Comprehensive Physiology Wiley Online Library

The Cellular Building Blocks of Breathing

Full Article on Wiley Online Library



Abstract

Respiratory brainstem neurons fulfill critical roles in controlling breathing: they generate the activity patterns for breathing and contribute to various sensory responses including changes in O2 and CO2. These complex sensorimotor tasks depend on the dynamic interplay between numerous cellular building blocks that consist of voltage‐, calcium‐, and ATP‐dependent ionic conductances, various ionotropic and metabotropic synaptic mechanisms, as well as neuromodulators acting on G‐protein coupled receptors and second messenger systems. As described in this review, the sensorimotor responses of the respiratory network emerge through the state‐dependent integration of all these building blocks. There is no known respiratory function that involves only a small number of intrinsic, synaptic, or modulatory properties. Because of the complex integration of numerous intrinsic, synaptic, and modulatory mechanisms, the respiratory network is capable of continuously adapting to changes in the external and internal environment, which makes breathing one of the most integrated behaviors. Not surprisingly, inspiration is critical not only in the control of ventilation, but also in the context of “inspiring behaviors” such as arousal of the mind and even creativity. Far‐reaching implications apply also to the underlying network mechanisms, as lessons learned from the respiratory network apply to network functions in general. © 2012 American Physiological Society. Compr Physiol 2:2683‐2731, 2012.

Comprehensive Physiology offers downloadable PowerPoint presentations of figures for non-profit, educational use, provided the content is not modified and full credit is given to the author and publication.

Download a PowerPoint presentation of all images


Figure 1. Figure 1.

Anatomical and physiological characterization of the pre‐Bötzinger complex (preBötC) in the ventrolateral medulla. (A) Anatomical maps of brainstem regions from rodent [left 436] and human (right, modified, with permission, from reference 489 containing the preBötC. The location of the preBötC is anatomically characterized by the same transverse section as the nucleus ambiguus (Amb), inferior olive (IO), nucleus tractus solitarius (NTS), and hypoglossal nucleus (XII). (B) Isolating the preBötC in a single medullary brainstem slice from rodents preserves rhythmic neuronal activity implicated in the generation of inspiratory activity. Heat maps of activity show both an anatomical and physiological overlap of neuronal activities representing fictive eupnea (left), sighs (center), and gasps (right). Modified, with permission, from reference 299.

Figure 2. Figure 2.

Simultaneous intracellular whole cell recordings and integrated extracellular population recordings from pre‐Bötzinger (preBötC) respiratory neurons (A) in vitro from a mouse brain slice exhibiting “fictive” eupneic activity and (B) in vivo from an anesthetized rat, during “eupneic activity” (modified, wih permission, from reference 490). (C) Integrated population recordings in vitro of a fictive sigh recorded with a surface electrode from the preBötC in a mouse brain slice and (E) from a working heart‐brainstem preparation (WHBP). (D) A sigh recorded in vivo from the phrenic nerve (PN) from an anesthetized cat (modified, with permission, from reference 76).

Figure 3. Figure 3.

Putative inspiratory neurons of the preBötC integrate modulatory, synaptic, intrinsic, and intracellular mechanisms that give rise to bursting. Modulation commonly involves a cascade of mechanisms mediated through metabotropic glutamate receptors (mGLUR‐I, II, III), noradrenergic receptors (α1, α2, and β‐NE), serotonergic receptors (5HT‐1A, 2, 4, and 7), peptidergic (NK1‐R), and purinergic receptors (P2Y1) that represent G‐protein‐coupled protein receptors (Gs, Gi, and Gq) and act on various intracellular signal transductions. Synaptic mechanisms involve ionotropic glutamatergic (AMPA‐R, NMDA‐R), GABAergic (GABAA‐R), and glycinergic receptors (GLY‐R) that rapidly change membrane potential and hence, neuronal excitability when activated. Intrinsic mechanisms refer to other membrane conductances that are not strictly synaptic, but also regulate neuronal excitability. These include, but are not limited to: (1) leak conductances, (TREK, TWIK, TASK, and NALCN); (2) calcium conductances (T, P, and L‐Ca2+); (3) K+ conductances (KATP, BK, SK); (4) sodium conductances (Nav, INaP); and nonspecific cation conductances, ICAN (TRPC‐3, 7, and TRPM‐4, 5). Intracellular mechanisms refer to the molecules and ions regulating intracellular signaling cascades and ultimately lead to changes in excitability. For example, Ca2+ and ATP influence neuronal excitability through indirect mechanisms affecting the conductances generated through various channels such as the KATP, and ICAN. Blue outlines represent hyperpolarizing conductances, while red outlines represent depolarizing conductances.

Figure 4. Figure 4.

Autonomously active neurons are part of the spectrum of intrinsic building blocks responsible for rhythmic population bursts in the preBötC. At the cellular level, a diversity of mechanisms exist to produce several forms of bursting that have different pharmacological properties. Some neurons express cadmium‐insensitive bursting (CI) that is riluzole sensitive, and therefore, appears to be mediated by INaP (blue). Other neurons express cadmium‐sensitive bursting (CS), predominantly mediated by both voltage‐dependent Ca2+ currents (Cav) and a FFA‐sensitive ICAN. Moreover, pharmacological blockade of 5HT2A receptors can turn CI‐bursting into tonic spiking while activation of a1‐noradrenergic receptors in tonic spiking neurons into CS‐bursting. This type of conditional bursting demonstrates that the role of autonomously active neurons in the preBötC may not be fixed. Hence, while both forms of bursting, CI and CS, depend on dominant current(s) to drive spontaneous bursting, all putative inspiratory neurons of the preBötC appear to possess tonic boosting currents (grey), the INaP (blue), ICAN (yellow), and Cav (purple).

Figure 5. Figure 5.

Synaptic modulation of bursting properties. (A) Pharmacological removal of synaptic inhibition can alter the propensity of a respiratory neuron to switch from a tonic spiking into a bursting mode. (B) In a simultaneous intracellular and population recording, a burst of action potentials can be triggered in the cell by a brief positive current injection (rd) or by synaptic input occurring during the population burst.

Figure 6. Figure 6.

Generation of fictive sighs depends on the activation of P/Q‐type calcium channels. Pharmacological blockade of the P/Q type channels with ω‐agatoxin TK specifically abolishes sighs. (A) Sighs recorded under control conditions in population recordings from the preBötC (sighs indicated by red arrows) and (B) after bath application of ω‐agatoxin TK, at low concentrations (modified, with permission, from reference 297). (C) Reduction of the amplitude of intracellularly recorded evoked EPSPs (by electrical stimulation of the contralateral preBötC) in respiratory neurons by pharmacological blockade of P/Q‐type calcium channels. Individual responses of five neurons to ω‐agatoxin TK [120 nmol/L] show a variable response, with a minimum of 8% reduction and a maximum of 90% reduction. (D) Individual responses to the N‐type specific calcium channel blocker GVIA [0.5 μmol/L], showing a homogeneous 40% reduction of evoked EPSPs (modified, with permission, from reference 297). (E) Activation of the metabotropic glutamate receptors (mGluR8) leads to specific inhibition of “fictive sighs” recorded from the preBötC (modified, with permission, from reference 296). (F) Hypothesized mechanism of action for the inhibition of P/Q‐type calcium channels by activated mGluR8 receptors, through a direct inhibitory interaction with the β‐subunit of the heterotrimeric G‐protein.

Figure 7. Figure 7.

Pacemaker neurons are able to burst throughout a range of extracellular potassium concentrations with the contribution of the persistent sodium current. (A) An intracellular recording from an individual pacemaker neuron illustrating autonomous bursting throughout a range of extracellular potassium concentrations (3‐8 mmol/L) without significant changes to membrane potential. (B) Traces expanded from A of the autonomously bursting pacemaker at 3 mmol/L (left) and 8 mmol/L (right) extracellular K+. (C) Autonomous bursting involves INaP as revealed by long‐lasting hyperpolarizing current injections that cause the neuron to cease bursting, but as it intrinsically depolarizes bursting is resumed. Hence, pacemaker neurons do not require artificial elevation of extracellular potassium to autonomously burst 77,566,564.

Figure 8. Figure 8.

Synaptic inhibition and its potential role in the generation of rhythmic network activity. (A) Schematic cartoon of a half center model with neurons connected by reciprocal inhibition. (B) Neurons connected to a dynamic clamp establish an artificial half center and can produce a variety of patterned outputs, as shown. Examples of a half‐center model exhibiting (B1) alternating slow oscillations, (B2) antiphasic spiking, or (B3) high‐frequency half‐center oscillation. Output of the half‐center model is highly dependent upon the synaptic and ionic conductance parameters defined by the dynamic clamp (modified, with permission, from reference 503).

Figure 9. Figure 9.

Network and cellular responses of respiratory neurons to muscarinic receptor activation. (A) Bath application of the muscarinic agonist oxotremorine stimulates fictive sigh activity (red arrows), while inhibiting eupneic activity (blue arrows). (B) Bath application of oxotremorine induces the generation of two distinct burst patterns recorded from a CI pacemaker neuron, isolated from fast synaptic transmission (modified, with permission, from reference 563).

Figure 10. Figure 10.

Network reconfiguration of the preBötC during hypoxia, at the cellular and network level. (A) Typical biphasic network activity response of the preBötC during hypoxia, assessed by integrated population recording from the preBötC. After an early augmentation phase, activity enters a late depression phase. During this response, activity changes from a “fictive eupneic” to a “fictive gasping” mode of activity. Note the generation of multiple “fictive sighs” during the augmentation phase. (B1) Plot of spontaneous excitatory and inhibitory postsynaptic currents (ESPCs and IPSCs) recorded from a preBötC respiratory neuron in response to hypoxia. Note the dramatic reduction of IPSCs during hypoxia. (B2) IPSCs recorded in vivo from a respiratory neuron of an anesthetized cat, before and during hypoxia (modified, with permission, from reference 486). (C) Average activity of three subsets of autonomous active neurons, in response to hypoxia. Tonically firing autonomous spiking and cadmium‐sensitive (CS) pacemaker neurons hyperpolarize and cease firing during hypoxia (State I and State II). (D) By contrast, cadmium‐insensitive (CI) pacemaker neurons continue to fire under hypoxia, even with persistent exposure to hypoxic conditions (State III) (modified, with permission, from references 404 and 553).

Figure 11. Figure 11.

Examples of activity pattern changes in respiratory neurons during hypoxia. (A1) Current‐clamp recording from an inspiratory neuron showing an augmenting burst pattern under control normoxic conditions, switching to a sharply rising and decrementing burst under hypoxia. (A2) This change in network‐initiated burst patterns coincides with a decrease in spontaneous inhibitory postsynaptic currents (IPSCs), measured in voltage clamp. (A3) Example of an expiratory neuron that receives inhibitory synaptic input under normoxic conditions, switching to excitatory synaptic input under hypoxia. (B) Examples of autonomous activity in three subsets of respiratory neurons isolated from fast synaptic transmission, before and during hypoxia. Tonic firing neurons and CS‐pacemaker neurons become silent, while CI‐pacemaker neurons continue to generate bursting activity under hypoxia.

Figure 12. Figure 12.

The diverse interaction and relative contribution of multiple mechanisms (see Figure 3) in a single neuron gives rise to a neuronal population that possesses heterogeneous properties used to generate bursting and ultimately contribute to the eupneic rhythm. This integrated respiration during eupnea provides both stability and dynamic responsiveness. Hypoxia reconfigures the network to a state dominated by the INaP, KATP, and the AMPA receptor (AMPA‐R) and various forms of neuromodulation. At the cellular level, INaP appears to be the basis for bursting involved with the gasping rhythm (i.e., INaP‐driven gasping).

Figure 13. Figure 13.

Downstream pathways and effector channels for Gq/11, Gs, and Gi protein coupled receptors. Gs protein coupled receptors (GsPCRs) and Gq/11 protein coupled receptors (GqPCRs) are in general excitatory systems, and Gi protein coupled receptors (GiPCRs) are inhibitory systems. Both GsPCRs and GiPCRs regulate AC, cAMP, and PKA, and GqPCRs facilitate Ca2+ release from Ca2+ store and protein kinase C (PKC). These second messenger proteins up‐ and downregulate open probability of several voltage‐dependent cation channels. PIP2 (phosphatidylinositol 4,5‐biphosphate), PLC (phospholipase C), IP3 (inositol‐1,4,5‐trisphosphate), DAG (diacylglycerol), PKC, AC (adenylyl cyclase), cAMP (cyclic AMP), PKA (protein kinase A), ICAN (calcium‐activated nonspecific cation current), Ih (hyperpolarization activated non‐selective cation channels), GIRK (G protein coupled inward rectifier K+ channels), KCa2+ (Ca2+‐activated K+ channels), Cav (voltage‐dependent Ca2+ channels), Nav (voltage‐dependent Na+ channels), M‐current (muscarinic receptor activated K+ channels), andKATP (ATP‐sensitive K+ channels).

Figure 14. Figure 14.

Cross‐talk between Gq/11 and Gs system. It has been thought that each of the GqPCRs and Gs(i)PCRs systems are separated. However, recent studies suggest GsPCRs‐related cAMP production or activation of PKA stimulates elevation of intracellular Ca2+ and activation of PKC 17,151,272,457,608.

Figure 15. Figure 15.

GqPCRs regulates not only voltage‐dependent cation channels, but also transient receptor potential (TRP) and leak cation channels. GqPCRs‐induced depletion of Ca2+‐store facilitates activation of Ca2+‐store operated NSCCs, such as TRPC (1‐6, 7), TRPM (3,7,8) and TRPV6. On the other hand, TRPM4/5 may be directly activated by elevation of internal Ca2+ concentration 300,576. GqPCRs seem to modulate activity of K2P (TASK, TREK, and TRESK) and sodium‐leak‐channel‐nonspecific (NALCN) channels. In particular, GqPCRs act through Src protein controls NALCN channels through both UNC‐79 and UNC‐80 317,316,491,540. Abbreviations; P2K (“two‐pore” potassium channels, TASK, TREK, and TRESK channels), TRPM (transient receptor potential melastatin), TRPV(transient receptor potential vanilloid), TRPC (transient receptor potential canonical), Ca2+ store operated NSCCs (nonselective cation currents), and Src (sarcoma) is a proto‐oncogenic and nonreceptor tyrosine kinase.



Figure 1.

Anatomical and physiological characterization of the pre‐Bötzinger complex (preBötC) in the ventrolateral medulla. (A) Anatomical maps of brainstem regions from rodent [left 436] and human (right, modified, with permission, from reference 489 containing the preBötC. The location of the preBötC is anatomically characterized by the same transverse section as the nucleus ambiguus (Amb), inferior olive (IO), nucleus tractus solitarius (NTS), and hypoglossal nucleus (XII). (B) Isolating the preBötC in a single medullary brainstem slice from rodents preserves rhythmic neuronal activity implicated in the generation of inspiratory activity. Heat maps of activity show both an anatomical and physiological overlap of neuronal activities representing fictive eupnea (left), sighs (center), and gasps (right). Modified, with permission, from reference 299.



Figure 2.

Simultaneous intracellular whole cell recordings and integrated extracellular population recordings from pre‐Bötzinger (preBötC) respiratory neurons (A) in vitro from a mouse brain slice exhibiting “fictive” eupneic activity and (B) in vivo from an anesthetized rat, during “eupneic activity” (modified, wih permission, from reference 490). (C) Integrated population recordings in vitro of a fictive sigh recorded with a surface electrode from the preBötC in a mouse brain slice and (E) from a working heart‐brainstem preparation (WHBP). (D) A sigh recorded in vivo from the phrenic nerve (PN) from an anesthetized cat (modified, with permission, from reference 76).



Figure 3.

Putative inspiratory neurons of the preBötC integrate modulatory, synaptic, intrinsic, and intracellular mechanisms that give rise to bursting. Modulation commonly involves a cascade of mechanisms mediated through metabotropic glutamate receptors (mGLUR‐I, II, III), noradrenergic receptors (α1, α2, and β‐NE), serotonergic receptors (5HT‐1A, 2, 4, and 7), peptidergic (NK1‐R), and purinergic receptors (P2Y1) that represent G‐protein‐coupled protein receptors (Gs, Gi, and Gq) and act on various intracellular signal transductions. Synaptic mechanisms involve ionotropic glutamatergic (AMPA‐R, NMDA‐R), GABAergic (GABAA‐R), and glycinergic receptors (GLY‐R) that rapidly change membrane potential and hence, neuronal excitability when activated. Intrinsic mechanisms refer to other membrane conductances that are not strictly synaptic, but also regulate neuronal excitability. These include, but are not limited to: (1) leak conductances, (TREK, TWIK, TASK, and NALCN); (2) calcium conductances (T, P, and L‐Ca2+); (3) K+ conductances (KATP, BK, SK); (4) sodium conductances (Nav, INaP); and nonspecific cation conductances, ICAN (TRPC‐3, 7, and TRPM‐4, 5). Intracellular mechanisms refer to the molecules and ions regulating intracellular signaling cascades and ultimately lead to changes in excitability. For example, Ca2+ and ATP influence neuronal excitability through indirect mechanisms affecting the conductances generated through various channels such as the KATP, and ICAN. Blue outlines represent hyperpolarizing conductances, while red outlines represent depolarizing conductances.



Figure 4.

Autonomously active neurons are part of the spectrum of intrinsic building blocks responsible for rhythmic population bursts in the preBötC. At the cellular level, a diversity of mechanisms exist to produce several forms of bursting that have different pharmacological properties. Some neurons express cadmium‐insensitive bursting (CI) that is riluzole sensitive, and therefore, appears to be mediated by INaP (blue). Other neurons express cadmium‐sensitive bursting (CS), predominantly mediated by both voltage‐dependent Ca2+ currents (Cav) and a FFA‐sensitive ICAN. Moreover, pharmacological blockade of 5HT2A receptors can turn CI‐bursting into tonic spiking while activation of a1‐noradrenergic receptors in tonic spiking neurons into CS‐bursting. This type of conditional bursting demonstrates that the role of autonomously active neurons in the preBötC may not be fixed. Hence, while both forms of bursting, CI and CS, depend on dominant current(s) to drive spontaneous bursting, all putative inspiratory neurons of the preBötC appear to possess tonic boosting currents (grey), the INaP (blue), ICAN (yellow), and Cav (purple).



Figure 5.

Synaptic modulation of bursting properties. (A) Pharmacological removal of synaptic inhibition can alter the propensity of a respiratory neuron to switch from a tonic spiking into a bursting mode. (B) In a simultaneous intracellular and population recording, a burst of action potentials can be triggered in the cell by a brief positive current injection (rd) or by synaptic input occurring during the population burst.



Figure 6.

Generation of fictive sighs depends on the activation of P/Q‐type calcium channels. Pharmacological blockade of the P/Q type channels with ω‐agatoxin TK specifically abolishes sighs. (A) Sighs recorded under control conditions in population recordings from the preBötC (sighs indicated by red arrows) and (B) after bath application of ω‐agatoxin TK, at low concentrations (modified, with permission, from reference 297). (C) Reduction of the amplitude of intracellularly recorded evoked EPSPs (by electrical stimulation of the contralateral preBötC) in respiratory neurons by pharmacological blockade of P/Q‐type calcium channels. Individual responses of five neurons to ω‐agatoxin TK [120 nmol/L] show a variable response, with a minimum of 8% reduction and a maximum of 90% reduction. (D) Individual responses to the N‐type specific calcium channel blocker GVIA [0.5 μmol/L], showing a homogeneous 40% reduction of evoked EPSPs (modified, with permission, from reference 297). (E) Activation of the metabotropic glutamate receptors (mGluR8) leads to specific inhibition of “fictive sighs” recorded from the preBötC (modified, with permission, from reference 296). (F) Hypothesized mechanism of action for the inhibition of P/Q‐type calcium channels by activated mGluR8 receptors, through a direct inhibitory interaction with the β‐subunit of the heterotrimeric G‐protein.



Figure 7.

Pacemaker neurons are able to burst throughout a range of extracellular potassium concentrations with the contribution of the persistent sodium current. (A) An intracellular recording from an individual pacemaker neuron illustrating autonomous bursting throughout a range of extracellular potassium concentrations (3‐8 mmol/L) without significant changes to membrane potential. (B) Traces expanded from A of the autonomously bursting pacemaker at 3 mmol/L (left) and 8 mmol/L (right) extracellular K+. (C) Autonomous bursting involves INaP as revealed by long‐lasting hyperpolarizing current injections that cause the neuron to cease bursting, but as it intrinsically depolarizes bursting is resumed. Hence, pacemaker neurons do not require artificial elevation of extracellular potassium to autonomously burst 77,566,564.



Figure 8.

Synaptic inhibition and its potential role in the generation of rhythmic network activity. (A) Schematic cartoon of a half center model with neurons connected by reciprocal inhibition. (B) Neurons connected to a dynamic clamp establish an artificial half center and can produce a variety of patterned outputs, as shown. Examples of a half‐center model exhibiting (B1) alternating slow oscillations, (B2) antiphasic spiking, or (B3) high‐frequency half‐center oscillation. Output of the half‐center model is highly dependent upon the synaptic and ionic conductance parameters defined by the dynamic clamp (modified, with permission, from reference 503).



Figure 9.

Network and cellular responses of respiratory neurons to muscarinic receptor activation. (A) Bath application of the muscarinic agonist oxotremorine stimulates fictive sigh activity (red arrows), while inhibiting eupneic activity (blue arrows). (B) Bath application of oxotremorine induces the generation of two distinct burst patterns recorded from a CI pacemaker neuron, isolated from fast synaptic transmission (modified, with permission, from reference 563).



Figure 10.

Network reconfiguration of the preBötC during hypoxia, at the cellular and network level. (A) Typical biphasic network activity response of the preBötC during hypoxia, assessed by integrated population recording from the preBötC. After an early augmentation phase, activity enters a late depression phase. During this response, activity changes from a “fictive eupneic” to a “fictive gasping” mode of activity. Note the generation of multiple “fictive sighs” during the augmentation phase. (B1) Plot of spontaneous excitatory and inhibitory postsynaptic currents (ESPCs and IPSCs) recorded from a preBötC respiratory neuron in response to hypoxia. Note the dramatic reduction of IPSCs during hypoxia. (B2) IPSCs recorded in vivo from a respiratory neuron of an anesthetized cat, before and during hypoxia (modified, with permission, from reference 486). (C) Average activity of three subsets of autonomous active neurons, in response to hypoxia. Tonically firing autonomous spiking and cadmium‐sensitive (CS) pacemaker neurons hyperpolarize and cease firing during hypoxia (State I and State II). (D) By contrast, cadmium‐insensitive (CI) pacemaker neurons continue to fire under hypoxia, even with persistent exposure to hypoxic conditions (State III) (modified, with permission, from references 404 and 553).



Figure 11.

Examples of activity pattern changes in respiratory neurons during hypoxia. (A1) Current‐clamp recording from an inspiratory neuron showing an augmenting burst pattern under control normoxic conditions, switching to a sharply rising and decrementing burst under hypoxia. (A2) This change in network‐initiated burst patterns coincides with a decrease in spontaneous inhibitory postsynaptic currents (IPSCs), measured in voltage clamp. (A3) Example of an expiratory neuron that receives inhibitory synaptic input under normoxic conditions, switching to excitatory synaptic input under hypoxia. (B) Examples of autonomous activity in three subsets of respiratory neurons isolated from fast synaptic transmission, before and during hypoxia. Tonic firing neurons and CS‐pacemaker neurons become silent, while CI‐pacemaker neurons continue to generate bursting activity under hypoxia.



Figure 12.

The diverse interaction and relative contribution of multiple mechanisms (see Figure 3) in a single neuron gives rise to a neuronal population that possesses heterogeneous properties used to generate bursting and ultimately contribute to the eupneic rhythm. This integrated respiration during eupnea provides both stability and dynamic responsiveness. Hypoxia reconfigures the network to a state dominated by the INaP, KATP, and the AMPA receptor (AMPA‐R) and various forms of neuromodulation. At the cellular level, INaP appears to be the basis for bursting involved with the gasping rhythm (i.e., INaP‐driven gasping).



Figure 13.

Downstream pathways and effector channels for Gq/11, Gs, and Gi protein coupled receptors. Gs protein coupled receptors (GsPCRs) and Gq/11 protein coupled receptors (GqPCRs) are in general excitatory systems, and Gi protein coupled receptors (GiPCRs) are inhibitory systems. Both GsPCRs and GiPCRs regulate AC, cAMP, and PKA, and GqPCRs facilitate Ca2+ release from Ca2+ store and protein kinase C (PKC). These second messenger proteins up‐ and downregulate open probability of several voltage‐dependent cation channels. PIP2 (phosphatidylinositol 4,5‐biphosphate), PLC (phospholipase C), IP3 (inositol‐1,4,5‐trisphosphate), DAG (diacylglycerol), PKC, AC (adenylyl cyclase), cAMP (cyclic AMP), PKA (protein kinase A), ICAN (calcium‐activated nonspecific cation current), Ih (hyperpolarization activated non‐selective cation channels), GIRK (G protein coupled inward rectifier K+ channels), KCa2+ (Ca2+‐activated K+ channels), Cav (voltage‐dependent Ca2+ channels), Nav (voltage‐dependent Na+ channels), M‐current (muscarinic receptor activated K+ channels), andKATP (ATP‐sensitive K+ channels).



Figure 14.

Cross‐talk between Gq/11 and Gs system. It has been thought that each of the GqPCRs and Gs(i)PCRs systems are separated. However, recent studies suggest GsPCRs‐related cAMP production or activation of PKA stimulates elevation of intracellular Ca2+ and activation of PKC 17,151,272,457,608.



Figure 15.

GqPCRs regulates not only voltage‐dependent cation channels, but also transient receptor potential (TRP) and leak cation channels. GqPCRs‐induced depletion of Ca2+‐store facilitates activation of Ca2+‐store operated NSCCs, such as TRPC (1‐6, 7), TRPM (3,7,8) and TRPV6. On the other hand, TRPM4/5 may be directly activated by elevation of internal Ca2+ concentration 300,576. GqPCRs seem to modulate activity of K2P (TASK, TREK, and TRESK) and sodium‐leak‐channel‐nonspecific (NALCN) channels. In particular, GqPCRs act through Src protein controls NALCN channels through both UNC‐79 and UNC‐80 317,316,491,540. Abbreviations; P2K (“two‐pore” potassium channels, TASK, TREK, and TRESK channels), TRPM (transient receptor potential melastatin), TRPV(transient receptor potential vanilloid), TRPC (transient receptor potential canonical), Ca2+ store operated NSCCs (nonselective cation currents), and Src (sarcoma) is a proto‐oncogenic and nonreceptor tyrosine kinase.

References
 1. Aarts M, Iihara K, Wei WL, Xiong ZG, Arundine M, Cerwinski W, MacDonald JF, Tymianski M. A key role for TRPM7 channels in anoxic neuronal death. Cell 115: 863–877, 2003.
 2. Abbott SB, Stornetta RL, Fortuna MG, Depuy SD, West GH, Harris TE, Guyenet PG. Photostimulation of retrotrapezoid nucleus phox2b‐expressing neurons in vivo produces long‐lasting activation of breathing in rats. J Neurosci 29: 5806–5819, 2009.
 3. Abdala AP, Rybak IA, Smith JC, Zoccal DB, Machado BH, St‐John WM, Paton JF. Multiple pontomedullary mechanisms of respiratory rhythmogenesis. Respir Physiol Neurobiol 168: 19–25, 2009.
 4. Aguilar‐Bryan L, Nichols CG, Wechsler SW, Clement JP th, Boyd AE 3rd, Gonzalez G, Herrera‐Sosa H, Nguy K, Bryan J, Nelson DA. Cloning of the beta cell high‐affinity sulfonylurea receptor: A regulator of insulin secretion. Science 268: 423–426, 1995.
 5. Ahmmed GU, Mehta D, Vogel S, Holinstat M, Paria BC, Tiruppathi C, Malik AB. Protein kinase Calpha phosphorylates the TRPC1 channel and regulates store‐operated Ca2+ entry in endothelial cells. J Biol Chem 279: 20941–20949, 2004.
 6. Albillos A, Neher E, Moser T. R‐type Ca2+ channels are coupled to the rapid component of secretion in mouse adrenal slice chromaffin cells. J Neurosci 20: 8323–8330, 2000.
 7. Alzheimer C, Schwindt PC, Crill WE. Postnatal development of a persistent Na+ current in pyramidal neurons from rat sensorimotor cortex. J Neurophysiol 69: 290–292, 1993.
 8. Aman TK, Raman IM. Inwardly permeating Na ions generate the voltage dependence of resurgent Na current in cerebellar Purkinje neurons. J Neurosci 30: 5629–5634, 2010.
 9. Aman TK, Shen RY, Haj‐Dahmane S. D2‐like dopamine receptors depolarize dorsal raphe serotonin neurons through the activation of nonselective cationic conductance. J Pharmacol Exp Ther 320: 376–385, 2007.
 10. Aosaki T, Kiuchi K, Kawaguchi Y. Dopamine D1‐like receptor activation excites rat striatal large aspiny neurons in vitro. J Neurosci 18: 5180–5190, 1998.
 11. Arshavsky YI, Deliagina TG, Orlovsky GN, Panchin YV, Popova LB, Sadreyev RI. Analysis of the central pattern generator for swimming in the mollusk Clione. Ann N Y Acad Sci U S A 860: 51–69, 1998.
 12. Baekey DM, Molkov YI, Paton JF, Rybak IA, Dick TE. Effect of baroreceptor stimulation on the respiratory pattern: Insights into respiratory‐sympathetic interactions. Respir Physiol Neurobiol 174: 135–145, 2010.
 13. Ballantyne D, Andrzejewski M, Muckenhoff K, Scheid P. Rhythms, synchrony and electrical coupling in the Locus coeruleus. Respir Physiol Neurobiol 143: 199–214, 2004.
 14. Ballantyne D, Richter DW. Post‐synaptic inhibition of bulbar inspiratory neurones in the cat. J Physiol 348: 67–87, 1984.
 15. Ballanyi K. Protective role of neuronal KATP channels in brain hypoxia. J Exp Biol 207: 3201–3212, 2004.
 16. Bant JS, Raman IM. Control of transient, resurgent, and persistent current by open‐channel block by Na channel beta4 in cultured cerebellar granule neurons. Proc Natl Acad Sci U S A 107: 12357–12362, 2010.
 17. Baxter DA, Canavier CC, Clark JW, Jr., Byrne JH. Computational model of the serotonergic modulation of sensory neurons in Aplysia. J Neurophysiol 82: 2914–2935, 1999.
 18. Bayliss DA, Sirois JE, Talley EM. The TASK family: Two‐pore domain background K+ channels. Mol Interv 3: 205–219, 2003.
 19. Bayliss DA, Talley EM, Sirois JE, Lei Q. TASK‐1 is a highly modulated pH‐sensitive ‘leak’ K(+) channel expressed in brainstem respiratory neurons. Respir Physiol 129: 159–174, 2001.
 20. Belykh I, Shilnikov A. When weak inhibition synchronizes strongly desynchronizing networks of bursting neurons. Phys Rev Lett 2008; 101: 078102.
 21. Ben‐Mabrouk F, Tryba AK. Substance P modulation of TRPC3/7 channels improves respiratory rhythm regularity and ICAN‐dependent pacemaker activity. Eur J Neurosci 31: 1219–1232, 2010.
 22. Benarroch EE. Neuronal voltage‐gated calcium channels: Brief overview of their function and clinical implications in neurology. Neurology 74: 1310–1315, 2010.
 23. Bengtson CP, Tozzi A, Bernardi G, Mercuri NB. Transient receptor potential‐like channels mediate metabotropic glutamate receptor EPSCs in rat dopamine neurones. J Physiol 555: 323–330, 2004.
 24. Berg AP, Talley EM, Manger JP, Bayliss DA. Motoneurons express heteromeric TWIK‐related acid‐sensitive K+ (TASK) channels containing TASK‐1 (KCNK3) and TASK‐3 (KCNK9) subunits. J Neurosci 24: 6693–6702, 2004.
 25. Berger AJ. Respiratory gating of phrenic motoneuron responses to superior laryngeal nerve stimulation. Brain Res 157: 381–384, 1978.
 26. Berkefeld H, Fakler B. Repolarizing responses of BKCa‐Cav complexes are distinctly shaped by their Cav subunits. J Neurosci 28: 8238–8245, 2008.
 27. Berkefeld H, Sailer CA, Bildl W, Rohde V, Thumfart JO, Eble S, Klugbauer N, Reisinger E, Bischofberger J, Oliver D, Knaus HG, Schulte U, Fakler B. BKCa‐Cav channel complexes mediate rapid and localized Ca2+‐activated K+ signaling. Science 314: 615–620, 2006.
 28. Berner J, Shvarev Y, Lagercrantz H, Bilkei‐Gorzo A, Hokfelt T, Wickstrom R. Altered respiratory pattern and hypoxic response in transgenic newborn mice lacking the tachykinin‐1 gene. J Appl Physiol 103: 552–559, 2007.
 29. Bhattacharjee A, Joiner WJ, Wu M, Yang Y, Sigworth FJ, Kaczmarek LK. Slick (Slo2.1), a rapidly‐gating sodium‐activated potassium channel inhibited by ATP. J Neurosci 23: 11681–11691, 2003.
 30. Bhattacharjee A, von Hehn CA, Mei X, Kaczmarek LK. Localization of the Na+‐activated K+ channel Slick in the rat central nervous system. J Comp Neurol 484: 80–92, 2005.
 31. Binder JR, Frost JA, Hammeke TA, Bellgowan PS, Rao SM, Cox RW. Conceptual processing during the conscious resting state. A functional MRI study. J Cogn Neurosci 11: 80–95, 1999.
 32. Birkeland JA, Swift F, Tovsrud N, Enger U, Lunde PK, Qvigstad E, Levy FO, Sejersted OM, Sjaastad I. Serotonin increases L‐type Ca2+ current and SR Ca2+ content through 5‐HT4 receptors in failing rat ventricular cardiomyocytes. Am J Physiol Heart Circ Physiol 293: H2367–H2376, 2007.
 33. Bond CT, Maylie J, Adelman JP. SK channels in excitability, pacemaking and synaptic integration. Curr Opin Neurobiol 15: 305–311, 2005.
 34. Bond CT, Sprengel R, Bissonnette JM, Kaufmann WA, Pribnow D, Neelands T, Storck T, Baetscher M, Jerecic J, Maylie J, Knaus HG, Seeburg PH, Adelman JP. Respiration and parturition affected by conditional overexpression of the Ca2+‐activated K+ channel subunit, SK3. Science 289: 1942–1946, 2000.
 35. Bou‐Flores C, Berger AJ. Gap junctions and inhibitory synapses modulate inspiratory motoneuron synchronization. J Neurophysiol 85: 1543–1551, 2001.
 36. Bouvier J, Thoby‐Brisson M, Renier N, Dubreuil V, Ericson J, Champagnat J, Pierani A, Chedotal A, Fortin G. Hindbrain interneurons and axon guidance signaling critical for breathing. Nat Neurosci 13: 1066–1074, 2010.
 37. Boyd DF, Millar JA, Watkins CS, Mathie A. The role of Ca2+ stores in the muscarinic inhibition of the K+ current IK(SO) in neonatal rat cerebellar granule cells. J Physiol 2000; 529(Pt 2): 321–31.
 38. Brackenbury WJ, Isom LL. Voltage‐gated Na+ channels: Potential for beta subunits as therapeutic targets. Expert Opin Ther Targets 12: 1191–1203, 2008.
 39. Brager DH, Johnston D. Plasticity of intrinsic excitability during long‐term depression is mediated through mGluR‐dependent changes in I(h) in hippocampal CA1 pyramidal neurons. J Neurosci 27: 13926–13937, 2007.
 40. Broadbelt KG, Barger MA, Paterson DS, Holm IA, Haas EA, Krous HF, Kinney HC, Markianos K, Beggs AH. Serotonin‐related FEV gene variant in the sudden infant death syndrome is a common polymorphism in the African‐American population. Pediatr Res 66: 631–635, 2009.
 41. Brockhaus J, Ballanyi K. Synaptic inhibition in the isolated respiratory network of neonatal rats. Eur J Neurosci 10: 3823–3839, 1998.
 42. Brown DA, Adams PR. Muscarinic suppression of a novel voltage‐sensitive K+ current in a vertebrate neurone. Nature 283: 673–676, 1980.
 43. Brown DA, Passmore GM. Neural KCNQ (Kv7) channels. Br J Pharmacol 156: 1185–1195, 2009.
 44. Brumberg JC, Nowak LG, McCormick DA. Ionic mechanisms underlying repetitive high‐frequency burst firing in supragranular cortical neurons. J Neurosci 20: 4829–4843, 2000.
 45. Brundage CM, Taylor BE. Neuroplasticity of the central hypercapnic ventilatory response: Teratogen‐induced impairment and subsequent recovery during development. Dev Neurobiol 70: 726–735, 2010.
 46. Buchanan GF, Richerson GB. Central serotonin neurons are required for arousal to CO2. Proc Natl Acad Sci U S A 107: 16354–16359, 2010.
 47. Budelli G, Hage TA, Wei A, Rojas P, Jong YJ, O'Malley K, Salkoff L. Na+‐activated K+ channels express a large delayed outward current in neurons during normal physiology. Nat Neurosci 12: 745–750, 2009.
 48. Bureau MA, Zinman R, Foulon P, Begin R. Diphasic ventilatory response to hypoxia in newborn lambs. J Appl Physiol 56: 84–90, 1984.
 49. Burnstock G. Physiology and pathophysiology of purinergic neurotransmission. Physiol Rev 87: 659–797, 2007.
 50. Burton MD, Nouri M, Kazemi H. Acetylcholine and central respiratory control: Perturbations of acetylcholine synthesis in the isolated brainstem of the neonatal rat. Brain Res 670: 39–47, 1995.
 51. Butera RJ, Jr., Rinzel J, Smith JC. Models of respiratory rhythm generation in the pre‐Botzinger complex. I. Bursting pacemaker neurons. J Neurophysiol 82: 382–397, 1999.
 52. Butler A, Tsunoda S, McCobb DP, Wei A, Salkoff L. mSlo, a complex mouse gene encoding “maxi” calcium‐activated potassium channels. Science 261: 221–224, 1993.
 53. Calabrese RL, Nadim F, Olsen OH. Heartbeat control in the medicinal leech: A model system for understanding the origin, coordination, and modulation of rhythmic motor patterns. J Neurobiol 27: 390–402, 1995.
 54. Campos M, Bravo E, Eugenin J. Respiratory dysfunctions induced by prenatal nicotine exposure. Clin Exp Pharmacol Physiol 36: 1205–1217, 2009.
 55. Cardenas CG, Del Mar LP, Scroggs RS. Two parallel signaling pathways couple 5HT1A receptors to N‐ and L‐type calcium channels in C‐like rat dorsal root ganglion cells. J Neurophysiol 77: 3284–3296, 1997.
 56. Cardenas CG, Mar LP, Vysokanov AV, Arnold PB, Cardenas LM, Surmeier DJ, Scroggs RS. Serotonergic modulation of hyperpolarization‐activated current in acutely isolated rat dorsal root ganglion neurons. J Physiol 518(Pt 2): 507–23, 1999.
 57. Cardin JA, Palmer LA, Contreras D. Stimulus‐dependent gamma (30–50 Hz) oscillations in simple and complex fast rhythmic bursting cells in primary visual cortex. J Neurosci 25: 5339–5350, 2005.
 58. Carley DW, Paviovic S, Janelidze M, Radulovacki M. Functional role for cannabinoids in respiratory stability during sleep. Sleep 25: 391–398, 2002.
 59. Carley DW, Radulovacki M. Role of peripheral adenosine A(1) receptors in the regulation of sleep apneas in rats. Exp Neurol 159: 545–550, 1999.
 60. Carr DB, Cooper DC, Ulrich SL, Spruston N, Surmeier DJ. Serotonin receptor activation inhibits sodium current and dendritic excitability in prefrontal cortex via a protein kinase C‐dependent mechanism. J Neurosci 22: 6846–6855, 2002.
 61. Cassus‐Soulanis S, Foutz AS, Denavit‐Saubie M. Involvement of NMDA receptors in inspiratory termination in rodents: Effects of wakefulness. Brain Res 679: 25–33, 1995.
 62. Caterina MJ, Leffler A, Malmberg AB, Martin WJ, Trafton J, Petersen‐Zeitz KR, Koltzenburg M, Basbaum AI, Julius D. Impaired nociception and pain sensation in mice lacking the capsaicin receptor. Science 288: 306–313, 2000.
 63. Catterall WA. Molecular properties of brain sodium channels: An important target for anticonvulsant drugs. Adv Neurol 79: 441–456, 1999.
 64. Catterall WA. From ionic currents to molecular mechanisms: The structure and function of voltage‐gated sodium channels. Neuron 26: 13–25, 2000.
 65. Chamberlin NL, Saper CB. A brainstem network mediating apneic reflexes in the rat. J Neurosci 18: 6048–6056, 1998.
 66. Champagnat J, Richter DW. The roles of K+ conductance in expiratory pattern generation in anaesthetized cats. J Physiol 479(Pt 1): 127–138, 1994.
 67. Champagnat J, Morin‐Surun MP, Fortin G, Thoby‐Brisson M. Developmental basis of the rostro‐caudal organization of the brainstem respiratory rhythm generator. Philos Trans R Soc Lond B Biol Sci 364: 2469–2476, 2009.
 68. Chan V, Starr PA, Turner RS. Bursts and oscillations as independent properties of neural activity in the parkinsonian globus pallidus internus. Neurobiol Dis 41: 2–10, 2011.
 69. Chao D, Xia Y. Ionic storm in hypoxic/ischemic stress: Can opioid receptors subside it? Prog Neurobiol 90: 439–470, 2010.
 70. Chapin EM, Haj‐Dahmane S, Torres G, Andrade R. The 5‐HT(4) receptor‐induced depolarization in rat hippocampal neurons is mediated by cAMP but is independent of I(h). Neurosci Lett 324: 1–4, 2002.
 71. Charlier C, Singh NA, Ryan SG, Lewis TB, Reus BE, Leach RJ, Leppert M. A pore mutation in a novel KQT‐like potassium channel gene in an idiopathic epilepsy family. Nat Genet 18: 53–55, 1998.
 72. Chemin J, Girard C, Duprat F, Lesage F, Romey G, Lazdunski M. Mechanisms underlying excitatory effects of group I metabotropic glutamate receptors via inhibition of 2P domain K+ channels. EMBO J 22: 5403–5411, 2003.
 73. Chen BS, Peng H, Wu SN. Dexmedetomidine, an alpha2‐adrenergic agonist, inhibits neuronal delayed‐rectifier potassium current and sodium current. Br J Anaesth 103: 244–254, 2009.
 74. Chen L, Yang XL. Hyperpolarization‐activated cation current is involved in modulation of the excitability of rat retinal ganglion cells by dopamine. Neuroscience 150: 299–308, 2007.
 75. Chen SK, Ko GY, Dryer SE. Somatostatin peptides produce multiple effects on gating properties of native cone photoreceptor cGMP‐gated channels that depend on circadian phase and previous illumination. J Neurosci 27: 12168–12175, 2007.
 76. Cherniack NS, Edelman NH, Lahiri S. Hypoxia and hypercapnia as respiratory stimulants and depressants. Respir Physiol, 11: 113–126, 1970–1971.
 77. Chevalier M, Ben‐Mabrouk F, Tryba AK. Background sodium current underlying respiratory rhythm regularity. Eur J Neurosci 28: 2423–2433, 2008.
 78. Clarac F. Some historical reflections on the neural control of locomotion. Brain Res Rev 57: 13–21, 2008.
 79. Clark BD, Kurth‐Nelson ZL, Newman EA. Adenosine‐evoked hyperpolarization of retinal ganglion cells is mediated by G‐protein‐coupled inwardly rectifying K+ and small conductance Ca2+‐activated K+ channel activation. J Neurosci 29: 11237–11245, 2009.
 80. Coddou C, Bravo E, Eugenin J. Alterations in cholinergic sensitivity of respiratory neurons induced by pre‐natal nicotine: A mechanism for respiratory dysfunction in neonatal mice. Philos Trans R Soc Lond B Biol Sci 364: 2527–2535, 2009.
 81. Colquhoun D, Neher E, Reuter H, Stevens CF. Inward current channels activated by intracellular Ca in cultured cardiac cells. Nature 294: 752–754, 1981.
 82. Congar P, Leinekugel X, Ben‐Ari Y, Crepel V. A long‐lasting calcium‐activated nonselective cationic current is generated by synaptic stimulation or exogenous activation of group I metabotropic glutamate receptors in CA1 pyramidal neurons. J Neurosci 17: 5366–5379, 1997.
 83. Conn PJ, Pin JP. Pharmacology and functions of metabotropic glutamate receptors. Annu Rev Pharmacol Toxicol 37: 205–237, 1997.
 84. Connelly CA, Otto‐Smith MR, Feldman JL. Blockade of NMDA receptor‐channels by MK‐801 alters breathing in adult rats. Brain Res 596: 99–110, 1992.
 85. Conrad SC, Nichols NL, Ritucci NA, Dean JB, Putnam RW. Development of chemosensitivity in neurons from the nucleus tractus solitarii (NTS) of neonatal rats. Respir Physiol Neurobiol 166: 4–12, 2009.
 86. Contreras D. The role of T‐channels in the generation of thalamocortical rhythms. CNS Neurol Disord Drug Targets 5: 571–585, 2006.
 87. Corcoran AE, Hodges MR, Wu Y, Wang W, Wylie CJ, Deneris ES, Richerson GB. Medullary serotonin neurons and central CO2 chemoreception. Respir Physiol Neurobiol 168: 49–58, 2009.
 88. Corey DP. New TRP channels in hearing and mechanosensation. Neuron 39: 585–588, 2003.
 89. Crowder EA, Saha MS, Pace RW, Zhang H, Prestwich GD, Del Negro CA. Phosphatidylinositol 4,5‐bisphosphate regulates inspiratory burst activity in the neonatal mouse preBotzinger complex. J Physiol 582: 1047–1058, 2007.
 90. Curran AK, Rodman JR, Eastwood PR, Henderson KS, Dempsey JA, Smith CA. Ventilatory responses to specific CNS hypoxia in sleeping dogs. J Appl Physiol 88: 1840–1852, 2000.
 91. Cymbalyuk G, Shilnikov A. Coexistence of tonic spiking oscillations in a leech neuron model. J Comput Neurosci 18: 255–263, 2005.
 92. Czirjak G, Fischer T, Spat A, Lesage F, Enyedi P. TASK (TWIK‐related acid‐sensitive K+ channel) is expressed in glomerulosa cells of rat adrenal cortex and inhibited by angiotensin II. Mol Endocrinol 14: 863–874, 2000.
 93. Czirjak G, Toth ZE, Enyedi P. The two‐pore domain K+ channel, TRESK, is activated by the cytoplasmic calcium signal through calcineurin. J Biol Chem 279: 18550–18558, 2004.
 94. Datta S, Siwek DF. Excitation of the brain stem pedunculopontine tegmentum cholinergic cells induces wakefulness and REM sleep. J Neurophysiol 77: 2975–2988, 1997.
 95. de Oliveira RB, Howlett MC, Gravina FS, Imtiaz MS, Callister RJ, Brichta AM, van Helden DF. Pacemaker currents in mouse locus coeruleus neurons. Neuroscience 170: 166–177, 2010.
 96. Dean JB, Lawing WL, Millhorn DE. CO2 decreases membrane conductance and depolarizes neurons in the nucleus tractus solitarii. Exp Brain Res 76: 656–661, 1989.
 97. Dean JB, Nattie EE. Central CO2 chemoreception in cardiorespiratory control. J Appl Physiol 108: 976–978, 2010.
 98. Dean JB, Putnam RW. The caudal solitary complex is a site of central CO(2) chemoreception and integration of multiple systems that regulate expired CO(2). Respir Physiol Neurobiol 173: 274–287, 2010.
 99. Dekin MS, Richerson GB, Getting PA. Thyrotropin‐releasing hormone induces rhythmic bursting in neurons of the nucleus tractus solitarius. Science 229: 67–69, 1985.
 100. Del Negro CA, Hayes JA, Pace RW, Brush BR, Teruyama R, Feldman JL. Synaptically activated burst‐generating conductances may underlie a group‐pacemaker mechanism for respiratory rhythm generation in mammals. Prog Brain Res 187: 111–136, 2010.
 101. Del Negro CA, Hayes JA, Rekling JC. Dendritic calcium activity precedes inspiratory bursts in preBotzinger complex neurons. J Neurosci 31: 1017–1022, 2011.
 102. Del Negro CA, Johnson SM, Butera RJ, Smith JC. Models of respiratory rhythm generation in the pre‐Botzinger complex. III. Experimental tests of model predictions. J Neurophysiol 86: 59–74, 2001.
 103. Del Negro CA, Koshiya N, Butera RJ, Jr., Smith JC. Persistent sodium current, membrane properties and bursting behavior of pre‐botzinger complex inspiratory neurons in vitro. J Neurophysiol 88: 2242–2250, 2002.
 104. Del Negro CA, Morgado‐Valle C, Feldman JL. Respiratory rhythm: An emergent network property? Neuron 34: 821–830, 2002.
 105. Del Negro CA, Morgado‐Valle C, Hayes JA, Mackay DD, Pace RW, Crowder EA, Feldman JL. Sodium and calcium current‐mediated pacemaker neurons and respiratory rhythm generation. J Neurosci 25: 446–453, 2005.
 106. Del Negro CA, Pace RW, Hayes JA. What role do pacemakers play in the generation of respiratory rhythm? Adv Exp Med Biol 605: 88–93, 2008.
 107. Derjean D, Bertrand S, Nagy F, Shefchyk SJ. Plateau potentials and membrane oscillations in parasympathetic preganglionic neurones and intermediolateral neurones in the rat lumbosacral spinal cord. J Physiol 563: 583–596, 2005.
 108. Di Prisco GV, Pearlstein E, Le Ray D, Robitaille R, Dubuc R. A cellular mechanism for the transformation of a sensory input into a motor command. J Neurosci 20: 8169–8176, 2000.
 109. Do MT, Bean BP. Subthreshold sodium currents and pacemaking of subthalamic neurons: Modulation by slow inactivation. Neuron 39: 109–120, 2003.
 110. Dogas Z, Krolo M, Stuth EA, Tonkovic‐Capin M, Hopp FA, McCrimmon DR, Zuperku EJ. Differential effects of GABAA receptor antagonists in the control of respiratory neuronal discharge patterns. J Neurophysiol 80: 2368–2377, 1998.
 111. Doi A, Ramirez JM. Neuromodulation and the orchestration of the respiratory rhythm. Respir Physiol Neurobiol 164: 96–104, 2008.
 112. Doi A, Ramirez JM. State‐dependent interactions between excitatory neuromodulators in the neuronal control of breathing. J Neurosci 30: 8251–8262, 2010.
 113. Donahue LM, Coates PW, Lee VH, Ippensen DC, Arze SE, Poduslo SE. The cardiac sodium channel mRNA is expressed in the developing and adult rat and human brain. Brain Res 887: 335–343, 2000.
 114. Dreyfus FM, Tscherter A, Errington AC, Renger JJ, Shin HS, Uebele VN, Crunelli V, Lambert RC, Leresche N. Selective T‐type calcium channel block in thalamic neurons reveals channel redundancy and physiological impact of I(T)window. J Neurosci 30: 99–109, 2010.
 115. Drion G, Bonjean M, Waroux O, Scuvee‐Moreau J, Liegeois JF, Sejnowski TJ, Sepulchre R, Seutin V. M‐type channels selectively control bursting in rat dopaminergic neurons. Eur J Neurosci 31: 827–835, 2010.
 116. Dryer SE, Dourado MM, Wisgirda ME. Characteristics of multiple Ca(2+)‐activated K +channels in acutely dissociated chick ciliary‐ganglion neurones. J Physiol 443: 601–627, 1991.
 117. Dubreuil V, Thoby‐Brisson M, Rallu M, Persson K, Pattyn A, Birchmeier C, Brunet JF, Fortin G, Goridis C. Defective respiratory rhythmogenesis and loss of central chemosensitivity in Phox2b mutants targeting retrotrapezoid nucleus neurons. J Neurosci 29: 14836–14846, 2009.
 118. Duffin J, Tian GF, Peever JH. Functional synaptic connections among respiratory neurons. Respir Physiol 122: 237–246, 2000.
 119. Duncan JR, Garland M, Myers MM, Fifer WP, Yang M, Kinney HC, Stark RI. Prenatal nicotine‐exposure alters fetal autonomic activity and medullary neurotransmitter receptors: Implications for sudden infant death syndrome. J Appl Physiol 107: 1579–1590, 2009.
 120. Duncan JR, Paterson DS, Hoffman JM, Mokler DJ, Borenstein NS, Belliveau RA, Krous HF, Haas EA, Stanley C, Nattie EE, Trachtenberg FL, Kinney HC. Brainstem serotonergic deficiency in sudden infant death syndrome. JAMA 303: 430–437, 2010.
 121. Dunlap K, Luebke JI, Turner TJ. Exocytotic Ca2+ channels in mammalian central neurons. Trends Neurosci 18: 89–98, 1995.
 122. Dunmyre JR, Del Negro CA, Rubin JE. Interactions of persistent sodium and calcium‐activated nonspecific cationic currents yield dynamically distinct bursting regimes in a model of respiratory neurons. J Comput Neurosci 31: 305–328, 2011.
 123. Dutschmann M, Bischoff AM, Busselberg D, Richter DW. Histaminergic modulation of the intact respiratory network of adult mice. Pflugers Arch 445: 570–576, 2003.
 124. Dutschmann M, Kron M, Morschel M, Gestreau C. Activation of Orexin B receptors in the pontine Kolliker‐Fuse nucleus modulates pre‐inspiratory hypoglossal motor activity in rat. Respir Physiol Neurobiol 159: 232–235, 2007.
 125. Egan TM, Dagan D, Kupper J, Levitan IB. Na(+)‐activated K+ channels are widely distributed in rat CNS and in Xenopus oocytes. Brain Res 584: 319–321, 1992.
 126. Elsen FP, Ramirez JM. Calcium currents of rhythmic neurons recorded in the isolated respiratory network of neonatal mice. J Neurosci 18: 10652–10662, 1998.
 127. Elsen FP, Ramirez JM. Postnatal development differentially affects voltage‐activated calcium currents in respiratory rhythmic versus nonrhythmic neurons of the pre‐Botzinger complex. J Neurophysiol 94: 1423–1431, 2005.
 128. Ene FA, Kalmbach A, Kandler K. Metabotropic glutamate receptors in the lateral superior olive activate TRP‐like channels: Age‐ and experience‐dependent regulation. J Neurophysiol 97: 3365–3375, 2007.
 129. Engel S, Gershengorn MC. Thyrotropin‐releasing hormone and its receptors–a hypothesis for binding and receptor activation. Pharmacol Ther 113: 410–419, 2007.
 130. England SJ, Melton JE, Douse MA, Duffin J. Activity of respiratory neurons during hypoxia in the chemodenervated cat. J Appl Physiol 78: 856–861, 1995.
 131. Enyedi P, Czirjak G. Molecular background of leak K+ currents: Two‐pore domain potassium channels. Physiol Rev 90: 559–605, 2010.
 132. Erickson JT, Millhorn DE. Hypoxia and electrical stimulation of the carotid sinus nerve induce Fos‐like immunoreactivity within catecholaminergic and serotoninergic neurons of the rat brainstem. J Comp Neurol 348: 161–182, 1994.
 133. Erlichman JS, Boyer AC, Reagan P, Putnam RW, Ritucci NA, Leiter JC. Chemosensory responses to CO2 in multiple brain stem nuclei determined using a voltage‐sensitive dye in brain slices from rats. J Neurophysiol 102: 1577–1590, 2009.
 134. Erlichman JS, Cook A, Schwab MC, Budd TW, Leiter JC. Heterogeneous patterns of pH regulation in glial cells in the dorsal and ventral medulla. Am J Physiol Regul Integr Comp Physiol 286: R289‐R302, 2004.
 135. Erlichman JS, Hewitt A, Damon TL, Hart M, Kurascz J, Li A. Leiter JC. Inhibition of monocarboxylate transporter 2 in the retrotrapezoid nucleus in rats: A test of the astrocyte‐neuron lactate‐shuttle hypothesis. J Neurosci 28: 4888–4896, 2008.
 136. Erlichman JS, Li A, Nattie EE. Ventilatory effects of glial dysfunction in a rat brain stem chemoreceptor region. J Appl Physiol 85: 1599–1604, 1998.
 137. Eugenin J, Otarola M, Bravo E, Coddou C, Cerpa V, Reyes‐Parada M, Llona I, von Bernhardi R. Prenatal to early postnatal nicotine exposure impairs central chemoreception and modifies breathing pattern in mouse neonates: A probable link to sudden infant death syndrome. J Neurosci 28: 13907–13917, 2008.
 138. Faber ES, Sedlak P, Vidovic M, Sah P. Synaptic activation of transient receptor potential channels by metabotropic glutamate receptors in the lateral amygdala. Neuroscience 137: 781–794, 2006.
 139. Falk S, Rekling JC. Neurons in the preBotzinger complex and VRG are located in proximity to arterioles in newborn mice. Neurosci Lett 450: 229–234, 2009.
 140. Farrell SR, Raymond ID, Foote M, Brecha NC, Barnes S. Modulation of voltage‐gated ion channels in rat retinal ganglion cells mediated by somatostatin receptor subtype 4. J Neurophysiol 104: 1347–1354, 2010.
 141. Fedorko L, Duffin J, England S. Inhibition of inspiratory neurons of the nucleus retroambigualis by expiratory neurons of the Botzinger complex in the cat. Exp Neurol 106: 74–77, 1989.
 142. Feldman JL. Looking forward to breathing. Prog Brain Res 188: 213–218, 2011.
 143. Feldman JL, Del Negro CA. Looking for inspiration: New perspectives on respiratory rhythm. Nat Rev Neurosci 7: 232–242, 2006.
 144. Feldman JL, Janczewski WA. Point:Counterpoint: The parafacial respiratory group (pFRG)/pre‐Botzinger complex (preBotC) is the primary site of respiratory rhythm generation in the mammal. Counterpoint: The preBotC is the primary site of respiratory rhythm generation in the mammal. J Appl Physiol 100: 2096–2097, discussion 2097–2098, 2103–2108, 2006.
 145. Feldman JL, Mitchell GS, Nattie EE. Breathing: Rhythmicity, plasticity, chemosensitivity. Annu Rev Neurosci 26: 239–266, 2003.
 146. Feldman JL, Windhorst U, Anders K, Richter DW. Synaptic interaction between medullary respiratory neurones during apneusis induced by NMDA‐receptor blockade in cat. J Physiol 450: 303–323, 1992.
 147. Feng SS, Jaeger D. The role of SK calcium‐dependent potassium currents in regulating the activity of deep cerebellar nucleus neurons: A dynamic clamp study. Cerebellum 7: 542–546, 2008.
 148. Ficker DM. Sudden unexplained death and injury in epilepsy. Epilepsia 41(Suppl 2): S7‐S12, 2000.
 149. Filosa JA, Dean JB, Putnam RW. Role of intracellular and extracellular pH in the chemosensitive response of rat locus coeruleus neurones. J Physiol 541: 493–509, 2002.
 150. Fishman MC, Spector I. Potassium current suppression by quinidine reveals additional calcium currents in neuroblastoma cells. Proc Natl Acad Sci U S A 78: 5245–5249, 1981.
 151. Flaherty P, Radhakrishnan ML, Dinh T, Rebres RA, Roach TI, Jordan MI, Arkin AP. A dual receptor crosstalk model of G‐protein‐coupled signal transduction. PLoS Comput Biol 4: e1000185, 2008.
 152. Fleig A, Penner R. The TRPM ion channel subfamily: Molecular, biophysical and functional features. Trends Pharmacol Sci 25: 633–639, 2004.
 153. Flourens MJ‐P. Recherches Expérimentales sur les Propriétés et les Fonctions du Système Nerveux dans les Animaux Vertébrés [Experimental research on the properties and functions of the nervous system in vertebrate animals]. Paris: Crevot, 1824.
 154. Foutz AS, Champagnat J, Denavit‐Saubie M. Involvement of N‐methyl‐D‐aspartate (NMDA) receptors in respiratory rhythmogenesis. Brain Res 500: 199–208, 1989.
 155. Fox AP, Cahill AL, Currie KP, Grabner C, Harkins AB, Herring B, Hurley JH, Xie Z. N‐ and P/Q‐type Ca2+ channels in adrenal chromaffin cells. Acta Physiol (Oxf) 192: 247–261, 2008.
 156. Fox AP, Nowycky MC, Tsien RW. Kinetic and pharmacological properties distinguishing three types of calcium currents in chick sensory neurones. J Physiol 394: 149–172, 1987.
 157. Francesconi A, Duvoisin RM. Opposing effects of protein kinase C and protein kinase A on metabotropic glutamate receptor signaling: Selective desensitization of the inositol trisphosphate/Ca2+ pathway by phosphorylation of the receptor‐G protein‐coupling domain. Proc Natl Acad Sci U S A 97: 6185–6190, 2000.
 158. Franco P, Szliwowski H, Dramaix M, Kahn A. Polysomnographic study of the autonomic nervous system in potential victims of sudden infant death syndrome. Clin Auton Res 8: 243–249, 1998.
 159. Fregosi RF, Pilarski JQ. Prenatal nicotine exposure and development of nicotinic and fast amino acid‐mediated neurotransmission in the control of breathing. Respir Physiol Neurobiol 164: 80–86, 2008.
 160. French CR, Sah P, Buckett KJ, Gage PW. A voltage‐dependent persistent sodium current in mammalian hippocampal neurons. J Gen Physiol 95: 1139–1157, 1990.
 161. Friesen WO, Poon M, Stent GS. Neuronal control of swimming in the medicinal leech. IV. Identification of a network of oscillatory interneurones. J Exp Biol 75: 25–43, 1978.
 162. Fujii M, Umezawa K, Arata A. Dopaminergic modulation on respiratory rhythm in rat brainstem‐spinal cord preparation. Neurosci Res 50: 355–359, 2004.
 163. Fuller DD, Dougherty BJ, Sandhu MS, Doperalski NJ, Reynolds CR, Hayward LF. Prenatal nicotine exposure alters respiratory long‐term facilitation in neonatal rats. Respir Physiol Neurobiol 169: 333–337, 2009.
 164. Funk GD, Johnson SM, Smith JC, Dong XW, Lai J, Feldman JL. Functional respiratory rhythm generating networks in neonatal mice lacking NMDAR1 gene. J Neurophysiol 78: 1414–1420, 1997.
 165. Funk GD, Smith JC, Feldman JL. Generation and transmission of respiratory oscillations in medullary slices: Role of excitatory amino acids. J Neurophysiol 70: 1497–1515, 1993.
 166. Funke F, Muller M, Dutschmann M. Reconfiguration of respiratory‐related population activity in a rostrally tilted transversal slice preparation following blockade of inhibitory neurotransmission in neonatal rats. Pflugers Arch 457: 185–195, 2008.
 167. Gabel RA, Weiskopf RB. Ventilatory interaction between hypoxia and [H+] at chemoreceptors of man. J Appl Physiol 39: 292–296, 1975.
 168. Garcia AJ, III, Zanella S, Koch H, Doi A, Ramirez JM. Networks within networks The neuronal control of breathing. Prog Brain Res 188: 31–50, 2011.
 169. Gasparini S, Kasyanov AM, Pietrobon D, Voronin LL, Cherubini E. Presynaptic R‐type calcium channels contribute to fast excitatory synaptic transmission in the rat hippocampus. J Neurosci 21: 8715–8721, 2001.
 170. Ge Q, Feldman JL. AMPA receptor activation and phosphatase inhibition affect neonatal rat respiratory rhythm generation. J Physiol 509(Pt 1): 255–266, 1998.
 171. Gesell R, Lapides J, Levin M. Interaction of central and peripheral chemical control of breathing. Am. J. Pkytiol. 130: 155–170, 1940.
 172. Gestreau C, Heitzmann D, Thomas J, Dubreuil V, Bandulik S, Reichold M, Bendahhou S, Pierson P, Sterner C, Peyronnet‐Roux J, Benfriha C, Tegtmeier I, Ehnes H, Georgieff M, Lesage F, Brunet JF, Goridis C, Warth R, Barhanin J. Task2 potassium channels set central respiratory CO2 and O2 sensitivity. Proc Natl Acad Sci U S A 107: 2325–2330, 2010.
 173. Getting PA. Emerging principles governing the operation of neural networks. Annu Rev Neurosci 12: 185–204, 1989.
 174. Gillis RA, Walton DP, Quest JA, Namath IJ, Hamosh P, Dretchen KL. Cardiorespiratory effects produced by activation of cholinergic muscarinic receptors on the ventral surface of the medulla. J Pharmacol Exp Ther 247: 765–773, 1988.
 175. Goldin AL. Resurgence of sodium channel research. Annu Rev Physiol 63: 871–894, 2001.
 176. Goldin AL, Barchi RL, Caldwell JH, Hofmann F, Howe JR, Hunter JC, Kallen RG, Mandel G, Meisler MH, Netter YB. Noda M, Tamkun MM, Waxman SG, Wood JN, Catterall WA. Nomenclature of voltage‐gated sodium channels. Neuron 28: 365–368, 2000.
 177. Goldstein SA, Bayliss DA, Kim D, Lesage F, Plant LD, Rajan S. International Union of Pharmacology. LV. Nomenclature and molecular relationships of two‐P potassium channels. Pharmacol Rev 57: 527–540, 2005.
 178. Gourine AV, Kasymov V, Marina N, Tang F, Figueiredo MF, Lane S, Teschemacher AG, Spyer KM, Deisseroth K, Kasparov S. Astrocytes control breathing through pH‐dependent release of ATP. Science 329: 571–575, 2010.
 179. Gourine AV, Llaudet E, Dale N, Spyer KM. Release of ATP in the ventral medulla during hypoxia in rats: Role in hypoxic ventilatory response. J Neurosci 25: 1211–1218, 2005.
 180. Gozal D, Torres JE, Gozal YM, Nuckton TJ. Characterization and developmental aspects of anoxia‐induced gasping in the rat. Biol Neonate 70: 280–288, 1996.
 181. Graef JD, Huitt TW, Nordskog BK, Hammarback JH, Godwin DW. Disrupted thalamic T‐type Ca2+ channel expression and function during ethanol exposure and withdrawal. J Neurophysiol 105: 528–540, 2011.
 182. Graham Brown T. The intrinsic factors in the act of progression in the mammal. Proc R Soc Lond 84B: 308–319, 1911.
 183. Graham Brown T. On the nature of the fundamental activity of the nervous centres: Together with an analysis of the conditioning of rhythmic activity in progression, and a theory of the evolution of function in the nervous system. J Physiol 48: 18–46, 1914.
 184. Gray PA, Hayes JA, Ling GY, Llona I, Tupal S, Picardo MC, Ross SE, Hirata T, Corbin JG, Eugenin J, Del Negro CA. Developmental origin of preBotzinger complex respiratory neurons. J Neurosci 30: 14883–14895, 2010.
 185. Gray PA, Janczewski WA, Mellen N, McCrimmon DR, Feldman JL. Normal breathing requires preBotzinger complex neurokinin‐1 receptor‐expressing neurons. Nat Neurosci 4: 927–930, 2001.
 186. Gray PA, Rekling JC, Bocchiaro CM, Feldman JL. Modulation of respiratory frequency by peptidergic input to rhythmogenic neurons in the preBotzinger complex. Science 286: 1566–1568, 1999.
 187. Greer JJ, Smith JC, Feldman JL. Role of excitatory amino acids in the generation and transmission of respiratory drive in neonatal rat. J Physiol 437: 727–749, 1991.
 188. Greicius MD, Flores BH, Menon V, Glover GH, Solvason HB, Kenna H, Reiss AL, Schatzberg AF. Resting‐state functional connectivity in major depression: Abnormally increased contributions from subgenual cingulate cortex and thalamus. Biol Psychiatry 62: 429–437, 2007.
 189. Greka A, Navarro B, Oancea E, Duggan A, Clapham DE. TRPC5 is a regulator of hippocampal neurite length and growth cone morphology. Nat Neurosci 6: 837–845, 2003.
 190. Grillner S, Deliagina T, Ekeberg O, el Manira A, Hill RH, Lansner A, Orlovsky GN, Wallen P. Neural networks that co‐ordinate locomotion and body orientation in lamprey. Trends Neurosci 18: 270–279, 1995.
 191. Grunstein MM, Hazinski TA, Schlueter MA. Respiratory control during hypoxia in newborn rabbits: Implied action of endorphins. J Appl Physiol 51: 122–130, 1981.
 192. Gutman GA, Chandy KG, Adelman JP, Aiyar J, Bayliss DA, Clapham DE, Covarriubias M, Desir GV, Furuichi K, Ganetzky B, Garcia ML, Grissmer S, Jan LY, Karschin A, Kim D, Kuperschmidt S, Kurachi Y, Lazdunski M, Lesage F, Lester HA, McKinnon D, Nichols CG, O'Kelly I, Robbins J, Robertson GA, Rudy B, Sanguinetti M, Seino S, Stuehmer W, Tamkun MM, Vandenberg CA, Wei A, Wulff H, Wymore RS, International Union of Pharmacology. XLI. Compendium of voltage‐gated ion channels: Potassium channels. Pharmacol Rev 55: 583–586, 2003.
 193. Guyenet PG. The 2008 Carl Ludwig Lecture: Retrotrapezoid nucleus, CO2 homeostasis, and breathing automaticity. J Appl Physiol 105: 404–416, 2008.
 194. Guyenet PG, Wang H. Pre‐Botzinger neurons with preinspiratory discharges “in vivo” express NK1 receptors in the rat. J Neurophysiol 86: 438–446, 2001.
 195. Guyenet PG, Mulkey DK. Retrotrapezoid nucleus and parafacial respiratory group. Respir Physiol Neurobiol 173: 244–255, 2010.
 196. Guyenet PG, Stornetta RL, Bayliss DA. Retrotrapezoid nucleus and central chemoreception. J Physiol 586: 2043–2048, 2008.
 197. Guyenet PG, Stornetta RL, Bayliss DA. Central respiratory chemoreception. J Comp Neurol 518: 3883–3906, 2010.
 198. Haddad GG, Mellins RB. Hypoxia and respiratory control in early life. Annu Rev Physiol 46: 629–643, 1984.
 199. Haji A, Remmers JE, Connelly C, Takeda R. Effects of glycine and GABA on bulbar respiratory neurons of cat. J Neurophysiol 63: 955–965, 1990.
 200. Haller M, Mironov SL, Karschin A, Richter DW. Dynamic activation of K(ATP) channels in rhythmically active neurons. J Physiol 537: 69–81, 2001.
 201. Hannon J, Hoyer D. Molecular biology of 5‐HT receptors. Behav Brain Res 195: 198–213, 2008.
 202. Harris‐Warrick RM. General principles of rhythmogenesis in central pattern generator networks. Prog Brain Res 187: 213–222, 2010.
 203. Harris‐Warrick RM, Marder E. Modulation of neural networks for behavior. Annu Rev Neurosci 14: 39–57, 1991.
 204. Hatori E, Sakuraba S, Kashiwagi M, Kuribayashi J, Tsujita M, Hosokawa Y, Takeda J, Kuwana S. Association of nicotinic acetylcholine receptors with central respiratory control in isolated brainstem‐spinal cord preparation of neonatal rats. Biol Res 39: 321–330, 2006.
 205. Hayes JA, Mendenhall JL, Brush BR, Del Negro CA. 4‐Aminopyridine‐sensitive outward currents in preBotzinger complex neurons influence respiratory rhythm generation in neonatal mice. J Physiol 586: 1921–1936, 2008.
 206. He Y, Wang J, Wang L, Chen ZJ, Yan C, Yang H, Tang H, Zhu C, Gong Q, Zang Y, Evans AC. Uncovering intrinsic modular organization of spontaneous brain activity in humans. PLoS One 4: e5226, 2009.
 207. Hedqvist P, Fredholm BB. Effects of adenosine on adrenergic neurotransmission; prejunctional inhibition and postjunctional enhancement. Naunyn Schmiedebergs Arch Pharmacol 293: 217–223, 1976.
 208. Herlitze S, Garcia DE, Mackie K, Hille B, Scheuer T, Catterall WA. Modulation of Ca2+ channels by G‐protein beta gamma subunits. Nature 380: 258–262, 1996.
 209. Hermann A, Gorman AL. Action of quinidine on ionic currents of molluscan pacemaker neurons. J Gen Physiol 83: 919–940, 1984.
 210. Heymans C, Bouckaert JJ. Sinus caroticus and respiratory reflexes: I. Cerebral blood flow and respiration. Adrenaline apnoea. J Physiol 69: 254–266, 1930.
 211. Heymans C, Neil E. Rcflexogenic areas of the cardiovatcular tyttem. London: Churchill 1958.
 212. Heymans JF, Heymans C. Sur les modifications directes et sur la regulation reflexe de l'activite du centre respiratoire de la tfite isolee du chien. Arch Int Pharmacodyn Ther 33: 273–372, 1927.
 213. Hill AA, Garcia AJ, III, Zanella S, Upadhyaya R, Ramirez JM. Graded reductions in oxygenation evoke graded reconfiguration of the isolated respiratory network. J Neurophysiol 105: 625–639, 2011.
 214. Hille B. Ion Channels of Excitable Membranes. Sunderland, MA, USA: Sinauer Associates, Inc., 2001.
 215. Hillman D, Chen S, Aung TT, Cherksey B, Sugimori M, Llinas RR. Localization of P‐type calcium channels in the central nervous system. Proc Natl Acad Sci U S A 88: 7076–7080, 1991.
 216. Hodges MR, Richerson GB. Contributions of 5‐HT neurons to respiratory control: Neuromodulatory and trophic effects. Respir Physiol Neurobiol 164: 222–232, 2008.
 217. Hodges MR, Richerson GB. The role of medullary serotonin (5‐HT) neurons in respiratory control: Contributions to eupneic ventilation, CO2 chemoreception, and thermoregulation. J Appl Physiol 108: 1425–1432, 2010.
 218. Hoffman MS, Golder FJ, Mahamed S, Mitchell GS. Spinal adenosine A2(A) receptor inhibition enhances phrenic long term facilitation following acute intermittent hypoxia. J Physiol 588: 255–266, 2010.
 219. Holtman JR, Jr., Anastasi NC, Norman WP, Dretchen KL. Effect of electrical and chemical stimulation of the raphe obscurus on phrenic nerve activity in the cat. Brain Res 362: 214–220, 1986.
 220. Hornigold DC, Mistry R, Raymond PD, Blank JL, Challiss RA. Evidence for cross‐talk between M2 and M3 muscarinic acetylcholine receptors in the regulation of second messenger and extracellular signal‐regulated kinase signalling pathways in Chinese hamster ovary cells. Br J Pharmacol 138: 1340–1350, 2003.
 221. Huang H, Trussell LO. Control of presynaptic function by a persistent Na(+) current. Neuron 60: 975–979, 2008.
 222. Huang W, Xiu Y, Yan JA, He WJ, Zhao YD, Hu ZA, Ruan HZ. Facilitation of Ih channels by P2Y1 receptors activation in Mesencephalic trigeminal neurons. Neurosci Lett 482: 156–159, 2010.
 223. Huang YH, Brown AR, Costy‐Bennett S, Luo Z, Fregosi RF. Influence of prenatal nicotine exposure on postnatal development of breathing pattern. Respir Physiol Neurobiol 143: 1–8, 2004.
 224. Huang YH, Brown AR, Cross SJ, Cruz J, Rice A. Jaiswal S. Fregosi RF. Influence of prenatal nicotine exposure on development of the ventilatory response to hypoxia and hypercapnia in neonatal rats. J Appl Physiol 109: 149–158, 2010.
 225. Huang ZG, Griffioen KJ, Wang X, Dergacheva O, Kamendi H, Gorini C, Mendelowitz D. Nicotinic receptor activation occludes purinergic control of central cardiorespiratory network responses to hypoxia/hypercapnia. J Neurophysiol 98: 2429–2438, 2007.
 226. Huguenard JR, Prince DA. A novel T‐type current underlies prolonged Ca(2+)‐dependent burst firing in GABAergic neurons of rat thalamic reticular nucleus. J Neurosci 12: 3804–3817, 1992.
 227. Hwang JC, Bartlett D, Jr., St John WM. Characterization of respiratory‐modulated activities of hypoglossal motoneurons. J Appl Physiol 55: 793–798, 1983.
 228. Igarashi N, Tatsumi K, Nakamura A, Sakao S, Takiguchi Y, Nishikawa T, Kuriyama T. Plasma orexin‐A levels in obstructive sleep apnea‐hypopnea syndrome. Chest 124: 1381–1385, 2003.
 229. Ikeda SR. Voltage‐dependent modulation of N‐type calcium channels by G‐protein beta gamma subunits. Nature 380: 255–258, 1996.
 230. Inagaki N, Gonoi T, Clement JPth, Namba N, Inazawa J, Gonzalez G, Aguilar‐Bryan L, Seino S, Bryan J. Reconstitution of IKATP: An inward rectifier subunit plus the sulfonylurea receptor. Science 270: 1166–1170, 1995.
 231. Ireland MF, Lenal FC, Lorier AR, Loomes DE, Adachi T, Alvares TS, Greer JJ, Funk GD. Distinct receptors underlie glutamatergic signalling in inspiratory rhythm‐generating networks and motor output pathways in neonatal rat. J Physiol 586: 2357–2370, 2008.
 232. Isom LL. Sodium channel beta subunits: Anything but auxiliary. Neuroscientist 7: 42–54, 2001.
 233. Iwahori Y, Ikegaya Y, Matsuki N. Hyperpolarization‐activated current I(h) in nucleus of solitary tract neurons: Regional difference in serotonergic modulation. Jpn J Pharmacol 88: 459–462, 2002.
 234. Jahnsen H, Llinas R. Ionic basis for the electro‐responsiveness and oscillatory properties of guinea‐pig thalamic neurones in vitro. J Physiol 349: 227–247, 1984.
 235. Jalil S, Belykh I, Shilnikov A. Fast reciprocal inhibition can synchronize bursting neurons. Phys Rev E Stat Nonlin Soft Matter Phys 81: 045201, 2010.
 236. Janczewski WA, Feldman JL. Distinct rhythm generators for inspiration and expiration in the juvenile rat. J Physiol 570: 407–420, 2006a.
 237. Janczewski WA, Feldman JL. Novel data supporting the two respiratory rhythm oscillator hypothesis. Focus on “respiration‐related rhythmic activity in the rostral medulla of newborn rats”. J Neurophysiol 96: 1–2, 2006b.
 238. Jentsch TJ. Neuronal KCNQ potassium channels: Physiology and role in disease. Nat Rev Neurosci 1: 21–30, 2000.
 239. Jiang C, Lipski J. Extensive monosynaptic inhibition of ventral respiratory group neurons by augmenting neurons in the Botzinger complex in the cat. Exp Brain Res 81: 639–648, 1990.
 240. Jiang C, Xu H, Cui N, Wu J. An alternative approach to the identification of respiratory central chemoreceptors in the brainstem. Respir Physiol 129: 141–157, 2001.
 241. Jiang N, Furue H, Katafuchi T, Yoshimura M. Somatostatin directly inhibits substantia gelatinosa neurons in adult rat spinal dorsal horn in vitro. Neurosci Res 47: 97–107, 2003.
 242. Johnson SM, Smith JC, Feldman JL. Modulation of respiratory rhythm in vitro: Role of Gi/o protein‐mediated mechanisms. J Appl Physiol 80: 2120–2133, 1996.
 243. Johnson SM, Smith JC, Funk GD, Feldman JL. Pacemaker behavior of respiratory neurons in medullary slices from neonatal rat. J Neurophysiol 72: 2598–2608, 1994.
 244. Joksovic PM, Doctor A, Gaston B, Todorovic SM. Functional regulation of T‐type calcium channels by s‐nitrosothiols in the rat thalamus. J Neurophysiol 97: 2712–2721, 2007.
 245. Ju YK, Saint DA, Gage PW. Hypoxia increases persistent sodium current in rat ventricular myocytes. J Physiol 497(Pt 2): 337–347, 1996.
 246. Kamp MA, Krieger A, Henry M, Hescheler J, Weiergraber M, Schneider T. Presynaptic ‘Ca2.3‐containing’ E‐type Ca channels share dual roles during neurotransmitter release. Eur J Neurosci 21: 1617–1625, 2005.
 247. Kang D, Han J, Kim D. Mechanism of inhibition of TREK‐2 (K2P10.1) by the Gq‐coupled M3 muscarinic receptor. Am J Physiol Cell Physiol 291: C649‐C656, 2006.
 248. Karashima Y, Prenen J, Meseguer V, Owsianik G, Voets T, Nilius B. Modulation of the transient receptor potential channel TRPA1 by phosphatidylinositol 4,5‐biphosphate manipulators. Pflugers Arch 457: 77–89, 2008.
 249. Kass JI, Mintz IM. Silent plateau potentials, rhythmic bursts, and pacemaker firing: Three patterns of activity that coexist in quadristable subthalamic neurons. Proc Natl Acad Sci U S A 103: 183–188, 2006.
 250. Kay AR, Sugimori M, Llinas R. Kinetic and stochastic properties of a persistent sodium current in mature guinea pig cerebellar Purkinje cells. J Neurophysiol 80: 1167–1179, 1998.
 251. Khateb A, Fort P, Serafin M, Jones BE, Muhlethaler M. Rhythmical bursts induced by NMDA in guinea‐pig cholinergic nucleus basalis neurones in vitro. J Physiol 487(Pt 3): 623–638, 1995.
 252. Kiehn O. Development and functional organization of spinal locomotor circuits. Curr Opin Neurobiol 21: 100–109, 2011.
 253. Kim J, Bhattacharjee R, Snow AB, Capdevila OS, Kheirandish‐Gozal L, Gozal D. Myeloid‐related protein 8/14 levels in children with obstructive sleep apnoea. Eur Respir J 35: 843–850, 2010.
 254. Kim J, Nakajima K, Oomura Y, Wayner MJ, Sasaki K. Orexin‐A and ghrelin depolarize the same pedunculopontine tegmental neurons in rats: An in vitro study. Peptides 30: 1328–1335, 2009.
 255. Kim SJ, Chung WH, Rhim H, Eun SY, Jung SJ, Kim J. Postsynaptic action mechanism of somatostatin on the membrane excitability in spinal substantia gelatinosa neurons of juvenile rats. Neuroscience 114: 1139–1148, 2002.
 256. Kim SJ, Kim YS, Yuan JP, Petralia RS, Worley PF, Linden DJ. Activation of the TRPC1 cation channel by metabotropic glutamate receptor mGluR1. Nature 426: 285–291, 2003.
 257. Kirkpatrick KA, Burnstock G. Evidence that the inhibition of ATP release from sympathetic nerves by adenosine is a physiological mechanism. Gen Pharmacol 23: 1045–1050, 1992.
 258. Kiselyov K, Shin DM, Kim JY, Yuan JP, Muallem S. TRPC channels: Interacting proteins. Handb Exp Pharmacol 179: 559–574, 2007.
 259. Klages S, Bellingham MC, Richter DW. Late expiratory inhibition of stage 2 expiratory neurons in the cat–a correlate of expiratory termination. J Neurophysiol 70: 1307–1315, 1993.
 260. Knaus HG, Schwarzer C, Koch RO, Eberhart A, Kaczorowski GJ, Glossmann H, Wunder F, Pongs O, Garcia ML, Sperk G. Distribution of high‐conductance Ca(2+)‐activated K +channels in rat brain: Targeting to axons and nerve terminals. J Neurosci 16: 955–963, 1996.
 261. Koch H, Huh SE, Elsen FP, Carroll MS, Hodge RD, Bedogni F, Turner MS, Hevner RF, Ramirez JM. Prostaglandin E2‐induced synaptic plasticity in neocortical networks of organotypic slice cultures. J Neurosci 30: 11678–11687, 2010.
 262. Kodama D, Togari A. Modulation of potassium channels via the alpha(1B)‐adrenergic receptor in human osteoblasts. Neurosci Lett 485: 102–106, 2010.
 263. Kohler M, Hirschberg B, Bond CT, Kinzie JM, Marrion NV, Maylie J, Adelman JP. Small‐conductance, calcium‐activated potassium channels from mammalian brain. Science 273: 1709–1714, 1996.
 264. Koizumi H, Smerin SE, Yamanishi T, Moorjani BR, Zhang R, Smith JC. TASK channels contribute to the K+‐dominated leak current regulating respiratory rhythm generation in vitro. J Neurosci 30: 4273–4284, 2010.
 265. Koizumi H, Smith JC. Persistent Na+ and K+‐dominated leak currents contribute to respiratory rhythm generation in the pre‐Botzinger complex in vitro. J Neurosci 28: 1773–1785, 2008.
 266. Koizumi S, Saito Y, Nakazawa K, Nakajima K, Sawada JI, Kohsaka S, Illes P, Inoue K. Spatial and temporal aspects of Ca2+ signaling mediated by P2Y receptors in cultured rat hippocampal astrocytes. Life Sci 72: 431–442, 2002.
 267. Koon HW, Shih D, Karagiannides I, Zhao D, Fazelbhoy Z, Hing T, Xu H, Lu B, Gerard N, Pothoulakis C. Substance P modulates colitis‐associated fibrosis. Am J Pathol 177: 2300–2309, 2010.
 268. Koshiya N, Smith JC. Neuronal pacemaker for breathing visualized in vitro. Nature 400: 360–363, 1999.
 269. Krey RA, Goodreau AM, Arnold TB, Del Negro CA. Outward currents contributing to inspiratory burst termination in preBotzinger complex neurons of neonatal mice studied in vitro. Front Neural Circuits 4: 124, 2010.
 270. Krolo M, Stuth EA, Tonkovic‐Capin M, Dogas Z, Hopp FA, McCrimmon DR, Zuperku EJ. Differential roles of ionotropic glutamate receptors in canine medullary inspiratory neurons of the ventral respiratory group. J Neurophysiol 82: 60–68, 1999.
 271. Kubisch C, Schroeder BC, Friedrich T, Lutjohann B, El‐Amraoui A, Marlin S, Petit C, Jentsch TJ. KCNQ4, a novel potassium channel expressed in sensory outer hair cells, is mutated in dominant deafness. Cell 96: 437–446, 1999.
 272. Kubota H, Katsurabayashi S, Moorhouse AJ, Murakami N, Koga H, Akaike N. GABAB receptor transduction mechanisms, and cross‐talk between protein kinases A and C, in GABAergic terminals synapsing onto neurons of the rat nucleus basalis of Meynert. J Physiol 551: 263–276, 2003.
 273. Kumar GK, Prabhakar NR. Tachykinins in the control of breathing by hypoxia: Pre‐ and post‐genomic era. Respir Physiol Neurobiol 135: 145–154, 2003.
 274. Kurian N, Hall CJ, Wilkinson GF, Sullivan M, Tobin AB, Willars GB. Full and partial agonists of muscarinic M3 receptors reveal single and oscillatory Ca2+ responses by beta 2‐adrenoceptors. J Pharmacol Exp Ther 330: 502–512, 2009.
 275. Kuruma A, Inoue T, Mikoshiba K. Dynamics of Ca(2+) and Na(+) in the dendrites of mouse cerebellar Purkinje cells evoked by parallel fibre stimulation. Eur J Neurosci 18: 2677–2689, 2003.
 276. Kuwaki T. Orexinergic modulation of breathing across vigilance states. Respir Physiol Neurobiol 164: 204–212, 2008.
 277. Kuwaki T, Li A, Nattie E. State‐dependent central chemoreception: A role of orexin. Respir Physiol Neurobiol 173: 223–229, 2010.
 278. Kuwana S, Tsunekawa N, Yanagawa Y, Okada Y, Kuribayashi J, Obata K. Electrophysiological and morphological characteristics of GABAergic respiratory neurons in the mouse pre‐Botzinger complex. Eur J Neurosci 23: 667–674, 2006.
 279. Lakatos P, Karmos G, Mehta AD, Ulbert I, Schroeder CE. Entrainment of neuronal oscillations as a mechanism of attentional selection. Science 320: 110–113, 2008.
 280. Lalley PM. D1‐dopamine receptor agonists prevent and reverse opiate depression of breathing but not antinociception in the cat. Am J Physiol Regul Integr Comp Physiol 2005; 289: R45–51.
 281. Lalley PM, Bischoff AM, Richter DW. 5‐HT‐1A receptor‐mediated modulation of medullary expiratory neurones in the cat. J Physiol 476: 117–130, 1994.
 282. Launay P, Fleig A, Perraud AL, Scharenberg AM, Penner R, Kinet JP. TRPM4 is a Ca2+‐activated nonselective cation channel mediating cell membrane depolarization. Cell 109: 397–407, 2002.
 283. Lawson EE, Long WA. Central origin of biphasic breathing pattern during hypoxia in newborns. J Appl Physiol 55: 483–488, 1983.
 284. Lazarenko RM, Fortuna MG, Shi Y, Mulkey DK, Takakura AC, Moreira TS, Guyenet PG, Bayliss DA. Anesthetic activation of central respiratory chemoreceptor neurons involves inhibition of a THIK‐1‐like background K(+) current. J Neurosci 30: 9324–9334, 2010.
 285. Lee LY, Millhorn HTJ. Central ventilatory responses to O, and CO, at three levels of carotid chemoreceptor stimulation. Respir Physiol 35: 310–333, 1975.
 286. Legallois J‐J‐C. Expériences sur le Principe de la Vie, Notamment sur Celui des Mouvements du Coeur, et sur le Siège de ce Principe [Experiments on the vital principle in particular on that of heart movements and the site of this principle]. Hautel, Paris 1812.
 287. Leonard TO, Lydic R. Pontine nitric oxide modulates acetylcholine release, rapid eye movement sleep generation, and respiratory rate. J Neurosci 17: 774–785, 1997.
 288. Leppert MF, Singh N. Susceptibility genes in human epilepsy. Semin Neurol 19: 397–405, 1999.
 289. Lerche C, Scherer CR, Seebohm G, Derst C, Wei AD. Busch AE, Steinmeyer K. Molecular cloning and functional expression of KCNQ5, a potassium channel subunit that may contribute to neuronal M‐current diversity. J Biol Chem 275: 22395–22400, 2000.
 290. Lesage F, Lazdunski M. Molecular and functional properties of two‐pore‐domain potassium channels. Am J Physiol Renal Physiol 279: F793‐F801, 2000.
 291. Leyssens A, Nowicky AV, Patterson L, Crompton M, Duchen MR. The relationship between mitochondrial state, ATP hydrolysis, [Mg2+]i and [Ca2+]i studied in isolated rat cardiomyocytes. J Physiol 496(Pt 1): 111–128, 1996.
 292. Li C, Horn JP. Differential Inhibition of Ca2+ channels by alpha2‐adrenoceptors in three functional subclasses of rat sympathetic neurons. J Neurophysiol 100: 3055–3063, 2008.
 293. Li WC, Roberts A, Soffe SR. Specific brainstem neurons switch each other into pacemaker mode to drive movement by activating NMDA receptors. J Neurosci 30: 16609–16620, 2010.
 294. Lichtman JW, Sanes JR. Ome sweet ome: What can the genome tell us about the connectome? Curr Opin Neurobiol 18: 346–353, 2008.
 295. Lichtman JW, Livet J, Sanes JR. A technicolour approach to the connectome. Nat Rev Neurosci 9: 417–422, 2008.
 296. Lieske SP, Ramirez JM. Pattern‐specific synaptic mechanisms in a multifunctional network. II. Intrinsic modulation by metabotropic glutamate receptors. J Neurophysiol 95: 1334–1344, 2006a.
 297. Lieske SP, Ramirez JM. Pattern‐specific synaptic mechanisms in a multifunctional network. I. Effects of alterations in synapse strength. J Neurophysiol 95: 1323–1333, 2006b.
 298. Lieske SP, Thoby‐Brisson M, Ramirez JM. Reconfiguration of the central respiratory network under normoxic and hypoxic conditions. Adv Exp Med Biol 499: 171–178, 2001.
 299. Lieske SP, Thoby‐Brisson M, Telgkamp P, Ramirez JM. Reconfiguration of the neural network controlling multiple breathing patterns: Eupnea, sighs and gasps [see comment]. Nat Neurosci 3: 600–607, 2000.
 300. Liman ER. TRPM5 and taste transduction. Handb Exp Pharmacol 179: 287–298, 2007.
 301. Lipscombe D, Helton TD, Xu W. L‐type calcium channels: The low down. J Neurophysiol 92: 2633–2641, 2004.
 302. Littleton JT, Ganetzky B. Ion channels and synaptic organization: Analysis of the Drosophila genome. Neuron 26: 35–43, 2000.
 303. Liu Q, Wong‐Riley MT. Postnatal development of N‐methyl‐D‐aspartate receptor subunits 2A, 2B, 2C, 2D, and 3B immunoreactivity in brain stem respiratory nuclei of the rat. Neuroscience 171: 637–654, 2010.
 304. Llano DA, Sherman SM. Differences in intrinsic properties and local network connectivity of identified layer 5 and layer 6 adult mouse auditory corticothalamic neurons support a dual corticothalamic projection hypothesis. Cereb Cortex 19: 2810–2826, 2009.
 305. Llinas R, Jahnsen H. Electrophysiology of mammalian thalamic neurones in vitro. Nature 297: 406–408, 1982.
 306. Llinas RR. The intrinsic electrophysiological properties of mammalian neurons: Insights into central nervous system function. Science 242: 1654–1664, 1988.
 307. Llinas RR, Sugimori M, Cherksey B. Voltage‐dependent calcium conductances in mammalian neurons. The P channel. Ann N Y Acad Sci U S A 560: 103–111, 1989.
 308. Llona I, Eugenin J. Central actions of somatostatin in the generation and control of breathing. Biol Res 38: 347–352, 2005.
 309. Loeschcke HH. A concept of the role of intracranial chemosensitivity in respiratory control. In cerebrospinal fluid and the regulation of respiration. Oxford: Blackwell 183–210, 1965.
 310. Loeschcke HH, Mitchell RA, Katsaros B, Perkins JF, Konig A. Interaction of intracranial chemosensitivity with peripheral afferents to the respiratory centers. Ann N Y Acad Sci U S A 109: 651–660, 1963.
 311. Lopes CM, Remon JI, Matavel A, Sui JL, Keselman I, Medei E, Shen Y, Rosenhouse‐Dantsker A, Rohacs T, Logothetis DE. Protein kinase A modulates PLC‐dependent regulation and PIP2‐sensitivity of K+ channels. Channels (Austin) 1: 124–134, 2007.
 312. Lorier AR, Lipski J, Housley GD, Greer JJ, Funk GD. ATP sensitivity of preBotzinger complex neurones in neonatal rat in vitro: Mechanism underlying a P2 receptor‐mediated increase in inspiratory frequency. J Physiol 586: 1429–1446, 2008.
 313. Lorier AR, Peebles K, Brosenitsch T, Robinson DM, Housley GD, Funk GD. P2 receptors modulate respiratory rhythm but do not contribute to central CO2 sensitivity in vitro. Respir Physiol Neurobiol 142: 27–42, 2004.
 314. Loucif AJ, Woodhall GL, Sehirli US, Stanford IM. Depolarisation and suppression of burst firing activity in the mouse subthalamic nucleus by dopamine D1/D5 receptor activation of a cyclic‐nucleotide gated non‐specific cation conductance. Neuropharmacology 55: 94–105, 2008.
 315. Lu B, Su Y, Das S, Liu J, Xia J, Ren D. The neuronal channel NALCN contributes resting sodium permeability and is required for normal respiratory rhythm. Cell 129: 371–383, 2007.
 316. Lu B, Su Y, Das S, Wang H, Wang Y, Liu J, Ren D. Peptide neurotransmitters activate a cation channel complex of NALCN and UNC‐80. Nature 457: 741–744, 2009.
 317. Lu B, Zhang Q, Wang H, Wang Y, Nakayama M, Ren D. Extracellular calcium controls background current and neuronal excitability via an UNC79‐UNC80‐NALCN cation channel complex. Neuron 68: 488–499, 2010.
 318. Luo Z, Costy‐Bennett S, Fregosi RF. Prenatal nicotine exposure increases the strength of GABA(A) receptor‐mediated inhibition of respiratory rhythm in neonatal rats. J Physiol 561: 387–393, 2004.
 319. Luo Z, McMullen NT, Costy‐Bennett S, Fregosi RF. Prenatal nicotine exposure alters glycinergic and GABAergic control of respiratory frequency in the neonatal rat brainstem‐spinal cord preparation. Respir Physiol Neurobiol 157: 226–234, 2007.
 320. Ma LQ, Liu C, Wang F, Xie N, Gu J, Fu H, Wang JH, Cai F, Liu J, Chen JG. Activation of phosphatidylinositol‐linked novel D1 dopamine receptors inhibits high‐voltage‐activated Ca2+ currents in primary cultured striatal neurons. J Neurophysiol 101: 2230–2238, 2009.
 321. Magistretti J, Alonso A. Biophysical properties and slow voltage‐dependent inactivation of a sustained sodium current in entorhinal cortex layer‐II principal neurons: A whole‐cell and single‐channel study. J Gen Physiol 114: 491–509, 1999.
 322. Manzke T, Guenther U, Ponimaskin EG, Haller M, Dutschmann M, Schwarzacher S, Richter DW. 5‐HT4(a) receptors avert opioid‐induced breathing depression without loss of analgesia. Science 301: 226–229, 2003.
 323. Marder E, Bucher D. Understanding circuit dynamics using the stomatogastric nervous system of lobsters and crabs. Annu Rev Physiol 69: 291–316, 2007.
 324. Marder E, Calabrese RL. Principles of rhythmic motor pattern generation. Physiol Rev 76: 687–717, 1996.
 325. Marek W, Prabhakar NR, Loeschcke HH. Effects of electrical stimulation of chemosensory afferents in different phases of the respiratory cycle. Fedn Proc 37: 903–908, 1978.
 326. Marrion NV, Tavalin SJ. Selective activation of Ca2+‐activated K+ channels by co‐localized Ca2+ channels in hippocampal neurons. Nature 395: 900–905, 1998.
 327. Maruyama Y, Peterson OH. Single‐channel currents in isolated patches of plasma membrane from basal surface of pancreatic acini. Nature 299: 159–161, 1982.
 328. Maurice N, Tkatch T, Meisler M, Sprunger LK, Surmeier DJ. D1/D5 dopamine receptor activation differentially modulates rapidly inactivating and persistent sodium currents in prefrontal cortex pyramidal neurons. J Neurosci 21: 2268–2277, 2001.
 329. McCormick DA, Bal T. Sleep and arousal: Thalamocortical mechanisms. Annu Rev Neurosci 20: 185–215, 1997.
 330. McCrea DA, Rybak IA. Modeling the mammalian locomotor CPG: Insights from mistakes and perturbations. Prog Brain Res 165: 235–253, 2007.
 331. McCrimmon DR, Monnier A, Ptak K, Zummo G, Zhang Z, Alheid GF. Respiratory rhythm generation: PreBotzinger neuron discharge patterns and persistent sodium current. Adv Exp Med Biol 499: 147–152, 2001.
 332. McCrimmon DR, Ramirez JM, Alford S, Zuperku EJ. Unraveling the mechanism for respiratory rhythm generation. Bioessays 22: 6–9, 2000.
 333. McKay BE, McRory JE, Molineux ML, Hamid J, Snutch TP, Zamponi GW, Turner RW. Ca(V)3 T‐type calcium channel isoforms differentially distribute to somatic and dendritic compartments in rat central neurons. Eur J Neurosci 24: 2581–2594, 2006.
 334. McKay LC, Feldman JL. Unilateral ablation of pre‐Botzinger complex disrupts breathing during sleep but not wakefulness. Am J Respir Crit Care Med 178: 89–95, 2008.
 335. McKay LC, Janczewski WA, Feldman JL. Sleep‐disordered breathing after targeted ablation of preBotzinger complex neurons. Nat Neurosci 8: 1142–1144, 2005.
 336. Mellen NM. Degeneracy as a substrate for respiratory regulation. Respir Physiol Neurobiol 172: 1–7, 2010.
 337. Mellen NM, Janczewski WA, Bocchiaro CM, Feldman JL. Opioid‐induced quantal slowing reveals dual networks for respiratory rhythm generation. Neuron 37: 821–826, 2003.
 338. Mellen NM, Mishra D. Functional anatomical evidence for respiratory rhythmogenic function of endogenous bursters in rat medulla. J Neurosci 30: 8383–8392, 2010.
 339. Meredith AL, Thorneloe KS, Werner ME, Nelson MT, Aldrich RW. Overactive bladder and incontinence in the absence of the BK large conductance Ca2+‐activated K+ channel. J Biol Chem 279: 36746–36752, 2004.
 340. Mergler S, Singh V, Grotzinger C, Kaczmarek P, Wiedenmann B, Strowski MZ. Characterization of voltage operated R‐type Ca2+ channels in modulating somatostatin receptor subtype 2‐ and 3‐dependent inhibition of insulin secretion from INS‐1 cells. Cell Signal 20: 2286–2295, 2008.
 341. Mifflin S, Richter DW. The effects of QX‐314 on medullary respiratory neurones. Brain Res 420: 22–31, 1987.
 342. Miki T, Liss B, Minami K, Shiuchi T, Saraya A, Kashima Y, Horiuchi M, Ashcroft F, Minokoshi Y, Roeper J, Seino S. ATP‐sensitive K+ channels in the hypothalamus are essential for the maintenance of glucose homeostasis. Nat Neurosci 4: 507–512, 2001.
 343. Miki T, Nagashima K, Tashiro F, Kotake K, Yoshitomi H, Tamamoto A, Gonoi T, Iwanaga T, Miyazaki J, Seino S. Defective insulin secretion and enhanced insulin action in KATP channel‐deficient mice. Proc Natl Acad Sci U S A 95: 10402–10406, 1998.
 344. Miller RJ. Presynaptic receptors. Annu Rev Pharmacol Toxicol 38: 201–227, 1998.
 345. Minke B. Drosophila mutant with a transducer defect. Biophys Struct Mech 3: 59–64, 1977.
 346. Mintz IM, Adams ME, Bean BP. P‐type calcium channels in rat central and peripheral neurons. Neuron 9: 85–95, 1992.
 347. Mironov SL. Metabotropic glutamate receptors activate dendritic calcium waves and TRPM channels which drive rhythmic respiratory patterns in mice. J Physiol 586: 2277–2291, 2008.
 348. Mironov SL, Hartelt N, Ivannikov MV. Mitochondrial K(ATP) channels in respiratory neurons and their role in the hypoxic facilitation of rhythmic activity. Brain Res 1033: 20–27, 2005.
 349. Mironov SL, Langohr K. Mechanisms of Na+ and Ca2+ influx into respiratory neurons during hypoxia. Neuropharmacology 48: 1056–1065, 2005.
 350. Mironov SL, Langohr K, Haller M, Richter DW. Hypoxia activates ATP‐dependent potassium channels in inspiratory neurones of neonatal mice. J Physiol 1998; 509(Pt 3): 755–66.
 351. Mironov SL, Richter DW. L‐type Ca2+ channels in inspiratory neurones of mice and their modulation by hypoxia. J Physiol 512(Pt 1): 75–87, 1998.
 352. Mironov SL, Richter DW. Oscillations and hypoxic changes of mitochondrial variables in neurons of the brainstem respiratory centre of mice. J Physiol 533: 227–236, 2001.
 353. Miyake A, Yamada K, Kosaka T, Miki T, Seino S, Inagaki N. Disruption of Kir6.2‐containing ATP‐sensitive potassium channels impairs maintenance of hypoxic gasping in mice. Eur J Neurosci 25: 2349–2363, 2007.
 354. Miyamoto K, Iwase M, Kimura H, Homma I. Central histamine contributes to the inspiratory off‐switch mechanism via H1 receptors in mice. Respir Physiol Neurobiol 144: 25–33, 2004.
 355. Monk CS, Peltier SJ, Wiggins JL, Weng SJ, Carrasco M, Risi S, Lord C. Abnormalities of intrinsic functional connectivity in autism spectrum disorders. Neuroimage 47: 764–772, 2009.
 356. Monteau R, Gauthier P, Rega P, Hilaire G. Effects of N‐methyl‐D‐aspartate (NMDA) antagonist MK‐801 on breathing pattern in rats. Neurosci Lett 109: 134–139, 1990.
 357. Morgado‐Valle C, Baca SM, Feldman JL. Glycinergic pacemaker neurons in preBotzinger complex of neonatal mouse. J Neurosci 30: 3634–3639, 2010.
 358. Morgado‐Valle C, Beltran‐Parrazal L, DiFranco M, Vergara JL, Feldman JL. Somatic Ca2+ transients do not contribute to inspiratory drive in preBotzinger Complex neurons. J Physiol 586: 4531–4540, 2008.
 359. Morisset V, Nagy F. Ionic basis for plateau potentials in deep dorsal horn neurons of the rat spinal cord. J Neurosci 19: 7309–7316, 1999.
 360. Morschel M, Dutschmann M. Pontine respiratory activity involved in inspiratory/expiratory phase transition. Philos Trans R Soc Lond B Biol Sci 364: 2517–2526, 2009.
 361. Morton MJ, O'Connell AD, Sivaprasadarao A, Hunter M. Determinants of pH sensing in the two‐pore domain K(+) channels TASK‐1 and ‐2. Pflugers Arch 445: 577–583, 2003.
 362. Mulkey DK, Stornetta RL, Weston MC, Simmons JR, Parker A, Bayliss DA, Guyenet PG. Respiratory control by ventral surface chemoreceptor neurons in rats. Nat Neurosci 7: 1360–1369, 2004.
 363. Mulkey DK, Talley EM, Stornetta RL, Siegel AR, West GH, Chen X, Sen N, Mistry AM, Guyenet PG, Bayliss DA. TASK channels determine pH sensitivity in select respiratory neurons but do not contribute to central respiratory chemosensitivity. J Neurosci 27: 14049–14058, 2007.
 364. Murbartian J, Lei Q, Sando JJ, Bayliss DA. Sequential phosphorylation mediates receptor‐ and kinase‐induced inhibition of TREK‐1 background potassium channels. J Biol Chem 280: 30175–30184, 2005.
 365. Mynlieff M, Beam KG. Adenosine acting at an A1 receptor decreases N‐type calcium current in mouse motoneurons. J Neurosci 14: 3628–3634, 1994.
 366. Nakanishi S. The molecular diversity of glutamate receptors. Prog Clin Biol Res 390: 85–98, 1994.
 367. Nash HA, Scott RL, Lear BC, Allada R. An unusual cation channel mediates photic control of locomotion in Drosophila. Curr Biol 12: 2152–2158, 2002.
 368. Nattie EE, Li AH. Ventral medulla sites of muscarinic receptor subtypes involved in cardiorespiratory control. J Appl Physiol 69: 33–41, 1990.
 369. Neubauer JA, Melton JE, Edelman NH. Modulation of respiration during brain hypoxia. J Appl Physiol 68: 441–451, 1990.
 370. Nichols NL, Hartzler LK, Conrad SC, Dean JB, Putnam RW. Intrinsic chemosensitivity of individual nucleus tractus solitarius (NTS) and locus coeruleus (LC) neurons from neonatal rats. Adv Exp Med Biol 605: 348–352, 2008.
 371. Nilius B, Mahieu F, Prenen J, Janssens A, Owsianik G, Vennekens R, Voets T. The Ca2+‐activated cation channel TRPM4 is regulated by phosphatidylinositol 4,5‐biphosphate. EMBO J 25: 467–478, 2006.
 372. Nilius B, Owsianik G, Voets T, Peters JA. Transient receptor potential cation channels in disease. Physiol Rev 87: 165–217, 2007.
 373. Niswender CM, Conn PJ. Metabotropic glutamate receptors: Physiology, pharmacology, and disease. Annu Rev Pharmacol Toxicol 50: 295–322, 2010.
 374. Niwa N, Wang W, Sha Q, Marionneau C, Nerbonne JM. Kv4.3 is not required for the generation of functional Ito,f channels in adult mouse ventricles. J Mol Cell Cardiol 44: 95–104, 2008.
 375. Norris AJ, Nerbonne JM. Molecular dissection of I(A) in cortical pyramidal neurons reveals three distinct components encoded by Kv4.2, Kv4.3, and Kv1.4 alpha‐subunits. J Neurosci 30: 5092–5101, 2010.
 376. Nowycky MC, Fox AP, Tsien RW. Three types of neuronal calcium channel with different calcium agonist sensitivity. Nature 316: 440–443, 1985.
 377. Nunez A, Rodrigo‐Angulo ML, Andres ID, Garzon M. Hypocretin/Orexin neuropeptides: Participation in the control of sleep‐wakefulness cycle and energy homeostasis. Curr Neuropharmacol 7: 50–59, 2009.
 378. O'Brien JA, Sebe JY, Berger AJ. GABA(B) modulation of GABA(A) and glycine receptor‐mediated synaptic currents in hypoglossal motoneurons. Respir Physiol Neurobiol 141: 35–45, 2004.
 379. O'Grady SM, Elmquist E, Filtz TM, Nicholas RA, Harden TK. A guanine nucleotide‐independent inwardly rectifying cation permeability is associated with P2Y1 receptor expression in Xenopus oocytes. J Biol Chem 271: 29080–29087, 1996.
 380. O'Regan RG, Majcherczyk S. Role of peripheral chemoreceptors and central chemosensitivity in the regulation of respiration and circulation. J Exp Biol 100: 23–40, 1982.
 381. Ogilvie MD, Gottschalk A, Anders K, Richter DW, Pack AI. A network model of respiratory rhythmogenesis. Am J Physiol 263: R962‐R975, 1992.
 382. Ohtake PJ, Torres JE, Gozal YM, Graff GR, Gozal D. NMDA receptors mediate peripheral chemoreceptor afferent input in the conscious rat. J Appl Physiol 84: 853–861, 1998.
 383. Olivera BM, Miljanich GP, Ramachandran J, Adams ME. Calcium channel diversity and neurotransmitter release: The omega‐conotoxins and omega‐agatoxins. Annu Rev Biochem 63: 823–867, 1994.
 384. Onimaru H, Ballanyi K, Homma I. Contribution of Ca2+‐dependent conductances to membrane potential fluctuations of medullary respiratory neurons of newborn rats in vitro. J Physiol 552: 727–741, 2003.
 385. Onimaru H, Homma I. A novel functional neuron group for respiratory rhythm generation in the ventral medulla. J Neurosci 23: 1478–1486, 2003.
 386. Oyamada Y, Murai M, Harada N, Ishizaka A, Okada Y. Age‐dependent involvement of ATP‐sensitive potassium channel Kir6.2 in hypoxic ventilatory depression of mouse. Respir Physiol Neurobiol 162: 80–84, 2008.
 387. Oyamada Y, Yamaguchi K, Murai M, Hakuno H, Ishizaka A. Role of Kir2.2 in hypercapnic ventilatory response during postnatal development of mouse. Respir Physiol Neurobiol 145: 143–151, 2005.
 388. Paarmann I, Frermann D, Keller BU, Hollmann M. Expression of 15 glutamate receptor subunits and various splice variants in tissue slices and single neurons of brainstem nuclei and potential functional implications. J Neurochem 74: 1335–1345, 2000.
 389. Paarmann I, Frermann D, Keller BU, Villmann C, Breitinger HG, Hollmann M. Kinetics and subunit composition of NMDA receptors in respiratory‐related neurons. J Neurochem 93: 812–824, 2005.
 390. Pace R, Mackay D, Feldman J, Del Negro C. Role of persistent sodium current in mouse preBötzinger complex neurons and respiratory rhythm generation. J Physiol 580: 485–496, 2007.
 391. Pace RW, Del Negro CA. AMPA and metabotropic glutamate receptors cooperatively generate inspiratory‐like depolarization in mouse respiratory neurons in vitro. Eur J Neurosci 28: 2434–2442, 2008.
 392. Pace RW, Mackay DD, Feldman JL, Del Negro CA. Inspiratory bursts in the preBotzinger complex depend on a calcium‐activated non‐specific cation current linked to glutamate receptors in neonatal mice. J Physiol 582: 113–125, 2007.
 393. Padgett CL, Slesinger PA. GABAB receptor coupling to G‐proteins and ion channels. Adv Pharmacol 58: 123–147, 2010.
 394. Pare D, Pape HC, Dong J. Bursting and oscillating neurons of the cat basolateral amygdaloid complex in vivo: Electrophysiological properties and morphological features. J Neurophysiol 74: 1179–1191, 1995.
 395. Parkis MA, Dong X, Feldman JL, Funk GD. Concurrent inhibition and excitation of phrenic motoneurons during inspiration: Phase‐specific control of excitability. J Neurosci 19: 2368–2380, 1999.
 396. Parkis MA, Feldman JL, Robinson DM, Funk GD. Oscillations in endogenous inputs to neurons affect excitability and signal processing. J Neurosci 23: 8152–8158, 2003.
 397. Partridge LD, Valenzuela CF. Ca2+ store‐dependent potentiation of Ca2+‐activated non‐selective cation channels in rat hippocampal neurones in vitro. J Physiol 521(Pt 3): 617–27, 1999.
 398. Paterson DS, Rivera KD, Broadbelt KG, Trachtenberg FL, Belliveau RA, Holm IA, Haas EA, Stanley C, Krous HF, Kinney HC, Markianos K. Lack of association of the serotonin transporter polymorphism with the sudden infant death syndrome in the San Diego Dataset. Pediatr Res 68: 409–413, 2010.
 399. Paton JF, St‐John WM. Counterpoint: Medullary pacemaker neurons are essential for gasping, but not eupnea, in mammals. J Appl Physiol 103: 718–720, 2007; discussion 721–2.
 400. Pearson KG, Ramirez JM. Sensory modulation of pattern‐generating circuits. In Neuron, Networks and Motor Behavior. Cambridge, Massachusetts, London, England: MIT Press, 1997, pp. 225–237.
 401. Pena F, Aguileta MA. Effects of riluzole and flufenamic acid on eupnea and gasping of neonatal mice in vivo. Neurosci Lett 415: 288–293, 2007.
 402. Pena F, Meza‐Andrade R, Paez‐Zayas V, Gonzalez‐Marin MC. Gasping generation in developing Swiss‐Webster mice in vitro and in vivo. Neurochem Res 33: 1492–1500, 2008.
 403. Pena F, Ordaz B. Non‐selective cation channel blockers: Potential use in nervous system basic research and therapeutics. Mini Rev Med Chem 8: 812–819, 2008.
 404. Pena F, Parkis MA, Tryba AK, Ramirez JM. Differential contribution of pacemaker properties to the generation of respiratory rhythms during normoxia and hypoxia. Neuron 43: 105–117, 2004.
 405. Pena F, Ramirez JM. Endogenous activation of serotonin‐2A receptors is required for respiratory rhythm generation in vitro. J Neurosci 22: 11055–11064, 2002.
 406. Pena F, Ramirez JM. Substance P‐mediated modulation of pacemaker properties in the mammalian respiratory network. J Neurosci 24: 7549–7556, 2004.
 407. Pena F, Ramirez JM. Hypoxia‐induced changes in neuronal network properties. Mol Neurobiol 32: 251–283, 2005.
 408. Pepe S, Xiao RP, Hohl C, Altschuld R, Lakatta EG. ‘Cross talk’ between opioid peptide and adrenergic receptor signaling in isolated rat heart. Circulation 95: 2122–2129, 1997.
 409. Perez‐Reyes E. Molecular characterization of T‐type calcium channels. Cell Calcium 40: 89–96, 2006.
 410. Perez‐Reyes E, Cribbs LL, Daud A, Lacerda AE, Barclay J, Williamson MP, Fox M, Rees M, Lee JH. Molecular characterization of a neuronal low‐voltage‐activated T‐type calcium channel. Nature 391: 896–900, 1998.
 411. Perkel DH, Mulloney B. Motor pattern production in reciprocally inhibitory neurons exhibiting postinhibitory rebound. Science 185: 181–183, 1974.
 412. Perrins R, Soffe SR. Local effects of glycinergic inhibition in the spinal cord motor systems for swimming in amphibian embryos. J Neurophysiol 76: 1025–1035, 1996.
 413. Perrins R, Soffe SR. Influence of glycinergic inhibition on spinal neuron excitability during amphibian tadpole locomotion. Ann N Y Acad Sci U S A 860: 472–474, 1998.
 414. Pezuk P, Mohawk JA, Yoshikawa T, Sellix MT, Menaker M. Circadian organization is governed by extra‐SCN pacemakers. J Biol Rhythms 25: 432–441, 2010.
 415. Pfeiffer A, Zhang W. Postnatal development of GABAB‐receptor‐mediated modulation of potassium currents in brainstem respiratory network of mouse. Respir Physiol Neurobiol 158: 22–29, 2007.
 416. Pierrefiche O, Champagnat J, Richter DW. Calcium‐dependent conductances control neurones involved in termination of inspiration in cats. Neurosci Lett 184: 101–104, 1995.
 417. Pierrefiche O, Foutz AS, Champagnat J, Denavit‐Saubie M. The bulbar network of respiratory neurons during apneusis induced by a blockade of NMDA receptors. Exp Brain Res 89: 623–639, 1992.
 418. Pierrefiche O, Foutz AS, Champagnat J, Denavit‐Saubie M. NMDA and non‐NMDA receptors may play distinct roles in timing mechanisms and transmission in the feline respiratory network. J Physiol 474: 509–523, 1994.
 419. Pierrefiche O, Haji A, Bischoff A, Richter DW. Calcium currents in respiratory neurons of the cat in vivo. Pflugers Arch 438: 817–826, 1999.
 420. Pilarski JQ, Fregosi RF. Prenatal nicotine exposure alters medullary nicotinic and AMPA‐mediated control of respiratory frequency in vitro. Respir Physiol Neurobiol 169: 1–10, 2009.
 421. Pilarski JQ, Wakefield HE, Fuglevand AJ, Levine RB, Fregosi RF. Developmental nicotine exposure alters neurotransmission and excitability in hypoglossal motoneurons. J Neurophysiol 105: 423–433, 2011.
 422. Prinz AA, Bucher D, Marder E. Similar network activity from disparate circuit parameters. Nat Neurosci 7: 1345–1352, 2004.
 423. Ptak K, Yamanishi T, Aungst J, Milescu LS, Zhang R, Richerson GB, Smith JC. Raphe neurons stimulate respiratory circuit activity by multiple mechanisms via endogenously released serotonin and substance P. J Neurosci 29: 3720–3737, 2009.
 424. Ptak K, Zummo GG, Alheid GF, Tkatch T, Surmeier DJ, McCrimmon DR. Sodium currents in medullary neurons isolated from the pre‐Botzinger complex region. J Neurosci 25: 5159–5170, 2005.
 425. Purvis LK, Smith JC, Koizumi H, Butera RJ. Intrinsic bursters increase the robustness of rhythm generation in an excitatory network. J Neurophysiol 97: 1515–1526, 2007.
 426. Putnam RW. CO2 chemoreception in cardiorespiratory control. J Appl Physiol 108: 1796–1802, 2010.
 427. Putzier I, Kullmann PH, Horn JP, Levitan ES. Cav1.3 channel voltage dependence, not Ca2+ selectivity, drives pacemaker activity and amplifies bursts in nigral dopamine neurons. J Neurosci 29: 15414–15419, 2009.
 428. Qiu C, Zeyda T, Johnson B, Hochgeschwender U, de Lecea L, Tallent MK. Somatostatin receptor subtype 4 couples to the M‐current to regulate seizures. J Neurosci 28: 3567–3576, 2008.
 429. Raichle ME. Two views of brain function. Trends Cogn Sci 14: 180–190, 2010.
 430. Ramcharan EJ, Gnadt JW, Sherman SM. Burst and tonic firing in thalamic cells of unanesthetized, behaving monkeys. Vis Neurosci 17: 55–62, 2000.
 431. Ramcharan EJ, Gnadt JW, Sherman SM. Higher‐order thalamic relays burst more than first‐order relays. Proc Natl Acad Sci U S A 102: 12236–12241, 2005.
 432. Ramirez JM. The human pre‐Botzinger complex identified. Brain 134: 8–10, 2011.
 433. Ramirez JM, Folkow LP, Blix AS. Hypoxia tolerance in mammals and birds: From the wilderness to the clinic. Annu Rev Physiol 69: 113–143, 2007.
 434. Ramirez JM, Koch H, Garcia IA, Doi A, Zanella S. The role of spiking and bursting pacemakers in the neuronal control of breathing. J Biol Physics 37: 241–261, 2011.
 435. Ramirez JM, Lieske SP. Commentary on the definition of eupnea and gasping. Respir Physiol Neurobiol 139: 113–119, 2003.
 436. Ramirez JM, Quellmalz UJ, Richter DW. Postnatal changes in the mammalian respiratory network as revealed by the transverse brainstem slice of mice. J Physiol 491(Pt 3): 799–812, 1996.
 437. Ramirez JM, Quellmalz UJ, Wilken B, Richter DW. The hypoxic response of neurones within the in vitro mammalian respiratory network. J Physiol 507(Pt 2): 571–582, 1998.
 438. Ramirez JM, Quellmalz UJ, Wilken B. Developmental changes in the hypoxic response of the hypoglossus respiratory motor output in vitro. J Neurophysiol 78: 383–392, 1997.
 439. Ramirez JM, Richter DW. The neuronal mechanisms of respiratory rhythm generation. Curr Opin Neurobiol 6: 817–825, 1996.
 440. Ramirez JM, Schwarzacher SW, Pierrefiche O, Olivera BM, Richter DW. Selective lesioning of the cat pre‐Botzinger complex in vivo eliminates breathing but not gasping. J Physiol 507(Pt 3): 895–907, 1998.
 441. Ramirez JM, Telgkamp P, Elsen FP, Quellmalz UJ, Richter DW. Respiratory rhythm generation in mammals: Synaptic and membrane properties. Respir Physiol 110: 71–85, 1997.
 442. Ramirez JM, Tryba AK, Pena F. Pacemaker neurons and neuronal networks: An integrative view. Curr Opin Neurobiol 14: 665–674, 2004.
 443. Ramirez JM, Viemari JC. Determinants of inspiratory activity. Respir Physiol Neurobiol 147: 145–157, 2005.
 444. Rand CM, Berry‐Kravis EM, Zhou L, Fan W, Weese‐Mayer DE. Sudden infant death syndrome: Rare mutation in the serotonin system FEV gene. Pediatr Res 62: 180–182, 2007.
 445. Randall A, Benham CD. Recent advances in the molecular understanding of voltage‐gated Ca2 +channels. Mol Cell Neurosci 14: 255–272, 1999.
 446. Rekling JC, Feldman JL. PreBotzinger complex and pacemaker neurons: Hypothesized site and kernel for respiratory rhythm generation. Annu Rev Physiol 60: 385–405, 1998.
 447. Rettig J, Wunder F, Stocker M, Lichtinghagen R, Mastiaux F, Beckh S, Kues W, Pedarzani P, Schroter KH, Ruppersberg JP, Rudiger V, Olaf P. Characterization of a Shaw‐related potassium channel family in rat brain. EMBO J 11: 2473–2486, 1992.
 448. Richerson GB. Serotonergic neurons as carbon dioxide sensors that maintain pH homeostasis. Nat Rev Neurosci 5: 449–461, 2004.
 449. Richter DW, Ballantyne D, Remmers JE. The differential organization of medullary post‐inspiratory activities. Pflugers Arch 410: 420–427, 1987.
 450. Richter DW, Ballanyi K, Schwarzacher S. Mechanisms of respiratory rhythm generation. Curr Opin Neurobiol 2: 788–793, 1992.
 451. Richter DW, Champagnat J, Jacquin T, Benacka R. Calcium currents and calcium‐dependent potassium currents in mammalian medullary respiratory neurones. J Physiol 470: 23–33, 1993.
 452. Richter DW, Bischoff A, Anders K, Bellingham M, Windhorst U. Response of the medullary respiratory network of the cat to hypoxia. J Physiol 443: 231–256, 1991.
 453. Richter DW, Lalley PM, Pierrefiche O, Haji A, Bischoff AM, Wilken B, Hanefeld F. Intracellular signal pathways controlling respiratory neurons. Respir Physiol 110: 113–123, 1997.
 454. Richter DW, Manzke T, Wilken B, Ponimaskin E. Serotonin receptors: Guardians of stable breathing. Trends Mol Med 9: 542–548, 2003.
 455. Richter DW, Schmidt‐Garcon P, Pierrefiche O, Bischoff AM, Lalley PM. Neurotransmitters and neuromodulators controlling the hypoxic respiratory response in anaesthetized cats. J Physiol 514(Pt 2): 567–578, 1999.
 456. Ritucci NA, Dean JB, Putnam RW. Somatic vs. dendritic responses to hypercapnia in chemosensitive locus coeruleus neurons from neonatal rats. Am J Physiol Cell Physiol 289: C1094‐C1104, 2005.
 457. Roberts CD, Dvoryanchikov G, Roper SD, Chaudhari N. Interaction between the second messengers cAMP and Ca2+ in mouse presynaptic taste cells. J Physiol 587: 1657–1668, 2009.
 458. Rouchet N, Waroux O, Lamy C, Massotte L, Scuvee‐Moreau J, Liegeois JF, Seutin V. SK channel blockade promotes burst firing in dorsal raphe serotonergic neurons. Eur J Neurosci 28: 1108–1115, 2008.
 459. Ruangkittisakul A, Panaitescu B, Ballanyi K. K(+) and Ca(2)(+) dependence of inspiratory‐related rhythm in novel “calibrated” mouse brainstem slices. Respir Physiol Neurobiol 175: 37–48, 2010.
 460. Ruangkittisakul A, Schwarzacher SW, Secchia L, Poon BY, Ma Y, Funk GD, Ballanyi K. High sensitivity to neuromodulator‐activated signaling pathways at physiological [K+] of confocally imaged respiratory center neurons in on‐line‐calibrated newborn rat brainstem slices. J Neurosci 26: 11870–11880, 2006.
 461. Ruangkittisakul A, Schwarzacher SW, Secchia L, Ma Y, Bobocea N, Poon BY, Funk GD, Ballanyi K. Generation of eupnea and sighs by a spatiochemically organized inspiratory network. J Neurosci 28: 2447–2458, 2008.
 462. Rubin JE, Hayes JA, Mendenhall JL, Del Negro CA. Calcium‐activated nonspecific cation current and synaptic depression promote network‐dependent burst oscillations. Proc Natl Acad Sci U S A 106: 2939–2944, 2009.
 463. Rubin JE, Bacak BJ, Molkov YI, Shevtsova NA, Smith JC, Rybak IA. Interacting oscillations in neural control of breathing: Modeling and qualitative analysis. J Comput Neurosci 30: 607–632, 2010.
 464. Rubin JE, Shevtsova NA, Ermentrout GB, Smith JC, Rybak IA. Multiple rhythmic states in a model of the respiratory central pattern generator. J Neurophysiol 101: 2146–2165, 2009.
 465. Rybak IA, Shevtsova NA, Ptak K, McCrimmon DR. Intrinsic bursting activity in the pre‐Botzinger complex: Role of persistent sodium and potassium currents. Biol Cybern 90: 59–74, 2004.
 466. Rybak IA, Shevtsova NA, Lafreniere‐Roula M, McCrea DA. Modelling spinal circuitry involved in locomotor pattern generation: Insights from deletions during fictive locomotion. J Physiol 577: 617–639, 2006.
 467. Rybak IA, St John WM, Paton JF. Models of neuronal bursting behavior: Implications for in‐vivo versus in‐vitro respiratory rhythmogenesis. Adv Exp Med Biol 499: 159–164, 2001.
 468. Rybak IA, Shevtsova NA, St‐John WM, Paton JF, Pierrefiche O. Endogenous rhythm generation in the pre‐Botzinger complex and ionic currents: Modelling and in vitro studies. Eur J Neurosci 18: 239–257, 2003.
 469. Salido GM, Sage SO, Rosado JA. TRPC channels and store‐operated Ca(2+) entry. Biochim Biophys Acta 1793: 223–230, 2009.
 470. Salkoff L, Baker K, Butler A, Covarrubias M, Pak MD, Wei A. An essential ‘set’ of K+ channels conserved in flies, mice and humans. Trends Neurosci 15: 161–166, 1992.
 471. Salkoff L, Butler A, Ferreira G, Santi C, Wei A. High‐conductance potassium channels of the SLO family. Nat Rev Neurosci 7: 921–931, 2006.
 472. Sanchez‐Alonso JL, Munoz‐Cuevas J, Vicente‐Torres MA, Colino A. Role of low‐voltage‐activated calcium current on the firing pattern alterations induced by hypothyroidism in the rat hippocampus. Neuroscience 171: 993–1005, 2010.
 473. Sankaran K, Wiebe H, Seshia MM, Boychuk RB, Cates D, Rigatto H. Immediate and late ventillatory response to high and low O2 in preterm infants and adult subjects. Pediatr Res 13: 875–878, 1979.
 474. Saponjic J, Radulovacki M, Carley DW. Respiratory pattern modulation by the pedunculopontine tegmental nucleus. Respir Physiol Neurobiol 138: 223–237, 2003.
 475. Saponjic J, Radulovacki M, Carley DW. Modulation of respiratory pattern and upper airway muscle activity by the pedunculopontine tegmentum: Role of NMDA receptors. Sleep Breath 10: 195–202, 2006.
 476. Saponjic J, Radulovacki M, Carley DW. Monoaminergic system lesions increase post‐sigh respiratory pattern disturbance during sleep in rats. Physiol Behav 90: 1–10, 2007.
 477. Sausbier M, Hu H, Arntz C, Feil S, Kamm S, Adelsberger H, Sausbier U, Sailer CA, Feil R, Hofmann F, Korth M, Shipston MJ, Knaus HG. Wolfer DP, Pedroarena CM, Storm JF, Ruth P. Cerebellar ataxia and Purkinje cell dysfunction caused by Ca2+‐activated K+ channel deficiency. Proc Natl Acad Sci U S A 101: 9474–9478, 2004.
 478. Schlaefke ME, Loeschcke HH. Lokalisation an der Regulation von Atmung und Kreislauf beteiligten Gebietes an der ventralen OberflSche de Medulla oblongata durch Kalteblockade. Pfliigers Arch 297: 201–220, 1967.
 479. Schlaefke ME, See WR, Herker‐See A, Loeschcke HH. Respiratory response to hypoxia and hypercapnia after elimination of central chemosensitivity. Pflugers Arch 381: 241–248, 1979.
 480. Schlaefke ME, See WR, Massion WH, Loeschcke HH. Die Rolle ‘spezifischer’ und ‘ unspezifischer’ Afferenzen fur den Antrieb de Atmung, untersucht durch Reizung und Blockade von Afferenzen an der decerebrierten Katze. Pfliigers Arch 31a: 198–212, 1969.
 481. Schlaefke ME, Pokorski M, See WR, Kille JF, Loeschcke HH. Chemosensitive neurons on the ventral medullary surface. Bull. Physio‐Pathol. Respir. 11: 277–284, 1975.
 482. Schmid K, Bohmer G, Gebauer K. GABAA receptor mediated fast synaptic inhibition in the rabbit brain‐stem respiratory system. Acta Physiol Scand 142: 411–420, 1991a.
 483. Schmid K, Bohmer G, Gebauer K. Glycine receptor‐mediated fast synaptic inhibition in the brainstem respiratory system. Respir Physiol 84: 351–361, 1991b.
 484. Schmid K, Foutz AS, Denavit‐Saubie M. Inhibitions mediated by glycine and GABAA receptors shape the discharge pattern of bulbar respiratory neurons. Brain Res 710: 150–160, 1996.
 485. Schmidt‐Hieber C, Jonas P, Bischofberger J. Enhanced synaptic plasticity in newly generated granule cells of the adult hippocampus. Nature 429: 184–187, 2004.
 486. Schmidt C, Bellingham MC, Richter DW. Adenosinergic modulation of respiratory neurones and hypoxic responses in the anaesthetized cat. J Physiol 483(Pt 3): 769–781, 1995.
 487. Schroeder BC, Hechenberger M, Weinreich F, Kubisch C, Jentsch TJ. KCNQ5, a novel potassium channel broadly expressed in brain, mediates M‐type currents. J Biol Chem 275: 24089–24095, 2000.
 488. Schwarzacher SW, Rub U, Deller T. Neuroanatomical characteristics of the human pre‐Botzinger complex and its involvement in neurodegenerative brainstem diseases. Brain 134: 24–35, 2010.
 489. Schwarzacher SW, Pestean A, Günther S, Ballanyi K. Serotonergic modulation of respiratory motoneurons and interneurons in brainstem slices of perinatal rats. Neuroscience 115: 1247–1259, 2002.
 490. Schwarzacher SW, Wilhelm Z, Anders K, Richter DW. The medullary respiratory network in the rat. J Physiol 435: 631–644, 1991.
 491. Sedensky MM, Meneely PM. Genetic analysis of halothane sensitivity in Caenorhabditis elegans. Science 236: 952–954, 1987.
 492. Selverston AI. A neural infrastructure for rhythmic motor patterns. Cell Mol Neurobiol 25: 223–244, 2005.
 493. Selverston AI, Moulins M. Oscillatory neural networks. Annu Rev Physiol 47: 29–48, 1985.
 494. Severson CA, Wang W, Pieribone VA, Dohle CI, Richerson GB. Midbrain serotonergic neurons are central pH chemoreceptors. Nat Neurosci 6: 1139–1140, 2003.
 495. Shan J, Yu XC, Fung ML, Wong TM. Attenuated “cross talk” between kappa‐opioid receptors and beta‐adrenoceptors in the heart of chronically hypoxic rats. Pflugers Arch 444: 126–132, 2002.
 496. Shao XM, Feldman JL. Respiratory rhythm generation and synaptic inhibition of expiratory neurons in pre‐Botzinger complex: Differential roles of glycinergic and GABAergic neural transmission. J Neurophysiol 77: 1853–1860, 1997.
 497. Shao XM, Feldman JL. Acetylcholine modulates respiratory pattern: Effects mediated by M3‐like receptors in preBotzinger complex inspiratory neurons. J Neurophysiol 83: 1243–1252, 2000.
 498. Shao XM, Feldman JL. Mechanisms underlying regulation of respiratory pattern by nicotine in preBotzinger complex. J Neurophysiol 85: 2461–2467, 2001.
 499. Shao XM, Feldman JL. Pharmacology of nicotinic receptors in preBotzinger complex that mediate modulation of respiratory pattern. J Neurophysiol 88: 1851–1858, 2002.
 500. Shao XM, Feldman JL. Cholinergic neurotransmission in the preBotzinger Complex modulates excitability of inspiratory neurons and regulates respiratory rhythm. Neuroscience 130: 1069–1081, 2005.
 501. Shao XM, Ge Q, Feldman JL. Modulation of AMPA receptors by cAMP‐dependent protein kinase in preBotzinger complex inspiratory neurons regulates respiratory rhythm in the rat. J Physiol 547: 543–553, 2003.
 502. Sharma SD, Raghuraman G, Lee MS, Prabhakar NR, Kumar GK. Intermittent hypoxia activates peptidylglycine alpha‐amidating monooxygenase in rat brain stem via reactive oxygen species‐mediated proteolytic processing. J Appl Physiol 106: 12–19, 2009.
 503. Sharp AA, Skinner FK, Marder E. Mechanisms of oscillation in dynamic clamp constructed two‐cell half‐center circuits. J Neurophysiol 76: 867–883, 1996.
 504. Shen L, Li YM, Duffin J. Inhibitory connections among rostral medullary expiratory neurones detected with cross‐correlation in the decerebrate rat. Pflugers Arch 446: 365–372, 2003.
 505. Sher E, Clementi F. Omega‐conotoxin‐sensitive voltage‐operated calcium channels in vertebrate cells. Neuroscience 42: 301–307, 1991.
 506. Sherrington CS. On the proprioceptive system especially in its reflex aspect. Brain 29: 467–482, 1906.
 507. Sherrington CS. Flexion‐reflex of the limb, crossed extension‐reflex, and reflex stepping and standing. J Physiol 40: 28–121, 1910.
 508. Shi C, Szczesniak A, Mao L, Jollimore C, Coca‐Prados M, Hung O, Kelly ME. A3 adenosine and CB1 receptors activate a PKC‐sensitive Cl‐ current in human nonpigmented ciliary epithelial cells via a G beta gamma‐coupled MAPK signaling pathway. Br J Pharmacol 139: 475–486, 2003.
 509. Shilnikov A, Calabrese RL, Cymbalyuk G. Mechanism of bistability: Tonic spiking and bursting in a neuron model. Phys Rev E Stat Nonlin Soft Matter Phys 71: 056214, 2005.
 510. Shvarev YN, Lagercrantz H, Yamamoto Y. Biphasic effects of substance P on respiratory activity and respiration‐related neurones in ventrolateral medulla in the neonatal rat brainstem in vitro. Acta Physiol Scand 174: 67–84, 2002.
 511. Singer JH, Berger AJ. Contribution of single‐channel properties to the time course and amplitude variance of quantal glycine currents recorded in rat motoneurons. J Neurophysiol 81: 1608–1616, 1999.
 512. Singh NA, Charlier C, Stauffer D, DuPont BR, Leach RJ, Melis R, Ronen GM, Bjerre I, Quattlebaum T, Murphy JV, McHarg ML. Gagnon D, Rosales TO, Peiffer A, Anderson VE, Leppert M. A novel potassium channel gene, KCNQ2, is mutated in an inherited epilepsy of newborns. Nat Genet 18: 25–29, 1998.
 513. Skiebe P. Neuropeptides are ubiquitous chemical mediators: Using the stomatogastric nervous system as a model system. J Exp Biol 204: 2035–2048, 2001.
 514. Skinner FK, Kopell N, Marder E. Mechanisms for oscillation and frequency control in reciprocally inhibitory model neural networks. J Comput Neurosci 1: 69–87, 1994.
 515. Smith JC, Abdala AP, Rybak IA, Paton JF. Structural and functional architecture of respiratory networks in the mammalian brainstem. Philos Trans R Soc Lond B Biol Sci 364: 2577–2587, 2009.
 516. Smith JC, Ellenberger HH, Ballanyi K, Richter DW, Feldman JL. Pre‐Botzinger complex: A brainstem region that may generate respiratory rhythm in mammals. Science 254: 726–729, 1991.
 517. Smith PA, Sellers LA, Humphrey PP. Somatostatin activates two types of inwardly rectifying K +channels in MIN‐6 cells. J Physiol 532: 127–142, 2001.
 518. Snutch TP, Monteil A. The sodium “leak” has finally been plugged. Neuron 54: 505–507, 2007.
 519. Soboloff J, Spassova M, Hewavitharana T, He LP, Luncsford P, Xu W, Venkatachalam K. van Rossum D, Patterson RL, Gill DL. TRPC channels: Integrators of multiple cellular signals. Handb Exp Pharmacol 2007: 575–91.
 520. Solomon IC. Modulation of gasp frequency by activation of pre‐Botzinger complex in vivo. J Neurophysiol 87: 1664–1668, 2002.
 521. Solomon IC, Edelman NH, Neubauer JA. Pre‐Botzinger complex functions as a central hypoxia chemosensor for respiration in vivo. J Neurophysiol 83: 2854–2868, 2000.
 522. Sorensen JB. Formation, stabilisation and fusion of the readily releasable pool of secretory vesicles. Pflugers Arch 448: 347–362, 2004.
 523. Sorensen ME, DeWeerth SP. Functional consequences of model complexity in rhythmic systems. II. Systems performance of model and hybrid oscillators. J Neural Eng 4: 189–196, 2007.
 524. Sorg C, Riedl V, Muhlau M, Calhoun VD, Eichele T, Laer L, Drzezga A, Forstl H, Kurz A, Zimmer C, Wohlschlager AM. Selective changes of resting‐state networks in individuals at risk for Alzheimer's disease. Proc Natl Acad Sci U S A 104: 18760–18765, 2007.
 525. Speca DJ, Chihara D, Ashique AM, Bowers MS. Pierce‐Shimomura JT, Lee J, Rabbee N, Speed TP, Gularte RJ, Chitwood J, Medrano JF, Liao M, Sonner JM, Eger EI 2nd, Peterson AS, McIntire SL. Conserved role of unc‐79 in ethanol responses in lightweight mutant mice. PLoS Genet 12: 6(8), e1001057, 2010.
 526. Sporns O. The human connectome: A complex network. Ann N Y Acad Sci USA 1224: 109–125, 2011.
 527. Sporns O, Tononi G, Kotter R. The human connectome: A structural description of the human brain. PLoS Comput Biol 1: e42, 2005.
 528. Spyer KM, Gourine AV. Chemosensory pathways in the brainstem controlling cardiorespiratory activity. Philos Trans R Soc Lond B Biol Sci 364: 2603–2610, 2009.
 529. St‐John WM. “ Prolongation in expiration evoked from ventrolateral pons of adult rats”. J Appl Physiol 82: 375–376, 1997.
 530. St‐John WM, Leiter JC. Discharge of the hypoglossal nerve cannot distinguish eupnea from gasping, as defined by phrenic discharge, in the in situ mouse. J Appl Physiol 107: 686–695, 2009.
 531. St‐John WM, Stornetta RL, Guyenet PG, Paton JF. Location and properties of respiratory neurones with putative intrinsic bursting properties in the rat in situ. J Physiol 587: 3175–3188, 2009.
 532. St‐John WM, Waki H, Dutschmann M, Paton JF. Maintenance of eupnea of in situ and in vivo rats following riluzole: A blocker of persistent sodium channels. Respir Physiol Neurobiol 155: 97–100, 2007.
 533. Stanford IM, Lacey MG. Regulation of a potassium conductance in rat midbrain dopamine neurons by intracellular adenosine triphosphate (ATP) and the sulfonylureas tolbutamide and glibenclamide. J Neurosci 15: 4651–4657, 1995.
 534. Steinlein OK. Genetic mechanisms that underlie epilepsy. Nat Rev Neurosci 5: 400–408, 2004.
 535. Stent GS, Kristan WB, Jr., Friesen WO, Ort CA, Poon M, Calabrese RL. Neuronal generation of the leech swimming movement. Science 200: 1348–1357, 1978.
 536. Steriade M, McCormick DA, Sejnowski TJ. Thalamocortical oscillations in the sleeping and aroused brain. Science 262: 679–685, 1993.
 537. Stornetta RL, Sevigny CP, Schreihofer AM, Rosin DL, Guyenet PG. Vesicular glutamate transporter DNPI/VGLUT2 is expressed by both C1 adrenergic and nonaminergic presympathetic vasomotor neurons of the rat medulla. J Comp Neurol 444: 207–220, 2002.
 538. Sun MK, Reis DJ. Hypoxia‐activated Ca2+ currents in pacemaker neurones of rat rostral ventrolateral medulla in vitro. J Physiol 476: 101–116, 1994.
 539. Surmeier DJ, Mercer JN, Chan CS. Autonomous pacemakers in the basal ganglia: Who needs excitatory synapses anyway? Curr Opin Neurobiol 15: 312–318, 2005.
 540. Swayne LA, Mezghrani A, Varrault A, Chemin J. Bertrand, G. Dalle, S. Bourinet, E. Lory, P. Miller, R. J. Nargeot, J. Monteil, A. The NALCN ion channel is activated by M3 muscarinic receptors in a pancreatic beta‐cell line. EMBO Rep 10: 873–880, 2009.
 541. Swensen AM, Marder E. Multiple peptides converge to activate the same voltage‐dependent current in a central pattern‐generating circuit. J Neurosci 20: 6752–6759, 2000.
 542. Taddese A, Bean BP. Subthreshold sodium current from rapidly inactivating sodium channels drives spontaneous firing of tuberomammillary neurons. Neuron 33: 587–600, 2002.
 543. Tai C, Hines DJ, Choi HB, Macvicar BA. Plasma membrane insertion of TRPC5 channels contributes to the cholinergic plateau potential in hippocampal CA1 pyramidal neurons. Hippocampus 21: 958–967, 2010.
 544. Tan W, Janczewski WA, Yang P, Shao XM, Callaway EM, Feldman JL. Silencing preBotzinger complex somatostatin‐expressing neurons induces persistent apnea in awake rat. Nat Neurosci 11: 538–540, 2008.
 545. Tan W, Pagliardini S, Yang P, Janczewski WA, Feldman JL. Projections of preBotzinger complex neurons in adult rats. J Comp Neurol 518: 1862–1878, 2010.
 546. Taylor AL, Cottrell GW, Kristan WB, Jr. Analysis of oscillations in a reciprocally inhibitory network with synaptic depression. Neural Comput 14: 561–581, 2002.
 547. Telgkamp P, Cao YQ, Basbaum AI, Ramirez JM. Long‐term deprivation of substance P in PPT‐A mutant mice alters the anoxic response of the isolated respiratory network. J Neurophysiol 88: 206–213, 2002.
 548. Telgkamp P, Ramirez JM. Differential responses of respiratory nuclei to anoxia in rhythmic brain stem slices of mice. J Neurophysiol 82: 2163–2170, 1999.
 549. Terada J, Nakamura A, Zhang W, Yanagisawa M, Kuriyama T, Fukuda Y, Kuwaki T. Ventilatory long‐term facilitation in mice can be observed during both sleep and wake periods and depends on orexin. J Appl Physiol 104: 499–507, 2008.
 550. Thach BT. The role of respiratory control disorders in SIDS. Respir Physiol Neurobiol 149: 343–353, 2005.
 551. Thach BT. Some aspects of clinical relevance in the maturation of respiratory control in infants. J Appl Physiol 104: 1828–1834, 2008.
 552. Thankachan S, Kaur S, Shiromani PJ. Activity of pontine neurons during sleep and cataplexy in hypocretin knock‐out mice. J Neurosci 29: 1580–1585, 2009.
 553. Thoby‐Brisson M, Ramirez JM. Role of inspiratory pacemaker neurons in mediating the hypoxic response of the respiratory network in vitro. J Neurosci 20: 5858–5866, 2000.
 554. Thoby‐Brisson M, Ramirez JM. Identification of two types of inspiratory pacemaker neurons in the isolated respiratory neural network of mice. J Neurophysiol 86: 104–112, 2001.
 555. Thoby‐Brisson M, Trinh JB, Champagnat J, Fortin G. Emergence of the pre‐Botzinger respiratory rhythm generator in the mouse embryo. J Neurosci 25: 4307–4318, 2005.
 556. Tian GF, Peever JH, Duffin J. Mutual inhibition between Botzinger‐complex bulbospinal expiratory neurons detected with cross‐correlation in the decerebrate rat. Exp Brain Res 125: 440–446, 1999.
 557. Topchiy I, Waxman J, Radulovacki M, Carley DW. Functional topography of respiratory, cardiovascular and pontine‐wave responses to glutamate microstimulation of the pedunculopontine tegmentum of the rat. Respir Physiol Neurobiol 173: 64–70, 2010.
 558. Toporikova N, Butera RJ. Two types of independent bursting mechanisms in inspiratory neurons: An integrative model. J Comput Neurosci 30: 515–528, 2010.
 559. Toppin VA, Harris MB, Kober AM, Leiter JC, St‐John WM. Persistence of eupnea and gasping following blockade of both serotonin type 1 and 2 receptors in the in situ juvenile rat preparation. J Appl Physiol 103: 220–227, 2007.
 560. Tozzi A, Bengtson CP, Longone P, Carignani C, Fusco FR, Bernardi G, Mercuri NB. Involvement of transient receptor potential‐like channels in responses to mGluR‐I activation in midbrain dopamine neurons. Eur J Neurosci 18: 2133–2145, 2003.
 561. Trebak M, Hempel N, Wedel BJ, Smyth JT, Bird GS, Putney JW, Jr. Negative regulation of TRPC3 channels by protein kinase C‐mediated phosphorylation of serine 712. Mol Pharmacol 67: 558–563, 2005.
 562. Trippenbach T, Richter DW, Acker H. Hypoxia and ion activities within the brain stem of newborn rabbits. J Appl Physiol 68: 2494–2503, 1990.
 563. Tryba AK, Pena F, Lieske SP, Viemari JC, Thoby‐Brisson M, Ramirez JM. Differential modulation of neural network and pacemaker activity underlying eupnea and sigh‐breathing activities. J Neurophysiol 99: 2114–2125, 2008.
 564. Tryba AK, Pena F, Ramirez JM. Stabilization of bursting in respiratory pacemaker neurons. J Neurosci 23: 3538–3546, 2003.
 565. Tryba AK, Pena F, Ramirez JM. Gasping activity in vitro: A rhythm dependent on 5‐HT2A receptors. J Neurosci 26: 2623–2634, 2006.
 566. Tryba AK, Ramirez JM. Background sodium current stabilizes bursting in respiratory pacemaker neurons. J Neurobiol 60: 481–489, 2004.
 567. Uebachs M, Opitz T, Royeck M, Dickhof G, Horstmann MT, Isom LL, Beck H. Efficacy loss of the anticonvulsant carbamazepine in mice lacking sodium channel beta subunits via paradoxical effects on persistent sodium currents. J Neurosci 30: 8489–8501, 2010.
 568. Urbani A, Belluzzi O. Riluzole inhibits the persistent sodium current in mammalian CNS neurons. Eur J Neurosci 12: 3567–3574, 2000.
 569. Ureche ON, Baltaev R, Ureche L, Strutz‐Seebohm N, Lang F, Seebohm G. Novel insights into the structural basis of pH‐sensitivity in inward rectifier K +channels Kir2.3. Cell Physiol Biochem 21: 347–356, 2008.
 570. Usowicz MM, Sugimori M, Cherksey B, Llinas R. P‐type calcium channels in the somata and dendrites of adult cerebellar Purkinje cells. Neuron 9: 1185–1199, 1992.
 571. van Brederode JF, Berger AJ. GAD67‐GFP+ neurons in the nucleus of roller. II. Subthreshold and firing resonance properties. J Neurophysiol 105: 249–278, 2011.
 572. van Brederode JF, Yanagawa Y, Berger AJ. GAD67‐GFP+ neurons in the Nucleus of Roller: A possible source of inhibitory input to hypoglossal motoneurons. I. Morphology and firing properties. J Neurophysiol 105: 235–248, 2011.
 573. Van Dort CJ, Baghdoyan HA, Lydic R. Adenosine A(1) and A(2A) receptors in mouse prefrontal cortex modulate acetylcholine release and behavioral arousal. J Neurosci 29: 871–881, 2009.
 574. van Drongelen W, Koch H, Elsen FP, Lee HC, Mrejeru A, Doren E, Marcuccilli CJ, Hereld M, Stevens RL, Ramirez JM. Role of persistent sodium current in bursting activity of mouse neocortical networks in vitro. J Neurophysiol 96: 2564–2577, 2006.
 575. Veasey SC, Panckeri KA, Hoffman EA, Pack AI, Hendricks JC. The effects of serotonin antagonists in an animal model of sleep‐disordered breathing. Am J Respir Crit Care Med 153: 776–786, 1996.
 576. Vennekens R, Nilius B. Insights into TRPM4 function, regulation and physiological role. Handb Exp Pharmacol 179: 269–285, 2007.
 577. Viemari JC, Burnet H, Bevengut M, Hilaire G. Perinatal maturation of the mouse respiratory rhythm‐generator: In vivo and in vitro studies. Eur J Neurosci 17: 1233–1244, 2003.
 578. Viemari JC, Ramirez JM. Norepinephrine differentially modulates different types of respiratory pacemaker and nonpacemaker neurons. J Neurophysiol 95: 2070–2082, 2006.
 579. Vinet R, Vargas FF. L‐ and T‐type voltage‐gated Ca2+ currents in adrenal medulla endothelial cells. Am J Physiol 276: H1313‐H1322.
 580. Wallace RH, Wang DW, Singh R, Scheffer IE, George AL Jr, Phillips HA, Saar K, Reis A, Johnson EW, Sutherland GR, Berkovic SF, Mulley JC. Febrile seizures and generalized epilepsy associated with a mutation in the Na+‐channel beta1 subunit gene SCN1B. Nat Genet 19: 366–370, 1998.
 581. Wang HS, Pan Z, Shi W, Brown BS, Wymore RS, Cohen IS, Dixon JE, McKinnon D. KCNQ2 and KCNQ3 potassium channel subunits: Molecular correlates of the M‐channel. Science 282: 1890–1893, 1998.
 582. Wang Q, Curran ME, Splawski I, Burn TC, Millholland JM, VanRaay TJ, Shen J, Timothy KW, Vincent GM, de Jager T, Schwartz PJ, Toubin JA, Moss AJ, Atkinson DL, Landes GM, Connors TD, Keating MT. Positional cloning of a novel potassium channel gene: KVLQT1 mutations cause cardiac arrhythmias. Nat Genet 12: 17–23, 1996.
 583. Wang S, Xu DJ, Cai JB, Huang YZ, Zou JG, Cao KJ. Rapid component I(Kr) of cardiac delayed rectifier potassium currents in guinea‐pig is inhibited by alpha(1)‐adrenoreceptor activation via protein kinase A and protein kinase C‐dependent pathways. Eur J Pharmacol 608: 1–6, 2009.
 584. Wang SJ, Cheng LL, Gean PW. Cross‐modulation of synaptic plasticity by beta‐adrenergic and 5‐HT1A receptors in the rat basolateral amygdala. J Neurosci 19: 570–577, 1999.
 585. Wang SJ, Coutinho V, Sihra TS. Presynaptic cross‐talk of beta‐adrenoreceptor and 5‐hydroxytryptamine receptor signalling in the modulation of glutamate release from cerebrocortical nerve terminals. Br J Pharmacol 137: 1371–1379, 2002.
 586. Wang W, Bradley SR, Richerson GB. Quantification of the response of rat medullary raphe neurones to independent changes in pH(o) and P(CO2). J Physiol 540: 951–970, 2002.
 587. Wang W, Fung ML, St John WM. Pontile regulation of ventilatory activity in the adult rat. J Appl Physiol 74: 2801–2811, 1993.
 588. Wang XJ, Rinzel J. Spindle rhythmicity in the reticularis thalami nucleus: Synchronization among mutually inhibitory neurons. Neuroscience 53: 899–904, 1993.
 589. Watanabe H, Nagata E, Kosakai A, Nakamura M, Yokoyama M, Tanaka K, Sasai H. Disruption of the epilepsy KCNQ2 gene results in neural hyperexcitability. J Neurochem 75: 28–33, 2000.
 590. Weese‐Mayer DE, Ackerman MJ, Marazita ML, Berry‐Kravis EM. Sudden Infant Death Syndrome: Review of implicated genetic factors. Am J Med Genet A 143A: 771–788, 2007.
 591. Wei A, Covarrubias M, Butler A, Baker K, Pak M, Salkoff L. K+ current diversity is produced by an extended gene family conserved in Drosophila and mouse. Science 248: 599–603, 1990.
 592. Wei A, Jegla T, Salkoff L. Eight potassium channel families revealed by the C. elegans genome project. Neuropharmacology 35: 805–829, 1996.
 593. Wenker IC, Kreneisz O, Nishiyama A, Mulkey DK. Astrocytes in the retrotrapezoid nucleus sense H+ by inhibition of a Kir4.1‐Kir5.1‐like current and may contribute to chemoreception by a purinergic mechanism. J Neurophysiol 104: 3042–3052, 2010.
 594. Wenninger JM, Pan LG, Klum L, Leekley, T. Bastastic J, Hodges MR, Feroah TR, Davis S, Forster HV. Large lesions in the pre‐Botzinger complex area eliminate eupneic respiratory rhythm in awake goats. J Appl Physiol 97: 1629–1636, 2004.
 595. Westfall DP, Todorov LD, Mihaylova‐Todorova ST. ATP as a cotransmitter in sympathetic nerves and its inactivation by releasable enzymes. J Pharmacol Exp Ther 303: 439–444, 2002.
 596. Whitfield‐Gabrieli S, Thermenos HW, Milanovic S, Tsuang MT, Faraone SV, McCarley RW, Shenton ME, Green AI, Nieto‐Castanon A, LaViolette P, Wojcik J, Gabrieli JD, Seidman LJ. Hyperactivity and hyperconnectivity of the default network in schizophrenia and in first‐degree relatives of persons with schizophrenia. Proc Natl Acad Sci U S A 106: 1279–1284, 2009.
 597. Wickstrom HR, Berner J, Holgert H, Hokfelt T, Lagercrantz H. Hypoxic response in newborn rat is attenuated by neurokinin‐1 receptor blockade. Respir Physiol Neurobiol 140: 19–31, 2004.
 598. Williams RH, Jensen LT, Verkhratsky A, Fugger L, Burdakov D. Control of hypothalamic orexin neurons by acid and CO2. Proc Natl Acad Sci U S A 104: 10685–10690, 2007.
 599. Willis T. Cerebri Anatome: Cui Accessit Nervorum Descriptio et Usus [The anatomy of the brain and nerves]. Flesher, London 1664.
 600. Winter SM, Fresemann J, Schnell C, Oku Y, Hirrlinger J, Hulsmann S. Glycinergic interneurons are functionally integrated into the inspiratory network of mouse medullary slices. Pflugers Arch 458: 459–469, 2009.
 601. Wissenbach U, Niemeyer BA. Trpv6. Handb Exp Pharmacol 179: 221–234, 2007.
 602. Wu J, Xu H, Shen W, Jiang C. Expression and coexpression of CO2‐sensitive Kir channels in brainstem neurons of rats. J Membr Biol 197: 179–191, 2004.
 603. Xiang Z, Wang L, Kitai ST. Modulation of spontaneous firing in rat subthalamic neurons by 5‐HT receptor subtypes. J Neurophysiol 93: 1145–1157, 2005.
 604. Xu H, Yang Z, Cui N, Chanchevalap S, Valesky WW, Jiang C. A single residue contributes to the difference between Kir4.1 and Kir1.1 channels in pH sensitivity, rectification and single channel conductance. J Physiol 528(Pt 2): 267–277, 2000.
 605. Yamamoto S, Kanno T, Yamada K, Yasuda Y, Nishizaki T. Dual regulation of heat‐activated K+ channel in rat DRG neurons via alpha(1) and beta adrenergic receptors. Life Sci 85: 167–171, 2009.
 606. Yang B, Gribkoff VK, Pan J, Damagnez V, Dworetzky SI, Boissard CG, Bhattacharjee A, Yan Y, Sigworth FJ, Kaczmarek LK. Pharmacological activation and inhibition of Slack (Slo2.2) channels. Neuropharmacology 51: 896–906, 2006.
 607. Yang WP, Levesque PC, Little WA, Conder ML, Ramakrishnan P, Neubauer MG, Blanar MA. Functional expression of two KvLQT1‐related potassium channels responsible for an inherited idiopathic epilepsy. J Biol Chem 273: 19419–19423, 1998.
 608. Yao L, Fan P, Jiang Z, Gordon A, Mochly‐Rosen D, Diamond I. Dopamine and ethanol cause translocation of epsilonPKC associated with epsilonRACK: Cross‐talk between cAMP‐dependent protein kinase A and protein kinase C signaling pathways. Mol Pharmacol 73: 1105–1112, 2008.
 609. Yeh E, Ng S, Zhang M, Bouhours M, Wang Y, Wang M, Hung W, Aoyagi K, Melnik‐Martinez K, Li M, Liu F, Schafer WR, Zhen M. A putative cation channel, NCA‐1, and a novel protein, UNC‐80, transmit neuronal activity in C. elegans. PLoS Biol 6: e55, 2008.
 610. Young JK, Wu M, Manaye KF, Kc P, Allard JS, Mack SO, Haxhiu MA. Orexin stimulates breathing via medullary and spinal pathways. J Appl Physiol 98: 1387–1395, 2005.
 611. Yu FH, Catterall WA. Overview of the voltage‐gated sodium channel family. Genome Biol 4: 207, 2003.
 612. Yu FH, Catterall WA. The VGL‐chanome: A protein superfamily specialized for electrical signaling and ionic homeostasis. Sci STKE 2004: re15, 2004 .
 613. Yu FH, Westenbroek RE, Silos‐Santiago I, McCormick KA, Lawson D, Ge P, Ferriera H, Lilly J. DiStefano PS, Catterall WA, Scheuer T, Curtis R. Sodium channel beta4, a new disulfide‐linked auxiliary subunit with similarity to beta2. J Neurosci 23: 7577–7585, 2003.
 614. Yuan JP, Kim MS, Zeng W, Shin DM, Huang G, Worley PF, Muallem S. TRPC channels as STIM1‐regulated SOCs. Channels (Austin) 3: 221–225, 2009.
 615. Yuan JP, Kiselyov K, Shin DM, Chen J, Shcheynikov N, Kang SH, Dehoff MH, Schwarz MK, Seeburg PH, Muallem S, Worley PF. Homer binds TRPC family channels and is required for gating of TRPC1 by IP3 receptors. Cell 114: 777–789, 2003.
 616. Zavala‐Tecuapetla C, Aguileta MA, Lopez‐Guerrero JJ, Gonzalez‐Marin MC, Pena F. Calcium‐activated potassium currents differentially modulate respiratory rhythm generation. Eur J Neurosci 27: 2871–2884, 2008.
 617. Zhang D, Raichle ME. Disease and the brain's dark energy. Nat Rev Neurol 6: 15–28, 2010.
 618. Zhang L, Saffen D. Muscarinic acetylcholine receptor regulation of TRP6 Ca2 +channel isoforms. Molecular structures and functional characterization. J Biol Chem 276: 13331–13339, 2001.
 619. Zhang M, Hu H, Zhang X, Lu W, Lim J, Eysteinsson T, Jacobson KA, Laties AM, Mitchell CH. The A3 adenosine receptor attenuates the calcium rise triggered by NMDA receptors in retinal ganglion cells. Neurochem Int 56: 35–41, 2010.
 620. Zhang X, Cui N, Wu Z, Su J, Tadepalli JS, Sekizar S, Jiang C. Intrinsic membrane properties of locus coeruleus neurons in Mecp2‐null mice. Am J Physiol Cell Physiol 298: C635‐C646, 2010.
 621. Zhang X, Su J, Cui N, Gai H, Wu Z, Jiang C. The disruption of central CO2 chemosensitivity in a mouse model of Rett syndrome. Am J Physiol Cell Physiol 301: C729–C738, 2011.
 622. Zhang Y, Hoon MA, Chandrashekar J, Mueller KL, Cook B, Wu D, Zuker CS, Ryba NJ. Coding of sweet, bitter, and umami tastes: Different receptor cells sharing similar signaling pathways. Cell 112: 293–301, 2003.
 623. Zhu Y, Ikeda SR. Adenosine modulates voltage‐gated Ca2+ channels in adult rat sympathetic neurons. J Neurophysiol 70: 610–620, 1993.
 624. Zuperku EJ, McCrimmon DR. Gain modulation of respiratory neurons. Respir Physiol Neurobiol 131: 121–133, 2002.

Contact Editor

Submit a note to the editor about this article by filling in the form below.

* Required Field

How to Cite

J.M. Ramirez, A. Doi, A.J. Garcia, F.P. Elsen, H. Koch, A.D. Wei. The Cellular Building Blocks of Breathing. Compr Physiol 2012, 2: 2683-2731. doi: 10.1002/cphy.c110033