrane Transport(9). Springer‐Berlin, 2004, p. 67‐694.
 355. Levine KB, Cloherty EK, Fidyk NJ, Carruthers A. Structural and physiologic determinants of human erythrocyte sugar transport regulation by adenosine triphosphate. Biochemistry 37: 12221‐12232, 1998.
 356. Levine KB, Cloherty EK, Hamill S, Carruthers A. Molecular determinants of sugar transport regulation by ATP. Biochemistry 41: 12629‐12638, 2002.
 357. Levine KB, Hamill S, Cloherty EK, Carruthers A. Alanine scanning mutagenesis of the human erythrocyte glucose transporter putative ATP binding domain. Blood Cells Mol Dis 27: 139‐142, 2001.
 358. Levine KB, Robichaud TK, Hamill S, Sultzman LA, Carruthers A. Properties of the human erythrocyte glucose transport protein are determined by cellular context. Biochemistry 44: 5606‐5616, 2005.
 359. Levine KB, DeZutter JK, Carruthers A. Analysis of GLUT1‐oligomerization determinants by helix‐swapping mutagenesis. unpublished 2011.
 360. Li Q, Manolescu A, Ritzel M, Yao S, Slugoski M, Young JD, Chen XZ, Cheeseman CI. Cloning and functional characterization of the human GLUT7 isoform SLC2A7 from the small intestine. Am J Physiol Gastrointest Liver Physiol 287: G236‐G242, 2004.
 361. Lieb WR, Stein WD. Testing and characterizing the simple carrier. Biochim Biophys Acta 373: 178‐196, 1974.
 362. Lieb WR, Stein WD. Is there a high affinity site for sugar transport at the inner face of the human red cell membrane? J Theor Biol 69: 311‐319, 1977.
 363. Lin S, Spudich JA. Biochemical studies on the mechanism of action of cytochalasin B. Cytochalasin B binding to red cell membranes in relation to glucose transport. J Biol Chem 249: 5778‐5783, 1974.
 364. Lind AR, Williams CA. The control of blood flow through human forearm muscles following brief isometric contractions. J Physiol 288: 529‐547, 1979.
 365. Linder BL, Chernoff A, Kaplan KL, Goodman DS. Release of platelet‐derived growth factor from human platelets by arachidonic acid. Proc Natl Acad Sci U S A 76: 4107‐4111, 1979.
 366. Lisinski I, Schurmann A, Joost HG, Cushman SW, Al‐Hasani H. Targeting of GLUT6 (formerly GLUT9) and GLUT8 in rat adipose cells. Biochem J 358: 517‐22, 2001.
 367. Liu F, Soares MJ, Audus KL. Permeability properties of monolayers of the human trophoblast cell line BeWo. Am J Physiol 273: C1596‐C1604, 1997.
 368. Lizunov VA, Matsumoto H, Zimmerberg J, Cushman SW, Frolov VA. Insulin stimulates the halting, tethering, and fusion of mobile GLUT4 vesicles in rat adipose cells. J Cell Biol 169: 481‐489, 2005.
 369. Loaiza A, Porras OH, Barros LF. Glutamate triggers rapid glucose transport stimulation in astrocytes as evidenced by real‐time confocal microscopy. J Neurosci 23: 7337‐7342, 2003.
 370. Loike JD, Cao L, Brett J, Ogawa S, Silverstein SC, Stern D. Hypoxia induces glucose transporter expression in endothelial cells. Am J Physiol S 263: C326‐C333, 1992.
 371. Lopaschuk GD, Belke DD, Gamble J, Itoi T, Schonekess BO. Regulation of fatty acid oxidation in the mammalian heart in health and disease. Biochim Biophys Acta 1213: 263‐276, 1994.
 372. Lopaschuk GD, Spafford MA, Marsh DR. Glycolysis is predominant source of myocardial ATP production immediately after birth. Am J Physiol 261: H1698‐H1705, 1991.
 373. Lowe AG, Walmsley AR. The kinetics of glucose transport in human red blood cells. Biochim Biophys Acta 857: 146‐154, 1986.
 374. Lund‐Andersen H. Transport of glucose from blood to brain. Physiol Rev 59: 305‐352, 1979.
 375. Lundahl P, Mascher E, Andersson L, Englund AK, Greijer E, Kameyama K, Takagi T. Active and monomeric human red cell glucose transporter after high performance molecular‐sieve chromatography in the presence of octyl glucoside and phosphatidylserine or phosphatidylcholine. Biochim Biophys Acta 1067: 177‐186, 1991.
 376. Lutsenko S, Anderko R, Kaplan JH. Membrane disposition of the M5‐M6 hairpin of Na+,K(+)‐ATPase alpha subunit is ligand dependent. Proc Natl Acad Sci U S A 92: 7936‐7940, 1995.
 377. Lynch RM, Paul RJ. Energy metabolism and transduction in smooth muscle. Experientia 41: 970‐977, 1985.
 378. MacDonald PE, De Marinis YZ, Ramracheya R, Salehi A, Ma X, Johnson PR, Cox R, Eliasson L, Rorsman P. A K ATP channel‐dependent pathway within alpha cells regulates glucagon release from both rodent and human islets of Langerhans. PLoS Biol 5: e143, 2007.
 379. Macheda ML, Williams ED, Best JD, Wlodek ME, Rogers S. Expression and localisation of GLUT1 and GLUT12 glucose transporters in the pregnant and lactating rat mammary gland. Cell Tissue Res 311: 91‐97, 2003.
 380. Maddox DA, Gennari FJ. The early proximal tubule: A high‐capacity delivery‐responsive reabsorptive site. Am J Physiol 252: F573‐F584, 1987.
 381. Madison LL. Role of insulin in the hepatic handling of glucose. Arch Intern Med 123: 284‐292, 1969.
 382. Madon RJ, Martin S, Davies A, Fawcett HA, Flint DJ, Baldwin SA. Identification and characterization of glucose transport proteins in plasma membrane‐ and Golgi vesicle‐enriched fractions prepared from lactating rat mammary gland. Biochem J 272: 99‐105, 1990.
 383. Magistretti PJ. Brain energy metabolism. In: Squire LR, Bloom FE, McConnell SK, editors. Fundamental Neuroscience. San Diego: Academic Press, 2003, p. 339‐360.
 384. Magnani P, Cherian PV, Gould GW, Greene DA, Sima AA, Brosius FCr. Glucose transporters in rat peripheral nerve: Paranodal expression of GLUT1 and GLUT3. Metabolism S 45: 1466‐1473, 1996.
 385. Maher F, Davies‐Hill TM, Lysko PG, Henneberry RC, Simpson IA. Expression of two glucose transporters, GLUT1 and GLUT3, in cultured cerebellar neurons: Evidence for neuron‐specific expression of GLUT3. Mol Cell Neurosci 2: 351‐360, 1991.
 386. Maher F, Davies‐Hill TM, Simpson IA. Substrate specificity and kinetic parameters of GLUT3 in rat cerebellar granule neurons. Biochem J 315: 827‐831, 1996.
 387. Maher F, Vannucci S, Takeda J, Simpson IA. Expression of mouse‐GLUT3 and human‐GLUT3 glucose transporter proteins in brain. Biochem Biophys Res Commun 182: 703‐711, 1992.
 388. Maher F, Vannucci SJ, Simpson IA. Glucose transporter proteins in brain. FASEB J 8: 1003‐1011, 1994.
 389. Maiden MC, Davis EO, Baldwin SA, Moore DC, Henderson PJ. Mammalian and bacterial sugar transport proteins are homologous. Nature 325: 641‐643, 1987.
 390. Manel N, Kim FJ, Kinet S, Taylor N, Sitbon M, Battini JL. The ubiquitous glucose transporter GLUT‐1 is a receptor for HTLV. Cell 115: 449‐459, 2003.
 391. Mangia S, DiNuzzo M, Giove F, Carruthers A, Simpson IA, Vannucci SJ. Response to “Comment on recent modeling studies of astrocyte‐neuron metabolic interactions”: Much ado about nothing. Cereb Blood Flow Metabol 31: 1346‐1353, 2011.
 392. Mangia S, Simpson IA, Vannucci SJ, Carruthers A. The in vivo neuron‐to‐astrocyte lactate shuttle in human brain: Evidence from modeling of measured lactate levels during visual stimulation. J Neurochem 109 Suppl 1: 55‐62, 2009.
 393. Mann GE, Yudilevich DL, Sobrevia L. Regulation of amino acid and glucose transporters in endothelial and smooth muscle cells. Physiol Rev S 83: 183‐252, 2003.
 394. Mann GV, Newton P. The membrane transport of ascorbic acid. Ann N Y Acad Sci 258: 243‐252, 1975.
 395. Manolescu AR, Augustin R, Moley K, Cheeseman C. A highly conserved hydrophobic motif in the exofacial vestibule of fructose transporting SLC2A proteins acts as a critical determinant of their substrate selectivity. Mol Membr Biol 24: 455‐463, 2007.
 396. Manolescu AR, Witkowska K, Kinnaird A, Cessford T, Cheeseman C. Facilitated hexose transporters: New perspectives on form and function. Physiology (Bethesda) 22: 234‐240, 2007.
 397. Mantych GJ, James DE, Chung HD, Devaskar SU. Cellular localization and characterization of Glut 3 glucose transporter isoform in human brain. Neurosci Lett 310: 101‐104, 1992.
 398. Mantych GJ, James DE, Devaskar SU. Jejunal/kidney glucose transporter isoform (Glut‐5) is expressed in the human blood‐brain barrier. Endocrinology 132: 35‐40, 1993.
 399. Maratou E, Dimitriadis G, Kollias A, Boutati E, Lambadiari V, Mitrou P, Raptis SA. Glucose transporter expression on the plasma membrane of resting and activated white blood cells. Eur J Clin Invest 37: 282‐290, 2007.
 400. Marcus DC, Thalmann R, Marcus NY. Respiratory rate and ATP content of stria vascularis of guinea pig in vitro. Laryngoscope 88: 1825‐1835, 1978a.
 401. Marcus DC, Thalmann R, Marcus NY. Respiratory quotient of stria vascularis of guinea pig in vitro. Arch Otorhinolaryngol 221: 97‐103, 1978b.
 402. Marette A, Burdett E, Douen A, Vranic M, Klip A. Insulin induces the translocation of GLUT4 from a unique intracellular organelle to transverse tubules in rat skeletal muscle. Diabetes 41: 1562‐1569, 1992.
 403. Marger MD, Saier MH Jr. A major superfamily of transmembrane facilitators that catalyse uniport, symport and antiport. Trends Biochem Sci 18: 13‐20, 1993.
 404. Marin P, Hogh‐Kristiansen I, Jansson S, Krotkiewski M, Holm G, Bjorntorp P. Uptake of glucose carbon in muscle glycogen and adipose tissue triglycerides in vivo in humans. Am J Physiol 263: E473‐E480, 1992.
 405. Martin JR, Novin D, Vanderweele DA. Loss of glucagon suppression of feeding after vagotomy in rats. Am J Physiol 234: E314‐E318, 1978.
 406. Marty N, Dallaporta M, Foretz M, Emery M, Tarussio D, Bady I, Binnert C, Beermann F, Thorens B. Regulation of glucagon secretion by glucose transporter type 2 (glut2) and astrocyte‐dependent glucose sensors. J Clin Invest 115: 3545‐3553, 2005.
 407. Marty N, Dallaporta M, Thorens B. Brain glucose sensing, counterregulation, and energy homeostasis. Physiology (Bethesda) 22: 241‐251, 2007.
 408. Masud MM, Fujimoto T, Miyake M, Watanuki S, Itoh M, Tashiro M. Redistribution of whole‐body energy metabolism by exercise: A positron emission tomography study. Ann Nucl Med 23: 81‐88, 2009.
 409. Matschinsky FM. Banting Lecture 1995. A lesson in metabolic regulation inspired by the glucokinase glucose sensor paradigm. Diabetes 45: 223‐241, 1996.
 410. Matsuo H, Chiba T, Nagamori S, Nakayama A, Domoto H, Phetdee K, Wiriyasermkul P, Kikuchi Y, Oda T, Nishiyama J, Nakamura T, Morimoto Y, Kamakura K, Sakurai Y, Nonoyama S, Kanai Y, Shinomiya N. Mutations in glucose transporter 9 gene SLC2A9 cause renal hypouricemia. Am J Hum Genet 83: 744‐751, 2008.
 411. May JM, Qu ZC, Whitesell RR. Ascorbic acid recycling enhances the antioxidant reserve of human erythrocytes. Biochemistry 34: 12721‐12728, 1995.
 412. Mazella J, Zsurger N, Navarro V, Chabry J, Kaghad M, Caput D, Ferrara P, Vita N, Gully D, Maffrand JP, Vincent JP. The 100‐kDa neurotensin receptor is gp95/sortilin, a non‐G‐protein‐coupled receptor. J Biol Chem 273: 26273‐26276, 1998.
 413. McCall AL, Fixman LB, Fleming N, Tornheim K, Chick W, Ruderman NB. Chronic hypoglycemia increases brain glucose transport. Am J Physiol 251: E442‐E447, 1986.
 414. McCall AL, van Bueren AM, Huang L, Stenbit A, Celnik E, Charron MJ. Forebrain endothelium expresses GLUT4, the insulin‐responsive glucose transporter. Brain Res 744: 318‐326, 1997.
 415. McCall AL, Van Bueren AM, Moholt‐Siebert M, Cherry NJ, Woodward WR. Immunohistochemical localization of the neuron‐specific glucose transporter (GLUT3) to neuropil in adult rat brain. Brain Res 659: 292‐297, 1994.
 416. McEwen BS, Reagan LP. Glucose transporter expression in the central nervous system: Relationship to synaptic function. Eur J Pharmacol 490: 13‐24, 2004.
 417. McLean P, Brown J, Walters E, Greenslade K. Effect of alloxan‐diabetes on multiple forms of hexokinase in adipose tissue and lung. Biochem J 105: 1301‐1305, 1967.
 418. McVie‐Wylie AJ, Lamson DR, Chen YT. Molecular cloning of a novel member of the GLUT family of transporters, SLC2a10 (GLUT10), localized on chromosome 20q13.1: A candidate gene for NIDDM susceptibility. Genomics 72: 113‐117, 2001.
 419. Mehlhorn RJ. Ascorbate‐ and dehydroascorbic acid‐mediated reduction of free radicals in the human erythrocyte. J Biol Chem 266: 2724‐2731, 1991.
 420. Mendiratta S, Qu ZC, May JM. Erythrocyte ascorbate recycling: Antioxidant effects in blood. Free Radic Biol Med 24: 789‐797, 1998.
 421. Michelle Furtado L, Poon V, Klip A. GLUT4 activation: Thoughts on possible mechanisms. Acta Physiol Scand 178: 287‐296, 2003.
 422. Miki K. Energy metabolism and sperm function. Soc Reprod Fertil Suppl 65: 309‐325, 2007.
 423. Miki K, Qu W, Goulding EH, Willis WD, Bunch DO, Strader LF, Perreault SD, Eddy EM, O'Brien DA. Glyceraldehyde 3‐phosphate dehydrogenase‐S, a sperm‐specific glycolytic enzyme, is required for sperm motility and male fertility. Proc Natl Acad Sci U S A 101: 16501‐16506, 2004.
 424. Miller C, Nguitragool W. A provisional transport mechanism for a chloride channel‐type Cl−/H+ exchanger. Philos Trans R Soc Lond B Biol Sci 364: 175‐180, 2009.
 425. Miller DM. The kinetics of selective biological transport. III. Erythrocyte‐monosaccharide transport data. Biophys J 8: 1329‐1338, 1968a.
 426. Miller DM. The kinetics of selective biological transport. IV. Assessment of three carrier systems using the erythrocyte‐monosaccharide transport data. Biophys J 8: 1339‐1352, 1968b.
 427. Miller DM. The kinetics of selective biological transport. V. Further data on the erythrocyte–monosaccharide transport system. Biophys J 11: 915‐923, 1971.
 428. Minokoshi Y, Kahn CR, Kahn BB. Tissue‐specific ablation of the GLUT4 glucose transporter or the insulin receptor challenges assumptions about insulin action and glucose homeostasis. J Biol Chem 278: 33609‐33612, 2003.
 429. Montel‐Hagen A, Blanc L, Boyer‐Clavel M, Jacquet C, Vidal M, Sitbon M, Taylor N. The Glut1 and Glut4 glucose transporters are differentially expressed during perinatal and postnatal erythropoiesis. Blood 112: 4729‐4738, 2008.
 430. Montel‐Hagen A, Kinet S, Manel N, Mongellaz C, Prohaska R, Battini JL, Delaunay J, Sitbon M, Taylor N. Erythrocyte Glut1 triggers dehydroascorbic acid uptake in mammals unable to synthesize vitamin C. Cell 132: 1039‐1048, 2008.
 431. Montel‐Hagen A, Sitbon M, Taylor N. Erythroid glucose transporters. Curr Opin Hematol 16: 165‐172, 2009.
 432. Moriya R, Shirakura T, Ito J, Mashiko S, Seo T. Activation of sodium‐glucose cotransporter 1 ameliorates hyperglycemia by mediating incretin secretion in mice. Am J Physiol Endocrinol Metab 297: E1358‐E1365, 2009.
 433. Morth JP, Pedersen BP, Toustrup‐Jensen MS, Sorensen TL, Petersen J, Andersen JP, Vilsen B, Nissen P. Crystal structure of the sodium‐potassium pump. Nature 450: 1043‐1049, 2007.
 434. Mu J, Brozinick JT Jr, Valladares O, Bucan M, Birnbaum MJ. A role for AMP‐activated protein kinase in contraction‐ and hypoxia‐ regulated glucose transport in skeletal muscle. Mol Cell 7: 1085‐194., 2001.
 435. Mueckler M. Facilitative glucose transporters. Eur J Biochem 219: 713‐725, 1994.
 436. Mueckler M, Caruso C, Baldwin SA, Panico M, Blench I, Morris HR, Allard WJ, Lienhard GE, Lodish HF. Sequence and structure of a human glucose transporter. Science 229: 941‐945, 1985.
 437. Mueckler M, Makepeace C. Transmembrane segment 12 of the Glut1 glucose transporter is an outer helix and is not directly involved in the transport mechanism. The J Biol Chem 281: 36993‐36998, 2006.
 438. Mueckler M, Makepeace C. Model of the exofacial substrate‐binding site and helical folding of the human Glut1 glucose transporter based on scanning mutagenesis. Biochemistry 48: 5934‐5942, 2009.
 439. Mueckler M, Caruso C, Baldwin SA, Panico M, Blench I, Morris HR, Allard WJ, Lienhard GE, Lodish HF. Sequence and structure of a human glucose transporter. Science 229: 941‐945, 1985.
 440. Murakami T, Felinski EA, Antonetti DA. Occludin phosphorylation and ubiquitination regulate tight junction trafficking and vascular endothelial growth factor‐induced permeability. J Biol Chem 284: 21036‐21046, 2009.
 441. Naemsch LN, Weidema AF, Sims SM, Underhill TM, Dixon SJ. P2X(4) purinoceptors mediate an ATP‐activated, non‐selective cation current in rabbit osteoclasts. J Cell Sci 112: 4425‐4435, 1999.
 442. Naftalin RJ, Rist RJ. 3‐O‐methyl‐D‐glucose transport in rat red cells: Effects of heavy water. Biochimica et Biophysica Acta 1064: 37‐48, 1991.
 443. Naftalin RJ, Holman GD. Transport of sugars in human red cells. In: Ellory JC, Lew VL, editors. Membrane Transport in Red Cells. New York: Academic Press, 1977, p. 257‐300.
 444. Naftalin RJ. Alternating carrier models of asymmetric glucose transport violate the energy conservation laws. Biophys J 95: 4300‐4314, 2008.
 445. Nagamatsu S, Sawa H, Kamada K, Nakamichi Y, Yoshimoto K, Hoshino T. Neuron‐specific glucose transporter (NSGT): CNS distribution of GLUT3 rat glucose transporter (RGT3) in rat central neurons. Febs Lett 334: 289‐295, 1993.
 446. Nakazawa K, Spicer SS, Schulte BA. Postnatal expression of the facilitated glucose transporter, GLUT 5, in gerbil outer hair cells. Hear Res 82: 93‐99, 1995.
 447. Naora H, Montell DJ. Ovarian cancer metastasis: Integrating insights from disparate model organisms. Nat Rev Cancer 5: 355‐366, 2005.
 448. Niijima A. The effect of D‐glucose on the firing rate of glucose‐sensitive vagal afferents in the liver in comparison with the effect of 2‐deoxy‐D‐glucose. J Auton Nerv Syst 10: 255‐260, 1984.
 449. Nishimoto H, Matsutani R, Yamamoto S, Takahashi T, Hayashi KG, Miyamoto A, Hamano S, Tetsuka M. Gene expression of glucose transporter (GLUT) 1, 3 and 4 in bovine follicle and corpus luteum. J Endocrinol 188: 111‐119, 2006.
 450. Nishimura H, Pallardo FV, Seidner GA, Vannucci S, Simpson IA, Birnbaum MJ. Kinetics of GLUT1 and GLUT4 glucose transporters expressed in Xenopus oocytes. J Biol Chem 268: 8514‐8520, 1993.
 451. Nualart F, Godoy A, Reinicke K. Expression of the hexose transporters GLUT1 and GLUT2 during the early development of the human brain. Brain Res 824: 97‐104, 1999.
 452. Ogawa E, Hishiyama N. Japanese Shiba dogs possessing erythrocytes with high Glut‐1 activity and high ascorbic acid recycling capacity. Compve Clin Pathol 1618‐565X: 2011.
 453. Oka Y, Asano T, Shibasaki Y, Lin JL, Tsukuda K, Katagiri H, Akanuma Y, Takaku F. C‐terminal truncated glucose transporter is locked into an inward‐facing form without transport activity. Nature 345: 550‐553, 1990.
 454. Oldendorf WH, Cornford ME, Brown WJ. The large apparent work capability of the blood‐brain barrier: A study of the mitochondrial content of capillary endothelial cells in brain and other tissues of the rat. Ann Neurol 1: 409‐417, 1977.
 455. Olson AL, Pessin JE. Structure, function, and regulation of the mammalian facilitative glucose transporter gene family. Annu Rev Nutr 16: 235‐256, 1996.
 456. Palfreyman RW, Clark AE, Denton RM, Holman GD, Kozka IJ. Kinetic resolution of the separate GLUT1 and GLUT4 glucose transport activities in 3T3‐L1 cells. Biochem J 284: 275‐282, 1992.
 457. Pao SS, Paulsen IT, Saier MH Jr. Major facilitator superfamily. Microbiol Mol Biol Rev 62: 1‐34, 1998.
 458. Pardridge WM. Brain metabolism: A perspective from the blood‐brain barrier. Physiol Rev 63: 1481‐1535, 1983.
 459. Pardridge WM, Boado RJ, Farrell CR. Brain‐type glucose transporter (GLUT‐1) is selectively localized to the blood‐brain barrier. Studies with quantitative western blotting and in situ hybridization. J Biol Chem 265: 18035‐18040, 1990.
 460. Parker HE, Habib AM, Rogers GJ, Gribble FM, Reimann F. Nutrient‐dependent secretion of glucose‐dependent insulinotropic polypeptide from primary murine K cells. Diabetologia 52: 289‐298, 2009.
 461. Pascual JM, Wang D, Lecumberri B, Yang H, Mao X, Yang R, De Vivo DC. GLUT1 deficiency and other glucose transporter diseases. Eur J Endocrinol 150: 627‐633, 2004.
 462. Patel JR, Brewer GJ. Age‐related changes in neuronal glucose uptake in response to glutamate and beta‐amyloid. J Neurosci Res 72: 527‐536, 2003.
 463. Pawagi AB, Deber CM. D‐glucose binding increases secondary structure of human erythrocyte monosaccharide transport protein. Biochem Biophys Res Commun 145: 1087‐1091, 1987.
 464. Pellerin L, Bonvento G, Chatton JY, Pierre K, Magistretti PJ. Role of neuron‐glia interaction in the regulation of brain glucose utilization. Diabetes Nutr Metab 15: 268‐73; discussion 273, 2002.
 465. Pereira RF, Halford KW, O'Hara MD, Leeper DB, Sokolov BP, Pollard MD, Bagasra O, Prockop DJ. Cultured adherent cells from marrow can serve as long‐lasting precursor cells for bone, cartilage, and lung in irradiated mice. Proc Natl Acad Sci U S A 92: 4857‐4861, 1995.
 466. Pessino A, Hebert DN, Woon CW, Harrison SA, Clancy BM, Buxton JM, Carruthers A, Czech MP. Evidence that functional erythrocyte‐type glucose transporters are oligomers. J Biol Chem 266: 20213‐20217, 1991.
 467. Peters BJ, Rillema JA. Effect of prolactin on 2‐deoxyglucose uptake in mouse mammary gland explants. Am J Physiol 262: E627‐E630, 1992.
 468. Petersen KF, Krssak M, Navarro V, Chandramouli V, Hundal R, Schumann WC, Landau BR, Shulman GI. Contributions of net hepatic glycogenolysis and gluconeogenesis to glucose production in cirrhosis. Am J Physiol 276: E529, 1999.
 469. Pham T, Cornea A, Blick KE, Jenkins A, Scofield RH. Oral glucosamine in doses used to treat osteoarthritis worsens insulin resistance. Am J Med Sci 333: 333‐339, 2007.
 470. Pittenger MF, Mackay AM, Beck SC, Jaiswal RK, Douglas R, Mosca JD, Moorman MA, Simonetti DW, Craig S, Marshak DR. Multilineage potential of adult human mesenchymal stem cells. Science 284: 143‐147, 1999.
 471. Ploug T, van Deurs B, Ai H, Cushman SW, Ralston E. Analysis of GLUT4 distribution in whole skeletal muscle fibers: Identification of distinct storage compartments that are recruited by insulin and muscle contractions. J Cell Biol 142: 1429‐1446, 1998.
 472. Porras OH, Loaiza A, Barros LF. Glutamate mediates acute glucose transport inhibition in hippocampal neurons. J Neurosci S 24: 9669‐9673, 2004.
 473. Preitner F, Bonny O, Laverrière A, Rotman S, Firsov D, Da Costa A, Metref S, Thorens B. Glut9 is a major regulator of urate homeostasis and its genetic inactivation induces hyperuricosuria and urate nephropathy. Proc Natl Acad Sci U S A 106: 15501‐15506, 2009.
 474. Prosser CG. Mechanism of the decrease in hexose transport by mouse mammary epithelial cells caused by fasting. Biochem J 249: 149‐154, 1988.
 475. Prosser CG, Topper YJ. Changes in the rate of carrier‐mediated glucose transport by mouse mammary epithelial cells during ontogeny: Hormone dependence delineated in vitro. Endocrinology 119: 91‐96, 1986.
 476. Quesada I, Todorova MG, Soria B. Different metabolic responses in alpha‐, beta‐, and delta‐cells of the islet of Langerhans monitored by redox confocal microscopy. Biophys J 90: 2641‐2650, 2006.
 477. Quesada I, Tuduri E, Ripoll C, Nadal A. Physiology of the pancreatic alpha‐cell and glucagon secretion: Role in glucose homeostasis and diabetes. J Endocrinol 199: 5‐19, 2008.
 478. Quistorff B, Secher NH, Van Lieshout JJ. Lactate fuels the human brain during exercise. FASEB J 22: 3443‐3449, 2008.
 479. Rabilloud T. Membrane proteins ride shotgun. Nat Biotech 21: 508‐510, 2003.
 480. Randle PJ, Garland PB, Hales CN, Newsholme EA. The glucose fatty‐acid cycle. Its role in insulin sensitivity and the metabolic disturbances of diabetes mellitus. Lancet 1: 785‐789, 1963.
 481. Rayner DV, Thomas ME, Trayhurn P. Glucose transporters (GLUTs 1‐4) and their mRNAs in regions of the rat brain: Insulin‐sensitive transporter expression in the cerebellum. Can J Physiol Pharmacol 72: 476‐479, 1994.
 482. Regen DM, Morgan HE. Studies of the glucose‐transport system in the rabbit erythrocyte. Biochim Biophys Acta 79: 151‐166, 1964.
 483. Reimann F. Molecular mechanisms underlying nutrient detection by incretin‐secreting cells. Int Dairy J 20: 236‐242, 2010.
 484. Richardson S, Neama G, Phillips T, Bell S, Carter SD, Moley KH, Moley JF, Vannucci SJ, Mobasheri A. Molecular characterization and partial cDNA cloning of facilitative glucose transporters expressed in human articular chondrocytes; stimulation of 2‐deoxyglucose uptake by IGF‐I and elevated MMP‐2 secretion by glucose deprivation. Osteoarthr Cartilage 11: 92‐101, 2003.
 485. Richter EA. Glucose Utilization. In: Cala P, Pederson S, editors. Comprehensive Physiology. New York: Wiley‐Blackwell, 2010.
 486. Rieu S, Geminard C, Rabesandratana H, Sainte‐Marie J, Vidal M. Exosomes released during reticulocyte maturation bind to fibronectin via integrin alpha4beta1. Eur J Biochem 267: 583‐590, 2000.
 487. Riquelme G. Review: Placental syncytiotrophoblast membranes–domains, subdomains and microdomains. Placenta 32: S196‐S202, 2011.
 488. Ritter RC, Slusser PG, Stone S. Glucoreceptors controlling feeding and blood glucose: Location in the hindbrain. Science 213: 451‐452, 1981.
 489. Rivas C, Zúñiga F, Salas‐Burgos A, Mardones L, Ormazabal V, Vera J. Vitamin C transporters. J Physiol Biochem 64: 357‐375, 2008.
 490. Rogers S, Chandler JD, Clarke AL, Petrou S, Best JD. Glucose transporter GLUT12‐functional characterization in Xenopus laevis oocytes. Biochem Biophys Res Commun 308: 422‐426, 2003.
 491. Rogers S, Macheda ML, Docherty SE, Carty MD, Henderson MA, Soeller WC, Gibbs EM, James DE, Best JD. Identification of a novel glucose transporter‐like protein—GLUT‐12. Am J Physiol Endocrinol Metab 282: E733‐E738, 2002.
 492. Romijn JA, Coyle EF, Sidossis LS, Gastaldelli A, Horowitz JF, Endert E, Wolfe RR. Regulation of endogenous fat and carbohydrate metabolism in relation to exercise intensity and duration. Am J Physiol 265: E380‐E391, 1993.
 493. Rosen ED, Walkey CJ, Puigserver P, Spiegelman BM. Transcriptional regulation of adipogenesis. Genes Dev 14: 1293‐1307, 2000.
 494. Rossetti L, Giaccari A. Relative contribution of glycogen synthesis and glycolysis to insulin‐mediated glucose uptake. A dose‐response euglycemic clamp study in normal and diabetic rats. J Clin Invest 85: 1785‐1792, 1990.
 495. Routh VH. Glucose‐sensing neurons: Are they physiologically relevant? Physiol Behav 76: 403‐413, 2002.
 496. Rowland AF, Fazakerley DJ, James DE. Mapping insulin/GLUT4 circuitry. Traffic 12: 672‐681, 2011.
 497. Rumsey SC, Daruwala R, Al‐Hasani H, Zarnowski MJ, Simpson IA, Levine M. Dehydroascorbic acid transport by GLUT4 in Xenopus oocytes and isolated rat adipocytes. J Biol Chem 275: 28246‐28253, 2000.
 498. Rumsey SC, Kwon O, Xu GW, Burant CF, Simpson I, Levine M. Glucose transporter isoforms GLUT1 and GLUT3 transport dehydroascorbic acid. J Biol Chem 272: 18982‐18989, 1997.
 499. Russ WP, Engelman DM. The GxxxG motif: A framework for transmembrane helix‐helix association. J Mol Biol 296: 911‐99., 2000.
 500. Saier MH Jr. Families of proteins forming transmembrane channels. J Membr Biol 175: 165‐180, 2000.
 501. Saier MH Jr, Beatty JT, Goffeau A, Harley KT, Heijne WH, Huang SC, Jack DL, Jahn PS, Lew K, Liu J, Pao SS, Paulsen IT, Tseng TT, Virk PS. The major facilitator superfamily. J Mol Microbiol Biotechnol 1: 257‐279, 1999.
 502. Saier MH Jr, Eng BH, Fard S, Garg J, Haggerty DA, Hutchinson WJ, Jack DL, Lai EC, Liu HJ, Nusinew DP, Omar AM, Pao SS, Paulsen IT, Quan JA, Sliwinski M, Tseng TT, Wachi S, Young GB. Phylogenetic characterization of novel transport protein families revealed by genome analyses. Biochim Biophys Acta 1422: 1‐56, 1999.
 503. Saito T, Jones CC, Huang S, Czech MP, Pilch PF. The interaction of Akt with APPL1 is required for insulin‐stimulated Glut4 translocation. J Biol Chem 282: 32280‐32287, 2007.
 504. Salas‐Burgos A, Iserovich P, Zuniga F, Vera JC, Fischbarg J. Predicting the three‐dimensional structure of the human facilitative glucose transporter glut1 by a novel evolutionary homology strategy: Insights on the molecular mechanism of substrate migration, and binding sites for glucose and inhibitory molecules. Biophys J 87: 2990‐2999, 2004.
 505. Sambandam N, Lopaschuk GD, Brownsey RW, Allard MF. Energy metabolism in the hypertrophied heart. Heart Fail Rev 7: 161‐173, 2002.
 506. Sanchez‐Ramos J, Song S, Cardozo‐Pelaez F, Hazzi C, Stedeford T, Willing A, Freeman TB, Saporta S, Janssen W, Patel N, Cooper DR, Sanberg PR. Adult bone marrow stromal cells differentiate into neural cells in vitro. Exp Neurol 164: 247‐256, 2000.
 507. Satchell SC, Braet F. Glomerular endothelial cell fenestrations: An integral component of the glomerular filtration barrier. Am J Physiol Renal Physiol 296: F947‐F956, 2009.
 508. Sato M, Mueckler M. A conserved amino acid motif (R‐X‐G‐R‐R) in the glut1 glucose transporter is an important determinant of membrane topology [In Process Citation]. J Biol Chem 274: 24721‐24725, 1999.
 509. Schatteman GC, Dunnwald M, Jiao C. Biology of bone marrow‐derived endothelial cell precursors. Am J Physiol Heart Circ Physiol 292: H1‐18, 2007.
 510. Schedin P. Pregnancy‐associated breast cancer and metastasis. Nat Rev Cancer 6: 281‐291, 2006.
 511. Schmidt S, Joost HG, Schurmann A. GLUT8, the enigmatic intracellular hexose transporter. Am J Physiol Endocrinol Metab 296: E614‐E618, 2009.
 512. Schmidt U, Briese S, Leicht K, Schurmann A, Joost HG, Al‐Hasani H. Endocytosis of the glucose transporter GLUT8 is mediated by interaction of a dileucine motif with the beta2‐adaptin subunit of the AP‐2 adaptor complex. J Cell Sci 119: 2321‐2331, 2006.
 513. Schmitt M. Influences of hepatic portal receptors on hypothalamic feeding and satiety centers. Am J Physiol 225: 1089‐1095, 1973.
 514. Schuit F, De Vos A, Farfari S, Moens K, Pipeleers D, Brun T, Prentki M. Metabolic fate of glucose in purified islet cells. Glucose‐regulated anaplerosis in beta cells. J Biol Chem 272: 18572‐18579, 1997.
 515. Schurmann A. Insight into the “odd” hexose transporters GLUT3, GLUT5, and GLUT7. Am J Physiol Endocrinol Metab 295: E225‐E226, 2008.
 516. Seatter MJ, de la Rue SA, Porter LM, Gould GW. QLS motif in transmembrane helix VII of the glucose transporter family interacts with the C‐1 position of D‐glucose and is involved in substrate selection at the exofacial binding site. Biochemistry 37: 1322‐1326, 1998.
 517. Seidner G, Alvarez MG, Yeh JI, O'Driscoll KR, Klepper J, Stump TS, Wang D, Spinner NB, Birnbaum MJ, De Vivo DC. GLUT‐1 deficiency syndrome caused by haploinsufficiency of the blood‐brain barrier hexose carrier. Nat Genet 18: 188‐191, 1998.
 518. Seino S. ATP‐sensitive potassium channels: A model of heteromultimeric potassium channel/receptor assemblies. Annu Rev Physiol 61: 337‐362, 1999.
 519. Sekine N, Cirulli V, Regazzi R, Brown LJ, Gine E, Tamarit‐Rodriguez J, Girotti M, Marie S, MacDonald MJ, Wollheim CB, et al. Low lactate dehydrogenase and high mitochondrial glycerol phosphate dehydrogenase in pancreatic beta‐cells. Potential role in nutrient sensing. J Biol Chem 269: 4895‐4902, 1994.
 520. Sergeant S, Kim HD. Inhibition of 3‐O‐methylglucose transport in human erythrocytes by forskolin. J Biol Chem 260: 14677‐14682, 1985.
 521. Shanahan MF, Morris DP, Edwards BM. [3H]forskolin. Direct photoaffinity labeling of the erythrocyte D‐glucose transporter. J Biol Chem 262: 5978‐5984, 1987.
 522. Shen J, Cross ST, Tang‐Liu DD, Welty DF. Evaluation of an immortalized retinal endothelial cell line as an in vitro model for drug transport studies across the blood‐retinal barrier. Pharm Res 20: 1357‐1363, 2003.
 523. Shennan DB, Beechey RB. Mechanisms involved in the uptake of D‐glucose into the milk producing cells of rat mammary tissue. Biochem Biophys Res Commun 211: 986‐990, 1995.
 524. Shennan DB, Peaker M. Transport of milk constituents by the mammary gland. Physiol Rev 80: 925‐951, 2000.
 525. Shetty M, Loeb JN, Vikstrom K, Ismail BF. Rapid activation of GLUT‐1 glucose transporter following inhibition of oxidative phosphorylation in clone 9 cells. J Biol Chem 268: 17225‐17232, 1993.
 526. Shewan AM, Marsh BJ, Melvin DR, Martin S, Gould GW, James DE. The cytosolic C‐terminus of the glucose transporter GLUT4 contains an acidic cluster endosomal targeting motif distal to the dileucine signal. Biochem J 350 Pt 1: 99‐107, 2000.
 527. Shillingford JM, Wood IS, Shennan DB, Shirazi‐Beechey SP, Beechey RB. Determination of the sequence of a mRNA from lactating sheep mammary gland that encodes a protein identical to the Na(+)‐dependent glucose transporter (SGLT1). Biochem Soc Trans 25: 467S, 1997.
 528. Shimizu N, Oomura Y, Novin D, Grijalva CV, Cooper PH. Functional correlations between lateral hypothalamic glucose‐sensitive neurons and hepatic portal glucose‐sensitive units in rat. Brain Res 265: 49‐54, 1983.
 529. Shin BC, Fujikura K, Suzuki T, Tanaka S, Takata K. Glucose transporter GLUT3 in the rat placental barrier: A possible machinery for the transplacental transfer of glucose. Endocrinology 138: 3997‐4004, 1997.
 530. Shiota C, Rocheleau JV, Shiota M, Piston DW, Magnuson MA. Impaired glucagon secretory responses in mice lacking the type 1 sulfonylurea receptor. Am J Physiol Endocrinol Metab 289: E570‐E577, 2005.
 531. Simon RR, Marks V, Leeds AR, Anderson JW. A comprehensive review of oral glucosamine use and effects on glucose metabolism in normal and diabetic individuals. Diabetes Metab Res Rev 27: 14‐27, 2011.
 532. Simpson IA, Appel NM, Hokari M, Oki J, Holman GD, Maher F, Koehler‐Stec EM, Vannucci SJ, Smith QR. Blood‐brain barrier glucose transporter: Effects of hypo‐ and hyperglycemia revisited. J Neurochem 72: 238‐247, 1999.
 533. Simpson IA, Carruthers A, Vannucci SJ. Supply and demand in cerebral energy metabolism: The role of nutrient transporters. J Cereb Blood Flow Metab 27: 1766‐1791, 2007.
 534. Simpson IA, Cushman SW. Hormonal regulation of mammalian glucose transport. Ann Rev Biochem 55: 1059‐1089, 1986.
 535. Simpson IA, Dwyer D, Malide D, Moley KH, Travis A, Vannucci SJ. The facilitative glucose transporter GLUT3: 20 years of distinction. Am J Physiol Endocrinol Metab 295: E242‐E253, 2008.
 536. Simpson IA, Vannucci SJ, DeJoseph MR, Hawkins RA. Glucose transporter asymmetries in the bovine blood‐brain barrier. J Biol Chem 276: 12725‐1279, 2001.
 537. Sivitz W, DeSautel S, Walker PS, Pessin JE. Regulation of the glucose transporter in developing rat brain. Endocrinology 124: 1875‐1880, 1989.
 538. Sixma JJ, Nievelstein PF, Houdijk WP, Van Breugel H, Hindriks G, de Groot PG. Adhesion of blood platelets to isolated components of the vessel wall. Ann N Y Acad Sci 509: 103‐117, 1987.
 539. Slot JW, Geuze HJ, Gigengack S, James DE, Lienhard GE. Translocation of the glucose transporter GLUT4 in cardiac myocytes of the rat. Proc Natl Acad Sci U S A 88: 7815‐7819, 1991.
 540. Sogin DC, Hinkle PC. Characterization of the glucose transporter from human erythrocytes. J Supramol Struct 8: 447‐453, 1978.
 541. Staal RG, Mosharov EV, Sulzer D. Dopamine neurons release transmitter via a flickering fusion pore. Nat Neurosci 7: 341‐346, 2004.
 542. Steck TL, Yu J. Selective solubilization of proteins from red blood cell membranes by protein perturbants. J Supramol Struct 1: 220‐232, 1973.
 543. Stein WD, ed. Transport and Diffusion Across Cell Membranes. New York: Academic Press, 1986.
 544. Stenbit AE, Burcelin R, Katz EB, Tsao TS, Gautier N, Charron MJ, Le Marchand‐Brustel Y. Diverse effects of Glut 4 ablation on glucose uptake and glycogen synthesis in red and white skeletal muscle. J Clin Invest 98: 629‐634, 1996.
 545. Stuart CA, Howell ME, Zhang Y, Yin D. Insulin‐stimulated translocation of glucose transporter (GLUT) 12 parallels that of GLUT4 in normal muscle. J Clin Endocrinol Metab 94: 3535‐3542, 2009.
 546. Stuart CA, Yin D, Howell ME, Dykes RJ, Laffan JJ, Ferrando AA. Hexose transporter mRNAs for GLUT4, GLUT5, and GLUT12 predominate in human muscle. Am J Physiol Endocrinol Metab 291: E1067‐E1073, 2006.
 547. Stumpel F, Jungermann K. Sensing by intrahepatic muscarinic nerves of a portal‐arterial glucose concentration gradient as a signal for insulin‐dependent glucose uptake in the perfused rat liver. FEBS Lett 406: 119‐122, 1997.
 548. Sultzman LA, Carruthers A. Stop‐flow analysis of cooperative interactions between GLUT1 sugar import and export sites. Biochemistry 38: 6640‐6650, 1999.
 549. Summers SA, Yin VP, Whiteman EL, Garza LA, Cho H, Tuttle RL, Birnbaum MJ. Signaling pathways mediating insulin‐stimulated glucose transport. Ann N Y Acad Sci 892: 169‐186, 1999.
 550. Suzuki M, Kobayashi Y, Kurata M, Agar NS. Substrates for glutathione regeneration in mammalian erythrocytes. Comp Haematol Int 7: 70‐73, 1997.
 551. Suzuki M, Kurata M. Effects of ATP level on glutathione regeneration in rabbit and guinea‐pig erythrocytes. Comp Biochem Physiol B 103: 859‐862, 1992.
 552. Swarthout JT, D'Alonzo RC, Selvamurugan N, Partridge NC. Parathyroid hormone‐dependent signaling pathways regulating genes in bone cells. Gene 282: 1‐17, 2002.
 553. Takagi H, Tanihara H, Seino Y, Yoshimura N. Characterization of glucose transporter in cultured human retinal pigment epithelial cells: Gene expression and effect of growth factors. Invest Ophthalmol Vis Sci 35: 170‐177, 1994.
 554. Takakura Y, Kuentzel SL, Raub TJ, Davies A, Baldwin SA, Borchardt RT. Hexose uptake in primary cultures of bovine brain microvessel endothelial cells. I. Basic characteristics and effects of D‐glucose and insulin. Biochimica et Biophysica Acta 1070: 1‐10, 1991.
 555. Takanaga H, Frommer WB. Facilitative plasma membrane transporters function during ER transit. FASEB J 24: 2849‐2858, 2010.
 556. Takarada T, Hinoi E, Kambe Y, Sahara K, Kurokawa S, Takahata Y, Yoneda Y. Osteoblast protects osteoclast devoid of sodium‐dependent vitamin C transporters from oxidative cytotoxicity of ascorbic acid. Eur J Pharmacol 575: 1‐11, 2007.
 557. Takata K, Hirano H, Kasahara M. Transport of glucose across the blood‐tissue barriers. Int Rev Cytol S 172: 1‐53, 1997.
 558. Takata K, Kasahara T, Kasahara M, Ezaki O, Hirano H. Erythrocyte/HepG2‐type glucose transporter is concentrated in cells of blood‐tissue barriers. Biochem Biophys Res Commun 173: 67‐73, 1990.
 559. Takeuchi S, Ando M. Marginal cells of the stria vascularis of gerbils take up glucose via the facilitated transporter GLUT: Application of autofluorescence. Hear Res 114: 69‐74, 1997.
 560. Tal M, Schneider DL, Thorens B, Lodish HF. Restricted expression of the erythroid/brain glucose transporter isoform to perivenous hepatocytes in rats. Modulation by glucose. J Clin Invest 86: 986‐992, 1990.
 561. Tappy L, Jequier E, Schneiter P. Autoregulation of glucose production. News Physiol Sci 15: 198‐202, 2000.
 562. Tappy L, Le KA. Metabolic effects of fructose and the worldwide increase in obesity. Physiol Rev 90: 23‐46, 2010.
 563. Tappy L, Le KA, Tran C, Paquot N. Fructose and metabolic diseases: New findings, new questions. Nutrition 26: 1044‐1049, 2010.
 564. Taverna RD, Langdon RG. Glucose transport in white erythrocyte ghosts and membrane derived vesicles. Biochim Biophys Acta 298: 422‐428, 1973a.
 565. Taverna RD, Langdon RG. Reversible association of cytochalasin B with the human erythrocyte membrane. Inhibition of glucose transport and the stoichiometry of cytochalasin binding. Biochim Biophys Acta 323: 207‐219, 1973b.
 566. Taylor LP, Holman GD. Symmetrical kinetic parameters for 3‐O‐methyl‐D‐glucose transport in adipocytes in the presence and in the absence of insulin. Biochim Biophys Acta 642: 325‐335, 1981.
 567. Teitelbaum SL. Bone resorption by osteoclasts. Science 289: 1504‐1508, 2000.
 568. Thomas DM, Maher F, Rogers SD, Best JD. Expression and regulation by insulin of GLUT 3 in UMR 106‐01, a clonal rat osteosarcoma cell line. Biochem Biophys Res Commun 218: 789‐793, 1996.
 569. Thorens B. Glucose transporters in the regulation of intestinal, renal, and liver glucose fluxes. Am J Physiol 270: G541‐G553, 1996.
 570. Thorens B. A gene knockout approach in mice to identify glucose sensors controlling glucose homeostasis. Pflugers Arch 445: 482‐490, 2003.
 571. Thorens B, Guillam MT, Beermann F, Burcelin R, Jaquet M. Transgenic reexpression of GLUT1 or GLUT2 in pancreatic beta cells rescues GLUT2‐null mice from early death and restores normal glucose‐stimulated insulin secretion. J Biol Chem 275: 23751‐23758, 2000.
 572. Thorens B, Mueckler M. Glucose transporters in the 21st Century. Am J Physiol Endocrinol Metab 298: E141‐E145, 2010.
 573. Thorens B, Sarkar HK, Kaback HR, Lodish HF. Cloning and functional expression in bacteria of a novel glucose transporter present in liver, intestine, kidney, and ‐pancreatic islet cells. Cell 55: 281‐290, 1988.
 574. Threadgold LC, Coore HG, Kuhn NJ. Monosaccharide transport into lactating‐rat mammary acini. Biochem J 204: 493‐501, 1982.
 575. Threadgold LC, Kuhn NJ. Monosaccharide transport in the mammary gland of the intact lactating rat. Biochem J 218: 213‐219, 1984.
 576. Topping DL, Mayes PA. The concentration of fructose, glucose and lactate in the splanchnic blood vessels of rats absorbing fructose. Nutr Metab 13: 331‐338, 1971.
 577. Toyoda N, Flanagan JE, Kono T. Reassessment of insulin effects on the Vmax and Km values of hexose transport in isolated rat epididymal adipocytes. J Biol Chem 262: 2737‐2745, 1987.
 578. Travis AJ, Tutuncu L, Jorgez CJ, Ord TS, Jones BH, Kopf GS, Williams CJ. Requirements for glucose beyond sperm capacitation during in vitro fertilization in the mouse. Biol Reprod 71: 139‐145, 2004.
 579. Tschritter O, Stumvoll M, Machicao F, Holzwarth M, Weisser M, Maerker E, Teigeler A, Haring H, Fritsche A. The prevalent Glu23Lys polymorphism in the potassium inward rectifier 6.2 (KIR6.2) gene is associated with impaired glucagon suppression in response to hyperglycemia. Diabetes 51: 2854‐2860, 2002.
 580. Tserentsoodol N, Shin B, Koyama H, Suzuki T, Takata K. Immunolocalization of tight junction proteins, occludin and ZO‐1, and glucose transporter GLUT1 in the cells of the blood‐nerve barrier. Archives Histol Cytol 62: 459‐469, 1999.
 581. Uchida Y, Ohtsuki S, Katsukura Y, Ikeda C, Suzuki T, Kamiie J, Terasaki T. Quantitative targeted absolute proteomics of human blood‐brain barrier transporters and receptors. J Neurochem 117: 333‐345, 2011.
 582. Ueki M, Linn F, Hossmann KA. Functional activation of cerebral blood flow and metabolism before and after global ischemia of rat brain. J Cereb Blood Flow Metab S 8: 486‐494, 1988.
 583. Uldry M, Ibberson M, Horisberger JD, Chatton JY, Riederer BM, Thorens B. Identification of a mammalian H(+)‐myo‐inositol symporter expressed predominantly in the brain. EMBO J 20: 4467‐4477, 2001.
 584. Uldry M, Thorens B. The SLC2 family of facilitated hexose and polyol transporters. Pflugers Arch 447: 480‐489, 2004.
 585. Uldry M, Ibberson M, Hosokawa M, Thorens B. GLUT2 is a high affinity glucosamine transporter. FEBS Lett 524: 199‐203, 2002.
 586. Uldry M, Steiner P, Zurich M‐G, Beguin P, Hirling H, Dolci W, Thorens B. Regulated exocytosis of an H+/myo‐inositol symporter at synapses and growth cones. EMBO J 23: 531‐540, 2004.
 587. Vannucci SJ. Developmental expression of GLUT1 and GLUT3 glucose transporters in rat brain. J Neurochem 62: 240‐246, 1994.
 588. Vannucci SJ, Koehler‐Stec EM, Li K, Reynolds TH, Clark R, Simpson IA. GLUT4 glucose transporter expression in rodent brain: Effect of diabetes. Brain Res 797: 1‐11, 1998.
 589. Vannucci SJ, Maher F, Koehler E, Simpson IA. Altered expression of GLUT‐1 and GLUT‐3 glucose transporters in neurohypophysis of water‐deprived or diabetic rats. Am J Physiol 267: E605‐E611, 1994.
 590. Vannucci SJ, Willing LB, Vannucci RC. Developmental expression of glucose transporters, GLUT1 and GLUT3, in postnatal rat brain. Adv Exp Med Biol 331: 3‐7, 1993.
 591. Vardhana PA, Illsley NP. Transepithelial glucose transport and metabolism in BeWo choriocarcinoma cells. Placenta 23: 653‐660, 2002.
 592. Vera JC, Rivas CI, Fischbarg J, Golde DW. Mammalian facilitative hexose transporters mediate the transport of dehydroascorbic acid. Nature 364: 79‐82, 1993.
 593. Vera JC, Rivas CI, Velasquez FV, Zhang RH, Concha II, Golde DW. Resolution of the facilitated transport of dehydroascorbic acid from its intracellular accumulation as ascorbic acid. J Biol Chem 270: 23706‐23712, 1995.
 594. Vera JC, Rivas CI, Zhang RH, Farber CM, Golde DW. Human HL‐60 myeloid leukemia cells transport dehydroascorbic acid via the glucose transporters and accumulate reduced ascorbic acid. Blood 84: 1628‐1634, 1994.
 595. Vieira E, Salehi A, Gylfe E. Glucose inhibits glucagon secretion by a direct effect on mouse pancreatic alpha cells. Diabetologia 50: 370‐379, 2007.
 596. Vollers S, Carruthers A. Molecular determinants of GLUT1‐mediated accelerated exchange. (unpublished) 2011.
 597. Wadhwani KC, Rapoport SI. Transport properties of vertebrate blood‐nerve barrier: Comparison with blood‐brain barrier. Prog Neurobiol 43: 235‐279, 1994.
 598. Walmsley AR, Lowe AG. Comparison of the kinetics and thermodynamics of the carrier systems for glucose and leucine in human red blood cells. Biochim Biophys Acta 901: 229‐238, 1987.
 599. Walz T, Hirai T, Murata K, Heymann JB, Mitsuoka K, Fujiyoshi Y, Smith BL, Agre P, Engel A. The three‐dimensional structure of aquaporin‐1. Nature 387: 624‐627, 1997.
 600. Wang D, Pascual JM, Yang H, Engelstad K, Mao X, Cheng J, Yoo J, Noebels JL, De Vivo DC. A mouse model for Glut‐1 haploinsufficiency. Hum Mol Genet 15: 1169‐1179, 2006.
 601. Watson RT, Pessin JE. Bridging the GAP between insulin signaling and GLUT4 translocation. Trends Biochem Sci 31: 215‐222, 2006.
 602. Weidema AF, Dixon SJ, Sims SM. Activation of P2Y but not P2X(4) nucleotide receptors causes elevation of [Ca2+]i in mammalian osteoclasts. Am J Physiol Cell Physiol 280: C1531‐C1539, 2001.
 603. Weiser MB, Razin M, Stein WD. Kinetic tests of models for sugar transport in human erythrocytes and a comparison of fresh and cold–stored cells. Biochim Biophys Acta 727: 379‐388, 1983.
 604. Wendt A, Birnir B, Buschard K, Gromada J, Salehi A, Sewing S, Rorsman P, Braun M. Glucose inhibition of glucagon secretion from rat alpha‐cells is mediated by GABA released from neighboring beta‐cells. Diabetes 53: 1038‐1045, 2004.
 605. Wheeler TJ, Hinkle PC. Kinetic properties of the reconstituted glucose transporter from human erythrocytes. J Biol Chem 256: 8907‐8914, 1981.
 606. Wheeler TJ, Simpson IA, Sogin DC, Hinkle PC, Cushman SW. Detection of the rat adipose cell glucose transporter with antibody against the human red cell glucose transporter. Biochem Biophys Res Commun 105: 89‐95, 1982.
 607. White MD, Kuhn NJ, Ward S. Permeability of lactating‐rat mammary gland Golgi membranes to monosaccharides. Biochem J 190: 621‐624, 1980.
 608. Widdas WF. Inability of diffusion to account for placental glucose transfer in the sheep and consideration of the kinetics of a possible carrier transfer. J Physiol (Lond) 118: 23‐39, 1952.
 609. Widdas WF. Facilitated transfer of hexoses across the human erythrocyte membrane. J Physiol (Lond) 125: 163‐180, 1954.
 610. Widdas WF. The asymmetry of the hexose transfer system in the human red cell membrane. Curr Top Memb Transp 14: 165‐223, 1980.
 611. Widmer M, Uldry M, Thorens B. GLUT8 subcellular localization and absence of translocation to the plasma membrane in PC12 cells and hippocampal neurons. Endocrinology 146: 4727‐4736, 2005.
 612. Wieman HL, Wofford JA, Rathmell JC. Cytokine stimulation promotes glucose uptake via phosphatidylinositol‐3 kinase/Akt regulation of Glut1 activity and trafficking. Mol Biol Cell 18: 1437‐1446, 2007.
 613. Wightman RM, Haynes CL. Synaptic vesicles really do kiss and run. Nat Neurosci 7: 321‐322, 2004.
 614. Williams CA, Phillips T, Macdonald I. The influence of glucose on serum galactose levels in man. Metabolism 32: 250‐256, 1983.
 615. Williams JP, Blair HC, McDonald JM, McKenna MA, Jordan SE, Williford J, Hardy RW. Regulation of osteoclastic bone resorption by glucose. Biochem Biophys Res Commun 235: 646‐651, 1997.
 616. Williams SA, Blache D, Martin GB, Foot R, Blackberry MA, Scaramuzzi RJ. Effect of nutritional supplementation on quantities of glucose transporters 1 and 4 in sheep granulosa and theca cells. Reproduction 122: 947‐956, 2001.
 617. Wilson‐O'Brien AL, Dehaan CL, Rogers S. Mitogen‐stimulated and rapamycin‐sensitive glucose transporter 12 targeting and functional glucose transport in renal epithelial cells. Endocrinology 149: 917‐924, 2008.
 618. Wilson A, Laurenti E, Oser G, van der Wath RC, Blanco‐Bose W, Jaworski M, Offner S, Dunant CF, Eshkind L, Bockamp E, Lio P, Macdonald HR, Trumpp A. Hematopoietic stem cells reversibly switch from dormancy to self‐renewal during homeostasis and repair. Cell 135: 1118‐1129, 2008.
 619. Wilson A, Laurenti E, Trumpp A. Balancing dormant and self‐renewing hematopoietic stem cells. Curr Opin Genet Dev 19: 461‐468, 2009.
 620. Wilson CM, Cushman SW. Insulin stimulation of glucose transport activity in rat skeletal muscle: Increase in cell surface GLUT4 as assessed by photolabelling. Biochem J 755‐759, 1994.
 621. Wittrant Y, Gorin Y, Woodruff K, Horn D, Abboud HE, Mohan S, Abboud‐Werner SL. High d(+)glucose concentration inhibits RANKL‐induced osteoclastogenesis. Bone 42: 1122‐1130, 2008.
 622. Wofford JA, Wieman HL, Jacobs SR, Zhao Y, Rathmell JC. IL‐7 promotes Glut1 trafficking and glucose uptake via STAT5‐mediated activation of Akt to support T‐cell survival. Blood 111: 2101‐2111, 2008.
 623. Wood IS, Hunter L, Trayhurn P. Expression of Class III facilitative glucose transporter genes (GLUT‐10 and GLUT‐12) in mouse and human adipose tissues. Biochem Biophys Res Commun 308: 43‐49, 2003.
 624. Wood IS, Trayhurn P. Glucose transporters (GLUT and SGLT): Expanded families of sugar transport proteins. Br J Nutr 89: 3‐9, 2003.
 625. Wright EM. The intestinal Na+/glucose cotransporter. [Review]. Ann Rev Physiol 55: 575‐589, 1993.
 626. Wright EM. Genetic Diseases of the Kidney. In: Lifton RP, Sornlo S, Giebisch GH, Seldin DW, editors. Renal Na(+)‐glucose cotransporters. Am J Physiol Renal Physiol Amsterdam: Elsevier, 280: F10‐F18, 2001.
 627. Wright EM. Diseases of renal glucose handling. Gen Dis Kid 131, 2009.
 628. Wu X, Freeze HH. GLUT14, a duplicon of GLUT3, is specifically expressed in testis as alternative splice forms. Genomics 80: 553‐557, 2002.
 629. Wu X, Li W, Sharma V, Godzik A, Freeze HH. Cloning and characterization of glucose transporter 11, a novel sugar transporter that is alternatively spliced in various tissues. Mol Genet Metab 76: 37‐45, 2002.
 630. Xing AY, Challier JC, Lepercq J, Cauzac M, Charron MJ, Girard J, Hauguel‐de Mouzon S. Unexpected expression of glucose transporter 4 in villous stromal cells of human placenta. J Clin Endocrinol Metab 83: 4097‐4101, 1998.
 631. Yang J, Holman GD. Insulin and contraction stimulate exocytosis, but increased AMP‐activated protein kinase activity resulting from oxidative metabolism stress slows endocytosis of GLUT4 in cardiomyocytes. J Biol Chem 280: 4070‐4078, 2005.
 632. Yang XJ, Kow LM, Funabashi T, Mobbs CV. Hypothalamic glucose sensor: Similarities to and differences from pancreatic beta‐cell mechanisms. Diabetes 48: 1763‐1772, 1999.
 633. Yang XJ, Kow LM, Pfaff DW, Mobbs CV. Metabolic pathways that mediate inhibition of hypothalamic neurons by glucose. Diabetes 53: 67‐73, 2004.
 634. Yin Y, He X, Szewczyk P, Nguyen T, Chang G. Structure of the multidrug transporter EmrD from Escherichia coli. Science (New York, NY) 312: 741‐744, 2006.
 635. Yoshihara T, Satoh M, Yamamura Y, Itoh H, Ishii T. Ultrastructural localization of glucose transporter 1 (GLUT1) in guinea pig stria vascularis and vestibular dark cell areas: An immunogold study. Acta Otolaryngol 119: 336‐340, 1999.
 636. Yu J, Fischman DA, Steck TL. Selective solubilization of proteins and phospholipids from red blood cell membranes by nonionic detergents. J Supramol Struct 1: 233‐248, 1973.
 637. Zhao C, Wilson MC, Schuit F, Halestrap AP, Rutter GA. Expression and distribution of lactate/monocarboxylate transporter isoforms in pancreatic islets and the exocrine pancreas. Diabetes 50: 361‐366, 2001.
 638. Zhao FQ, Dixon WT, Kennelly JJ. Localization and gene expression of glucose transporters in bovine mammary gland. Comp Biochem Physiol B Biochem Mol Biol 115: 127‐134, 1996.
 639. Zhao FQ, Glimm DR, Kennelly JJ. Distribution of mammalian facilitative glucose transporter messenger RNA in bovine tissues. Int J Biochem 25: 1897‐1903, 1993.
 640. Zhao FQ, Keating AF. Expression and regulation of glucose transporters in the bovine mammary gland. J Dairy Sci 90 Suppl 1: E76‐E86, 2007a.
 641. Zhao FQ, Keating AF. Functional properties and genomics of glucose transporters. Curr Genomics 8: 113‐128, 2007b.
 642. Zhou J, Bondy CA. Placental glucose transporter gene expression and metabolism in the rat. J Clin Invest 91: 845‐852, 1993.
 643. Zisman A, Peroni OD, Abel ED, Michael MD, Mauvais‐Jarvis F, Lowell BB, Wojtaszewski JF, Hirshman MF, Virkamaki A, Goodyear LJ, Kahn CR, Kahn BB. Targeted disruption of the glucose transporter 4 selectively in muscle causes insulin resistance and glucose intolerance. Nat Med 6: 924‐928, 2000.
 644. Zoccoli MA, Baldwin SA, Lienhard GE. The monosaccharide transport system of the human erythrocyte. Solubilization and characterization on the basis of cytochalasin B binding. J Biol Chem 253: 6923‐6930, 1978.
 645. Zoidis E, Ghirlanda‐Keller C, Schmid C. Stimulation of glucose transport in osteoblastic cells by parathyroid hormone and insulin‐like growth factor I. Mol Cell Biochem 348: 33‐42, 2011.
 646. Zola H, Swart B, Nicholson I, Voss E, eds. Leukocyte and Stromal Cell Molecules: The CD Markers. Wiley, 2007.
 647. Zottola RJ, Cloherty EK, Coderre PE, Hansen A, Hebert DN, Carruthers A. Glucose transporter function is controlled by transporter oligomeric structure. A single, intramolecular disulfide promotes GLUT1 tetramerization. Biochemistry 34: 9734‐9747, 1995.

Contact Editor

Submit a note to the editor about this article by filling in the form below.

* Required Field

How to Cite

Anthony J. Cura, Anthony Carruthers. Role of Monosaccharide Transport Proteins in Carbohydrate Assimilation, Distribution, Metabolism, and Homeostasis. Compr Physiol 2012, 2: 863-914. doi: 10.1002/cphy.c110024