Comprehensive Physiology Wiley Online Library

Respiratory Muscle Plasticity

Full Article on Wiley Online Library



Abstract

Muscle plasticity is defined as the ability of a given muscle to alter its structural and functional properties in accordance with the environmental conditions imposed on it. As such, respiratory muscle is in a constant state of remodeling, and the basis of muscle's plasticity is its ability to change protein expression and resultant protein balance in response to varying environmental conditions. Here, we will describe the changes of respiratory muscle imposed by extrinsic changes in mechanical load, activity, and innervation. Although there is a large body of literature on the structural and functional plasticity of respiratory muscles, we are only beginning to understand the molecular‐scale protein changes that contribute to protein balance. We will give an overview of key mechanisms regulating protein synthesis and protein degradation, as well as the complex interactions between them. We suggest future application of a systems biology approach that would develop a mathematical model of protein balance and greatly improve treatments in a variety of clinical settings related to maintaining both muscle mass and optimal contractile function of respiratory muscles. © 2012 American Physiological Society. Compr Physiol 2:1441‐1462, 2012.

Comprehensive Physiology offers downloadable PowerPoint presentations of figures for non-profit, educational use, provided the content is not modified and full credit is given to the author and publication.

Download a PowerPoint presentation of all images


Figure 1. Figure 1.

Transmission electron micrograph of a skeletal muscle sarcomere. The Z‐disc defines the boundary of the sarcomere. The striations are formed by the highly organized arrangement of thick and thin filaments. Scale bar represents 500 nm.

Figure 2. Figure 2.

Four different types of motor units—slow‐twitch, fatigue resistant (type S), fast‐twitch, fatigue resistant (type FR), fast‐twitch, fatigue intermediate (type FInt), and fast‐twitch, fatigable (type FF)—are classified based on contractile and fatigue properties of innervated muscle fibers (MyHCSlow, MyHC2A, MyHC2X, and MyHC2B). The speed of contraction varies between the motor units. Modified from Mantilla and Sieck 148, with permission.

Figure 3. Figure 3.

Motor unit recruitment model in the rat diaphragm muscle during ventilatory and nonventilatory behaviors, based on a model developed previously in cats and hamsters by Sieck and Fournier 240. Motor units are recruited in a specific order (type S → type FR → type FInt → type FF) to accomplish the required forces. From Mantilla et al. 147, with permission.

Figure 4. Figure 4.

Comparison of experimental models (SH, DNV, and TTX) for the study of activity‐induced diaphragm muscle plasticity. Adapted from Mantilla and Sieck 148, with permission.

Figure 5. Figure 5.

Cross‐sectional area (CSA) adaptations to 14 days of inactivity induced by spinal hemisection (SH), unilateral denervation (DNV), or tetrodotoxin (TTX) nerve block, among fibers expressing different MyHC isoforms. Mean and SE of the fiber CSA are plotted according to fiber type. * shows values significantly different from the control group (P < 0.05 for all comparisons). Adapted from Miyata et al. 161, with permission.

Figure 6. Figure 6.

DNV‐induced change in rat diaphragm muscle net protein balance as determined by performing parallel but separate incubations of strips from the same diaphragm muscle for protein‐synthesis and protein‐degradation measurements. Mean and SE of the percent change relative to sham controls are plotted over time after DNV. * shows values significantly different from the sham control group at the same DNV time‐point, † shows values significantly different from 1 and 3 days after DNV, and # shows values significantly different from 5 days after DNV (P < 0.05 for all comparisons). Figure adapted from Argadine et al. 3, with permission.

Figure 7. Figure 7.

Simplified model of signaling pathways regulating protein synthesis and degradation. Arrows denote activating events, whereas perpendicular lines denote inhibitory events. The solid lines indicate direct activation. The dashed lines indicate indirect activation, whereby intermediate steps are involved but are not specified in this schematic. Protein synthesis is regulated by protein kinase B (Akt), p44/42 MAPK (ERK), and AMP‐activated protein kinase (AMPK), resulting in activation of the downstream targets mammalian target of rapamycin (mTOR), glycogen synthase kinase‐3β (GSK3β), MAPK‐interacting kinases 1/2 (MNK1/2), p70S6 kinase (p70S6K), eIF4E‐binding protein 1 (4EBP1), and eukaryotic initiation factors 2B and 4E (eIF2B and eIF4E). Conversely, Akt is responsible for the phosphorylation status of forkhead box protein (FoxO). Upon phosphorylation by Akt, FoxO leaves the nucleus and becomes inactive, thus preventing protein degradation. If Akt activity is suppressed, FoxO becomes dephosphorylated, translocates to the nucleus, and exerts its transcriptional effects on atrogenes to induce protein degradation through the ubiquitin‐proteasome pathway. Figure from Argadine et al. 4, with permission.

Figure 8. Figure 8.

Steps in a systems biology approach. The first two steps use data to identify components and interactions to generate a reconstruction. The last steps generate a mathematical model to predict network behavior.



Figure 1.

Transmission electron micrograph of a skeletal muscle sarcomere. The Z‐disc defines the boundary of the sarcomere. The striations are formed by the highly organized arrangement of thick and thin filaments. Scale bar represents 500 nm.



Figure 2.

Four different types of motor units—slow‐twitch, fatigue resistant (type S), fast‐twitch, fatigue resistant (type FR), fast‐twitch, fatigue intermediate (type FInt), and fast‐twitch, fatigable (type FF)—are classified based on contractile and fatigue properties of innervated muscle fibers (MyHCSlow, MyHC2A, MyHC2X, and MyHC2B). The speed of contraction varies between the motor units. Modified from Mantilla and Sieck 148, with permission.



Figure 3.

Motor unit recruitment model in the rat diaphragm muscle during ventilatory and nonventilatory behaviors, based on a model developed previously in cats and hamsters by Sieck and Fournier 240. Motor units are recruited in a specific order (type S → type FR → type FInt → type FF) to accomplish the required forces. From Mantilla et al. 147, with permission.



Figure 4.

Comparison of experimental models (SH, DNV, and TTX) for the study of activity‐induced diaphragm muscle plasticity. Adapted from Mantilla and Sieck 148, with permission.



Figure 5.

Cross‐sectional area (CSA) adaptations to 14 days of inactivity induced by spinal hemisection (SH), unilateral denervation (DNV), or tetrodotoxin (TTX) nerve block, among fibers expressing different MyHC isoforms. Mean and SE of the fiber CSA are plotted according to fiber type. * shows values significantly different from the control group (P < 0.05 for all comparisons). Adapted from Miyata et al. 161, with permission.



Figure 6.

DNV‐induced change in rat diaphragm muscle net protein balance as determined by performing parallel but separate incubations of strips from the same diaphragm muscle for protein‐synthesis and protein‐degradation measurements. Mean and SE of the percent change relative to sham controls are plotted over time after DNV. * shows values significantly different from the sham control group at the same DNV time‐point, † shows values significantly different from 1 and 3 days after DNV, and # shows values significantly different from 5 days after DNV (P < 0.05 for all comparisons). Figure adapted from Argadine et al. 3, with permission.



Figure 7.

Simplified model of signaling pathways regulating protein synthesis and degradation. Arrows denote activating events, whereas perpendicular lines denote inhibitory events. The solid lines indicate direct activation. The dashed lines indicate indirect activation, whereby intermediate steps are involved but are not specified in this schematic. Protein synthesis is regulated by protein kinase B (Akt), p44/42 MAPK (ERK), and AMP‐activated protein kinase (AMPK), resulting in activation of the downstream targets mammalian target of rapamycin (mTOR), glycogen synthase kinase‐3β (GSK3β), MAPK‐interacting kinases 1/2 (MNK1/2), p70S6 kinase (p70S6K), eIF4E‐binding protein 1 (4EBP1), and eukaryotic initiation factors 2B and 4E (eIF2B and eIF4E). Conversely, Akt is responsible for the phosphorylation status of forkhead box protein (FoxO). Upon phosphorylation by Akt, FoxO leaves the nucleus and becomes inactive, thus preventing protein degradation. If Akt activity is suppressed, FoxO becomes dephosphorylated, translocates to the nucleus, and exerts its transcriptional effects on atrogenes to induce protein degradation through the ubiquitin‐proteasome pathway. Figure from Argadine et al. 4, with permission.



Figure 8.

Steps in a systems biology approach. The first two steps use data to identify components and interactions to generate a reconstruction. The last steps generate a mathematical model to predict network behavior.

References
 1. Allen DL , Monke SR , Talmadge RJ , Roy RR , Edgerton VR . Plasticity of myonuclear number in hypertrophied and atrophied mammalian skeletal muscle fibers. J Appl Physiol 78: 1969‐1976, 1995.
 2. Aravamudan B , Mantilla CB , Zhan WZ , Sieck GC . Denervation effects on myonuclear domain size of rat diaphragm fibers. J Appl Physiol 100: 1617‐1622, 2006.
 3. Argadine HM , Hellyer NJ , Mantilla CB , Zhan WZ , Sieck GC . The effect of denervation on protein synthesis and degradation in adult rat diaphragm muscle. J Appl Physiol 107: 438‐444, 2009.
 4. Argadine HM , Mantilla CB , Zhan WZ , Sieck GC . Intracellular signaling pathways regulating net protein balance following diaphragm muscle denervation. Am J Physiol Cell Physiol 300: C318‐C327, 2011.
 5. Baar K , Esser K . Phosphorylation of p70(S6k) correlates with increased skeletal muscle mass following resistance exercise. Am J Physiol 276: C120‐127, 1999.
 6. Baldwin KM , and Haddad F . Effects of different activity and inactivity paradigms on myosin heavy chain gene expression in striated muscle. J Appl Physiol 90: 345‐357, 2001.
 7. Bamman MM , Shipp JR , Jiang J , Gower BA , Hunter GR , Goodman A , McLafferty CL, Jr , Urban RJ . Mechanical load increases muscle IGF‐I and androgen receptor mRNA concentrations in humans. Am J Physiol Endocrinol Metab 280: E383‐390, 2001.
 8. Barnard RJ , Edgerton VR , Furukawa T , Peter JB . Histochemical, biochemical, and contractile properties of red, white, and intermediate fibers. Am J Physiol 220: 410‐414, 1971.
 9. Baumeister W , Walz J , Zuhl F , Seemuller E . The proteasome: Paradigm of a self‐compartmentalizing protease. Cell 92: 367‐380, 1998.
 10. Beehler BC , Sleph PG , Benmassaoud L , Grover GJ . Reduction of skeletal muscle atrophy by a proteasome inhibitor in a rat model of denervation. Exp Biol Med (Maywood) 231: 335‐341, 2006.
 11. Benard G , Karbowski M . Mitochondrial fusion and division: Regulation and role in cell viability. Semin Cell Dev Biol 20: 365‐374, 2009.
 12. Biggs WH , III , Cavenee WK , Arden KC . Identification and characterization of members of the FKHR (FOX O) subclass of winged‐helix transcription factors in the mouse. Mamm Genome 12: 416‐425, 2001.
 13. Biggs WH , III , Meisenhelder J , Hunter T , Cavenee WK , Arden KC . Protein kinase B/Akt‐mediated phosphorylation promotes nuclear exclusion of the winged helix transcription factor FKHR1. Proc Natl Acad Sci U S A 96: 7421‐7426, 1999.
 14. Bisschop A , Gayan‐Ramirez G , Rollier H , Gosselink R , Dom R , de Bock V , Decramer M . Intermittent inspiratory muscle training induces fiber hypertrophy in rat diaphragm. Am J Respir Crit Care Med 155: 1583‐1589, 1997.
 15. Blaauw B , Canato M , Agatea L , Toniolo L , Mammucari C , Masiero E , Abraham R , Sandri M , Schiaffino S , Reggiani C . Inducible activation of Akt increases skeletal muscle mass and force without satellite cell activation. FASEB J 23: 3896‐3905, 2009.
 16. Bodine SC , Latres E , Baumhueter S , Lai VK , Nunez L , Clarke BA , Poueymirou WT , Panaro FJ , Na E , Dharmarajan K , Pan ZQ , Valenzuela DM , DeChiara TM , Stitt TN , Yancopoulos GD , Glass DJ . Identification of ubiquitin ligases required for skeletal muscle atrophy. Science 294: 1704‐1708, 2001.
 17. Bodine SC , Stitt TN , Gonzalez M , Kline WO , Stover GL , Bauerlein R , Zlotchenko E , Scrimgeour A , Lawrence JC , Glass DJ , Yancopoulos GD . Akt/mTOR pathway is a crucial regulator of skeletal muscle hypertrophy and can prevent muscle atrophy in vivo. Nat Cell Biol 3: 1014‐1019, 2001.
 18. Bolster DR , Crozier SJ , Kimball SR , Jefferson LS . AMP‐activated protein kinase suppresses protein synthesis in rat skeletal muscle through down‐regulated mammalian target of rapamycin (mTOR) signaling. J Biol Chem 277: 23977‐23980, 2002.
 19. Booth FW , Criswell DS . Molecular events underlying skeletal muscle atrophy and the development of effective countermeasures. Int J Sports Med 18(Suppl 4): S265‐S269, 1997.
 20. Bray JJ , Harris AJ . Dissociation between nerve‐muscle transmission and nerve trophic effects on rat diaphragm using type D botulinum toxin. J Physiol 253: 53‐77, 1975.
 21. Brooke MH , Kaiser KK . Muscle fiber types: How many and what kind? Arch Neurol 23: 369‐379, 1970.
 22. Brunet A , Bonni A , Zigmond MJ , Lin MZ , Juo P , Hu LS , Anderson MJ , Arden KC , Blenis J , Greenberg ME . Akt promotes cell survival by phosphorylating and inhibiting a Forkhead transcription factor. Cell 96: 857‐868, 1999.
 23. Brunn GJ , Hudson CC , Sekulic A , Williams JM , Hosoi H , Houghton PJ , Lawrence JC, Jr , Abraham RT . Phosphorylation of the translational repressor PHAS‐I by the mammalian target of rapamycin. Science 277: 99‐101, 1997.
 24. Buller AJ , Eccles JC , Eccles RM . Interactions between motoneurones and muscles in respect of the characteristic speeds of responses. J Physiol 150: 417‐439, 1960.
 25. Buller AJ , Kean AJC , Ranatunga KW . The force‐velocity characteristics of cat fast and slow‐twitch skeletal muscle following cross‐innervation. J Physiol 213: 66P‐67P, 1971.
 26. Buller AJ , Mommaerts WF , Seraydarian K . Enzymic properties of myosin in fast and slow twitch muscles of the cat following cross‐innervation. J Physiol 205: 581‐597, 1969.
 27. Burke RE . Motor units: Anatomy, physiology and functional organization. In: Peachey LD , editor. Handbook of Physiology: The Nervous System, Motor Control. Bethesda, MD: The American Physiological Society, 1981, p. 345‐422.
 28. Burke RE , Fleshman JW , Glenn LL , Lev‐Tov A , O'Donovan MJ , Pinter MJ . An HRP study of the relation between cell size and motor unit type in cat ankle extensor motoneurons. J Comp Neurol 209: 17‐28, 1982.
 29. Burke RE , Levine DN , Tsairis P , Zajac FE, III . Physiological types and histochemical profiles in motor units of the cat gastrocnemius. J Physiol 234: 723‐748, 1973.
 30. Burke RE , Levine DN , Zajac FE, III . Mammalian motor units: Physiological‐histochemical correlation in three types in cat gastrocnemius. Science 174: 709‐712, 1971.
 31. Burnham R , Martin T , Stein R , Bell G , MacLean I , Steadward R . Skeletal muscle fibre type transformation following spinal cord injury. Spinal Cord 35: 86‐91, 1997.
 32. Cai D , Frantz JD , Tawa NE, Jr , Melendez PA , Oh BC , Lidov HG , Hasselgren PO , Frontera WR , Lee J , Glass DJ , Shoelson SE . IKKbeta/NF‐kappaB activation causes severe muscle wasting in mice. Cell 119: 285‐298, 2004.
 33. Caiozzo VJ , Haddad F , Baker MJ , Herrick RE , Prietto N , Baldwin KM g. Microgravity‐induced transformations of myosin isoforms and contractile properties of skeletal muscle. J Appl Physiol 81: 123‐132, 1996.
 34. Campos GE , Luecke TJ , Wendeln HK , Toma K , Hagerman FC , Murray TF , Ragg KE , Ratamess NA , Kraemer WJ , Staron RS . Muscular adaptations in response to three different resistance‐training regimens: Specificity of repetition maximum training zones. Eur J Appl Physiol 88: 50‐60, 2002.
 35. Chen J . Novel regulatory mechanisms of mTOR signaling. Curr Top Microbiol Immunol 279: 245‐257, 2004.
 36. Citri A , Skaria KB , Yarden Y . The deaf and the dumb: The biology of ErbB‐2 and ErbB‐3. Exp Cell Res 284: 54‐65, 2003.
 37. Clarke BA , Drujan D , Willis MS , Murphy LO , Corpina RA , Burova E , Rakhilin SV , Stitt TN , Patterson C , Latres E , Glass DJ . The E3 Ligase MuRF1 degrades myosin heavy chain protein in dexamethasone‐treated skeletal muscle. Cell Metab 6: 376‐385, 2007.
 38. Coffer PJ , Woodgett JR . Molecular cloning and characterisation of a novel putative protein‐serine kinase related to the cAMP‐dependent and protein kinase C families. Eur J Biochem 201: 475‐481, 1991.
 39. Cohen CA , Zagelbaum G , Gross D , Roussos C , Macklem PT . Clinical manifestations of inspiratory muscle fatigue. Am J Med 73: 308‐316, 1982.
 40. Cooper JD , Trulock EP , Triantafillou AN , Patterson GA , Pohl MS , Deloney PA , Sundaresan RS , Roper CL . Bilateral pneumectomy (volume reduction) for chronic obstructive pulmonary disease. J Thorac Cardiovasc Surg 109: 106‐116; discussion 116‐109, 1995.
 41. Copp J , Manning G , Hunter T . TORC‐specific phosphorylation of mammalian target of rapamycin (mTOR): Phospho‐Ser2481 is a marker for intact mTOR signaling complex 2. Cancer Res 69: 1821‐1827, 2009.
 42. Corton JM , Gillespie JG , Hawley SA , Hardie DG . 5‐aminoimidazole‐4‐carboxamide ribonucleoside. A specific method for activating AMP‐activated protein kinase in intact cells? Eur J Biochem 229: 558‐565, 1995.
 43. Darr KC , Schultz D . Exercise‐induced satellite cell activation in growing and mature skeletal muscle. J Appl Physiol 63: 1816‐1821, 1987.
 44. De Troyer A . Effect of hyperinflation on the diaphragm. Eur Respir J 10: 708‐713, 1997.
 45. De Troyer A , Estenne M . Coordination between rib cage muscles and diaphragm during quiet breathing in humans. J Appl Physiol 57: 899‐906, 1984.
 46. De Troyer A , Farkas GA . Contribution of the rib cage inspiratory muscles to breathing in baboons. Respir Physiol 97: 135‐146, 1994.
 47. De Troyer A , Kirkwood PA , Wilson TA . Respiratory action of the intercostal muscles. Physiol Rev 85: 717‐756, 2005.
 48. Decramer M . Hyperinflation and respiratory muscle interaction. Eur Respir J 10: 934‐941, 1997.
 49. Decramer M , De Troyer A . Respiratory changes in parasternal intercostal length. J Appl Physiol 57: 1254‐1260, 1984.
 50. Decramer M , Xi JT , Reid MB , Kelly S , Macklem PT , Demedts M . Relationship between diaphragm length and abdominal dimensions. J Appl Physiol 61: 1815‐1820, 1986.
 51. DeRuisseau KC , Kavazis AN , Deering MA , Falk DJ , Van Gammeren D , Yimlamai T , Ordway GA , Powers SK . Mechanical ventilation induces alterations of the ubiquitin‐proteasome pathway in the diaphragm. J Appl Physiol 98: 1314‐1321, 2005.
 52. Deval C , Mordier S , Obled C , Bechet D , Combaret L , Attaix D , Ferrara M . Identification of cathepsin L as a differentially expressed message associated with skeletal muscle wasting. Biochem J 360: 143‐150, 2001.
 53. Dick TE , Kong FJ , Berger AJ . Correlation of recruitment order with axonal conduction velocity for supraspinally driven diaphragmatic motor units. J Neurophysiol 57: 245‐259, 1987.
 54. Dick TE , Kong FJ , Berger AJ . Recruitment order of diaphragmatic motor units obeys Hennemans's size principle. In: Sieck GC , Gandevia SC , Cameron WE , editors. Respiratory Muscles and Their Neuromotor Control. New York: Alan R. Liss, 1987, p. 249‐261.
 55. Du J , Wang X , Miereles C , Bailey JL , Debigare R , Zheng B , Price SR , Mitch WE . Activation of caspase‐3 is an initial step triggering accelerated muscle proteolysis in catabolic conditions. J Clin Invest 113: 115‐123, 2004.
 56. Dudhia J , Scott CM , Draper ER , Heinegard D , Pitsillides AA , Smith RK . Aging enhances a mechanically‐induced reduction in tendon strength by an active process involving matrix metalloproteinase activity. Aging Cell 6: 547‐556, 2007.
 57. Dupont‐Versteegden EE , Houle JD , Dennis RA , Zhang J , Knox M , Wagoner G , Peterson CA . Exercise‐induced gene expression in soleus muscle is dependent on time after spinal cord injury in rats. Muscle Nerve 29: 73‐81, 2004.
 58. Dusterhoft S , and Pette D . Satellite cells from slow rat muscle express slow myosin under appropriate culture conditions. Differentiation 53: 25‐33, 1993.
 59. Eccles JC . Problems of plasticity and organization at simplest levels of mammalian central nervous system. Perspect Biol Med 1: 379‐396, 1958.
 60. Enad JG , Fournier M , Sieck GC . Oxidative capacity and capillary density of diaphragm motor units. J Appl Physiol 67: 620‐627, 1989.
 61. Esper RM , Loeb JA . Neurotrophins induce neuregulin release through protein kinase Cdelta activation. J Biol Chem 284: 26251‐26260, 2009.
 62. Farkas GA , Roussos C . Diaphragm in emphysematous hamsters: Sarcomere adaptability. J Appl Physiol 54: 1635‐1640, 1983.
 63. Fenn WO . A quantitative comparison between the energy liberated and the work performed by the isolated sartorius muscle of the frog. J Physiol 58: 175‐203, 1923.
 64. Fournier M , Sieck GC . Mechanical properties of muscle units in the cat diaphragm. J Neurophysiol 59: 1055‐1066, 1988.
 65. Furuno K , Goodman MN , Goldberg AL . Role of different proteolytic systems in the degradation of muscle proteins during denervation atrophy. J Biol Chem 265: 8550‐8557, 1990.
 66. Gandevia SC , McKenzie DK , Plassman BL . Activation of human respiratory muscles during different voluntary manoeuvres. J Physiol 428: 387‐403, 1990.
 67. Gauthier GF , Hobbs AW . Effects of denervation on the distribution of myosin isozymes in skeletal muscle fibers. Exp Neurol 76: 331‐346, 1982.
 68. Gautsch TA , Anthony JC , Kimball SR , Paul GL , Layman DK , Jefferson LS . Availability of eIF4E regulates skeletal muscle protein synthesis during recovery from exercise. Am J Physiol 274: C406‐C414, 1998.
 69. Gea J , Hamid Q , Czaika G , Zhu E , Mohan‐Ram V , Goldspink G , Grassino A . Expression of myosin heavy‐chain isoforms in the respiratory muscles following inspiratory resistive breathing. Am J Respir Crit Care Med 161: 1274‐1278, 2000.
 70. Geiger PC , Bailey JP , Zhan WZ , Mantilla CB , Sieck GC . Denervation‐induced changes in myosin heavy chain expression in the rat diaphragm muscle. J Appl Physiol 95: 611‐619, 2003.
 71. Geiger PC , Bailey JP , Mantilla CB , Zhan WZ , Sieck GC . Mechanisms underlying myosin heavy chain expression during development of the rat diaphragm muscle. J Appl Physiol 101: 1546‐1555, 2006.
 72. Geiger PC , Cody MJ , Han YS , Hunter LW , Zhan WZ , Sieck GC . Effects of hypothyroidism on maximum specific force in rat diaphragm muscle fibers. J Appl Physiol 92: 1506‐1514, 2002.
 73. Geiger PC , Cody MJ , Macken RL , Bayrd ME , Sieck GC . Effect of unilateral denervation on maximum specific force in rat diaphragm muscle fibers. J Appl Physiol 90: 1196‐1204, 2001.
 74. Geiger PC , Cody MJ , Macken RL , Bayrd ME , Sieck GC . Mechanisms underlying increased force generation by rat diaphragm muscle fibers during development. J Appl Physiol 90: 380‐388, 2001.
 75. Geiger PC , Cody MJ , Macken RL , Sieck GC . Maximum specific force depends on myosin heavy chain content in rat diaphragm muscle fibers. J Appl Physiol 89: 695‐703, 2000.
 76. Geiger PC , Cody MJ , Sieck GC . Force‐calcium relationship depends on myosin heavy chain and troponin isoforms in rat diaphragm muscle fibers. J Appl Physiol 87: 1894‐1900, 1999.
 77. Gingras AC , Kennedy SG , O'Leary MA , Sonenberg N , Hay N . 4E‐BP1, a repressor of mRNA translation, is phosphorylated and inactivated by the Akt(PKB) signaling pathway. Genes Dev 12: 502‐513, 1998.
 78. Glass DJ . Signalling pathways that mediate skeletal muscle hypertrophy and atrophy. Nat Cell Biol 5: 87‐90, 2003.
 79. Gomes MD , Lecker SH , Jagoe RT , Navon A , Goldberg AL . Atrogin‐1, a muscle‐specific F‐box protein highly expressed during muscle atrophy. Proc Natl Acad Sci U S A 98: 14440‐14445, 2001.
 80. Gomez‐Pinilla F , Ying Z , Roy RR , Molteni R , Edgerton VR . Voluntary exercise induces a BDNF‐mediated mechanism that promotes neuroplasticity. J Neurophysiol 88: 2187‐2195, 2002.
 81. Gordon AM , Huxley AF , Julian FJ . Tension development in highly stretched vertebrate muscle fibres. J Physiol 184: 143‐169, 1966a.
 82. Gordon AM , Huxley AF , Julian FJ . The variation in isometric tension with sarcomere length in vertebrate muscle fibres. J Physiol 184: 170‐192, 1966b.
 83. Gosselin LE , Brice G , Carlson B , Prakash YS , Sieck GC . Changes in satellite cell mitotic activity during acute period of unilateral diaphragm denervation. J Appl Physiol 77: 1128‐1134, 1994.
 84. Gosselin LE , Sieck GC , Aleff RA , Martinez DA , Vailas AC . Changes in diaphragm muscle collagen gene expression after acute unilateral denervation. J Appl Physiol 79: 1249‐1254, 1995.
 85. Greer EL , Dowlatshahi D , Banko MR , Villen J , Hoang K , Blanchard D , Gygi SP , Brunet A . An AMPK‐FOXO pathway mediates longevity induced by a novel method of dietary restriction in C. elegans. Curr Biol 17: 1646‐1656, 2007.
 86. Greer EL , Oskoui PR , Banko MR , Maniar JM , Gygi MP , Gygi SP , Brunet A . The energy sensor AMP‐activated protein kinase directly regulates the mammalian FOXO3 transcription factor. J Biol Chem 282: 30107‐30119, 2007.
 87. Gregory SA . Evaluation and management of respiratory muscle dysfunction in ALS. NeuroRehabilitation 22: 435‐443, 2007.
 88. Gundersen K . Determination of muscle contractile properties: The importance of the nerve. Acta Physiol Scand 162: 333‐341, 1998.
 89. Guyton AC , Hall JE . Textbook of Medical Physiology (10th ed). Philadelphia, PA: W.B. Saunders Company, 2000.
 90. Haas TL , Milkiewicz M , Davis SJ , Zhou AL , Egginton S , Brown MD , Madri JA , Hudlicka O . Matrix metalloproteinase activity is required for activity‐induced angiogenesis in rat skeletal muscle. Am J Physiol Heart Circ Physiol 279: H1540‐H1547, 2000.
 91. Halevy O , Cantley LC . Differential regulation of the phosphoinositide 3‐kinase and MAP kinase pathways by hepatocyte growth factor vs. insulin‐like growth factor‐I in myogenic cells. Exp Cell Res 297: 224‐234, 2004.
 92. Han YS , Geiger PC , Cody MJ , Macken RL , Sieck GC . ATP consumption rate per cross bridge depends on myosin heavy chain isoform. J Appl Physiol 94: 2188‐2196, 2003.
 93. Hardie DG , Carling D . The AMP‐activated protein kinase–fuel gauge of the mammalian cell? Eur J Biochem 246: 259‐273, 1997.
 94. Hay N , Sonenberg N . Upstream and downstream of mTOR. Genes Dev 18: 1926‐1945, 2004.
 95. Hellyer NJ , Mantilla CB , Park EW , Zhan WZ , Sieck GC . Neuregulin‐dependent protein synthesis in C2C12 myotubes and rat diaphragm muscle. Am J Physiol Cell Physiol 291: C1056‐C1061, 2006.
 96. Henneman E . Relation between size of neurons and their susceptibility to discharge. Science 126: 1345‐1346, 1957.
 97. Henneman E , Mendell LM . Functional organization of motoneuron pool and its inputs. In: Brookhart JM , Mountcastle VB , editors. Handbook of Physiology. Bethesda: American Physiological Society, 1981, p. 423‐507.
 98. Henneman E , Somjen G , Carpenter DO . Functional significance of cell size in spinal motoneurons. J Neurophysiol 28: 560‐580, 1965.
 99. Hensbergen E , Kernell D . Daily durations of spontaneous activity in cat's ankle muscles. Exp Brain Res 115: 325‐332, 1997.
 100. Hilaire G , Gauthier P , Monteau R . Central respiratory drive and recruitment order of phrenic and inspiratory laryngeal motoneurones. Respir Physiol 51: 341‐359, 1983.
 101. Hilaire G , Monteau R , Khatib M . Determination of recruitment order of phrenic motoneurons. In: Sieck GC , Gandevia SC , Cameron WE , editors. Respiratory Muscles and Their Neuromotor Control. New York: Alan R. Liss, 1987, p. 249‐261.
 102. Holm L , Reitelseder S , Pedersen TG , Doessing S , Petersen SG , Flyvbjerg A , Andersen JL , Aagaard P , Kjaer M . Changes in muscle size and MHC composition in response to resistance exercise with heavy and light loading intensity. J Appl Physiol 105: 1454‐1461, 2008.
 103. Hudson AL , Butler JE , Gandevia SC , De Troyer A . Interplay between the inspiratory and postural functions of the human parasternal intercostal muscles. J Neurophysiol 103: 1622‐1629, 2010.
 104. Hunter RB , Kandarian SC . Disruption of either the Nfkb1 or the Bcl3 gene inhibits skeletal muscle atrophy. J Clin Invest 114: 1504‐1511, 2004.
 105. Hunter RB , Stevenson E , Koncarevic A , Mitchell‐Felton H , Essig DA , Kandarian SC . Activation of an alternative NF‐kappaB pathway in skeletal muscle during disuse atrophy. FASEB J 16: 529‐538, 2002.
 106. Huxley AF . Muscle structure and theories of contraction. Prog Biophysics Biophys Chem 7: 255‐318, 1957.
 107. Inoki K , Ouyang H , Zhu T , Lindvall C , Wang Y , Zhang X , Yang Q , Bennett C , Harada Y , Stankunas K , Wang CY , He X , MacDougald OA , You M , Williams BO , Guan KL . TSC2 integrates Wnt and energy signals via a coordinated phosphorylation by AMPK and GSK3 to regulate cell growth. Cell 126: 955‐968, 2006.
 108. Jacinto E , Hall MN . Tor signalling in bugs, brain and brawn. Nat Rev Mol Cell Biol 4: 117‐126, 2003.
 109. Jefferson LS , Fabian JR , Kimball SR . Glycogen synthase kinase‐3 is the predominant insulin‐regulated eukaryotic initiation factor 2B kinase in skeletal muscle. Int J Biochem Cell Biol 31: 191‐200, 1999.
 110. Jo SA , Zhu X , Marchionni MA , Burden SJ . Neuregulins are concentrated at nerve‐muscle synapses and activate ACh‐receptor gene expression. Nature 373: 158‐161, 1995.
 111. Jodkowski JS , Viana F , Dick TE , Berger AJ . Electrical properties of phrenic motoneurons in the cat: Correlation with inspiratory drive. J Neurophysiol 58: 105‐124, 1987.
 112. Jones PF , Jakubowicz T , Pitossi FJ , Maurer F , Hemmings BA . Molecular cloning and identification of a serine/threonine protein kinase of the second‐messenger subfamily. Proc Natl Acad Sci U S A 88: 4171‐4175, 1991.
 113. Jorgensen SB , Richter EA , Wojtaszewski JF . Role of AMPK in skeletal muscle metabolic regulation and adaptation in relation to exercise. J Physiol 574: 17‐31, 2006.
 114. Judge AR , Koncarevic A , Hunter RB , Liou HC , Jackman RW , Kandarian SC . Role for IkappaBalpha, but not c‐Rel, in skeletal muscle atrophy. Am J Physiol Cell Physiol 292: C372‐C382, 2007.
 115. Kalinowski A , Plowes NJ , Huang Q , Berdejo‐Izquierdo C , Russell RR , Russell KS . Metalloproteinase‐dependent cleavage of neuregulin and autocrine stimulation of vascular endothelial cells. FASEB J 24: 2567‐2575, 2010.
 116. Kamei Y , Miura S , Suzuki M , Kai Y , Mizukami J , Taniguchi T , Mochida K , Hata T , Matsuda J , Aburatani H , Nishino I , Ezaki O . Skeletal muscle FOXO1 (FKHR) transgenic mice have less skeletal muscle mass, down‐regulated Type I (slow twitch/red muscle) fiber genes, and impaired glycemic control. J Biol Chem 279: 41114‐41123, 2004.
 117. Katagiri M , Young RN , Platt RS , Kieser TM , Easton PA . Respiratory muscle compensation for unilateral or bilateral hemidiaphragm paralysis in awake canines. J Appl Physiol 77: 1972‐1982, 1994.
 118. Keens TG , Bryan AC , Levison H , Ianuzzo CD . Developmental pattern of muscle fiber types in human ventilatory muscles. J Appl Physiol 44: 909‐913, 1978.
 119. Kernell D . The Motoneurone and Its Muscle Fibres. Oxford, New York: Oxford University Press, 2006.
 120. King TD , Song L , Jope RS . AMP‐activated protein kinase (AMPK) activating agents cause dephosphorylation of Akt and glycogen synthase kinase‐3. Biochem Pharmacol 71: 1637‐1647, 2006.
 121. Kleijn M , Scheper GC , Voorma HO , Thomas AA . Regulation of translation initiation factors by signal transduction. Eur J Biochem 253: 531‐544, 1998.
 122. Kong FJ , Berger AJ . Firing properties and hypercapnic responses of single phrenic motor axons in the rat. J Appl Physiol 61: 1999‐2004, 1986.
 123. Koumbourlis AC . Scoliosis and the respiratory system. Paediatr Respir Rev 7: 152‐160, 2006.
 124. Lantier L , Mounier R , Leclerc J , Pende M , Foretz M , Viollet B . Coordinated maintenance of muscle cell size control by AMP‐activated protein kinase. FASEB J 24: 3555‐3561, 2010.
 125. Larson CR , Yajima Y , Ko P . Modification in activity of medullary respiratory‐related neurons for vocalization and swallowing. J Neurophysiol 71: 2294‐2304, 1994.
 126. Latres E , Amini AR , Amini AA , Griffiths J , Martin FJ , Wei Y , Lin HC , Yancopoulos GD , Glass DJ . Insulin‐like growth factor‐1 (IGF‐1) inversely regulates atrophy‐induced genes via the phosphatidylinositol 3‐kinase/Akt/mammalian target of rapamycin (PI3K/Akt/mTOR) pathway. J Biol Chem 280: 2737‐2744, 2005.
 127. Lecker SH , Jagoe RT , Gilbert A , Gomes M , Baracos V , Bailey J , Price SR , Mitch WE , Goldberg AL . Multiple types of skeletal muscle atrophy involve a common program of changes in gene expression. Faseb J 18: 39‐51, 2004.
 128. Lecker SH , Solomon V , Mitch WE , Goldberg AL . Muscle protein breakdown and the critical role of the ubiquitin‐proteasome pathway in normal and disease states. J Nutr 129: 227S‐237S, 1999.
 129. Lee SW , Dai G , Hu Z , Wang X , Du J , Mitch WE . Regulation of muscle protein degradation: Coordinated control of apoptotic and ubiquitin‐proteasome systems by phosphatidylinositol 3 kinase. J Am Soc Nephrol 15: 1537‐1545, 2004.
 130. Legrand A , Cappello M , De Troyer A . Response of the inspiratory intercostal [correction of intercoastal] muscles to increased inertial loads. Respir Physiol 102: 17‐27, 1995.
 131. Levine S , Nguyen T , Taylor N , Friscia ME , Budak MT , Rothenberg P , Zhu J , Sachdeva R , Sonnad S , Kaiser LR , Rubinstein NA , Powers SK , Shrager JB . Rapid disuse atrophy of diaphragm fibers in mechanically ventilated humans. N Engl J Med 358: 1327‐1335, 2008.
 132. Lewis MI , Bodine SC , Kamangar N , Xu X , Da X , Fournier M . Effect of severe short‐term malnutrition on diaphragm muscle signal transduction pathways influencing protein turnover. J Appl Physiol 100: 1799‐1806, 2006.
 133. Lewis MI , Fournier M , Da X , Li H , Mosenifar Z , McKenna RJ, Jr , Cohen AH . Short‐term influences of lung volume reduction surgery on the diaphragm in emphysematous hamsters. Am J Respir Crit Care Med 170: 753‐759, 2004.
 134. Lewis MI , Li H , Huang ZS , Biring MS , Cercek B , Fournier M . Influence of varying degrees of malnutrition on IGF‐I expression in the rat diaphragm. J Appl Physiol 95: 555‐562, 2003.
 135. Lewis MI , Sieck GC . Effect of acute nutritional deprivation on diaphragm structure and function. J Appl Physiol 68: 1938‐1944, 1990.
 136. Lewis MI , Zhan WZ , Sieck GC . Adaptations of the diaphragm in emphysema. J Appl Physiol 72: 934‐943, 1992.
 137. Lexell J , Taylor CC , Sjostrom M . What is the cause of the ageing atrophy? Total number, size and proportion of different fiber types studied in whole vastus lateralis muscle from 15‐ to 83‐year‐old men. J Neurol Sci 84: 275‐294, 1988.
 138. Liddell EGT , Sherrington CS . Recruitment and some other factors of reflex inhibition. Proc R Soc Lond (Biol) 97: 488‐518, 1925.
 139. Lieber RL . Skeletal Muscle Structure, Function, & Plasticity: the Physiological Basis of Rehabilitation. Baltimore, MD: Lippincott Williams & Wilkins, 2002.
 140. Loeb JA , Hmadcha A , Fischbach GD , Land SJ , Zakarian VL . Neuregulin expression at neuromuscular synapses is modulated by synaptic activity and neurotrophic factors. J Neurosci 22: 2206‐2214, 2002.
 141. Loeb JA , Susanto ET , Fischbach GD . The neuregulin precursor proARIA is processed to ARIA after expression on the cell surface by a protein kinase C‐enhanced mechanism. Mol Cell Neurosci 11: 77‐91, 1998.
 142. Loring SH , Mead J . Action of the diaphragm on the rib cage inferred from a force‐balance analysis. J Appl Physiol 53: 756‐760, 1982.
 143. Luo X , Prior M , He W , Hu X , Tang X , Shen W , Yadav S , Kiryu‐Seo S , Miller R , Trapp BD , Yan R . Cleavage of neuregulin‐1 by BACE1 or ADAM10 protein produces differential effects on myelination. J Biol Chem 286: 23967‐23974, 2011.
 144. Mammucari C , Milan G , Romanello V , Masiero E , Rudolf R , Del Piccolo P , Burden SJ , Di Lisi R , Sandri C , Zhao J , Goldberg AL , Schiaffino S , Sandri M . FoxO3 controls autophagy in skeletal muscle in vivo. Cell Metab 6: 458‐471, 2007.
 145. Mantilla CB , Rowley KL , Zhan WZ , Fahim MA , Sieck GC . Synaptic vesicle pools at diaphragm neuromuscular junctions vary with motoneuron soma, not axon terminal, inactivity. Neurosci 146: 178‐189, 2007.
 146. Mantilla CB , Seven YB , Zhan WZ , Sieck GC . Diaphragm motor unit recruitment in rats. Respir Physiol Neurobiol 173: 101‐106, 2010.
 147. Mantilla CB , Sieck GC . Invited review: Mechanisms underlying motor unit plasticity in the respiratory system. J Appl Physiol 94: 1230‐1241, 2003.
 148. Mantilla CB , Sieck GC . Key aspects of phrenic motoneuron and diaphragm muscle development during the perinatal period. J Appl Physiol 104: 1818‐1827, 2008.
 149. Mantilla CB , Sieck GC . Neuromuscular adaptations to respiratory muscle inactivity. Respir Physiol Neurobiol 169: 133‐140, 2009.
 150. Mantilla CB , Sieck GC . Trophic factor expression in phrenic motor neurons. Respir Physiol Neurobiol 164: 252‐262, 2008.
 151. Mantilla CB , Sill RV , Aravamudan B , Zhan WZ , Sieck GC . Developmental effects on myonuclear domain size of rat diaphragm fibers. J Appl Physiol 104: 787‐794, 2008.
 152. Martelli AM , Tazzari PL , Evangelisti C , Chiarini F , Blalock WL , Billi AM , Manzoli L , McCubrey JA , Cocco L . Targeting the phosphatidylinositol 3‐kinase/Akt/mammalian target of rapamycin module for acute myelogenous leukemia therapy: From bench to bedside. Curr Med Chem 14: 2009‐2023, 2007.
 153. Matsui T , Nagoshi T , Rosenzweig A . Akt and PI 3‐kinase signaling in cardiomyocyte hypertrophy and survival. Cell Cycle 2: 220‐223, 2003.
 154. McCall GE , Allen DL , Linderman JK , Grindeland RE , Roy RR , Mukku VR , Edgerton VR . Maintenance of myonuclear domain size in rat soleus after overload and growth hormone/IGF‐I treatment. J Appl Physiol 84: 1407‐1412, 1998.
 155. McMahon T . Muscles, Reflexes and Locomotion. Princeton, NJ: Princeton Univ. Press, 1984.
 156. Mead J , Loring SH . Analysis of volume displacement and length changes of the diaphragm during breathing. J Appl Physiol 53: 750‐755, 1982.
 157. Mead J , Turner JM , Macklem PT , Little JB . Significance of the relationship between lung recoil and maximum expiratory flow. J Appl Physiol 22: 95‐108, 1967.
 158. Milano S , Grelot L , Bianchi AL , Iscoe S . Discharge patterns of phrenic motoneurons during fictive coughing and vomiting in decerebrate cats. J Appl Physiol 73: 1626‐1636, 1992.
 159. Miller AD , Nonaka S , Lakos SF , Tan LK . Diaphragmatic and external intercostal muscle control during vomiting: Behavior of inspiratory bulbospinal neurons. J Neurophysiol 63(1): 31‐36, 1990.
 160. Miyata H , Zhan WZ , Prakash YS , Sieck GC . Myoneural interactions affect diaphragm muscle adaptations to inactivity. J Appl Physiol 79: 1640‐1649, 1995.
 161. Mizushima N , Yamamoto A , Matsui M , Yoshimori T , Ohsumi Y . In vivo analysis of autophagy in response to nutrient starvation using transgenic mice expressing a fluorescent autophagosome marker. Mol Biol Cell 15: 1101‐1111, 2004.
 162. Monteau R , Khatib M , Hilaire G . Central determination of recruitment order: Intracellular study of phrenic motoneurons. Neurosci Lett 56: 341‐346, 1985.
 163. Nakashima K , Yakabe Y . AMPK activation stimulates myofibrillar protein degradation and expression of atrophy‐related ubiquitin ligases by increasing FOXO transcription factors in C2C12 myotubes. Biosci Biotechnol Biochem 71: 1650‐1656, 2007.
 164. Narici MV , Bordini M , Cerretelli P . Effect of aging on human adductor pollicis muscle function. J Appl Physiol 71: 1277‐1281, 1991.
 165. Nave BT , Ouwens M , Withers DJ , Alessi DR , Shepherd PR . Mammalian target of rapamycin is a direct target for protein kinase B: Identification of a convergence point for opposing effects of insulin and amino‐acid deficiency on protein translation. Biochem J 344(Pt 2): 427‐431, 1999.
 166. Newman S , Road J , Bellemare F , Clozel JP , Lavigne CM , Grassino A . Respiratory muscle length measured by sonomicrometry. J Appl Physiol 56: 753‐764, 1984.
 167. Nguyen T , Shrager J , Kaiser L , Mei L , Daood M , Watchko J , Rubinstein N , Levine S . Developmental myosin heavy chains in the adult human diaphragm: Coexpression patterns and effect of COPD. J Appl Physiol 88: 1446‐1456, 2000.
 168. Nystrom GJ , Lang CH . Sepsis and AMPK activation by AICAR differentially regulate FoxO‐1, ‐3 and ‐4 mRNA in striated muscle. Int J Clin Exp Med 1: 50‐63, 2008.
 169. Pallafacchina G , Calabria E , Serrano AL , Kalhovde JM , Schiaffino S . A protein kinase B‐dependent and rapamycin‐sensitive pathway controls skeletal muscle growth but not fiber type specification. Proc Natl Acad Sci U S A 99: 9213‐9218, 2002.
 170. Papastamelos C , Panitch HB , England SE , Allen JL . Developmental changes in chest wall compliance in infancy and early childhood. J Appl Physiol 78: 179‐184, 1995.
 171. Pause A , Belsham GJ , Gingras AC , Donze O , Lin TA , Lawrence JC, Jr , Sonenberg N . Insulin‐dependent stimulation of protein synthesis by phosphorylation of a regulator of 5’‐cap function. Nature 371: 762‐767, 1994.
 172. Peter JB , Barnard RJ , Edgerton VR , Gillespie CA , Stempel KE . Metabolic profiles of three fiber types of skeletal muscle in guinea pigs and rabbits. Biochemistry 11: 2627‐2633, 1972.
 173. Peterson RT , Beal PA , Comb MJ , Schreiber SL . FKBP12‐rapamycin‐associated protein (FRAP) autophosphorylates at serine 2481 under translationally repressive conditions. J Biol Chem 275: 7416‐7423, 2000.
 174. Pette D . Historical Perspectives: Plasticity of mammalian skeletal muscle. J Appl Physiol 90: 1119‐1124, 2001.
 175. Pette D , Muller W , Leisner E , Vrbova G . Time dependent effects on contractile properties, fibre population, myosin light chains and enzymes of energy metabolism in intermittently and continuously stimulated fast twitch muscles of the rabbit. Pflugers Arch 364: 103‐112, 1976.
 176. Pette D , Peuker H , Staron RS . The impact of biochemical methods for single muscle fibre analysis. Acta Physiol Scand 166: 261‐277, 1999.
 177. Pette D , Smith ME , Staudte HW , Vrbova G . Effects of long‐term electrical stimulation on some contractile and metabolic characteristics of fast rabbit muscles. Pflugers Arch 338: 257‐272, 1973.
 178. Pette D , Staron RS . Mammalian skeletal muscle fiber type transitions. Int Rev Cytol 170: 143‐223, 1997.
 179. Pette D , Staron RS . Myosin isoforms, muscle fiber types, and transitions. Microsc Res Tech 50: 500‐509, 2000.
 180. Pette D , Vrbova G . Adaptation of mammalian skeletal muscle fibers to chronic electrical stimulation. Rev Physiol Biochem Pharmacol 120: 115‐202, 1992.
 181. Pickart CM . Ubiquitin in chains. Trends Biochem Sci 25: 544‐548, 2000.
 182. Pinto S , de Carvalho M . Motor responses of the sternocleidomastoid muscle in patients with amyotrophic lateral sclerosis. Muscle Nerve 38: 1312‐1317, 2008.
 183. Plowman S , Smith D . Exercise Physiology for Health, Fitness, and Performance. Boston, Mass: Allyn & Bacon, 1997.
 184. Powers SK , Kavazis AN , Levine S . Prolonged mechanical ventilation alters diaphragmatic structure and function. Crit Care Med 37: S347‐S353, 2009.
 185. Powers SK , Shanely RA , Coombes JS , Koesterer TJ , McKenzie M , Van Gammeren D , Cicale M , Dodd SL . Mechanical ventilation results in progressive contractile dysfunction in the diaphragm. J Appl Physiol 92: 1851‐1858, 2002.
 186. Prakash YS , Mantilla CB , Zhan WZ , Smithson KG , Sieck GC . Phrenic motoneuron morphology during rapid diaphragm muscle growth. J Appl Physiol 89: 563‐572, 2000.
 187. Prakash YS , Miyata H , Zhan WZ , Sieck GC . Inactivity‐induced remodeling of neuromuscular junctions in rat diaphragmatic muscle. Muscle Nerve 22: 307‐319, 1999.
 188. Prakash YS , Zhan WZ , Miyata H , Sieck GC . Adaptations of diaphragm neuromuscular junction following inactivity. Acta Anat (Basel) 154: 147‐161, 1995.
 189. Prezant DJ , Aldrich TK , Richner B , Gentry EI , Valentine DE , Nagashima H , Cahill J . Effects of long‐term continuous respiratory resistive loading on rat diaphragm function and structure. J Appl Physiol 74: 1212‐1219, 1993.
 190. Proud CG . Protein phosphorylation in translational control. Curr Top Cell Regul 32: 243‐369, 1992.
 191. Racz GZ , Gayan‐Ramirez G , Testelmans D , Cadot P , De Paepe K , Zador E , Wuytack F , Decramer M . Early changes in rat diaphragm biology with mechanical ventilation. Am J Respir Crit Care Med 168: 297‐304, 2003.
 192. Raper AJ , Thompson WT, Jr , Shapiro W , Patterson JL, Jr . Scalene and sternomastoid muscle function. J Appl Physiol 21: 497‐502, 1966.
 193. Rau M , Ohlmann T , Morley SJ , Pain VM . A reevaluation of the cap‐binding protein, eIF4E, as a rate‐limiting factor for initiation of translation in reticulocyte lysate. J Biol Chem 271: 8983‐8990, 1996.
 194. Raught B , Gingras AC . eIF4E activity is regulated at multiple levels. Int J Biochem Cell Biol 31: 43‐57, 1999.
 195. Reed JL , Palsson BO . Systems biology: A four‐step process. In: Chien S , Chen PC , Fung YC , editors. An Introductory Text to Bioengineering, Singapore: World Scientific Publishing Co, 2008, p. 387‐399.
 196. Reed SA , Senf SM , Cornwell EW , Kandarian SC , Judge AR . Inhibition of IkappaB kinase alpha (IKKalpha) or IKKbeta (IKKbeta) plus forkhead box O (Foxo) abolishes skeletal muscle atrophy. Biochem Biophys Res Commun 405: 491‐496, 2011.
 197. Reid B , Martinov VN , Nja A , Lomo T , Bewick GS . Activity‐dependent plasticity of transmitter release from nerve terminals in rat fast and slow muscles. J Neurosci 23: 9340‐9348, 2003.
 198. Reynolds THt , Bodine SC , Lawrence JC, Jr . Control of Ser2448 phosphorylation in the mammalian target of rapamycin by insulin and skeletal muscle load. J Biol Chem 277: 17657‐17662, 2002.
 199. Richardson D , Shewchuk R . Effects of contraction force and frequency on postexercise hyperemia in human calf muscles. J Appl Physiol 49: 649‐654, 1980.
 200. Richardson PG , Barlogie B , Berenson J , Singhal S , Jagannath S , Irwin D , Rajkumar SV , Srkalovic G , Alsina M , Alexanian R , Siegel D , Orlowski RZ , Kuter D , Limentani SA , Lee S , Hideshima T , Esseltine DL , Kauffman M , Adams J , Schenkein DP , Anderson KC . A phase 2 study of bortezomib in relapsed, refractory myeloma. N Engl J Med 348: 2609‐2617, 2003.
 201. Rollier H , Bisschop A , Gayan‐Ramirez G , Gosselink R , Decramer M . Low load inspiratory muscle training increases diaphragmatic fiber dimensions in rats. Am J Respir Crit Care Med 157: 833‐839, 1998.
 202. Romanello V , Guadagnin E , Gomes L , Roder I , Sandri C , Petersen Y , Milan G , Masiero E , Del Piccolo P , Foretz M , Scorrano L , Rudolf R , Sandri M . Mitochondrial fission and remodelling contributes to muscle atrophy. EMBO J 29: 1774‐1785, 2010.
 203. Rommel C , Bodine SC , Clarke BA , Rossman R , Nunez L , Stitt TN , Yancopoulos GD , Glass DJ . Mediation of IGF‐1‐induced skeletal myotube hypertrophy by PI(3)K/Akt/mTOR and PI(3)K/Akt/GSK3 pathways. Nat Cell Biol 3: 1009‐1013, 2001.
 204. Rommel C , Clarke BA , Zimmermann S , Nunez L , Rossman R , Reid K , Moelling K , Yancopoulos GD , Glass DJ . Differentiation stage‐specific inhibition of the Raf‐MEK‐ERK pathway by akt. Science 286: 1738‐1741, 1999.
 205. Rose AJ , Bisiani B , Vistisen B , Kiens B , Richter EA . Skeletal muscle eEF2 and 4EBP1 phosphorylation during endurance exercise is dependent on intensity and muscle fiber type. Am J Physiol Regul Integr Comp Physiol 296: R326‐R333, 2009.
 206. Rosenblatt JD , Yong D , Parry DJ . Satellite cell activity is required for hypertrophy of overloaded adult rat muscle. Muscle Nerve 17: 608‐613, 1994.
 207. Roussos C . Function and fatigue of respiratory muscles. Chest 88: 124S‐132S, 1985.
 208. Rowley KL , Mantilla CB , Sieck GC . Respiratory muscle plasticity. Respir Physiol Neurobiol 147: 235‐251, 2005.
 209. Roy RR , Baldwin KM , Martin TP , Chimarusti SP , Edgerton VR . Biochemical and physiological changes in overloaded rat fast‐ and slow‐twitch ankle extensors. J Appl Physiol 59: 639‐646, 1985.
 210. Roy RR , Monke SR , Allen DL , Edgerton VR . Modulation of myonuclear number in functionally overloaded and exercised rat plantaris fibers. J Appl Physiol 87: 634‐642, 1999.
 211. Sacheck JM , Hyatt JP , Raffaello A , Jagoe RT , Roy RR , Edgerton VR , Lecker SH , Goldberg AL . Rapid disuse and denervation atrophy involve transcriptional changes similar to those of muscle wasting during systemic diseases. Faseb J 21: 140‐155, 2007.
 212. Sacheck JM , Ohtsuka A , McLary SC , Goldberg AL . IGF‐I stimulates muscle growth by suppressing protein breakdown and expression of atrophy‐related ubiquitin ligases, atrogin‐1 and MuRF1. Am J Physiol Endocrinol Metab 287: E591‐601, 2004.
 213. Saito Y , Vandenheede JR , Cohen P . The mechanism by which epidermal growth factor inhibits glycogen synthase kinase 3 in A431 cells. Biochem J 303(Pt 1): 27‐31, 1994.
 214. Salmons S , Vrbova G . The influence of activity on some contractile characteristics of mammalian fast and slow muscles. J Physiol 201: 535‐549, 1969.
 215. Sandri M . Signaling in muscle atrophy and hypertrophy. Physiology (Bethesda) 23: 160‐170, 2008.
 216. Sandri M , Sandri C , Gilbert A , Skurk C , Calabria E , Picard A , Walsh K , Schiaffino S , Lecker SH , Goldberg AL . Foxo transcription factors induce the atrophy‐related ubiquitin ligase atrogin‐1 and cause skeletal muscle atrophy. Cell 117: 399‐412, 2004.
 217. Sarbassov DD , Ali SM , Kim DH , Guertin DA , Latek RR , Erdjument‐Bromage H , Tempst P , Sabatini DM . Rictor, a novel binding partner of mTOR, defines a rapamycin‐insensitive and raptor‐independent pathway that regulates the cytoskeleton. Curr Biol 14: 1296‐1302, 2004.
 218. Sarbassov DD , Ali SM , Sabatini DM . Growing roles for the mTOR pathway. Curr Opin Cell Biol 17: 596‐603, 2005.
 219. Sarbassov DD , Guertin DA , Ali SM , Sabatini DM . Phosphorylation and regulation of Akt/PKB by the rictor‐mTOR complex. Science 307: 1098‐1101, 2005.
 220. Sassoon CS , Caiozzo VJ , Manka A , Sieck GC . Altered diaphragm contractile properties with controlled mechanical ventilation. J Appl Physiol 92: 2585‐2595, 2002.
 221. Sassoon CS , Zhu E , Caiozzo VJ . Assist‐control mechanical ventilation attenuates ventilator‐induced diaphragmatic dysfunction. Am J Respir Crit Care Med 170: 626‐632, 2004.
 222. Schiaffino S , Ausoni S , Gorza L , Saggin I , Gundersen K , Lomo T . Myosin heavy chain isoforms and velocity of shortening of type 2 skeletal muscle fibres. Acta Physiol Scand 134: 575‐576, 1988.
 223. Schiaffino S , Gorza L , Pitton G , Saggin L , Ausoni S , Sartore S , Lomo T . Embryonic and neonatal myosin heavy chain in denervated and paralyzed rat skeletal muscle. Dev Biol 127: 1‐11, 1988.
 224. Schiaffino S , Gorza L , Sartore S , Saggin L , Ausoni S , Vianello M , Gundersen K , Lomo T . Three myosin heavy chain isoforms in type 2 skeletal muscle fibres. J Muscle Res Cell Motil 10: 197‐205, 1989.
 225. Schiaffino S Reggiani C . Myosin isoforms in mammalian skeletal muscle. J Appl Physiol 77: 493‐501, 1994.
 226. Schiaffino S , Reggiani C . Molecular diversity of myofibrillar proteins: Gene regulation and functional significance. Physiol Rev 76: 371‐423, 1996.
 227. Schilling CH , Edwards JS , Palsson BO . Toward metabolic phenomics: Analysis of genomic data using flux balances. Biotechnol Prog 15: 288‐295, 1999.
 228. Schultz E , Jaryszak DL , Valliere CR . Response of satellite cells to focal skeletal muscle injury. Muscle And Nerve 8: 217‐222, 1985.
 229. Senf SM , Dodd SL , McClung JM , Judge AR . Hsp70 overexpression inhibits NF‐kappaB and Foxo3a transcriptional activities and prevents skeletal muscle atrophy. FASEB J 22: 3836‐3845, 2008.
 230. Shah OJ , Anthony JC , Kimball SR , Jefferson LS . 4E‐BP1 and S6K1: Translational integration sites for nutritional and hormonal information in muscle. Am J Physiol Endocrinol Metab 279: E715‐E729, 2000.
 231. Shanely RA , Van Gammeren D , Deruisseau KC , Zergeroglu AM , McKenzie MJ , Yarasheski KE , Powers SK . Mechanical ventilation depresses protein synthesis in the rat diaphragm. Am J Respir Crit Care Med 170: 994‐999, 2004.
 232. Shanely RA , Zergeroglu MA , Lennon SL , Sugiura T , Yimlamai T , Enns D , Belcastro A , Powers SK . Mechanical ventilation‐induced diaphragmatic atrophy is associated with oxidative injury and increased proteolytic activity. Am J Respir Crit Care Med 166: 1369‐1374, 2002.
 233. Sherrington CS . Some functional problems attaching to convergence. Proc R Soc Lond (Biol) 105: 332‐362, 1929.
 234. Sieck GC . Diaphragm muscle: Structural and functional organization. Clin Chest Med 9: 195‐210, 1988.
 235. Sieck GC . Diaphragm motor units and their response to altered use. Sem Respir Med 12: 258‐269, 1991.
 236. Sieck GC . Neural control of the inspiratory pump. NIPS 6: 260‐264, 1991.
 237. Sieck GC . Physiological effects of diaphragm muscle denervation and disuse. In: Fanburg BL , Sicilian L , editors. Clinics in Chest Medicine: Respiratory Dysfunction in Neuromuscular Disease, Philadelphia, PA: W. B. Saunders Company, 1994, p. 641‐659.
 238. Sieck GC Fournier M . Diaphragm motor unit recruitment during ventilatory and nonventilatory behaviors. J Appl Physiol 66: 2539‐2545, 1989.
 239. Sieck GC , Fournier M . Developmental aspects of diaphragm muscle cells: Structural and functional organization. In: Haddad GG , Farber JP , editors. Developmental Neurobiology of Breathing. New York: Marcel Dekker, 1991, p. 375‐428.
 240. Sieck GC , Fournier M , Enad JG . Fiber type composition of muscle units in the cat diaphragm. Neurosci Lett 97: 29‐34, 1989.
 241. Sieck GC , Fournier M , Prakash YS , Blanco CE . Myosin phenotype and SDH enzyme variability among motor unit fibers. J Appl Physiol 80: 2179‐2189, 1996.
 242. Sieck GC , Lewis MI , Blanco CE . Effects of undernutrition on diaphragm fiber size, SDH activity, and fatigue resistance. J Appl Physiol 66: 2196‐2205, 1989.
 243. Sieck GC , Mantilla CB . Effect of mechanical ventilation on the diaphragm. N Engl J Med 358: 1392‐1394, 2008.
 244. Sieck GC , Prakash YS . Cross bridge kinetics in respiratory muscles. Eur Respir J 10: 2147‐2158, 1997.
 245. Sieck GC , Prakash YS . Morphological adaptations of neuromuscular junctions depend on fiber type. Can J Appl Physiol 22: 197‐230, 1997.
 246. Sieck GC , Prakash YS , Han YS , Fang YH , Geiger PC , Zhan WZ . Changes in actomyosin ATP consumption rate in rat diaphragm muscle fibers during postnatal development. J Appl Physiol 94: 1896‐1902, 2003.
 247. Sieck GC , Roy RR , Powell P , Blanco C , Edgerton VR , Harper RM . Muscle fiber type distribution and architecture of the cat diaphragm. J Appl Physiol 55: 1386‐1392, 1983.
 248. Sieck GC , Zhan WZ , Prakash YS , Daood MJ , Watchko JF . SDH and actomyosin ATPase activities of different fiber types in rat diaphragm muscle. J Appl Physiol 79: 1629‐1639, 1995.
 249. Skurk C , Maatz H , Kim HS , Yang J , Abid MR , Aird WC , Walsh K . The Akt‐regulated forkhead transcription factor FOXO3a controls endothelial cell viability through modulation of the caspase‐8 inhibitor FLIP. J Biol Chem 279: 1513‐1525, 2004.
 250. Smith IJ , Alamdari N , O'Neal P , Gonnella P , Aversa Z , Hasselgren PO . Sepsis increases the expression and activity of the transcription factor Forkhead Box O 1 (FOXO1) in skeletal muscle by a glucocorticoid‐dependent mechanism. Int J Biochem Cell Biol 42: 701‐711, 2010.
 251. Smith JW , Thesleff S . Spontaneous activity in denervated mouse diaphragm muscle. J Physiol 257: 171‐186, 1976.
 252. Solomon V , Goldberg AL . Importance of the ATP‐ubiquitin‐proteasome pathway in the degradation of soluble and myofibrillar proteins in rabbit muscle extracts. J Biol Chem 271: 26690‐26697, 1996.
 253. Stephens TJ , Chen ZP , Canny BJ , Michell BJ , Kemp BE , McConell GK . Progressive increase in human skeletal muscle AMPKalpha2 activity and ACC phosphorylation during exercise. Am J Physiol Endocrinol Metab 282: E688‐E694, 2002.
 254. Stitt TN , Drujan D , Clarke BA , Panaro F , Timofeyva Y , Kline WO , Gonzalez M , Yancopoulos GD , Glass DJ . The IGF‐1/PI3K/Akt pathway prevents expression of muscle atrophy‐induced ubiquitin ligases by inhibiting FOXO transcription factors. Mol Cell 14: 395‐403, 2004.
 255. Stuart DG , Enoka RM . Motoneurons, motor units, and the size principle. In: Rosenberg RN , editor. The Clinical Neurosciences. New York: Churchill Livingstone, 1983, p. 471‐517.
 256. Takahashi A , Kureishi Y , Yang J , Luo Z , Guo K , Mukhopadhyay D , Ivashchenko Y , Branellec D , Walsh K . Myogenic Akt signaling regulates blood vessel recruitment during myofiber growth. Mol Cell Biol 22: 4803‐4814, 2002.
 257. Tang H , Lee M , Budak MT , Pietras N , Hittinger S , Vu M , Khuong A , Hoang CD , Hussain SN , Levine S , Shrager JB . Intrinsic apoptosis in mechanically ventilated human diaphragm: Linkage to a novel Fos/FoxO1/Stat3‐Bim axis. FASEB J 25: 2921‐2936, 2011.
 258. Tawa NE, Jr , Odessey R , Goldberg AL . Inhibitors of the proteasome reduce the accelerated proteolysis in atrophying rat skeletal muscles. J Clin Invest 100: 197‐203, 1997.
 259. Tikunov BA , Mancini D , Levine S . Changes in myofibrillar protein composition of human diaphragm elicited by congestive heart failure. J Mol Cell Cardiol 28: 2537‐2541, 1996.
 260. Tong JF , Yan X , Zhu MJ , Du M . AMP‐activated protein kinase enhances the expression of muscle‐specific ubiquitin ligases despite its activation of IGF‐1/Akt signaling in C2C12 myotubes. J Cell Biochem 108: 458‐468, 2009.
 261. Trinidad JC , Fischbach GD , Cohen JB . The Agrin/MuSK signaling pathway is spatially segregated from the neuregulin/ErbB receptor signaling pathway at the neuromuscular junction. J Neurosci 20: 8762‐8770, 2000.
 262. Van Der Heide LP , Hoekman MF , Smidt MP . The ins and outs of FoxO shuttling: Mechanisms of FoxO translocation and transcriptional regulation. Biochem J 380: 297‐309, 2004.
 263. Van Gammeren D , Damrauer JS , Jackman RW , Kandarian SC . The IkappaB kinases IKKalpha and IKKbeta are necessary and sufficient for skeletal muscle atrophy. FASEB J 23: 362‐370, 2009.
 264. van Hees H , Ottenheijm C , Ennen L , Linkels M , Dekhuijzen R , Heunks L . Proteasome inhibition improves diaphragm function in an animal model for COPD. Am J Physiol Lung Cell Mol Physiol 301: L110‐L116, 2011.
 265. van Hees HW , Li YP , Ottenheijm CA , Jin B , Pigmans CJ , Linkels M , Dekhuijzen PN , Heunks LM . Proteasome inhibition improves diaphragm function in congestive heart failure rats. Am J Physiol Lung Cell Mol Physiol 294: L1260‐L1268, 2008.
 266. Vandenburgh H , Chromiak J , Shansky J , Del Tatto M , Lemaire J . Space travel directly induces skeletal muscle atrophy. Faseb J 13: 1031‐1038, 1999.
 267. Verheul AJ , Mantilla CB , Zhan WZ , Bernal M , Dekhuijzen PN , Sieck GC . Influence of corticosteroids on myonuclear domain size in the rat diaphragm muscle. J Appl Physiol 97: 1715‐1722, 2004.
 268. Vivanco I , Sawyers CL . The phosphatidylinositol 3‐Kinase AKT pathway in human cancer. Nat Rev Cancer 2: 489‐501, 2002.
 269. Wang X , Proud CG . The mTOR pathway in the control of protein synthesis. Physiology (Bethesda) 21: 362‐369, 2006.
 270. Waskiewicz AJ , Flynn A , Proud CG , Cooper JA . Mitogen‐activated protein kinases activate the serine/threonine kinases Mnk1 and Mnk2. Embo J 16: 1909‐1920, 1997.
 271. Waskiewicz AJ , Johnson JC , Penn B , Mahalingam M , Kimball SR , Cooper JA . Phosphorylation of the cap‐binding protein eukaryotic translation initiation factor 4E by protein kinase Mnk1 in vivo. Mol Cell Biol 19: 1871‐1880, 1999.
 272. Welsh GI , Miller CM , Loughlin AJ , Price NT , Proud CG . Regulation of eukaryotic initiation factor eIF2B: Glycogen synthase kinase‐3 phosphorylates a conserved serine which undergoes dephosphorylation in response to insulin. FEBS Lett 421: 125‐130, 1998.
 273. Welsh GI , Proud CG . Glycogen synthase kinase‐3 is rapidly inactivated in response to insulin and phosphorylates eukaryotic initiation factor eIF‐2B. Biochem J 294(Pt 3): 625‐629, 1993.
 274. Widrick JJ , Trappe SW , Blaser CA , Costill DL , Fitts RH . Isometric force and maximal shortening velocity of single muscle fibers from elite master runners. Am J Physiol 271: c666‐c675, 1996.
 275. Williamson DL , Bolster DR , Kimball SR , Jefferson LS . Time course changes in signaling pathways and protein synthesis in C2C12 myotubes following AMPK activation by AICAR. Am J Physiol Endocrinol Metab 291: E80‐E89, 2006.
 276. Zammit PS , Partridge TA , Yablonka‐Reuveni Z . The skeletal muscle satellite cell: The stem cell that came in from the cold. J Histochem Cytochem 54: 1177‐1191, 2006.
 277. Zengel JE , Reid SA , Sypert GW , Munson JB . Membrane electrical properties and prediction of motor‐unit type of medial gastrocnemius motoneurons in the cat. J Neurophysiol 53(5): 1323‐1344, 1985.
 278. Zhan WZ , Farkas GA , Schroeder MA , Gosselin LE , Sieck GC . Regional adaptations of rabbit diaphragm muscle fibers to unilateral denervation. J Appl Physiol 79: 941‐950, 1995.
 279. Zhan WZ , Miyata H , Prakash YS , Sieck GC . Metabolic and phenotypic adaptations of diaphragm muscle fibers with inactivation. J Appl Physiol 82: 1145‐1153, 1997.
 280. Zhan WZ , Sieck GC . Adaptations of diaphragm and medial gastrocnemius muscles to inactivity. J Appl Physiol 72: 1445‐1453, 1992.
 281. Zhao J , Brault JJ , Schild A , Cao P , Sandri M , Schiaffino S , Lecker SH , Goldberg AL . FoxO3 coordinately activates protein degradation by the autophagic/lysosomal and proteasomal pathways in atrophying muscle cells. Cell Metab 6: 472‐483, 2007.
 282. Zhong H , Roy RR , Siengthai B , Edgerton VR . Effects of inactivity on fiber size and myonuclear number in rat soleus muscle. J Appl Physiol 99: 1494‐1499, 2005.
 283. Zhu X , Lai C , Thomas S , Burden SJ . Neuregulin receptors, erbB3 and erbB4, are localized at neuromuscular synapses. EMBO J 14: 5842‐5848, 1995.

Contact Editor

Submit a note to the editor about this article by filling in the form below.

* Required Field

How to Cite

Heather M. Gransee, Carlos B. Mantilla, Gary C. Sieck. Respiratory Muscle Plasticity. Compr Physiol 2015, 2: 1441-1462. doi: 10.1002/cphy.c110050