References |
1. |
Adams PR,
Constanti A,
Brown DA,
Clark RB.
Intracellular Ca2+ activates a fast voltage‐sensitive K+ current in vertebrate sympathetic neurones.
Nature
296:
746‐749,
1982.
|
2. |
Adelman JP,
Shen KZ,
Kavanaugh MP,
Warren RA,
Wu YN,
Lagrutta A,
Bond CT,
North RA.
Calcium‐activated potassium channels expressed from cloned complementary DNAs.
Neuron
9:
209‐216,
1992.
|
3. |
Aggarwal SK,
MacKinnon R.
Contribution of the S4 segment to gating charge in the Shaker K+ channel.
Neuron
16:
1169‐1177,
1996.
|
4. |
Ahern CA,
Horn R.
Specificity of charge‐carrying residues in the voltage sensor of potassium channels.
J Gen Physiol
123:
205‐216,
2004.
|
5. |
Ahern CA,
Horn R.
Focused electric field across the voltage sensor of potassium channels.
Neuron
48:
25‐29,
2005.
|
6. |
Aldrich RW Jr.,
Getting PA,
Thompson SH.
Mechanism of frequency‐dependent broadening of molluscan neurone soma spikes.
J Physiol
291:
531‐544,
1979.
|
7. |
Ando M,
Takeuchi S.
Immunological identification of an inward rectifier K+ channel (Kir4.1) in the intermediate cell (melanocyte) of the cochlear stria vascularis of gerbils and rats.
Cell Tissue Res
298:
179‐183,
1999.
|
8. |
Anumonwo JM,
Lopatin AN.
Cardiac strong inward rectifier potassium channels.
J Mol Cell Cardiol
48:
45‐54,
2010.
|
9. |
Armstrong CM.
Inactivation of the potassium conductance and related phenomena caused by quaternary ammonium ion injection in squid axons.
J Gen Physiol
54:
553‐575,
1969.
|
10. |
Armstrong CM.
Interaction of tetraethylammonium ion derivatives with the potassium channels of giant axons.
J Gen Physiol
58:
413‐437,
1971.
|
11. |
Armstrong CM.
Potassium pores of nerve and muscle membranes.
Membranes
3:
325‐358,
1975.
|
12. |
Armstrong CM,
Bezanilla F.
Currents related to movement of the gating particles of the sodium channels.
Nature
242:
459‐461,
1973.
|
13. |
Armstrong CM,
Bezanilla F.
Charge movement associated with the opening and closing of the activation gates of the Na channels.
J Gen Physiol
63:
533‐552,
1974.
|
14. |
Armstrong CM,
Bezanilla F.
Inactivation of the sodium channel. II. Gating current experiments.
J Gen Physiol
70:
567‐590,
1977.
|
15. |
Armstrong CM,
Loboda A.
A model for 4‐aminopyridine action on K channels: Similarities to tetraethylammonium ion action.
Biophys J
81:
895‐904,
2001.
|
16. |
Art JJ,
Fettiplace R.
Variation of membrane properties in hair cells isolated from the turtle cochlea.
J Physiol
385:
207‐242,
1987.
|
17. |
Art JJ,
Wu YC,
Fettiplace R.
The calcium‐activated potassium channels of turtle hair cells.
J Gen Physiol
105:
49‐72,
1995.
|
18. |
Ashcroft FM,
Gribble FM.
New windows on the mechanism of action of K(ATP) channel openers.
Trends Pharmacol Sci
21:
439‐445,
2000.
|
19. |
Ashcroft FM,
Rorsman P.
Electrophysiology of the pancreatic beta‐cell.
Prog Biophys Mol Biol
54:
87‐143,
1989.
|
20. |
Ashmole I,
Vavoulis DV,
Stansfeld PJ,
Mehta PR,
Feng JF,
Sutcliffe MJ,
Stanfield PR.
The response of the tandem pore potassium channel TASK‐3 (K(2P)9.1) to voltage: Gating at the cytoplasmic mouth.
J Physiol
587:
4769‐4783,
2009.
|
21. |
Atkinson NS,
Robertson GA,
Ganetzky B.
A component of calcium‐activated potassium channels encoded by the Drosophila slo locus.
Science
253:
551‐555,
1991.
|
22. |
Bacci A,
Huguenard JR,
Prince DA.
Long‐lasting self‐inhibition of neocortical interneurons mediated by endocannabinoids.
Nature
431:
312‐316,
2004.
|
23. |
Bao L,
Rapin AM,
Holmstrand EC,
Cox DH.
Elimination of the BK(Ca) channel's high‐affinity Ca(2+) sensitivity.
J Gen Physiol
120:
173‐189,
2002.
|
24. |
Barhanin J,
Lesage F,
Guillemare E,
Fink M,
Lazdunski M,
Romey G.
K(V)LQT1 and lsK (minK) proteins associate to form the I(Ks) cardiac potassium current.
Nature
384:
78‐80,
1996.
|
25. |
Barmeyer C,
Rahner C,
Yang Y,
Sigworth FJ,
Binder HJ,
Rajendran VM.
Cloning and identification of tissue‐specific expression of KCNN4 splice variants in rat colon.
Am J Physiol Cell Physiol
299:
C251‐C263,
2010.
|
26. |
Baukrowitz T,
Yellen G.
Use‐dependent blockers and exit rate of the last ion from the multi‐ion pore of a K+ channel.
Science
271:
653‐656,
1996.
|
27. |
Bautista DM,
Sigal YM,
Milstein AD,
Garrison JL,
Zorn JA,
Tsuruda PR,
Nicoll RA,
Julius D.
Pungent agents from Szechuan peppers excite sensory neurons by inhibiting two‐pore potassium channels.
Nat Neurosci
11:
772‐779,
2008.
|
28. |
Bautista L,
Castro MJ,
Lopez‐Barneo J,
Castellano A.
Hypoxia inducible factor‐2alpha stabilization and maxi‐K+ channel beta1‐subunit gene repression by hypoxia in cardiac myocytes: Role in preconditioning.
Circ Res
104:
1364‐1372,
2009.
|
29. |
Bayliss DA,
Barrett PQ.
Emerging roles for two‐pore‐domain potassium channels and their potential therapeutic impact.
Trends Pharmacol Sci
29:
566‐575,
2008.
|
30. |
Bean BP.
Neurophysiology: Stressful pacemaking.
Nature
447:
1059‐1060,
2007.
|
31. |
Beckh S,
Pongs O.
Members of the RCK potassium channel family are differentially expressed in the rat nervous system.
EMBO J
9:
777‐782,
1990.
|
32. |
Behrens R,
Nolting A,
Reimann F,
Schwarz M,
Waldschutz R,
Pongs O.
hKCNMB3 and hKCNMB4, cloning and characterization of two members of the large‐conductance calcium‐activated potassium channel beta subunit family.
FEBS Lett
474:
99‐106,
2000.
|
33. |
Ben‐Abu Y,
Zhou Y,
Zilberberg N,
Yifrach O.
Inverse coupling in leak and voltage‐activated K +channel gates underlies distinct roles in electrical signaling.
Nat Struc Mol Biol
16:
71‐79,
2009.
|
34. |
Bender K,
Wellner‐Kienitz MC,
Inanobe A,
Meyer T,
Kurachi Y,
Pott L.
Overexpression of monomeric and multimeric GIRK4 subunits in rat atrial myocytes removes fast desensitization and reduces inward rectification of muscarinic K(+) current (I(K(ACh))). Evidence for functional homomeric GIRK4 channels.
J Biol Chem
276:
28873‐28880,
2001.
|
35. |
Benton DC,
Monaghan AS,
Hosseini R,
Bahia PK,
Haylett DG,
Moss GW.
Small conductance Ca2+‐activated K+ channels formed by the expression of rat SK1 and SK2 genes in HEK 293 cells.
J Physiol
553:
13‐19,
2003.
|
36. |
Bentzen BH,
Nardi A,
Calloe K,
Madsen LS,
Olesen SP,
Grunnet M.
The small molecule NS11021 is a potent and specific activator of Ca2+‐activated big‐conductance K+ channels.
Mol Pharmacol
72:
1033‐1044,
2007.
|
37. |
Berkefeld H,
Fakler B.
Repolarizing responses of BKCa‐Cav complexes are distinctly shaped by their Cav subunits.
J Neurosci
28:
8238‐8245,
2008.
|
38. |
Berkefeld H,
Sailer CA,
Bildl W,
Rohde V,
Thumfart JO,
Eble S,
Klugbauer N,
Reisinger E,
Bischofberger J,
Oliver D,
Knaus HG,
Schulte U,
Fakler B.
BKCa‐Cav channel complexes mediate rapid and localized Ca2+‐activated K+ signaling.
Science
314:
615‐620,
2006.
|
39. |
Bezanilla F.
How membrane proteins sense voltage.
Nat Rev
9:
323‐332,
2008.
|
40. |
Bezanilla F,
Armstrong CM.
Negative conductance caused by entry of sodium and cesium ions into the potassium channels of squid axons.
J Gen Physiol
60:
588‐608,
1972.
|
41. |
Bezanilla F,
Armstrong CM.
Gating currents of the sodium channels: Three ways to block them.
Science
183:
753‐754,
1974.
|
42. |
Bezanilla F,
Armstrong CM.
Properties of the sodium channel gating current.
Cold Spring Harb Symp Quant Biol
40:
297‐304,
1976.
|
43. |
Bezanilla F,
Taylor RE,
Fernandez JM.
Distribution and kinetics of membrane dielectric polarization. 1. Long‐term inactivation of gating currents.
J Gen Physiol
79:
21‐40,
1982.
|
44. |
Bezanilla F,
White MM,
Taylor RE.
Gating currents associated with potassium channel activation.
Nature
296:
657‐659,
1982.
|
45. |
Bhalla T,
Rosenthal JJ,
Holmgren M,
Reenan R.
Control of human potassium channel inactivation by editing of a small mRNA hairpin.
Nat Struct Mol Biol
11:
950‐956,
2004.
|
46. |
Bhattacharjee A,
Gan L,
Kaczmarek LK.
Localization of the Slack potassium channel in the rat central nervous system.
J Comp Neurol
454:
241‐254,
2002.
|
47. |
Bhattacharjee A,
Joiner WJ,
Wu M,
Yang Y,
Sigworth FJ,
Kaczmarek LK.
Slick (Slo2.1), a rapidly‐gating sodium‐activated potassium channel inhibited by ATP.
J Neurosci
23:
11681‐11691,
2003.
|
48. |
Bhattacharjee A,
Kaczmarek LK.
For K+ channels, Na+ is the new Ca2+.
Trends Neurosci
28:
422‐428,
2005.
|
49. |
Bhattacharjee A,
von Hehn CA,
Mei X,
Kaczmarek LK.
Localization of the Na+‐activated K+ channel Slick in the rat central nervous system.
J Comp Neurol
484:
80‐92,
2005.
|
50. |
Blatz AL,
Magleby KL.
Single apamin‐blocked Ca‐activated K+ channels of small conductance in cultured rat skeletal muscle.
Nature
323:
718‐720,
1986.
|
51. |
Bleich M,
Schlatter E,
Greger R.
The luminal K+ channel of the thick ascending limb of Henle's loop.
Pflugers Arch
415:
449‐460,
1990.
|
52. |
Bockenhauer D,
Zilberberg N,
Goldstein SA.
KCNK2: Reversible conversion of a hippocampal potassium leak into a voltage‐dependent channel.
Nat Neurosci
4:
486‐491,
2001.
|
53. |
Bond CT,
Ammala C,
Ashfield R,
Blair TA,
Gribble F,
Khan RN,
Lee K,
Proks P,
Rowe IC,
Sakura H,
et al.
Cloning and functional expression of the cDNA encoding an inwardly‐rectifying potassium channel expressed in pancreatic beta‐cells and in the brain.
FEBS Lett
367:
61‐66,
1995.
|
54. |
Bond CT,
Maylie J,
Adelman JP.
SK channels in excitability, pacemaking and synaptic integration.
Curr Opin Neurobiol
15:
305‐311,
2005.
|
55. |
Bond CT,
Pessia M,
Xia XM,
Lagrutta A,
Kavanaugh MP,
Adelman JP.
Cloning and expression of a family of inward rectifier potassium channels.
Receptors Channels
2:
183‐191,
1994.
|
56. |
Borchert GH,
Yang C,
Kolar F.
Mitochondrial BKCa channels contribute to protection of cardiomyocytes isolated from chronically hypoxic rats.
Am J Physiol Heart Circ Physiol
300:
H507‐H513,
2011.
|
57. |
Braun M,
Ramracheya R,
Bengtsson M,
Zhang Q,
Karanauskaite J,
Partridge C,
Johnson PR,
Rorsman P.
Voltage‐gated ion channels in human pancreatic beta‐cells: Electrophysiological characterization and role in insulin secretion.
Diabetes
57:
1618‐1628,
2008.
|
58. |
Brelidze TI,
Niu X,
Magleby KL.
A ring of eight conserved negatively charged amino acids doubles the conductance of BK channels and prevents inward rectification.
Proc Natl Acad Sci U S A
100:
9017‐9022,
2003.
|
59. |
Brenner R,
Chen QH,
Vilaythong A,
Toney GM,
Noebels JL,
Aldrich RW.
BK channel beta4 subunit reduces dentate gyrus excitability and protects against temporal lobe seizures.
Nat Neurosci
8:
1752‐1759,
2005.
|
60. |
Brenner R,
Jegla TJ,
Wickenden A,
Liu Y,
Aldrich RW.
Cloning and functional characterization of novel large conductance calcium‐activated potassium channel beta subunits, hKCNMB3 and hKCNMB4.
J Biol Chem
275:
6453‐6461,
2000.
|
61. |
Brenner R,
Perez GJ,
Bonev AD,
Eckman DM,
Kosek JC,
Wiler SW,
Patterson AJ,
Nelson MT,
Aldrich RW.
Vasoregulation by the beta1 subunit of the calcium‐activated potassium channel.
Nature
407:
870‐876,
2000.
|
62. |
Brock MW,
Mathes C,
Gilly WF.
Selective open‐channel block of Shaker (Kv1) potassium channels by s‐nitrosodithiothreitol (SNDTT).
J Gen Physiol
118:
113‐134,
2001.
|
63. |
Broomand A,
Elinder F.
Large‐scale movement within the voltage‐sensor paddle of a potassium channel‐support for a helical‐screw motion.
Neuron
59:
770‐777,
2008.
|
64. |
Brown MR,
Kronengold J,
Gazula VR,
Spilianakis CG,
Flavell RA,
von Hehn CA,
Bhattacharjee A,
Kaczmarek LK.
Amino‐termini isoforms of the Slack K+ channel, regulated by alternative promoters, differentially modulate rhythmic firing and adaptation.
J Physiol
586:
5161‐5179,
2008.
|
65. |
Bruening‐Wright A,
Schumacher MA,
Adelman JP,
Maylie J.
Localization of the activation gate for small conductance Ca2+‐activated K+ channels.
J Neurosci
22:
6499‐6506,
2002.
|
66. |
Brüning E,
Blumfeldr‐Albertus H.
Jasmina und die Lotosblume.
Berlin:
Der Kinderbuchverlag,
1986,
p. 77.
|
67. |
Budelli G,
Hage TA,
Wei A,
Rojas P,
Jong YJ,
O'Malley K,
Salkoff L.
Na+‐activated K+ channels express a large delayed outward current in neurons during normal physiology.
Nat Neurosci
12:
745‐750,
2009.
|
68. |
Burgess GM,
Claret M,
Jenkinson DH.
Effects of quinine and apamin on the calcium‐dependent potassium permeability of mammalian hepatocytes and red cells.
J Physiol
317:
67‐90,
1981.
|
69. |
Butler A,
Tsunoda S,
McCobb DP,
Wei A,
Salkoff L.
mSlo, a complex mouse gene encoding “maxi” calcium‐activated potassium channels.
Science
261:
221‐224,
1993.
|
70. |
Cai X,
Liang CW,
Muralidharan S,
Kao JP,
Tang CM,
Thompson SM.
Unique roles of SK and Kv4.2 potassium channels in dendritic integration.
Neuron
44:
351‐364,
2004.
|
71. |
Campbell DS,
Holt CE.
Chemotropic responses of retinal growth cones mediated by rapid local protein synthesis and degradation.
Neuron
32:
1013‐1026,
2001.
|
72. |
Campos FV,
Chanda B,
Roux B,
Bezanilla F.
Two atomic constraints unambiguously position the S4 segment relative to S1 and S2 segments in the closed state of Shaker K channel.
Proc Natl Acad Sci U S A
104:
7904‐7909,
2007.
|
73. |
Campos Rosa J,
Galanakis D,
Piergentili A,
Bhandari K,
Ganellin CR,
Dunn PM,
Jenkinson DH.
Synthesis, molecular modeling, and pharmacological testing of bis‐quinolinium cyclophanes: Potent, non‐peptidic blockers of the apamin‐sensitive Ca(2+)‐activated K(+) channel.
J Med Chem
43:
420‐431,
2000.
|
74. |
Candia S,
Garcia ML,
Latorre R.
Mode of action of iberiotoxin, a potent blocker of the large conductance Ca(2+)‐activated K+ channel.
Biophys J
63:
583‐590,
1992.
|
75. |
Carvacho I,
Gonzalez W,
Torres YP,
Brauchi S,
Alvarez O,
Gonzalez‐Nilo FD,
Latorre R.
Intrinsic electrostatic potential in the BK channel pore: Role in determining single channel conductance and block.
J Gen Physiol
131:
147‐161,
2008.
|
76. |
Casis O,
Olesen SP,
Sanguinetti MC.
Mechanism of action of a novel human ether‐a‐go‐go‐related gene channel activator.
Mol Pharmacol
69:
658‐665,
2006.
|
77. |
Castle NA,
Strong PN.
Identification of two toxins from scorpion (Leiurus quinquestriatus) venom which block distinct classes of calcium‐activated potassium channel.
FEBS Lett
209:
117‐121,
1986.
|
78. |
Catterall WA.
Structure and function of voltage‐sensitive ion channels.
Science
242:
50‐61,
1988.
|
79. |
Cingolani LA,
Gymnopoulos M,
Boccaccio A,
Stocker M,
Pedarzani P.
Developmental regulation of small‐conductance Ca2+‐activated K+ channel expression and function in rat Purkinje neurons.
J Neurosci
22:
4456‐4467,
2002.
|
80. |
Claydon TW,
Makary SY,
Dibb KM,
Boyett MR.
The selectivity filter may act as the agonist‐activated gate in the G protein‐activated Kir3.1/Kir3.4 K+ channel.
J Biol Chem
278:
50654‐50663,
2003.
|
81. |
Clement JPt,
Kunjilwar K,
Gonzalez G,
Schwanstecher M,
Panten U,
Aguilar‐Bryan L,
Bryan J.
Association and stoichiometry of K(ATP) channel subunits.
Neuron
18:
827‐838,
1997.
|
82. |
Cohen A,
Ben‐Abu Y,
Hen S,
Zilberberg N.
A novel mechanism for human K2P2.1 channel gating. Facilitation of C‐type gating by protonation of extracellular histidine residues.
J Biol Chem
283:
19448‐19455,
2008.
|
83. |
Cohen A,
Ben‐Abu Y,
Zilberberg N.
Gating the pore of potassium leak channels.
Eur Biophys J
39:
61‐73,
2009.
|
84. |
Cordero‐Morales JF,
Cuello LG,
Zhao Y,
Jogini V,
Cortes DM,
Roux B,
Perozo E.
Molecular determinants of gating at the potassium‐channel selectivity filter.
Nat Struct Mol Biol
13:
311‐318,
2006.
|
85. |
Cordero‐Morales JF,
Jogini V,
Lewis A,
Vasquez V,
Cortes DM,
Roux B,
Perozo E.
Molecular driving forces determining potassium channel slow inactivation.
Nat Struct Mol Biol
14:
1062‐1069,
2007.
|
86. |
Covarrubias M,
Bhattacharji A,
De Santiago‐Castillo JA,
Dougherty K,
Kaulin YA,
Na‐Phuket TR,
Wang G.
The neuronal Kv4 channel complex.
Neurochem Res
33:
1558‐1567,
2008.
|
87. |
Cuello LG,
Jogini V,
Cortes DM,
Perozo E.
Structural mechanism of C‐type inactivation in K(+) channels.
Nature
466:
203‐208.
|
88. |
Cui G,
Okamoto T,
Morikawa H.
Spontaneous opening of T‐type Ca2+ channels contributes to the irregular firing of dopamine neurons in neonatal rats.
J Neurosci
24:
11079‐11087,
2004.
|
89. |
Cui J,
Aldrich RW.
Allosteric linkage between voltage and Ca(2+)‐dependent activation of BK‐type mslo1 K(+) channels.
Biochemistry
39:
15612‐15619,
2000.
|
90. |
Cui J,
Yang H,
Lee US.
Molecular mechanisms of BK channel activation.
Cell Mol Life Sci
66:
852‐875,
2009.
|
91. |
Cha A,
Snyder GE,
Selvin PR,
Bezanilla F.
Atomic scale movement of the voltage‐sensing region in a potassium channel measured via spectroscopy.
Nature
402:
809‐813,
1999.
|
92. |
Chakrapani S,
Cordero‐Morales JF,
Jogini V,
Pan AC,
Cortes DM,
Roux B,
Perozo E.
On the structural basis of modal gating behavior in K(+) channels.
Nat Struct Mol Biol
18:
67‐74,
2011.
|
93. |
Chandy KG,
Cahalan M,
Pennington M,
Norton RS,
Wulff H,
Gutman GA.
Potassium channels in T lymphocytes: Toxins to therapeutic immunosuppressants.
Toxicon
39:
1269‐1276,
2001.
|
94. |
Chemin J,
Patel A,
Duprat F,
Zanzouri M,
Lazdunski M,
Honore E.
Lysophosphatidic acid‐operated K+ channels.
J Biol Chem
280:
4415‐4421,
2005.
|
95. |
Chemin J,
Patel AJ,
Duprat F,
Lauritzen I,
Lazdunski M,
Honore E.
A phospholipid sensor controls mechanogating of the K+ channel TREK‐1.
EMBO J
24:
44‐53,
2005.
|
96. |
Chen H,
Kronengold J,
Yan Y,
Gazula VR,
Brown MR,
Ma L,
Ferreira G,
Yang Y,
Bhattacharjee A,
Sigworth FJ,
Salkoff L,
Kaczmarek LK.
The N‐terminal domain of Slack determines the formation and trafficking of Slick/Slack heteromeric sodium‐activated potassium channels.
J Neurosci
29:
5654‐5665,
2009.
|
97. |
Chen JQ,
Galanakis D,
Ganellin CR,
Dunn PM,
Jenkinson DH.
bis‐Quinolinium cyclophanes: 8,14‐diaza‐1,7(1, 4)‐diquinolinacyclotetradecaphane (UCL 1848), a highly potent and selective, nonpeptidic blocker of the apamin‐sensitive Ca(2+)‐activated K(+) channel.
J Med Chem
43:
3478‐3481,
2000.
|
98. |
Chen L,
Tian L,
MacDonald SH,
McClafferty H,
Hammond MS,
Huibant JM,
Ruth P,
Knaus HG,
Shipston MJ.
Functionally diverse complement of large conductance calcium‐ and voltage‐activated potassium channel (BK) alpha‐subunits generated from a single site of splicing.
J Biol Chem
280:
33599‐33609,
2005.
|
99. |
Chen M,
Gan G,
Wu Y,
Wang L,
Ding J.
Lysine‐rich extracellular rings formed by hbeta2 subunits confer the outward rectification of BK channels.
PLoS One
3:
e2114,
2008.
|
100. |
Chen X,
Yuan LL,
Zhao C,
Birnbaum SG,
Frick A,
Jung WE,
Schwarz TL,
Sweatt JD,
Johnston D.
Deletion of Kv4.2 gene eliminates dendritic A‐type K+ current and enhances induction of long‐term potentiation in hippocampal CA1 pyramidal neurons.
J Neurosci
26:
12143‐12151,
2006.
|
101. |
Chicchi GG,
Gimenez‐Gallego G,
Ber E,
Garcia ML,
Winquist R,
Cascieri MA.
Purification and characterization of a unique, potent inhibitor of apamin binding from Leiurus quinquestriatus hebraeus venom.
J Biol Chem
263:
10192‐10197,
1988.
|
102. |
Cho H,
Nam GB,
Lee SH,
Earm YE,
Ho WK.
Phosphatidylinositol 4,5‐bisphosphate is acting as a signal molecule in alpha(1)‐adrenergic pathway via the modulation of acetylcholine‐activated K(+) channels in mouse atrial myocytes.
J Biol Chem
276:
159‐164,
2001.
|
103. |
Choi KL,
Aldrich RW,
Yellen G.
Tetraethylammonium blockade distinguishes two inactivation mechanisms in voltage‐activated K+ channels.
Proc Natl Acad Sci U S A
88:
5092‐5095,
1991.
|
104. |
D'Adamo MC,
Liu Z,
Adelman JP,
Maylie J,
Pessia M.
Episodic ataxia type‐1 mutations in the hKv1.1 cytoplasmic pore region alter the gating properties of the channel.
EMBO J
17:
1200‐1207,
1998.
|
105. |
D'Hoedt D,
Hirzel K,
Pedarzani P,
Stocker M.
Domain analysis of the calcium‐activated potassium channel SK1 from rat brain. Functional expression and toxin sensitivity.
J Biol Chem
279:
12088‐12092,
2004.
|
106. |
Day M,
Carr DB,
Ulrich S,
Ilijic E,
Tkatch T,
Surmeier DJ.
Dendritic excitability of mouse frontal cortex pyramidal neurons is shaped by the interaction among HCN, Kir2, and Kleak channels.
J Neurosci
25:
8776‐8787,
2005.
|
107. |
del Camino D,
Holmgren M,
Liu Y,
Yellen G.
Blocker protection in the pore of a voltage‐gated K+ channel and its structural implications.
Nature
403:
321‐325,
2000.
|
108. |
Demo SD,
Yellen G.
The inactivation gate of the Shaker K+ channel behaves like an open‐channel blocker.
Neuron
7:
743‐753,
1991.
|
109. |
Dereeper A,
Guignon V,
Blanc G,
Audic S,
Buffet S,
Chevenet F,
Dufayard JF,
Guindon S,
Lefort V,
Lescot M,
Claverie JM,
Gascuel O.
Phylogeny.fr: Robust phylogenetic analysis for the non‐specialist.
Nucleic Acids Res
36:
W465‐W469,
2008.
|
110. |
Diaz L,
Meera P,
Amigo J,
Stefani E,
Alvarez O,
Toro L,
Latorre R.
Role of the S4 segment in a voltage‐dependent calcium‐sensitive potassium (hSlo) channel.
J Biol Chem
273:
32430‐32436,
1998.
|
111. |
Diness TG,
Yeh YH,
Qi XY,
Chartier D,
Tsuji Y,
Hansen RS,
Olesen SP,
Grunnet M,
Nattel S.
Antiarrhythmic properties of a rapid delayed‐rectifier current activator in rabbit models of acquired long QT syndrome.
Cardiovasc Res
79:
61‐69,
2008.
|
112. |
Dobrev D,
Friedrich A,
Voigt N,
Jost N,
Wettwer E,
Christ T,
Knaut M,
Ravens U.
The G protein‐gated potassium current I(K,ACh) is constitutively active in patients with chronic atrial fibrillation.
Circulation
112:
3697‐3706,
2005.
|
113. |
Dougherty K, De
Santiago‐Castillo JA,
Covarrubias M.
Gating charge immobilization in Kv4.2 channels: The basis of closed‐state inactivation.
J Gen Physiol
131:
257‐273,
2008.
|
114. |
Douglas RM,
Lai JC,
Bian S,
Cummins L,
Moczydlowski E,
Haddad GG.
The calcium‐sensitive large‐conductance potassium channel (BK/MAXI K) is present in the inner mitochondrial membrane of rat brain.
Neuroscience
139:
1249‐1261,
2006.
|
115. |
Doyle DA,
Morais Cabral J,
Pfuetzner RA,
Kuo A,
Gulbis JM,
Cohen SL,
Chait BT,
MacKinnon R.
The structure of the potassium channel: Molecular basis of K+ conduction and selectivity.
Science
280:
69‐77,
1998.
|
116. |
Doyle ME,
Egan JM.
Pharmacological agents that directly modulate insulin secretion.
Pharmacol Rev
55:
105‐131,
2003.
|
117. |
Dryer SE.
Na(+)‐activated K+ channels: A new family of large‐conductance ion channels.
Trends Neurosci
17:
155‐160,
1994.
|
118. |
Dryer SE,
Fujii JT,
Martin AR.
A Na+‐activated K+ current in cultured brain stem neurones from chicks.
J Physiol
410:
283‐296,
1989.
|
119. |
Du W,
Bautista JF,
Yang H,
Diez‐Sampedro A,
You SA,
Wang L,
Kotagal P,
Luders HO,
Shi J,
Cui J,
Richerson GB,
Wang QK.
Calcium‐sensitive potassium channelopathy in human epilepsy and paroxysmal movement disorder.
Nat Genet
37:
733‐738,
2005.
|
120. |
Dufer M,
Neye Y,
Horth K,
Krippeit‐Drews P,
Hennige A,
Widmer H,
McClafferty H,
Shipston MJ,
Haring HU,
Ruth P,
Drews G.
BK channels affect glucose homeostasis and cell viability of murine pancreatic beta cells.
Diabetologia
54:
423‐432,
2011.
|
121. |
Dunn PM.
Dequalinium, a selective blocker of the slow afterhyperpolarization in rat sympathetic neurones in culture.
Eur J Pharmacol
252:
189‐194,
1994.
|
122. |
Duprat F,
Lesage F,
Fink M,
Reyes R,
Heurteaux C,
Lazdunski M.
TASK, a human background K+ channel to sense external pH variations near physiological pH.
EMBO J
16:
5464‐5471,
1997.
|
123. |
Edgerton JR,
Reinhart PH.
Distinct contributions of small and large conductance Ca2+‐activated K+ channels to rat Purkinje neuron function.
J Physiol
548:
53‐69,
2003.
|
124. |
Egan TM,
Dagan D,
Kupper J,
Levitan IB.
Properties and rundown of sodium‐activated potassium channels in rat olfactory bulb neurons.
J Neurosci
12:
1964‐1976,
1992.
|
125. |
Eisenman G,
Latorre R,
Miller C.
Multi‐ion conduction and selectivity in the high‐conductance Ca++‐activated K+ channel from skeletal muscle.
Biophys J
50:
1025‐1034,
1986.
|
126. |
Elgoyhen AB,
Johnson DS,
Boulter J,
Vetter DE,
Heinemann S.
Alpha 9: an acetylcholine receptor with novel pharmacological properties expressed in rat cochlear hair cells.
Cell
79:
705‐715,
1994.
|
127. |
Elkins T,
Ganetzky B,
Wu CF.
A Drosophila mutation that eliminates a calcium‐dependent potassium current.
Proc Natl Acad Sci U S A
83:
8415‐8419,
1986.
|
128. |
Enyedi P,
Czirjak G.
Molecular background of leak K+ currents: Two‐pore domain potassium channels.
Physiol Rev
90:
559‐605,
2010.
|
129. |
Faber ES.
Functions and modulation of neuronal SK channels.
Cell Biochem Biophys
55:
127‐139,
2009.
|
130. |
Faber ES,
Sah P.
Physiological role of calcium‐activated potassium currents in the rat lateral amygdala.
J Neurosci
22:
1618‐1628,
2002.
|
131. |
Fakler B,
Adelman JP.
Control of K(Ca) channels by calcium nano/microdomains.
Neuron
59:
873‐881,
2008.
|
132. |
Fakler B,
Schultz JH,
Yang J,
Schulte U,
Brandle U,
Zenner HP,
Jan LY,
Ruppersberg JP.
Identification of a titratable lysine residue that determines sensitivity of kidney potassium channels (ROMK) to intracellular pH.
EMBO J
15:
4093‐4099,
1996.
|
133. |
Fang Y,
Schram G,
Romanenko VG,
Shi C,
Conti L,
Vandenberg CA,
Davies PF,
Nattel S,
Levitan I.
Functional expression of Kir2.x in human aortic endothelial cells: The dominant role of Kir2.2.
Am J Physiol Cell Physiol
289:
C1134‐C1144,
2005.
|
134. |
Fernandez‐Alacid L,
Aguado C,
Ciruela F,
Martin R,
Colon J,
Cabanero MJ,
Gassmann M,
Watanabe M,
Shigemoto R,
Wickman K,
Bettler B,
Sanchez‐Prieto J,
Lujan R.
Subcellular compartment‐specific molecular diversity of pre‐ and post‐synaptic GABA‐activated GIRK channels in Purkinje cells.
J Neurochem
110:
1363‐1376,
2009.
|
135. |
Fernandez‐Fernandez JM,
Tomas M,
Vazquez E,
Orio P,
Latorre R,
Senti M,
Marrugat J,
Valverde MA.
Gain‐of‐function mutation in the KCNMB1 potassium channel subunit is associated with low prevalence of diastolic hypertension.
J Clin Invest
113:
1032‐1039,
2004.
|
136. |
Ferrer J,
Nichols CG,
Makhina EN,
Salkoff L,
Bernstein J,
Gerhard D,
Wasson J,
Ramanadham S,
Permutt A.
Pancreatic islet cells express a family of inwardly rectifying K+ channel subunits which interact to form G‐protein‐activated channels.
J Biol Chem
270:
26086‐26091,
1995.
|
137. |
Fettiplace R,
Fuchs PA.
Mechanisms of hair cell tuning.
Annu Rev Physiol
61:
809‐834,
1999.
|
138. |
Figueroa KP,
Minassian NA,
Stevanin G,
Waters M,
Garibyan V,
Forlani S,
Strzelczyk A,
Burk K,
Brice A,
Durr A,
Papazian DM,
Pulst SM.
KCNC3: phenotype, mutations, channel biophysics‐a study of 260 familial ataxia patients.
Hum Mutat
31:
191‐196.
|
139. |
Filosa JA,
Bonev AD,
Straub SV,
Meredith AL,
Wilkerson MK,
Aldrich RW,
Nelson MT.
Local potassium signaling couples neuronal activity to vasodilation in the brain.
Nat Neurosci
9:
1397‐1403,
2006.
|
140. |
Fink M,
Duprat F,
Lesage F,
Reyes R,
Romey G,
Heurteaux C,
Lazdunski M.
Cloning, functional expression and brain localization of a novel unconventional outward rectifier K +channel.
EMBO J
15:
6854‐6862,
1996.
|
141. |
Fink M,
Lesage F,
Duprat F,
Heurteaux C,
Reyes R,
Fosset M,
Lazdunski M.
A neuronal two P domain K+ channel stimulated by arachidonic acid and polyunsaturated fatty acids.
EMBO J
17:
3297‐3308,
1998.
|
142. |
FitzHugh R.
An electronic model of the nerve membrane for demonstration purposes.
J Appl Physiol
21:
305‐308,
1966a.
|
143. |
Fitzhugh R.
Theoretical effect of temperature on threshold in the Hodgkin‐Huxley nerve model.
J Gen Physiol
49:
989‐1005,
1966b.
|
144. |
Fleidervish IA,
Lasser‐Ross N,
Gutnick MJ,
Ross WN.
Na+ imaging reveals little difference in action potential‐evoked Na+ influx between axon and soma.
Nat Neurosci
13:
852‐860,
2010.
|
145. |
Fowler CE,
Aryal P,
Suen KF,
Slesinger PA.
Evidence for association of GABA(B) receptors with Kir3 channels and regulators of G protein signalling (RGS4) proteins.
J Physiol
580:
51‐65,
2007.
|
146. |
Franceschetti S,
Lavazza T,
Curia G,
Aracri P,
Panzica F,
Sancini G,
Avanzini G,
Magistretti J.
Na+‐activated K+ current contributes to postexcitatory hyperpolarization in neocortical intrinsically bursting neurons.
J Neurophysiol
89:
2101‐2111,
2003.
|
147. |
Franks NP,
Honore E.
The TREK K2P channels and their role in general anaesthesia and neuroprotection.
Trends Pharmacol Sci
25:
601‐608,
2004.
|
148. |
Fukushima N.
LPA in neural cell development.
J Cell Biochem
92:
993‐1003,
2004.
|
149. |
Ganfornina MD,
Lopez‐Barneo J.
Potassium channel types in arterial chemoreceptor cells and their selective modulation by oxygen.
J Gen Physiol
100:
401‐426,
1992.
|
150. |
Geiger JR,
Jonas P.
Dynamic control of presynaptic Ca(2+) inflow by fast‐inactivating K(+) channels in hippocampal mossy fiber boutons.
Neuron
28:
927‐939,
2000.
|
151. |
Ghatta S,
Nimmagadda D,
Xu X,
O'Rourke ST.
Large‐conductance, calcium‐activated potassium channels: Structural and functional implications.
Pharmacol Ther
110:
103‐116,
2006.
|
152. |
Giangiacomo KM,
Becker J,
Garsky C,
Schmalhofer W,
Garcia ML,
Mullmann TJ.
Novel alpha‐KTx sites in the BK channel and comparative sequence analysis reveal distinguishing features of the BK and KV channel outer pore.
Cell Biochem Biophys
52:
47‐58,
2008.
|
153. |
Giangiacomo KM,
Garcia ML,
McManus OB.
Mechanism of iberiotoxin block of the large‐conductance calcium‐activated potassium channel from bovine aortic smooth muscle.
Biochemistry
31:
6719‐6727,
1992.
|
154. |
Gil Z,
Magleby KL,
Silberberg SD.
Membrane‐pipette interactions underlie delayed voltage activation of mechanosensitive channels in Xenopus oocytes.
Biophys J
76:
3118‐3127,
1999.
|
155. |
Glauner KS,
Mannuzzu LM,
Gandhi CS,
Isacoff EY.
Spectroscopic mapping of voltage sensor movement in the Shaker potassium channel.
Nature
402:
813‐817,
1999.
|
156. |
Gola M,
Crest M.
Colocalization of active KCa channels and Ca2+ channels within Ca2+ domains in helix neurons.
Neuron
10:
689‐699,
1993.
|
157. |
Goldstein SA,
Bayliss DA,
Kim D,
Lesage F,
Plant LD,
Rajan S.
International Union of Pharmacology. LV. Nomenclature and molecular relationships of two‐P potassium channels.
Pharmacol Rev
57:
527‐540,
2005.
|
158. |
Goldstein SA,
Price LA,
Rosenthal DN,
Pausch MH.
ORK1, a potassium‐selective leak channel with two pore domains cloned from Drosophila melanogaster by expression in Saccharomyces cerevisiae.
Proc Natl Acad Sci U S A
93:
13256‐13261,
1996.
|
159. |
Gonzalez‐Perez V,
Neely A,
Tapia C,
Gonzalez‐Gutierrez G,
Contreras G,
Orio P,
Lagos V,
Rojas G,
Estevez T,
Stack K,
Naranjo D.
Slow inactivation in Shaker K channels is delayed by intracellular tetraethylammonium.
J Gen Physiol
132:
633‐650,
2008.
|
160. |
Gonzalez‐Perez V,
Stack K,
Boric K,
Naranjo D.
Reduced voltage sensitivity in a K+‐channel voltage sensor by electric field remodeling.
Proc Natl Acad Sci U S A
107:
5178‐5183.
|
161. |
Gonzalez C,
Koch HP,
Drum BM,
Larsson HP.
Strong cooperativity between subunits in voltage‐gated proton channels.
Nature structural & molecular biology
17:
51‐56,
2010.
|
162. |
Gonzalez C,
Morera FJ,
Rosenmann E,
Alvarez O,
Latorre R.
S3b amino acid residues do not shuttle across the bilayer in voltage‐dependent Shaker K+ channels.
Proc Natl Acad Sci U S A
102:
5020‐5025,
2005.
|
163. |
Gonzalez C,
Rosenman E,
Bezanilla F,
Alvarez O,
Latorre R.
Modulation of the Shaker K(+) channel gating kinetics by the S3‐S4 linker.
J Gen Physiol
115:
193‐208,
2000.
|
164. |
Gonzalez C,
Rosenman E,
Bezanilla F,
Alvarez O,
Latorre R.
Periodic perturbations in Shaker K+channel gating kinetics by deletions in the S3‐S4 linker.
Proc Natl Acad Sci U S A
98:
9617‐9623,
2001.
|
165. |
Graulich A,
Dilly S,
Farce A,
Scuvee‐Moreau J,
Waroux O,
Lamy C,
Chavatte P,
Seutin V,
Liegeois JF.
Synthesis and radioligand binding studies of bis‐isoquinolinium derivatives as small conductance Ca(2+)‐activated K(+) channel blockers.
J Med Chem
50:
5070‐5075,
2007.
|
166. |
Graulich A,
Lamy C,
Alleva L,
Dilly S,
Chavatte P,
Wouters J,
Seutin V,
Liegeois JF.
Bis‐tetrahydroisoquinoline derivatives: AG525E1, a new step in the search for non‐quaternary non‐peptidic small conductance Ca(2+)‐activated K(+) channel blockers.
Bioorg Med Chem Lett
18:
3440‐3445,
2008.
|
167. |
Graulich A,
Mercier F,
Scuvee‐Moreau J,
Seutin V,
Liegeois JF.
Synthesis and biological evaluation of N‐methyl‐laudanosine iodide analogues as potential SK channel blockers.
Bioorg Med Chem
13:
1201‐1209,
2005.
|
168. |
Gribkoff VK,
Lum‐Ragan JT,
Boissard CG,
Post‐Munson DJ,
Meanwell NA,
Starrett JE Jr.,
Kozlowski ES,
Romine JL,
Trojnacki JT,
McKay MC,
Zhong J,
Dworetzky SI.
Effects of channel modulators on cloned large‐conductance calcium‐activated potassium channels.
Mol Pharmacol
50:
206‐217,
1996.
|
169. |
Grimm PR,
Foutz RM,
Brenner R,
Sansom SC.
Identification and localization of BK‐beta subunits in the distal nephron of the mouse kidney.
Am J Physiol Renal Physiol
293:
F350‐F359,
2007.
|
170. |
Grimm PR,
Sansom SC.
BK channels and a new form of hypertension.
Kidney Int
78:
956‐962,
2010.
|
171. |
Grissmer S,
Nguyen AN,
Aiyar J,
Hanson DC,
Mather RJ,
Gutman GA,
Karmilowicz MJ,
Auperin DD,
Chandy KG.
Pharmacological characterization of five cloned voltage‐gated K +channels, types Kv1.1, 1.2, 1.3, 1.5, and 3.1, stably expressed in mammalian cell lines.
Mol Pharmacol
45:
1227‐1234,
1994.
|
172. |
Gross GJ,
Auchampach JA.
Blockade of ATP‐sensitive potassium channels prevents myocardial preconditioning in dogs.
Circ Res
70:
223‐233,
1992.
|
173. |
Grunnet M,
Jespersen T,
Angelo K,
Frokjaer‐Jensen C,
Klaerke DA,
Olesen SP,
Jensen BS.
Pharmacological modulation of SK3 channels.
Neuropharmacology
40:
879‐887,
2001.
|
174. |
Grunnet M,
Kaufmann WA.
Coassembly of big conductance Ca2+‐activated K+ channels and L‐type voltage‐gated Ca2+ channels in rat brain.
J Biol Chem
279:
36445‐36453,
2004.
|
175. |
Gu N,
Hu H,
Vervaeke K,
Storm JF.
SK (KCa2) channels do not control somatic excitability in CA1 pyramidal neurons but can be activated by dendritic excitatory synapses and regulate their impact.
J Neurophysiol
100:
2589‐2604,
2008.
|
176. |
Gu N,
Vervaeke K,
Hu H,
Storm JF.
Kv7/KCNQ/M and HCN/h, but not KCa2/SK channels, contribute to the somatic medium after‐hyperpolarization and excitability control in CA1 hippocampal pyramidal cells.
J Physiol
566:
689‐715,
2005.
|
177. |
Gu N,
Vervaeke K,
Storm JF.
BK potassium channels facilitate high‐frequency firing and cause early spike frequency adaptation in rat CA1 hippocampal pyramidal cells.
J Physiol
580:
859‐882,
2007.
|
178. |
Gumina RJ,
Pucar D,
Bast P,
Hodgson DM,
Kurtz CE,
Dzeja PP,
Miki T,
Seino S,
Terzic A.
Knockout of Kir6.2 negates ischemic preconditioning‐induced protection of myocardial energetics.
Am J Physiol Heart Circ Physiol
284:
H2106‐H2113,
2003.
|
179. |
Guo D,
Ramu Y,
Klem AM,
Lu Z.
Mechanism of rectification in inward‐rectifier K+ channels.
J Gen Physiol
121:
261‐275,
2003.
|
180. |
Guo W,
Li H,
Aimond F,
Johns DC,
Rhodes KJ,
Trimmer JS,
Nerbonne JM.
Role of heteromultimers in the generation of myocardial transient outward K+ currents.
Circ Res
90:
586‐593,
2002.
|
181. |
Gutman GA,
Chandy KG,
Grissmer S,
Lazdunski M,
McKinnon D,
Pardo LA,
Robertson GA,
Rudy B,
Sanguinetti MC,
Stuhmer W,
Wang X.
International Union of Pharmacology. LIII. Nomenclature and molecular relationships of voltage‐gated potassium channels.
Pharmacol Rev
57:
473‐508,
2005.
|
182. |
Guy HR,
Seetharamulu P.
Molecular model of the action potential sodium channel.
Proc Natl Acad Sci U S A
83:
508‐512,
1986.
|
183. |
Ha TS,
Heo MS,
Park CS.
Functional effects of auxiliary beta4‐subunit on rat large‐conductance Ca(2+)‐activated K(+) channel.
Biophys J
86:
2871‐2882,
2004.
|
184. |
Hackos DH,
Chang TH,
Swartz KJ.
Scanning the intracellular S6 activation gate in the shaker K +channel.
J Gen Physiol
119:
521‐532,
2002.
|
185. |
Hagiwara S,
Miyazaki S,
Rosenthal NP.
Potassium current and the effect of cesium on this current during anomalous rectification of the egg cell membrane of a starfish.
J Gen Physiol
67:
621‐638,
1976.
|
186. |
Hallworth NE,
Wilson CJ,
Bevan MD.
Apamin‐sensitive small conductance calcium‐activated potassium channels, through their selective coupling to voltage‐gated calcium channels, are critical determinants of the precision, pace, and pattern of action potential generation in rat subthalamic nucleus neurons in vitro.
J Neurosci
23:
7525‐7542,
2003.
|
187. |
Han J,
Kang D,
Kim D.
Functional properties of four splice variants of a human pancreatic tandem‐pore K+ channel, TALK‐1.
Am J Physiol Cell Physiol
285:
C529‐C538,
2003.
|
188. |
Han X,
Light PE,
Giles WR,
French RJ.
Identification and properties of an ATP‐sensitive K+ current in rabbit sino‐atrial node pacemaker cells.
J Physiol
490(Pt 2):
337‐350,
1996.
|
189. |
Hansen RS,
Diness TG,
Christ T,
Demnitz J,
Ravens U,
Olesen SP,
Grunnet M.
Activation of human ether‐a‐go‐go‐related gene potassium channels by the diphenylurea 1,3‐bis‐(2‐hydroxy‐5‐trifluoromethyl‐phenyl)‐urea (NS1643).
Mol Pharmacol
69:
266‐277,
2006.
|
190. |
Haug T,
Sigg D,
Ciani S,
Toro L,
Stefani E,
Olcese R.
Regulation of K+ flow by a ring of negative charges in the outer pore of BKCa channels. Part I: Aspartate 292 modulates K+ conduction by external surface charge effect.
J Gen Physiol
124:
173‐184,
2004.
|
191. |
He C,
Zhang H,
Mirshahi T,
Logothetis DE.
Identification of a potassium channel site that interacts with G protein betagamma subunits to mediate agonist‐induced signaling.
J Biol Chem
274:
12517‐12524,
1999.
|
192. |
Hebert SC,
Desir G,
Giebisch G,
Wang W.
Molecular diversity and regulation of renal potassium channels.
Physiol Rev
85:
319‐371,
2005.
|
193. |
Heginbotham L,
Lu Z,
Abramson T,
MacKinnon R.
Mutations in the K+ channel signature sequence.
Biophys J
66:
1061‐1067,
1994.
|
194. |
Heginbotham L,
MacKinnon R.
The aromatic binding site for tetraethylammonium ion on potassium channels.
Neuron
8:
483‐491,
1992.
|
195. |
Heinemann SH,
Rettig J,
Graack HR,
Pongs O.
Functional characterization of Kv channel beta‐subunits from rat brain.
J Physiol
493(Pt 3):
625‐633,
1996.
|
196. |
Hermanstyne TO,
Kihira Y,
Misono K,
Deitchler A,
Yanagawa Y,
Misonou H.
Immunolocalization of the voltage‐gated potassium channel Kv2.2 in GABAergic neurons in the basal forebrain of rats and mice.
J Comp Neurol
518:
4298‐4310.
|
197. |
Hervieu GJ,
Cluderay JE,
Gray CW,
Green PJ,
Ranson JL,
Randall AD,
Meadows HJ.
Distribution and expression of TREK‐1, a two‐pore‐domain potassium channel, in the adult rat CNS.
Neuroscience
103:
899‐919,
2001.
|
198. |
Hess D,
Nanou E,
El Manira A.
Characterization of Na+‐activated K+ currents in larval lamprey spinal cord neurons.
J Neurophysiol
97:
3484‐3493,
2007.
|
199. |
Hess P,
Tsien RW.
Mechanism of ion permeation through calcium channels.
Nature
309:
453‐456,
1984.
|
200. |
Hessa T,
White SH,
von Heijne G.
Membrane insertion of a potassium‐channel voltage sensor.
Science
307:
1427,
2005.
|
201. |
Heurteaux C,
Guy N,
Laigle C,
Blondeau N,
Duprat F,
Mazzuca M,
Lang‐Lazdunski L,
Widmann C,
Zanzouri M,
Romey G,
Lazdunski M.
TREK‐1, a K+ channel involved in neuroprotection and general anesthesia.
EMBO J
23:
2684‐2695,
2004.
|
202. |
Hibino H,
Fujita A,
Iwai K,
Yamada M,
Kurachi Y.
Differential assembly of inwardly rectifying K+ channel subunits, Kir4.1 and Kir5.1, in brain astrocytes.
J Biol Chem
279:
44065‐44073,
2004.
|
203. |
Hibino H,
Inanobe A,
Furutani K,
Murakami S,
Findlay I,
Kurachi Y.
Inwardly rectifying potassium channels: Their structure, function, and physiological roles.
Physiol Rev
90:
291‐366,
2010.
|
204. |
Hibino H,
Kurachi Y.
Molecular and physiological bases of the K+ circulation in the mammalian inner ear.
Physiology (Bethesda)
21:
336‐345,
2006.
|
205. |
Hibino H,
Nin F,
Tsuzuki C,
Kurachi Y.
How is the highly positive endocochlear potential formed? The specific architecture of the stria vascularis and the roles of the ion‐transport apparatus.
Pflugers Arch
459:
521‐533,
2010.
|
206. |
Hicks GA,
Marrion NV.
Ca2+‐dependent inactivation of large conductance Ca2+‐activated K+ (BK) channels in rat hippocampal neurones produced by pore block from an associated particle.
J Physiol
508(Pt 3):
721‐734,
1998.
|
207. |
Ho IH,
Murrell‐Lagnado RD.
Molecular determinants for sodium‐dependent activation of G protein‐gated K+ channels.
J Biol Chem
274:
8639‐8648,
1999.
|
208. |
Hodgkin AL,
Huxley AF.
Currents carried by sodium and potassium ions through the membrane of the giant axon of Loligo.
J Physiol
116:
449‐472,
1952a.
|
209. |
Hodgkin AL,
Huxley AF.
A quantitative description of membrane current and its application to conduction and excitation in nerve.
J Physiol
117:
500‐544,
1952b.
|
210. |
Hodgkin AL,
Keynes RD.
The potassium permeability of a giant nerve fibre.
J Physiol
128:
61‐88,
1955.
|
211. |
Holmgren M,
Shin KS,
Yellen G.
The activation gate of a voltage‐gated K+ channel can be trapped in the open state by an intersubunit metal bridge.
Neuron
21:
617‐621,
1998.
|
212. |
Holmgren M,
Smith PL,
Yellen G.
Trapping of organic blockers by closing of voltage‐dependent K+ channels: Evidence for a trap door mechanism of activation gating.
J Gen Physiol
109:
527‐535,
1997.
|
213. |
Honore E.
The neuronal background K2P channels: Focus on TREK1.
Nat Rev Neurosci
8:
251‐261,
2007.
|
214. |
Honore E,
Maingret F,
Lazdunski M,
Patel AJ.
An intracellular proton sensor commands lipid‐ and mechano‐gating of the K(+) channel TREK‐1.
EMBO J
21:
2968‐2976,
2002.
|
215. |
Horn R.
Electrifying phosphatases.
Sci STKE
2005:
pe50,
2005.
|
216. |
Horrigan FT,
Aldrich RW.
Allosteric voltage gating of potassium channels II. Mslo channel gating charge movement in the absence of Ca(2+).
J Gen Physiol
114:
305‐336,
1999.
|
217. |
Horrigan FT,
Aldrich RW.
Coupling between voltage sensor activation, Ca2+ binding and channel opening in large conductance (BK) potassium channels.
J Gen Physiol
120:
267‐305,
2002.
|
218. |
Horrigan FT,
Cui J,
Aldrich RW.
Allosteric voltage gating of potassium channels I. Mslo ionic currents in the absence of Ca(2+).
J Gen Physiol
114:
277‐304,
1999.
|
219. |
Hoshi T,
Zagotta WN,
Aldrich RW.
Biophysical and molecular mechanisms of Shaker potassium channel inactivation.
Science
250:
533‐538,
1990.
|
220. |
Hoshi T,
Zagotta WN,
Aldrich RW.
Shaker potassium channel gating. I: Transitions near the open state.
J Gen Physiol
103:
249‐278,
1994.
|
221. |
Hoshi T,
Zagotta WN,
Aldrich RW.
Two types of inactivation in Shaker K+ channels: Effects of alterations in the carboxy‐terminal region.
Neuron
7:
547‐556,
1991.
|
222. |
Hu H,
Shao LR,
Chavoshy S,
Gu N,
Trieb M,
Behrens R,
Laake P,
Pongs O,
Knaus HG,
Ottersen OP,
Storm JF.
Presynaptic Ca2+‐activated K+ channels in glutamatergic hippocampal terminals and their role in spike repolarization and regulation of transmitter release.
J Neurosci
21:
9585‐9597,
2001.
|
223. |
Huang CL,
Feng S,
Hilgemann DW.
Direct activation of inward rectifier potassium channels by PIP2 and its stabilization by Gbetagamma.
Nature
391:
803‐806,
1998.
|
224. |
Hugnot JP,
Salinas M,
Lesage F,
Guillemare E,
de Weille J,
Heurteaux C,
Mattei MG,
Lazdunski M.
Kv8.1, a new neuronal potassium channel subunit with specific inhibitory properties towards Shab and Shaw channels.
EMBO J
15:
3322‐3331,
1996.
|
225. |
Ilan N,
Goldstein SA.
Kcnko: Single, cloned potassium leak channels are multi‐ion pores.
Biophys J
80:
241‐253,
2001.
|
226. |
Inagaki N,
Gonoi T,
Clement JP,
Wang CZ,
Aguilar‐Bryan L,
Bryan J,
Seino S.
A family of sulfonylurea receptors determines the pharmacological properties of ATP‐sensitive K+ channels.
Neuron
16:
1011‐1017,
1996.
|
227. |
Inagaki N,
Gonoi T,
Clement JPt,
Namba N,
Inazawa J,
Gonzalez G,
Aguilar‐Bryan L,
Seino S,
Bryan J.
Reconstitution of IKATP: An inward rectifier subunit plus the sulfonylurea receptor.
Science
270:
1166‐1170,
1995.
|
228. |
Ishii TM,
Maylie J,
Adelman JP.
Determinants of apamin and d‐tubocurarine block in SK potassium channels.
J Biol Chem
272:
23195‐23200,
1997.
|
229. |
Islas LD,
Sigworth FJ.
Voltage sensitivity and gating charge in Shaker and Shab family potassium channels.
J Gen Physiol
114:
723‐742,
1999.
|
230. |
Islas LD,
Sigworth FJ.
Electrostatics and the gating pore of Shaker potassium channels.
J Gen Physiol
117:
69‐89,
2001.
|
231. |
Ivanina T,
Rishal I,
Varon D,
Mullner C,
Frohnwieser‐Steinecke B,
Schreibmayer W,
Dessauer CW,
Dascal N.
Mapping the Gbetagamma‐binding sites in GIRK1 and GIRK2 subunits of the G protein‐activated K+ channel.
J Biol Chem
278:
29174‐29183,
2003.
|
232. |
Iwanir S,
Reuveny E.
Adrenaline‐induced hyperpolarization of mouse pancreatic islet cells is mediated by G protein‐gated inwardly rectifying potassium (GIRK) channels.
Pflugers Arch
456:
1097‐1108,
2008.
|
233. |
Jaggar JH,
Porter VA,
Lederer WJ,
Nelson MT.
Calcium sparks in smooth muscle.
Am J Physiol Cell Physiol
278:
C235‐C256,
2000.
|
234. |
Jelacic TM,
Kennedy ME,
Wickman K,
Clapham DE.
Functional and biochemical evidence for G‐protein‐gated inwardly rectifying K+ (GIRK) channels composed of GIRK2 and GIRK3.
J Biol Chem
275:
36211‐36216,
2000.
|
235. |
Jiang X,
Bett GC,
Li X,
Bondarenko VE,
Rasmusson RL.
C‐type inactivation involves a significant decrease in the intracellular aqueous pore volume of Kv1.4 K+ channels expressed in Xenopus oocytes.
J Physiol
549:
683‐695,
2003.
|
236. |
Jiang Y,
Lee A,
Chen J,
Cadene M,
Chait BT,
MacKinnon R.
Crystal structure and mechanism of a calcium‐gated potassium channel.
Nature
417:
515‐522,
2002a.
|
237. |
Jiang Y,
Lee A,
Chen J,
Cadene M,
Chait BT,
MacKinnon R.
The open pore conformation of potassium channels.
Nature
417:
523‐526,
2002b.
|
238. |
Jiang Y,
Lee A,
Chen J,
Ruta V,
Cadene M,
Chait BT,
MacKinnon R.
X‐ray structure of a voltage‐dependent K+ channel.
Nature
423:
33‐41,
2003.
|
239. |
Jiang Y,
Pico A,
Cadene M,
Chait BT,
MacKinnon R.
Structure of the RCK domain from the E. coli K+ channel and demonstration of its presence in the human BK channel.
Neuron
29:
593‐601,
2001.
|
240. |
Jiang Y,
Ruta V,
Chen J,
Lee A,
MacKinnon R.
The principle of gating charge movement in a voltage‐dependent K+ channel.
Nature
423:
42‐48,
2003.
|
241. |
Jin W,
Lu Z.
A novel high‐affinity inhibitor for inward‐rectifier K+ channels.
Biochemistry
37:
13291‐13299,
1998.
|
242. |
Jin W,
Lu Z.
Synthesis of a stable form of tertiapin: A high‐affinity inhibitor for inward‐rectifier K+ channels.
Biochemistry
38:
14286‐14293,
1999.
|
243. |
Jogini V,
Roux B.
Dynamics of the Kv1.2 voltage‐gated K+ channel in a membrane environment.
Biophys J
93:
3070‐3082,
2007.
|
244. |
Johansson AC,
Lindahl E.
Amino‐acid solvation structure in transmembrane helices from molecular dynamics simulations.
Biophys J
91:
4450‐4463,
2006.
|
245. |
Johnson SW,
Seutin V.
Bicuculline methiodide potentiates NMDA‐dependent burst firing in rat dopamine neurons by blocking apamin‐sensitive Ca2+‐activated K+ currents.
Neurosci Lett
231:
13‐16,
1997.
|
246. |
Joiner WJ,
Khanna R,
Schlichter LC,
Kaczmarek LK.
Calmodulin regulates assembly and trafficking of SK4/IK1 Ca2+‐activated K+ channels.
J Biol Chem
276:
37980‐37985,
2001.
|
247. |
Joiner WJ,
Tang MD,
Wang LY,
Dworetzky SI,
Boissard CG,
Gan L,
Gribkoff VK,
Kaczmarek LK.
Formation of intermediate‐conductance calcium‐activated potassium channels by interaction of Slack and Slo subunits.
Nat Neurosci
1:
462‐469,
1998.
|
248. |
Jones EM,
Laus C,
Fettiplace R.
Identification of Ca(2+)‐activated K+ channel splice variants and their distribution in the turtle cochlea.
Proc Bioll Sci
265:
685‐692,
1998.
|
249. |
Kalman K,
Pennington MW,
Lanigan MD,
Nguyen A,
Rauer H,
Mahnir V,
Paschetto K,
Kem WR,
Grissmer S,
Gutman GA,
Christian EP,
Cahalan MD,
Norton RS,
Chandy KG.
ShK‐Dap22, a potent Kv1.3‐specific immunosuppressive polypeptide.
J Biol Chem
273:
32697‐32707,
1998.
|
250. |
Kamb A,
Iverson LE,
Tanouye MA.
Molecular characterization of Shaker, a Drosophila gene that encodes a potassium channel.
Cell
50:
405‐413,
1987.
|
251. |
Kameyama M,
Kakei M,
Sato R,
Shibasaki T,
Matsuda H,
Irisawa H.
Intracellular Na+ activates a K +channel in mammalian cardiac cells.
Nature
309:
354‐356,
1984.
|
252. |
Kane GC,
Liu XK,
Yamada S,
Olson TM,
Terzic A.
Cardiac KATP channels in health and disease.
J Mol Cell Cardiol
38:
937‐943,
2005.
|
253. |
Kang D,
Choe C,
Kim D.
Thermosensitivity of the two‐pore domain K+ channels TREK‐2 and TRAAK.
J Physiol
564:
103‐116,
2005.
|
254. |
Kang J,
Chen XL,
Wang H,
Ji J,
Cheng H,
Incardona J,
Reynolds W,
Viviani F,
Tabart M,
Rampe D.
Discovery of a small molecule activator of the human ether‐a‐go‐go‐related gene (HERG) cardiac K+ channel.
Mol Pharmacol
67:
827‐836,
2005.
|
255. |
Katz B.
Les constantes electriques de la membrane du muscle.
Arch Sci Physiol
3:
285‐299,
1949.
|
256. |
Keen JE,
Khawaled R,
Farrens DL,
Neelands T,
Rivard A,
Bond CT,
Janowsky A,
Fakler B,
Adelman JP,
Maylie J.
Domains responsible for constitutive and Ca(2+)‐dependent interactions between calmodulin and small conductance Ca(2+)‐activated potassium channels.
J Neurosci
19:
8830‐8838,
1999.
|
257. |
Ketchum KA,
Joiner WJ,
Sellers AJ,
Kaczmarek LK,
Goldstein SA.
A new family of outwardly rectifying potassium channel proteins with two pore domains in tandem.
Nature
376:
690‐695,
1995.
|
258. |
Keynes RD,
Rojas E.
Kinetics and steady‐state properties of the charged system controlling sodium conductance in the squid giant axon.
J Physiol
239:
393‐434,
1974.
|
259. |
Kihira Y,
Hermanstyne TO,
Misonou H.
Formation of heteromeric Kv2 channels in mammalian brain neurons.
J Biol Chem
285:
15048‐15055.
|
260. |
Kim D.
Fatty acid‐sensitive two‐pore domain K+ channels.
Trends Pharmacol Sci
24:
648‐654,
2003.
|
261. |
Kim D,
Clapham DE.
Potassium channels in cardiac cells activated by arachidonic acid and phospholipids.
Science
244:
1174‐1176,
1989.
|
262. |
Kim D,
Fujita A,
Horio Y,
Kurachi Y.
Cloning and functional expression of a novel cardiac two‐pore background K+ channel (cTBAK‐1).
Circ Res
82:
513‐518,
1998.
|
263. |
Kim Y,
Bang H,
Kim D.
TASK‐3, a new member of the tandem pore K(+) channel family.
J Biol Chem
275:
9340‐9347,
2000.
|
264. |
Kim Y,
Gnatenco C,
Bang H,
Kim D.
Localization of TREK‐2 K+ channel domains that regulate channel kinetics and sensitivity to pressure, fatty acids and pHi.
Pflugers Arch
442:
952‐960,
2001.
|
265. |
Klement G,
Nilsson J,
Arhem P,
Elinder F.
A tyrosine substitution in the cavity wall of a k channel induces an inverted inactivation.
Biophys J
94:
3014‐3022,
2008.
|
266. |
Klemic KG,
Kirsch GE,
Jones SW.
U‐type inactivation of Kv3.1 and Shaker potassium channels.
Biophys J
81:
814‐826,
2001.
|
267. |
Knaus HG,
Folander K,
Garcia‐Calvo M,
Garcia ML,
Kaczorowski GJ,
Smith M,
Swanson R.
Primary sequence and immunological characterization of beta‐subunit of high conductance Ca(2+)‐activated K+ channel from smooth muscle.
J Biol Chem
269:
17274‐17278,
1994.
|
268. |
Knot HJ,
Zimmermann PA,
Nelson MT.
Extracellular K(+)‐induced hyperpolarizations and dilatations of rat coronary and cerebral arteries involve inward rectifier K(+) channels.
J Physiol
492(Pt 2):
419‐430,
1996.
|
269. |
Kobrinsky E,
Mirshahi T,
Zhang H,
Jin T,
Logothetis DE.
Receptor‐mediated hydrolysis of plasma membrane messenger PIP2 leads to K+‐current desensitization.
Nat Cell Biol
2:
507‐514,
2000.
|
270. |
Kofuji P,
Davidson N,
Lester HA.
Evidence that neuronal G‐protein‐gated inwardly rectifying K+ channels are activated by G beta gamma subunits and function as heteromultimers.
Proc Natl Acad Sci U S A
92:
6542‐6546,
1995.
|
271. |
Kohler M,
Hirschberg B,
Bond CT,
Kinzie JM,
Marrion NV,
Maylie J,
Adelman JP.
Small‐conductance, calcium‐activated potassium channels from mammalian brain.
Science
273:
1709‐1714,
1996.
|
272. |
Kole MH,
Ilschner SU,
Kampa BM,
Williams SR,
Ruben PC,
Stuart GJ.
Action potential generation requires a high sodium channel density in the axon initial segment.
Nat Neurosci
11:
178‐186,
2008.
|
273. |
Kollewe A,
Lau AY,
Sullivan A,
Roux B,
Goldstein SA.
A structural model for K2P potassium channels based on 23 pairs of interacting sites and continuum electrostatics.
J Gen Physiol
134:
53‐68,
2009.
|
274. |
Koval OM,
Fan Y,
Rothberg BS.
A role for the S0 transmembrane segment in voltage‐dependent gating of BK channels.
J Gen Physiol
129:
209‐220,
2007.
|
275. |
Koyrakh L,
Lujan R,
Colon J,
Karschin C,
Kurachi Y,
Karschin A,
Wickman K.
Molecular and cellular diversity of neuronal G‐protein‐gated potassium channels.
J Neurosci
25:
11468‐11478,
2005.
|
276. |
Krapivinsky G,
Gordon EA,
Wickman K,
Velimirovic B,
Krapivinsky L,
Clapham DE.
The G‐protein‐gated atrial K+ channel IKACh is a heteromultimer of two inwardly rectifying K(+)‐channel proteins.
Nature
374:
135‐141,
1995.
|
277. |
Krapivinsky G,
Medina I,
Eng L,
Krapivinsky L,
Yang Y,
Clapham DE.
A novel inward rectifier K+ channel with unique pore properties.
Neuron
20:
995‐1005,
1998.
|
278. |
Krepkiy D,
Mihailescu M,
Freites JA,
Schow EV,
Worcester DL,
Gawrisch K,
Tobias DJ,
White SH,
Swartz KJ.
Structure and hydration of membranes embedded with voltage‐sensing domains.
Nature
462:
473‐479,
2009.
|
279. |
Kreusch A,
Pfaffinger PJ,
Stevens CF,
Choe S.
Crystal structure of the tetramerization domain of the Shaker potassium channel.
Nature
392:
945‐948,
1998.
|
280. |
Kubo Y,
Adelman JP,
Clapham DE,
Jan LY,
Karschin A,
Kurachi Y,
Lazdunski M,
Nichols CG,
Seino S,
Vandenberg CA.
International Union of Pharmacology. LIV. Nomenclature and molecular relationships of inwardly rectifying potassium channels.
Pharmacol Rev
57:
509‐526,
2005.
|
281. |
Kubo Y,
Murata Y.
Control of rectification and permeation by two distinct sites after the second transmembrane region in Kir2.1 K+ channel.
J Physiol
531:
645‐660,
2001.
|
282. |
Kung C.
A possible unifying principle for mechanosensation.
Nature
436:
647‐654,
2005.
|
283. |
Kunkel MT,
Peralta EG.
Identification of domains conferring G protein regulation on inward rectifier potassium channels.
Cell
83:
443‐449,
1995.
|
284. |
Kuo A,
Gulbis JM,
Antcliff JF,
Rahman T,
Lowe ED,
Zimmer J,
Cuthbertson J,
Ashcroft FM,
Ezaki T,
Doyle DA.
Crystal structure of the potassium channel KirBac1.1 in the closed state.
Science
300:
1922‐1926,
2003.
|
285. |
Kurachi Y,
Ito H,
Sugimoto T,
Katada T,
Ui M.
Activation of atrial muscarinic K+ channels by low concentrations of beta gamma subunits of rat brain G protein.
Pflugers Arch
413:
325‐327,
1989.
|
286. |
Kurachi Y,
Nakajima T,
Sugimoto T.
On the mechanism of activation of muscarinic K+ channels by adenosine in isolated atrial cells: Involvement of GTP‐binding proteins.
Pflugers Arch
407:
264‐274,
1986.
|
287. |
Kurata HT,
Doerksen KW,
Eldstrom JR,
Rezazadeh S,
Fedida D.
Separation of P/C‐ and U‐type inactivation pathways in Kv1.5 potassium channels.
J Physiol
568:
31‐46,
2005.
|
288. |
Kwan HY,
Leung PC,
Huang Y,
Yao X.
Depletion of intracellular Ca2+ stores sensitizes the flow‐induced Ca2+ influx in rat endothelial cells.
Circ Res
92:
286‐292,
2003.
|
289. |
Lagrutta A,
Shen KZ,
North RA,
Adelman JP.
Functional differences among alternatively spliced variants of Slowpoke, a Drosophila calcium‐activated potassium channel.
J Biol Chem
269:
20347‐20351,
1994.
|
290. |
Lancaster B,
Nicoll RA.
Properties of two calcium‐activated hyperpolarizations in rat hippocampal neurones.
J Physiol
389:
187‐203,
1987.
|
291. |
Langer P,
Grunder S,
Rusch A.
Expression of Ca2+‐activated BK channel mRNA and its splice variants in the rat cochlea.
J Comp Neurol
455:
198‐209,
2003.
|
292. |
Larsen AP,
Bentzen BH,
Grunnet M.
Differential effects of Kv11.1 activators on Kv11.1a, Kv11.1b and Kv11.1a/Kv11.1b channels.
Br J Pharmacol
161:
614‐628,
2010.
|
293. |
Larsson HP,
Baker OS,
Dhillon DS,
Isacoff EY.
Transmembrane movement of the shaker K+ channel S4.
Neuron
16:
387‐397,
1996.
|
294. |
Larsson HP,
Elinder F.
A conserved glutamate is important for slow inactivation in K+ channels.
Neuron
27:
573‐583,
2000.
|
295. |
Latorre R,
Morera FJ,
Zaelzer C.
Allosteric interactions and the modular nature of the voltage‐ and Ca2+‐activated (BK) channel.
J Physiol
588:
3141‐3148,
2010.
|
296. |
Latorre R,
Vergara C,
Hidalgo C.
Reconstitution in planar lipid bilayers of a Ca2+‐dependent K +channel from transverse tubule membranes isolated from rabbit skeletal muscle.
Proc Natl Acad Sci U S A
79:
805‐809,
1982.
|
297. |
Ledoux J,
Werner ME,
Brayden JE,
Nelson MT.
Calcium‐activated potassium channels and the regulation of vascular tone.
Physiology (Bethesda)
21:
69‐78,
2006.
|
298. |
Lee K,
Dixon AK,
Richardson PJ,
Pinnock RD.
Glucose‐receptive neurones in the rat ventromedial hypothalamus express KATP channels composed of Kir6.1 and SUR1 subunits.
J Physiol
515(Pt 2):
439‐452,
1999.
|
299. |
Lee SY,
Banerjee A,
MacKinnon R.
Two separate interfaces between the voltage sensor and pore are required for the function of voltage‐dependent K(+) channels.
PLoS Biol
7:
e47,
2009.
|
300. |
Lee WS,
Ngo‐Anh TJ,
Bruening‐Wright A,
Maylie J,
Adelman JP.
Small conductance Ca2+‐activated K +channels and calmodulin: Cell surface expression and gating.
J Biol Chem
278:
25940‐25946,
2003.
|
301. |
Lei Q,
Talley EM,
Bayliss DA.
Receptor‐mediated inhibition of G protein‐coupled inwardly rectifying potassium channels involves G(alpha)q family subunits, phospholipase C, and a readily diffusible messenger.
J Biol Chem
276:
16720‐16730,
2001.
|
302. |
Leonoudakis D,
Gray AT,
Winegar BD,
Kindler CH,
Harada M,
Taylor DM,
Chavez RA,
Forsayeth JR,
Yost CS.
An open rectifier potassium channel with two pore domains in tandem cloned from rat cerebellum.
J Neurosci
18:
868‐877,
1998.
|
303. |
Lesage F,
Guillemare E,
Fink M,
Duprat F,
Heurteaux C,
Fosset M,
Romey G,
Barhanin J,
Lazdunski M.
Molecular properties of neuronal G‐protein‐activated inwardly rectifying K+ channels.
J Biol Chem
270:
28660‐28667,
1995.
|
304. |
Lesage F,
Guillemare E,
Fink M,
Duprat F,
Lazdunski M,
Romey G,
Barhanin J.
TWIK‐1, a ubiquitous human weakly inward rectifying K+ channel with a novel structure.
EMBO J
15:
1004‐1011,
1996.
|
305. |
Lesage F,
Lazdunski M.
Molecular and functional properties of two‐pore‐domain potassium channels.
Am J Physiol Renal Physiol
279:
F793‐F801,
2000.
|
306. |
Lesage F,
Reyes R,
Fink M,
Duprat F,
Guillemare E,
Lazdunski M.
Dimerization of TWIK‐1 K+ channel subunits via a disulfide bridge.
EMBO J
15:
6400‐6407,
1996.
|
307. |
Li‐Smerin Y,
Hackos DH,
Swartz KJ.
alpha‐helical structural elements within the voltage‐sensing domains of a K(+) channel.
J Gen Physiol
115:
33‐50,
2000.
|
308. |
Li M,
Jan YN,
Jan LY.
Specification of subunit assembly by the hydrophilic amino‐terminal domain of the Shaker potassium channel.
Science
257:
1225‐1230,
1992.
|
309. |
Li W,
Gao SB,
Lv CX,
Wu Y,
Guo ZH,
Ding JP,
Xu T.
Characterization of voltage‐and Ca2+‐activated K+ channels in rat dorsal root ganglion neurons.
J Cell Physiol
212:
348‐357,
2007.
|
310. |
Lichter‐Konecki U,
Mangin JM,
Gordish‐Dressman H,
Hoffman EP,
Gallo V.
Gene expression profiling of astrocytes from hyperammonemic mice reveals altered pathways for water and potassium homeostasis in vivo.
Glia
56:
365‐377,
2008.
|
311. |
Liman ER,
Tytgat J,
Hess P.
Subunit stoichiometry of a mammalian K+ channel determined by construction of multimeric cDNAs.
Neuron
9:
861‐871,
1992.
|
312. |
Liu G,
Zakharov SI,
Yang L,
Deng SX,
Landry DW,
Karlin A,
Marx SO.
Position and role of the BK channel alpha subunit S0 helix inferred from disulfide crosslinking.
J Gen Physiol
131:
537‐548,
2008.
|
313. |
Liu Y,
Holmgren M,
Jurman ME,
Yellen G.
Gated access to the pore of a voltage‐dependent K+ channel.
Neuron
19:
175‐184,
1997.
|
314. |
Lodge NJ,
Li YW.
Ion channels as potential targets for the treatment of depression.
Curr Opin Drug Discov Devel
11:
633‐641,
2008.
|
315. |
Logothetis DE,
Kurachi Y,
Galper J,
Neer EJ,
Clapham DE.
The beta gamma subunits of GTP‐binding proteins activate the muscarinic K+ channel in heart.
Nature
325:
321‐326,
1987.
|
316. |
Long SB,
Campbell EB,
Mackinnon R.
Crystal structure of a mammalian voltage‐dependent Shaker family K+ channel.
Science
309:
897‐903,
2005a.
|
317. |
Long SB,
Campbell EB,
Mackinnon R.
Voltage sensor of Kv1.2: Structural basis of electromechanical coupling.
Science
309:
903‐908,
2005b.
|
318. |
Long SB,
Tao X,
Campbell EB,
MacKinnon R.
Atomic structure of a voltage‐dependent K+ channel in a lipid membrane‐like environment.
Nature
450:
376‐382,
2007.
|
319. |
Lopatin AN,
Makhina EN,
Nichols CG.
Potassium channel block by cytoplasmic polyamines as the mechanism of intrinsic rectification.
Nature
372:
366‐369,
1994.
|
320. |
Lopatin AN,
Makhina EN,
Nichols CG.
The mechanism of inward rectification of potassium channels: “Long‐pore plugging” by cytoplasmic polyamines.
J Gen Physiol
106:
923‐955,
1995.
|
321. |
Lopatin AN,
Nichols CG.
[K+] dependence of open‐channel conductance in cloned inward rectifier potassium channels (IRK1, Kir2.1).
Biophys J
71:
682‐694,
1996.
|
322. |
Lopes CM,
Gallagher PG,
Buck ME,
Butler MH,
Goldstein SA.
Proton block and voltage gating are potassium‐dependent in the cardiac leak channel Kcnk3.
J Biol Chem
275:
16969‐16978,
2000.
|
323. |
Lopes CM,
Zhang H,
Rohacs T,
Jin T,
Yang J,
Logothetis DE.
Alterations in conserved Kir channel‐PIP2 interactions underlie channelopathies.
Neuron
34:
933‐944,
2002.
|
324. |
Lopez‐Barneo J,
Hoshi T,
Heinemann SH,
Aldrich RW.
Effects of external cations and mutations in the pore region on C‐type inactivation of Shaker potassium channels.
Receptors Channels
1:
61‐71,
1993.
|
325. |
Lu Z.
Mechanism of rectification in inward‐rectifier K+ channels.
Annu Rev Physiol
66:
103‐129,
2004.
|
326. |
Lu Z,
Klem AM,
Ramu Y.
Ion conduction pore is conserved among potassium channels.
Nature
413:
809‐813,
2001.
|
327. |
Lu Z,
Klem AM,
Ramu Y.
Coupling between voltage sensors and activation gate in voltage‐gated K +channels.
J Gen Physiol
120:
663‐676,
2002.
|
328. |
Lu Z,
MacKinnon R.
Electrostatic tuning of Mg2+ affinity in an inward‐rectifier K+ channel.
Nature
371:
243‐246,
1994.
|
329. |
Lu Z,
MacKinnon R.
Probing a potassium channel pore with an engineered protonatable site.
Biochemistry
34:
13133‐13138,
1995.
|
330. |
Lujan R,
Maylie J,
Adelman JP.
New sites of action for GIRK and SK channels.
Nat Rev Neurosci
10:
475‐480,
2009.
|
331. |
Luscher C,
Jan LY,
Stoffel M,
Malenka RC,
Nicoll RA.
G protein‐coupled inwardly rectifying K +channels (GIRKs) mediate postsynaptic but not presynaptic transmitter actions in hippocampal neurons.
Neuron
19:
687‐695,
1997.
|
332. |
Luscher C,
Slesinger PA.
Emerging roles for G protein‐gated inwardly rectifying potassium (GIRK) channels in health and disease.
Nat Rev Neurosci
11:
301‐315,
2010.
|
333. |
Lv C,
Chen M,
Gan G,
Wang L,
Xu T,
Ding J.
Four‐turn alpha‐helical segment prevents surface expression of the auxiliary hbeta2 subunit of BK‐type channel.
J Biol Chem
283:
2709‐2715,
2008.
|
334. |
Ma D,
Tang XD,
Rogers TB,
Welling PA.
An andersen‐Tawil syndrome mutation in Kir2.1 (V302M) alters the G‐loop cytoplasmic K+ conduction pathway.
J Biol Chem
282:
5781‐5789,
2007.
|
335. |
Ma M,
Koester J.
The role of K+ currents in frequency‐dependent spike broadening in Aplysia R20 neurons: A dynamic‐clamp analysis.
J Neurosci
16:
4089‐4101,
1996.
|
336. |
Ma Z,
Lou XJ,
Horrigan FT.
Role of charged residues in the S1‐S4 voltage sensor of BK channels.
J Gen Physiol
127:
309‐328,
2006.
|
337. |
MacKinnon R.
Determination of the subunit stoichiometry of a voltage‐activated potassium channel.
Nature
350:
232‐235,
1991.
|
338. |
Mackinnon R.
Structural biology. Membrane protein insertion and stability.
Science
307:
1425‐1426,
2005.
|
339. |
MacKinnon R,
Miller C.
Mutant potassium channels with altered binding of charybdotoxin, a pore‐blocking peptide inhibitor.
Science
245:
1382‐1385,
1989.
|
340. |
Magleby KL.
Gating mechanism of BK (Slo1) channels: So near, yet so far.
J Gen Physiol
121:
81‐96,
2003.
|
341. |
Maher BJ,
Mackinnon RL II,
Bai J,
Chapman ER,
Kelly PT.
Activation of postsynaptic Ca(2+) stores modulates glutamate receptor cycling in hippocampal neurons.
J Neurophysiol
93:
178‐188,
2005.
|
342. |
Maingret F,
Honore E,
Lazdunski M,
Patel AJ.
Molecular basis of the voltage‐dependent gating of TREK‐1, a mechano‐sensitive K(+) channel.
Biochem Biophys Res Commun
292:
339‐346,
2002.
|
343. |
Maingret F,
Lauritzen I,
Patel AJ,
Heurteaux C,
Reyes R,
Lesage F,
Lazdunski M,
Honore E.
TREK‐1 is a heat‐activated background K(+) channel.
EMBO J
19:
2483‐2491,
2000.
|
344. |
Maingret F,
Patel AJ,
Lesage F,
Lazdunski M,
Honore E.
Lysophospholipids open the two‐pore domain mechano‐gated K(+) channels TREK‐1 and TRAAK.
J Biol Chem
275:
10128‐10133,
2000.
|
345. |
Maingret F,
Patel AJ,
Lesage F,
Lazdunski M,
Honore E.
Mechano‐ or acid stimulation, two interactive modes of activation of the TREK‐1 potassium channel.
J Biol Chem
274:
26691‐26696,
1999.
|
346. |
Malin SA,
Nerbonne JM.
Delayed rectifier K+ currents, IK, are encoded by Kv2 alpha‐subunits and regulate tonic firing in mammalian sympathetic neurons.
J Neurosci
22:
10094‐10105,
2002.
|
347. |
Mao J,
Wang X,
Chen F,
Wang R,
Rojas A,
Shi Y,
Piao H,
Jiang C.
Molecular basis for the inhibition of G protein‐coupled inward rectifier K(+) channels by protein kinase C.
Proc Natl Acad Sci U S A
101:
1087‐1092,
2004.
|
348. |
Marcantoni A,
Vandael DH,
Mahapatra S,
Carabelli V,
Sinnegger‐Brauns MJ,
Striessnig J,
Carbone E.
Loss of Cav1.3 channels reveals the critical role of L‐type and BK channel coupling in pacemaking mouse adrenal chromaffin cells.
J Neurosci
30:
491‐504,
2010.
|
349. |
Marcotti W,
Johnson SL,
Kros CJ.
A transiently expressed SK current sustains and modulates action potential activity in immature mouse inner hair cells.
J Physiol
560:
691‐708,
2004.
|
350. |
Marcus DC,
Wu T,
Wangemann P,
Kofuji P.
KCNJ10 (Kir4.1) potassium channel knockout abolishes endocochlear potential.
Am J Physiol Cell Physiol
282:
C403‐C407,
2002.
|
351. |
Marrion NV,
Tavalin SJ.
Selective activation of Ca2+‐activated K+ channels by co‐localized Ca2 +channels in hippocampal neurons.
Nature
395:
900‐905,
1998.
|
352. |
Martin GE,
Hendrickson LM,
Penta KL,
Friesen RM,
Pietrzykowski AZ,
Tapper AR,
Treistman SN.
Identification of a BK channel auxiliary protein controlling molecular and behavioral tolerance to alcohol.
Proc Natl Acad Sci U S A
105:
17543‐17548,
2008.
|
353. |
Martina M,
Yao GL,
Bean BP.
Properties and functional role of voltage‐dependent potassium channels in dendrites of rat cerebellar Purkinje neurons.
J Neurosci
23:
5698‐5707,
2003.
|
354. |
Martinac B.
Mechanosensitive ion channels: Molecules of mechanotransduction.
J Cell Sci
117:
2449‐2460,
2004.
|
355. |
Martinez‐Lopez P,
Santi CM,
Trevino CL,
Ocampo‐Gutierrez AY,
Acevedo JJ,
Alisio A,
Salkoff LB,
Darszon A.
Mouse sperm K+ currents stimulated by pH and cAMP possibly coded by Slo3 channels.
Biochem Biophys Res Commun
381:
204‐209,
2009.
|
356. |
Marty A.
Ca‐dependent K channels with large unitary conductance in chromaffin cell membranes.
Nature
291:
497‐500,
1981.
|
357. |
Mathur R,
Zheng J,
Yan Y,
Sigworth FJ.
Role of the S3‐S4 linker in Shaker potassium channel activation.
J Gen Physiol
109:
191‐199,
1997.
|
358. |
Matsuda H,
Saigusa A,
Irisawa H.
Ohmic conductance through the inwardly rectifying K channel and blocking by internal Mg2+.
Nature
325:
156‐159,
1987.
|
359. |
Maylie J,
Bond CT,
Herson PS,
Lee WS,
Adelman JP.
Small conductance Ca2+‐activated K+ channels and calmodulin.
J Physiol
554:
255‐261,
2004.
|
360. |
McCobb DP,
Fowler NL,
Featherstone T,
Lingle CJ,
Saito M,
Krause JE,
Salkoff L.
A human calcium‐activated potassium channel gene expressed in vascular smooth muscle.
Am J Physiol
269:
H767‐H777,
1995.
|
361. |
McManus OB,
Blatz AL,
Magleby KL.
Inverse relationship of the durations of adjacent open and shut intervals for C1 and K channels.
Nature
317:
625‐627,
1985.
|
362. |
Medhurst AD,
Rennie G,
Chapman CG,
Meadows H,
Duckworth MD,
Kelsell RE,
Gloger, II,
Pangalos MN.
Distribution analysis of human two pore domain potassium channels in tissues of the central nervous system and periphery.
Brain Res Mol Brain Res
86:
101‐114,
2001.
|
363. |
Medina I,
Krapivinsky G,
Arnold S,
Kovoor P,
Krapivinsky L,
Clapham DE.
A switch mechanism for G beta gamma activation of I(KACh).
J Biol Chem
275:
29709‐29716,
2000.
|
364. |
Meera P,
Wallner M,
Song M,
Toro L.
Large conductance voltage‐ and calcium‐dependent K+ channel, a distinct member of voltage‐dependent ion channels with seven N‐terminal transmembrane segments (S0‐S6), an extracellular N terminus, and an intracellular (S9‐S10) C terminus.
Proc Natl Acad Sci U S A
94:
14066‐14071,
1997.
|
365. |
Meera P,
Wallner M,
Toro L.
A neuronal beta subunit (KCNMB4) makes the large conductance, voltage‐ and Ca2+‐activated K+ channel resistant to charybdotoxin and iberiotoxin.
Proc Natl Acad Sci U S A
97:
5562‐5567,
2000.
|
366. |
Mi H,
Deerinck TJ,
Jones M,
Ellisman MH,
Schwarz TL.
Inwardly rectifying K+ channels that may participate in K+ buffering are localized in microvilli of Schwann cells.
J Neurosci
16:
2421‐2429,
1996.
|
367. |
Mikhailov MV,
Campbell JD,
de Wet H,
Shimomura K,
Zadek B,
Collins RF,
Sansom MS,
Ford RC,
Ashcroft FM.
3‐D structural and functional characterization of the purified KATP channel complex Kir6.2‐SUR1.
EMBO J
24:
4166‐4175,
2005.
|
368. |
Miki T,
Liss B,
Minami K,
Shiuchi T,
Saraya A,
Kashima Y,
Horiuchi M,
Ashcroft F,
Minokoshi Y,
Roeper J,
Seino S.
ATP‐sensitive K+ channels in the hypothalamus are essential for the maintenance of glucose homeostasis.
Nat Neurosci
4:
507‐512,
2001.
|
369. |
Miller C.
See potassium run.
Nature
414:
23‐24,
2001.
|
370. |
Miller C,
Moczydlowski E,
Latorre R,
Phillips M.
Charybdotoxin, a protein inhibitor of single Ca2+‐activated K+ channels from mammalian skeletal muscle.
Nature
313:
316‐318,
1985.
|
371. |
Miranda‐Rottmann S,
Kozlov AS,
Hudspeth AJ.
Highly specific alternative splicing of transcripts encoding BK channels in the chicken's cochlea is a minor determinant of the tonotopic gradient.
Mol Cell Biol
30:
3646‐3660,
2010.
|
372. |
Mohapatra DP,
Park KS,
Trimmer JS.
Dynamic regulation of the voltage‐gated Kv2.1 potassium channel by multisite phosphorylation.
Biochem Soc Trans
35:
1064‐1068,
2007.
|
373. |
Molina A,
Castellano AG,
Lopez‐Barneo J.
Pore mutations in Shaker K+ channels distinguish between the sites of tetraethylammonium blockade and C‐type inactivation.
J Physiol
499(Pt 2):
361‐367,
1997.
|
374. |
Monaghan AS,
Benton DC,
Bahia PK,
Hosseini R,
Shah YA,
Haylett DG,
Moss GW.
The SK3 subunit of small conductance Ca2+‐activated K+ channels interacts with both SK1 and SK2 subunits in a heterologous expression system.
J Biol Chem
279:
1003‐1009,
2004.
|
375. |
Morais‐Cabral JH,
Zhou Y,
MacKinnon R.
Energetic optimization of ion conduction rate by the K+ selectivity filter.
Nature
414:
37‐42,
2001.
|
376. |
Morrow JP,
Zakharov SI,
Liu G,
Yang L,
Sok AJ,
Marx SO.
Defining the BK channel domains required for beta1‐subunit modulation.
Proc Natl Acad Sci U S A
103:
5096‐5101,
2006.
|
377. |
Moulton G,
Attwood TK,
Parry‐Smith DJ,
Packer JC.
Phylogenomic analysis and evolution of the potassium channel gene family.
Receptors Channels
9:
363‐377,
2003.
|
378. |
Mullins FM,
Stepanovic SZ,
Desai RR,
George AL Jr.,
Balser JR.
Extracellular sodium interacts with the HERG channel at an outer pore site.
J Gen Physiol
120:
517‐537,
2002.
|
379. |
Mullmann TJ,
Munujos P,
Garcia ML,
Giangiacomo KM.
Electrostatic mutations in iberiotoxin as a unique tool for probing the electrostatic structure of the maxi‐K channel outer vestibule.
Biochemistry
38:
2395‐2402,
1999.
|
380. |
Mullner C,
Vorobiov D,
Bera AK,
Uezono Y,
Yakubovich D,
Frohnwieser‐Steinecker B,
Dascal N,
Schreibmayer W.
Heterologous facilitation of G protein‐activated K(+) channels by beta‐adrenergic stimulation via cAMP‐dependent protein kinase.
J Gen Physiol
115:
547‐558,
2000.
|
381. |
Murakoshi H,
Trimmer JS.
Identification of the Kv2.1 K+ channel as a major component of the delayed rectifier K+ current in rat hippocampal neurons.
J Neurosci
19:
1728‐1735,
1999.
|
382. |
Murata Y,
Iwasaki H,
Sasaki M,
Inaba K,
Okamura Y.
Phosphoinositide phosphatase activity coupled to an intrinsic voltage sensor.
Nature
435:
1239‐1243,
2005.
|
383. |
Murthy SR,
Teodorescu G,
Nijholt IM,
Dolga AM,
Grissmer S,
Spiess J,
Blank T.
Identification and characterization of a novel, shorter isoform of the small conductance Ca2+‐activated K+ channel SK2.
J Neurochem
106:
2312‐2321,
2008.
|
384. |
Nanou E, El
Manira A.
A postsynaptic negative feedback mediated by coupling between AMPA receptors and Na+‐activated K+ channels in spinal cord neurones.
Eur J Neurosci
25:
445‐450,
2007.
|
385. |
Naranjo D,
Latorre R.
Ion conduction in substates of the batrachotoxin‐modified Na+ channel from toad skeletal muscle.
Biophys J
64:
1038‐1050,
1993.
|
386. |
Nassar‐Gentina V,
Pollard HB,
Rojas E.
Electrical activity in chromaffin cells of intact mouse adrenal gland.
Am J Physiol
254:
C675‐C683,
1988.
|
387. |
Navarro B,
Kirichok Y,
Clapham DE.
KSper, a pH‐sensitive K+ current that controls sperm membrane potential.
Proc Natl Acad Sci U S A
104:
7688‐7692,
2007.
|
388. |
Neusch C,
Papadopoulos N,
Muller M,
Maletzki I,
Winter SM,
Hirrlinger J,
Handschuh M,
Bahr M,
Richter DW,
Kirchhoff F,
Hulsmann S.
Lack of the Kir4.1 channel subunit abolishes K+ buffering properties of astrocytes in the ventral respiratory group: Impact on extracellular K+ regulation.
J Neurophysiol
95:
1843‐1852,
2006.
|
389. |
Newman EA.
Regional specialization of retinal glial cell membrane.
Nature
309:
155‐157,
1984.
|
390. |
Nichols CG,
Lederer WJ.
Adenosine triphosphate‐sensitive potassium channels in the cardiovascular system.
Am J Physiol
261:
H1675‐H1686,
1991.
|
391. |
Niemeyer MI,
Gonzalez‐Nilo FD,
Zuniga L,
Gonzalez W,
Cid LP,
Sepulveda FV.
Neutralization of a single arginine residue gates open a two‐pore domain, alkali‐activated K+ channel.
Proc Natl Acad Sci U S A
104:
666‐671,
2007.
|
392. |
Nimigean CM,
Magleby KL.
Functional coupling of the beta(1) subunit to the large conductance Ca(2+)‐activated K(+) channel in the absence of Ca(2+). Increased Ca(2+) sensitivity from a Ca(2+)‐independent mechanism.
J Gen Physiol
115:
719‐736,
2000.
|
393. |
Nin F,
Hibino H,
Doi K,
Suzuki T,
Hisa Y,
Kurachi Y.
The endocochlear potential depends on two K+ diffusion potentials and an electrical barrier in the stria vascularis of the inner ear.
Proc Natl Acad Sci U S A
105:
1751‐1756,
2008.
|
394. |
Nishida M,
Cadene M,
Chait BT,
MacKinnon R.
Crystal structure of a Kir3.1‐prokaryotic Kir channel chimera.
EMBO J
26:
4005‐4015,
2007.
|
395. |
Nishida M,
MacKinnon R.
Structural basis of inward rectification: Cytoplasmic pore of the G protein‐gated inward rectifier GIRK1 at 1.8 A resolution.
Cell
111:
957‐965,
2002.
|
396. |
Niu X,
Magleby KL.
Stepwise contribution of each subunit to the cooperative activation of BK channels by Ca2+.
Proc Natl Acad Sci U S A
99:
11441‐11446,
2002.
|
397. |
Niu X,
Qian X,
Magleby KL.
Linker‐gating ring complex as passive spring and Ca(2+)‐dependent machine for a voltage‐ and Ca(2+)‐activated potassium channel.
Neuron
42:
745‐756,
2004.
|
398. |
Noda M,
Shimizu S,
Tanabe T,
Takai T,
Kayano T,
Ikeda T,
Takahashi H,
Nakayama H,
Kanaoka Y,
Minamino N,
et al.
Primary structure of Electrophorus electricus sodium channel deduced from cDNA sequence.
Nature
312:
121‐127,
1984.
|
399. |
Noma A.
ATP‐regulated K+ channels in cardiac muscle.
Nature
305:
147‐148,
1983.
|
400. |
Nuwer MO,
Picchione KE,
Bhattacharjee A.
PKA‐induced internalization of slack KNa channels produces dorsal root ganglion neuron hyperexcitability.
J Neurosci
30:
14165‐14172,
2010.
|
401. |
Okamura Y.
Biodiversity of voltage sensor domain proteins.
Pflugers Arch
454:
361‐371,
2007.
|
402. |
Olcese R,
Latorre R,
Toro L,
Bezanilla F,
Stefani E.
Correlation between charge movement and ionic current during slow inactivation in Shaker K+ channels.
J Gen Physiol
110:
579‐589,
1997.
|
403. |
Olesen SP,
Munch E,
Moldt P,
Drejer J.
Selective activation of Ca(2+)‐dependent K+ channels by novel benzimidazolone.
Eur J Pharmacol
251:
53‐59,
1994.
|
404. |
Oliva C,
Gonzalez V,
Naranjo D.
Slow inactivation in voltage gated potassium channels is insensitive to the binding of pore occluding peptide toxins.
Biophys J
89:
1009‐1019,
2005.
|
405. |
Ordway RW,
Walsh JV Jr.,
Singer JJ.
Arachidonic acid and other fatty acids directly activate potassium channels in smooth muscle cells.
Science
244:
1176‐1179,
1989.
|
406. |
Orio P,
Latorre R.
Differential effects of beta 1 and beta 2 subunits on BK channel activity.
J Gen Physiol
125:
395‐411,
2005.
|
407. |
Orio P,
Rojas P,
Ferreira G,
Latorre R.
New disguises for an old channel: MaxiK channel beta‐subunits.
News Physiol Sci
17:
156‐161,
2002.
|
408. |
Ottschytsch N,
Raes A,
Van Hoorick D,
Snyders DJ.
Obligatory heterotetramerization of three previously uncharacterized Kv channel alpha‐subunits identified in the human genome.
Proc Natl Acad Sci U S A
99:
7986‐7991,
2002.
|
409. |
Pallotta BS,
Magleby KL,
Barrett JN.
Single channel recordings of Ca2+‐activated K+ currents in rat muscle cell culture.
Nature
293:
471‐474,
1981.
|
410. |
Pantazis A,
Gudzenko V,
Savalli N,
Sigg D,
Olcese R.
Operation of the voltage sensor of a human voltage‐ and Ca2+‐activated K+ channel.
Proc Natl Acad Sci U S A
107:
4459‐4464,
2010.
|
411. |
Pantazis A,
Kohanteb AP,
Olcese R.
Relative motion of transmembrane segments S0 and S4 during voltage sensor activation in the human BK(Ca) channel.
J Gen Physiol
136:
645‐657,
2010.
|
412. |
Papazian DM,
Schwarz TL,
Tempel BL,
Jan YN,
Jan LY.
Cloning of genomic and complementary DNA from Shaker, a putative potassium channel gene from Drosophila.
Science
237:
749‐753,
1987.
|
413. |
Pardo LA,
Suhmer W.
Eag1 as a cancer target.
Expert Opin Ther Targets
12:
837‐843,
2008.
|
414. |
Park CS,
Miller C.
Interaction of charybdotoxin with permeant ions inside the pore of a K+ channel.
Neuron
9:
307‐313,
1992a.
|
415. |
Park CS,
Miller C.
Mapping function to structure in a channel‐blocking peptide: Electrostatic mutants of charybdotoxin.
Biochemistry
31:
7749‐7755,
1992b.
|
416. |
Park YB.
Ion selectivity and gating of small conductance Ca(2+)‐activated K+ channels in cultured rat adrenal chromaffin cells.
J Physiol
481(Pt 3):
555‐570,
1994.
|
417. |
Patel AJ,
Honore E.
Molecular physiology of oxygen‐sensitive potassium channels.
Eur Respir J
18:
221‐227,
2001.
|
418. |
Patel AJ,
Honore E,
Maingret F,
Lesage F,
Fink M,
Duprat F,
Lazdunski M.
A mammalian two pore domain mechano‐gated S‐like K+ channel.
EMBO J
17:
4283‐4290,
1998.
|
419. |
Patel AJ,
Lazdunski M,
Honore E.
Lipid and mechano‐gated 2P domain K(+) channels.
Curr Opin Cell Biol
13:
422‐428,
2001.
|
420. |
Patel SP,
Campbell DL.
Transient outward potassium current, ‘Ito’, phenotypes in the mammalian left ventricle: Underlying molecular, cellular and biophysical mechanisms.
J Physiol
569:
7‐39,
2005.
|
421. |
Pearson WL,
Nichols CG.
Block of the Kir2.1 channel pore by alkylamine analogues of endogenous polyamines.
J Gen Physiol
112:
351‐363,
1998.
|
422. |
Pedarzani P,
Kulik A,
Muller M,
Ballanyi K,
Stocker M.
Molecular determinants of Ca2+‐dependent K+ channel function in rat dorsal vagal neurones.
J Physiol
527(Pt 2):
283‐290,
2000.
|
423. |
Pedarzani P,
Mosbacher J,
Rivard A,
Cingolani LA,
Oliver D,
Stocker M,
Adelman JP,
Fakler B.
Control of electrical activity in central neurons by modulating the gating of small conductance Ca2+‐activated K+ channels.
J Biol Chem
276:
9762‐9769,
2001.
|
424. |
Pedarzani P,
Stocker M.
Molecular and cellular basis of small–and intermediate‐conductance, calcium‐activated potassium channel function in the brain.
Cell Mol Life Sci
65:
3196‐3217,
2008.
|
425. |
Pegan S,
Arrabit C,
Zhou W,
Kwiatkowski W,
Collins A,
Slesinger PA,
Choe S.
Cytoplasmic domain structures of Kir2.1 and Kir3.1 show sites for modulating gating and rectification.
Nat Neurosci
8:
279‐287,
2005.
|
426. |
Peleg S,
Varon D,
Ivanina T,
Dessauer CW,
Dascal N.
G(alpha) (i) controls the gating of the G protein‐activated K(+) channel, GIRK.
Neuron
33:
87‐99,
2002.
|
427. |
Pennefather P,
Lancaster B,
Adams PR,
Nicoll RA.
Two distinct Ca‐dependent K currents in bullfrog sympathetic ganglion cells.
Proc Natl Acad Sci U S A
82:
3040‐3044,
1985.
|
428. |
Perez GJ,
Bonev AD,
Nelson MT.
Micromolar Ca(2+) from sparks activates Ca(2+)‐sensitive K(+) channels in rat cerebral artery smooth muscle.
Am J Physiol Cell Physiol
281:
C1769‐C1775,
2001.
|
429. |
Pessia M,
Imbrici P,
D'Adamo MC,
Salvatore L,
Tucker SJ.
Differential pH sensitivity of Kir4.1 and Kir4.2 potassium channels and their modulation by heteropolymerisation with Kir5.1.
J Physiol
532:
359‐367,
2001.
|
430. |
Plant LD,
Rajan S,
Goldstein SA.
K2P channels and their protein partners.
Curr Opin Neurobiol
15:
326‐333,
2005.
|
431. |
Pluger S,
Faulhaber J,
Furstenau M,
Lohn M,
Waldschutz R,
Gollasch M,
Haller H,
Luft FC,
Ehmke H,
Pongs O.
Mice with disrupted BK channel beta1 subunit gene feature abnormal Ca(2+) spark/STOC coupling and elevated blood pressure.
Circ Res
87:
E53‐E60,
2000.
|
432. |
Pluznick JL,
Wei P,
Carmines PK,
Sansom SC.
Renal fluid and electrolyte handling in BKCa‐beta1‐/‐ mice.
Am J Physiol Renal Physiol
284:
F1274‐F1279,
2003.
|
433. |
Posson DJ,
Ge P,
Miller C,
Bezanilla F,
Selvin PR.
Small vertical movement of a K+ channel voltage sensor measured with luminescence energy transfer.
Nature
436:
848‐851,
2005.
|
434. |
Power JM,
Sah P.
Competition between calcium‐activated K+ channels determines cholinergic action on firing properties of basolateral amygdala projection neurons.
J Neurosci
28:
3209‐3220,
2008.
|
435. |
Prakriya M,
Lingle CJ.
BK channel activation by brief depolarizations requires Ca2+ influx through L‐ and Q‐type Ca2+ channels in rat chromaffin cells.
J Neurophysiol
81:
2267‐2278,
1999.
|
436. |
Preisig‐Muller R,
Schlichthorl G,
Goerge T,
Heinen S,
Bruggemann A,
Rajan S,
Derst C,
Veh RW,
Daut J.
Heteromerization of Kir2.x potassium channels contributes to the phenotype of Andersen's syndrome.
Proc Natl Acad Sci U S A
99:
7774‐7779,
2002.
|
437. |
Prole DL,
Lima PA,
Marrion NV.
Mechanisms underlying modulation of neuronal KCNQ2/KCNQ3 potassium channels by extracellular protons.
J Gen Physiol
122:
775‐793,
2003.
|
438. |
Quirk JC,
Reinhart PH.
Identification of a novel tetramerization domain in large conductance K(ca) channels.
Neuron
32:
13‐23,
2001.
|
439. |
Rajan S,
Wischmeyer E,
Xin Liu G,
Preisig‐Muller R,
Daut J,
Karschin A,
Derst C.
TASK‐3, a novel tandem pore domain acid‐sensitive K+ channel. An extracellular histiding as pH sensor.
J Biol Chem
275:
16650‐16657,
2000.
|
440. |
Raman IM,
Bean BP.
Ionic currents underlying spontaneous action potentials in isolated cerebellar Purkinje neurons.
J Neurosci
19:
1663‐1674,
1999.
|
441. |
Ramanathan K,
Michael TH,
Jiang GJ,
Hiel H,
Fuchs PA.
A molecular mechanism for electrical tuning of cochlear hair cells.
Science
283:
215‐217,
1999.
|
442. |
Ramsey IS,
Moran MM,
Chong JA,
Clapham DE.
A voltage‐gated proton‐selective channel lacking the pore domain.
Nature
440:
1213‐1216,
2006.
|
443. |
Ramu Y,
Xu Y,
Lu Z.
Enzymatic activation of voltage‐gated potassium channels.
Nature
442:
696‐699,
2006.
|
444. |
Rangaraju S,
Chi V,
Pennington MW,
Chandy KG.
Kv1.3 potassium channels as a therapeutic target in multiple sclerosis.
Expert Opin Ther Targets
13:
909‐924,
2009.
|
445. |
Ravindran A,
Kwiecinski H,
Alvarez O,
Eisenman G,
Moczydlowski E.
Modeling ion permeation through batrachotoxin‐modified Na+ channels from rat skeletal muscle with a multi‐ion pore.
Biophys J
61:
494‐508,
1992.
|
446. |
Rettig J,
Heinemann SH,
Wunder F,
Lorra C,
Parcej DN,
Dolly JO,
Pongs O.
Inactivation properties of voltage‐gated K+ channels altered by presence of beta‐subunit.
Nature
369:
289‐294,
1994.
|
447. |
Riven I,
Kalmanzon E,
Segev L,
Reuveny E.
Conformational rearrangements associated with the gating of the G protein‐coupled potassium channel revealed by FRET microscopy.
Neuron
38:
225‐235,
2003.
|
448. |
Roberds SL,
Tamkun MM.
Cloning and tissue‐specific expression of five voltage‐gated potassium channel cDNAs expressed in rat heart.
Proc Natl Acad Sci U S A
88:
1798‐1802,
1991.
|
449. |
Robitaille R,
Charlton MP.
Presynaptic calcium signals and transmitter release are modulated by calcium‐activated potassium channels.
J Neurosci
12:
297‐305,
1992.
|
450. |
Romey G,
Hugues M,
Schmid‐Antomarchi H,
Lazdunski M.
Apamin: A specific toxin to study a class of Ca2+‐dependent K+ channels.
J Physiol (Paris)
79:
259‐264,
1984.
|
451. |
Rorsman P,
Bokvist K,
Ammala C,
Arkhammar P,
Berggren PO,
Larsson O,
Wahlander K.
Activation by adrenaline of a low‐conductance G protein‐dependent K+ channel in mouse pancreatic B cells.
Nature
349:
77‐79,
1991.
|
452. |
Rose CR,
Konnerth A.
NMDA receptor‐mediated Na+ signals in spines and dendrites.
J Neurosci
21:
4207‐4214,
2001.
|
453. |
Rosenblatt KP,
Sun ZP,
Heller S,
Hudspeth AJ.
Distribution of Ca2+‐activated K+ channel isoforms along the tonotopic gradient of the chicken's cochlea.
Neuron
19:
1061‐1075,
1997.
|
454. |
Rosenhouse‐Dantsker A,
Sui JL,
Zhao Q,
Rusinova R,
Rodriguez‐Menchaca AA,
Zhang Z,
Logothetis DE.
A sodium‐mediated structural switch that controls the sensitivity of Kir channels to PtdIns(4,5)P(2).
Nat Chem Biol
4:
624‐631,
2008.
|
455. |
Rothberg BS,
Magleby KL.
Gating kinetics of single large‐conductance Ca2+‐activated K+ channels in high Ca2+ suggest a two‐tiered allosteric gating mechanism.
J Gen Physiol
114:
93‐124,
1999.
|
456. |
Rothberg BS,
Magleby KL.
Voltage and Ca2+ activation of single large‐conductance Ca2+‐activated K +channels described by a two‐tiered allosteric gating mechanism.
J Gen Physiol
116:
75‐99,
2000.
|
457. |
Ruta V,
Chen J,
MacKinnon R.
Calibrated measurement of gating‐charge arginine displacement in the KvAP voltage‐dependent K+ channel.
Cell
123:
463‐475,
2005.
|
458. |
Ruta V,
MacKinnon R.
Localization of the voltage‐sensor toxin receptor on KvAP.
Biochemistry
43:
10071‐10079,
2004.
|
459. |
Sabbadini M,
Yost CS.
Molecular biology of background K channels: Insights from K(2P) knockout mice.
J Mol Biol
385:
1331‐1344,
2009.
|
460. |
Safronov BV,
Vogel W.
Properties and functions of Na(+)‐activated K+ channels in the soma of rat motoneurones.
J Physiol
497(Pt 3):
727‐734,
1996.
|
461. |
Sah P.
Role of calcium influx and buffering in the kinetics of Ca(2+)‐activated K+ current in rat vagal motoneurons.
J Neurophysiol
68:
2237‐2247,
1992.
|
462. |
Sah P.
Ca(2+)‐activated K+ currents in neurones: Types, physiological roles and modulation.
Trends Neurosci
19:
150‐154,
1996.
|
463. |
Sailer CA,
Hu H,
Kaufmann WA,
Trieb M,
Schwarzer C,
Storm JF,
Knaus HG.
Regional differences in distribution and functional expression of small‐conductance Ca2+‐activated K+ channels in rat brain.
J Neurosci
22:
9698‐9707,
2002.
|
464. |
Sailer CA,
Kaufmann WA,
Marksteiner J,
Knaus HG.
Comparative immunohistochemical distribution of three small‐conductance Ca2+‐activated potassium channel subunits, SK1, SK2, and SK3 in mouse brain.
Mol Cell Neurosci
26:
458‐469,
2004.
|
465. |
Sali A,
Blundell TL.
Comparative protein modelling by satisfaction of spatial restraints.
J Mol Biol
234:
779‐815,
1993.
|
466. |
Salkoff L,
Butler A,
Ferreira G,
Santi C,
Wei A.
High‐conductance potassium channels of the SLO family.
Nat Rev Neurosci
7:
921‐931,
2006.
|
467. |
Salkoff L,
Wei AD,
Baban B,
Butler A,
Fawcett G,
Ferreira G,
Santi CM.
Potassium channels in C. elegans.
WormBook
1‐15,
2005.
|
468. |
Sandoz G,
Thummler S,
Duprat F,
Feliciangeli S,
Vinh J,
Escoubas P,
Guy N,
Lazdunski M,
Lesage F.
AKAP150, a switch to convert mechano‐, pH‐ and arachidonic acid‐sensitive TREK K(+) channels into open leak channels.
EMBO J
25:
5864‐5872,
2006.
|
469. |
Sandtner W,
Szendroedi J,
Zarrabi T,
Zebedin E,
Hilber K,
Glaaser I,
Fozzard HA,
Dudley SC,
Todt H.
Lidocaine: A foot in the door of the inner vestibule prevents ultra‐slow inactivation of a voltage‐gated sodium channel.
Mol Pharmacol
66:
648‐657,
2004.
|
470. |
Sanguinetti MC,
Curran ME,
Zou A,
Shen J,
Spector PS,
Atkinson DL,
Keating MT.
Coassembly of K(V)LQT1 and minK (IsK) proteins to form cardiac I(Ks) potassium channel.
Nature
384:
80‐83,
1996.
|
471. |
Sanguinetti MC,
Jiang C,
Curran ME,
Keating MT.
A mechanistic link between an inherited and an acquired cardiac arrhythmia: HERG encodes the IKr potassium channel.
Cell
81:
299‐307,
1995.
|
472. |
Sano Y,
Mochizuki S,
Miyake A,
Kitada C,
Inamura K,
Yokoi H,
Nozawa K,
Matsushime H,
Furuichi K.
Molecular cloning and characterization of Kv6.3, a novel modulatory subunit for voltage‐gated K(+) channel Kv2.1.
FEBS Lett
512:
230‐234,
2002.
|
473. |
Santi CM,
Butler A,
Kuhn J,
Wei A,
Salkoff L.
Bovine and mouse SLO3 K+ channels: Evolutionary divergence points to an RCK1 region of critical function.
J Biol Chem
284:
21589‐21598,
2009.
|
474. |
Santi CM,
Ferreira G,
Yang B,
Gazula VR,
Butler A,
Wei A,
Kaczmarek LK,
Salkoff L.
Opposite regulation of Slick and Slack K+ channels by neuromodulators.
J Neurosci
26:
5059‐5068,
2006.
|
475. |
Santi CM,
Martinez‐Lopez P,
de la Vega‐Beltran JL,
Butler A,
Alisio A,
Darszon A,
Salkoff L.
The SLO3 sperm‐specific potassium channel plays a vital role in male fertility.
FEBS Lett
584:
1041‐1046,
2010.
|
476. |
Sasaki M,
Takagi M,
Okamura Y.
A voltage sensor‐domain protein is a voltage‐gated proton channel.
Science
312:
589‐592,
2006.
|
477. |
Sausbier U,
Sausbier M,
Sailer CA,
Arntz C,
Knaus HG,
Neuhuber W,
Ruth P.
Ca2+‐activated K+ channels of the BK‐type in the mouse brain.
Histochem Cell Biol
125:
725‐741,
2006.
|
478. |
Savalli N,
Kondratiev A,
Toro L,
Olcese R.
Voltage‐dependent conformational changes in human Ca(2+)‐ and voltage‐activated K(+) channel, revealed by voltage‐clamp fluorometry.
Proc Natl Acad Sci U S A
103:
12619‐12624,
2006.
|
479. |
Scanziani M.
GABA spillover activates postsynaptic GABA(B) receptors to control rhythmic hippocampal activity.
Neuron
25:
673‐681,
2000.
|
480. |
Scuvee‐Moreau J,
Boland A,
Graulich A,
Van Overmeire L,
D'Hoedt D,
Graulich‐Lorge F,
Thomas E,
Abras A,
Stocker M,
Liegeois JF,
Seutin V.
Electrophysiological characterization of the SK channel blockers methyl‐laudanosine and methyl‐noscapine in cell lines and rat brain slices.
Br J Pharmacol
143:
753‐764,
2004.
|
481. |
Schmidt D,
Jiang QX,
MacKinnon R.
Phospholipids and the origin of cationic gating charges in voltage sensors.
Nature
444:
775‐779,
2006.
|
482. |
Schoppa NE,
McCormack K,
Tanouye MA,
Sigworth FJ.
The size of gating charge in wild‐type and mutant Shaker potassium channels.
Science
255:
1712‐1715,
1992.
|
483. |
Schoppa NE,
Sigworth FJ.
Activation of Shaker potassium channels. III. An activation gating model for wild‐type and V2 mutant channels.
J Gen Physiol
111:
313‐342,
1998.
|
484. |
Schreiber M,
Wei A,
Yuan A,
Gaut J,
Saito M,
Salkoff L.
Slo3, a novel pH‐sensitive K+ channel from mammalian spermatocytes.
J Biol Chem
273:
3509‐3516,
1998.
|
485. |
Schrempf H,
Schmidt O,
Kummerlen R,
Hinnah S,
Muller D,
Betzler M,
Steinkamp T,
Wagner R.
A prokaryotic potassium ion channel with two predicted transmembrane segments from Streptomyces lividans.
EMBO J
14:
5170‐5178,
1995.
|
486. |
Schumacher MA,
Rivard AF,
Bachinger HP,
Adelman JP.
Structure of the gating domain of a Ca2+‐activated K+ channel complexed with Ca2+/calmodulin.
Nature
410:
1120‐1124,
2001.
|
487. |
Schwartzkroin PA,
Stafstrom CE.
Effects of EGTA on the calcium‐activated afterhyperpolarization in hippocampal CA3 pyramidal cells.
Science
210:
1125‐1126,
1980.
|
488. |
Schwindt PC,
Spain WJ,
Foehring RC,
Stafstrom CE,
Chubb MC,
Crill WE.
Multiple potassium conductances and their functions in neurons from cat sensorimotor cortex in vitro.
J Neurophysiol
59:
424‐449,
1988.
|
489. |
Semenova NP,
Abarca‐Heidemann K,
Loranc E,
Rothberg BS.
Bimane fluorescence scanning suggests secondary structure near the S3‐S4 linker of BK channels.
J Biol Chem
284:
10684‐10693,
2009.
|
490. |
Seoh SA,
Sigg D,
Papazian DM,
Bezanilla F.
Voltage‐sensing residues in the S2 and S4 segments of the Shaker K+ channel.
Neuron
16:
1159‐1167,
1996.
|
491. |
Seutin V,
Johnson SW.
Recent advances in the pharmacology of quaternary salts of bicuculline.
Trends Pharmacol Sci
20:
268‐270,
1999.
|
492. |
Shakkottai VG,
Regaya I,
Wulff H,
Fajloun Z,
Tomita H,
Fathallah M,
Cahalan MD,
Gargus JJ,
Sabatier JM,
Chandy KG.
Design and characterization of a highly selective peptide inhibitor of the small conductance calcium‐activated K+ channel, SkCa2.
J Biol Chem
276:
43145‐43151,
2001.
|
493. |
Shao LR,
Halvorsrud R,
Borg‐Graham L,
Storm JF.
The role of BK‐type Ca2+‐dependent K+ channels in spike broadening during repetitive firing in rat hippocampal pyramidal cells.
J Physiol
521(Pt 1):
135‐146,
1999.
|
494. |
Sharon D,
Vorobiov D,
Dascal N.
Positive and negative coupling of the metabotropic glutamate receptors to a G protein‐activated K+ channel, GIRK, in Xenopus oocytes.
J Gen Physiol
109:
477‐490,
1997.
|
495. |
Shen KZ,
Lagrutta A,
Davies NW,
Standen NB,
Adelman JP,
North RA.
Tetraethylammonium block of Slowpoke calcium‐activated potassium channels expressed in Xenopus oocytes: Evidence for tetrameric channel formation.
Pflugers Arch
426:
440‐445,
1994.
|
496. |
Shieh RC,
Chang JC,
Arreola J.
Interaction of Ba2+ with the pores of the cloned inward rectifier K+ channels Kir2.1 expressed in Xenopus oocytes.
Biophys J
75:
2313‐2322,
1998.
|
497. |
Shin HG,
Lu Z.
Mechanism of the voltage sensitivity of IRK1 inward‐rectifier K+ channel block by the polyamine spermine.
J Gen Physiol
125:
413‐426,
2005.
|
498. |
Shin KS,
Maertens C,
Proenza C,
Rothberg BS,
Yellen G.
Inactivation in HCN channels results from reclosure of the activation gate: Desensitization to voltage.
Neuron
41:
737‐744,
2004.
|
499. |
Shmukler BE,
Bond CT,
Wilhelm S,
Bruening‐Wright A,
Maylie J,
Adelman JP,
Alper SL.
Structure and complex transcription pattern of the mouse SK1 K(Ca) channel gene, KCNN1.
Biochi Biophys Acta
1518:
36‐46,
2001.
|
500. |
Shyng S,
Nichols CG.
Octameric stoichiometry of the KATP channel complex.
J Gen Physiol
110:
655‐664,
1997.
|
501. |
Sieg A,
Su J,
Munoz A,
Buchenau M,
Nakazaki M,
Aguilar‐Bryan L,
Bryan J,
Ullrich S.
Epinephrine‐induced hyperpolarization of islet cells without KATP channels.
Am J Physiol Endocrinol Metab
286:
E463‐E471,
2004.
|
502. |
Sigg D,
Bezanilla F.
Total charge movement per channel. The relation between gating charge displacement and the voltage sensitivity of activation.
J Gen Physiol
109:
27‐39,
1997.
|
503. |
Signorini S,
Liao YJ,
Duncan SA,
Jan LY,
Stoffel M.
Normal cerebellar development but susceptibility to seizures in mice lacking G protein‐coupled, inwardly rectifying K+ channel GIRK2.
Proc Natl Acad Sci U S A
94:
923‐927,
1997.
|
504. |
Slesinger PA,
Reuveny E,
Jan YN,
Jan LY.
Identification of structural elements involved in G protein gating of the GIRK1 potassium channel.
Neuron
15:
1145‐1156,
1995.
|
505. |
Smith PA,
Bokvist K,
Arkhammar P,
Berggren PO,
Rorsman P.
Delayed rectifying and calcium‐activated K+ channels and their significance for action potential repolarization in mouse pancreatic beta‐cells.
J Gen Physiol
95:
1041‐1059,
1990.
|
506. |
Soh H,
Park CS.
Inwardly rectifying current‐voltage relationship of small‐conductance Ca2+‐activated K+ channels rendered by intracellular divalent cation blockade.
Biophys J
80:
2207‐2215,
2001.
|
507. |
Soh H,
Park CS.
Localization of divalent cation‐binding site in the pore of a small conductance Ca(2+)‐activated K(+) channel and its role in determining current‐voltage relationship.
Biophys J
83:
2528‐2538,
2002.
|
508. |
Solaro CR,
Prakriya M,
Ding JP,
Lingle CJ.
Inactivating and noninactivating Ca(2+)‐ and voltage‐dependent K+ current in rat adrenal chromaffin cells.
J Neurosci
15:
6110‐6123,
1995.
|
509. |
Stackman RW,
Hammond RS,
Linardatos E,
Gerlach A,
Maylie J,
Adelman JP,
Tzounopoulos T.
Small conductance Ca2+‐activated K+ channels modulate synaptic plasticity and memory encoding.
J Neurosci
22:
10163‐10171,
2002.
|
510. |
Stanfield PR,
Davies NW,
Shelton PA,
Sutcliffe MJ,
Khan IA,
Brammar WJ,
Conley EC.
A single aspartate residue is involved in both intrinsic gating and blockage by Mg2+ of the inward rectifier, IRK1.
J Physiol
478(Pt 1):
1‐6,
1994.
|
511. |
Starace DM,
Bezanilla F.
Histidine scanning mutagenesis of basic residues of the S4 segment of the shaker k+ channel.
J Gen Physiol
117:
469‐490,
2001.
|
512. |
Starace DM,
Bezanilla F.
A proton pore in a potassium channel voltage sensor reveals a focused electric field.
Nature
427:
548‐553,
2004.
|
513. |
Starace DM,
Stefani E,
Bezanilla F.
Voltage‐dependent proton transport by the voltage sensor of the Shaker K+ channel.
Neuron
19:
1319‐1327,
1997.
|
514. |
Stefani E,
Ottolia M,
Noceti F,
Olcese R,
Wallner M,
Latorre R,
Toro L.
Voltage‐controlled gating in a large conductance Ca2+‐sensitive K+channel (hslo).
Proc Natl Acad Sci U S A
94:
5427‐5431,
1997.
|
515. |
Stocker M,
Hirzel K,
D'Hoedt D,
Pedarzani P.
Matching molecules to function: Neuronal Ca2+‐activated K+ channels and afterhyperpolarizations.
Toxicon
43:
933‐949,
2004.
|
516. |
Stocker M,
Krause M,
Pedarzani P.
An apamin‐sensitive Ca2+‐activated K+ current in hippocampal pyramidal neurons.
Proc Natl Acad Sci U S A
96:
4662‐4667,
1999.
|
517. |
Storm JF.
Action potential repolarization and a fast after‐hyperpolarization in rat hippocampal pyramidal cells.
J Physiol
385:
733‐759,
1987.
|
518. |
Strassmaier T,
Bond CT,
Sailer CA,
Knaus HG,
Maylie J,
Adelman JP.
A novel isoform of SK2 assembles with other SK subunits in mouse brain.
J Biol Chem
280:
21231‐21236,
2005.
|
519. |
Strobaek D,
Hougaard C,
Johansen TH,
Sorensen US,
Nielsen EO,
Nielsen KS,
Taylor RD,
Pedarzani P,
Christophersen P.
Inhibitory gating modulation of small conductance Ca2+‐activated K+ channels by the synthetic compound (R)‐N‐(benzimidazol‐2‐yl)‐1,2,3,4‐tetrahydro‐1‐naphtylamine (NS8593) reduces afterhyperpolarizing current in hippocampal CA1 neurons.
Mol Pharmacol
70:
1771‐1782,
2006.
|
520. |
Sui JL,
Chan KW,
Logothetis DE.
Na+ activation of the muscarinic K+ channel by a G‐protein‐independent mechanism.
J Gen Physiol
108:
381‐391,
1996.
|
521. |
Sui JL,
Petit‐Jacques J,
Logothetis DE.
Activation of the atrial KACh channel by the betagamma subunits of G proteins or intracellular Na+ ions depends on the presence of phosphatidylinositol phosphates.
Proc Natl Acad Sci U S A
95:
1307‐1312,
1998.
|
522. |
Swanson WJ,
Vacquier VD.
The rapid evolution of reproductive proteins.
Nat Rev Genet
3:
137‐144,
2002.
|
523. |
Swartz KJ.
Towards a structural view of gating in potassium channels.
Nat Rev Neurosci
5:
905‐916,
2004.
|
524. |
Swartz KJ.
Sensing voltage across lipid membranes.
Nature
456:
891‐897,
2008.
|
525. |
Swartz KJ,
MacKinnon R.
An inhibitor of the Kv2.1 potassium channel isolated from the venom of a Chilean tarantula.
Neuron
15:
941‐949,
1995.
|
526. |
Sweet TB,
Cox DH.
Measuring the influence of the BKCa {beta}1 subunit on Ca2+ binding to the BKCa channel.
J Gen Physiol
133:
139‐150,
2009.
|
527. |
Swensen AM,
Bean BP.
Ionic mechanisms of burst firing in dissociated Purkinje neurons.
J Neurosci
23:
9650‐9663,
2003.
|
528. |
Taglialatela M,
Wible BA,
Caporaso R,
Brown AM.
Specification of pore properties by the carboxyl terminus of inwardly rectifying K+ channels.
Science
264:
844‐847,
1994.
|
529. |
Takano K,
Yasufuku‐Takano J,
Kozasa T,
Singer WD,
Nakajima S,
Nakajima Y.
Gq/11 and PLC‐beta 1 mediate the substance P‐induced inhibition of an inward rectifier K+ channel in brain neurons.
J Neurophysiol
76:
2131‐2136,
1996.
|
530. |
Takano M,
Kuratomi S.
Regulation of cardiac inwardly rectifying potassium channels by membrane lipid metabolism.
Prog Biophys Mol Biol
81:
67‐79,
2003.
|
531. |
Takeuchi S,
Ando M,
Kakigi A.
Mechanism generating endocochlear potential: Role played by intermediate cells in stria vascularis.
Biophys J
79:
2572‐2582,
2000.
|
532. |
Talukder G,
Aldrich RW.
Complex voltage‐dependent behavior of single unliganded calcium‐sensitive potassium channels.
Biophys J
78:
761‐772,
2000.
|
533. |
Talley EM,
Lei Q,
Sirois JE,
Bayliss DA.
TASK‐1, a two‐pore domain K+ channel, is modulated by multiple neurotransmitters in motoneurons.
Neuron
25:
399‐410,
2000.
|
534. |
Talley EM,
Solorzano G,
Lei Q,
Kim D,
Bayliss DA.
Cns distribution of members of the two‐pore‐domain (KCNK) potassium channel family.
J Neurosci
21:
7491‐7505,
2001.
|
535. |
Tamsett TJ,
Picchione KE,
Bhattacharjee A.
NAD+ activates KNa channels in dorsal root ganglion neurons.
J Neurosci
29:
5127‐5134,
2009.
|
536. |
Tanemoto M,
Kittaka N,
Inanobe A,
Kurachi Y.
In vivo formation of a proton‐sensitive K+ channel by heteromeric subunit assembly of Kir5.
1 with Kir4.1.
J Physiol
525(Pt 3):
587‐592,
2000.
|
537. |
Tang QY,
Zhang Z,
Xia XM,
Lingle CJ.
Block of mouse Slo1 and Slo3 K +channels by CTX, IbTX, TEA, 4‐AP and quinidine.
Channels (Austin)
4:
22‐41,
2010.
|
538. |
Tang X,
Schmidt TM,
Perez‐Leighton CE,
Kofuji P.
Inwardly rectifying potassium channel Kir4.1 is responsible for the native inward potassium conductance of satellite glial cells in sensory ganglia.
Neuroscience
166:
397‐407,
2010.
|
539. |
Tao X,
Avalos JL,
Chen J,
MacKinnon R.
Crystal structure of the eukaryotic strong inward‐rectifier K+ channel Kir2.2 at 3.1 A resolution.
Science
326:
1668‐1674,
2009.
|
540. |
Tiwari‐Woodruff SK,
Lin MA,
Schulteis CT,
Papazian DM.
Voltage‐dependent structural interactions in the Shaker K(+) channel.
J Gen Physiol
115:
123‐138,
2000.
|
541. |
Tiwari‐Woodruff SK,
Schulteis CT,
Mock AF,
Papazian DM.
Electrostatic interactions between transmembrane segments mediate folding of Shaker K+ channel subunits.
Biophys J
72:
1489‐1500,
1997.
|
542. |
Tombola F,
Pathak MM,
Gorostiza P,
Isacoff EY.
The twisted ion‐permeation pathway of a resting voltage‐sensing domain.
Nature
445:
546‐549,
2007.
|
543. |
Tombola F,
Pathak MM,
Isacoff EY.
Voltage‐sensing arginines in a potassium channel permeate and occlude cation‐selective pores.
Neuron
45:
379‐388,
2005.
|
544. |
Tomita H,
Shakkottai VG,
Gutman GA,
Sun G,
Bunney WE,
Cahalan MD,
Chandy KG,
Gargus JJ.
Novel truncated isoform of SK3 potassium channel is a potent dominant‐negative regulator of SK currents: Implications in schizophrenia.
Mol Psychiatry
8:
524‐535,
2003.
|
545. |
Topert C,
Doring F,
Wischmeyer E,
Karschin C,
Brockhaus J,
Ballanyi K,
Derst C,
Karschin A.
Kir2.4: A novel K+ inward rectifier channel associated with motoneurons of cranial nerve nuclei.
J Neurosci
18:
4096‐4105,
1998.
|
546. |
Toro L,
Wallner M,
Meera P,
Tanaka Y.
Maxi‐K(Ca), a unique member of the voltage‐gated K channel superfamily.
News Physiol Sci
13:
112‐117,
1998.
|
547. |
Torres YP,
Morera FJ,
Carvacho I,
Latorre R.
A marriage of convenience: Beta‐subunits and voltage‐dependent K+ channels.
J Biol Chem
282:
24485‐24489,
2007.
|
548. |
Treistman SN,
Martin GE.
BK Channels: Mediators and models for alcohol tolerance.
Trends Neurosci
32:
629‐637,
2009.
|
549. |
Treptow W,
Tarek M.
Environment of the gating charges in the Kv1.2 Shaker potassium channel.
Biophys J
90:
L64‐L66,
2006.
|
550. |
Trimmer JS.
Immunological identification and characterization of a delayed rectifier K +channel polypeptide in rat brain.
Proc Natl Acad Sci U S A
88:
10764‐10768,
1991.
|
551. |
Tristani‐Firouzi M,
Jensen JL,
Donaldson MR,
Sansone V,
Meola G,
Hahn A,
Bendahhou S,
Kwiecinski H,
Fidzianska A,
Plaster N,
Fu YH,
Ptacek LJ,
Tawil R.
Functional and clinical characterization of KCNJ2 mutations associated with LQT7 (Andersen syndrome).
J Clin Invest
110:
381‐388,
2002.
|
552. |
Tsaur ML,
Sheng M,
Lowenstein DH,
Jan YN,
Jan LY.
Differential expression of K+ channel mRNAs in the rat brain and down‐regulation in the hippocampus following seizures.
Neuron
8:
1055‐1067,
1992.
|
553. |
Tseng‐Crank J,
Foster CD,
Krause JD,
Mertz R,
Godinot N,
DiChiara TJ,
Reinhart PH.
Cloning, expression, and distribution of functionally distinct Ca(2+)‐activated K+ channel isoforms from human brain.
Neuron
13:
1315‐1330,
1994.
|
554. |
Tzounopoulos T,
Stackman R.
Enhancing synaptic plasticity and memory: A role for small‐conductance Ca(2+)‐activated K+ channels.
Neuroscientist
9:
434‐439,
2003.
|
555. |
Uebele VN,
Lagrutta A,
Wade T,
Figueroa DJ,
Liu Y,
McKenna E,
Austin CP,
Bennett PB,
Swanson R.
Cloning and functional expression of two families of beta‐subunits of the large conductance calcium‐activated K+ channel.
J Biol Chem
275:
23211‐23218,
2000.
|
556. |
Valverde MA,
Rojas P,
Amigo J,
Cosmelli D,
Orio P,
Bahamonde MI,
Mann GE,
Vergara C,
Latorre R.
Acute activation of Maxi‐K channels (hSlo) by estradiol binding to the beta subunit.
Science
285:
1929‐1931,
1999.
|
557. |
Vanderberg C.
Inward rectification in a potassium channel in cardiac ventricular cells depends on internal magnesium ions.
Proc Natl Acad Sci U S A
84:
307‐320,
1987.
|
558. |
Vergara C,
Moczydlowski E,
Latorre R.
Conduction, blockade and gating in a Ca‐activated K channel incorporated into planar lipid bilayers.
Biophys J
45:
73‐76,
1984.
|
559. |
Villalba‐Galea CA,
Miceli F,
Taglialatela M,
Bezanilla F.
Coupling between the voltage‐sensing and phosphatase domains of Ci‐VSP.
J Gen Physiol
134:
5‐14,
2009.
|
560. |
Villalba‐Galea CA,
Sandtner W,
Starace DM,
Bezanilla F.
S4‐based voltage sensors have three major conformations.
Proc Natl Acad Sci U S A
105:
17600‐17607,
2008.
|
561. |
Walter JT,
Alvina K,
Womack MD,
Chevez C,
Khodakhah K.
Decreases in the precision of Purkinje cell pacemaking cause cerebellar dysfunction and ataxia.
Nat Neurosci
9:
389‐397,
2006.
|
562. |
Wallen P,
Robertson B,
Cangiano L,
Low P,
Bhattacharjee A,
Kaczmarek LK,
Grillner S.
Sodium‐dependent potassium channels of a Slack‐like subtype contribute to the slow afterhyperpolarization in lamprey spinal neurons.
J Physiol
585:
75‐90,
2007.
|
563. |
Wallner M,
Meera P,
Toro L.
Molecular basis of fast inactivation in voltage and Ca2+‐activated K +channels: A transmembrane beta‐subunit homolog.
Proc Natl Acad Sci U S A
96:
4137‐4142,
1999.
|
564. |
Wang B,
Rothberg BS,
Brenner R.
Mechanism of beta4 subunit modulation of BK channels.
J Gen Physiol
127:
449‐465,
2006.
|
565. |
Wang L,
Sigworth FJ.
Structure of the BK potassium channel in a lipid membrane from electron cryomicroscopy.
Nature
461:
292‐295,
2009.
|
566. |
Wang WH,
Giebisch G.
Regulation of potassium (K) handling in the renal collecting duct.
Pflugers Arch
458:
157‐168,
2009.
|
567. |
Wang X,
Xu R,
Abernathey G,
Taylor J,
Alzghoul MB,
Hannon K,
Hockerman GH,
Pond AL.
Kv11.1 channel subunit composition includes MinK and varies developmentally in mouse cardiac muscle.
Dev Dyn
237:
2430‐2437,
2008.
|
568. |
Weatherall KL,
Goodchild SJ,
Jane DE,
Marrion NV.
Small conductance calcium‐activated potassium channels: From structure to function.
Prog Neurobiol
91:
242‐255,
2010.
|
569. |
Wei AD,
Gutman GA,
Aldrich R,
Chandy KG,
Grissmer S,
Wulff H.
International Union of Pharmacology. LII. Nomenclature and molecular relationships of calcium‐activated potassium channels.
Pharmacol Rev
57:
463‐472,
2005.
|
570. |
Wei DS,
Mei YA,
Bagal A,
Kao JP,
Thompson SM,
Tang CM.
Compartmentalized and binary behavior of terminal dendrites in hippocampal pyramidal neurons.
Science
293:
2272‐2275,
2001.
|
571. |
Wellman GC,
Bevan JA.
Barium inhibits the endothelium‐dependent component of flow but not acetylcholine‐induced relaxation in isolated rabbit cerebral arteries.
J Pharmacol Exp Ther
274:
47‐53,
1995.
|
572. |
White MM,
Bezanilla F.
Activation of squid axon K+ channels. Ionic and gating current studies.
J Gen Physiol
85:
539‐554,
1985.
|
573. |
Wible BA,
Taglialatela M,
Ficker E,
Brown AM.
Gating of inwardly rectifying K+ channels localized to a single negatively charged residue.
Nature
371:
246‐249,
1994.
|
574. |
Wickman K,
Clapham DE.
Ion channel regulation by G proteins.
Physiol Rev
75:
865‐885,
1995.
|
575. |
Wittekindt OH,
Dreker T,
Morris‐Rosendahl DJ,
Lehmann‐Horn F,
Grissmer S.
A novel non‐neuronal hSK3 isoform with a dominant‐negative effect on hSK3 currents.
Cell Physiol Biochem
14:
23‐30,
2004.
|
576. |
Wolfart J,
Neuhoff H,
Franz O,
Roeper J.
Differential expression of the small‐conductance, calcium‐activated potassium channel SK3 is critical for pacemaker control in dopaminergic midbrain neurons.
J Neurosci
21:
3443‐3456,
2001.
|
577. |
Wolfart J,
Roeper J.
Selective coupling of T‐type calcium channels to SK potassium channels prevents intrinsic bursting in dopaminergic midbrain neurons.
J Neurosci
22:
3404‐3413,
2002.
|
578. |
Womack M,
Khodakhah K.
Active contribution of dendrites to the tonic and trimodal patterns of activity in cerebellar Purkinje neurons.
J Neurosci
22:
10603‐10612,
2002.
|
579. |
Womack MD,
Chevez C,
Khodakhah K.
Calcium‐activated potassium channels are selectively coupled to P/Q‐type calcium channels in cerebellar Purkinje neurons.
J Neurosci
24:
8818‐8822,
2004.
|
580. |
Womack MD,
Khodakhah K.
Somatic and dendritic small‐conductance calcium‐activated potassium channels regulate the output of cerebellar Purkinje neurons.
J Neurosci
23:
2600‐2607,
2003.
|
581. |
Woodhull AM.
Ionic blockage of sodium channels in nerve.
J Gen Physiol
61:
687‐708,
1973.
|
582. |
Wu RS,
Marx SO.
The BK potassium channel in the vascular smooth muscle and kidney: Alpha‐ and beta‐subunits.
Kidney Int
78:
963‐974,
2010.
|
583. |
Wu Y,
Yang Y,
Ye S,
Jiang Y.
Structure of the gating ring from the human large‐conductance Ca(2+)‐gated K(+) channel.
Nature
466:
393‐397,
2010.
|
584. |
Wynne PM,
Puig SI,
Martin GE,
Treistman SN.
Compartmentalized beta subunit distribution determines characteristics and ethanol sensitivity of somatic, dendritic, and terminal large‐conductance calcium‐activated potassium channels in the rat central nervous system.
J Pharmacol Exp Ther
329:
978‐986,
2009.
|
585. |
Xia XM,
Ding JP,
Lingle CJ.
Molecular basis for the inactivation of Ca2+‐ and voltage‐dependent BK channels in adrenal chromaffin cells and rat insulinoma tumor cells.
J Neurosci
19:
5255‐5264,
1999.
|
586. |
Xia XM,
Ding JP,
Lingle CJ.
Inactivation of BK channels by the NH2 terminus of the beta2 auxiliary subunit: An essential role of a terminal peptide segment of three hydrophobic residues.
J Gen Physiol
121:
125‐148,
2003.
|
587. |
Xia XM,
Ding JP,
Zeng XH,
Duan KL,
Lingle CJ.
Rectification and rapid activation at low Ca2 +of Ca2+‐activated, voltage‐dependent BK currents: Consequences of rapid inactivation by a novel beta subunit.
J Neurosci
20:
4890‐4903,
2000.
|
588. |
Xia XM,
Fakler B,
Rivard A,
Wayman G,
Johnson‐Pais T,
Keen JE,
Ishii T,
Hirschberg B,
Bond CT,
Lutsenko S,
Maylie J,
Adelman JP.
Mechanism of calcium gating in small‐conductance calcium‐activated potassium channels.
Nature
395:
503‐507,
1998.
|
589. |
Xia XM,
Zeng X,
Lingle CJ.
Multiple regulatory sites in large‐conductance calcium‐activated potassium channels.
Nature
418:
880‐884,
2002.
|
590. |
Xia XM,
Zhang X,
Lingle CJ.
Ligand‐dependent activation of Slo family channels is defined by interchangeable cytosolic domains.
J Neurosci
24:
5585‐5591,
2004.
|
591. |
Xie J,
McCobb DP.
Control of alternative splicing of potassium channels by stress hormones.
Science
280:
443‐446,
1998.
|
592. |
Xu W,
Liu Y,
Wang S,
McDonald T,
Van Eyk JE,
Sidor A,
O'Rourke B.
Cytoprotective role of Ca2+‐ activated K+ channels in the cardiac inner mitochondrial membrane.
Science
298:
1029‐1033,
2002.
|
593. |
Xu Y,
Ramu Y,
Lu Z.
Removal of phospho‐head groups of membrane lipids immobilizes voltage sensors of K+ channels.
Nature
451:
826‐829,
2008.
|
594. |
Xu Y,
Shin HG,
Szep S,
Lu Z.
Physical determinants of strong voltage sensitivity of K(+) channel block.
Nat Struct Mol Biol
16:
1252‐1258,
2009.
|
595. |
Yang B,
Gribkoff VK,
Pan J,
Damagnez V,
Dworetzky SI,
Boissard CG,
Bhattacharjee A,
Yan Y,
Sigworth FJ,
Kaczmarek LK.
Pharmacological activation and inhibition of Slack (Slo2.2) channels.
Neuropharmacology
51:
896‐906,
2006.
|
596. |
Yang CT,
Zeng XH,
Xia XM,
Lingle CJ.
Interactions between beta subunits of the KCNMB family and Slo3: Beta4 selectively modulates Slo3 expression and function.
PLoS One
4:
e6135,
2009.
|
597. |
Yang H,
Shi J,
Zhang G,
Yang J,
Delaloye K,
Cui J.
Activation of Slo1 BK channels by Mg2+ coordinated between the voltage sensor and RCK1 domains.
Nat Struct Mol Biol
15:
1152‐1159,
2008.
|
598. |
Yang J,
Jan YN,
Jan LY.
Control of rectification and permeation by residues in two distinct domains in an inward rectifier K+ channel.
Neuron
14:
1047‐1054,
1995.
|
599. |
Yang J,
Krishnamoorthy G,
Saxena A,
Zhang G,
Shi J,
Yang H,
Delaloye K,
Sept D,
Cui J.
An epilepsy/dyskinesia‐associated mutation enhances BK channel activation by potentiating Ca2+ sensing.
Neuron
66:
871‐883,
2010.
|
600. |
Yang N,
George AL Jr.,
Horn R.
Molecular basis of charge movement in voltage‐gated sodium channels.
Neuron
16:
113‐122,
1996.
|
601. |
Ye S,
Li Y,
Chen L,
Jiang Y.
Crystal structures of a ligand‐free MthK gating ring: Insights into the ligand gating mechanism of K+ channels.
Cell
126:
1161‐1173,
2006.
|
602. |
Ye X,
Fukushima N,
Kingsbury MA,
Chun J.
Lysophosphatidic acid in neural signaling.
Neuroreport
13:
2169‐2175,
2002.
|
603. |
Yellen G.
The moving parts of voltage‐gated ion channels.
Q Rev Biophys
31:
239‐295,
1998.
|
604. |
Yoshimoto Y,
Fukuyama Y,
Horio Y,
Inanobe A,
Gotoh M,
Kurachi Y.
Somatostatin induces hyperpolarization in pancreatic islet alpha cells by activating a G protein‐gated K+ channel.
FEBS Lett
444:
265‐269,
1999.
|
605. |
Yuan A,
Dourado M,
Butler A,
Walton N,
Wei A,
Salkoff L.
SLO‐2, a K+ channel with an unusual Cl‐ dependence.
Nat Neurosci
3:
771‐779,
2000.
|
606. |
Yuan A,
Santi CM,
Wei A,
Wang ZW,
Pollak K,
Nonet M,
Kaczmarek L,
Crowder CM,
Salkoff L.
The sodium‐activated potassium channel is encoded by a member of the Slo gene family.
Neuron
37:
765‐773,
2003.
|
607. |
Yuan P,
Leonetti MD,
Pico AR,
Hsiung Y,
Mackinnon R.
Structure of the Human BK Channel Ca2+‐Activation Apparatus at 3.0 A Resolution.
Science
329:
182‐186,
2010.
|
608. |
Yuill KH,
Stansfeld PJ,
Ashmole I,
Sutcliffe MJ,
Stanfield PR.
The selectivity, voltage‐dependence and acid sensitivity of the tandem pore potassium channel TASK‐1: Contributions of the pore domains.
Pflugers Arch
455:
333‐348,
2007.
|
609. |
Yusaf SP,
Wray D,
Sivaprasadarao A.
Measurement of the movement of the S4 segment during the activation of a voltage‐gated potassium channel.
Pflugers Arch
433:
91‐97,
1996.
|
610. |
Yusifov T,
Savalli N,
Gandhi CS,
Ottolia M,
Olcese R.
The RCK2 domain of the human BKCa channel is a calcium sensor.
Proc Natl Acad Sci U S A
105:
376‐381,
2008.
|
611. |
Zagha E,
Manita S,
Ross WN,
Rudy B.
Dendritic Kv3.3 potassium channels in cerebellar purkinje cells regulate generation and spatial dynamics of dendritic Ca2+ spikes.
J Neurophysiol
103:
3516‐3525.
|
612. |
Zagotta WN,
Hoshi T,
Aldrich RW.
Restoration of inactivation in mutants of Shaker potassium channels by a peptide derived from ShB.
Science
250:
568‐571,
1990.
|
613. |
Zagotta WN,
Hoshi T,
Aldrich RW.
Shaker potassium channel gating. III: Evaluation of kinetic models for activation.
J Gen Physiol
103:
321‐362,
1994.
|
614. |
Zagotta WN,
Hoshi T,
Dittman J,
Aldrich RW.
Shaker potassium channel gating. II: Transitions in the activation pathway.
J Gen Physiol
103:
279‐319,
1994.
|
615. |
Zarei MM,
Song M,
Wilson RJ,
Cox N,
Colom LV,
Knaus HG,
Stefani E,
Toro L.
Endocytic trafficking signals in KCNMB2 regulate surface expression of a large conductance voltage and Ca(2+)‐activated K+ channel.
Neuroscience
147:
80‐89,
2007.
|
616. |
Zarei MM,
Zhu N,
Alioua A,
Eghbali M,
Stefani E,
Toro L.
A novel MaxiK splice variant exhibits dominant‐negative properties for surface expression.
J Biol Chem
276:
16232‐16239,
2001.
|
617. |
Zaritsky JJ,
Redell JB,
Tempel BL,
Schwarz TL.
The consequences of disrupting cardiac inwardly rectifying K(+) current (I(K1)) as revealed by the targeted deletion of the murine Kir2.1 and Kir2.2 genes.
J Physiol
533:
697‐710,
2001.
|
618. |
Zawar C,
Plant TD,
Schirra C,
Konnerth A,
Neumcke B.
Cell‐type specific expression of ATP‐sensitive potassium channels in the rat hippocampus.
J Physiol
514(Pt 2):
327‐341,
1999.
|
619. |
Zeng XH,
Xia XM,
Lingle CJ.
Redox‐sensitive extracellular gates formed by auxiliary beta subunits of calcium‐activated potassium channels.
Nat Struct Biol
10:
448‐454,
2003.
|
620. |
Zeng XH,
Xia XM,
Lingle CJ.
Divalent cation sensitivity of BK channel activation supports the existence of three distinct binding sites.
J Gen Physiol
125:
273‐286,
2005.
|
621. |
Zhang BM,
Kohli V,
Adachi R,
Lopez JA,
Udden MM,
Sullivan R.
Calmodulin binding to the C‐terminus of the small‐conductance Ca2+‐activated K+ channel hSK1 is affected by alternative splicing.
Biochemistry
40:
3189‐3195,
2001.
|
622. |
Zhang G,
Huang SY,
Yang J,
Shi J,
Yang X,
Moller A,
Zou X,
Cui J.
Ion sensing in the RCK1 domain of BK channels.
Proc Natl Acad Sci U S A
107:
18700‐18705,
2010.
|
623. |
Zhang PC,
Keleshian AM,
Sachs F.
Voltage‐induced membrane movement.
Nature
413:
428‐432,
2001.
|
624. |
Zhang X,
Bertaso F,
Yoo JW,
Baumgartel K,
Clancy SM,
Lee V,
Cienfuegos C,
Wilmot C,
Avis J,
Hunyh T,
Daguia C,
Schmedt C,
Noebels J,
Jegla T.
Deletion of the potassium channel Kv12.2 causes hippocampal hyperexcitability and epilepsy.
Nat Neurosci
13:
1056‐1058.
|
625. |
Zhang X,
Zeng X,
Lingle CJ.
Slo3 K+ channels: Voltage and pH dependence of macroscopic currents.
J Gen Physiol
128:
317‐336,
2006.
|
626. |
Zhang Y,
Gao F,
Popov VL,
Wen JW,
Hamill OP.
Mechanically gated channel activity in cytoskeleton‐deficient plasma membrane blebs and vesicles from Xenopus oocytes.
J Physiol
523(Pt 1):
117‐130,
2000.
|
627. |
Zheng J,
Sigworth FJ.
Intermediate conductances during deactivation of heteromultimeric Shaker potassium channels.
J Gen Physiol
112:
457‐474,
1998.
|
628. |
Zhou Y,
MacKinnon R.
The occupancy of ions in the K+ selectivity filter: Charge balance and coupling of ion binding to a protein conformational change underlie high conduction rates.
J Mol Biol
333:
965‐975,
2003.
|
629. |
Zhou Y,
Morais‐Cabral JH,
Kaufman A,
MacKinnon R.
Chemistry of ion coordination and hydration revealed by a K+ channel‐Fab complex at 2.0 A resolution.
Nature
414:
43‐48,
2001.
|
630. |
Zhou Z,
Misler S.
Action potential‐induced quantal secretion of catecholamines from rat adrenal chromaffin cells.
J Biol Chem
270:
3498‐3505,
1995.
|
631. |
Zilberberg N,
Ilan N,
Goldstein SA.
KCNKO: Opening and closing the 2‐P‐domain potassium leak channel entails “C‐type” gating of the outer pore.
Neuron
32:
635‐648,
2001.
|
632. |
Zingman LV,
Hodgson DM,
Bast PH,
Kane GC,
Perez‐Terzic C,
Gumina RJ,
Pucar D,
Bienengraeber M,
Dzeja PP,
Miki T,
Seino S,
Alekseev AE,
Terzic A.
Kir6.2 is required for adaptation to stress.
Proc Natl Acad Sci U S A
99:
13278‐13283,
2002.
|
633. |
Zobel C,
Cho HC,
Nguyen TT,
Pekhletski R,
Diaz RJ,
Wilson GJ,
Backx PH.
Molecular dissection of the inward rectifier potassium current (IK1) in rabbit cardiomyocytes: Evidence for heteromeric co‐assembly of Kir2.1 and Kir2.2.
J Physiol
550:
365‐372,
2003.
|
634. |
Zou A,
Lin Z,
Humble M,
Creech CD,
Wagoner PK,
Krafte D,
Jegla TJ,
Wickenden AD.
Distribution and functional properties of human KCNH8 (Elk1) potassium channels.
Am J Physiol Cell Physiol
285:
C1356‐C1366,
2003.
|