Comprehensive Physiology Wiley Online Library

The Ciliary Cytoskeleton

Full Article on Wiley Online Library



Abstract

Cilia and flagella are surface‐exposed, finger‐like organelles whose core consists of a microtubule (MT)‐based axoneme that grows from a modified centriole, the basal body. Cilia are found on the surface of many eukaryotic cells and play important roles in cell motility and in coordinating a variety of signaling pathways during growth, development, and tissue homeostasis. Defective cilia have been linked to a number of developmental disorders and diseases, collectively called ciliopathies. Cilia are dynamic organelles that assemble and disassemble in tight coordination with the cell cycle. In most cells, cilia are assembled during growth arrest in a multistep process involving interaction of vesicles with appendages present on the distal end of mature centrioles, and addition of tubulin and other building blocks to the distal tip of the basal body and growing axoneme; these building blocks are sorted through a region at the cilium base known as the ciliary necklace, and then transported via intraflagellar transport (IFT) along the axoneme toward the tip for assembly. After assembly, the cilium frequently continues to turn over and incorporate tubulin at its distal end in an IFT‐dependent manner. Prior to cell division, the cilia are usually resorbed to liberate centrosomes for mitotic spindle pole formation. Here, we present an overview of the main cytoskeletal structures associated with cilia and centrioles with emphasis on the MT‐associated appendages, fibers, and filaments at the cilium base and tip. The composition and possible functions of these structures are discussed in relation to cilia assembly, disassembly, and length regulation. © 2012 American Physiological Society. Compr Physiol 2:779‐803, 2012.

Comprehensive Physiology offers downloadable PowerPoint presentations of figures for non-profit, educational use, provided the content is not modified and full credit is given to the author and publication.

Download a PowerPoint presentation of all images


Figure 1. Figure 1.

Examples of different types of cilia. (A‐D) Examples of motile cilia. (A) Digital interference contrast (DIC) image of the green alga Chlamydomonas reinhardtii with two motile cilia/flagella. Adapted from 233, with permission, from Elsevier. (B) Schematic cross section of a 9+2 motile cilium with inner (green) and outer dynein arms (red), radial spokes (light blue), nexin links (dark gray), and a central MT pair surrounded by an inner sheath (light gray). (C) Scanning electron micrograph (SEM) of mouse tracheal cilia [courtesy of Karl F. Lechtreck and George B. Witman, and reproduced from 233, with permission from Elsevier]. (D) DIC image of a human sperm cell with one motile flagellum. (E‐H) Examples of immotile primary cilia. (E) Immunofluorescence micrograph of a human foreskin fibroblast (hFF) stained with antibodies against detyrosinated tubulin (green) marking the axoneme, against dynactin subunit p150Glued (red) that label the centrosome, and 4′,6‐diamidino‐2‐phenylindole (DAPI), which labels the DNA (blue). (F) Schematic cross section of a 9+0 cilium with the nine outer doublets and nexin links (dark gray). (G) SEM of a cultured IMCD cell with a primary cilium. Note the bulged appearance of the distal cilium tip (courtesy of Alexandre Benmerah, Phillipe Bastin, and Thierry Blisnick). (H) Transmission electron micrograph of a longitudinal section of a primary cilium of an hFF cell [adapted from 275, with permission from Journal of Cell Science].

Figure 2. Figure 2.

Structure of the basal body, transition zone, and ciliary axoneme. (A) Schematic longitudinal view of a motile cilium with the 9+2 axoneme extending from the nine triplet structure of the basal body, which is linked to the daughter centriole by the rootlet filaments. The ciliary axoneme is surrounded by the ciliary membrane. (B, F) Cross section of a 9+2 cilium with outer (ODA) and inner dynein arms (IDA), radial spokes (RS) and a central MT pair surrounded by an inner sheath. The outer doublets are connected by nexin links. TEM of a cross‐sectioned Chlamydomonas flagellum (F) is courtesy of Stefan Geimer, University of Bayreuth. (C, G) Cross section of the ciliary necklace region, with Y‐links connecting the A subfiber of the outer doublet MTs to the ciliary membrane [TEM is from 109, with permission from Journal of Cell Science]. (D, H) Cross section of the distal part of the basal body. The transitional fibers are attached in a rotational asymmetric pattern to all three MT subfibers of the basal body. (E, I) Cross section of the nine triplet structures of the basal body [TEM image is from 102, with permission from Journal of Cell Science].

Figure 3. Figure 3.

Appendages of centrioles and the basal body. (A) Schematic model of an early G1 centriole pair with their proximal regions connected by a linker structure of rootlet filaments. The older (mother) centriole is the uppermost and can be distinguished from the daughter by the presence of distal‐ and subdistal appendages. The centriole pair is embedded in a matrix of pericentriolar material (PCM). (B) The cilium is nucleated from the distal region of the basal body, and the transition fibers, corresponding to the distal appendages of the mother centriole, extend from the basal body and connect to the plasma membrane at the cilium base (see Fig. 2A). Above the transition fibers, the Y‐links of the necklace are present.

Figure 4. Figure 4.

Cilia and the cell cycle. Assembly and disassembly of primary cilia are tightly coordinated with the cell cycle. In G1/G0 the mother centriole docks at the apical membrane at the site of ciliary assembly and the primary cilium is nucleated. The elongation of the distal end of the mother centriole is mediated by IFT‐dependent addition of ciliary precursors, and the mother centriole becomes the basal body. The disassembly of the primary cilium prior to mitosis liberates both centriole pairs to function in mitotic spindle formation. See text for details.

Figure 5. Figure 5.

Early stages of primary cilia assembly. (A) In the intracellular pathway, a centriolar vesicle localizes to the distal end of the mother centriole and the axoneme then elongates within this vesicle while nearby vesicles fuse to form a sheath surrounding the axonemal shaft. The sheath eventually reaches and fuses with the plasma membrane, and the distal part of the cilium is in contact with the extracellular milieu while the proximal part is surrounded by a ciliary pocket in the cytoplasm. (B) In the extracellular pathway, the mother centriole docks directly to the plasma membrane, and most of the cilium protrude out into the extracellular milieu. The figure is based on: 202,293,294,321.

Figure 6. Figure 6.

IFT and targeting of proteins to the cilium. Axonemal precursors, as well as membrane proteins, are transported along MTs to the primary cilium via Golgi‐derived vesicles. At the ciliary base the vesicles are exocytosed and the ciliary proteins associate with IFT particles, and enter the ciliary compartment through the transition zone. After entry, kinesin‐2 transports these proteins, as well as cytoplasmic dynein 2, along the axoneme to the ciliary tip (anterograde transport). At the ciliary tip, kinesin‐2 is inactivated and cytoplasmic dynein 2 is activated and brings IFT particles and ciliary turnover products (e.g., inactive receptors) along the axoneme back to the cell body (retrograde transport) for recycling or degradation. Modified, with permission, from 233. See text for further details.

Figure 7. Figure 7.

The ciliary tip. (A, B) Structures associated with the ciliary tip. (A) Whole mount electron micrograph of the distal tips of Chlamydomonas flagella, treated with detergent. Arrows indicate the distal filaments attached to the end of A subfibers [reproduced from 77, with permission from Journal of Cell Biology]. (B) Schematic model of the flagellar tip structures showing filaments extending from the tip of A tubule of the MT doublets to the membrane, as well as the cap structure on the distal end of the central pair MTs. (C) Immunofluorescence micrograph of a human bronchial epithelial cell stained with antibodies against EB3 (green) and acetylated alpha tubulin (red) to label cilia, and DAPI (blue) to visualize DNA. EB3 localizes to the tip as well as the base of the motile cilia [adapted from 275, with permission from Journal of Cell Science]. Scalebar, 5 μm. (D) Immunofluorescence micrograph of a Chlamydomonas cell labeled with antibodies specific for CrEB1 (red) 231 and acetylated alpha tubulin (green). The upper left insert is an enlarged shifted overlay showing the flagellar tip localization of CrEB1. Scalebar, 5 μm.



Figure 1.

Examples of different types of cilia. (A‐D) Examples of motile cilia. (A) Digital interference contrast (DIC) image of the green alga Chlamydomonas reinhardtii with two motile cilia/flagella. Adapted from 233, with permission, from Elsevier. (B) Schematic cross section of a 9+2 motile cilium with inner (green) and outer dynein arms (red), radial spokes (light blue), nexin links (dark gray), and a central MT pair surrounded by an inner sheath (light gray). (C) Scanning electron micrograph (SEM) of mouse tracheal cilia [courtesy of Karl F. Lechtreck and George B. Witman, and reproduced from 233, with permission from Elsevier]. (D) DIC image of a human sperm cell with one motile flagellum. (E‐H) Examples of immotile primary cilia. (E) Immunofluorescence micrograph of a human foreskin fibroblast (hFF) stained with antibodies against detyrosinated tubulin (green) marking the axoneme, against dynactin subunit p150Glued (red) that label the centrosome, and 4′,6‐diamidino‐2‐phenylindole (DAPI), which labels the DNA (blue). (F) Schematic cross section of a 9+0 cilium with the nine outer doublets and nexin links (dark gray). (G) SEM of a cultured IMCD cell with a primary cilium. Note the bulged appearance of the distal cilium tip (courtesy of Alexandre Benmerah, Phillipe Bastin, and Thierry Blisnick). (H) Transmission electron micrograph of a longitudinal section of a primary cilium of an hFF cell [adapted from 275, with permission from Journal of Cell Science].



Figure 2.

Structure of the basal body, transition zone, and ciliary axoneme. (A) Schematic longitudinal view of a motile cilium with the 9+2 axoneme extending from the nine triplet structure of the basal body, which is linked to the daughter centriole by the rootlet filaments. The ciliary axoneme is surrounded by the ciliary membrane. (B, F) Cross section of a 9+2 cilium with outer (ODA) and inner dynein arms (IDA), radial spokes (RS) and a central MT pair surrounded by an inner sheath. The outer doublets are connected by nexin links. TEM of a cross‐sectioned Chlamydomonas flagellum (F) is courtesy of Stefan Geimer, University of Bayreuth. (C, G) Cross section of the ciliary necklace region, with Y‐links connecting the A subfiber of the outer doublet MTs to the ciliary membrane [TEM is from 109, with permission from Journal of Cell Science]. (D, H) Cross section of the distal part of the basal body. The transitional fibers are attached in a rotational asymmetric pattern to all three MT subfibers of the basal body. (E, I) Cross section of the nine triplet structures of the basal body [TEM image is from 102, with permission from Journal of Cell Science].



Figure 3.

Appendages of centrioles and the basal body. (A) Schematic model of an early G1 centriole pair with their proximal regions connected by a linker structure of rootlet filaments. The older (mother) centriole is the uppermost and can be distinguished from the daughter by the presence of distal‐ and subdistal appendages. The centriole pair is embedded in a matrix of pericentriolar material (PCM). (B) The cilium is nucleated from the distal region of the basal body, and the transition fibers, corresponding to the distal appendages of the mother centriole, extend from the basal body and connect to the plasma membrane at the cilium base (see Fig. 2A). Above the transition fibers, the Y‐links of the necklace are present.



Figure 4.

Cilia and the cell cycle. Assembly and disassembly of primary cilia are tightly coordinated with the cell cycle. In G1/G0 the mother centriole docks at the apical membrane at the site of ciliary assembly and the primary cilium is nucleated. The elongation of the distal end of the mother centriole is mediated by IFT‐dependent addition of ciliary precursors, and the mother centriole becomes the basal body. The disassembly of the primary cilium prior to mitosis liberates both centriole pairs to function in mitotic spindle formation. See text for details.



Figure 5.

Early stages of primary cilia assembly. (A) In the intracellular pathway, a centriolar vesicle localizes to the distal end of the mother centriole and the axoneme then elongates within this vesicle while nearby vesicles fuse to form a sheath surrounding the axonemal shaft. The sheath eventually reaches and fuses with the plasma membrane, and the distal part of the cilium is in contact with the extracellular milieu while the proximal part is surrounded by a ciliary pocket in the cytoplasm. (B) In the extracellular pathway, the mother centriole docks directly to the plasma membrane, and most of the cilium protrude out into the extracellular milieu. The figure is based on: 202,293,294,321.



Figure 6.

IFT and targeting of proteins to the cilium. Axonemal precursors, as well as membrane proteins, are transported along MTs to the primary cilium via Golgi‐derived vesicles. At the ciliary base the vesicles are exocytosed and the ciliary proteins associate with IFT particles, and enter the ciliary compartment through the transition zone. After entry, kinesin‐2 transports these proteins, as well as cytoplasmic dynein 2, along the axoneme to the ciliary tip (anterograde transport). At the ciliary tip, kinesin‐2 is inactivated and cytoplasmic dynein 2 is activated and brings IFT particles and ciliary turnover products (e.g., inactive receptors) along the axoneme back to the cell body (retrograde transport) for recycling or degradation. Modified, with permission, from 233. See text for further details.



Figure 7.

The ciliary tip. (A, B) Structures associated with the ciliary tip. (A) Whole mount electron micrograph of the distal tips of Chlamydomonas flagella, treated with detergent. Arrows indicate the distal filaments attached to the end of A subfibers [reproduced from 77, with permission from Journal of Cell Biology]. (B) Schematic model of the flagellar tip structures showing filaments extending from the tip of A tubule of the MT doublets to the membrane, as well as the cap structure on the distal end of the central pair MTs. (C) Immunofluorescence micrograph of a human bronchial epithelial cell stained with antibodies against EB3 (green) and acetylated alpha tubulin (red) to label cilia, and DAPI (blue) to visualize DNA. EB3 localizes to the tip as well as the base of the motile cilia [adapted from 275, with permission from Journal of Cell Science]. Scalebar, 5 μm. (D) Immunofluorescence micrograph of a Chlamydomonas cell labeled with antibodies specific for CrEB1 (red) 231 and acetylated alpha tubulin (green). The upper left insert is an enlarged shifted overlay showing the flagellar tip localization of CrEB1. Scalebar, 5 μm.

References
 1. Afzelius BA. Cilia‐related diseases. J Pathol 204: 470‐477, 2004.
 2. Akhmanova A, Steinmetz MO. Tracking the ends: a dynamic protein network controls the fate of microtubule tips. Nat Rev Mol Cell Biol 9: 309‐322, 2008.
 3. Akhmanova A, Steinmetz MO. Microtubule +TIPs at a glance. J Cell Sci 123: 3415‐3419, 2010.
 4. Allen C, Borisy GG. Structural polarity and directional growth of microtubules of Chlamydomonas flagella. J Mol Biol 90: 381‐402, 1974.
 5. Andersen JS, Wilkinson CJ, Mayor T, Mortensen P, Nigg EA, Mann M. Proteomic characterization of the human centrosome by protein correlation profiling. Nature 426: 570‐574, 2003.
 6. Anderson CT, Stearns T. Centriole age underlies asynchronous primary cilium growth in mammalian cells. Curr Biol 19: 1498‐1502, 2009.
 7. Anderson RG. The three‐dimensional structure of the basal body from the rhesus monkey oviduct. J Cell Biol 54: 246‐265, 1972.
 8. Arnaiz O, Malinowska A, Klotz C, Sperling L, Dadlez M, Koll F, Cohen J. Cildb: a knowledgebase for centrosomes and cilia. Database (Oxford) 2009: 2009, bap022.
 9. Arts HH, Doherty D, van Beersum SE, Parisi MA, Letteboer SJ, Gorden NT, Peters TA, Marker T, Voesenek K, Kartono A, Ozyurek H, Farin FM, Kroes HY, Wolfrum U, Brunner HG, Cremers FP, Glass IA, Knoers NV, Roepman R. Mutations in the gene encoding the basal body protein RPGRIP1L, a nephrocystin‐4 interactor, cause Joubert syndrome. Nat Genet 39: 882‐888, 2007.
 10. Askham JM, Vaughan KT, Goodson HV, Morrison EE. Evidence that an interaction between EB1 and p150Glued is required for the formation and maintenance of a radial microtubule array anchored at the centrosome. Mol Biol Cell 13: 3627‐3645, 2002.
 11. Awan A, Oliveri RS, Jensen PL, Christensen ST, Andersen CY. Immunoflourescence and mRNA analysis of human embryonic stem cells (hESCs) grown under feeder‐free conditions. Methods Mol Biol 584: 195‐210, 2010.
 12. Azimzadeh J, Bornens M. Structure and duplication of the centrosome. J Cell Sci 120: 2139‐2142, 2007.
 13. Azimzadeh J, Marshall WF. Building the centriole. Curr Biol 20: R816‐R825, 2010.
 14. Aznar N, Billaud M. Primary cilia bend LKB1 and mTOR to their will. Dev Cell 19: 792‐794, 2010.
 15. Bacallao RL, McNeill H. Cystic kidney diseases and planar cell polarity signaling. Clin Genet 75: 107‐117, 2009.
 16. Badano JL, Mitsuma N, Beales PL, Katsanis N. The ciliopathies: an emerging class of human genetic disorders. Annu Rev Genomics Hum Genet 7: 125‐148, 2006.
 17. Bahe S, Stierhof YD, Wilkinson CJ, Leiss F, Nigg EA. Rootletin forms centriole‐associated filaments and functions in centrosome cohesion. J Cell Biol 171: 27‐33, 2005.
 18. Bahmanyar S, Kaplan DD, Deluca JG, Giddings TH, Jr, O'Toole ET, Winey M, Salmon ED, Casey PJ, Nelson WJ, Barth AI. beta‐Catenin is a Nek2 substrate involved in centrosome separation. Genes Dev 22: 91‐105, 2008.
 19. Bailey JM, Mohr AM, Hollingsworth MA. Sonic hedgehog paracrine signaling regulates metastasis and lymphangiogenesis in pancreatic cancer. Oncogene 28: 3513‐3525, 2009.
 20. Barr MM, Sternberg PW. A polycystic kidney‐disease gene homologue required for male mating behaviour in C. elegans. Nature 401: 386‐389, 1999.
 21. Basto R, Lau J, Vinogradova T, Gardiol A, Woods CG, Khodjakov A, Raff JW. Flies without centrioles. Cell 125: 1375‐1386, 2006.
 22. Bell AJ, Satir P, Grimes GW. Mirror‐imaged doublets of Tetmemena pustulata: implications for the development of left‐right asymmetry. Dev Biol 314: 150‐160, 2008.
 23. Bell PD, Fitzgibbon W, Sas K, Stenbit AE, Amria M, Houston A, Reichert R, Gilley S, Siegal GP, Bissler J, Bilgen M, Chou PC, Guay‐Woodford L, Yoder B, Haycraft CJ, Siroky B. Loss of primary cilia upregulates renal hypertrophic signaling and promotes cystogenesis. J Am Soc Nephrol 22: 839‐848, 2011.
 24. Bell WE, Preston RR, Yano J, Van Houten JL. Genetic dissection of attractant‐induced conductances in Paramecium. J Exp Biol 210: 357‐365, 2007.
 25. Bengs F, Scholz A, Kuhn D, Wiese M. LmxMPK9, a mitogen‐activated protein kinase homologue affects flagellar length in Leishmania mexicana. Mol Microbiol 55: 1606‐1615, 2005.
 26. Berbari NF, Johnson AD, Lewis JS, Askwith CC, Mykytyn K. Identification of ciliary localization sequences within the third intracellular loop of G protein‐coupled receptors. Mol Biol Cell 19: 1540‐1547, 2008.
 27. Berbari NF, Lewis JS, Bishop GA, Askwith CC, Mykytyn K. Bardet‐Biedl syndrome proteins are required for the localization of G protein‐coupled receptors to primary cilia. Proc Natl Acad Sci U S A 105: 4242‐4246, 2008.
 28. Bergmann C, Fliegauf M, Bruchle NO, Frank V, Olbrich H, Kirschner J, Schermer B, Schmedding I, Kispert A, Kranzlin B, Nurnberg G, Becker C, Grimm T, Girschick G, Lynch SA, Kelehan P, Senderek J, Neuhaus TJ, Stallmach T, Zentgraf H, Nurnberg P, Gretz N, Lo C, Lienkamp S, Schafer T, Walz G, Benzing T, Zerres K, Omran H. Loss of nephrocystin‐3 function can cause embryonic lethality, Meckel‐Gruber‐like syndrome, situs inversus, and renal‐hepatic‐pancreatic dysplasia. Am J Hum Genet 82: 959‐970, 2008.
 29. Berman SA, Wilson NF, Haas NA, Lefebvre PA. A novel MAP kinase regulates flagellar length in Chlamydomonas. Curr Biol 13: 1145‐1149, 2003.
 30. Besharse JC, Forestner DM, Defoe DM. Membrane assembly in retinal photoreceptors. III. Distinct membrane domains of the connecting cilium of developing rods. J Neurosci 5: 1035‐1048, 1985.
 31. Besschetnova TY, Kolpakova‐Hart E, Guan Y, Zhou J, Olsen BR, Shah JV. Identification of signaling pathways regulating primary cilium length and flow‐mediated adaptation. Curr Biol 20: 182‐187, 2010.
 32. Betleja E, Cole DG. Ciliary trafficking: CEP290 guards a gated community. Curr Biol 20: R928‐R931, 2010.
 33. Bettencourt‐Dias M, Glover DM. Centrosome biogenesis and function: centrosomics brings new understanding. Nat Rev Mol Cell Biol 8: 451‐463, 2007.
 34. Bhunia AK, Piontek K, Boletta A, Liu L, Qian F, Xu PN, Germino FJ, Germino GG. PKD1 induces p21(waf1) and regulation of the cell cycle via direct activation of the JAK‐STAT signaling pathway in a process requiring PKD2. Cell 109: 157‐168, 2002.
 35. Bielas SL, Silhavy JL, Brancati F, Kisseleva MV, Al‐Gazali L, Sztriha L, Bayoumi RA, Zaki MS, Abdel‐Aleem A, Rosti RO, Kayserili H, Swistun D, Scott LC, Bertini E, Boltshauser E, Fazzi E, Travaglini L, Field SJ, Gayral S, Jacoby M, Schurmans S, Dallapiccola B, Majerus PW, Valente EM, Gleeson JG. Mutations in INPP5E, encoding inositol polyphosphate‐5‐phosphatase E, link phosphatidyl inositol signaling to the ciliopathies. Nat Genet 41: 1032‐1036, 2009.
 36. Bieling P, Laan L, Schek H, Munteanu EL, Sandblad L, Dogterom M, Brunner D, Surrey T. Reconstitution of a microtubule plus‐end tracking system in vitro. Nature 450: 1100‐1105, 2007.
 37. Blacque OE, Perens EA, Boroevich KA, Inglis PN, Li C, Warner A, Khattra J, Holt RA, Ou G, Mah AK, McKay SJ, Huang P, Swoboda P, Jones SJ, Marra MA, Baillie DL, Moerman DG, Shaham S, Leroux MR. Functional genomics of the cilium, a sensory organelle. Curr Biol 15: 935‐941, 2005.
 38. Blaineau C, Tessier M, Dubessay P, Tasse L, Crobu L, Pages M, Bastien P. A novel microtubule‐depolymerizing kinesin involved in length control of a eukaryotic flagellum. Curr Biol 17: 778‐782, 2007.
 39. Bloch MA, Johnson KA. Identification of a molecular chaperone in the eukaryotic flagellum and its localization to the site of microtubule assembly. J Cell Sci 108(Pt 11): 3541‐3545, 1995.
 40. Bloodgood RA. Sensory reception is an attribute of both primary cilia and motile cilia. J Cell Sci 123: 505‐509, 2010.
 41. Boehlke C, Kotsis F, Patel V, Braeg S, Voelker H, Bredt S, Beyer T, Janusch H, Hamann C, Godel M, Muller K, Herbst M, Hornung M, Doerken M, Kottgen M, Nitschke R, Igarashi P, Walz G, Kuehn EW. Primary cilia regulate mTORC1 activity and cell size through Lkb1. Nat Cell Biol 12: 1115‐1122, 2010.
 42. Bond J, Roberts E, Springell K, Lizarraga SB, Scott S, Higgins J, Hampshire DJ, Morrison EE, Leal GF, Silva EO, Costa SM, Baralle D, Raponi M, Karbani G, Rashid Y, Jafri H, Bennett C, Corry P, Walsh CA, Woods CG. A centrosomal mechanism involving CDK5RAP2 and CENPJ controls brain size. Nat Genet 37: 353‐355, 2005.
 43. Bornens M. Centrosome composition and microtubule anchoring mechanisms. Curr Opin Cell Biol 14: 25‐34, 2002.
 44. Bradley BA, Quarmby LM. A NIMA‐related kinase, Cnk2p, regulates both flagellar length and cell size in Chlamydomonas. J Cell Sci 118: 3317‐3326, 2005.
 45. Brailov I, Bancila M, Brisorgueil MJ, Miquel MC, Hamon M, Verge D. Localization of 5‐HT(6) receptors at the plasma membrane of neuronal cilia in the rat brain. Brain Res 872: 271‐275, 2000.
 46. Burghoorn J, Dekkers MP, Rademakers S, de Jong T, Willemsen R, Jansen G. Mutation of the MAP kinase DYF‐5 affects docking and undocking of kinesin‐2 motors and reduces their speed in the cilia of Caenorhabditis elegans. Proc Natl Acad Sci U S A 104: 7157‐7162, 2007.
 47. Burns RG. Alpha‐, beta‐, and gamma‐tubulins: sequence comparisons and structural constraints. Cell Motil Cytoskeleton 20: 181‐189, 1991.
 48. Caron E, Ghosh S, Matsuoka Y, Ashton‐Beaucage D, Therrien M, Lemieux S, Perreault C, Roux PP, Kitano H. A comprehensive map of the mTOR signaling network. Mol Syst Biol 6: 453, 2010.
 49. Carvalho P, Tirnauer JS, Pellman D. Surfing on microtubule ends. Trends Cell Biol 13: 229‐237, 2003.
 50. Chan KY, Ersfeld K. The role of the Kinesin‐13 family protein TbKif13‐2 in flagellar length control of Trypanosoma brucei. Mol Biochem Parasitol 174: 137‐140, 2010.
 51. Chang B, Khanna H, Hawes N, Jimeno D, He S, Lillo C, Parapuram SK, Cheng H, Scott A, Hurd RE, Sayer JA, Otto EA, Attanasio M, O'Toole JF, Jin G, Shou C, Hildebrandt F, Williams DS, Heckenlively JR, Swaroop A. In‐frame deletion in a novel centrosomal/ciliary protein CEP290/NPHP6 perturbs its interaction with RPGR and results in early‐onset retinal degeneration in the rd16 mouse. Hum Mol Genet 15: 1847‐1857, 2006.
 52. Chatterjee B, Richards K, Bucan M, Lo C. Nt mutation causing laterality defects associated with deletion of rotatin. Mamm Genome 18: 310‐315, 2007.
 53. Choi YK, Liu P, Sze SK, Dai C, Qi RZ. CDK5RAP2 stimulates microtubule nucleation by the gamma‐tubulin ring complex. J Cell Biol 191: 1089‐1095, 2010.
 54. Christensen ST, Ott CM. Cell signaling. A ciliary signaling switch. Science 317: 330‐331, 2007.
 55. Christensen ST, Pedersen LB, Schneider L, Satir P. Sensory cilia and integration of signal transduction in human health and disease. Traffic 8: 97‐109, 2007.
 56. Christensen ST, Pedersen SF, Satir P, Veland IR, Schneider L. The primary cilium coordinates signaling pathways in cell cycle control and migration during development and tissue repair. Curr Top Dev Biol 85: 279‐292, 2008.
 57. Cole DG, Diener DR, Himelblau AL, Beech PL, Fuster JC, Rosenbaum JL. Chlamydomonas kinesin‐II‐dependent intraflagellar transport (IFT): IFT particles contain proteins required for ciliary assembly in Caenorhabditis elegans sensory neurons. J Cell Biol 141: 993‐1008, 1998.
 58. Corbit KC, Shyer AE, Dowdle WE, Gaulden J, Singla V, Chen MH, Chuang PT, Reiter JF. Kif3a constrains beta‐catenin‐dependent Wnt signalling through dual ciliary and non‐ciliary mechanisms. Nat Cell Biol 10: 70‐76, 2008.
 59. Craige B, Tsao CC, Diener DR, Hou Y, Lechtreck KF, Rosenbaum JL, Witman GB. CEP290 tethers flagellar transition zone microtubules to the membrane and regulates flagellar protein content. J Cell Biol 190: 927‐940, 2010.
 60. Dabdoub A, Kelley MW. Planar cell polarity and a potential role for a Wnt morphogen gradient in stereociliary bundle orientation in the mammalian inner ear. J Neurobiol 64: 446‐457, 2005.
 61. Dalen H. An ultrastructural study of the tracheal epithelium of the guinea‐pig with special reference to the ciliary structure. J Anat 136: 47‐67, 1983.
 62. Dammermann A, Merdes A. Assembly of centrosomal proteins and microtubule organization depends on PCM‐1. J Cell Biol 159: 255‐266, 2002.
 63. Danilov AI, Gomes‐Leal W, Ahlenius H, Kokaia Z, Carlemalm E, Lindvall O. Ultrastructural and antigenic properties of neural stem cells and their progeny in adult rat subventricular zone. Glia 57: 136‐152, 2009.
 64. Davenport JR, Watts AJ, Roper VC, Croyle MJ, van Groen T, Wyss JM, Nagy TR, Kesterson RA, Yoder BK. Disruption of intraflagellar transport in adult mice leads to obesity and slow‐onset cystic kidney disease. Curr Biol 17: 1586‐1594, 2007.
 65. Davenport JR, Yoder BK. An incredible decade for the primary cilium: a look at a once‐forgotten organelle. Am J Physiol Renal Physiol 289: F1159‐F1169, 2005.
 66. David‐Pfeuty T, Erickson HP, Pantaloni D. Guanosinetriphosphatase activity of tubulin associated with microtubule assembly. Proc Natl Acad Sci U S A 74: 5372‐5376, 1977.
 67. Dawe HR, Adams M, Wheway G, Szymanska K, Logan CV, Noegel AA, Gull K, Johnson CA. Nesprin‐2 interacts with meckelin and mediates ciliogenesis via remodelling of the actin cytoskeleton. J Cell Sci 122: 2716‐2726, 2009.
 68. Dawe HR, Farr H, Gull K. Centriole/basal body morphogenesis and migration during ciliogenesis in animal cells. J Cell Sci 120: 7‐15, 2007.
 69. Dawe HR, Farr H, Portman N, Shaw MK, Gull K. The Parkin co‐regulated gene product, PACRG, is an evolutionarily conserved axonemal protein that functions in outer‐doublet microtubule morphogenesis. J Cell Sci 118: 5421‐5430, 2005.
 70. Dawe HR, Smith UM, Cullinane AR, Gerrelli D, Cox P, Badano JL, Blair‐Reid S, Sriram N, Katsanis N, Attie‐Bitach T, Afford SC, Copp AJ, Kelly DA, Gull K, Johnson CA. The Meckel‐Gruber Syndrome proteins MKS1 and meckelin interact and are required for primary cilium formation. Hum Mol Genet 16: 173‐186, 2007.
 71. Dawson SC, Sagolla MS, Mancuso JJ, Woessner DJ, House SA, Fritz‐Laylin L, Cande WZ. Kinesin‐13 regulates flagellar, interphase, and mitotic microtubule dynamics in Giardia intestinalis. Eukaryot Cell 6: 2354‐2364, 2007.
 72. De Groot CO, Jelesarov I, Damberger FF, Bjelic S, Scharer MA, Bhavesh NS, Grigoriev I, Buey RM, Wuthrich K, Capitani G, Akhmanova A, Steinmetz MO. Molecular insights into mammalian end‐binding protein heterodimerization. J Biol Chem 285: 5802‐5814, 2010.
 73. Deane JA, Cole DG, Seeley ES, Diener DR, Rosenbaum JL. Localization of intraflagellar transport protein IFT52 identifies basal body transitional fibers as the docking site for IFT particles. Curr Biol 11: 1586‐1590, 2001.
 74. Dentler WL. Structures linking the tips of ciliary and flagellar microtubules to the membrane. J Cell Sci 42: 207‐220, 1980.
 75. Dentler WL. Attachment of the cap to the central microtubules of Tetrahymena cilia. J Cell Sci 66: 167‐173, 1984.
 76. Dentler WL, LeCluyse EL. Microtubule capping structures at the tips of tracheal cilia: evidence for their firm attachment during ciliary bend formation and the restriction of microtubule sliding. Cell Motil 2: 549‐572, 1982.
 77. Dentler WL, Rosenbaum JL. Flagellar elongation and shortening in Chlamydomonas. III. Structures attached to the tips of flagellar microtubules and their relationship to the directionality of flagellar microtubule assembly. J Cell Biol 74: 747‐759, 1977.
 78. Desai A, Mitchison TJ. Microtubule polymerization dynamics. Ann Rev Cell Dev Biol 13: 83‐117, 1997.
 79. Dingle AD, Fulton C. Development of the flagellar apparatus of Naegleria. J Cell Biol 31: 43‐54, 1966.
 80. Dirksen ER. Centriole and basal body formation during ciliogenesis revisited. Biol Cell 72: 31‐38, 1991.
 81. Dirksen ER, Satir P. Ciliary activity in the mouse oviduct as studied by transmission and scanning electron microscopy. Tissue Cell 4: 389‐403, 1972.
 82. Dishinger JF, Kee HL, Jenkins PM, Fan S, Hurd TW, Hammond JW, Truong YN, Margolis B, Martens JR, Verhey KJ. Ciliary entry of the kinesin‐2 motor KIF17 is regulated by importin‐beta2 and RanGTP. Nat Cell Biol 12: 703‐710, 2010.
 83. Domire JS, Green JA, Lee KG, Johnson AD, Askwith CC, Mykytyn K. Dopamine receptor 1 localizes to neuronal cilia in a dynamic process that requires the Bardet‐Biedl syndrome proteins. Cell Mol Life Sci 68: 2951‐2960, 2011.
 84. Donnelly E, Ascenzi MG, Farnum C. Primary cilia are highly oriented with respect to collagen direction and long axis of extensor tendon. J Orthop Res 28: 77‐82, 2010.
 85. Doxsey S, Zimmerman W, Mikule K. Centrosome control of the cell cycle. Trends Cell Biol 15: 303‐311, 2005.
 86. Dutcher SK, Morrissette NS, Preble AM, Rackley C, Stanga J. e‐tubulin is an essential component of the centriole. Mol Biol Cell 13: 3859‐3869, 2002.
 87. Dymek EE, Lefebvre PA, Smith EF. PF15p is the chlamydomonas homologue of the Katanin p80 subunit and is required for assembly of flagellar central microtubules. Eukaryot Cell 3: 870‐879, 2004.
 88. Eggenschwiler JT, Anderson KV. Cilia and developmental signaling. Annu Rev Cell Dev Biol 23: 345‐373, 2007.
 89. Evans JE, Snow JJ, Gunnarson AL, Ou G, Stahlberg H, McDonald KL, Scholey JM. Functional modulation of IFT kinesins extends the sensory repertoire of ciliated neurons in Caenorhabditis elegans. J Cell Biol 172: 663‐669, 2006.
 90. Evans L, Mitchison T, Kirschner M. Influence of the centrosome on the structure of nucleated microtubules. J Cell Biol 100: 1185‐1191, 1985.
 91. Faisst AM, Alvarez‐Bolado G, Treichel D, Gruss P. Rotatin is a novel gene required for axial rotation and left‐right specification in mouse embryos. Mech Dev 113: 15‐28, 2002.
 92. Fan S, Fogg V, Wang Q, Chen XW, Liu CJ, Margolis B. A novel Crumbs3 isoform regulates cell division and ciliogenesis via importin beta interactions. J Cell Biol 178: 387‐398, 2007.
 93. Feistel K, Blum M. Three types of cilia including a novel 9+4 axoneme on the notochordal plate of the rabbit embryo. Dev Dyn 235: 3348‐3358, 2006.
 94. Ferrante MI, Zullo A, Barra A, Bimonte S, Messaddeq N, Studer M, Dolle P, Franco B. Oral‐facial‐digital type I protein is required for primary cilia formation and left‐right axis specification. Nat Genet 38: 112‐117, 2006.
 95. Fisch C, Dupuis‐Williams P. Ultrastructure of cilia and flagella ‐ back to the future! Biol Cell 103: 249‐270, 2011.
 96. Fliegauf M, Benzing T, Omran H. When cilia go bad: cilia defects and ciliopathies. Nat Rev Mol Cell Biol 8: 880‐893, 2007.
 97. Flood PR. Ciliary rootlet‐fibres as tail fin‐rays in larval amphioxus (Branchiostoma lanceolatum, Pallas). J Ultrastruct Res 51: 218‐225, 1975.
 98. Foliguet B, Puchelle E. Apical structure of human respiratory cilia. Bull Eur Physiopathol Respir 22: 43‐47, 1986.
 99. Fong KW, Choi YK, Rattner JB, Qi RZ. CDK5RAP2 is a pericentriolar protein that functions in centrosomal attachment of the gamma‐tubulin ring complex. Mol Biol Cell 19: 115‐125, 2008.
 100. Fry AM, Mayor T, Meraldi P, Stierhof YD, Tanaka K, Nigg EA. C‐Nap1, a novel centrosomal coiled‐coil protein and candidate substrate of the cell cycle‐regulated protein kinase Nek2. J Cell Biol 141: 1563‐1574, 1998.
 101. Gardner MK, Hunt AJ, Goodson HV, Odde DJ. Microtubule assembly dynamics: new insights at the nanoscale. Curr Opin Cell Biol 20: 64‐70, 2008.
 102. Geimer S, Melkonian M. The ultrastructure of the Chlamydomonas reinhardtii basal apparatus: identification of an early marker of radial asymmetry inherent in the basal body. J Cell Sci 117: 2663‐2674, 2004.
 103. Geneva II, Calvert PD. High‐resolution frap of the cilium‐localized Somatostatin receptor 3 reveals the presence of a lateral diffusion barrier at the cilium base. Biophys J 98: 376a, 2010.
 104. Gerdes JM, Katsanis N. Ciliary function and Wnt signal modulation. Curr Top Dev Biol 85: 175‐195, 2008.
 105. Gerdes JM, Liu Y, Zaghloul NA, Leitch CC, Lawson SS, Kato M, Beachy PA, Beales PL, DeMartino GN, Fisher S, Badano JL, Katsanis N. Disruption of the basal body compromises proteasomal function and perturbs intracellular Wnt response. Nat Genet 39: 1350‐1360, 2007.
 106. Gerner M, Haribaskar R, Putz M, Czerwitzki J, Walz G, Schafer T. The retinitis pigmentosa GTPase regulator interacting protein 1 (RPGRIP1) links RPGR to the nephronophthisis protein network. Kidney Int 77: 891‐896, 2010.
 107. Gherman A, Davis EE, Katsanis N. The ciliary proteome database: an integrated community resource for the genetic and functional dissection of cilia. Nat Genet 38: 961‐962, 2006.
 108. Ghossoub R, Molla‐Herman A, Bastin P, Benmerah A. The ciliary pocket: a once‐forgotten membrane domain at the base of cilia. Biol Cell 103: 131‐144, 2011.
 109. Gilula NB, Satir P. The ciliary necklace. A ciliary membrane specialization. J Cell Biol 53: 494‐509, 1972.
 110. Ginger ML, Portman N, McKean PG. Swimming with protists: perception, motility and flagellum assembly. Nat Rev Microbiol 6: 838‐850, 2008.
 111. Gluenz E, Hoog JL, Smith AE, Dawe HR, Shaw MK, Gull K. Beyond 9+0: noncanonical axoneme structures characterize sensory cilia from protists to humans. Faseb J 24: 3117‐3121, 2010.
 112. Goetz SC, Anderson KV. The primary cilium: a signalling centre during vertebrate development. Nat Rev Genet 11: 331‐344, 2010.
 113. Gradilone SA, Masyuk AI, Splinter PL, Banales JM, Huang BQ, Tietz PS, Masyuk TV, Larusso NF. Cholangiocyte cilia express TRPV4 and detect changes in luminal tonicity inducing bicarbonate secretion. Proc Natl Acad Sci U S A 104: 19138‐19143, 2007.
 114. Graser S, Stierhof YD, Lavoie SB, Gassner OS, Lamla S, Le Clech M, Nigg EA. Cep164, a novel centriole appendage protein required for primary cilium formation. J Cell Biol 179: 321‐330, 2007.
 115. Graser S, Stierhof YD, Nigg EA. Cep68 and Cep215 (Cdk5rap2) are required for centrosome cohesion. J Cell Sci 120: 4321‐4331, 2007.
 116. Green JA, Mykytyn K. Neuronal ciliary signaling in homeostasis and disease. Cell Mol Life Sci 67: 3287‐3297, 2010.
 117. Griffith E, Walker S, Martin CA, Vagnarelli P, Stiff T, Vernay B, Al Sanna N, Saggar A, Hamel B, Earnshaw WC, Jeggo PA, Jackson AP, O'Driscoll M. Mutations in pericentrin cause Seckel syndrome with defective ATR‐dependent DNA damage signaling. Nat Genet 40: 232‐236, 2008.
 118. Hadjihannas MV, Bruckner M, Behrens J. Conductin/axin2 and Wnt signalling regulates centrosome cohesion. EMBO Rep 11: 317‐324, 2010.
 119. Hamon M, Doucet E, Lefevre K, Miquel MC, Lanfumey L, Insausti R, Frechilla D, Del Rio J, Verge D. Antibodies and antisense oligonucleotide for probing the distribution and putative functions of central 5‐HT6 receptors. Neuropsychopharmacology 21: 68S‐76S, 1999.
 120. Han YG, Kim HJ, Dlugosz AA, Ellison DW, Gilbertson RJ, Alvarez‐Buylla A. Dual and opposing roles of primary cilia in medulloblastoma development. Nat Med 15: 1062‐1065, 2009.
 121. Handel M, Schulz S, Stanarius A, Schreff M, Erdtmann‐Vourliotis M, Schmidt H, Wolf G, Hollt V. Selective targeting of somatostatin receptor 3 to neuronal cilia. Neuroscience 89: 909‐926, 1999.
 122. Hao L, Thein M, Brust‐Mascher I, Civelekoglu‐Scholey G, Lu Y, Acar S, Prevo B, Shaham S, Scholey JM. Intraflagellar transport delivers tubulin isotypes to sensory cilium middle and distal segments. Nat Cell Biol 13: 790‐798, 2011.
 123. Hildebrandt F, Benzing T, Katsanis N. Ciliopathies. N Engl J Med 364: 1533‐1543, 2011.
 124. Hirokawa N, Tanaka Y, Okada Y, Takeda S. Nodal flow and the generation of left‐right asymmetry. Cell 125: 33‐45, 2006.
 125. Hong DH, Pawlyk B, Sokolov M, Strissel KJ, Yang J, Tulloch B, Wright AF, Arshavsky VY, Li T. RPGR isoforms in photoreceptor connecting cilia and the transitional zone of motile cilia. Invest Ophthalmol Vis Sci 44: 2413‐2421, 2003.
 126. Hong DH, Yue G, Adamian M, Li T. Retinitis pigmentosa GTPase regulator (RPGRr)‐interacting protein is stably associated with the photoreceptor ciliary axoneme and anchors RPGR to the connecting cilium. J Biol Chem 276: 12091‐12099, 2001.
 127. Honnappa S, Gouveia SM, Weisbrich A, Damberger FF, Bhavesh NS, Jawhari H, Grigoriev I, van Rijssel FJ, Buey RM, Lawera A, Jelesarov I, Winkler FK, Wuthrich K, Akhmanova A, Steinmetz MO. An EB1‐binding motif acts as a microtubule tip localization signal. Cell 138: 366‐376, 2009.
 128. Honnappa S, John CM, Kostrewa D, Winkler FK, Steinmetz MO. Structural insights into the EB1‐APC interaction. Embo J 24: 261‐269, 2005.
 129. Hoops HJ, Witman GB. Basal bodies and associated structures are not required for normal flagellar motion or phototaxis in the green alga Chlorogonium elongatum. J Cell Biol 100: 297‐309, 1985.
 130. Hu Q, Milenkovic L, Jin H, Scott MP, Nachury MV, Spiliotis ET, Nelson WJ. A septin diffusion barrier at the base of the primary cilium maintains ciliary membrane protein distribution. Science 329: 436‐439, 2010.
 131. Huang K, Diener DR, Rosenbaum JL. The ubiquitin conjugation system is involved in the disassembly of cilia and flagella. J Cell Biol 186: 601‐613, 2009.
 132. Huangfu D, Liu A, Rakeman AS, Murcia NS, Niswander L, Anderson KV. Hedgehog signalling in the mouse requires intraflagellar transport proteins. Nature 426: 83‐87, 2003.
 133. Hurd TW, Fan S, Margolis BL. Localization of retinitis pigmentosa 2 to cilia is regulated by Importin beta2. J Cell Sci 124: 718‐726, 2011.
 134. Ibanez‐Tallon I, Heintz N, Omran H. To beat or not to beat: roles of cilia in development and disease. Hum Mol Genet 12: R27‐R35, 2003.
 135. Ihara M, Kinoshita A, Yamada S, Tanaka H, Tanigaki A, Kitano A, Goto M, Okubo K, Nishiyama H, Ogawa O, Takahashi C, Itohara S, Nishimune Y, Noda M, Kinoshita M. Cortical organization by the septin cytoskeleton is essential for structural and mechanical integrity of mammalian spermatozoa. Dev Cell 8: 343‐352, 2005.
 136. Inglis PN, Boroevich KA, Leroux MR. Piecing together a ciliome. Trends Genet 22: 491‐500, 2006.
 137. Inoue S, Salmon ED. Force generation by microtubule assembly/disassembly in mitosis and related movements. Mol Biol Cell 6: 1619‐1640, 1995.
 138. Iomini C, Babaev‐Khaimov V, Sassaroli M, Piperno G. Protein particles in Chlamydomonas flagella undergo a transport cycle consisting of four phases. J Cell Biol 153: 13‐24, 2001.
 139. Iomini C, Tejada K, Mo W, Vaananen H, Piperno G. Primary cilia of human endothelial cells disassemble under laminar shear stress. J Cell Biol 164: 811‐817, 2004.
 140. Ishigami M. A light and electron microscopic study of the flagellate‐to‐ameba conversion in the Myxomycete Stemonitis pallida. Protoplasma 91: 31‐54, 1977.
 141. Ishikawa H, Kubo A, Tsukita S. Odf2‐deficient mother centrioles lack distal/subdistal appendages and the ability to generate primary cilia. Nat Cell Biol 7: 517‐524, 2005.
 142. Ishikawa H, Marshall WF. Ciliogenesis: building the cell's antenna. Nat Rev Mol Cell Biol 12: 222‐234, 2011.
 143. Jacoby M, Cox JJ, Gayral S, Hampshire DJ, Ayub M, Blockmans M, Pernot E, Kisseleva MV, Compere P, Schiffmann SN, Gergely F, Riley JH, Perez‐Morga D, Woods CG, Schurmans S. INPP5E mutations cause primary cilium signaling defects, ciliary instability and ciliopathies in human and mouse. Nat Genet 41: 1027‐1031, 2009.
 144. Jain R, Pan J, Driscoll JA, Wisner JW, Huang T, Gunsten SP, You Y, Brody SL. Temporal relationship between primary and motile ciliogenesis in airway epithelial cells. Am J Respir Cell Mol Biol 43: 731‐739, 2010.
 145. Jakobsen L, Vanselow K, Skogs M, Toyoda Y, Lundberg E, Poser I, Falkenby LG, Bennetzen M, Westendorf J, Nigg EA, Uhlen M, Hyman AA, Andersen JS. Novel asymmetrically localizing components of human centrosomes identified by complementary proteomics methods. Embo J 30: 1520‐1535, 2011.
 146. Jauregui AR, Nguyen KC, Hall DH, Barr MM. The Caenorhabditis elegans nephrocystins act as global modifiers of cilium structure. J Cell Biol 180: 973‐988, 2008.
 147. Jekely G, Arendt D. Evolution of intraflagellar transport from coated vesicles and autogenous origin of the eukaryotic cilium. Bioessays 28: 191‐198, 2006.
 148. Jiang K, Akhmanova A. Microtubule tip‐interacting proteins: a view from both ends. Curr Opin Cell Biol 23: 94‐101, 2011.
 149. Johnson JL, Leroux MR. cAMP and cGMP signaling: sensory systems with prokaryotic roots adopted by eukaryotic cilia. Trends Cell Biol 20: 435‐444, 2010.
 150. Johnson KA, Rosenbaum JL. Polarity of flagellar assembly in Chlamydomonas. J Cell Biol 119: 1605‐1611, 1992.
 151. Jurczyk A, Gromley A, Redick S, San Agustin J, Witman G, Pazour GJ, Peters DJ, Doxsey S. Pericentrin forms a complex with intraflagellar transport proteins and polycystin‐2 and is required for primary cilia assembly. J Cell Biol 166: 637‐643, 2004.
 152. Juwana JP, Henderikx P, Mischo A, Wadle A, Fadle N, Gerlach K, Arends JW, Hoogenboom H, Pfreundschuh M, Renner C. EB/RP gene family encodes tubulin binding proteins. Int J Cancer 81: 275‐284, 1999.
 153. Keller LC, Romijn EP, Zamora I, Yates JR, III, Marshall WF. Proteomic analysis of isolated chlamydomonas centrioles reveals orthologs of ciliary‐disease genes. Curr Biol 15: 1090‐1098, 2005.
 154. Khanna H, Hurd TW, Lillo C, Shu X, Parapuram SK, He S, Akimoto M, Wright AF, Margolis B, Williams DS, Swaroop A. RPGR‐ORF15, which is mutated in retinitis pigmentosa, associates with SMC1, SMC3, and microtubule transport proteins. J Biol Chem 280: 33580‐33587, 2005.
 155. Kim HR, Richardson J, van Eeden F, Ingham PW. Gli2a protein localization reveals a role for Iguana/DZIP1 in primary ciliogenesis and a dependence of Hedgehog signal transduction on primary cilia in the zebrafish. BMC Biol 8: 65, 2010.
 156. Kim J, Lee JE, Heynen‐Genel S, Suyama E, Ono K, Lee K, Ideker T, Aza‐Blanc P, Gleeson JG. Functional genomic screen for modulators of ciliogenesis and cilium length. Nature 464: 1048‐1051, 2010.
 157. Kim JC, Badano JL, Sibold S, Esmail MA, Hill J, Hoskins BE, Leitch CC, Venner K, Ansley SJ, Ross AJ, Leroux MR, Katsanis N, Beales PL. The Bardet‐Biedl protein BBS4 targets cargo to the pericentriolar region and is required for microtubule anchoring and cell cycle progression. Nat Genet 36: 462‐470, 2004.
 158. King SM. Organization and regulation of the dynein microtubule motor. Cell Biol Int 27: 213‐215, 2003.
 159. Kinzel D, Boldt K, Davis EE, Burtscher I, Trumbach D, Diplas B, Attie‐Bitach T, Wurst W, Katsanis N, Ueffing M, Lickert H. Pitchfork regulates primary cilia disassembly and left‐right asymmetry. Dev Cell 19: 66‐77, 2010.
 160. Kissel H, Georgescu MM, Larisch S, Manova K, Hunnicutt GR, Steller H. The Sept4 septin locus is required for sperm terminal differentiation in mice. Dev Cell 8: 353‐364, 2005.
 161. Kitagawa D, Vakonakis I, Olieric N, Hilbert M, Keller D, Olieric V, Bortfeld M, Erat MC, Fluckiger I, Gonczy P, Steinmetz MO. Structural basis of the 9‐fold symmetry of centrioles. Cell 144: 364‐375, 2011.
 162. Kleylein‐Sohn J, Westendorf J, Le Clech M, Habedanck R, Stierhof YD, Nigg EA. Plk4‐induced centriole biogenesis in human cells. Dev Cell 13: 190‐202, 2007.
 163. Knight MM, McGlashan SR, Garcia M, Jensen CG, Poole CA. Articular chondrocytes express connexin 43 hemichannels and P2 receptors ‐ a putative mechanoreceptor complex involving the primary cilium? J Anat 214: 275‐283, 2009.
 164. Kobayashi T, Dynlacht BD. Regulating the transition from centriole to basal body. J Cell Biol 193: 435‐444, 2011.
 165. Kobayashi T, Tsang WY, Li J, Lane W, Dynlacht BD. Centriolar kinesin Kif24 interacts with CP110 to remodel microtubules and regulate ciliogenesis. Cell 145: 914‐925, 2011.
 166. Kohlmaier G, Loncarek J, Meng X, McEwen BF, Mogensen MM, Spektor A, Dynlacht BD, Khodjakov A, Gonczy P. Overly long centrioles and defective cell division upon excess of the SAS‐4‐related protein CPAP. Curr Biol 19: 1012‐1018, 2009.
 167. Komarova Y, De Groot CO, Grigoriev I, Gouveia SM, Munteanu EL, Schober JM, Honnappa S, Buey RM, Hoogenraad CC, Dogterom M, Borisy GG, Steinmetz MO, Akhmanova A. Mammalian end binding proteins control persistent microtubule growth. J Cell Biol 184: 691‐706, 2009.
 168. Korzeniewski N, Cuevas R, Duensing A, Duensing S. Daughter centriole elongation is controlled by proteolysis. Mol Biol Cell 21: 3942‐3951, 2010.
 169. Kozminski KG, Beech PL, Rosenbaum JL. The Chlamydomonas kinesin‐like protein FLA10 is involved in motility associated with the flagellar membrane. J Cell Biol 131: 1517‐1527, 1995.
 170. Kozminski KG, Johnson KA, Forscher P, Rosenbaum JL. A motility in the eukaryotic flagellum unrelated to flagellar beating. Proc Natl Acad Sci U S A 90: 5519‐5523, 1993.
 171. Kubo A, Yuba‐Kubo A, Tsukita S, and Amagai M. Sentan: a novel specific component of the apical structure of vertebrate motile cilia. Mol Biol Cell 19: 5338‐5346, 2008.
 172. Kuhn C, III, Engleman W. The structure of the tips of mammalian respiratory cilia. Cell Tissue Res 186: 491‐498, 1978.
 173. L'Hernault SW, Rosenbaum JL. Reversal of the posttranslational modification on Chlamydomonas flagellar alpha‐tubulin occurs during flagellar resorption. J Cell Biol 100: 457‐462, 1985.
 174. Lansbergen G, Akhmanova A. Microtubule plus end: a hub of cellular activities. Traffic 7: 499‐507, 2006.
 175. LeCluyse EL, Dentler WL. Asymmetrical microtubule capping structures in frog palate cilia. J Ultrastruct Res 86: 75‐85, 1984.
 176. Lefebvre PA, Rosenbaum JL. Regulation of the synthesis and assembly of ciliary and flagellar proteins during regeneration. Annu Rev Cell Biol 2: 517‐546, 1986.
 177. Li A, Saito M, Chuang JZ, Tseng YY, Dedesma C, Tomizawa K, Kaitsuka T, Sung CH. Ciliary transition zone activation of phosphorylated Tctex‐1 controls ciliary resorption, S‐phase entry and fate of neural progenitors. Nat Cell Biol 13: 402‐411, 2011.
 178. Lohret TA, McNally FJ, Quarmby LM. A role for katanin‐mediated axonemal severing during Chlamydomonas deflagellation. Mol Biol Cell 9: 1195‐1207, 1998.
 179. Lopes CA, Prosser SL, Romio L, Hirst RA, O'Callaghan C, Woolf AS, Fry AM. Centriolar satellites are assembly points for proteins implicated in human ciliopathies, including oral‐facial‐digital syndrome 1. J Cell Sci 124: 600‐612, 2011.
 180. Louie RK, Bahmanyar S, Siemers KA, Votin V, Chang P, Stearns T, Nelson WJ, Barth AI. Adenomatous polyposis coli and EB1 localize in close proximity of the mother centriole and EB1 is a functional component of centrosomes. J Cell Sci 117: 1117‐1128, 2004.
 181. Low SH, Vasanth S, Larson CH, Mukherjee S, Sharma N, Kinter MT, Kane ME, Obara T, Weimbs T. Polycystin‐1, STAT6, and P100 function in a pathway that transduces ciliary mechanosensation and is activated in polycystic kidney disease. Dev Cell 10: 57‐69, 2006.
 182. Lu CJ, Du H, Wu J, Jansen DA, Jordan KL, Xu N, Sieck GC, Qian Q. Non‐random distribution and sensory functions of primary cilia in vascular smooth muscle cells. Kidney Blood Press Res 31: 171‐184, 2008.
 183. Luo M, Cao M, Kan Y, Li G, Snell W, Pan J. The phosphorylation state of an aurora‐like kinase marks the length of growing flagella in chlamydomonas. Curr Biol 21: 586‐591, 2011.
 184. Luyten A, Su X, Gondela S, Chen Y, Rompani S, Takakura A, Zhou J. Aberrant regulation of planar cell polarity in polycystic kidney disease. J Am Soc Nephrol 21: 1521‐1532, 2010.
 185. MacNeal RK, Purich DL. Stoichiometry and role of GTP hydrolysis in bovine neurotubule assembly. J Biol Chem 253: 4683‐4687, 1978.
 186. Maekawa F, Toyoda Y, Torii N, Miwa I, Thompson RC, Foster DL, Tsukahara S, Tsukamura H, Maeda K. Localization of glucokinase‐like immunoreactivity in the rat lower brain stem: for possible location of brain glucose‐sensing mechanisms. Endocrinology 141: 375‐384, 2000.
 187. Mans DA, Voest EE, Giles RH. All along the watchtower: is the cilium a tumor suppressor organelle? Biochim Biophys Acta 1786: 114‐125, 2008.
 188. Marshall WF. Basal bodies platforms for building cilia. Curr Top Dev Biol 85: 1‐22, 2008.
 189. Marshall WF, Rosenbaum JL. Intraflagellar transport balances continuous turnover of outer doublet microtubules: implications for flagellar length control. J Cell Biol 155: 405‐414, 2001.
 190. Masyuk AI, Gradilone SA, Banales JM, Huang BQ, Masyuk TV, Lee SO, Splinter PL, Stroope AJ, Larusso NF. Cholangiocyte primary cilia are chemosensory organelles that detect biliary nucleotides via P2Y12 purinergic receptors. Am J Physiol Gastrointest Liver Physiol 295: G725‐G734, 2008.
 191. Maurer SP, Bieling P, Cope J, Hoenger A, Surrey T. GTPgammaS microtubules mimic the growing microtubule end structure recognized by end‐binding proteins (EBs). Proc Natl Acad Sci U S A 108: 3988‐3993, 2011.
 192. May SR, Ashique AM, Karlen M, Wang B, Shen Y, Zarbalis K, Reiter J, Ericson J, Peterson AS. Loss of the retrograde motor for IFT disrupts localization of Smo to cilia and prevents the expression of both activator and repressor functions of Gli. Dev Biol 287: 378‐389, 2005.
 193. Mayor T, Stierhof YD, Tanaka K, Fry AM, Nigg EA. The centrosomal protein C‐Nap1 is required for cell cycle‐regulated centrosome cohesion. J Cell Biol 151: 837‐846, 2000.
 194. McGlashan SR, Jensen CG, Poole CA. Localization of extracellular matrix receptors on the chondrocyte primary cilium. J Histochem Cytochem 54: 1005‐1014, 2006.
 195. McGlashan SR, Knight MM, Chowdhury TT, Joshi P, Jensen CG, Kennedy S, Poole CA. Mechanical loading modulates chondrocyte primary cilia incidence and length. Cell Biol Int 34: 441‐446, 2010.
 196. McIntosh JR, Morphew MK, Grissom PM, Gilbert SP, Hoenger A. Lattice structure of cytoplasmic microtubules in a cultured Mammalian cell. J Mol Biol 394: 177‐182, 2009.
 197. Melloy PG, Ewart JL, Cohen MF, Desmond ME, Kuehn MR, Lo CW. No turning, a mouse mutation causing left‐right and axial patterning defects. Dev Biol 193: 77‐89, 1998.
 198. Mitchison T, Kirschner M. Dynamic instability of microtubule growth. Nature 312: 237‐242, 1984.
 199. Miyoshi K, Kasahara K, Miyazaki I, Shimizu S, Taniguchi M, Matsuzaki S, Tohyama M, Asanuma M. Pericentrin, a centrosomal protein related to microcephalic primordial dwarfism, is required for olfactory cilia assembly in mice. Faseb J 23: 3289‐3297, 2009.
 200. Mizukami I, Gall J. Centriole replication. II. Sperm formation in the fern, Marsilea, and the cycad, Zamia. J Cell Biol 29: 97‐111, 1966.
 201. Mogensen MM, Malik A, Piel M, Bouckson‐Castaing V, Bornens M. Microtubule minus‐end anchorage at centrosomal and non‐centrosomal sites: the role of ninein. J Cell Sci 113: 3013‐3023, 2000.
 202. Molla‐Herman A, Ghossoub R, Blisnick T, Meunier A, Serres C, Silbermann F, Emmerson C, Romeo K, Bourdoncle P, Schmitt A, Saunier S, Spassky N, Bastin P, Benmerah A. The ciliary pocket: an endocytic membrane domain at the base of primary and motile cilia. J Cell Sci 123: 1785‐1795, 2010.
 203. Montcouquiol M, Crenshaw EB, III, Kelley MW. Noncanonical Wnt signaling and neural polarity. Annu Rev Neurosci 29: 363‐386, 2006.
 204. Moran DT, Rowley JC, III, Jafek BW, Lovell MA. The fine structure of the olfactory mucosa in man. J Neurocytol 11: 721‐746, 1982.
 205. Murga‐Zamalloa CA, Desai NJ, Hildebrandt F, Khanna H. Interaction of ciliary disease protein retinitis pigmentosa GTPase regulator with nephronophthisis‐associated proteins in mammalian retinas. Mol Vis 16: 1373‐1381, 2010.
 206. Nachury MV, Loktev AV, Zhang Q, Westlake CJ, Peranen J, Merdes A, Slusarski DC, Scheller RH, Bazan JF, Sheffield VC, Jackson PK. A core complex of BBS proteins cooperates with the GTPase Rab8 to promote ciliary membrane biogenesis. Cell 129: 1201‐1213, 2007.
 207. Nachury MV, Seeley ES, Jin H. Trafficking to the ciliary membrane: how to get across the periciliary diffusion barrier? Annu Rev Cell Dev Biol 26: 59‐87, 2010.
 208. Nauli SM, Alenghat FJ, Luo Y, Williams E, Vassilev P, Li X, Elia AE, Lu W, Brown EM, Quinn SJ, Ingber DE, Zhou J. Polycystins 1 and 2 mediate mechanosensation in the primary cilium of kidney cells. Nat Genet 33: 129‐137, 2003.
 209. Neugebauer JM, Amack JD, Peterson AG, Bisgrove BW, Yost HJ. FGF signalling during embryo development regulates cilia length in diverse epithelia. Nature 458: 651‐654, 2009.
 210. Nielsen SK, Mollgard K, Clement CA, Veland IR, Awan A, Yoder BK, Novak I, Christensen ST. Characterization of primary cilia and Hedgehog signaling during development of the human pancreas and in human pancreatic duct cancer cell lines. Dev Dyn 237: 2039‐2052, 2008.
 211. Nigg EA, Raff JW. Centrioles, centrosomes, and cilia in health and disease. Cell 139: 663‐678, 2009.
 212. Ocbina PJ, Tuson M, Anderson KV. Primary cilia are not required for normal canonical Wnt signaling in the mouse embryo. PLoS One 4: e6839, 2009.
 213. Omori Y, Chaya T, Katoh K, Kajimura N, Sato S, Muraoka K, Ueno S, Koyasu T, Kondo M, Furukawa T. Negative regulation of ciliary length by ciliary male germ cell‐associated kinase (Mak) is required for retinal photoreceptor survival. Proc Natl Acad Sci U S A 107: 22671‐22676, 2010.
 214. Omran H. NPHP proteins: gatekeepers of the ciliary compartment. J Cell Biol 190: 715‐717, 2010.
 215. Paintrand M, Moudjou M, Delacroix H, Bornens M. Centrosome organization and centriole architecture: their sensitivity to divalent cations. J Struct Biol 108: 107‐128, 1992.
 216. Pan J, Snell W. The primary cilium: keeper of the key to cell division. Cell 129: 1255‐1257, 2007.
 217. Pan J, Snell WJ. An aurora kinase is essential for flagellar disassembly in Chlamydomonas. Dev Cell 6: 445‐451, 2004.
 218. Pan J, Snell WJ. Chlamydomonas shortens its flagella by activating axonemal disassembly, stimulating IFT particle trafficking, and blocking anterograde cargo loading. Dev Cell 9: 431‐438, 2005.
 219. Pan J, Wang Q, Snell WJ. An aurora kinase is essential for flagellar disassembly in Chlamydomonas. Dev Cell 6: 445‐451, 2004.
 220. Park TJ, Haigo SL, Wallingford JB. Ciliogenesis defects in embryos lacking inturned or fuzzy function are associated with failure of planar cell polarity and Hedgehog signaling. Nat Genet 38: 303‐311, 2006.
 221. Park TJ, Mitchell BJ, Abitua PB, Kintner C, Wallingford JB. Dishevelled controls apical docking and planar polarization of basal bodies in ciliated epithelial cells. Nat Genet 40: 871‐879, 2008.
 222. Parker JD, Hilton LK, Diener DR, Rasi MQ, Mahjoub MR, Rosenbaum JL, Quarmby LM. Centrioles are freed from cilia by severing prior to mitosis. Cytoskeleton (Hoboken) 67: 425‐430, 2010.
 223. Parker JD, Quarmby LM. Chlamydomonas fla mutants reveal a link between deflagellation and intraflagellar transport. BMC Cell Biol 4: 11, 2003.
 224. Patzke S, Redick S, Warsame A, Murga‐Zamalloa CA, Khanna H, Doxsey S, Stokke T. CSPP is a ciliary protein interacting with Nephrocystin 8 and required for cilia formation. Mol Biol Cell 21: 2555‐2567, 2010.
 225. Pazour GJ, Bloodgood RA. Targeting proteins to the ciliary membrane. Curr Top Dev Biol 85: 115‐149, 2008.
 226. Pazour GJ, Dickert BL, Vucica Y, Seeley ES, Rosenbaum JL, Witman GB, Cole DG. Chlamydomonas IFT88 and its mouse homologue, polycystic kidney disease gene tg737, are required for assembly of cilia and flagella. J Cell Biol 151: 709‐718, 2000.
 227. Pazour GJ, Dickert BL, Witman GB. The DHC1b (DHC2) isoform of cytoplasmic dynein is required for flagellar assembly. J Cell Biol 144: 473‐481, 1999.
 228. Pazour GJ, San Agustin JT, Follit JA, Rosenbaum JL, Witman GB. Polycystin‐2 localizes to kidney cilia and the ciliary level is elevated in orpk mice with polycystic kidney disease. Curr Biol 12: R378‐R380, 2002.
 229. Pazour GJ, Witman GB. The vertebrate primary cilium is a sensory organelle. Curr Opin Cell Biol 15: 105‐110, 2003.
 230. Pedersen LB, Geimer S, Rosenbaum JL. Dissecting the molecular mechanisms of intraflagellar transport in Chlamydomonas. Curr Biol 16: 450‐459, 2006.
 231. Pedersen LB, Geimer S, Sloboda RD, Rosenbaum JL. The microtubule plus end‐tracking protein EB1 is localized to the flagellar tip and basal bodies in Chlamydomonas reinhardtii. Curr Biol 13: 1969‐1974, 2003.
 232. Pedersen LB, Miller MS, Geimer S, Leitch JM, Rosenbaum JL, Cole DG. Chlamydomonas IFT172 is encoded by FLA11, interacts with CrEB1, and regulates IFT at the flagellar tip. Curr Biol 15: 262‐266, 2005.
 233. Pedersen LB, Rosenbaum JL. Intraflagellar transport (IFT) role in ciliary assembly, resorption and signalling. Curr Top Dev Biol 85: 23‐61, 2008.
 234. Peris L, Wagenbach M, Lafanechere L, Brocard J, Moore AT, Kozielski F, Job D, Wordeman L, Andrieux A. Motor‐dependent microtubule disassembly driven by tubulin tyrosination. J Cell Biol 185: 1159‐1166, 2009.
 235. Pfister KK, Shah PR, Hummerich H, Russ A, Cotton J, Annuar AA, King SM, Fisher EM. Genetic analysis of the cytoplasmic dynein subunit families. PLoS Genet 2: e1, 2006.
 236. Piao T, Luo M, Wang L, Guo Y, Li D, Li P, Snell WJ, Pan J. A microtubule depolymerizing kinesin functions during both flagellar disassembly and flagellar assembly in Chlamydomonas. Proc Natl Acad Sci U S A 106: 4713‐4718, 2009.
 237. Piasecki BP, Silflow CD. The UNI1 and UNI2 genes function in the transition of triplet to doublet microtubules between the centriole and cilium in Chlamydomonas. Mol Biol Cell 20: 368‐378, 2009.
 238. Piel M, Meyer P, Khodjakov A, Rieder CL, Bornens M. The respective contributions of the mother and daughter centrioles to centrosome activity and behavior in vertebrate cells. J Cell Biol 149: 317‐330, 2000.
 239. Piperno G, Mead K. Transport of a novel complex in the cytoplasmic matrix of Chlamydomonas flagella. Proc Natl Acad Sci U S A 94: 4457‐4462, 1997.
 240. Plotnikova OV, Golemis EA, Pugacheva EN. Cell cycle‐dependent ciliogenesis and cancer. Cancer Res 68: 2058‐2061, 2008.
 241. Porter ME, Bower R, Knott JA, Byrd P, Dentler W. Cytoplasmic dynein heavy chain 1b is required for flagellar assembly in Chlamydomonas. Mol Biol Cell 10: 693‐712, 1999.
 242. Praetorius HA, Spring KR. Bending the MDCK cell primary cilium increases intracellular calcium. J Membr Biol 184: 71‐79, 2001.
 243. Praetorius HA, Spring KR. Removal of the MDCK cell primary cilium abolishes flow sensing. J Membr Biol 191: 69‐76, 2003.
 244. Pugacheva EN, Jablonski SA, Hartman TR, Henske EP, Golemis EA. HEF1‐dependent Aurora A activation induces disassembly of the primary cilium. Cell 129: 1351‐1363, 2007.
 245. Qin H, Diener DR, Geimer S, Cole DG, Rosenbaum JL. Intraflagellar transport (IFT) cargo: IFT transports flagellar precursors to the tip and turnover products to the cell body. J Cell Biol 164: 255‐266, 2004.
 246. Quarmby L. Deflagellation. The Chlamydomonas Sourcebook (2nd ed). George B. Witman (ed) 2009, pp. 43‐69, Vol. 3, Amsterdam: Elsevier Inc.
 247. Quarmby LM, Mahjoub MR. Caught Nek‐ing: cilia and centrioles. J Cell Sci 118: 5161‐5169, 2005.
 248. Quarmby LM, Parker JD. Cilia and the cell cycle? J Cell Biol 169: 707‐710, 2005.
 249. Quarmby LM, Yueh YG, Cheshire JL, Keller LR, Snell WJ, Crain RC. Inositol phospholipid metabolism may trigger flagellar excision in Chlamydomonas reinhardtii. J Cell Biol 116: 737‐744, 1992.
 250. Rapley J, Nicolas M, Groen A, Regue L, Bertran MT, Caelles C, Avruch J, Roig J. The NIMA‐family kinase Nek6 phosphorylates the kinesin Eg5 at a novel site necessary for mitotic spindle formation. J Cell Sci 121: 3912‐3921, 2008.
 251. Rauch A, Thiel CT, Schindler D, Wick U, Crow YJ, Ekici AB, van Essen AJ, Goecke TO, Al‐Gazali L, Chrzanowska KH, Zweier C, Brunner HG, Becker K, Curry CJ, Dallapiccola B, Devriendt K, Dorfler A, Kinning E, Megarbane A, Meinecke P, Semple RK, Spranger S, Toutain A, Trembath RC, Voss E, Wilson L, Hennekam R, de Zegher F, Dorr HG, Reis A. Mutations in the pericentrin (PCNT) gene cause primordial dwarfism. Science 319: 816‐819, 2008.
 252. Raychowdhury MK, Ramos AJ, Zhang P, McLaughin M, Dai XQ, Chen XZ, Montalbetti N, Del Rocio Cantero M, Ausiello DA, Cantiello HF. Vasopressin receptor‐mediated functional signaling pathway in primary cilia of renal epithelial cells. Am J Physiol Renal Physiol 296: F87‐F97, 2009.
 253. Rehberg M, Graf R. Dictyostelium EB1 is a genuine centrosomal component required for proper spindle formation. Mol Biol Cell 13: 2301‐2310, 2002.
 254. Ringo DL. Flagellar motion and fine structure of the flagellar apparatus in Chlamydomonas. J Cell Biol 33: 543‐571, 1967.
 255. Rohatgi R, Snell WJ. The ciliary membrane. Curr Opin Cell Biol 22: 541‐546, 2010.
 256. Röhlich P. The sensory cilium of retinal rods is analogous to the transitional zone of motile cilia. Cell Tissue Res 161: 421‐430, 1975.
 257. Rompolas P, Pedersen LB, Patel‐King RS, King SM. Chlamydomonas FAP133 is a dynein intermediate chain associated with the retrograde intraflagellar transport motor. J Cell Sci 120: 3653‐3665, 2007.
 258. Rosenbaum JL, Witman GB. Intraflagellar transport. Nat Rev Mol Cell Biol 3: 813‐825, 2002.
 259. Ross AJ, May‐Simera H, Eichers ER, Kai M, Hill J, Jagger DJ, Leitch CC, Chapple JP, Munro PM, Fisher S, Tan PL, Phillips HM, Leroux MR, Henderson DJ, Murdoch JN, Copp AJ, Eliot MM, Lupski JR, Kemp DT, Dollfus H, Tada M, Katsanis N, Forge A, Beales PL. Disruption of Bardet‐Biedl syndrome ciliary proteins perturbs planar cell polarity in vertebrates. Nat Genet 37: 1135‐1140, 2005.
 260. Sale WS, Satir P. The termination of the central microtubules from the cilia of Tetrahymena pyriformis. Cell Biol Int Rep 1: 45‐49, 1977.
 261. Salomon R, Saunier S, Niaudet P. Nephronophthisis. Pediatr Nephrol 24: 2333‐2344, 2008.
 262. Sanders MA, Salisbury JL. Centrin plays an essential role in microtubule severing during flagellar excision in Chlamydomonas reinhardtii. J Cell Biol 124: 795‐805, 1994.
 263. Satir B, Sale WS, Satir P. Membrane renewal after dibucaine deciliation of Tetrahymena. Freeze‐fracture technique, cilia, membrane structure. Exp Cell Res 97: 83‐91, 1976.
 264. Satir P, Christensen ST. Overview of structure and function of mammalian cilia. Annu Rev Physiol 69: 377‐400, 2006.
 265. Satir P, Guerra C. Control of ciliary motility: A unifying hypothesis. Eur J Protistol 39: 410‐415, 2003.
 266. Satir P, Mitchell DR, Jekely G. How did the cilium evolve? Curr Top Dev Biol 85: 63‐82, 2008.
 267. Satir P, Pedersen LB, Christensen ST. The primary cilium at a glance. J Cell Sci 123: 499‐503, 2010.
 268. Schatten H. The mammalian centrosome and its functional significance. Histochem Cell Biol 129: 667‐686, 2008.
 269. Schmidt TI, Kleylein‐Sohn J, Westendorf J, Le Clech M, Lavoie SB, Stierhof YD, Nigg EA. Control of centriole length by CPAP and CP110. Curr Biol 19: 1005‐1011, 2009.
 270. Schneider L, Cammer M, Lehman J, Nielsen SK, Guerra CF, Veland IR, Stock C, Hoffmann EK, Yoder BK, Schwab A, Satir P, Christensen ST. Directional cell migration and chemotaxis in wound healing response to PDGF‐AA are coordinated by the primary cilium in fibroblasts. Cell Physiol Biochem 25: 279‐292, 2010.
 271. Schneider L, Clement CA, Teilmann SC, Pazour GP, Hoffmann EK, Satir P, Christensen ST. PDGFRaa signaling is regulated through the primary cilium in fibroblasts. Curr Biol 15: 1861‐1866, 2005.
 272. Schneider MJ, Ulland M, Sloboda RD. A protein methylation pathway in Chlamydomonas flagella is active during flagellar resorption. Mol Biol Cell 19: 4319‐4327, 2008.
 273. Scholey JM. Intraflagellar transport. Annu Rev Cell Dev Biol 19: 423‐443, 2003.
 274. Scholey JM. Intraflagellar transport motors in cilia: moving along the cell's antenna. J Cell Biol 180: 23‐29, 2008.
 275. Schrøder JM, Larsen J, Komarova Y, Akhmanova A, Thorsteinsson RI, Grigoriev I, Manguso R, Christensen ST, Pedersen SF, Geimer S, Pedersen LB. EB1 and EB3 promote cilia biogenesis by several centrosome‐related mechanisms. J Cell Sci 124: 2539‐2551, 2011.
 276. Schrøder JM, Schneider L, Christensen ST, Pedersen LB. EB1 is required for primary cilia assembly in fibroblasts. Curr Biol 17: 1134‐1139, 2007.
 277. Schuyler SC, Pellman D. Microtubule “plus‐end‐tracking‐proteins”: the end is just the beginning. Cell 105: 421‐424, 2001.
 278. Schwartz EA, Leonard ML, Bizios R, Bowser SS. Analysis and modeling of the primary cilium bending response to fluid shear. Am J Physiol 272: F132‐F138, 1997.
 279. Sedjai F, Acquaviva C, Chevrier V, Chauvin JP, Coppin E, Aouane A, Coulier F, Tolun A, Pierres M, Birnbaum D, Rosnet O. Control of ciliogenesis by FOR20, a novel centrosome and pericentriolar satellite protein. J Cell Sci 123: 2391‐2401, 2010.
 280. Seeley ES, Nachury MV. The perennial organelle: assembly and disassembly of the primary cilium. J Cell Sci 123: 511‐518, 2010.
 281. Shah AS, Ben‐Shahar Y, Moninger TO, Kline JN, Welsh MJ. Motile cilia of human airway epithelia are chemosensory. Science 325: 1131‐1134, 2009.
 282. Sharma N, Berbari NF, Yoder BK. Ciliary dysfunction in developmental abnormalities and diseases. Curr Top Dev Biol 85: 371‐427, 2008.
 283. Sharma N, Bryant J, Wloga D, Donaldson R, Davis RC, Jerka‐Dziadosz M, Gaertig J. Katanin regulates dynamics of microtubules and biogenesis of motile cilia. J Cell Biol 178: 1065‐1079, 2007.
 284. Sharma N, Kosan ZA, Stallworth JE, Berbari NF, Yoder BK. Soluble levels of cytosolic tubulin regulate ciliary length control. Mol Biol Cell 22: 806‐816, 2011.
 285. Shiba D, Manning DK, Koga H, Beier DR, Yokoyama T. Inv acts as a molecular anchor for Nphp3 and Nek8 in the proximal segment of primary cilia. Cytoskeleton (Hoboken) 67: 112‐119, 2010.
 286. Shillingford JM, Murcia NS, Larson CH, Low SH, Hedgepeth R, Brown N, Flask CA, Novick AC, Goldfarb DA, Kramer‐Zucker A, Walz G, Piontek KB, Germino GG, Weimbs T. The mTOR pathway is regulated by polycystin‐1, and its inhibition reverses renal cystogenesis in polycystic kidney disease. Proc Natl Acad Sci U S A 103: 5466‐5471, 2006.
 287. Signor D, Wedaman KP, Orozco JT, Dwyer ND, Bargmann CI, Rose LS, Scholey JM. Role of a class DHC1b dynein in retrograde transport of IFT motors and IFT raft particles along cilia, but not dendrites, in chemosensory neurons of living Caenorhabditis elegans. J Cell Biol 147: 519‐530, 1999.
 288. Silverman MA, Leroux MR. Intraflagellar transport and the generation of dynamic, structurally and functionally diverse cilia. Trends Cell Biol 19: 306‐316, 2009.
 289. Simons M, Gloy J, Ganner A, Bullerkotte A, Bashkurov M, Kronig C, Schermer B, Benzing T, Cabello OA, Jenny A, Mlodzik M, Polok B, Driever W, Obara T, Walz G. Inversin, the gene product mutated in nephronophthisis type II, functions as a molecular switch between Wnt signaling pathways. Nat Genet 37: 537‐543, 2005.
 290. Singla V, Romaguera‐Ros M, Garcia‐Verdugo JM, Reiter JF. Ofd1, a human disease gene, regulates the length and distal structure of centrioles. Dev Cell 18: 410‐424, 2010.
 291. Sloboda RD. Intraflagellar transport and the flagellar tip complex. J Cell Biochem 94: 266‐272, 2005.
 292. Song L, Dentler WL. Flagellar protein dynamics in Chlamydomonas. J Biol Chem 276: 29754‐29763, 2001.
 293. Sorokin S. Centrioles and the formation of rudimentary cilia by fibroblasts and smooth muscle cells. J Cell Biol 15: 363‐377, 1962.
 294. Sorokin SP. Reconstructions of centriole formation and ciliogenesis in mammalian lungs. J Cell Sci 3: 207‐230, 1968.
 295. Spektor A, Tsang WY, Khoo D, Dynlacht BD. Cep97 and CP110 suppress a cilia assembly program. Cell 130: 678‐690, 2007.
 296. Stephan A, Vaughan S, Shaw MK, Gull K, McKean PG. An essential quality control mechanism at the eukaryotic basal body prior to intraflagellar transport. Traffic 8: 1323‐1330, 2007.
 297. Stephens RE. Synthesis and turnover of embryonic sea urchin ciliary proteins during selective inhibition of tubulin synthesis and assembly. Mol Biol Cell 8: 2187‐2198, 1997.
 298. Stephens RE. Preferential incorporation of tubulin into the junctional region of ciliary outer doublet microtubules: a model for treadmilling by lattice dislocation. Cell Motil Cytoskeleton 47: 130‐140, 2000.
 299. Stevens NR, Dobbelaere J, Wainman A, Gergely F, Raff JW. Ana3 is a conserved protein required for the structural integrity of centrioles and basal bodies. J Cell Biol 187: 355‐363, 2009.
 300. Tachi S, Tachi C, Lindner HR. Influence of ovarian hormones on formation of solitary cilia and behavior of the centrioles in uterine epithelial cells of the rat. Biol Reprod 10: 391‐403, 1974.
 301. Tamm SL, Tamm S. Visualization of changes in ciliary tip configuration caused by sliding displacement of microtubules in macrocilia of the ctenophore Beroe. J Cell Sci 79: 161‐179, 1985.
 302. Tang CJ, Fu RH, Wu KS, Hsu WB, Tang TK. CPAP is a cell‐cycle regulated protein that controls centriole length. Nat Cell Biol 11: 825‐831, 2009.
 303. Teilmann SC, Byskov AG, Pedersen PA, Wheatley DN, Pazour GJ, Christensen ST. Localization of transient receptor potential ion channels in primary and motile cilia of the female murine reproductive organs. Mol Reprod Dev 71: 444‐452, 2005.
 304. Teilmann SC, Christensen ST. Localization of the angiopoietin receptors Tie‐1 and Tie‐2 on the primary cilia in the female reproductive organs. Cell Biol Int 29: 340‐346, 2005.
 305. Teilmann SC, Clement CA, Thorup J, Byskov AG, Christensen ST. Expression and localization of the progesterone receptor in mouse and human reproductive organs. J Endocrinol 191: 525‐535, 2006.
 306. Tsao CC, Gorovsky MA. Different effects of Tetrahymena IFT172 domains on anterograde and retrograde intraflagellar transport. Mol Biol Cell 19: 1450‐1461, 2008.
 307. Vale RD. The molecular toolbox for intracellular transport. Cell 112: 467‐480, 2003.
 308. van Breugel M, Hirono M, Andreeva A, Yanagisawa HA, Yamaguchi S, Nakazawa Y, Morgner N, Petrovich M, Ebong IO, Robinson CV, Johnson CM, Veprintsev D, Zuber B. Structures of SAS‐6 suggest its organization in centrioles. Science 331: 1196‐1199, 2011.
 309. Veeman MT, Slusarski DC, Kaykas A, Louie SH, Moon RT. Zebrafish prickle, a modulator of noncanonical Wnt/Fz signaling, regulates gastrulation movements. Curr Biol 13: 680‐685, 2003.
 310. Veland IR, Awan A, Pedersen LB, Yoder BK, Christensen ST. Primary cilia and signaling pathways in mammalian development, health and disease. Nephron Physiol 111: p39‐p53, 2009.
 311. Verhey KJ, Gaertig J. The tubulin code. Cell Cycle 6: 2152‐2160, 2007.
 312. Vitre B, Coquelle FM, Heichette C, Garnier C, Chretien D, Arnal I. EB1 regulates microtubule dynamics and tubulin sheet closure in vitro. Nat Cell Biol 10: 415‐421, 2008.
 313. Wallingford JB. Planar cell polarity signaling, cilia and polarized ciliary beating. Curr Opin Cell Biol 22: 597‐604, 2010.
 314. Wallingford JB, Mitchell B. Strange as it may seem: the many links between Wnt signaling, planar cell polarity, and cilia. Genes Dev 25: 201‐213, 2011.
 315. Walther Z, Vashishtha M, Hall JL. The Chlamydomonas FLA10 gene encodes a novel kinesin‐homologous protein. J Cell Biol 126: 175‐188, 1994.
 316. Wang J, Hamblet NS, Mark S, Dickinson ME, Brinkman BC, Segil N, Fraser SE, Chen P, Wallingford JB, Wynshaw‐Boris A. Dishevelled genes mediate a conserved mammalian PCP pathway to regulate convergent extension during neurulation. Development 133: 1767‐1778, 2006.
 317. Wang Q, Pan J, Snell WJ. Intraflagellar transport particles participate directly in cilium‐generated signaling in Chlamydomonas. Cell 125: 549‐562, 2006.
 318. Watanabe T. A scanning electron‐microscopic study of the local degeneration of cilia during sexual reproduction in Paramecium. J Cell Sci 32: 55‐66, 1978.
 319. Waters AM, Beales PL. Ciliopathies: an expanding disease spectrum. Pediatr Nephrol 26: 1039‐1056, 2011.
 320. Weirich CS, Erzberger JP, Barral Y. The septin family of GTPases: architecture and dynamics. Nat Rev Mol Cell Biol 9: 478‐489, 2008.
 321. Williams CL, Li C, Kida K, Inglis PN, Mohan S, Semenec L, Bialas NJ, Stupay RM, Chen N, Blacque OE, Yoder BK, Leroux MR. MKS and NPHP modules cooperate to establish basal body/transition zone membrane associations and ciliary gate function during ciliogenesis. J Cell Biol 192: 1023‐1041, 2011.
 322. Wilson NF, Iyer JK, Buchheim JA, Meek W. Regulation of flagellar length in Chlamydomonas. Semin Cell Dev Biol 19: 494‐501, 2008.
 323. Wilson NF, Lefebvre PA. Regulation of flagellar assembly by glycogen synthase kinase 3 in Chlamydomonas reinhardtii. Eukaryot Cell 3: 1307‐1319, 2004.
 324. Winyard P, Jenkins D. Putative roles of cilia in polycystic kidney disease. Biochim Biophys Acta 1812: 1256‐1262, 2011.
 325. Wloga D, Camba A, Rogowski K, Manning G, Jerka‐Dziadosz M, Gaertig J. Members of the NIMA‐related kinase family promote disassembly of cilia by multiple mechanisms. Mol Biol Cell 17: 2799‐2810, 2006.
 326. Wloga D, Gaertig J. Post‐translational modifications of microtubules. J Cell Sci 123: 3447‐3455, 2010.
 327. Wolf MT, Hildebrandt F. Nephronophthisis. Pediatr Nephrol 26: 181‐194, 2011.
 328. Wong SY, Reiter JF. The primary cilium at the crossroads of mammalian hedgehog signaling. Curr Top Dev Biol 85: 225‐260, 2008.
 329. Wong SY, Seol AD, So PL, Ermilov AN, Bichakjian CK, Epstein EH, Jr, Dlugosz AA, Reiter JF. Primary cilia can both mediate and suppress Hedgehog pathway‐dependent tumorigenesis. Nat Med 15: 1055‐1061, 2009.
 330. Yan X, Habedanck R, Nigg EA. A complex of two centrosomal proteins, CAP350 and FOP, cooperates with EB1 in microtubule anchoring. Mol Biol Cell 17: 634‐644, 2006.
 331. Yang J, Adamian M, Li T. Rootletin interacts with C‐Nap1 and may function as a physical linker between the pair of centrioles/basal bodies in cells. Mol Biol Cell 17: 1033‐1040, 2006.
 332. Yang J, Gao J, Adamian M, Wen XH, Pawlyk B, Zhang L, Sanderson MJ, Zuo J, Makino CL, Li T. The ciliary rootlet maintains long‐term stability of sensory cilia. Mol Cell Biol 25: 4129‐4137, 2005.
 333. Yang J, Liu X, Yue G, Adamian M, Bulgakov O, Li T. Rootletin, a novel coiled‐coil protein, is a structural component of the ciliary rootlet. J Cell Biol 159: 431‐440, 2002.
 334. Yin Y, Bangs F, Paton IR, Prescott A, James J, Davey MG, Whitley P, Genikhovich G, Technau U, Burt DW, Tickle C. The Talpid3 gene (KIAA0586) encodes a centrosomal protein that is essential for primary cilia formation. Development 136: 655‐664, 2009.
 335. Yoder BK, Hou X, Guay‐Woodford LM. The polycystic kidney disease proteins, polycystin‐1, polycystin‐2, polaris, and cystin, are co‐localized in renal cilia. J Am Soc Nephrol 13: 2508‐2516, 2002.
 336. Yoder BK, Tousson A, Millican L, Wu JH, Bugg CE, Jr, Schafer JA, Balkovetz DF. Polaris, a protein disrupted in orpk mutant mice, is required for assembly of renal cilium. Am J Physiol Renal Physiol 282: F541‐F552, 2002.
 337. Yoshimura S, Egerer J, Fuchs E, Haas AK, Barr FA. Functional dissection of Rab GTPases involved in primary cilium formation. J Cell Biol 178: 363‐369, 2007.
 338. Zhang Y, Kwon S, Yamaguchi T, Cubizolles F, Rousseaux S, Kneissel M, Cao C, Li N, Cheng HL, Chua K, Lombard D, Mizeracki A, Matthias G, Alt FW, Khochbin S, Matthias P. Mice lacking histone deacetylase 6 have hyperacetylated tubulin but are viable and develop normally. Mol Cell Biol 28: 1688‐1701, 2008.
 339. Zhu D, Shi S, Wang H, Liao K. Growth arrest induces primary‐cilium formation and sensitizes IGF‐1‐receptor signaling during differentiation induction of 3T3‐L1 preadipocytes. J Cell Sci 122: 2760‐2768, 2009.

Contact Editor

Submit a note to the editor about this article by filling in the form below.

* Required Field

How to Cite

Lotte B. Pedersen, Jacob M. Schrøder, Peter Satir, Søren T. Christensen. The Ciliary Cytoskeleton. Compr Physiol 2012, 2: 779-803. doi: 10.1002/cphy.c110043