Comprehensive Physiology Wiley Online Library

Gap Junctions

Full Article on Wiley Online Library



Abstract

Gap junctions are essential to the function of multicellular animals, which require a high degree of coordination between cells. In vertebrates, gap junctions comprise connexins and currently 21 connexins are known in humans. The functions of gap junctions are highly diverse and include exchange of metabolites and electrical signals between cells, as well as functions, which are apparently unrelated to intercellular communication. Given the diversity of gap junction physiology, regulation of gap junction activity is complex. The structure of the various connexins is known to some extent; and structural rearrangements and intramolecular interactions are important for regulation of channel function. Intercellular coupling is further regulated by the number and activity of channels present in gap junctional plaques. The number of connexins in cell‐cell channels is regulated by controlling transcription, translation, trafficking, and degradation; and all of these processes are under strict control. Once in the membrane, channel activity is determined by the conductive properties of the connexin involved, which can be regulated by voltage and chemical gating, as well as a large number of posttranslational modifications. The aim of the present article is to review our current knowledge on the structure, regulation, function, and pharmacology of gap junctions. This will be supported by examples of how different connexins and their regulation act in concert to achieve appropriate physiological control, and how disturbances of connexin function can lead to disease. © 2012 American Physiological Society. Compr Physiol 2:1981‐2035, 2012.

Comprehensive Physiology offers downloadable PowerPoint presentations of figures for non-profit, educational use, provided the content is not modified and full credit is given to the author and publication.

Download a PowerPoint presentation of all images


Figure 1. Figure 1.

Model of a Cx43 gap junction channel and monomer. (A) The channel pore location has been indicated by the yellow circle. (B) The Cx43 monomer with protein partners. The abbreviations are as follows: NT, N‐terminus; CL, cytoplasmic loop; CT, C‐terminus; E1 and E2, extracellular loops 1 and 2; TM1‐4, transmembrane segments 1‐4.

Figure 2. Figure 2.

Cx43 channel structure obtained by electron crystallography. The panel on the left shows a side view of the entire channel. The red lines represent the lipid bilayers. The red asterisk indicates the point at which the pore diameter is estimated to be the smallest. The panel on the right is a view from the cytoplasmic side. The channel is formed by six repeats of four identifiable densities (A‐D), each density corresponding to one transmembrane domain. Modified, with permission, from Unger VM, Kumar NM, Gilula NB, Yeager M. Science 283: 1176‐1180, 1999 (707).

Reprinted, with permission, from AAAS.
Figure 3. Figure 3.

Structure of the Cx26 gap junction channel and Cx26 protomer in ribbon representation. (A) Side view of the Cx26 gap junction channel. (B) Top view of the Cx26 gap junction channel showing the arrangement of the transmembrane helices TM1 to TM4. (C) Side view of the Cx26 protomer. Color code: red, NT; blue, TM1‐TM4; green, E1; yellow, E2; gray, disulphide bonds; dashed lines, CL and CT, which were not visible in the map. E1 and E2 are the loops connecting TM1 and TM2, and TM3 and TM4, respectively. Modified, with permission, from Maeda et al. 2009 (413).

Reprinted by permission from Macmillan Publishers Ltd: Nature (458: 597‐602), copyright [2009].
Figure 4. Figure 4.

“Ball‐and‐chain” model of Cx43 regulation. (A) Under normal conditions, the gate [cytoplasmic tail (CT)] is away from the pore. Under the appropriate stimulus, the gate swings toward the mouth of the channel, binds to a receptor [cytoplasmic loop (CL)] affiliated with the pore, and closes the channel. Lowest energy structure of the (B) Cx43CL and (C) Cx43CT domains; α‐helices colored red and yellow. Figure is modified, with permission, from Delmar M, Coombs W, Sorgen P, Duffy HS, Taffet SM, Structural bases for the chemical regulation of Connexin43 channels, Cardiovasc.Res., 2003, 62(2): 268‐275, (139) by permission of Oxford University Press, Duffy et al. 2002 (156), and Sorgen et al. 2004 (657), with permission.

Figure 5. Figure 5.

Conformational changes in Cx26 hemichannels observed in low and high calcium buffers by atomic force microscopy (AFM). (A) AFM topograph showing the extracellular connexon surface imaged in a calcium‐free buffer solution. Individual connexons exhibit defects in the number of subunits, as indicated by the circles. (B) Same connexon surface imaged in (A), but in the presence of 0.5 mmol/L calcium. The channel diameter has changed significantly as seen in the correlation averaged top view (inset) and the profile at the bottom of the inset. All images were displayed as relief tilted by 5°. (Modified, with permission, from Müller et al. 2002 (461).

Reprinted by permission from Macmillan Publishers Ltd: EMBO J (21: 3598‐3607), copyright [2002]).
Figure 6. Figure 6.

Possible channels formed by multiple connexins. The figure shows gap junctional channels of different composition. Homomeric connexons are formed by a single connexin type whereas connexons containing more than one connexin type is heteromeric. When connexons of the same composition form a cell‐cell channel it is homotypic and if the connexons differ in composition it is heterotypic.

Reprinted from Cell, 84(3), Kumar NM, Gilula NB, The gap junction communication channel, 381‐8, Copyright [1996], (342) with permission from Elsevier.
Figure 7. Figure 7.

Voltage dependence of connexin channels. Upper left panel shows the current elicited by imposing a plus or minus 100 mV gradient across Cx43 channels. The initial current that decays over time until it reaches a lower steady‐state current. Right panel shows a plot of the fractional conductance (steady‐state conductance (Gss) divided by the initial conductance (Gi)] as a function of transjunctional voltage for Cx40, Cx43, and Cx45. Lower left panel demonstrates the concept of gating polarity of Cx43 (negative gating polarity). If the voltage gradient is sufficiently large the gating particle will close the connexon that is relatively negative on the cytoplasmatic side. Figure adapted from Moreno AP, Biophysical properties of homomeric and heteromultimeric channels formed by cardiac connexins, Cardiovasc.Res., 2002, 62(2):276‐86, (452) by permission of Oxford University Press.

Figure 8. Figure 8.

Effect of cytoplasmic tail (CT) truncation on fast Vj gating in Cx43. (A) Left: trace of channel activity recorded at a transjunctional voltage of −60 mV. In the expanded inset, shows clear transitions between the main open and residual state (fast gating). Right: all‐events histogram showing the distribution of the observed conductance events. (B) Recording of activity by CT‐truncated Cx43 channels at Vj = −60 mV. The trace and all‐events histogram shows that only gating between the main open and closed state was observed. Figure adapted from Moreno AP, Chanson M, Elenes S, Anumonwo J, Scerri I, Gu H, Taffet SM, Delmar M, Role of the carboxyl terminal of connexin43 in transjunctional fast voltage gating, Circ.Res., 90(4):450‐7, 2002 (453), with permission.

Figure 9. Figure 9.

Role of ubiquitination in trafficking and degradation of Cx43. The left cell summarizes the events of polyubiquitination followed by ERAD. The right cells summarizes internalization and lysosomal degradation after Cx43 monoubiquitination.

Reprinted from Cell Signal., Vol 22, Kjenseth A, Fykerud T, Rivedal E, Leithe E, Regulation of gap junction intercellular communication by the ubiquitin system, 1267‐73, Copyright [2010] (321), with permission from Elsevier.
Figure 10. Figure 10.

Expression of connexins in normal vessels and during progression of artherosclerosis. The expression of Cx37, Cx40, Cx43, and Cx45 is indicated for the different cell types involved [endothelial cells (ECs), smooth muscle cells (SMCs), and monocytes (MCs)]. Adapted with kind permission from Springer Science+Business Media: Semin.Immunopathol., Connexins participate in the initiation and progression of atherosclerosis, 31, 2009, 49‐61, Morel S, Burnier L, Kwak BR, figure 3, (451).

Figure 11. Figure 11.

RXP‐E prevents particle‐receptor interaction and channel closure. (A) Open channel. (B) Channel closed by particle‐receptor interaction. (C) RXP‐E binds the cytoplasmic tail (CT) and prevents closure by interrupting binding to the receptor. Modified from Delmar M, Coombs W, Sorgen P, Duffy HS, Taffet SM, Structural bases for the chemical regulation of Connexin43 channels, Cardiovasc.Res., 2004, 62(2): 268‐75, (139), by permission of Oxford University Press.



Figure 1.

Model of a Cx43 gap junction channel and monomer. (A) The channel pore location has been indicated by the yellow circle. (B) The Cx43 monomer with protein partners. The abbreviations are as follows: NT, N‐terminus; CL, cytoplasmic loop; CT, C‐terminus; E1 and E2, extracellular loops 1 and 2; TM1‐4, transmembrane segments 1‐4.



Figure 2.

Cx43 channel structure obtained by electron crystallography. The panel on the left shows a side view of the entire channel. The red lines represent the lipid bilayers. The red asterisk indicates the point at which the pore diameter is estimated to be the smallest. The panel on the right is a view from the cytoplasmic side. The channel is formed by six repeats of four identifiable densities (A‐D), each density corresponding to one transmembrane domain. Modified, with permission, from Unger VM, Kumar NM, Gilula NB, Yeager M. Science 283: 1176‐1180, 1999 (707).

Reprinted, with permission, from AAAS.


Figure 3.

Structure of the Cx26 gap junction channel and Cx26 protomer in ribbon representation. (A) Side view of the Cx26 gap junction channel. (B) Top view of the Cx26 gap junction channel showing the arrangement of the transmembrane helices TM1 to TM4. (C) Side view of the Cx26 protomer. Color code: red, NT; blue, TM1‐TM4; green, E1; yellow, E2; gray, disulphide bonds; dashed lines, CL and CT, which were not visible in the map. E1 and E2 are the loops connecting TM1 and TM2, and TM3 and TM4, respectively. Modified, with permission, from Maeda et al. 2009 (413).

Reprinted by permission from Macmillan Publishers Ltd: Nature (458: 597‐602), copyright [2009].


Figure 4.

“Ball‐and‐chain” model of Cx43 regulation. (A) Under normal conditions, the gate [cytoplasmic tail (CT)] is away from the pore. Under the appropriate stimulus, the gate swings toward the mouth of the channel, binds to a receptor [cytoplasmic loop (CL)] affiliated with the pore, and closes the channel. Lowest energy structure of the (B) Cx43CL and (C) Cx43CT domains; α‐helices colored red and yellow. Figure is modified, with permission, from Delmar M, Coombs W, Sorgen P, Duffy HS, Taffet SM, Structural bases for the chemical regulation of Connexin43 channels, Cardiovasc.Res., 2003, 62(2): 268‐275, (139) by permission of Oxford University Press, Duffy et al. 2002 (156), and Sorgen et al. 2004 (657), with permission.



Figure 5.

Conformational changes in Cx26 hemichannels observed in low and high calcium buffers by atomic force microscopy (AFM). (A) AFM topograph showing the extracellular connexon surface imaged in a calcium‐free buffer solution. Individual connexons exhibit defects in the number of subunits, as indicated by the circles. (B) Same connexon surface imaged in (A), but in the presence of 0.5 mmol/L calcium. The channel diameter has changed significantly as seen in the correlation averaged top view (inset) and the profile at the bottom of the inset. All images were displayed as relief tilted by 5°. (Modified, with permission, from Müller et al. 2002 (461).

Reprinted by permission from Macmillan Publishers Ltd: EMBO J (21: 3598‐3607), copyright [2002]).


Figure 6.

Possible channels formed by multiple connexins. The figure shows gap junctional channels of different composition. Homomeric connexons are formed by a single connexin type whereas connexons containing more than one connexin type is heteromeric. When connexons of the same composition form a cell‐cell channel it is homotypic and if the connexons differ in composition it is heterotypic.

Reprinted from Cell, 84(3), Kumar NM, Gilula NB, The gap junction communication channel, 381‐8, Copyright [1996], (342) with permission from Elsevier.


Figure 7.

Voltage dependence of connexin channels. Upper left panel shows the current elicited by imposing a plus or minus 100 mV gradient across Cx43 channels. The initial current that decays over time until it reaches a lower steady‐state current. Right panel shows a plot of the fractional conductance (steady‐state conductance (Gss) divided by the initial conductance (Gi)] as a function of transjunctional voltage for Cx40, Cx43, and Cx45. Lower left panel demonstrates the concept of gating polarity of Cx43 (negative gating polarity). If the voltage gradient is sufficiently large the gating particle will close the connexon that is relatively negative on the cytoplasmatic side. Figure adapted from Moreno AP, Biophysical properties of homomeric and heteromultimeric channels formed by cardiac connexins, Cardiovasc.Res., 2002, 62(2):276‐86, (452) by permission of Oxford University Press.



Figure 8.

Effect of cytoplasmic tail (CT) truncation on fast Vj gating in Cx43. (A) Left: trace of channel activity recorded at a transjunctional voltage of −60 mV. In the expanded inset, shows clear transitions between the main open and residual state (fast gating). Right: all‐events histogram showing the distribution of the observed conductance events. (B) Recording of activity by CT‐truncated Cx43 channels at Vj = −60 mV. The trace and all‐events histogram shows that only gating between the main open and closed state was observed. Figure adapted from Moreno AP, Chanson M, Elenes S, Anumonwo J, Scerri I, Gu H, Taffet SM, Delmar M, Role of the carboxyl terminal of connexin43 in transjunctional fast voltage gating, Circ.Res., 90(4):450‐7, 2002 (453), with permission.



Figure 9.

Role of ubiquitination in trafficking and degradation of Cx43. The left cell summarizes the events of polyubiquitination followed by ERAD. The right cells summarizes internalization and lysosomal degradation after Cx43 monoubiquitination.

Reprinted from Cell Signal., Vol 22, Kjenseth A, Fykerud T, Rivedal E, Leithe E, Regulation of gap junction intercellular communication by the ubiquitin system, 1267‐73, Copyright [2010] (321), with permission from Elsevier.


Figure 10.

Expression of connexins in normal vessels and during progression of artherosclerosis. The expression of Cx37, Cx40, Cx43, and Cx45 is indicated for the different cell types involved [endothelial cells (ECs), smooth muscle cells (SMCs), and monocytes (MCs)]. Adapted with kind permission from Springer Science+Business Media: Semin.Immunopathol., Connexins participate in the initiation and progression of atherosclerosis, 31, 2009, 49‐61, Morel S, Burnier L, Kwak BR, figure 3, (451).



Figure 11.

RXP‐E prevents particle‐receptor interaction and channel closure. (A) Open channel. (B) Channel closed by particle‐receptor interaction. (C) RXP‐E binds the cytoplasmic tail (CT) and prevents closure by interrupting binding to the receptor. Modified from Delmar M, Coombs W, Sorgen P, Duffy HS, Taffet SM, Structural bases for the chemical regulation of Connexin43 channels, Cardiovasc.Res., 2004, 62(2): 268‐75, (139), by permission of Oxford University Press.

References
 1. Ackert CL, Gittens JE, O'Brien MJ, Eppig JJ, Kidder GM. Intercellular communication via connexin43 gap junctions is required for ovarian folliculogenesis in the mouse. Dev Biol 233: 258‐270, 2001.
 2. Ahmad S, Evans WH. Post‐translational integration and oligomerization of connexin 26 in plasma membranes and evidence of formation of membrane pores: Implications for the assembly of gap junctions. Biochem J 365: 693‐699, 2002.
 3. Ai X, Pogwizd SM. Connexin 43 Downregulation and dephosphorylation in nonischemic heart failure is associated with enhanced colocalized protein phosphatase Type 2A. Circ Res 96: 54‐63, 2005.
 4. Ai Z, Fischer A, Spray DC, Brown AM, Fishman GI. Wnt‐1 regulation of connexin43 in cardiac myocytes. J Clin Invest 105: 161‐171, 2000.
 5. Al‐Ubaidi MR, White TW, Ripps H, Poras I, Avner P, Gomes D, Bruzzone R. Functional properties, developmental regulation, and chromosomal localization of murine connexin36, a gap‐junctional protein expressed preferentially in retina and brain. J Neurosci Res 59: 813‐826, 2000.
 6. Anderson C, Catoe H, Werner R. MIR‐206 regulates connexin43 expression during skeletal muscle development. Nucleic Acids Res 34: 5863‐5871, 2006.
 7. Anderson CM, Bergher JP, Swanson RA. ATP‐induced ATP release from astrocytes. J Neurochem 88: 246‐256, 2004.
 8. Anselmi F, Hernandez VH, Crispino G, Seydel A, Ortolano S, Roper SD, Kessaris N, Richardson W, Rickheit G, Filippov MA, Monyer H, Mammano F. ATP release through connexin hemichannels and gap junction transfer of second messengers propagate Ca2+ signals across the inner ear. Proc Natl Acad Sci U S A 105: 18770‐18775, 2008.
 9. Anumonwo JM, Taffet SM, Gu H, Chanson M, Moreno AP, Delmar M. The carboxyl terminal domain regulates the unitary conductance and voltage dependence of connexin40 gap junction channels. Circ Res 88: 666‐673, 2001.
 10. Aonuma S, Kohama Y, Makino T, Fujisawa Y. Studies of heart. XXI. Amino acid sequence of antiarrhythmic peptide (AAP) isolated from atria. J Pharmacobiodyn 5: 40‐48, 1982.
 11. Armstrong CM, Bezanilla F. Inactivation of sodium channel .2. Gating current experiments. J Gen Physiol 70: 567‐590, 1977.
 12. Armstrong SC, Kao R, Gao W, Shivell LC, Downey JM, Honkanen RE, Ganote CE. Comparison of in vitro preconditioning responses of isolated pig and rabbit cardiomyocytes: Effects of a protein phosphatase inhibitor, fostriecin. J Mol Cell Cardiol 29: 3009‐3024, 1997.
 13. Axelsen LN, Haugan K, Stahlhut M, Kjolbye AL, Hennan JK, Holstein‐Rathlou NH, Petersen JS, Nielsen MS. Increasing gap junctional coupling: A tool for dissecting the role of gap junctions. J Membr Biol 216: 23‐35, 2007.
 14. Axelsen LN, Stahlhut M, Mohammed S, Larsen BD, Nielsen MS, Holstein‐Rathlou NH, Andersen S, Jensen ON, Hennan JK, Kjølbye AL. Identification of ischemia‐regulated phosphorylation sites in connexin43: A possible target for the antiarrhythmic peptide analogue rotigaptide (ZP123). J Mol Cell Cardiol 40: 790‐798, 2006.
 15. Azarashvili T, Baburina Y, Grachev D, Krestinina O, Evtodienko Y, Stricker R, Reiser G. Calcium‐induced permeability transition in rat brain mitochondria is promoted by carbenoxolone through targeting connexin43. Am J Physiol Cell Physiol 300: C707‐C720, 2011.
 16. Baldo GJ, Gong X, Martinez‐Wittinghan FJ, Kumar NM, Gilula NB, Mathias RT. Gap junctional coupling in lenses from alpha(8) connexin knockout mice. J Gen Physiol 118: 447‐456, 2001.
 17. Baldo GJ, Mathias RT. Spatial variations in membrane properties in the intact rat lens. Biophys J 63: 518‐529, 1992.
 18. Balice‐Gordon RJ, Bone LJ, Scherer SS. Functional gap junctions in the schwann cell myelin sheath. J Cell Biol 142: 1095‐1104, 1998.
 19. Banerjee D, Das S, Molina SA, Madgwick D, Katz MR, Jena S, Bossmann LK, Pal D, Takemoto DJ. Investigation of the reciprocal relationship between the expression of two gap junction connexin proteins, connexin46 and connexin43. J Biol Chem 2011.
 20. Bao L, Locovei S, Dahl G. Pannexin membrane channels are mechanosensitive conduits for ATP. FEBS Lett 572: 65‐68, 2004.
 21. Bao L, Sachs F, Dahl G. Connexins are mechanosensitive. Am J Physiol Cell Physiol 287: C1389‐C1395, 2004.
 22. Bao X, Reuss L, Altenberg GA. Regulation of purified and reconstituted connexin 43 hemichannels by protein kinase C‐mediated phosphorylation of Serine 368. J Biol Chem 279: 20058‐20066, 2004.
 23. Bargiotas P, Monyer H, Schwaninger M. Hemichannels in cerebral ischemia. Curr Mol Med 9: 186‐194, 2009.
 24. Barrio LC, Capel J, Jarillo JA, Castro C, Revilla A. Species‐specific voltage‐gating properties of connexin‐45 junctions expressed in Xenopus oocytes. Biophys J 73: 757‐769, 1997.
 25. Barrio LC, Suchyna T, Bargiello T, Xu LX, Roginski RS, Bennett MV, Nicholson BJ. Gap junctions formed by connexins 26 and 32 alone and in combination are differently affected by applied voltage. Proc Natl Acad Sci U S A 88: 8410‐8414, 1991.
 26. Bassnett S, Duncan G. Direct measurement of pH in the rat lens by ion‐sensitive microelectrodes. Exp Eye Res 40: 585‐590, 1985.
 27. Bastiaanse EM, Jongsma HJ, van der Laarse A, Takens‐Kwak BR. Heptanol‐induced decrease in cardiac gap junctional conductance is mediated by a decrease in the fluidity of membranous cholesterol‐rich domains. J Membr Biol 136: 135‐145, 1993.
 28. Batias C, Siffroi JP, Fenichel P, Pointis G, Segretain D. Connexin43 gene expression and regulation in the rodent seminiferous epithelium. J Histochem Cytochem 48: 793‐805, 2000.
 29. Bavamian S, Klee P, Britan A, Populaire C, Caille D, Cancela J, Charollais A, Meda P. Islet‐cell‐to‐cell communication as basis for normal insulin secretion. Diabetes Obes Metab 9(Suppl 2): 118‐132, 2007.
 30. Beardslee MA, Laing JG, Beyer EC, Saffitz JE. Rapid turnover of connexin43 in the adult rat heart. Circ Res 83: 629‐635, 1998.
 31. Beardslee MA, Lerner DL, Tadros PN, Laing JG, Beyer EC, Yamada KA, Kléber AG, Schuessler RB, Saffitz JE. Dephosphorylation and intracellular redistribution of ventricular connexin43 during electrical uncoupling induced by ischemia. Circ Res 87: 656‐662, 2000.
 32. Beblo DA, Veenstra RD. Monovalent cation permeation through the connexin40 gap junction channel. Cs, Rb, K, Na, Li, TEA, TMA, TBA, and effects of anions Br, Cl, F, acetate, aspartate, glutamate, and NO3. J Gen Physiol 109: 509‐522, 1997.
 33. Beblo DA, Wang HZ, Beyer EC, Westphale EM, Veenstra RD. Unique conductance, gating, and selective permeability properties of gap junction channels formed by connexin40. Circ Res 77: 813‐822, 1995.
 34. Belluardo N, Trovato‐Salinaro A, Mudo G, Hurd YL, Condorelli DF. Structure, chromosomal localization, and brain expression of human Cx36 gene. J Neurosci Res 57: 740‐752, 1999.
 35. Beltramello M, Piazza V, Bukauskas FF, Pozzan T, Mammano F. Impaired permeability to Ins(1,4,5)P3 in a mutant connexin underlies recessive hereditary deafness. Nat Cell Biol 7: 63‐69, 2005.
 36. Belzer V, Kobilo T, Rich A, Hanani M. Intercellular coupling among interstitial cells of Cajal in the guinea pig small intestine. Cell Tissue Res 307: 15‐21, 2002.
 37. Belzer V, Nissan A, Freund HR, Hanani M. Coupling among interstitial cells of Cajal in the human ileum. Neurogastroenterol Motil 16: 75‐80, 2004.
 38. Bennett MV, Contreras JE, Bukauskas FF, Saez JC. New roles for astrocytes: Gap junction hemichannels have something to communicate. Trends Neurosci 26: 610‐617, 2003.
 39. Bermudez‐Fajardo A, Yliharsila M, Evans WH, Newby AC, Oviedo‐Orta E. CD4+ T lymphocyte subsets express connexin 43 and establish gap junction channel communication with macrophages in vitro. J Leukoc Biol 82: 608‐612, 2007.
 40. Berthoud VM, Beyer EC, Kurata WE, Lau AF, Lampe PD. The Gap‐junction protein Connexin 56 is phosphorylated in the intracellular loop and the carboxy‐terminal region. Eur J Biochem 244: 89‐97, 1997.
 41. Bevans CG, Harris AL. Regulation of connexin channels by pH. Direct action of the protonated form of taurine and other aminosulfonates. J Biol Chem 274: 3711‐3719, 1999.
 42. Bevilacqua LM, Simon AM, Maguire CT, Gehrmann J, Wakimoto H, Paul DL, Berul CI. A targeted disruption in connexin40 leads to distinct atrioventricular conduction defects. J Interv Card Electrophysiol 4: 459‐467, 2000.
 43. Beyer EC, Kistler J, Paul DL, Goodenough DA. Antisera directed against connexin43 peptides react with a 43‐kD protein localized to gap junctions in myocardium and other tissues. J Cell Biol 108: 595‐605, 1989.
 44. Bierhuizen MF, Boulaksil M, van Stuijvenberg L, van der Nagel R, Jansen AT, Mutsaers NA, Yildirim C, van Veen TA, de Windt LJ, Vos MA, van Rijen HV. In calcineurin‐induced cardiac hypertrophy expression of Nav1.5, Cx40 and Cx43 is reduced by different mechanisms. J Mol Cell Cardiol 45: 373‐384, 2008.
 45. Bierhuizen MF, van Amersfoorth SC, Groenewegen WA, Vliex S, Jongsma HJ. Characterization of the rat connexin40 promoter: Two Sp1/Sp3 binding sites contribute to transcriptional activation. Cardiovasc Res 46: 511‐522, 2000.
 46. Blackburn JP, Peters NS, Yeh HI, Rothery S, Green CR, Severs NJ. Upregulation of connexin43 gap junctions during early stages of human coronary atherosclerosis. Arterioscler Thromb Vasc Biol 15: 1219‐1228, 1995.
 47. Bloomfield SA, Volgyi B. The diverse functional roles and regulation of neuronal gap junctions in the retina. Nat Rev Neurosci 10: 495‐506, 2009.
 48. Boassa D, Solan JL, Papas A, Thornton P, Lampe PD, Sosinsky GE. Trafficking and recycling of the connexin43 gap junction protein during mitosis. Traffic 11: 1471‐1486, 2010.
 49. Boengler K, Dodoni G, Rodriguez‐Sinovas A, Cabestrero A, Ruiz‐Meana M, Gres P, Konietzka I, Lopez‐Iglesias C, Garcia‐Dorado D, Di LF, Heusch G, Schulz R. Connexin 43 in cardiomyocyte mitochondria and its increase by ischemic preconditioning. Cardiovasc Res 67: 234‐244, 2005.
 50. Boengler K, Konietzka I, Buechert A, Heinen Y, Garcia‐Dorado D, Heusch G, Schulz R. Loss of ischemic preconditioning's cardioprotection in aged mouse hearts is associated with reduced gap junctional and mitochondrial levels of connexin 43. Am J Physiol Heart Circ Physiol 292: H1764‐H1769, 2007.
 51. Boengler K, Stahlhofen S, van de Sand A, Gres P, Ruiz‐Meana M, Garcia‐Dorado D, Heusch G, Schulz R. Presence of connexin 43 in subsarcolemmal, but not in interfibrillar cardiomyocyte mitochondria. Basic Res Cardiol 104: 141‐147, 2009.
 52. Bolon ML, Peng T, Kidder GM, Tyml K. Lipopolysaccharide plus hypoxia and reoxygenation synergistically reduce electrical coupling between microvascular endothelial cells by dephosphorylating Connexin40. J Cell Physiol 217: 350‐359, 2008.
 53. Bond SL, Bechberger JF, Khoo NK, Naus CC. Transfection of C6 glioma cells with connexin32: The effects of expression of a nonendogenous gap junction protein. Cell Growth Differ 5: 179‐186, 1994.
 54. Bondurand N, Girard M, Pingault V, Lemort N, Dubourg O, Goossens M. Human Connexin 32, a gap junction protein altered in the X‐linked form of Charcot‐Marie‐Tooth disease, is directly regulated by the transcription factor SOX10. Hum Mol Genet 10: 2783‐2795, 2001.
 55. Boogerd KJ, Wong LY, Christoffels VM, Klarenbeek M, Ruijter JM, Moorman AF, Barnett P. Msx1 and Msx2 are functional interacting partners of T‐box factors in the regulation of Connexin43. Cardiovasc Res 78: 485‐493, 2008.
 56. Borinstein SC, Conerly M, Dzieciatkowski S, Biswas S, Washington MK, Trobridge P, Henikoff S, Grady WM. Aberrant DNA methylation occurs in colon neoplasms arising in the azoxymethane colon cancer model. Mol Carcinog 49: 94‐103, 2010.
 57. Bouvier D, Spagnol G, Chenavas S, Kieken F, Vitrac H, Brownell S, Kellezi A, Forge V, Sorgen PL. Characterization of the structure and intermolecular interactions between the connexin40 and connexin43 carboxyl‐terminal and cytoplasmic loop domains. J Biol Chem 284: 34257‐34271, 2009.
 58. Boyett MR, Inada S, Yoo S, Li J, Liu J, Tellez J, Greener ID, Honjo H, Billeter R, Lei M, Zhang H, Efimov IR, Dobrzynski H. Connexins in the sinoatrial and atrioventricular nodes. Adv Cardiol 42: 175‐197, 2006.
 59. Braet K, Aspeslagh S, Vandamme W, Willecke K, Martin PE, Evans WH, Leybaert L. Pharmacological sensitivity of ATP release triggered by photoliberation of inositol‐1,4,5‐trisphosphate and zero extracellular calcium in brain endothelial cells. J Cell Physiol 197: 205‐213, 2003.
 60. Braet K, Vandamme W, Martin PE, Evans WH, Leybaert L. Photoliberating inositol‐1,4,5‐trisphosphate triggers ATP release that is blocked by the connexin mimetic peptide gap 26. Cell Calcium 33: 37‐48, 2003.
 61. Braun AP, Schulman H. The Multifunctional calcium/calmodulin‐dependent protein kinase: From form to ction. Annu Rev Physiol 57: 417‐445, 1995.
 62. Bravo‐Moreno JF, Diaz‐Sanchez V, Montoya‐Flores JG, Lamoyi E, Saez JC, Perez‐Armendariz EM. Expression of connexin43 in mouse Leydig, Sertoli, and germinal cells at different stages of postnatal development. Anat Rec 264: 13‐24, 2001.
 63. Brehm R, Zeiler M, Ruttinger C, Herde K, Kibschull M, Winterhager E, Willecke K, Guillou F, Lecureuil C, Steger K, Konrad L, Biermann K, Failing K, Bergmann M. A sertoli cell‐specific knockout of connexin43 prevents initiation of spermatogenesis. Am J Pathol 171: 19‐31, 2007.
 64. Brink PR, Cronin K, Banach K, Peterson E, Westphale EM, Seul KH, Ramanan SV, Beyer EC. Evidence for heteromeric gap junction channels formed from rat connexin43 and human connexin37. Am J Physiol 273: C1386‐C1396, 1997.
 65. Bruneau BG, Nemer G, Schmitt JP, Charron F, Robitaille L, Caron S, Conner DA, Gessler M, Nemer M, Seidman CE, Seidman JG. A murine model of Holt‐Oram syndrome defines roles of the T‐box transcription factor Tbx5 in cardiogenesis and disease. Cell 106: 709‐721, 2001.
 66. Bruzzone R, Hormuzdi SG, Barbe MT, Herb A, Monyer H. Pannexins, a family of gap junction proteins expressed in brain. Proc Natl Acad Sci U S A 100: 13644‐13649, 2003.
 67. Bruzzone S, Franco L, Guida L, Zocchi E, Contini P, Bisso A, Usai C, De FA. A self‐restricted CD38‐connexin 43 cross‐talk affects NAD+ and cyclic ADP‐ribose metabolism and regulates intracellular calcium in 3T3 fibroblasts. J Biol Chem 276: 48300‐48308, 2001.
 68. Bruzzone S, Guida L, Zocchi E, Franco L, De FA. Connexin 43 hemi channels mediate Ca2+‐regulated transmembrane NAD+ fluxes in intact cells. FASEB J 15: 10‐12, 2001.
 69. Buhl DL, Harris KD, Hormuzdi SG, Monyer H, Buzsaki G. Selective impairment of hippocampal gamma oscillations in connexin‐36 knock‐out mouse in vivo. J Neurosci 23: 1013‐1018, 2003.
 70. Bukauskas FF, Bukauskiene A, Bennett MV, Verselis VK. Gating properties of gap junction channels assembled from connexin43 and connexin43 fused with green fluorescent protein. Biophys J 81: 137‐152, 2001.
 71. Bukauskas FF, Elfgang C, Willecke K, Weingart R. Biophysical properties of gap junction channels formed by mouse connexin40 in induced pairs of transfected human HeLa cells. Biophys J 68: 2289‐2298, 1995.
 72. Bukauskas FF, Verselis VK. Gap junction channel gating. Biochim Biophys Acta 1662: 42‐60, 2004.
 73. Bukauskas FF, Weingart R. Multiple conductance states of newly formed single gap junction channels between insect cells. Pflugers Arch 423: 152‐154, 1993.
 74. Bukauskas FF, Weingart R. Voltage‐dependent gating of single gap junction channels in an insect cell line. Biophys J 67: 613‐625, 1994.
 75. Burr GS, Mitchell CK, Keflemariam YJ, Heidelberger R, O'Brien J. Calcium‐dependent binding of calmodulin to neuronal gap junction proteins. Biochem Biophys Res Commun 335: 1191‐1198, 2005.
 76. Burt JM. Block of intercellular communication: Interaction of intracellular H+ and Ca2+. Am J Physiol 253: C607‐C612, 1987.
 77. Burt JM, Massey KD, Minnich BN. Uncoupling of cardiac cells by fatty acids: Structure‐activity relationships. Am J Physiol 260: C439‐C448, 1991.
 78. Burt JM, Spray DC. Volatile anesthetics block intercellular communication between neonatal rat myocardial cells. Circ Res 65: 829‐837, 1989.
 79. Butterweck A, Gergs U, Elfgang C, Willecke K, Traub O. Immunochemical characterization of the gap junction protein connexin45 in mouse kidney and transfected human HeLa cells. J Membr Biol 141: 247‐256, 1994.
 80. Cameron SJ, Malik S, Akaike M, Lerner‐Marmarosh N, Yan C, Lee JD, Abe JI, Yang J. Regulation of epidermal growth factor‐induced Connexin 43 gap junction communication by big mitogen‐activated protein kinase 1/ERK5 but not ERK1/2 kinase activation. J Biol Chem 278: 18682‐18688, 2003.
 81. Campos‐Toimil M, Edwardson JM, Thomas P. Acetylcholine‐induced zymogen granule exocytosis: Comparison between acini and single pancreatic acinar cells. Pancreas 24: 179‐183, 2002.
 82. Cancelas JA, Koevoet WL, De Koning AE, Mayen AE, Rombouts EJ, Ploemacher RE. Connexin‐43 gap junctions are involved in multiconnexin‐expressing stromal support of hemopoietic progenitors and stem cells. Blood 96: 498‐505, 2000.
 83. Chadjichristos CE, Scheckenbach KE, van Veen TA, Richani Sarieddine MZ, de WC, Yang Z, Roth I, Bacchetta M, Viswambharan H, Foglia B, Dudez T, van Kempen MJ, Coenjaerts FE, Miquerol L, Deutsch U, Jongsma HJ, Chanson M, Kwak BR. Endothelial‐specific deletion of connexin40 promotes atherosclerosis by increasing CD73‐dependent leukocyte adhesion. Circulation 121: 123‐131, 2010.
 84. Chaldoupi SM, Loh P, Hauer RNW, de Bakker JMT, van Rijen HVM. The role of connexin40 in atrial fibrillation. Cardiovasc Res 84: 15‐23, 2009.
 85. Chappell RL, Qian H, Zakevicius J, Ripps H. Histidine suppresses zinc modulation of connexin hemichannels. Biol Bull 207: 188‐190, 2004.
 86. Chappell RL, Zakevicius J, Ripps H. Zinc modulation of hemichannel currents in Xenopus oocytes. Biol Bull 205: 209‐211, 2003.
 87. Chen JT, Cheng YW, Chou MC, Sen‐Lin T, Lai WW, Ho WL, Lee H. The correlation between aberrant connexin 43 mRNA expression induced by promoter methylation and nodal micrometastasis in non‐small cell lung cancer. Clin Cancer Res 9: 4200‐4204, 2003.
 88. Chen Y, Huhn D, Knosel T, Pacyna‐Gengelbach M, Deutschmann N, Petersen I. Downregulation of connexin 26 in human lung cancer is related to promoter methylation. Int J Cancer 113: 14‐21, 2005.
 89. Chow L, Lye SJ. Expression of the gap junction protein connexin‐43 is increased in the human myometrium toward term and with the onset of labor. Am J Obstet Gynecol 170: 788‐795, 1994.
 90. Christoffels VM, Hoogaars WM, Tessari A, Clout DE, Moorman AF, Campione M. T‐box transcription factor Tbx2 represses differentiation and formation of the cardiac chambers. Dev Dyn 229: 763‐770, 2004.
 91. Chu G, Carr AN, Young KB, Lester JW, Yatani A, Sanbe A, Colbert MC, Schwartz SM, Frank KF, Lampe PD, Robbins J, Molkentin JD, Kranias EG. Enhanced myocyte contractility and Ca2+ handling in a calcineurin transgenic model of heart failure. Cardiovasc Res 54: 105‐116, 2002.
 92. Chung SS, Choi C, Wang X, Hallock L, Wolgemuth DJ. Aberrant distribution of junctional complex components in retinoic acid receptor alpha‐deficient mice. Microsc Res Tech 73: 583‐596, 2010.
 93. Chung TH, Wang SM, Chang YC, Chen YL, Wu JC. 18+¦‐glycyrrhetinic acid promotes src interaction with connexin43 in rat cardiomyocytes. J Cell Biochem 100: 653‐664, 2007.
 94. Cina C, Maass K, Theis M, Willecke K, Bechberger JF, Naus CC. Involvement of the cytoplasmic C‐terminal domain of connexin43 in neuronal migration. J Neurosci 29: 2009‐2021, 2009.
 95. Ciray HN, Guner H, Hakansson H, Tekelioglu M, Roomans GM, Ulmsten U. Morphometric analysis of gap junctions in nonpregnant and term pregnant human myometrium. Acta Obstet Gynecol Scand 74: 497‐504, 1995.
 96. Clair C, Chalumeau C, Tordjmann T, Poggioli J, Erneux C, Dupont G, Combettes L. Investigation of the roles of Ca(2+) and InsP(3) diffusion in the coordination of Ca(2+) signals between connected hepatocytes. J Cell Sci 114: 1999‐2007, 2001.
 97. Clarke TC, Thomas D, Petersen JS, Evans WH, Martin PE. The antiarrhythmic peptide rotigaptide (ZP123) increases gap junction intercellular communication in cardiac myocytes and HeLa cells expressing connexin 43. Br J Pharmacol 147: 486‐495, 2006.
 98. Clarke TC, Williams OJ, Martin PE, Evans WH. ATP release by cardiac myocytes in a simulated ischaemia model: Inhibition by a connexin mimetic and enhancement by an antiarrhythmic peptide. Eur J Pharmacol 605: 9‐14, 2009.
 99. Cluff AH, Bystrom B, Klimaviciute A, Dahlqvist C, Cebers G, Malmstrom A, Ekman‐Ordeberg G. Prolonged labour associated with lower expression of syndecan 3 and connexin 43 in human uterine tissue. Reprod Biol Endocrinol 4: 24, 2006.
 100. Coco S, Calegari F, Pravettoni E, Pozzi D, Taverna E, Rosa P, Matteoli M, Verderio C. Storage and release of ATP from astrocytes in culture. J Biol Chem 278: 1354‐1362, 2003.
 101. Cohen PTW. Novel protein serine/threonine phosphatases: Variety is the spice of life. Trends Biochem Sci 22: 245‐251, 1997.
 102. Colussi C, Rosati J, Straino S, Spallotta F, Berni R, Stilli D, Rossi S, Musso E, Macchi E, Mai A, Sbardella G, Castellano S, Chimenti C, Frustaci A, Nebbioso A, Altucci L, Capogrossi MC, Gaetano C. Ne‐lysine acetylation determines dissociation from GAP junctions and lateralization of connexin 43 in normal and dystrophic heart. Proc Natl Acad Sci U S A 108: 2795‐2800, 2011.
 103. Condorelli DF, Belluardo N, Trovato‐Salinaro A, Mudo G. Expression of Cx36 in mammalian neurons. Brain Res Brain Res Rev 32: 72‐85, 2000.
 104. Connors BW, Long MA. Electrical synapses in the mammalian brain. Annu Rev Neurosci 27: 393‐418, 2004.
 105. Connors BW, Ransom BR, Kunis DM, Gutnick MJ. Activity‐dependent K+ accumulation in the developing rat optic nerve. Science 216: 1341‐1343, 1982.
 106. Contreras JE, Saez JC, Bukauskas FF, Bennett MV. Gating and regulation of connexin 43 (Cx43) hemichannels. Proc Natl Acad Sci U S A 100: 11388‐11393, 2003.
 107. Contreras JE, Sanchez HA, Eugenin EA, Speidel D, Theis M, Willecke K, Bukauskas FF, Bennett MV, Saez JC. Metabolic inhibition induces opening of unapposed connexin 43 gap junction hemichannels and reduces gap junctional communication in cortical astrocytes in culture. Proc Natl Acad Sci U S A 99: 495‐500, 2002.
 108. Contreras JE, Sanchez HA, Veliz LP, Bukauskas FF, Bennett MV, Saez JC. Role of connexin‐based gap junction channels and hemichannels in ischemia‐induced cell death in nervous tissue. Brain Res Brain Res Rev 47: 290‐303, 2004.
 109. Cooper CD, Lampe PD. Casein Kinase 1 Regulates Connexin‐43 Gap Junction Assembly. J Biol Chem 277: 44962‐44968, 2002.
 110. Cox NJ, Frigge M, Nicolae DL, Concannon P, Hanis CL, Bell GI, Kong A. Loci on chromosomes 2 (NIDDM1) and 15 interact to increase susceptibility to diabetes in Mexican Americans. Nat Genet 21: 213‐215, 1999.
 111. Cristancho JM, Campos de Carvalho AC, Varanda WA. Short term regulation of cell‐cell communication in TM3 Leydig cells. A perforated patch study. Biochim Biophys Acta 1496: 325‐332, 2000.
 112. Cronier L, Crespin S, Strale PO, Defamie N, Mesnil M. Gap junctions and cancer: New functions for an old story. Antioxid Redox Signal 11: 323‐338, 2009.
 113. Dahl G. Gap junction‐mimetic peptides do work, but in unexpected ways. Cell Commun Adhes 14: 259‐264, 2007.
 114. Dahl G, Locovei S. Pannexin: To gap or not to gap, is that a question? IUBMB Life 58: 409‐419, 2006.
 115. Dahl G, Nonner W, Werner R. Attempts to define functional domains of gap junction proteins with synthetic peptides. Biophys J 67: 1816‐1822, 1994.
 116. Dahm R, van MJ, Prescott AR, Quinlan RA. Gap junctions containing alpha8‐connexin (MP70) in the adult mammalian lens epithelium suggests a re‐evaluation of its role in the lens. Exp Eye Res 69: 45‐56, 1999.
 117. Dang X, Doble BW, Kardami E. The carboxy‐tail of connexin‐43 localizes to the nucleus and inhibits cell growth. Mol Cell Biochem 242: 35‐38, 2003.
 118. Dang X, Jeyaraman M, Kardami E. Regulation of connexin‐43‐mediated growth inhibition by a phosphorylatable amino‐acid is independent of gap junction‐forming ability. Mol Cell Biochem 289: 201‐207, 2006.
 119. Daniel EE. Communication between interstitial cells of Cajal and gastrointestinal muscle. Neurogastroenterol Motil 16(Suppl 1): 118‐122, 2004.
 120. Daniel EE, Wang YF. Gap junctions in intestinal smooth muscle and interstitial cells of Cajal. Microsc Res Tech 47: 309‐320, 1999.
 121. Danik SB, Liu F, Zhang J, Suk HJ, Morley GE, Fishman GI, Gutstein DE. Modulation of cardiac gap junction expression and arrhythmic susceptibility. Circ Res 95: 1035‐1041, 2004.
 122. Darrow BJ, Laing JG, Lampe PD, Saffitz JE, Beyer EC. Expression of multiple connexins in cultured neonatal rat ventricular myocytes. Circ Res 76: 381‐387, 1995.
 123. Das S, Smith TD, Das Sarma J, Ritzenthaler JD, Maza J, Kaplan BE, Cunningham LA, Suaud L, Hubbard MJ, Rubenstein RC, Koval M. ERp29 restricts Connexin43 oligomerization in the endoplasmic reticulum. Mol Biol Cell 20: 2593‐2604, 2009.
 124. Dasgupta C, Martinez AM, Zuppan CW, Shah MM, Bailey LL, Fletcher WH. Identification of connexin43 (alpha1) gap junction gene mutations in patients with hypoplastic left heart syndrome by denaturing gradient gel electrophoresis (DGGE). Mutat Res 479: 173‐186, 2001.
 125. Davidson JS, Baumgarten IM. Glycyrrhetinic acid derivatives: A novel class of inhibitors of gap‐junctional intercellular communication. Structure‐activity relationships. J Pharmacol Exp Ther 246: 1104‐1107, 1988.
 126. Davidson JS, Baumgarten IM, Harley EH. Reversible inhibition of intercellular junctional communication by glycyrrhetinic acid. Biochem Biophys Res Commun 134: 29‐36, 1986.
 127. Davis LM, Kanter HL, Beyer EC, Saffitz JE. Distinct gap junction protein phenotypes in cardiac tissues with disparate conduction properties. J Am Coll Cardiol 24: 1124‐1132, 1994.
 128. Davis LM, Rodefeld ME, Green K, Beyer EC, Saffitz JE. Gap junction protein phenotypes of the human heart and conduction system. J Cardiovasc Electrophysiol 6: 813‐822, 1995.
 129. De Maio A, Gingalewski C, Theodorakis NG, Clemens MG. Interruption of hepatic gap junctional communication in the rat during inflammation induced by bacterial lipopolysaccharide. Shock 14: 53‐59, 2000.
 130. De Mello WC. Influence of the sodium pump on intercellular communication in heart fibres: Effect of intracellular injection of sodium ion on electrical coupling. J Physiol 263: 171‐197, 1976.
 131. de Pina‐Benabou MH, Szostak V, Kyrozis A, Rempe D, Uziel D, Urban‐Maldonado M, Benabou S, Spray DC, Federoff HJ, Stanton PK, Rozental R. Blockade of gap junctions in vivo provides neuroprotection after perinatal global ischemia. Stroke 36: 2232‐2237, 2005.
 132. De Vuyst E, Boengler K, Antoons G, Sipido KR, Schulz R, Leybaert L. Pharmacological modulation of connexin‐formed channels in cardiac pathophysiology. Br J Pharmacol 163: 469‐483, 2011.
 133. de Wit C, Griffith TM. Connexins and gap junctions in the EDHF phenomenon and conducted vasomotor responses. Pflugers Arch 459: 897‐914, 2010.
 134. de Wit C, Roos F, Bolz SS, Pohl U. Lack of vascular connexin 40 is associated with hypertension and irregular arteriolar vasomotion. Physiol Genomics 13: 169‐177, 2003.
 135. De Pinto V, Messina A, Lane DJ, Lawen A. Voltage‐dependent anion‐selective channel (VDAC) in the plasma membrane. FEBS Lett 584: 1793‐1799, 2010.
 136. Deans MR, Gibson JR, Sellitto C, Connors BW, Paul DL. Synchronous activity of inhibitory networks in neocortex requires electrical synapses containing connexin36. Neuron 31: 477‐485, 2001.
 137. Decrouy X, Gasc JM, Pointis G, Segretain D. Functional characterization of Cx43 based gap junctions during spermatogenesis. J Cell Physiol 200: 146‐154, 2004.
 138. Delmar M, Coombs W, Sorgen P, Duffy HS, Taffet SM. Structural bases for the chemical regulation of Connexin43 channels. Cardiovasc Res 62: 268‐275, 2004.
 139. Delorme B, Dahl E, Jarry‐Guichard T, Marics I, Briand JP, Willecke K, Gros D, Theveniau‐Ruissy M. Developmental regulation of connexin 40 gene expression in mouse heart correlates with the differentiation of the conduction system. Dev Dyn 204: 358‐371, 1995.
 140. DeRosa AM, Mui R, Srinivas M, White TW. Functional characterization of a naturally occurring Cx50 truncation. Invest Ophthalmol Vis Sci 47: 4474‐4481, 2006.
 141. DeVries SH, Schwartz EA. Hemi‐gap‐junction channels in solitary horizontal cells of the catfish retina. J Physiol 445: 201‐230, 1992.
 142. Dhein S, Manicone N, Muller A, Gerwin R, Ziskoven U, Irankhahi A, Minke C, Klaus W. A new synthetic antiarrhythmic peptide reduces dispersion of epicardial activation recovery interval and diminishes alterations of epicardial activation patterns induced by regional ischemia. A mapping study. Naunyn Schmiedebergs Arch Pharmacol 350: 174‐184, 1994.
 143. Di VF, Chiozzi P, Falzoni S, Ferrari D, Sanz JM, Venketaraman V, Baricordi OR. Cytolytic P2X purinoceptors. Cell Death Differ 5: 191‐199, 1998.
 144. Di WL, Rugg EL, Leigh IM, Kelsell DP. Multiple epidermal connexins are expressed in different keratinocyte subpopulations including connexin 31. J Invest Dermatol 117: 958‐964, 2001.
 145. Diez JA, Ahmad S, Evans WH. Assembly of heteromeric connexons in guinea‐pig liver en route to the Golgi apparatus, plasma membrane and gap junctions. Eur J Biochem 262: 142‐148, 1999.
 146. Díez JA, Elvira M, Villalobo A. The epidermal growth factor receptor tyrosine kinase phosphorylates connexin32. Mol Cell Biochem 187: 201‐210, 1998.
 147. Dixon DB, Takahashi K, Bieda M, Copenhagen DR. Quinine, intracellular pH and modulation of hemi‐gap junctions in catfish horizontal cells. Vision Res 36: 3925‐3931, 1996.
 148. Doble BW, Dang X, Ping P, Fandrich RR, Nickel BE, Jin Y, Cattini PA, Kardami E. Phosphorylation of serine 262 in the gap junction protein connexin‐43 regulates DNA synthesis in cell‐cell contact forming cardiomyocytes. J Cell Sci 117: 507‐514, 2004.
 149. Dobrowolski R, Willecke K. Connexin‐caused genetic diseases and corresponding mouse models. Antioxid Redox Signal 11: 283‐295, 2009.
 150. Dodd R, Peracchia C, Stolady D, T+Âr+Âk K. Calmodulin association with Connexin32‐derived peptides suggests trans‐domain interaction in chemical gating of gap junction channels. J Biol Chem 283: 26911‐26920, 2008.
 151. Dong X, Yu C, Shynlova O, Challis JR, Rennie PS, Lye SJ. p54nrb is a transcriptional corepressor of the progesterone receptor that modulates transcription of the labor‐associated gene, connexin 43 (Gja1). Mol Endocrinol 23: 1147‐1160, 2009.
 152. Doring B, Shynlova O, Tsui P, Eckardt D, Janssen‐Bienhold U, Hofmann F, Feil S, Feil R, Lye SJ, Willecke K. Ablation of connexin43 in uterine smooth muscle cells of the mouse causes delayed parturition. J Cell Sci 119: 1715‐1722, 2006.
 153. Duffy HS, Delmar M, Spray DC. Formation of the gap junction nexus: Binding partners for connexins. J Physiol Paris 96: 243‐249, 2002.
 154. Duffy HS, Iacobas I, Hotchkiss K, Hirst‐Jensen BJ, Bosco A, Dandachi N, Dermietzel R, Sorgen PL, Spray DC. The gap junction protein connexin32 interacts with the Src homology 3/hook domain of discs large homolog 1. J Biol Chem 282: 9789‐9796, 2007.
 155. Duffy HS, Sorgen PL, Girvin ME, O'Donnell P, Coombs W, Taffet SM, Delmar M, Spray DC. pH‐dependent intramolecular binding and structure involving Cx43 cytoplasmic domains. J Biol Chem 277: 36706‐36714, 2002.
 156. Dupont E, Matsushita T, Kaba RA, Vozzi C, Coppen SR, Khan N, Kaprielian R, Yacoub MH, Severs NJ. Altered connexin expression in human congestive heart failure. J Mol Cell Cardiol 33: 359‐371, 2001.
 157. Dupont G, Tordjmann T, Clair C, Swillens S, Claret M, Combettes L. Mechanism of receptor‐oriented intercellular calcium wave propagation in hepatocytes. FASEB J 14: 279‐289, 2000.
 158. Duthe F, Plaisance I, Sarrouilhe D, Herv+® JC. Endogenous protein phosphatase 1 runs down gap junctional communication of rat ventricular myocytes. Am J Physiol Cell Physiol 281: C1648‐C1656, 2001.
 159. Ebihara L. Xenopus connexin38 forms hemi‐gap‐junctional channels in the nonjunctional plasma membrane of Xenopus oocytes. Biophys J 71: 742‐748, 1996.
 160. Ebihara L, Liu X, Pal JD. Effect of external magnesium and calcium on human connexin46 hemichannels. Biophys J 84: 277‐286, 2003.
 161. Ebihara L, Steiner E. Properties of a nonjunctional current expressed from a rat connexin46 cDNA in Xenopus oocytes. J Gen Physiol 102: 59‐74, 1993.
 162. Eckert R. pH gating of lens fibre connexins. Pflugers Arch 443: 843‐851, 2002.
 163. Ek‐Vitorin JF, Calero G, Morley GE, Coombs W, Taffet SM, Delmar M. PH regulation of connexin43: Molecular analysis of the gating particle. Biophys J 71: 1273‐1284, 1996.
 164. Ek‐Vitorin JF, King TJ, Heyman NS, Lampe PD, Burt JM. Selectivity of Connexin43 channels is regulated through protein kinase C‐dependent phosphorylation. Circ Res 98: 1498‐1505, 2006.
 165. Elden L, Bortoff A. Electrical coupling of longitudinal and circular intestinal muscle. Am J Physiol 246: G618‐G626, 1984.
 166. Elias LA, Kriegstein AR. Gap junctions: Multifaceted regulators of embryonic cortical development. Trends Neurosci 31: 243‐250, 2008.
 167. Elias LA, Wang DD, Kriegstein AR. Gap junction adhesion is necessary for radial migration in the neocortex. Nature 448: 901‐907, 2007.
 168. Eloff BC, Gilat E, Wan X, Rosenbaum DS. Pharmacological modulation of cardiac gap junctions to enhance cardiac conduction: Evidence supporting a novel target for antiarrhythmic therapy. Circulation 108: 3157‐3163, 2003.
 169. Eltzschig HK, Eckle T, Mager A, Kuper N, Karcher C, Weissmuller T, Boengler K, Schulz R, Robson SC, Colgan SP. ATP release from activated neutrophils occurs via connexin 43 and modulates adenosine‐dependent endothelial cell function. Circ Res 99: 1100‐1108, 2006.
 170. Eugenin EA, Branes MC, Berman JW, Saez JC. TNF‐alpha plus IFN‐gamma induce connexin43 expression and formation of gap junctions between human monocytes/macrophages that enhance physiological responses. J Immunol 170: 1320‐1328, 2003.
 171. Evans WH, Boitano S. Connexin mimetic peptides: Specific inhibitors of gap‐junctional intercellular communication. Biochem Soc Trans 29: 606‐612, 2001.
 172. Evans WH, De Vuyst E, Leybaert L. The gap junction cellular internet: Connexin hemichannels enter the signalling limelight. Biochem J 397: 1‐14, 2006.
 173. Evans WH, Leybaert L. Mimetic peptides as blockers of connexin channel‐facilitated intercellular communication. Cell Commun Adhes 14: 265‐273, 2007.
 174. Faigle M, Seessle J, Zug S, El Kasmi KC, Eltzschig HK. ATP release from vascular endothelia occurs across Cx43 hemichannels and is attenuated during hypoxia. PLoS One 3: e2801, 2008.
 175. Falk MM, Buehler LK, Kumar NM, Gilula NB. Cell‐free synthesis and assembly of connexins into functional gap junction membrane channels. EMBO J 16: 2703‐2716, 1997.
 176. Falk MM, Kumar NM, Gilula NB. Membrane insertion of gap junction connexins: Polytopic channel forming membrane proteins. J Cell Biol 127: 343‐355, 1994.
 177. Fallon RF, Goodenough DA. Five‐hour half‐life of mouse liver gap‐junction protein. J Cell Biol 90: 521‐526, 1981.
 178. Farahani R, Pina‐Benabou MH, Kyrozis A, Siddiq A, Barradas PC, Chiu FC, Cavalcante LA, Lai JC, Stanton PK, Rozental R. Alterations in metabolism and gap junction expression may determine the role of astrocytes as “good samaritans” or executioners. Glia 50: 351‐361, 2005.
 179. Fill M, Copello JA. Ryanodine receptor calcium release channels. Physiol Rev 82: 893‐922, 2002.
 180. Fiorini C, Gilleron J, Carette D, Valette A, Tilloy A, Chevalier S, Segretain D, Pointis G. Accelerated internalization of junctional membrane proteins (connexin 43, N‐cadherin and ZO‐1) within endocytic vacuoles: An early event of DDT carcinogenicity. Biochim Biophys Acta 1778: 56‐67, 2008.
 181. FitzHarris G, Baltz JM. Granulosa cells regulate intracellular pH of the murine growing oocyte via gap junctions: Development of independent homeostasis during oocyte growth. Development 133: 591‐599, 2006.
 182. FitzHarris G, Siyanov V, Baltz JM. Granulosa cells regulate oocyte intracellular pH against acidosis in preantral follicles by multiple mechanisms. Development 134: 4283‐4295, 2007.
 183. Forge A, Becker D, Casalotti S, Edwards J, Evans WH, Lench N, Souter M. Gap junctions and connexin expression in the inner ear. Novartis Found Symp 219: 134‐150, 1999.
 184. Francis D, Stergiopoulos K, Ek‐Vitorin JF, Cao FL, Taffet SM, Delmar M. Connexin diversity and gap junction regulation by pHi. Dev Genet 24: 123‐136, 1999.
 185. Frank M, Eiberger B, Janssen‐Bienhold U, de Sevilla Muller LP, Tjarks A, Kim JS, Maschke S, Dobrowolski R, Sasse P, Weiler R, Fleischmann BK, Willecke K. Neuronal connexin‐36 can functionally replace connexin‐45 in mouse retina but not in the developing heart. J Cell Sci 123: 3605‐3615, 2010.
 186. Frantseva MV, Kokarovtseva L, Naus CG, Carlen PL, MacFabe D, Perez Velazquez JL. Specific gap junctions enhance the neuronal vulnerability to brain traumatic injury. J Neurosci 22: 644‐653, 2002.
 187. Frantseva MV, Kokarovtseva L, Perez Velazquez JL. Ischemia‐induced brain damage depends on specific gap‐junctional coupling. J Cereb Blood Flow Metab 22: 453‐462, 2002.
 188. Frenz CM, Van De Water TR. Immunolocalization of connexin 26 in the developing mouse cochlea. Brain Res Brain Res Rev 32: 172‐180, 2000.
 189. Friedman D, Strowbridge BW. Both electrical and chemical synapses mediate fast network oscillations in the olfactory bulb. J Neurophysiol 89: 2601‐2610, 2003.
 190. Fu CT, Bechberger JF, Ozog MA, Perbal B, Naus CC. CCN3 (NOV) interacts with connexin43 in C6 glioma cells: Possible mechanism of connexin‐mediated growth suppression. J Biol Chem 279: 36943‐36950, 2004.
 191. Fujimoto K, Nagafuchi A, Tsukita S, Kuraoka A, Ohokuma A, Shibata Y. Dynamics of connexins, E‐cadherin and alpha‐catenin on cell membranes during gap junction formation. J Cell Sci 110(Pt 3): 311‐322, 1997.
 192. Fukuda T. Structural organization of the gap junction network in the cerebral cortex. Neuroscientist 13: 199‐207, 2007.
 193. Gaietta G, Deerinck TJ, Adams SR, Bouwer J, Tour O, Laird DW, Sosinsky GE, Tsien RY, Ellisman MH. Multicolor and electron microscopic imaging of connexin trafficking. Science 296: 503‐507, 2002.
 194. Galarreta M, Hestrin S. Electrical synapses between GABA‐releasing interneurons. Nat Rev Neurosci 2: 425‐433, 2001.
 195. Garcia M, Knight MM. Cyclic loading opens hemichannels to release ATP as part of a chondrocyte mechanotransduction pathway. J Orthop Res 28: 510‐515, 2010.
 196. Garcia‐Dorado D, Rodriguez‐Sinovas A, Ruiz‐Meana M. Gap junction‐mediated spread of cell injury and death during myocardial ischemia‐reperfusion. Cardiovasc Res 61: 386‐401, 2004.
 197. Garfield RE, Daniel EE, Dukes M, Fitzgerald JD. Changes of gap junctions in myometrium of guinea pig at parturition and abortion. Can J Physiol Pharmacol 60: 335‐341, 1982.
 198. Garfield RE, Hayashi RH. Appearance of gap junctions in the myometrium of women during labor. Am J Obstet Gynecol 140: 254‐260, 1981.
 199. Garfield RE, Kannan MS, Daniel EE. Gap junction formation in myometrium: Control by estrogens, progesterone, and prostaglandins. Am J Physiol 238: C81‐C89, 1980.
 200. Garfield RE, Rabideau S, Challis JR, Daniel EE. Hormonal control of gap junction formation in sheep myometrium during parturition. Biol Reprod 21: 999‐1007, 1979a.
 201. Garfield RE, Rabideau S, Challis JR, Daniel EE. Ultrastructural basis for maintenance and termination of pregnancy. Am J Obstet Gynecol 133: 308‐315, 1979b.
 202. Garfield RE, Sims S, Daniel EE. Gap junctions: Their presence and necessity in myometrium during parturition. Science 198: 958‐960, 1977.
 203. Garfield RE, Sims SM, Kannan MS, Daniel EE. Possible role of gap junctions in activation of myometrium during parturition. Am J Physiol 235: C168‐C179, 1978.
 204. Garre JM, Retamal MA, Cassina P, Barbeito L, Bukauskas FF, Saez JC, Bennett MV, Abudara V. FGF‐1 induces ATP release from spinal astrocytes in culture and opens pannexin and connexin hemichannels. Proc Natl Acad Sci U S A 107: 22659‐22664, 2010.
 205. Gellhaus A, Dong X, Propson S, Maass K, Klein‐Hitpass L, Kibschull M, Traub O, Willecke K, Perbal B, Lye SJ, Winterhager E. Connexin43 interacts with NOV: A possible mechanism for negative regulation of cell growth in choriocarcinoma cells. J Biol Chem 279: 36931‐36942, 2004.
 206. Gellhaus A, Wotzlaw C, Otto T, Fandrey J, Winterhager E. More insights into the CCN3/Connexin43 interaction complex and its role for signaling. J Cell Biochem 110: 129‐140, 2010.
 207. Genetos DC, Kephart CJ, Zhang Y, Yellowley CE, Donahue HJ. Oscillating fluid flow activation of gap junction hemichannels induces ATP release from MLO‐Y4 osteocytes. J Cell Physiol 212: 207‐214, 2007.
 208. George CH, Kendall JM, Evans WH. Intracellular trafficking pathways in the assembly of connexins into gap junctions. J Biol Chem 274: 8678‐8685, 1999.
 209. Ghatnekar GS, O'Quinn MP, Jourdan LJ, Gurjarpadhye AA, Draughn RL, Gourdie RG. Connexin43 carboxyl‐terminal peptides reduce scar progenitor and promote regenerative healing following skin wounding. Regen Med 4: 205‐223, 2009.
 210. Giepmans BN. Gap junctions and connexin‐interacting proteins. Cardiovasc Res 62: 233‐245, 2004.
 211. Giepmans BN. Role of connexin43‐interacting proteins at gap junctions. Adv Cardiol 42: 41‐56, 2006.
 212. Giepmans BNG, Hengeveld T, Postma FR, Moolenaar WH. Interaction of c‐Src with gap junction protein Connexin‐43. J Biol Chem 276: 8544‐8549, 2001.
 213. Giessmann D, Theiss C, Breipohl W, Meller K. Decreased gap junctional communication in neurobiotin microinjected lens epithelial cells after taxol treatment. Anat Embryol (Berl) 209: 391‐400, 2005.
 214. Gilchrist RB, Lane M, Thompson JG. Oocyte‐secreted factors: Regulators of cumulus cell function and oocyte quality. Hum Reprod Update 14: 159‐177, 2008.
 215. Gilleron J, Carette D, Fiorini C, Dompierre J, Macia E, Denizot JP, Segretain D, Pointis G. The large GTPase dynamin2: A new player in connexin 43 gap junction endocytosis, recycling and degradation. Int J Biochem Cell Biol 43: 1208‐1217, 2011.
 216. Gilleron J, Nebout M, Scarabelli L, Senegas‐Balas F, Palmero S, Segretain D, Pointis G. A potential novel mechanism involving connexin 43 gap junction for control of sertoli cell proliferation by thyroid hormones. J Cell Physiol 209: 153‐161, 2006.
 217. Ginzberg RD, Gilula NB. Modulation of cell junctions during differentiation of the chicken otocyst sensory epithelium. Dev Biol 68: 110‐129, 1979.
 218. Girao H, Catarino S, Pereira P. Eps15 interacts with ubiquitinated Cx43 and mediates its internalization. Exp Cell Res 315: 3587‐3597, 2009.
 219. Goldberg GS, Moreno AP, Lampe PD. Gap junctions between cells expressing connexin 43 or 32 show inverse permselectivity to adenosine and ATP. J Biol Chem 277: 36725‐36730, 2002.
 220. Goldenberg RC, Fortes FS, Cristancho JM, Morales MM, Franci CR, Varanda WA, Campos de Carvalho AC. Modulation of gap junction mediated intercellular communication in TM3 Leydig cells. J Endocrinol 177: 327‐335, 2003.
 221. Gollob MH, Jones DL, Krahn AD, Danis L, Gong XQ, Shao Q, Liu X, Veinot JP, Tang AS, Stewart AF, Tesson F, Klein GJ, Yee R, Skanes AC, Guiraudon GM, Ebihara L, Bai D. Somatic mutations in the connexin 40 gene (GJA5) in atrial fibrillation. N Engl J Med 354: 2677‐2688, 2006.
 222. Gomes P, Srinivas SP, Van DW, Vereecke J, Himpens B. ATP release through connexin hemichannels in corneal endothelial cells. Invest Ophthalmol Vis Sci 46: 1208‐1218, 2005.
 223. Gomez‐Hernandez JM, de MM, Larrosa B, Gonzalez D, Barrio LC. Molecular basis of calcium regulation in connexin‐32 hemichannels. Proc Natl Acad Sci U S A 100: 16030‐16035, 2003.
 224. Gong X, Baldo GJ, Kumar NM, Gilula NB, Mathias RT. Gap junctional coupling in lenses lacking alpha3 connexin. Proc Natl Acad Sci U S A 95: 15303‐15308, 1998.
 225. Gong X, Li E, Klier G, Huang Q, Wu Y, Lei H, Kumar NM, Horwitz J, Gilula NB. Disruption of [alpha]3 Connexin Gene Leads to Proteolysis and Cataractogenesis in Mice. Cell 91: 833‐843, 1997.
 226. Gonzalez D, Gomez‐Hernandez JM, Barrio LC. Species specificity of mammalian connexin‐26 to form open voltage‐gated hemichannels. FASEB J 20: 2329‐2338, 2006.
 227. Gonzalez D, Gomez‐Hernandez JM, Barrio LC. Molecular basis of voltage dependence of connexin channels: An integrative appraisal. Prog Biophys Mol Biol 94: 66‐106, 2007.
 228. Goubaeva F, Mikami M, Giardina S, Ding B, Abe J, Yang J. Cardiac mitochondrial connexin 43 regulates apoptosis. Biochem Biophys Res Commun 352: 97‐103, 2007.
 229. Gourdie RG, Green CR, Severs NJ, Thompson RP. Immunolabelling patterns of gap junction connexins in the developing and mature rat heart. Anat Embryol (Berl) 185: 363‐378, 1992.
 230. Granot I, Dekel N. The ovarian gap junction protein connexin43: regulation by gonadotropins. Trends Endocrinol Metab 13: 310‐313, 2002.
 231. Gros D, Jarry‐Guichard T, Ten Velde I, de Maziere A, van Kempen MJ, Davoust J, Briand JP, Moorman AF, Jongsma HJ. Restricted distribution of connexin40, a gap junctional protein, in mammalian heart. Circ Res 74: 839‐851, 1994.
 232. Grummer R, Chwalisz K, Mulholland J, Traub O, Winterhager E. Regulation of connexin26 and connexin43 expression in rat endometrium by ovarian steroid hormones. Biol Reprod 51: 1109‐1116, 1994.
 233. Gu H, Ek‐Vitorin JF, Taffet SM, Delmar M. UltraRapid communication: Coexpression of connexins 40 and 43 enhances the pH sensitivityof gap junctions: A model for synergistic interactions among connexins. Circ Res 86: 1100, 2000.
 234. Guerra JM, Everett TH, Lee KW, Wilson E, Olgin JE. Effects of the gap junction modifier rotigaptide (ZP123) on atrial conduction and vulnerability to atrial fibrillation. Circulation 114: 110‐118, 2006.
 235. Guerrero PA, Schuessler RB, Davis LM, Beyer EC, Johnson CM, Yamada KA, Saffitz JE. Slow ventricular conduction in mice heterozygous for a connexin43 null mutation. J Clin Invest 99: 1991‐1998, 1997.
 236. Guldenagel M, Ammermuller J, Feigenspan A, Teubner B, Degen J, Sohl G, Willecke K, Weiler R. Visual transmission deficits in mice with targeted disruption of the gap junction gene connexin36. J Neurosci 21: 6036‐6044, 2001.
 237. Gumpert AM, Varco JS, Baker SM, Piehl M, Falk MM. Double‐membrane gap junction internalization requires the clathrin‐mediated endocytic machinery. FEBS Lett 582: 2887‐2892, 2008.
 238. Guo Y, Martinez‐Williams C, Rannels DE. Gap junction‐microtubule associations in rat alveolar epithelial cells. Am J Physiol Lung Cell Mol Physiol 285: L1213‐L1221, 2003.
 239. Gupta N, Wang H, McLeod TL, Naus CC, Kyurkchiev S, Advani S, Yu J, Perbal B, Weichselbaum RR. Inhibition of glioma cell growth and tumorigenic potential by CCN3 (NOV). Mol Pathol 54: 293‐299, 2001.
 240. Gustafsson F, Holstein‐Rathlou N‐H. Conducted vasomotor responses in arterioles: Characteristics, mechanisms and physiological significance. Acta Physiol Scand 167: 11‐21, 1999.
 241. Guttman JA, Lin AE, Li Y, Bechberger J, Naus CC, Vogl AW, Finlay BB. Gap junction hemichannels contribute to the generation of diarrhoea during infectious enteric disease. Gut 59: 218‐226, 2010.
 242. Guyot A, Hanrahan JW. ATP release from human airway epithelial cells studied using a capillary cell culture system. J Physiol 545: 199‐206, 2002.
 243. Haefliger JA, Demotz S, Braissant O, Suter E, Waeber B, Nicod P, Meda P. Connexins 40 and 43 are differentially regulated within the kidneys of rats with renovascular hypertension. Kidney Int 60: 190‐201, 2001.
 244. Haefliger JA, Nicod P, Meda P. Contribution of connexins to the function of the vascular wall. Cardiovasc Res 62: 345‐356, 2004.
 245. Hagen A, Dietze A, Dhein S. Human cardiac gap‐junction coupling: Effects of antiarrhythmic peptide AAP10. Cardiovasc Res 83: 405‐415, 2009.
 246. Hamelin R, Allagnat F, Haefliger JA, Meda P. Connexins, diabetes and the metabolic syndrome. Curr Protein Pept Sci 10: 18‐29, 2009.
 247. Harks EG, de Roos AD, Peters PH, de Haan LH, Brouwer A, Ypey DL, van Zoelen EJ, Theuvenet AP. Fenamates: A novel class of reversible gap junction blockers. J Pharmacol Exp Ther 298: 1033‐1041, 2001.
 248. Harris AL. Connexin channel permeability to cytoplasmic molecules. Prog Biophys Mol Biol 94: 120‐143, 2007.
 249. Harris AL, Locke D. Permeability of Connexin Channels. In: Harris AL, Locke D, editors. Connexins. A Guide. New York. Humana Press, 2009, p. 165‐206.
 250. Harris AL, Spray DC, Bennett MV. Kinetic properties of a voltage‐dependent junctional conductance. J Gen Physiol 77: 95‐117, 1981.
 251. Harris RJ, Symon L. Extracellular pH, potassium, and calcium activities in progressive ischaemia of rat cortex. J Cereb Blood Flow Metab 4: 178‐186, 1984.
 252. Haugan K, Marcussen N, Kjolbye AL, Nielsen MS, Hennan JK, Petersen JS. Treatment with the gap junction modifier rotigaptide (ZP123) reduces infarct size in rats with chronic myocardial infarction. J Cardiovasc Pharmacol 47: 236‐242, 2006.
 253. Haugan K, Miyamoto T, Takeishi Y, Kubota I, Nakayama J, Shimojo H, Hirose M. Rotigaptide (ZP123) improves atrial conduction slowing in chronic volume overload‐induced dilated atria. Basic Clin Pharmacol Toxicol 99: 71‐79, 2006.
 254. Haugan K, Olsen KB, Hartvig L, Petersen JS, Holstein‐Rathlou N‐H, Hennan J, Nielsen MS. The antiarrhythmic peptide analogue ZP123 prevents atrial conduction slowing during metabolic stress. J Cardiovasc Electrophysiol 16: 537‐545, 2005.
 255. Hawat G, Benderdour M, Rousseau G, Baroudi G. Connexin 43 mimetic peptide Gap26 confers protection to intact heart against myocardial ischemia injury. Pflugers Arch 460: 583‐592, 2010.
 256. He DS, Jiang JX, Taffet SM, Burt JM. Formation of heteromeric gap junction channels by connexins 40 and 43 in vascular smooth muscle cells. Proc Natl Acad Sci U S A 96: 6495‐6500, 1999.
 257. He LQ, Cai F, Liu Y, Liu MJ, Tan ZP, Pan Q, Fang FY, Liang dS, Wu LQ, Long ZG, Dai HP, Xia K, Xia JH, Zhang ZH. Cx31 is assembled and trafficked to cell surface by ER‐Golgi pathway and degraded by proteasomal or lysosomal pathways. Cell Res 15: 455‐464, 2005.
 258. Heinzel FR, Luo Y, Li X, Boengler K, Buechert A, Garcia‐Dorado D, Di LF, Schulz R, Heusch G. Impairment of diazoxide‐induced formation of reactive oxygen species and loss of cardioprotection in connexin 43 deficient mice. Circ Res 97: 583‐586, 2005.
 259. Hendrix EM, Mao SJ, Everson W, Larsen WJ. Myometrial connexin 43 trafficking and gap junction assembly at term and in preterm labor. Mol Reprod Dev 33: 27‐38, 1992.
 260. Hendrix EM, Myatt L, Sellers S, Russell PT, Larsen WJ. Steroid hormone regulation of rat myometrial gap junction formation: Effects on cx43 levels and trafficking. Biol Reprod 52: 547‐560, 1995.
 261. Hennan JK, Swillo RE, Morgan GA, Keith JC Jr., Schaub RG, Smith RP, Feldman HS, Haugan K, Kantrowitz J, Wang PJ, Abu‐Qare A, Butera J, Larsen BD, Crandall DL. Rotigaptide (ZP123) prevents spontaneous ventricular arrhythmias and reduces infarct size during myocardial ischemia/reperfusion injury in open‐chest dogs. J Pharmacol Exp Ther 317: 236‐243, 2006.
 262. Hennan JK, Swillo RE, Morgan GA, Rossman EI, Kantrowitz J, Butera J, Petersen JS, Gardell SJ, Vlasuk GP. GAP‐134 ([2S,4R]‐1‐[2‐aminoacetyl]4‐benzamidopyrrolidine‐2‐carboxylic acid) prevents spontaneous ventricular arrhythmias and reduces infarct size during myocardial ischemia/reperfusion injury in open‐chest dogs. J Cardiovasc Pharmacol Ther 14: 207‐214, 2009.
 263. Hennemann H, Kozjek G, Dahl E, Nicholson B, Willecke K. Molecular cloning of mouse connexins26 and ‐32: Similar genomic organization but distinct promoter sequences of two gap junction genes. Eur J Cell Biol 58: 81‐89, 1992.
 264. Hermoso M, Saez JC, Villalon M. Identification of gap junctions in the oviduct and regulation of connexins during development and by sexual hormones. Eur J Cell Biol 74: 1‐9, 1997.
 265. Herve JC, Bourmeyster N, Sarrouilhe D, Duffy HS. Gap junctional complexes: From partners to functions. Prog Biophys Mol Biol 94: 29‐65, 2007.
 266. Herve JC, Pluciennik F, Verrecchia F, Bastide B, Delage B, Joffre M, Deleze J. Influence of the molecular structure of steroids on their ability to interrupt gap junctional communication. J Membr Biol 149: 179‐187, 1996.
 267. Hervé JC, Sarrouilhe D. Protein phosphatase modulation of the intercellular junctional communication: Importance in cardiac myocytes. Prog Biophys Mol Biol 90: 225‐248, 2006.
 268. Hesketh GG, Shah MH, Halperin VL, Cooke CA, Akar FG, Yen TE, Kass DA, Machamer CE, Van Eyk JE, Tomaselli GF. Ultrastructure and regulation of lateralized connexin43 in the failing heart. Circ Res 106: 1153‐1163, 2010.
 269. Hess DT, Matsumoto A, Kim SO, Marshall HE, Stamler JS. Protein S‐nitrosylation: Purview and parameters. Nat Rev Mol Cell Biol 6: 150‐166, 2005.
 270. Hibino H, Kurachi Y. Molecular and physiological bases of the K+ circulation in the mammalian inner ear. Physiology (Bethesda) 21: 336‐345, 2006.
 271. Hille B. Ionic channels in excitable membranes. Current problems and biophysical approaches. Biophys J 22: 283‐294, 1978.
 272. Hirai A, Yano T, Nishikawa K, Suzuki K, Asano R, Satoh H, Hagiwara K, Yamasaki H. Down‐regulation of connexin 32 gene expression through DNA methylation in a human renal cell carcinoma cell. Am J Nephrol 23: 172‐177, 2003.
 273. Hirashiki A, Yamada Y, Murase Y, Suzuki Y, Kataoka H, Morimoto Y, Tajika T, Murohara T, Yokota M. Association of gene polymorphisms with coronary artery disease in low‐ or high‐risk subjects defined by conventional risk factors. J Am Coll Cardiol 42: 1429‐1437, 2003.
 274. Hirst‐Jensen BJ, Sahoo P, Kieken F, Delmar M, Sorgen PL. Characterization of the pH‐dependent interaction between the gap junction protein connexin43 carboxyl terminus and cytoplasmic loop domains. J Biol Chem 282: 5801‐5813, 2007.
 275. Hoh JH, Lal R, John SA, Revel JP, Arnsdorf MF. Atomic force microscopy and dissection of gap junctions. Science 253: 1405‐1408, 1991.
 276. Hoh JH, Sosinsky GE, Revel JP, Hansma PK. Structure of the extracellular surface of the gap junction by atomic force microscopy. Biophys J 65: 149‐163, 1993.
 277. Hohl M, Thiel G. Cell type‐specific regulation of RE‐1 silencing transcription factor (REST) target genes. Eur J Neurosci 22: 2216‐2230, 2005.
 278. Hoogaars WM, Tessari A, Moorman AF, de Boer PA, Hagoort J, Soufan AT, Campione M, Christoffels VM. The transcriptional repressor Tbx3 delineates the developing central conduction system of the heart. Cardiovasc Res 62: 489‐499, 2004.
 279. Hormuzdi SG, Pais I, Lebeau FE, Towers SK, Rozov A, Buhl EH, Whittington MA, Monyer H. Impaired electrical signaling disrupts gamma frequency oscillations in connexin 36‐deficient mice. Neuron 31: 487‐495, 2001.
 280. Hu X, Dahl G. Exchange of conductance and gating properties between gap junction hemichannels. FEBS Lett 451: 113‐117, 1999.
 281. Huang RP, Fan Y, Hossain MZ, Peng A, Zeng ZL, Boynton AL. Reversion of the neoplastic phenotype of human glioblastoma cells by connexin 43 (cx43). Cancer Res 58: 5089‐5096, 1998.
 282. Huang RY, Laing JG, Kanter EM, Berthoud VM, Bao M, Rohrs HW, Townsend RR, Yamada KA. Identification of CaMKII phosphorylation sites in Connexin43 by high‐resolution mass spectrometry. J Proteome Res 10: 1098‐1109, 2010.
 283. Huang XD, Horackova M, Pressler ML. Changes in the expression and distribution of connexin 43 in isolated cultured adult guinea pig cardiomyocytes. Exp Cell Res 228: 254‐261, 1996.
 284. Hunter AW, Barker RJ, Zhu C, Gourdie RG. Zonula occludens‐1 alters connexin43 gap junction size and organization by influencing channel accretion. Mol Biol Cell 16: 5686‐5698, 2005.
 285. Iacobas DA, Iacobas S, Spray DC. Connexin‐dependent transcellular transcriptomic networks in mouse brain. Prog Biophys Mol Biol 94: 169‐185, 2007.
 286. Inose H, Ochi H, Kimura A, Fujita K, Xu R, Sato S, Iwasaki M, Sunamura S, Takeuchi Y, Fukumoto S, Saito K, Nakamura T, Siomi H, Ito H, Arai Y, Shinomiya K, Takeda S. A microRNA regulatory mechanism of osteoblast differentiation. Proc Natl Acad Sci U S A 106: 20794‐20799, 2009.
 287. Jain SK, Schuessler RB, Saffitz JE. Mechanisms of delayed electrical uncoupling induced by ischemic preconditioning. Circ Res 92: 1138‐1144, 2003.
 288. Jansen JA, van Veen TA, de Bakker JM, van Rijen HV. Cardiac connexins and impulse propagation. J Mol Cell Cardiol 48: 76‐82, 2010.
 289. Jedamzik B, Marten I, Ngezahayo A, Ernst A, Kolb HA. Regulation of lens rCx46‐formed hemichannels by activation of protein kinase C, external Ca(2+) and protons. J Membr Biol 173: 39‐46, 2000.
 290. Jeyaraman M, Tanguy Sp, Fandrich RR, Lukas A, Kardami E. Ischemia‐induced dephosphorylation of cardiomyocyte connexin‐43 is reduced by okadaic acid and calyculin A but not fostriecin. Mol Cell Biochem 242: 129‐134, 2003.
 291. Jiang JX, Goodenough DA. Phosphorylation of lens‐fiber connexins in lens organ cultures. Eur J Biochem 255: 37‐44, 1998.
 292. John S, Cesario D, Weiss JN. Gap junctional hemichannels in the heart. Acta Physiol Scand 179: 23‐31, 2003.
 293. John SA, Kondo R, Wang SY, Goldhaber JI, Weiss JN. Connexin‐43 hemichannels opened by metabolic inhibition. J Biol Chem 274: 236‐240, 1999.
 294. John SA, Revel JP. Connexon integrity is maintained by non‐covalent bonds: Intramolecular disulfide bonds link the extracellular domains in rat connexin‐43. Biochem Biophys Res Commun 178: 1312‐1318, 1991.
 295. Johnston MF, Simon SA, Ramon F. Interaction of anaesthetics with electrical synapses. Nature 286: 498‐500, 1980.
 296. Jordan K, Chodock R, Hand AR, Laird DW. The origin of annular junctions: A mechanism of gap junction internalization. J Cell Sci 114: 763‐773, 2001.
 297. Joshi‐Mukherjee R, Coombs W, Burrer C, de Mora IA, Delmar M, Taffet SM. Evidence for the presence of a free C‐terminal fragment of cx43 in cultured cells. Cell Commun Adhes 14: 75‐84, 2007.
 298. Jude JA, Wylam ME, Walseth TF, Kannan MS. Calcium signaling in airway smooth muscle. Proc Am Thorac Soc 5: 15‐22, 2008.
 299. Juneja SC, Barr KJ, Enders GC, Kidder GM. Defects in the germ line and gonads of mice lacking connexin43. Biol Reprod 60: 1263‐1270, 1999.
 300. Kamasawa N, Sik A, Morita M, Yasumura T, Davidson KG, Nagy JI, Rash JE. Connexin‐47 and connexin‐32 in gap junctions of oligodendrocyte somata, myelin sheaths, paranodal loops and Schmidt‐Lanterman incisures: Implications for ionic homeostasis and potassium siphoning. Neuroscience 136: 65‐86, 2005.
 301. Kang J, Kang N, Lovatt D, Torres A, Zhao Z, Lin J, Nedergaard M. Connexin 43 hemichannels are permeable to ATP. J Neurosci 28: 4702‐4711, 2008.
 302. Kanno S, Kovacs A, Yamada KA, Saffitz JE. Connexin43 as a determinant of myocardial infarct size following coronary occlusion in mice. J Am Coll Cardiol 41: 681‐686, 2003.
 303. Kardami E, Dang X, Iacobas DA, Nickel BE, Jeyaraman M, Srisakuldee W, Makazan J, Tanguy S, Spray DC. The role of connexins in controlling cell growth and gene expression. Prog Biophys Mol Biol 94: 245‐264, 2007.
 304. Kathiriya IS, King IN, Murakami M, Nakagawa M, Astle JM, Gardner KA, Gerard RD, Olson EN, Srivastava D, Nakagawa O. Hairy‐related transcription factors inhibit GATA‐dependent cardiac gene expression through a signal‐responsive mechanism. J Biol Chem 279: 54937‐54943, 2004.
 305. Katsuragi T, Migita K. [ The mechanism of ATP release as an autocrine/paracrine molecule]. Nippon Yakurigaku Zasshi 123: 382‐388, 2004.
 306. Kedde M, Strasser MJ, Boldajipour B, Oude Vrielink JA, Slanchev K, le SC, Nagel R, Voorhoeve PM, van DJ, Orom UA, Lund AH, Perrakis A, Raz E, Agami R. RNA‐binding protein Dnd1 inhibits microRNA access to target mRNA. Cell 131: 1273‐1286, 2007.
 307. Kelsell DP, Di WL, Houseman MJ. Connexin mutations in skin disease and hearing loss. Am J Hum Genet 68: 559‐568, 2001.
 308. Kelsell DP, Dunlop J, Stevens HP, Lench NJ, Liang JN, Parry G, Mueller RF, Leigh IM. Connexin 26 mutations in hereditary non‐syndromic sensorineural deafness. Nature 387: 80‐83, 1997.
 309. Kidder GM, Vanderhyden BC. Bidirectional communication between oocytes and follicle cells: Ensuring oocyte developmental competence. Can J Physiol Pharmacol 88: 399‐413, 2010.
 310. Kim DY, Kam Y, Koo SK, Joe CO. Gating connexin 43 channels reconstituted in lipid vesicles by mitogen‐activated protein kinase phosphorylation. J Biol Chem 274: 5581‐5587, 1999.
 311. Kim HK, Lee YS, Sivaprasad U, Malhotra A, Dutta A. Muscle‐specific microRNA miR‐206 promotes muscle differentiation. J Cell Biol 174: 677‐687, 2006.
 312. Kimura K, Nishida T. Role of the ubiquitin‐proteasome pathway in downregulation of the gap‐junction protein Connexin43 by TNF‐{alpha} in human corneal fibroblasts. Invest Ophthalmol Vis Sci 51: 1943‐1947, 2010.
 313. King TJ, Fukushima LH, Donlon TA, Hieber AD, Shimabukuro KA, Bertram JS. Correlation between growth control, neoplastic potential and endogenous connexin43 expression in HeLa cell lines: Implications for tumor progression. Carcinogenesis 21: 311‐315, 2000.
 314. King TJ, Gurley KE, Prunty J, Shin JL, Kemp CJ, Lampe PD. Deficiency in the gap junction protein connexin32 alters p27Kip1 tumor suppression and MAPK activation in a tissue‐specific manner. Oncogene 24: 1718‐1726, 2005.
 315. Kistler J, Kirkland B, Bullivant S. Identification of a 70,000‐D protein in lens membrane junctional domains. J Cell Biol 101: 28‐35, 1985.
 316. Kistler WM, de Jeu MT, Elgersma Y, van der Giessen RS, Hensbroek R, Luo C, Koekkoek SK, Hoogenraad CC, Hamers FP, Gueldenagel M, Sohl G, Willecke K, De Zeeuw CI. Analysis of Cx36 knockout does not support tenet that olivary gap junctions are required for complex spike synchronization and normal motor performance. Ann N Y Acad Sci 978: 391‐404, 2002.
 317. Kjenseth A, Fykerud T, Rivedal E, Leithe E. Regulation of gap junction intercellular communication by the ubiquitin system. Cell Signal 22: 1267‐1273, 2010.
 318. Kjolbye AL, Dikshteyn M, Eloff BC, Deschenes I, Rosenbaum DS. Maintenance of intercellular coupling by the antiarrhythmic peptide rotigaptide suppresses arrhythmogenic discordant alternans. Am J Physiol Heart Circ Physiol 294: H41‐H49, 2008.
 319. Kjolbye AL, Haugan K, Hennan JK, Petersen JS. Pharmacological modulation of gap junction function with the novel compound rotigaptide: A promising new principle for prevention of arrhythmias. Basic Clin Pharmacol Toxicol 101: 215‐230, 2007.
 320. Kjolbye AL, Holstein‐Rathlou NH, Petersen JS. Anti‐arrhythmic peptide N‐3‐(4‐hydroxyphenyl)propionyl Pro‐Hyp‐Gly‐Ala‐Gly‐OH reduces dispersion of action potential duration during ischemia/reperfusion in rabbit hearts. J Cardiovasc Pharmacol 40: 770‐779, 2002.
 321. Kjolbye AL, Knudsen CB, Jepsen T, Larsen BD, Petersen JS. Pharmacological characterization of the new stable antiarrhythmic peptide analog Ac‐D‐Tyr‐D‐Pro‐D‐Hyp‐Gly‐D‐Ala‐Gly‐NH2 (ZP123): in vivo and in vitro studies. J Pharmacol Exp Ther 306: 1191‐1199, 2003.
 322. Kleber AG, Rudy Y. Basic mechanisms of cardiac impulse propagation and associated arrhythmias. Physiol Rev 84: 431‐488, 2004.
 323. Kleopa KA, Orthmann‐Murphy J, Sargiannidou I. Gap junction disorders of myelinating cells. Rev Neurosci 21: 397‐419, 2010.
 324. Koffler LD, Fernstrom MJ, Akiyama TE, Gonzalez FJ, Ruch RJ. Positive regulation of connexin32 transcription by hepatocyte nuclear factor‐1alpha. Arch Biochem Biophys 407: 160‐167, 2002.
 325. Koibuchi N, Chin MT. CHF1/Hey2 plays a pivotal role in left ventricular maturation through suppression of ectopic atrial gene expression. Circ Res 100: 850‐855, 2007.
 326. Kojima T, Srinivas M, Fort A, Hopperstad M, Urban M, Hertzberg EL, Mochizuki Y, Spray DC. TPA induced expression and function of human connexin 26 by post‐translational mechanisms in stably transfected neuroblastoma cells. Cell Struct Funct 24: 435‐441, 1999.
 327. Kondo RP, Wang SY, John SA, Weiss JN, Goldhaber JI. Metabolic inhibition activates a non‐selective current through connexin hemichannels in isolated ventricular myocytes. J Mol Cell Cardiol 32: 1859‐1872, 2000.
 328. Koval M, Harley JE, Hick E, Steinberg TH. Connexin46 is retained as monomers in a trans‐Golgi compartment of osteoblastic cells. J Cell Biol 137: 847‐857, 1997.
 329. Kozoriz MG, Bechberger JF, Bechberger GR, Suen MW, Moreno AP, Maass K, Willecke K, Naus CC. The connexin43 C‐terminal region mediates neuroprotection during stroke. J Neuropathol Exp Neurol 69: 196‐206, 2010.
 330. Krenacs T, Rosendaal M. Connexin43 gap junctions in normal, regenerating, and cultured mouse bone marrow and in human leukemias: Their possible involvement in blood formation. Am J Pathol 152: 993‐1004, 1998.
 331. Krenacs T, van DM, Lindhout E, Rosendaal M. Direct cell/cell communication in the lymphoid germinal center: Connexin43 gap junctions functionally couple follicular dendritic cells to each other and to B lymphocytes. Eur J Immunol 27: 1489‐1497, 1997.
 332. Kreusch A, Pfaffinger PJ, Stevens CF, Choe S. Crystal structure of the tetramerization domain of the Shaker potassium channel. Nature 392: 945‐948, 1998.
 333. Kreuzberg MM, Liebermann M, Segschneider S, Dobrowolski R, Dobrzynski H, Kaba R, Rowlinson G, Dupont E, Severs NJ, Willecke K. Human connexin31.9, unlike its orthologous protein connexin30.2 in the mouse, is not detectable in the human cardiac conduction system. J Mol Cell Cardiol 46: 553‐559, 2009.
 334. Kreuzberg MM, Schrickel JW, Ghanem A, Kim JS, Degen J, Janssen‐Bienhold U, Lewalter T, Tiemann K, Willecke K. Connexin30.2 containing gap junction channels decelerate impulse propagation through the atrioventricular node. Proc Natl Acad Sci U S A 103: 5959‐5964, 2006.
 335. Kreuzberg MM, Willecke K, Bukauskas FF. Connexin‐mediated cardiac impulse propagation: Connexin 30.2 slows atrioventricular conduction in mouse heart. Trends Cardiovasc Med 16: 266‐272, 2006.
 336. Kruger O, Plum A, Kim JS, Winterhager E, Maxeiner S, Hallas G, Kirchhoff S, Traub O, Lamers WH, Willecke K. Defective vascular development in connexin 45‐deficient mice. Development 127: 4179‐4193, 2000.
 337. Kumar NM, Gilula NB. Molecular biology and genetics of gap junction channels. Semin Cell Biol 3: 3‐16, 1992.
 338. Kumar NM, Gilula NB. The gap junction communication channel. Cell 84: 381‐388, 1996.
 339. Kuraoka A, Yamanaka I, Miyahara A, Shibata Y, Uemura T. Immunocytochemical studies of major gap junction proteins in rat salivary glands. Eur Arch Otorhinolaryngol 251(Suppl 1): S95‐S99, 1994.
 340. Kurtz L, Schweda F, de WC, Kriz W, Witzgall R, Warth R, Sauter A, Kurtz A, Wagner C. Lack of connexin 40 causes displacement of renin‐producing cells from afferent arterioles to the extraglomerular mesangium. J Am Soc Nephrol 18: 1103‐1111, 2007.
 341. Kwak BR, Hermans MM, De Jonge HR, Lohmann SM, Jongsma HJ, Chanson M. Differential regulation of distinct types of gap junction channels by similar phosphorylating conditions. Mol Biol Cell 6: 1707‐1719, 1995.
 342. Kwak BR, Jongsma HJ. Regulation of cardiac gap junction channel permeability and conductance by several phosphorylating conditions. Mol Cell Biochem 157: 93‐99, 1996.
 343. Kwak BR, Mulhaupt F, Veillard N, Gros DB, Mach F. Altered pattern of vascular connexin expression in atherosclerotic plaques. Arterioscler Thromb Vasc Biol 22: 225‐230, 2002.
 344. Kwak BR, Saez JC, Wilders R, Chanson M, Fishman GI, Hertzberg EL, Spray DC, Jongsma HJ. Effects of cGMP‐dependent phosphorylation on rat and human connexin43 gap junction channels. Eur J Physiol 430: 770‐778, 1995.
 345. Kwak BR, Veillard N, Pelli G, Mulhaupt F, James RW, Chanson M, Mach F. Reduced connexin43 expression inhibits atherosclerotic lesion formation in low‐density lipoprotein receptor‐deficient mice. Circulation 107: 1033‐1039, 2003.
 346. Kwak BR, van Veen TAB, Analbers LJS, Jongsma HJ. TPA increases conductance but decreases permeability in neonatal rat cardiomyocyte gap junction channels. Exp Cell Res 220: 456‐463, 1995.
 347. Kwong KF, Schuessler RB, Green KG, Laing JG, Beyer EC, Boineau JP, Saffitz JE. Differential expression of gap junction proteins in the canine sinus node. Circ Res 82: 604‐612, 1998.
 348. Laing JG, Beyer EC. The gap junction protein connexin43 is degraded via the ubiquitin proteasome pathway. J Biol Chem 270: 26399‐26403, 1995.
 349. Laing JG, Tadros PN, Green K, Saffitz JE, Beyer EC. Proteolysis of connexin43‐containing gap junctions in normal and heat‐stressed cardiac myocytes. Cardiovasc Res 38: 711‐718, 1998.
 350. Laing JG, Tadros PN, Westphale EM, Beyer EC. Degradation of connexin43 gap junctions involves both the proteasome and the lysosome. Exp Cell Res 236: 482‐492, 1997.
 351. Laird DW. Life cycle of connexins in health and disease. Biochem J 394: 527‐543, 2006.
 352. Laird DW. The gap junction proteome and its relationship to disease. Trends Cell Biol 20: 92‐101, 2010.
 353. Laird DW, Puranam KL, Revel JP. Turnover and phosphorylation dynamics of connexin43 gap junction protein in cultured cardiac myocytes. Biochem J 273(Pt 1): 67‐72, 1991.
 354. Lampe PD, TenBroek EM, Burt JM, Kurata WE, Johnson RG. Phosphorylation of Connexin43 on Serine368 by protein kinase C regulates gap junctional communication. J Cell Biol 149: 1503‐1512, 2000.
 355. Lampe PD, Cooper CD, King TJ, Burt JM. Analysis of Connexin43 phosphorylated at S325, S328 and S330 in normoxic and ischemic heart. J Cell Sci 119: 3435‐3442, 2006.
 356. Lampe PD, Lau AF. Regulation of gap junctions by phosphorylation of connexins. Arch Biochem Biophys 384: 205‐215, 2000.
 357. Lampe PD, Lau AF. The effects of connexin phosphorylation on gap junctional communication. Int J Biochem Cell Biol 36: 1171‐1186, 2004.
 358. Langlois S, Cowan KN, Shao Q, Cowan BJ, Laird DW. Caveolin‐1 and ‐2 interact with connexin43 and regulate gap junctional intercellular communication in keratinocytes. Mol Biol Cell 19: 912‐928, 2008.
 359. Larsen WJ, Tung HN, Murray SA, Swenson CA. Evidence for the participation of actin microfilaments and bristle coats in the internalization of gap junction membrane. J Cell Biol 83: 576‐587, 1979.
 360. Lauf U, Giepmans BN, Lopez P, Braconnot S, Chen SC, Falk MM. Dynamic trafficking and delivery of connexons to the plasma membrane and accretion to gap junctions in living cells. Proc Natl Acad Sci U S A 99: 10446‐10451, 2002.
 361. Laurent G, Leong‐Poi H, Mangat I, Moe GW, Hu X, So PP, Tarulli E, Ramadeen A, Rossman EI, Hennan JK, Dorian P. Effects of chronic gap junction conduction‐enhancing antiarrhythmic peptide GAP‐134 administration on experimental atrial fibrillation in dogs. Circ Arrhythm Electrophysiol 2: 171‐178, 2009.
 362. Law LY, Zhang WV, Stott NS, Becker DL, Green CR. In vitro optimization of antisense oligodeoxynucleotide design: An example using the connexin gene family. J Biomol Tech 17: 270‐282, 2006.
 363. Lazrak A, Peracchia C. Gap junction gating sensitivity to physiological internal calcium regardless of pH in Novikoff hepatoma cells. Biophys J 65: 2002‐2012, 1993.
 364. Lee SM, Clemens MG. Subacinar distribution of hepatocyte membrane potential response to stimulation of gluconeogenesis. Am J Physiol 263: G319‐G326, 1992.
 365. Lefebvre PP, Van De Water TR. Connexins, hearing and deafness: Clinical aspects of mutations in the connexin 26 gene. Brain Res Brain Res Rev 32: 159‐162, 2000.
 366. Leithe E, Kjenseth A, Sirnes S, Stenmark H, Brech A, Rivedal E. Ubiquitylation of the gap junction protein connexin‐43 signals its trafficking from early endosomes to lysosomes in a process mediated by Hrs and Tsg101. J Cell Sci 122: 3883‐3893, 2009.
 367. Leithe E, Rivedal E. Epidermal growth factor regulates ubiquitination, internalization and proteasome‐dependent degradation of connexin43. J Cell Sci 117: 1211‐1220, 2004a.
 368. Leithe E, Rivedal E. Ubiquitination and down‐regulation of gap junction protein connexin‐43 in response to 12‐O‐tetradecanoylphorbol 13‐acetate treatment. J Biol Chem 279: 50089‐50096, 2004b.
 369. Lerner DL, Yamada KA, Schuessler RB, Saffitz JE. Accelerated onset and increased incidence of ventricular arrhythmias induced by ischemia in Cx43‐deficient mice. Circulation 101: 547‐552, 2000.
 370. Lewandowski R, Procida K, Vaidyanathan R, Coombs W, Jalife J, Nielsen MS, Taffet SM, Delmar M. RXP‐E: A connexin43‐binding peptide that prevents action potential propagation block. Circ Res 103: 519‐526, 2008.
 371. Leybaert L, Braet K, Vandamme W, Cabooter L, Martin PE, Evans WH. Connexin channels, connexin mimetic peptides and ATP release. Cell Commun Adhes 10: 251‐257, 2003.
 372. Leykauf K, Salek M, Bomke J, Frech M, Lehmann WD, Durst M, Alonso A. Ubiquitin protein ligase Nedd4 binds to connexin43 by a phosphorylation‐modulated process. J Cell Sci 119: 3634‐3642, 2006.
 373. Li A, Leung CT, Peterson‐Yantorno K, Mitchell CH, Civan MM. Pathways for ATP release by bovine ciliary epithelial cells, the initial step in purinergic regulation of aqueous humor inflow. Am J Physiol Cell Physiol 299: C1308‐C1317, 2010.
 374. Li F, Sugishita K, Su Z, Ueda I, Barry WH. Activation of connexin‐43 hemichannels can elevate [Ca(2+)]i and [Na(+)]i in rabbit ventricular myocytes during metabolic inhibition. J Mol Cell Cardiol 33: 2145‐2155, 2001.
 375. Li H, Brodsky S, Kumari S, Valiunas V, Brink P, Kaide J, Nasjletti A, Goligorsky MS. Paradoxical overexpression and translocation of connexin43 in homocysteine‐treated endothelial cells. Am J Physiol Heart Circ Physiol 282: H2124‐H2133, 2002.
 376. Li H, Liu TF, Lazrak A, Peracchia C, Goldberg GS, Lampe PD, Johnson RG. Properties and regulation of gap junctional hemichannels in the plasma membranes of cultured cells. J Cell Biol 134: 1019‐1030, 1996.
 377. Li X, Heinzel FR, Boengler K, Schulz R, Heusch G. Role of connexin 43 in ischemic preconditioning does not involve intercellular communication through gap junctions. J Mol Cell Cardiol 36: 161‐163, 2004.
 378. Li X, Su V, Kurata WE, Jin C, Lau AF. A novel connexin43‐interacting protein, CIP75, which belongs to the UbL‐UBA protein family, regulates the turnover of connexin43. J Biol Chem 283: 5748‐5759, 2008.
 379. Lichtenstein A, Minogue PJ, Beyer EC, Berthoud VM. Autophagy: A pathway that contributes to connexin degradation. J Cell Sci 124: 910‐920, 2011.
 380. Lin D, Lobell S, Jewell A, Takemoto DJ. Differential phosphorylation of connexin46 and connexin50 by H2O2 activation of protein kinase Cgamma. Mol Vis 10: 688‐695, 2004.
 381. Lin JH, Lou N, Kang N, Takano T, Hu F, Han X, Xu Q, Lovatt D, Torres A, Willecke K, Yang J, Kang J, Nedergaard M. A central role of connexin 43 in hypoxic preconditioning. J Neurosci 28: 681‐695, 2008.
 382. Lin JS, Fitzgerald S, Dong YM, Knight C, Donaldson P, Kistler J. Processing of the gap junction protein connexin50 in the ocular lens is accomplished by calpain. Eur J Cell Biol 73: 141‐149, 1997.
 383. Lin R, Warn‐Cramer BJ, Kurata WE, Lau AF. v‐Src phosphorylation of connexin 43 on Tyr247 and Tyr265 disrupts gap junctional communication. J Cell Biol 154: 815‐828, 2001.
 384. Lin X, Zemlin C, Hennan JK, Petersen JS, Veenstra RD. Enhancement of ventricular gap‐junction coupling by rotigaptide. Cardiovasc Res 79: 416‐426, 2008.
 385. Linhares VL, Almeida NA, Menezes DC, Elliott DA, Lai D, Beyer EC, Campos de Carvalho AC, Costa MW. Transcriptional regulation of the murine Connexin40 promoter by cardiac factors Nkx2‐5, GATA4 and Tbx5. Cardiovasc Res 64: 402‐411, 2004.
 386. Listi F, Candore G, Balistreri CR, Caruso M, Incalcaterra E, Hoffmann E, Lio D, Caruso C. Connexin37 1019 gene polymorphism in myocardial infarction patients and centenarians. Atherosclerosis 191: 460‐461, 2007.
 387. Liu F, Arce FT, Ramachandran S, Lal R. Nanomechanics of hemichannel conformations: Connexin flexibility underlying channel opening and closing. J Biol Chem 281: 23207‐23217, 2006.
 388. Liu HT, Tashmukhamedov BA, Inoue H, Okada Y, Sabirov RZ. Roles of two types of anion channels in glutamate release from mouse astrocytes under ischemic or osmotic stress. Glia 54: 343‐357, 2006.
 389. Liu J, Xu J, Gu S, Nicholson BJ, Jiang JX. Aquaporin 0 enhances gap junction coupling via its cell adhesion function and interaction with connexin 50. J Cell Sci 124: 198‐206, 2011.
 390. Liu LW, Farraway L, Berezin I, Huizinga JD. Interstitial cells of Cajal: Mediators of communication between circular and longitudinal muscle layers of canine colon. Cell Tissue Res 294: 69‐79, 1998.
 391. Liu S, Taffet S, Stoner L, Delmar M, Vallano ML, Jalife J. A structural basis for the unequal sensitivity of the major cardiac and liver gap junctions to intracellular acidification: The carboxyl tail length. Biophys J 64: 1422‐1433, 1993.
 392. Lobo IA, Mascia MP, Trudell JR, Harris RA. Channel gating of the glycine receptor changes accessibility to residues implicated in receptor potentiation by alcohols and anesthetics. J Biol Chem 279: 33919‐33927, 2004.
 393. Locke D, Bian S, Li H, Harris AL. Post‐translational modifications of connexin26 revealed by mass spectrometry. Biochem J 424: 385‐398, 2009.
 394. Locke D, Koreen IV, Harris AL. Isoelectric points and post‐translational modifications of connexin26 and connexin32. FASEB J 20: 1221‐1223, 2006.
 395. Locovei S, Bao L, Dahl G. Pannexin 1 in erythrocytes: Function without a gap. Proc Natl Acad Sci U S A 103: 7655‐7659, 2006.
 396. Loewenstein WR, Kanno Y. Intercellular communication and the control of tissue growth: Lack of communication between cancer cells. Nature 209: 1248‐1249, 1966.
 397. Loncarek J, Yamasaki H, Levillain P, Milinkevitch S, Mesnil M. The expression of the tumor suppressor gene connexin 26 is not mediated by methylation in human esophageal cancer cells. Mol Carcinog 36: 74‐81, 2003.
 398. Long MA, Deans MR, Paul DL, Connors BW. Rhythmicity without synchrony in the electrically uncoupled inferior olive. J Neurosci 22: 10898‐10905, 2002.
 399. Lu G, Haider HK, Porollo A, Ashraf M. Mitochondria‐specific transgenic overexpression of connexin‐43 simulates preconditioning‐induced cytoprotection of stem cells. Cardiovasc Res 88: 277‐286, 2010.
 400. Lu Y, Zhang Y, Shan H, Pan Z, Li X, Li B, Xu C, Zhang B, Zhang F, Dong D, Song W, Qiao G, Yang B. MicroRNA‐1 downregulation by propranolol in a rat model of myocardial infarction: A new mechanism for ischaemic cardioprotection. Cardiovasc Res 84: 434‐441, 2009.
 401. Luk JM, Mok BW, Shum CK, Yeung WS, Tam PC, Tse JY, Chow JF, Woo J, Kam K, Lee KF. Identification of novel genes expressed during spermatogenesis in stage‐synchronized rat testes by differential display. Biochem Biophys Res Commun 307: 782‐790, 2003.
 402. Lurtz MM, Louis CF. Intracellular calcium regulation of connexin43. Am J Physiol Cell Physiol 293: C1806‐C1813, 2007.
 403. Maass K, Chase SE, Lin X, Delmar M. Cx43 CT domain influences infarct size and susceptibility to ventricular tachyarrhythmias in acute myocardial infarction. Cardiovasc Res 84: 361‐367, 2009.
 404. Macia E, Dolmatova E, Cabo C, Sosinsky AZ, Dun W, Coromilas J, Ciaccio EJ, Boyden PA, Wit AL, Duffy HS. Characterization of gap junction remodeling in epicardial border zone of healing canine infarcts and electrophysiological effects of partial reversal by rotigaptide. Circ Arrhythm Electrophysiol 4: 344‐351, 2011.
 405. Mackay D, Ionides A, Kibar Z, Rouleau G, Berry V, Moore A, Shiels A, Bhattacharya S. Connexin46 mutations in autosomal dominant congenital cataract. Am J Hum Genet 64: 1357‐1364, 1999.
 406. Mackenzie LW, Garfield RE. Hormonal control of gap junctions in the myometrium. Am J Physiol 248: C296‐C308, 1985.
 407. Mackenzie LW, Garfield RE. Effects of 17 beta‐estradiol on myometrial gap junctions and pregnancy in the rat. Can J Physiol Pharmacol 64: 462‐466, 1986.
 408. Mackenzie LW, Puri CP, Garfield RE. Effect of estradiol‐17 beta and prostaglandins on rat myometrial gap junctions. Prostaglandins 26: 925‐941, 1983.
 409. Maeda S, Nakagawa S, Suga M, Yamashita E, Oshima A, Fujiyoshi Y, Tsukihara T. Structure of the connexin 26 gap junction channel at 3.5 A resolution. Nature 458: 597‐602, 2009.
 410. Maier LS. CaMKIId overexpression in hypertrophy and heart failure: Cellular consequences for excitation‐contraction coupling. Braz J Med Biol Res 38: 1293‐1302, 2005.
 411. Majoul IV, Onichtchouk D, Butkevich E, Wenzel D, Chailakhyan LM, Duden R. Limiting transport steps and novel interactions of Connexin‐43 along the secretory pathway. Histochem Cell Biol 132: 263‐280, 2009.
 412. Majumder P, Crispino G, Rodriguez L, Ciubotaru CD, Anselmi F, Piazza V, Bortolozzi M, Mammano F. ATP‐mediated cell‐cell signaling in the organ of Corti: The role of connexin channels. Purinergic Signal 6: 167‐187, 2010.
 413. Makowski L, Caspar DL, Phillips WC, Goodenough DA. Gap junction structures. V. Structural chemistry inferred from X‐ray diffraction measurements on sucrose accessibility and trypsin susceptibility. J Mol Biol 174: 449‐481, 1984.
 414. Malchow RP, Qian H, Haugh‐Scheidt LM, Ripps H. The effects of quinine and quinidine on isolated retinal horizontal cells. Biol Bull 187: 262‐263, 1994.
 415. Malchow RP, Qian H, Ripps H. A novel action of quinine and quinidine on the membrane conductance of neurons from the vertebrate retina. J Gen Physiol 104: 1039‐1055, 1994.
 416. Martin D, Tawadros T, Meylan L, Abderrahmani A, Condorelli DF, Waeber G, Haefliger JA. Critical role of the transcriptional repressor neuron‐restrictive silencer factor in the specific control of connexin36 in insulin‐producing cell lines. J Biol Chem 278: 53082‐53089, 2003.
 417. Martin PE, George CH, Castro C, Kendall JM, Capel J, Campbell AK, Revilla A, Barrio LC, Evans WH. Assembly of chimeric connexin‐aequorin proteins into functional gap junction channels. Reporting intracellular and plasma membrane calcium environments. J Biol Chem 273: 1719‐1726, 1998.
 418. Martinez AD, Acuna R, Figueroa V, Maripillan J, Nicholson B. Gap‐junction channels dysfunction in deafness and hearing loss. Antioxid Redox Signal 11: 309‐322, 2009.
 419. Martínez‐Ruiz A, Lamas S. S‐nitrosylation: A potential new paradigm in signal transduction. Cardiovasc Res 62: 43‐52, 2004.
 420. Massa PT, Mugnaini E. Cell junctions and intramembrane particles of astrocytes and oligodendrocytes: A freeze‐fracture study. Neuroscience 7: 523‐538, 1982.
 421. Matesic D, Tillen T, Sitaramayya A. Connexin 40 expression in bovine and rat retinas. Cell Biol Int 27: 89‐99, 2003.
 422. Mathias RT, Kistler J, Donaldson P. The lens circulation. J Membr Biol 216: 1‐16, 2007.
 423. Mathias RT, Rae JL, Eisenberg RS. The lens as a nonuniform spherical syncytium. Biophys J 34: 61‐83, 1981.
 424. Mathias RT, Riquelme G, Rae JL. Cell to cell communication and pH in the frog lens. J Gen Physiol 98: 1085‐1103, 1991.
 425. Mathias RT, White TW, Gong X. Lens gap junctions in growth, differentiation, and homeostasis. Physiol Rev 90: 179‐206, 2010.
 426. Maurer P, Weingart R. Cell pairs isolated from adult guinea pig and rat hearts: Effects of [Ca2+]i on nexal membrane resistance. Pflugers Arch 409: 394‐402, 1987.
 427. McCulloch F, Chambrey R, Eladari D, Peti‐Peterdi J. Localization of connexin 30 in the luminal membrane of cells in the distal nephron. Am J Physiol Renal Physiol 289: F1304‐F1312, 2005.
 428. Meda P. Gap junction involvement in secretion: The pancreas experience. Clin Exp Pharmacol Physiol 23: 1053‐1057, 1996.
 429. Mehta PP, Bertram JS, Loewenstein WR. Growth inhibition of transformed cells correlates with their junctional communication with normal cells. Cell 44: 187‐196, 1986.
 430. Mehta PP, Perez‐Stable C, Nadji M, Mian M, Asotra K, Roos BA. Suppression of human prostate cancer cell growth by forced expression of connexin genes. Dev Genet 24: 91‐110, 1999.
 431. Menichella DM, Goodenough DA, Sirkowski E, Scherer SS, Paul DL. Connexins are critical for normal myelination in the CNS. J Neurosci 23: 5963‐5973, 2003.
 432. Mesnil M, Crespin S, Avanzo JL, Zaidan‐Dagli ML. Defective gap junctional intercellular communication in the carcinogenic process. Biochim Biophys Acta 1719: 125‐145, 2005.
 433. Mesnil M, Krutovskikh V, Piccoli C, Elfgang C, Traub O, Willecke K, Yamasaki H. Negative growth control of HeLa cells by connexin genes: Connexin species specificity. Cancer Res 55: 629‐639, 1995.
 434. Meyers JR, MacDonald RB, Duggan A, Lenzi D, Standaert DG, Corwin JT, Corey DP. Lighting up the senses: FM1‐43 loading of sensory cells through nonselective ion channels. J Neurosci 23: 4054‐4065, 2003.
 435. Miller T, Dahl G, Werner R. Structure of a gap junction gene: Rat connexin‐32. Biosci Rep 8: 455‐464, 1988.
 436. Miller TM, Goodenough DA. Evidence for two physiologically distinct gap junctions expressed by the chick lens epithelial cell. J Cell Biol 102: 194‐199, 1986.
 437. Miro‐Casas E, Ruiz‐Meana M, Agullo E, Stahlhofen S, Rodriguez‐Sinovas A, Cabestrero A, Jorge I, Torre I, Vazquez J, Boengler K, Schulz R, Heusch G, Garcia‐Dorado D. Connexin43 in cardiomyocyte mitochondria contributes to mitochondrial potassium uptake. Cardiovasc Res 83: 747‐756, 2009.
 438. Mitchell JA, Lye SJ. Differential expression of activator protein‐1 transcription factors in pregnant rat myometrium. Biol Reprod 67: 240‐246, 2002.
 439. Miura T, Miki T, Yano T. Role of the gap junction in ischemic preconditioning in the heart. Am J Physiol Heart Circ Physiol 298: H1115‐H1125, 2010.
 440. Miyoshi H, Boyle MB, MacKay LB, Garfield RE. Voltage‐clamp studies of gap junctions between uterine muscle cells during term and preterm labor. Biophys J 71: 1324‐1334, 1996.
 441. Mohammad G, Kowluru RA. Novel role of mitochondrial matrix metalloproteinase‐2 in the development of diabetic retinopathy. Invest Ophthalmol Vis Sci 52: 3832‐3841, 2011.
 442. Mollerup S, Hofgaard JP, Braunstein TH, Kjenseth A, Leithe E, Rivedal E, Holstein‐Rathlou NH, Nielsen MS. Norepinephrine inhibits intercellular coupling in rat cardiomyocytes by ubiquitination of connexin43 gap junctions. Cell Commun Adhes 18: 57‐65, 2011.
 443. Monaghan P, Perusinghe N, Carlile G, Evans WH. Rapid modulation of gap junction expression in mouse mammary gland during pregnancy, lactation, and involution. J Histochem Cytochem 42: 931‐938, 1994.
 444. Montecino‐Rodriguez E, Dorshkind K. Regulation of hematopoiesis by gap junction‐mediated intercellular communication. J Leukoc Biol 70: 341‐347, 2001.
 445. Montecino‐Rodriguez E, Leathers H, Dorshkind K. Expression of connexin 43 (Cx43) is critical for normal hematopoiesis. Blood 96: 917‐924, 2000.
 446. Moorby C, Patel M. Dual functions for connexins: Cx43 regulates growth independently of gap junction formation. Exp Cell Res 271: 238‐248, 2001.
 447. Morel S, Burnier L, Kwak B. Connexins participate in the initiation and progression of atherosclerosis. Semin Immunopathol 31: 49‐61, 2009.
 448. Moreno AP. Biophysical properties of homomeric and heteromultimeric channels formed by cardiac connexins. Cardiovasc Res 62: 276‐286, 2004.
 449. Moreno AP, Chanson M, Elenes S, Anumonwo J, Scerri I, Gu H, Taffet SM, Delmar M. Role of the carboxyl terminal of connexin43 in transjunctional fast voltage gating. Circ Res 90: 450‐457, 2002.
 450. Moreno AP, Fishman GI, Spray DC. Phosphorylation shifts unitary conductance and modifies voltage dependent kinetics of human connexin43 gap junction channels. Biophys J 62: 51‐53, 1992.
 451. Moreno AP, Rook MB, Fishman GI, Spray DC. Gap junction channels: Distinct voltage‐sensitive and ‐insensitive conductance states. Biophys J 67: 113‐119, 1994.
 452. Moreno AP, Sáez JC, Fishman GI, Spray DC. Human Connexin43 gap junction channels. Regulation of unitary conductances by phosphorylation. Circ Res 74: 1050‐1057, 1994.
 453. Mori Y, Otabe S, Dina C, Yasuda K, Populaire C, Lecoeur C, Vatin V, Durand E, Hara K, Okada T, Tobe K, Boutin P, Kadowaki T, Froguel P. Genome‐wide search for type 2 diabetes in Japanese affected sib‐pairs confirms susceptibility genes on 3q, 15q, and 20q and identifies two new candidate Loci on 7p and 11p. Diabetes 51: 1247‐1255, 2002.
 454. Morley GE, Taffet SM, Delmar M. Intramolecular interactions mediate pH regulation of connexin43 channels. Biophys J 70: 1294‐1302, 1996.
 455. Morley GE, Vaidya D, Samie FH, Lo C, Delmar M, Jalife J. Characterization of conduction in the ventricles of normal and heterozygous Cx43 knockout mice using optical mapping. J Cardiovasc Electrophysiol 10: 1361‐1375, 1999.
 456. Muller DJ, Hand GM, Engel A, Sosinsky GE. Conformational changes in surface structures of isolated connexin 26 gap junctions. Embo J 21: 3598‐3607, 2002.
 457. Muramatsu T, Hashimoto S, Shimono M. Differential expression of gap junction proteins connexin32 and 43 in rat submandibular and sublingual glands. J Histochem Cytochem 44: 49‐56, 1996.
 458. Murata Y, Yasuo T, Yoshida R, Obata K, Yanagawa Y, Margolskee RF, Ninomiya Y. Action potential‐enhanced ATP release from taste cells through hemichannels. J Neurophysiol 104: 896‐901, 2010.
 459. Murry CE, Jennings RB, Reimer KA. Preconditioning with ischemia: A delay of lethal cell injury in ischemic myocardium. Circulation 74: 1124‐1136, 1986.
 460. Musil LS. Biogenesis and Degradation of Gap Junctions. In: Harris AL, Locke D, editors. Connexins. A Guide. New York, Humana Press, 2009, p. 225‐240.
 461. Musil LS, Cunningham BA, Edelman GM, Goodenough DA. Differential phosphorylation of the gap junction protein connexin43 in junctional communication‐competent and ‐deficient cell lines. J Cell Biol 111: 2077‐2088, 1990.
 462. Musil LS, Goodenough DA. Biochemical analysis of connexin43 intracellular transport, phosphorylation, and assembly into gap junctional plaques. J Cell Biol 115: 1357‐1374, 1991.
 463. Musil LS, Goodenough DA. Multisubunit assembly of an integral plasma membrane channel protein, gap junction connexin43, occurs after exit from the ER. Cell 74: 1065‐1077, 1993.
 464. Musil LS, Le AC, VanSlyke JK, Roberts LM. Regulation of connexin degradation as a mechanism to increase gap junction assembly and function. J Biol Chem 275: 25207‐25215, 2000.
 465. Nagy JI, Li X, Rempel J, Stelmack G, Patel D, Staines WA, Yasumura T, Rash JE. Connexin26 in adult rodent central nervous system: Demonstration at astrocytic gap junctions and colocalization with connexin30 and connexin43. J Comp Neurol 441: 302‐323, 2001.
 466. Nagy JI, Rash JE. Connexins and gap junctions of astrocytes and oligodendrocytes in the CNS. Brain Res Brain Res Rev 32: 29‐44, 2000.
 467. Nakase T, Sohl G, Theis M, Willecke K, Naus CC. Increased apoptosis and inflammation after focal brain ischemia in mice lacking connexin43 in astrocytes. Am J Pathol 164: 2067‐2075, 2004.
 468. Naus CC, Hearn S, Zhu D, Nicholson BJ, Shivers RR. Ultrastructural analysis of gap junctions in C6 glioma cells transfected with connexin43 cDNA. Exp Cell Res 206: 72‐84, 1993.
 469. Neijssen J, Herberts C, Drijfhout JW, Reits E, Janssen L, Neefjes J. Cross‐presentation by intercellular peptide transfer through gap junctions. Nature 434: 83‐88, 2005.
 470. Neijssen J, Pang B, Neefjes J. Gap junction‐mediated intercellular communication in the immune system. Prog Biophys Mol Biol 94: 207‐218, 2007.
 471. Nelles E, Butzler C, Jung D, Temme A, Gabriel HD, Dahl U, Traub O, Stumpel F, Jungermann K, Zielasek J, Toyka KV, Dermietzel R, Willecke K. Defective propagation of signals generated by sympathetic nerve stimulation in the liver of connexin32‐deficient mice. Proc Natl Acad Sci U S A 93: 9565‐9570, 1996.
 472. Nemeth L, Maddur S, Puri P. Immunolocalization of the gap junction protein Connexin43 in the interstitial cells of Cajal in the normal and Hirschsprung's disease bowel. J Pediatr Surg 35: 823‐828, 2000.
 473. Nicholson B, Dermietzel R, Teplow D, Traub O, Willecke K, Revel JP. Two homologous protein components of hepatic gap junctions. Nature 329: 732‐734, 1987.
 474. Nickel BM, DeFranco BH, Gay VL, Murray SA. Clathrin and Cx43 gap junction plaque endoexocytosis. Biochem Biophys Res Commun 374: 679‐682, 2008.
 475. Niessen H, Willecke K. Strongly decreased gap junctional permeability to inositol 1,4, 5‐trisphosphate in connexin32 deficient hepatocytes. FEBS Lett 466: 112‐114, 2000.
 476. Nlend RN, Michon L, Bavamian S, Boucard N, Caille D, Cancela J, Charollais A, Charpantier E, Klee P, Peyrou M, Populaire C, Zulianello L, Meda P. Connexin36 and pancreatic beta‐cell functions. Arch Physiol Biochem 112: 74‐81, 2006.
 477. Noma A, Tsuboi N. Dependence of junctional conductance on proton, calcium and magnesium ions in cardiac paired cells of guinea‐pig. J Physiol 382: 193‐211, 1987.
 478. Norris RP, Ratzan WJ, Freudzon M, Mehlmann LM, Krall J, Movsesian MA, Wang H, Ke H, Nikolaev VO, Jaffe LA. Cyclic GMP from the surrounding somatic cells regulates cyclic AMP and meiosis in the mouse oocyte. Development 136: 1869‐1878, 2009.
 479. O'Quinn MP, Palatinus JA, Harris BS, Hewett KW, Gourdie RG. A peptide mimetic of the connexin43 carboxyl terminus reduces gap junction remodeling and induced arrhythmia following ventricular injury. Circ Res 108: 704‐715, 2011.
 480. Odermatt B, Wellershaus K, Wallraff A, Seifert G, Degen J, Euwens C, Fuss B, Bussow H, Schilling K, Steinhauser C, Willecke K. Connexin 47 (Cx47)‐deficient mice with enhanced green fluorescent protein reporter gene reveal predominant oligodendrocytic expression of Cx47 and display vacuolized myelin in the CNS. J Neurosci 23: 4549‐4559, 2003.
 481. Ogawa T, Hayashi T, Kyoizumi S, Ito T, Trosko JE, Yorioka N. Up‐regulation of gap junctional intercellular communication by hexamethylene bisacetamide in cultured human peritoneal mesothelial cells. Lab Invest 79: 1511‐1520, 1999.
 482. Oh S, Ri Y, Bennett MV, Trexler EB, Verselis VK, Bargiello TA. Changes in permeability caused by connexin 32 mutations underlie X‐linked Charcot‐Marie‐Tooth disease. Neuron 19: 927‐938, 1997.
 483. Oike M, Droogmans G, Ito Y. [ATP release pathways in vascular endothelial cells]. Nippon Yakurigaku Zasshi 123: 403‐411, 2004.
 484. Olbina G, Eckhart W. Mutations in the second extracellular region of connexin 43 prevent localization to the plasma membrane, but do not affect its ability to suppress cell growth. Mol Cancer Res 1: 690‐700, 2003.
 485. Omori Y, Yamasaki H. Mutated connexin43 proteins inhibit rat glioma cell growth suppression mediated by wild‐type connexin43 in a dominant‐negative manner. Int J Cancer 78: 446‐453, 1998.
 486. Oosthoek PW, Viragh S, Lamers WH, Moorman AF. Immunohistochemical delineation of the conduction system. II: The atrioventricular node and Purkinje fibers. Circ Res 73: 482‐491, 1993.
 487. Oosthoek PW, Viragh S, Mayen AE, van Kempen MJ, Lamers WH, Moorman AF. Immunohistochemical delineation of the conduction system. I: The sinoatrial node. Circ Res 73: 473‐481, 1993.
 488. Orellana JA, Hernandez DE, Ezan P, Velarde V, Bennett MV, Giaume C, Saez JC. Hypoxia in high glucose followed by reoxygenation in normal glucose reduces the viability of cortical astrocytes through increased permeability of connexin 43 hemichannels. Glia 58: 329‐343, 2010.
 489. Orthmann‐Murphy JL, Abrams CK, Scherer SS. Gap junctions couple astrocytes and oligodendrocytes. J Mol Neurosci 35: 101‐116, 2008.
 490. Oshima A, Tani K, Hiroaki Y, Fujiyoshi Y, Sosinsky GE. Three‐dimensional structure of a human connexin26 gap junction channel reveals a plug in the vestibule. Proc Natl Acad Sci U S A 104: 10034‐10039, 2007.
 491. Ou CW, Orsino A, Lye SJ. Expression of connexin‐43 and connexin‐26 in the rat myometrium during pregnancy and labor is differentially regulated by mechanical and hormonal signals. Endocrinology 138: 5398‐5407, 1997.
 492. Oviedo‐Orta E, Errington RJ, Evans WH. Gap junction intercellular communication during lymphocyte transendothelial migration. Cell Biol Int 26: 253‐263, 2002.
 493. Oviedo‐Orta E, Gasque P, Evans WH. Immunoglobulin and cytokine expression in mixed lymphocyte cultures is reduced by disruption of gap junction intercellular communication. FASEB J 15: 768‐774, 2001.
 494. Oviedo‐Orta E, Perreau M, Evans WH, Potolicchio I. Control of the proliferation of activated CD4+ T cells by connexins. J Leukoc Biol 88: 79‐86, 2010.
 495. Owens DF, Kriegstein AR. Patterns of intracellular calcium fluctuation in precursor cells of the neocortical ventricular zone. J Neurosci 18: 5374‐5388, 1998.
 496. Oyamada M, Oyamada Y, Takamatsu T. Regulation of connexin expression. Biochim Biophys Acta 1719: 6‐23, 2005.
 497. Pain T, Yang XM, Critz SD, Yue Y, Nakano A, Liu GS, Heusch G, Cohen MV, Downey JM. Opening of mitochondrial K(ATP) channels triggers the preconditioned state by generating free radicals. Circ Res 87: 460‐466, 2000.
 498. Palacios‐Prado N, Bukauskas FF. Heterotypic gap junction channels as voltage‐sensitive valves for intercellular signaling. Proc Natl Acad Sci U S A 106: 14855‐14860, 2009.
 499. Palacios‐Prado N, Sonntag S, Skeberdis VA, Willecke K, Bukauskas FF. Gating, permselectivity and pH‐dependent modulation of channels formed by connexin57, a major connexin of horizontal cells in the mouse retina. J Physiol 587: 3251‐3269, 2009.
 500. Panchin Y, Kelmanson I, Matz M, Lukyanov K, Usman N, Lukyanov S. A ubiquitous family of putative gap junction molecules. Curr Biol 10: R473‐R474, 2000.
 501. Panchin YV. Evolution of gap junction proteins–the pannexin alternative. J Exp Biol 208: 1415‐1419, 2005.
 502. Pang B, Neijssen J, Qiao X, Janssen L, Janssen H, Lippuner C, Neefjes J. Direct antigen presentation and gap junction mediated cross‐presentation during apoptosis. J Immunol 183: 1083‐1090, 2009.
 503. Pankratov Y, Lalo U, Verkhratsky A, North RA. Vesicular release of ATP at central synapses. Pflugers Arch 452: 589‐597, 2006.
 504. Paul DL, Ebihara L, Takemoto LJ, Swenson KI, Goodenough DA. Connexin46, a novel lens gap junction protein, induces voltage‐gated currents in nonjunctional plasma membrane of Xenopus oocytes. J Cell Biol 115: 1077‐1089, 1991.
 505. Paznekas WA, Karczeski B, Vermeer S, Lowry RB, Delatycki M, Laurence F, Koivisto PA, Van ML, Boyadjiev SA, Bodurtha JN, Jabs EW. GJA1 mutations, variants, and connexin 43 dysfunction as it relates to the oculodentodigital dysplasia phenotype. Hum Mutat 30: 724‐733, 2009.
 506. Pearson RA, Dale N, Llaudet E, Mobbs P. ATP released via gap junction hemichannels from the pigment epithelium regulates neural retinal progenitor proliferation. Neuron 46: 731‐744, 2005.
 507. Penuela S, Bhalla R, Gong XQ, Cowan KN, Celetti SJ, Cowan BJ, Bai D, Shao Q, Laird DW. Pannexin 1 and pannexin 3 are glycoproteins that exhibit many distinct characteristics from the connexin family of gap junction proteins. J Cell Sci 120: 3772‐3783, 2007.
 508. Peracchia C. Chemical gating of gap junction channels; roles of calcium, pH and calmodulin. Biochim Biophys Acta 1662: 61‐80, 2004.
 509. Peracchia C, Sotkis A, Wang XG, Peracchia LL, Persechini A. Calmodulin directly gates gap junction channels. J Biol Chem 275: 26220‐26224, 2000.
 510. Peracchia C, Young KC, Wang XG, Peracchia LL. Is the voltage gate of connexins CO2‐sensitive? Cx45 channels and inhibition of calmodulin expression. J Membr Biol 195: 53‐62, 2003.
 511. Perez‐Armendariz EM, Romano MC, Luna J, Miranda C, Bennett MV, Moreno AP. Characterization of gap junctions between pairs of Leydig cells from mouse testis. Am J Physiol 267: C570‐C580, 1994.
 512. Perez‐Armendariz M, Roy C, Spray DC, Bennett MV. Biophysical properties of gap junctions between freshly dispersed pairs of mouse pancreatic beta cells. Biophys J 59: 76‐92, 1991.
 513. Petrocelli T, Lye SJ. Regulation of transcripts encoding the myometrial gap junction protein, connexin‐43, by estrogen and progesterone. Endocrinology 133: 284‐290, 1993.
 514. Pfahnl A, Dahl G. Gating of cx46 gap junction hemichannels by calcium and voltage. Pflugers Arch 437: 345‐353, 1999.
 515. Pfeifer I, Anderson C, Werner R, Oltra E. Redefining the structure of the mouse connexin43 gene: Selective promoter usage and alternative splicing mechanisms yield transcripts with different translational efficiencies. Nucleic Acids Res 32: 4550‐4562, 2004.
 516. Pfeifer U. Autophagic sequestration of internalized gap junctions in rat liver. Eur J Cell Biol 21: 244‐246, 1980.
 517. Phelan P. Innexins: Members of an evolutionarily conserved family of gap‐junction proteins. Biochim Biophys Acta 1711: 225‐245, 2005.
 518. Piatnitski Chekler EL, Butera JA, Di L, Swillo RE, Morgan GA, Rossman EI, Huselton C, Larsen BD, Hennan JK. Discovery of a class of potent gap‐junction modifiers as novel antiarrhythmic agents. Bioorg Med Chem Lett 19: 4551‐4554, 2009.
 519. Piechocki MP, Burk RD, Ruch RJ. Regulation of connexin32 and connexin43 gene expression by DNA methylation in rat liver cells. Carcinogenesis 20: 401‐406, 1999.
 520. Piehl M, Lehmann C, Gumpert A, Denizot JP, Segretain D, Falk MM. Internalization of large double‐membrane intercellular vesicles by a clathrin‐dependent endocytic process. Mol Biol Cell 18: 337‐347, 2007.
 521. Piersanti M, Lye SJ. Increase in messenger ribonucleic acid encoding the myometrial gap junction protein, connexin‐43, requires protein synthesis and is associated with increased expression of the activator protein‐1, c‐fos. Endocrinology 136: 3571‐3578, 1995.
 522. Plotkin LI, Manolagas SC, Bellido T. Transduction of cell survival signals by connexin‐43 hemichannels. J Biol Chem 277: 8648‐8657, 2002.
 523. Pluciennik F, Verrecchia F, Bastide B, Herve JC, Joffre M, Deleze J. Reversible interruption of gap junctional communication by testosterone propionate in cultured Sertoli cells and cardiac myocytes. J Membr Biol 149: 169‐177, 1996.
 524. Plum A, Hallas G, Magin T, Dombrowski F, Hagendorff A, Schumacher B, Wolpert C, Kim J, Lamers WH, Evert M, Meda P, Traub O, Willecke K. Unique and shared functions of different connexins in mice. Curr Biol 10: 1083‐1091, 2000.
 525. Pointis G, Fiorini C, Defamie N, Segretain D. Gap junctional communication in the male reproductive system. Biochim Biophys Acta 1719: 102‐116, 2005.
 526. Pointis G, Gilleron J, Carette D, Segretain D. Physiological and physiopathological aspects of connexins and communicating gap junctions in spermatogenesis. Philos Trans R Soc Lond B Biol Sci 365: 1607‐1620, 2010.
 527. Postma FR, Hengeveld T, Alblas J, Giepmans BNG, Zondag GCM, Jalink K, Moolenaar WH. Acute loss of cell‐cell communication caused by G protein‐coupled receptors: A critical role for c‐Src. J Cell Biol 140: 1199‐1209, 1998.
 528. Presley CA, Lee AW, Kastl B, Igbinosa I, Yamada Y, Fishman GI, Gutstein DE, Cancelas JA. Bone marrow connexin‐43 expression is critical for hematopoietic regeneration after chemotherapy. Cell Commun Adhes 12: 307‐317, 2005.
 529. Princen F, Robe P, Gros D, Jarry‐Guichard T, Gielen J, Merville MP, Bours V. Rat gap junction connexin‐30 inhibits proliferation of glioma cell lines. Carcinogenesis 22: 507‐513, 2001.
 530. Procida K, Jørgensen L, Schmitt N, Delmar M, Taffet SM, Holstein‐Rathlou NH, Nielsen MS, Braunstein TH. Phosphorylation of connexin43 on serine 306 regulates electrical coupling. Heart Rhythm 6: 1632‐1638, 2009.
 531. Puljung MC, Berthoud VM, Beyer EC, Hanck DA. Polyvalent cations constitute the voltage gating particle in human connexin37 hemichannels. J Gen Physiol 124: 587‐603, 2004.
 532. Puranam KL, Laird DW, Revel JP. Trapping an intermediate form of connexin43 in the Golgi. Exp Cell Res 206: 85‐92, 1993.
 533. Puri CP, Garfield RE. Changes in hormone levels and gap junctions in the rat uterus during pregnancy and parturition. Biol Reprod 27: 967‐975, 1982.
 534. Qin H, Shao Q, Curtis H, Galipeau J, Belliveau DJ, Wang T, Alaoui‐Jamali MA, Laird DW. Retroviral delivery of connexin genes to human breast tumor cells inhibits in vivo tumor growth by a mechanism that is independent of significant gap junctional intercellular communication. J Biol Chem 277: 29132‐29138, 2002.
 535. Qin H, Shao Q, Igdoura SA, Alaoui‐Jamali MA, Laird DW. Lysosomal and proteasomal degradation play distinct roles in the life cycle of Cx43 in gap junctional intercellular communication‐deficient and ‐competent breast tumor cells. J Biol Chem 278: 30005‐30014, 2003.
 536. Qiu C, Coutinho P, Frank S, Franke S, Law LY, Martin P, Green CR, Becker DL. Targeting connexin43 expression accelerates the rate of wound repair. Curr Biol 13: 1697‐1703, 2003.
 537. Qu C, Gardner P, Schrijver I. The role of the cytoskeleton in the formation of gap junctions by Connexin 30. Exp Cell Res 315: 1683‐1692, 2009.
 538. Quan XQ, Bai R, Lu JG, Patel C, Liu N, Ruan Y, Chen BD, Ruan L, Zhang CT. Pharmacological enhancement of cardiac gap junction coupling prevents arrhythmias in canine LQT2 model. Cell Commun Adhes 16: 29‐38, 2009.
 539. Rae JL, Bartling C, Rae J, Mathias RT. Dye transfer between cells of the lens. J Membr Biol 150: 89‐103, 1996.
 540. Rahman S, Carlile G, Evans WH. Assembly of hepatic gap junctions. Topography and distribution of connexin 32 in intracellular and plasma membranes determined using sequence‐specific antibodies. J Biol Chem 268: 1260‐1265, 1993.
 541. Rahman S, Evans WH. Topography of connexin32 in rat liver gap junctions. Evidence for an intramolecular disulphide linkage connecting the two extracellular peptide loops. J Cell Sci 100(Pt 3): 567‐578, 1991.
 542. Rana S, Dringen R. Gap junction hemichannel‐mediated release of glutathione from cultured rat astrocytes. Neurosci Lett 415: 45‐48, 2007.
 543. Rash JE. Molecular disruptions of the panglial syncytium block potassium siphoning and axonal saltatory conduction: Pertinence to neuromyelitis optica and other demyelinating diseases of the central nervous system. Neuroscience 168: 982‐1008, 2010.
 544. Rash JE, Davidson KG, Kamasawa N, Yasumura T, Kamasawa M, Zhang C, Michaels R, Restrepo D, Ottersen OP, Olson CO, Nagy JI. Ultrastructural localization of connexins (Cx36, Cx43, Cx45), glutamate receptors and aquaporin‐4 in rodent olfactory mucosa, olfactory nerve and olfactory bulb. J Neurocytol 34: 307‐341, 2005.
 545. Rash JE, Staehelin LA, Ellisman MH. Rectangular arrays of particles on freeze‐cleaved plasma membranes are not gap junctions. Exp Cell Res 86: 187‐190, 1974.
 546. Rash JE, Yasumura T, Davidson KG, Furman CS, Dudek FE, Nagy JI. Identification of cells expressing Cx43, Cx30, Cx26, Cx32 and Cx36 in gap junctions of rat brain and spinal cord. Cell Commun Adhes 8: 315‐320, 2001.
 547. Rash JE, Yasumura T, Dudek FE, Nagy JI. Cell‐specific expression of connexins and evidence of restricted gap junctional coupling between glial cells and between neurons. J Neurosci 21: 1983‐2000, 2001.
 548. Ravier MA, Guldenagel M, Charollais A, Gjinovci A, Caille D, Sohl G, Wollheim CB, Willecke K, Henquin JC, Meda P. Loss of connexin36 channels alters beta‐cell coupling, islet synchronization of glucose‐induced Ca2+ and insulin oscillations, and basal insulin release. Diabetes 54: 1798‐1807, 2005.
 549. Reaume AG, De Sousa PA, Kulkarni S, Langille BL, Zhu D, Davies TC, Juneja SC, Kidder GM, Rossant J. Cardiac malformation in neonatal mice lacking connexin43. Science 267: 1831‐1834, 1995.
 550. Remo BF, Qu J, Volpicelli FM, Giovannone S, Shin D, Lader J, Liu FY, Zhang J, Lent DS, Morley GE, Fishman GI. Phosphatase‐resistant gap junctions inhibit pathological remodeling and prevent arrhythmias. Circ Res 108: 1459‐1466, 2011.
 551. Renthal NE, Chen CC, Williams KC, Gerard RD, Prange‐Kiel J, Mendelson CR. miR‐200 family and targets, ZEB1 and ZEB2, modulate uterine quiescence and contractility during pregnancy and labor. Proc Natl Acad Sci U S A 107: 20828‐20833, 2010.
 552. Retamal MA, Cortes CJ, Reuss L, Bennett MV, Saez JC. S‐nitrosylation and permeation through connexin 43 hemichannels in astrocytes: Induction by oxidant stress and reversal by reducing agents. Proc Natl Acad Sci U S A 103: 4475‐4480, 2006.
 553. Retamal MA, Froger N, Palacios‐Prado N, Ezan P, Saez PJ, Saez JC, Giaume C. Cx43 hemichannels and gap junction channels in astrocytes are regulated oppositely by proinflammatory cytokines released from activated microglia. J Neurosci 27: 13781‐13792, 2007.
 554. Retamal MA, Schalper KA, Shoji KF, Bennett MV, Saez JC. Opening of connexin 43 hemichannels is increased by lowering intracellular redox potential. Proc Natl Acad Sci U S A 104: 8322‐8327, 2007.
 555. Retamal MA, Schalper KA, Shoji KF, Orellana JA, Bennett MV, Saez JC. Possible involvement of different connexin43 domains in plasma membrane permeabilization induced by ischemia‐reperfusion. J Membr Biol 218: 49‐63, 2007.
 556. Retamal MA, Cortés CJ, Reuss L, Bennett MVL, Sáez JC. S‐nitrosylation and permeation through connexin 43 hemichannels in astrocytes: Induction by oxidant stress and reversal by reducing agents. Proc Natl Acad Sci U S A 103: 4475‐4480, 2006.
 557. Retamal MA, Yin S, Altenberg GA, Reuss L. Modulation of Cx46 hemichannels by nitric oxide. Am J Physiol Cell Physiol 296: C1356‐C1363, 2009.
 558. Revilla A, Bennett MV, Barrio LC. Molecular determinants of membrane potential dependence in vertebrate gap junction channels. Proc Natl Acad Sci U S A 97: 14760‐14765, 2000.
 559. Revilla A, Castro C, Barrio LC. Molecular dissection of transjunctional voltage dependence in the connexin‐32 and connexin‐43 junctions. Biophys J 77: 1374‐1383, 1999.
 560. Rios M, Hermoso M, Sanchez TM, Croxatto HB, Villalon MJ. Effect of oestradiol and progesterone on the instant and directional velocity of microsphere movements in the rat oviduct: Gap junctions mediate the kinetic effect of oestradiol. Reprod Fertil Dev 19: 634‐640, 2007.
 561. Ripps H, Qian H, Zakevicius J. Pharmacological enhancement of hemi‐gap‐junctional currents in Xenopus oocytes. J Neurosci Methods 121: 81‐92, 2002.
 562. Ripps H, Qian H, Zakevicius J. Properties of connexin26 hemichannels expressed in Xenopus oocytes. Cell Mol Neurobiol 24: 647‐665, 2004.
 563. Risek B, Guthrie S, Kumar N, Gilula NB. Modulation of gap junction transcript and protein expression during pregnancy in the rat. J Cell Biol 110: 269‐282, 1990.
 564. Risley MS, Tan IP, Roy C, Saez JC. Cell‐, age‐ and stage‐dependent distribution of connexin43 gap junctions in testes. J Cell Sci 103(Pt 1): 81‐96, 1992.
 565. Rivedal E, Opsahl H. Role of PKC and MAP kinase in EGF‐ and TPA‐induced connexin43 phosphorylation and inhibition of gap junction intercellular communication in rat liver epithelial cells. Carcinogenesis 22: 1543‐1550, 2001.
 566. Robb‐Gaspers LD, Thomas AP. Coordination of Ca2+ signaling by intercellular propagation of Ca2+ waves in the intact liver. J Biol Chem 270: 8102‐8107, 1995.
 567. Rodriguez‐Sinovas A, Boengler K, Cabestrero A, Gres P, Morente M, Ruiz‐Meana M, Konietzka I, Miro E, Totzeck A, Heusch G, Schulz R, Garcia‐Dorado D. Translocation of connexin 43 to the inner mitochondrial membrane of cardiomyocytes through the heat shock protein 90‐dependent TOM pathway and its importance for cardioprotection. Circ Res 99: 93‐101, 2006.
 568. Romanello M, Pani B, Bicego M, D'Andrea P. Mechanically induced ATP release from human osteoblastic cells. Biochem Biophys Res Commun 289: 1275‐1281, 2001.
 569. Rong P, Wang X, Niesman I, Wu Y, Benedetti LE, Dunia I, Levy E, Gong X. Disruption of Gja8 (alpha8 connexin) in mice leads to microphthalmia associated with retardation of lens growth and lens fiber maturation. Development 129: 167‐174, 2002.
 570. Roscoe WA, Barr KJ, Mhawi AA, Pomerantz DK, Kidder GM. Failure of spermatogenesis in mice lacking connexin43. Biol Reprod 65: 829‐838, 2001.
 571. Rossman EI, Liu K, Morgan GA, Swillo RE, Krueger JA, Gardell SJ, Butera J, Gruver M, Kantrowitz J, Feldman HS, Petersen JS, Haugan K, Hennan JK. The gap junction modifier, GAP‐134 [(2S,4R)‐1‐(2‐aminoacetyl)‐4‐benzamido‐pyrrolidine‐2‐carboxylic acid], improves conduction and reduces atrial fibrillation/flutter in the canine sterile pericarditis model. J Pharmacol Exp Ther 329: 1127‐1133, 2009.
 572. Rottingen J, Iversen JG. Ruled by waves? Intracellular and intercellular calcium signalling. Acta Physiol Scand 169: 203‐219, 2000.
 573. Rottlaender D, Boengler K, Wolny M, Michels G, Endres‐Becker J, Motloch LJ, Schwaiger A, Buechert A, Schulz R, Heusch G, Hoppe UC. Connexin 43 acts as a cytoprotective mediator of signal transduction by stimulating mitochondrial KATP channels in mouse cardiomyocytes. J Clin Invest 120: 1441‐1453, 2010.
 574. Saez JC, Berthoud VM, Branes MC, Martinez AD, Beyer EC. Plasma membrane channels formed by connexins: Their regulation and functions. Physiol Rev 83: 1359‐1400, 2003.
 575. Saez JC, Connor JA, Spray DC, Bennett MV. Hepatocyte gap junctions are permeable to the second messenger, inositol 1,4,5‐trisphosphate, and to calcium ions. Proc Natl Acad Sci U S A 86: 2708‐2712, 1989.
 576. Saez JC, Retamal MA, Basilio D, Bukauskas FF, Bennett MV. Connexin‐based gap junction hemichannels: Gating mechanisms. Biochim Biophys Acta 1711: 215‐224, 2005.
 577. Saez JC, Schalper KA, Retamal MA, Orellana JA, Shoji KF, Bennett MV. Cell membrane permeabilization via connexin hemichannels in living and dying cells. Exp Cell Res 316: 2377‐2389, 2010.
 578. Saez JC, Spray DC, Nairn AC, Hertzberg E, Greengard P, Bennett MV. cAMP increases junctional conductance and stimulates phosphorylation of the 27‐kDa principal gap junction polypeptide. Proc Natl Acad Sci 83: 2473‐2477, 1986.
 579. Sáez JC, Nairn AC, Czernik AJ, Fishman GI, Spray DC, Hertzberg EL. Phosphorylation of Connexin43 and the regulation of neonatal rat cardiac myocyte gap junctions. J Mol Cell Cardiol 29: 2131‐2145, 1997.
 580. Saez JC, Nairn AC, Czernik AJ, Spray DC, Hertzberg EL, Greengard P, Bennett MVL. Phosphorylation of connexin 32, a hepatocyte gap‐junction protein, by cAMP‐dependent protein kinase, protein kinase C and Ca2+/calmodulin‐dependent protein kinase II. Eur J Biochem 192: 263‐273, 1990.
 581. Saffitz JE, Davis LM, Darrow BJ, Kanter HL, Laing JG, Beyer EC. The molecular basis of anisotropy: Role of gap junctions. J Cardiovasc Electrophysiol 6: 498‐510, 1995.
 582. Sagar GD, Larson DM. Carbenoxolone inhibits junctional transfer and upregulates Connexin43 expression by a protein kinase A‐dependent pathway. J Cell Biochem 98: 1543‐1551, 2006.
 583. Saltman AE, Aksehirli TO, Valiunas V, Gaudette GR, Matsuyama N, Brink P, Krukenkamp IB. Gap junction uncoupling protects the heart against ischemia. J Thorac Cardiovasc Surg 124: 371‐376, 2002.
 584. Sanchez HA, Orellana JA, Verselis VK, Saez JC. Metabolic inhibition increases activity of connexin‐32 hemichannels permeable to Ca2+ in transfected HeLa cells. Am J Physiol Cell Physiol 297: C665‐C678, 2009.
 585. Sanders KM. A case for interstitial cells of Cajal as pacemakers and mediators of neurotransmission in the gastrointestinal tract. Gastroenterology 111: 492‐515, 1996.
 586. Sanders KM, Ordog T, Ward SM. Physiology and pathophysiology of the interstitial cells of Cajal: From bench to bedside. IV. Genetic and animal models of GI motility disorders caused by loss of interstitial cells of Cajal. Am J Physiol Gastrointest Liver Physiol 282: G747‐G756, 2002.
 587. Sanderson MJ, Charles AC, Dirksen ER. Mechanical stimulation and intercellular communication increases intracellular Ca2+ in epithelial cells. Cell Regul 1: 585‐596, 1990.
 588. Sandow SL, Haddock RE, Hill CE, Chadha PS, Kerr PM, Welsh DG, Plane F. What's where and why at a vascular myoendothelial microdomain signalling complex. Clin Exp Pharmacol Physiol 36: 67‐76, 2009.
 589. Sanna E, Mascia MP, Klein RL, Whiting PJ, Biggio G, Harris RA. Actions of the general anesthetic propofol on recombinant human GABAA receptors: Influence of receptor subunits. J Pharmacol Exp Ther 274: 353‐360, 1995.
 590. Sarieddine MZ, Scheckenbach KE, Foglia B, Maass K, Garcia I, Kwak BR, Chanson M. Connexin43 modulates neutrophil recruitment to the lung. J Cell Mol Med 13: 4560‐4570, 2009.
 591. Sarma JD, Das S, Koval M. Regulation of connexin43 oligomerization is saturable. Cell Commun Adhes 12: 237‐247, 2005.
 592. Sasseville’ M, Gagnon MC, Guillemette C, Sullivan R, Gilchrist RB, Richard FJ. Regulation of gap junctions in porcine cumulus‐oocyte complexes: Contributions of granulosa cell contact, gonadotropins, and lipid rafts. Mol Endocrinol 23: 700‐710, 2009.
 593. Scemes E, Giaume C. Astrocyte calcium waves: What they are and what they do. Glia 54: 716‐725, 2006.
 594. Schalper KA, Orellana JA, Berthoud VM, Saez JC. Dysfunctions of the diffusional membrane pathways mediated by hemichannels in inherited and acquired human diseases. Curr Vasc Pharmacol 7: 486‐505, 2009.
 595. Schalper KA, Palacios‐Prado N, Retamal MA, Shoji KF, Martinez AD, Saez JC. Connexin hemichannel composition determines the FGF‐1‐induced membrane permeability and free [Ca2+]i responses. Mol Biol Cell 19: 3501‐3513, 2008.
 596. Scheckenbach KE, Crespin S, Kwak BR, Chanson M. Connexin channel‐dependent signaling pathways in inflammation. J Vasc Res 48: 91‐103, 2011.
 597. Schock SC, Leblanc D, Hakim AM, Thompson CS. ATP release by way of connexin 36 hemichannels mediates ischemic tolerance in vitro. Biochem Biophys Res Commun 368: 138‐144, 2008.
 598. Schrickel JW, Kreuzberg MM, Ghanem A, Kim JS, Linhart M, Andrie R, Tiemann K, Nickenig G, Lewalter T, Willecke K. Normal impulse propagation in the atrioventricular conduction system of Cx30.2/Cx40 double deficient mice. J Mol Cell Cardiol 46: 644‐652, 2009.
 599. Schubert AL, Schubert W, Spray DC, Lisanti MP. Connexin family members target to lipid raft domains and interact with caveolin‐1. Biochemistry 41: 5754‐5764, 2002.
 600. Schuetze SM, Goodenough DA. Dye transfer between cells of the embryonic chick lens becomes less sensitive to CO2 treatment with development. J Cell Biol 92: 694‐705, 1982.
 601. Schultz BD, Singh AK, Devor DC, Bridges RJ. Pharmacology of CFTR chloride channel activity. Physiol Rev 79: S109‐S144, 1999.
 602. Schulz R, Boengler K, Totzeck A, Luo Y, Garcia‐Dorado D, Heusch G. Connexin 43 in ischemic pre‐ and postconditioning. Heart Fail Rev 12: 261‐266, 2007.
 603. Schwanke U, Konietzka I, Duschin A, Li X, Schulz R, Heusch G. No ischemic preconditioning in heterozygous connexin43‐deficient mice. Am J Physiol Heart Circ Physiol 283: H1740‐H1742, 2002.
 604. Segal SS. Regulation of blood flow in the microcirculation. Microcirculation 12: 33‐45, 2005.
 605. Segal SS, Duling BR. Propagation of vasodilation in resistance vessels of the hamster: Development and review of a working hypothesis. Circ Res 61: II20‐II25, 1987.
 606. Seki A, Duffy HS, Coombs W, Spray DC, Taffet SM, Delmar M. Modifications in the biophysical properties of connexin43 channels by a peptide of the cytoplasmic loop region. Circ Res 95: e22‐e28, 2004.
 607. Sellitto C, Li L, White TW. Connexin50 is essential for normal postnatal lens cell proliferation. Invest Ophthalmol Vis Sci 45: 3196‐3202, 2004.
 608. Serre‐Beinier V, Bosco D, Zulianello L, Charollais A, Caille D, Charpantier E, Gauthier BR, Diaferia GR, Giepmans BN, Lupi R, Marchetti P, Deng S, Buhler L, Berney T, Cirulli V, Meda P. Cx36 makes channels coupling human pancreatic beta‐cells, and correlates with insulin expression. Hum Mol Genet 18: 428‐439, 2009.
 609. Serre‐Beinier V, Le GS, Belluardo N, Trovato‐Salinaro A, Charollais A, Haefliger JA, Condorelli DF, Meda P. Cx36 preferentially connects beta‐cells within pancreatic islets. Diabetes 49: 727‐734, 2000.
 610. Severs NJ. The cardiac gap junction and intercalated disc. Int J Cardiol 26: 137‐173, 1990.
 611. Severs NJ. Gap junction remodeling and cardiac arrhythmogenesis: Cause or coincidence? J Cell Mol Med 5: 355‐366, 2001.
 612. Severs NJ. Gap junction remodeling in heart failure. J Card Fail 8: S293‐S299, 2002.
 613. Severs NJ, Bruce AF, Dupont E, Rothery S. Remodelling of gap junctions and connexin expression in diseased myocardium. Cardiovasc Res 80: 9‐19, 2008.
 614. Severs NJ, Coppen SR, Dupont E, Yeh HI, Ko YS, Matsushita T. Gap junction alterations in human cardiac disease. Cardiovasc Res 62: 368‐377, 2004.
 615. Severs NJ, Dupont E, Coppen SR, Halliday D, Inett E, Baylis D, Rothery S. Remodelling of gap junctions and connexin expression in heart disease. Biochim Biophys Acta 1662: 138‐148, 2004.
 616. Shah MM, Martinez AM, Fletcher WH. The connexin43 gap junction protein is phosphorylated by protein kinase A and protein kinase C: In vivo and in vitro studies. Mol Cell Biochem 238: 57‐68, 2002.
 617. Shaw RM, Fay AJ, Puthenveedu MA, von ZM, Jan YN, Jan LY. Microtubule plus‐end‐tracking proteins target gap junctions directly from the cell interior to adherens junctions. Cell 128: 547‐560, 2007.
 618. Shearer D, Ens W, Standing K, Valdimarsson G. Posttranslational modifications in lens fiber connexins identified by off‐line‐HPLC MALDI‐quadrupole time‐of‐flight mass spectrometry. Invest Ophthalmol Vis Sci 49: 1553‐1562, 2008.
 619. Shi Y. Serine/threonine phosphatases: Mechanism through structure. Cell 139: 468‐484, 2009.
 620. Shibayama J, Gutierrez C, Gonzalez D, Kieken F, Seki A, Carrion JR, Sorgen PL, Taffet SM, Barrio LC, Delmar M. Effect of charge substitutions at residue his‐142 on voltage gating of connexin43 channels. Biophys J 91: 4054‐4063, 2006.
 621. Shibayama J, Lewandowski R, Kieken F, Coombs W, Shah S, Sorgen PL, Taffet SM, Delmar M. Identification of a novel peptide that interferes with the chemical regulation of connexin43. Circ Res 98: 1365‐1372, 2006.
 622. Shimizu K, Shimoichi Y, Hinotsume D, Itsuzaki Y, Fujii H, Honoki K, Tsujiuchi T. Reduced expression of the Connexin26 gene and its aberrant DNA methylation in rat lung adenocarcinomas induced by N‐nitrosobis(2‐hydroxypropyl)amine. Mol Carcinog 45: 710‐714, 2006.
 623. Shimono M, Young LC, Matsuzaki H, Ishikawa H, Inoue T, Hashimoto S, Muramatsu T. Connexins in salivary glands. Eur J Morphol 38: 257‐261, 2000.
 624. Shintani‐Ishida K, Uemura K, Yoshida K. Hemichannels in cardiomyocytes open transiently during ischemia and contribute to reperfusion injury following brief ischemia. Am J Physiol Heart Circ Physiol 293: H1714‐H1720, 2007.
 625. Shiosaka S, Yamamoto T, Hertzberg EL, Nagy JI. Gap junction protein in rat hippocampus: Correlative light and electron microscope immunohistochemical localization. J Comp Neurol 281: 282‐297, 1989.
 626. Shiraishi M, Harris RA. Effects of alcohols and anesthetics on recombinant voltage‐gated Na+ channels. J Pharmacol Exp Ther 309: 987‐994, 2004.
 627. Shiroshita‐Takeshita A, Sakabe M, Haugan K, Hennan JK, Nattel S. Model‐dependent effects of the gap junction conduction‐enhancing antiarrhythmic peptide rotigaptide (ZP123) on experimental atrial fibrillation in dogs. Circulation 115: 310‐318, 2007.
 628. Shynlova OP, Oldenhof AD, Liu M, Langille L, Lye SJ. Regulation of c‐fos expression by static stretch in rat myometrial smooth muscle cells. Am J Obstet Gynecol 186: 1358‐1365, 2002.
 629. Siller‐Jackson AJ, Burra S, Gu S, Xia X, Bonewald LF, Sprague E, Jiang JX. Adaptation of connexin 43‐hemichannel prostaglandin release to mechanical loading. J Biol Chem 283: 26374‐26382, 2008.
 630. Simon AM, Goodenough DA. Diverse functions of vertebrate gap junctions. Trends Cell Biol 8: 477‐483, 1998.
 631. Simon AM, Goodenough DA, Li E, Paul DL. Female infertility in mice lacking connexin 37. Nature 385: 525‐529, 1997.
 632. Simon AM, Goodenough DA, Paul DL. Mice lacking connexin40 have cardiac conduction abnormalities characteristic of atrioventricular block and bundle branch block. Curr Biol 8: 295‐298, 1998.
 633. Sims SM, Daniel EE, Garfield RE. Improved electrical coupling in uterine smooth muscle is associated with increased numbers of gap junctions at parturition. J Gen Physiol 80: 353‐375, 1982.
 634. Singal R, Tu ZJ, Vanwert JM, Ginder GD, Kiang DT. Modulation of the connexin26 tumor suppressor gene expression through methylation in human mammary epithelial cell lines. Anticancer Res 20: 59‐64, 2000.
 635. Singh MV, Bhatnagar R, Price CJ, Malhotra SK. Gap junctions in 9L and C6 glioma cells: Correlation with growth characteristics. Cytobios 89: 209‐225, 1997.
 636. Sipos A, Vargas SL, Toma I, Hanner F, Willecke K, Peti‐Peterdi J. Connexin 30 deficiency impairs renal tubular ATP release and pressure natriuresis. J Am Soc Nephrol 20: 1724‐1732, 2009.
 637. Sirnes S, Honne H, Ahmed D, Danielsen SA, Rognum TO, Meling GI, Leithe E, Rivedal E, Lothe RA, Lind GE. DNA methylation analyses of the connexin gene family reveal silencing of GJC1 (Connexin45) by promoter hypermethylation in colorectal cancer. Epigenetics 6: 602‐609, 2011.
 638. Sirnes S, Kjenseth A, Leithe E, Rivedal E. Interplay between PKC and the MAP kinase pathway in Connexin43 phosphorylation and inhibition of gap junction intercellular communication. Biochem Biophys Res Commun 382: 41‐45, 2009.
 639. Smyth JW, Hong TT, Gao D, Vogan JM, Jensen BC, Fong TS, Simpson PC, Stainier DY, Chi NC, Shaw RM. Limited forward trafficking of connexin 43 reduces cell‐cell coupling in stressed human and mouse myocardium. J Clin Invest 120: 266‐279, 2010.
 640. Soder BL, Propst JT, Brooks TM, Goodwin RL, Friedman HI, Yost MJ, Gourdie RG. The connexin43 carboxyl‐terminal peptide ACT1 modulates the biological response to silicone implants. Plast Reconstr Surg 123: 1440‐1451, 2009.
 641. Sohl G, Maxeiner S, Willecke K. Expression and functions of neuronal gap junctions. Nat Rev Neurosci 6: 191‐200, 2005.
 642. Sohl G, Willecke K. An update on connexin genes and their nomenclature in mouse and man. Cell Commun Adhes 10: 173‐180, 2003.
 643. Solan J, Lampe P. Key Connexin 43 phosphorylation events regulate the gap junction life cycle. J Membr Biol 217: 35‐41, 2007.
 644. Solan JL, Fry MD, TenBroek EM, Lampe PD. Connexin43 phosphorylation at S368 is acute during S and G2/M and in response to protein kinase C activation. J Cell Sci 116: 2203‐2211, 2003.
 645. Solan JL, Lampe PD. Connexin43 in LA‐25 cells with active v‐src is phosphorylated on Y247, Y265, S262, S279/282, and S368 via multiple signaling pathways. Cell Commun Adhes 15: 75‐84, 2008.
 646. Solan JL, Marquez‐Rosado L, Sorgen PL, Thornton PJ, Gafken PR, Lampe PD. Phosphorylation at S365 is a gatekeeper event that changes the structure of Cx43 and prevents down‐regulation by PKC. J Cell Biol 179: 1301‐1309, 2007.
 647. Sorgen PL, Duffy HS, Cahill SM, Coombs W, Spray DC, Delmar M, Girvin ME. Sequence‐specific resonance assignment of the carboxyl terminal domain of Connexin43. J Biomol NMR 23: 245‐246, 2002.
 648. Sorgen PL, Duffy HS, Sahoo P, Coombs W, Delmar M, Spray DC. Structural changes in the carboxyl terminus of the gap junction protein connexin43 indicates signaling between binding domains for c‐Src and zonula occludens‐1. J Biol Chem 279: 54695‐54701, 2004.
 649. Sorgen PL, Duffy HS, Spray DC, Delmar M. pH‐dependent dimerization of the carboxyl terminal domain of Cx43. Biophys J 87: 574‐581, 2004.
 650. Spray DC, Iacobas DA. Organizational principles of the connexin‐related brain transcriptome. J Membr Biol 218: 39‐47, 2007.
 651. Sridharan S, Brehm R, Bergmann M, Cooke PS. Role of connexin 43 in Sertoli cells of testis. Ann N Y Acad Sci 1120: 131‐143, 2007.
 652. Sridharan S, Simon L, Meling DD, Cyr DG, Gutstein DE, Fishman GI, Guillou F, Cooke PS. Proliferation of adult sertoli cells following conditional knockout of the gap junctional protein GJA1 (connexin 43) in mice. Biol Reprod 76: 804‐812, 2007.
 653. Srinivas M, Calderon DP, Kronengold J, Verselis VK. Regulation of connexin hemichannels by monovalent cations. J Gen Physiol 127: 67‐75, 2006.
 654. Srinivas M, Hopperstad MG, Spray DC. Quinine blocks specific gap junction channel subtypes. Proc Natl Acad Sci U S A 98: 10942‐10947, 2001.
 655. Srinivas M, Spray DC. Closure of gap junction channels by arylaminobenzoates. Mol Pharmacol 63: 1389‐1397, 2003.
 656. Srinivas M, Costa M, Gao Y, Fort A, Fishman GI, Spray DC. Voltage dependence of macroscopic and unitary currents of gap junction channels formed by mouse connexin50 expressed in rat neuroblastoma cells. J Physiol 517: 673‐689, 1999.
 657. Srisakuldee W, Jeyaraman MM, Nickel BE, Tanguy Sp, Jiang ZS, Kardami E. Phosphorylation of connexin‐43 at serine 262 promotes a cardiac injury‐resistant state. Cardiovasc Res 83: 672‐681, 2009.
 658. St‐Pierre N, Dufresne J, Rooney AA, Cyr DG. Neonatal hypothyroidism alters the localization of gap junctional protein connexin 43 in the testis and messenger RNA levels in the epididymis of the rat. Biol Reprod 68: 1232‐1240, 2003.
 659. Stahlhut M, Petersen JS, Hennan JK, Ramirez MT. The antiarrhythmic peptide rotigaptide (ZP123) increases connexin 43 protein expression in neonatal rat ventricular cardiomyocytes. Cell Commun Adhes 13: 21‐27, 2006.
 660. Stauffer PL, Zhao H, Luby‐Phelps K, Moss RL, Star RA, Muallem S. Gap junction communication modulates [Ca2+]i oscillations and enzyme secretion in pancreatic acini. J Biol Chem 268: 19769‐19775, 1993.
 661. Steele J, Lyon MF, Favor J, Guillot PV, Boyd Y, Church RL. A mutation in the connexin 50 (Cx50) gene is a candidate for the No2 mouse cataract. Curr Eye Res 17: 883‐889, 1998.
 662. Stergiopoulos K, Alvarado JL, Mastroianni M, Ek‐Vitorin JF, Taffet SM, Delmar M. Hetero‐domain interactions as a mechanism for the regulation of connexin channels. Circ Res 84: 1144‐1155, 1999.
 663. Stout CE, Costantin JL, Naus CC, Charles AC. Intercellular calcium signaling in astrocytes via ATP release through connexin hemichannels. J Biol Chem 277: 10482‐10488, 2002.
 664. Straub AC, Billaud M, Johnstone SR, Best AK, Yemen S, Dwyer ST, Looft‐Wilson R, Lysiak JJ, Gaston B, Palmer L, Isakson BE. Compartmentalized Connexin 43 S‐nitrosylation/denitrosylation regulates heterocellular communication in the vessel wall. Arterioscler Thromb Vasc Biol 31: 399‐407, 2011.
 665. Stumpel F, Ott T, Willecke K, Jungermann K. Connexin 32 gap junctions enhance stimulation of glucose output by glucagon and noradrenaline in mouse liver. Hepatology 28: 1616‐1620, 1998.
 666. Su V, Nakagawa R, Koval M, Lau AF. Ubiquitin‐independent proteasomal degradation of endoplasmic reticulum‐localized connexin43 mediated by CIP75. J Biol Chem 285: 40979‐40990, 2010.
 667. Suchyna TM, Nitsche JM, Chilton M, Harris AL, Veenstra RD, Nicholson BJ. Different ionic selectivities for connexins 26 and 32 produce rectifying gap junction channels. Biophys J 77: 2968‐2987, 1999.
 668. Sun Z, Zhang DQ, McMahon DG. Zinc modulation of hemi‐gap‐junction channel currents in retinal horizontal cells. J Neurophysiol 101: 1774‐1780, 2009.
 669. Takeda A, Hashimoto E, Yamamura H, Shimazu T. Phosphorylation of liver gap junction protein by protein kinase C. FEBS Letters 210: 169‐172, 1987.
 670. Takens‐Kwak BR, Jongsma HJ, Rook MB, Van Ginneken AC. Mechanism of heptanol‐induced uncoupling of cardiac gap junctions: A perforated patch‐clamp study. Am J Physiol 262: C1531‐C1538, 1992.
 671. Takeuchi H, Jin S, Wang J, Zhang G, Kawanokuchi J, Kuno R, Sonobe Y, Mizuno T, Suzumura A. Tumor necrosis factor‐alpha induces neurotoxicity via glutamate release from hemichannels of activated microglia in an autocrine manner. J Biol Chem 281: 21362‐21368, 2006.
 672. Tan LW, Bianco T, Dobrovic A. Variable promoter region CpG island methylation of the putative tumor suppressor gene Connexin 26 in breast cancer. Carcinogenesis 23: 231‐236, 2002.
 673. TenBroek EM, Lampe PD, Solan JL, Reynhout JK, Johnson RG. Ser364 of connexin43 and the upregulation of gap junction assembly by cAMP. J Cell Biol 155: 1307‐1318, 2001.
 674. Teubner B, Degen J, Sohl G, Guldenagel M, Bukauskas FF, Trexler EB, Verselis VK, De Zeeuw CI, Lee CG, Kozak CA, Petrasch‐Parwez E, Dermietzel R, Willecke K. Functional expression of the murine connexin 36 gene coding for a neuron‐specific gap junctional protein. J Membr Biol 176: 249‐262, 2000.
 675. Teubner B, Odermatt B, Guldenagel M, Sohl G, Degen J, Bukauskas F, Kronengold J, Verselis VK, Jung YT, Kozak CA, Schilling K, Willecke K. Functional expression of the new gap junction gene connexin47 transcribed in mouse brain and spinal cord neurons. J Neurosci 21: 1117‐1126, 2001.
 676. Teunissen BE, Jansen AT, van Amersfoorth SC, O'Brien TX, Jongsma HJ, Bierhuizen MF. Analysis of the rat connexin 43 proximal promoter in neonatal cardiomyocytes. Gene 322: 123‐136, 2003.
 677. Thimm J, Mechler A, Lin H, Rhee S, Lal R. Calcium‐dependent open/closed conformations and interfacial energy maps of reconstituted hemichannels. J Biol Chem 280: 10646‐10654, 2005.
 678. Thomas MA, Zosso N, Scerri I, Demaurex N, Chanson M, Staub O. A tyrosine‐based sorting signal is involved in connexin43 stability and gap junction turnover. J Cell Sci 116: 2213‐2222, 2003.
 679. Thomas SA, Schuessler RB, Berul CI, Beardslee MA, Beyer EC, Mendelsohn ME, Saffitz JE. Disparate effects of deficient expression of connexin43 on atrial and ventricular conduction: Evidence for chamber‐specific molecular determinants of conduction. Circulation 97: 686‐691, 1998.
 680. Thomas T, Jordan K, Laird DW. Role of cytoskeletal elements in the recruitment of Cx43‐GFP and Cx26‐YFP into gap junctions. Cell Commun Adhes 8: 231‐236, 2001.
 681. Thomas T, Jordan K, Simek J, Shao Q, Jedeszko C, Walton P, Laird DW. Mechanisms of Cx43 and Cx26 transport to the plasma membrane and gap junction regeneration. J Cell Sci 118: 4451‐4462, 2005.
 682. Thompson RJ, Zhou N, MacVicar BA. Ischemia opens neuronal gap junction hemichannels. Science 312: 924‐927, 2006.
 683. Tibbitts TT, Caspar DL, Phillips WC, Goodenough DA. Diffraction diagnosis of protein folding in gap junction connexons. Biophys J 57: 1025‐1036, 1990.
 684. Tong D, Lu X, Wang HX, Plante I, Lui E, Laird DW, Bai D, Kidder GM. A dominant loss‐of‐function GJA1 (Cx43) mutant impairs parturition in the mouse. Biol Reprod 80: 1099‐1106, 2009.
 685. Török K, Stauffer K, Evans WH. Connexin 32 of gap junctions contains two cytoplasmic calmodulin‐binding domains. Biochem J 326: 479‐483, 1997.
 686. Totzeck A, Boengler K, van de Sand A, Konietzka I, Gres P, Garcia‐Dorado D, Heusch G, Schulz R. No impact of protein phosphatases on connexin 43 phosphorylation in ischemic preconditioning. Am J Physiol Heart Circ Physiol 295: H2106‐H2112, 2008.
 687. Toyofuku T, Akamatsu Y, Zhang H, Kuzuya T, Tada M, Hori M. c‐Src Regulates the Interaction between Connexin‐43 and ZO‐1 in cardiac myocytes. J Biol Chem 276: 1780‐1788, 2001.
 688. Tran Van NG, Clair C, Bruzzone R, Mesnil M, Sansonetti P, Combettes L. Connexin‐dependent inter‐cellular communication increases invasion and dissemination of Shigella in epithelial cells. Nat Cell Biol 5: 720‐726, 2003.
 689. Traub O, Eckert R, LichtenbergFrate H, Elfgang C, Bastide B, Scheidtmann KH, Hulser DF, Willecke K. Immunochemical and electrophysiological characterization of murine Connexin40 and Connexin43 in mouse‐tissues and transfected human‐cells. Eur J Cell Biol 64: 101‐112, 1994.
 690. Traub O, Look J, Dermietzel R, Brummer F, Hulser D, Willecke K. Comparative characterization of the 21‐kD and 26‐kD gap junction proteins in murine liver and cultured hepatocytes. J Cell Biol 108: 1039‐1051, 1989.
 691. Traub O, Look J, Paul D, Willecke K. Cyclic adenosine monophosphate stimulates biosynthesis and phosphorylation of the 26 kDa gap junction protein in cultured mouse hepatocytes. Eur J Cell Biol 43: 48‐54, 1987.
 692. Traub RD, Pais I, Bibbig A, Lebeau FE, Buhl EH, Hormuzdi SG, Monyer H, Whittington MA. Contrasting roles of axonal (pyramidal cell) and dendritic (interneuron) electrical coupling in the generation of neuronal network oscillations. Proc Natl Acad Sci U S A 100: 1370‐1374, 2003.
 693. Trexler EB, Bukauskas FF, Bennett MV, Bargiello TA, Verselis VK. Rapid and direct effects of pH on connexins revealed by the connexin46 hemichannel preparation. J Gen Physiol 113: 721‐742, 1999.
 694. Trexler EB, Bukauskas FF, Kronengold J, Bargiello TA, Verselis VK. The first extracellular loop domain is a major determinant of charge selectivity in connexin46 channels. Biophys J 79: 3036‐3051, 2000.
 695. Tsujiuchi T, Shimizu K, Itsuzaki Y, Onishi M, Sugata E, Fujii H, Honoki K. CpG site hypermethylation of E‐cadherin and Connexin26 genes in hepatocellular carcinomas induced by a choline‐deficient L‐Amino Acid‐defined diet in rats. Mol Carcinog 46: 269‐274, 2007.
 696. Tyagi N, Vacek JC, Givvimani S, Sen U, Tyagi SC. Cardiac specific deletion of N‐methyl‐d‐aspartate receptor 1 ameliorates mtMMP‐9 mediated autophagy/mitophagy in hyperhomocysteinemia. J Recept Signal Transduct Res 30: 78‐87, 2010.
 697. Uhlenberg B, Schuelke M, Ruschendorf F, Ruf N, Kaindl AM, Henneke M, Thiele H, Stoltenburg‐Didinger G, Aksu F, Topaloglu H, Nurnberg P, Hubner C, Weschke B, Gartner J. Mutations in the gene encoding gap junction protein alpha 12 (connexin 46.6) cause Pelizaeus‐Merzbacher‐like disease. Am J Hum Genet 75: 251‐260, 2004.
 698. Unger VM, Kumar NM, Gilula NB, Yeager M. Three‐dimensional structure of a recombinant gap junction membrane channel. Science 283: 1176‐1180, 1999.
 699. Unwin PN, Zampighi G. Structure of the junction between communicating cells. Nature 283: 545‐549, 1980.
 700. Urschel S, H+Âher T, Schubert T, Alev C, S+Âhl G, W+Ârsd+Ârfer P, Asahara T, Dermietzel R, Weiler R, Willecke K. Protein kinase A‐mediated phosphorylation of Connexin36 in mouse retina results in decreased gap junctional communication between AII amacrine cells. J Biol Chem 281: 33163‐33171, 2006.
 701. Valiunas V. Biophysical properties of connexin‐45 gap junction hemichannels studied in vertebrate cells. J Gen Physiol 119: 147‐164, 2002.
 702. Valiunas V, Gemel J, Brink PR, Beyer EC. Gap junction channels formed by coexpressed connexin40 and connexin43. Am J Physiol Heart Circ Physiol 281: H1675‐H1689, 2001.
 703. Valiunas V, Mui R, McLachlan E, Valdimarsson G, Brink PR, White TW. Biophysical characterization of zebrafish connexin35 hemichannels. Am J Physiol Cell Physiol 287: C1596‐C1604, 2004.
 704. Valiunas V, Polosina YY, Miller H, Potapova IA, Valiuniene L, Doronin S, Mathias RT, Robinson RB, Rosen MR, Cohen IS, Brink PR. Connexin‐specific cell‐to‐cell transfer of short interfering RNA by gap junctions. J Physiol 568: 459‐468, 2005.
 705. Valiunas V, Weingart R. Electrical properties of gap junction hemichannels identified in transfected HeLa cells. Pflugers Arch 440: 366‐379, 2000.
 706. van der Velden HM, van Kempen MJ, Wijffels MC, van ZM, Groenewegen WA, Allessie MA, Jongsma HJ. Altered pattern of connexin40 distribution in persistent atrial fibrillation in the goat. J Cardiovasc Electrophysiol 9: 596‐607, 1998.
 707. van Kempen MJ, Fromaget C, Gros D, Moorman AF, Lamers WH. Spatial distribution of connexin43, the major cardiac gap junction protein, in the developing and adult rat heart. Circ Res 68: 1638‐1651, 1991.
 708. van Rijen HV, Eckardt D, Degen J, Theis M, Ott T, Willecke K, Jongsma HJ, Opthof T, de Bakker JM. Slow conduction and enhanced anisotropy increase the propensity for ventricular tachyarrhythmias in adult mice with induced deletion of connexin43. Circulation 109: 1048‐1055, 2004.
 709. van Rijen HV, van Veen TA, Gros D, Wilders R, de Bakker JM. Connexins and cardiac arrhythmias. Adv Cardiol 42: 150‐160, 2006.
 710. van Rijen HVM, van Veen TAB, Hermans MMP, Jongsma HJ. Human connexin40 gap junction channels are modulated by cAMP. Cardiovasc Res 45: 941‐951, 2000.
 711. van Veen TAB, van Rijen HVM, Jongsma HJ. Electrical conductance of mouse connexin45 gap junction channels is modulated by phosphorylation. Cardiovasc Res 46: 496‐510, 2000.
 712. van Zeijl L, Ponsioen B, Giepmans BN, Ariaens A, Postma FR, Varnai P, Balla T, Divecha N, Jalink K, Moolenaar WH. Regulation of connexin43 gap junctional communication by phosphatidylinositol 4,5‐bisphosphate. J Cell Biol 177: 881‐891, 2007.
 713. VanSlyke JK, Musil LS. Dislocation and degradation from the ER are regulated by cytosolic stress. J Cell Biol 157: 381‐394, 2002.
 714. VanSlyke JK, Naus CC, Musil LS. Conformational maturation and post‐ER multisubunit assembly of gap junction proteins. Mol Biol Cell 20: 2451‐2463, 2009.
 715. Varanda WA, de Carvalho AC. Intercellular communication between mouse Leydig cells. Am J Physiol 267: C563‐C569, 1994.
 716. Veenstra RD, Wang HZ, Beblo DA, Chilton MG, Harris AL, Beyer EC, Brink PR. Selectivity of connexin‐specific gap junctions does not correlate with channel conductance. Circ Res 77: 1156‐1165, 1995.
 717. Veenstra RD, Wang HZ, Beyer EC, Brink PR. Selective dye and ionic permeability of gap junction channels formed by connexin45. Circ Res 75: 483‐490, 1994.
 718. Veenstra RD, Wang HZ, Beyer EC, Ramanan SV, Brink PR. Connexin37 forms high conductance gap junction channels with subconductance state activity and selective dye and ionic permeabilities. Biophys J 66: 1915‐1928, 1994.
 719. Veitch GI, Gittens JE, Shao Q, Laird DW, Kidder GM. Selective assembly of connexin37 into heterocellular gap junctions at the oocyte/granulosa cell interface. J Cell Sci 117: 2699‐2707, 2004.
 720. Velasquez Almonacid LA, Tafuri S, Dipineto L, Matteoli G, Fiorillo E, Della MR, Fioretti A, Menna LF, Staiano N. Role of connexin‐43 hemichannels in the pathogenesis of Yersinia enterocolitica. Vet J 182: 452‐457, 2009.
 721. Vergara L, Bao X, Cooper M, Bello‐Reuss E, Reuss L. Gap‐junctional hemichannels are activated by ATP depletion in human renal proximal tubule cells. J Membr Biol 196: 173‐184, 2003.
 722. Verheule S, van Kempen MJ, te Welscher PH, Kwak BR, Jongsma HJ. Characterization of gap junction channels in adult rabbit atrial and ventricular myocardium. Circ Res 80: 673‐681, 1997.
 723. Verma V, Larsen BD, Coombs W, Lin X, Sarrou E, Taffet SM, Delmar M. Design and characterization of the first peptidomimetic molecule that prevents acidification‐induced closure of cardiac gap junctions. Heart Rhythm 7: 1491‐1498, 2010.
 724. Verma V, Larsen BD, Coombs W, Lin X, Spagnol G, Sorgen PL, Taffet SM, Delmar M. Novel pharmacophores of connexin43 based on the “RXP” series of Cx43‐binding peptides. Circ Res 105: 176‐184, 2009.
 725. Verselis VK, Ginter CS, Bargiello TA. Opposite voltage gating polarities of two closely related connexins. Nature 368: 348‐351, 1994.
 726. Verselis VK, Srinivas M. Divalent cations regulate connexin hemichannels by modulating intrinsic voltage‐dependent gating. J Gen Physiol 132: 315‐327, 2008.
 727. Verselis VK, Trexler EB, Bukauskas FF. Connexin hemichannels and cell‐cell channels: Comparison of properties. Braz J Med Biol Res 33: 379‐389, 2000.
 728. Vinken M, De Rop E, Decrock E, De Vuyst E, Leybaert L, Vanhaecke T, Rogiers V. Epigenetic regulation of gap junctional intercellular communication: More than a way to keep cells quiet? Biochim Biophys Acta 1795: 53‐61, 2009.
 729. Vinken M, Henkens T, Vanhaecke T, Papeleu P, Geerts A, Van Rossen E, Chipman JK, Meda P, Rogiers V. Trichostatin A enhances gap junctional intercellular communication in primary cultures of adult rat hepatocytes. Toxicol Sci 91: 484‐492, 2006.
 730. Wagner C, de WC, Kurtz L, Grunberger C, Kurtz A, Schweda F. Connexin40 is essential for the pressure control of renin synthesis and secretion. Circ Res 100: 556‐563, 2007.
 731. Wagner C, Jobs A, Schweda F, Kurtz L, Kurt B, Lopez ML, Gomez RA, van Veen TA, de WC, Kurtz A. Selective deletion of Connexin 40 in renin‐producing cells impairs renal baroreceptor function and is associated with arterial hypertension. Kidney Int 78: 762‐768, 2010.
 732. Wang HX, Tong D, El‐Gehani F, Tekpetey FR, Kidder GM. Connexin expression and gap junctional coupling in human cumulus cells: Contribution to embryo quality. J Cell Mol Med 13: 972‐984, 2009.
 733. Wang HZ, Veenstra RD. Monovalent ion selectivity sequences of the rat connexin43 gap junction channel. J Gen Physiol 109: 491‐507, 1997.
 734. Wang J, Ma M, Locovei S, Keane RW, Dahl G. Modulation of membrane channel currents by gap junction protein mimetic peptides: Size matters. Am J Physiol Cell Physiol 293: C1112‐C1119, 2007.
 735. Wang X, Li L, Peracchia LL, Peracchia C. Chimeric evidence for a role of the connexin cytoplasmic loop in gap junction channel gating. Pflugers Arch 431: 844‐852, 1996.
 736. Wang Z, Schey KL. Phosphorylation and truncation sites of bovine lens connexin 46 and connexin 50. Exp Eye Res 89: 898‐904, 2009.
 737. Ward SM, Sanders KM. Physiology and pathophysiology of the interstitial cell of Cajal: From bench to bedside. I. Functional development and plasticity of interstitial cells of Cajal networks. Am J Physiol Gastrointest Liver Physiol 281: G602‐G611, 2001.
 738. Warn‐Cramer BJ, Cottrell GT, Burt JM, Lau AF. Regulation of Connexin‐43 gap junctional intercellular communication by mitogen‐activated protein kinase. J Biol Chem 273: 9188‐9196, 1998.
 739. Warn‐Cramer BJ, Lampe PD, Kurata WE, Kanemitsu MY, Loo LWM, Eckhart W, Lau AF. Characterization of the mitogen‐activated protein kinase phosphorylation sites on the Connexin‐43 gap junction protein. J Biol Chem 271: 3779‐3786, 1996.
 740. Weinbrenner C, Baines CP, Liu GS, Armstrong SC, Ganote CE, Walsh AH, Honkanen RE, Cohen MV, Downey JM. Fostriecin, an inhibitor of protein phosphatase 2A, limits myocardial infarct size even when administered after onset of ischemia. Circulation 98: 899‐905, 1998.
 741. Weissman TA, Riquelme PA, Ivic L, Flint AC, Kriegstein AR. Calcium waves propagate through radial glial cells and modulate proliferation in the developing neocortex. Neuron 43: 647‐661, 2004.
 742. Werner R, Levine E, Rabadan‐Diehl C, Dahl G. Gating properties of connexin32 cell‐cell channels and their mutants expressed in Xenopus oocytes. Proc Biol Sci 243: 5‐11, 1991.
 743. White TW. Functional analysis of human Cx26 mutations associated with deafness. Brain Res Brain Res Rev 32: 181‐183, 2000.
 744. White TW, Deans MR, O'Brien J, Al‐Ubaidi MR, Goodenough DA, Ripps H, Bruzzone R. Functional characteristics of skate connexin35, a member of the gamma subfamily of connexins expressed in the vertebrate retina. Eur J Neurosci 11: 1883‐1890, 1999.
 745. White TW, Goodenough DA, Paul DL. Targeted ablation of connexin50 in mice results in microphthalmia and zonular pulverulent cataracts. J Cell Biol 143: 815‐825, 1998.
 746. White TW, Paul DL. Genetic diseases and gene knockouts reveal diverse connexin functions. Annu Rev Physiol 61: 283‐310, 1999.
 747. White TW, Paul DL, Goodenough DA, Bruzzone R. Functional analysis of selective interactions among rodent connexins. Mol Biol Cell 6: 459‐470, 1995.
 748. Winterhager E, Pielensticker N, Freyer J, Ghanem A, Schrickel JW, Kim JS, Behr R, Grummer R, Maass K, Urschel S, Lewalter T, Tiemann K, Simoni M, Willecke K. Replacement of connexin43 by connexin26 in transgenic mice leads to dysfunctional reproductive organs and slowed ventricular conduction in the heart. BMC Dev Biol 7: 26, 2007.
 749. Wolvetang EJ, Pera MF, Zuckerman KS. Gap junction mediated transport of shRNA between human embryonic stem cells. Biochem Biophys Res Commun 363: 610‐615, 2007.
 750. Wong CW, Burger F, Pelli G, Mach F, Kwak BR. Dual benefit of reduced Cx43 on atherosclerosis in LDL receptor‐deficient mice. Cell Commun Adhes 10: 395‐400, 2003.
 751. Wong CW, Christen T, Pfenniger A, James RW, Kwak BR. Do allelic variants of the connexin37 1019 gene polymorphism differentially predict for coronary artery disease and myocardial infarction? Atherosclerosis 191: 355‐361, 2007.
 752. Wong CW, Christen T, Roth I, Chadjichristos CE, Derouette JP, Foglia BF, Chanson M, Goodenough DA, Kwak BR. Connexin37 protects against atherosclerosis by regulating monocyte adhesion. Nat Med 12: 950‐954, 2006.
 753. Wright CS, van Steensel MA, Hodgins MB, Martin PE. Connexin mimetic peptides improve cell migration rates of human epidermal keratinocytes and dermal fibroblasts in vitro. Wound Repair Regen 17: 240‐249, 2009.
 754. Wu X, Shen H, Yu L, Peng M, Lai WS, Ding YL. Corticotropin‐releasing hormone activates connexin 43 via activator protein‐1 transcription factor in human myometrial smooth muscle cells. Am J Physiol Endocrinol Metab 293: E1789‐E1794, 2007.
 755. Xing D, Kjolbye AL, Nielsen MS, Petersen JS, Harlow KW, Holstein‐Rathlou NH, Martins JB. ZP123 increases gap junctional conductance and prevents reentrant ventricular tachycardia during myocardial ischemia in open chest dogs. J Cardiovasc Electrophysiol 14: 510‐520, 2003.
 756. Xu X, Berthoud VM, Beyer EC, Ebihara L. Functional role of the carboxyl terminal domain of human Connexin 50 in gap junctional channels. J Membr Biol 186: 101‐112, 2002.
 757. Yamamoto T, Shiosaka S, Whittaker ME, Hertzberg EL, Nagy JI. Gap junction protein in rat hippocampus: Light microscope immunohistochemical localization. J Comp Neurol 281: 269‐281, 1989.
 758. Yamamoto Y, Klemm MF, Edwards FR, Suzuki H. Intercellular electrical communication among smooth muscle and endothelial cells in guinea‐pig mesenteric arterioles. J Physiol 535: 181‐195, 2001.
 759. Yamasaki H, Naus CC. Role of connexin genes in growth control. Carcinogenesis 17: 1199‐1213, 1996.
 760. Yang B, Lin H, Xiao J, Lu Y, Luo X, Li B, Zhang Y, Xu C, Bai Y, Wang H, Chen G, Wang Z. The muscle‐specific microRNA miR‐1 regulates cardiac arrhythmogenic potential by targeting GJA1 and KCNJ2. Nat Med 13: 486‐491, 2007.
 761. Yano T, Ito F, Kobayashi K, Yonezawa Y, Suzuki K, Asano R, Hagiwara K, Nakazawa H, Toma H, Yamasaki H. Hypermethylation of the CpG island of connexin 32, a candiate tumor suppressor gene in renal cell carcinomas from hemodialysis patients. Cancer Lett 208: 137‐142, 2004.
 762. Ye ZC, Wyeth MS, Baltan‐Tekkok S, Ransom BR. Functional hemichannels in astrocytes: A novel mechanism of glutamate release. J Neurosci 23: 3588‐3596, 2003.
 763. Yeager M. Gap Junction Channel Structure. In: Harris AL, Locke D, editors. Connexins, A Guide. New York, Humana Press, 2009, p. 27‐75.
 764. Yeh HI, Chou Y, Liu HF, Chang SC, Tsai CH. Connexin37 gene polymorphism and coronary artery disease in Taiwan. Int J Cardiol 81: 251‐255, 2001.
 765. Yi ZC, Wang H, Zhang GY, Xia B. Downregulation of connexin 43 in nasopharyngeal carcinoma cells is related to promoter methylation. Oral Oncol 43: 898‐904, 2007.
 766. Yin X, Gu S, Jiang JX. The Development‐associated cleavage of lens Connexin 45.6 by caspase‐3‐like protease is regulated by casein kinase II‐mediated phosphorylation. J Biol Chem 276: 34567‐34572, 2001.
 767. Yogo K, Ogawa T, Akiyama M, Ishida N, Takeya T. Identification and functional analysis of novel phosphorylation sites in Cx43 in rat primary granulosa cells. FEBS Letters 531: 132‐136, 2002.
 768. Yogo K, Ogawa T, Akiyama M, Ishida‐Kitagawa N, Sasada H, Sato E, Takeya T. PKA implicated in the phosphorylation of Cx43 induced by stimulation with FSH in rat granulosa cells. J Rep Dev 52: 321‐328, 2006.
 769. Yoo B, Lemaire A, Mangmool S, Wolf MJ, Curcio A, Mao L, Rockman HA. +¦1‐Adrenergic receptors stimulate cardiac contractility and CaMKII activation in vivo and enhance cardiac dysfunction following myocardial infarction. Am J Physiol Heart Circ Physiol 297: H1377‐H1386, 2009.
 770. You S, Li W, Lin T. Expression and regulation of connexin43 in rat Leydig cells. J Endocrinol 166: 447‐453, 2000.
 771. Young RC, Schumann R, Zhang P. The signaling mechanisms of long distance intercellular calcium waves (far waves) in cultured human uterine myocytes. J Muscle Res Cell Motil 23: 279‐284, 2002.
 772. Yu J, Bippes CA, Hand GM, Muller DJ, Sosinsky GE. Aminosulfonate modulated pH‐induced conformational changes in connexin26 hemichannels. J Biol Chem 282: 8895‐8904, 2007.
 773. Yue P, Zhang Y, Du Z, Xiao J, Pan Z, Wang N, Yu H, Ma W, Qin H, Wang WH, Lin DH, Yang B. Ischemia impairs the association between connexin 43 and M3 subtype of acetylcholine muscarinic receptor (M3‐mAChR) in ventricular myocytes. Cell Physiol Biochem 17: 129‐136, 2006.
 774. Zahler S, Hoffmann A, Gloe T, Pohl U. Gap‐junctional coupling between neutrophils and endothelial cells: A novel modulator of transendothelial migration. J Leukoc Biol 73: 118‐126, 2003.
 775. Zamir O, Hanani M. Intercellular dye‐coupling in intestinal smooth muscle. Are gap junctions required for intercellular coupling? Experientia 46: 1002‐1005, 1990.
 776. Zampighi GA, Loo DD, Kreman M, Eskandari S, Wright EM. Functional and morphological correlates of connexin50 expressed in Xenopus laevis oocytes. J Gen Physiol 113: 507‐524, 1999.
 777. Zhang J, Hill CE. Differential connexin expression in preglomerular and postglomerular vasculature: Accentuation during diabetes. Kidney Int 68: 1171‐1185, 2005.
 778. Zhang JT, Chen M, Foote CI, Nicholson BJ. Membrane integration of in vitro‐translated gap junctional proteins: Co‐ and post‐translational mechanisms. Mol Biol Cell 7: 471‐482, 1996.
 779. Zhang Y, Tang W, Ahmad S, Sipp JA, Chen P, Lin X. Gap junction‐mediated intercellular biochemical coupling in cochlear supporting cells is required for normal cochlear functions. Proc Natl Acad Sci U S A 102: 15201‐15206, 2005.
 780. Zhang YW, Kaneda M, Morita I. The gap junction‐independent tumor‐suppressing effect of connexin 43. J Biol Chem 278: 44852‐44856, 2003.
 781. Zhao HB, Yu N, Fleming CR. Gap junctional hemichannel‐mediated ATP release and hearing controls in the inner ear. Proc Natl Acad Sci U S A 102: 18724‐18729, 2005.
 782. Zheng‐Fischhofer Q, Ghanem A, Kim JS, Kibschull M, Schwarz G, Schwab JO, Nagy J, Winterhager E, Tiemann K, Willecke K. Connexin31 cannot functionally replace connexin43 during cardiac morphogenesis in mice. J Cell Sci 119: 693‐701, 2006.
 783. Zhou Y, Yang W, Lurtz MM, Chen Y, Jiang J, Huang Y, Louis CF, Yang JJ. Calmodulin mediates the Ca2+‐dependent regulation of Cx44 gap junctions. Biophys J 96: 2832‐2848, 2009.
 784. Zhou Y, Yang W, Lurtz MM, Ye Y, Huang Y, Lee HW, Chen Y, Louis CF, Yang JJ. Identification of the calmodulin binding domain of connexin 43. J Biol Chem 282: 35005‐35017, 2007.
 785. Zhu WZ, Wang SQ, Chakir K, Yang D, Zhang T, Brown JH, Devic E, Kobilka BK, Cheng H, Xiao RP. Linkage of beta‐1‐adrenergic stimulation to apoptotic heart cell death through protein kinase A‐ndependent activation of Ca2+/calmodulin kinase II. J Clin Invest 111: 617‐625, 2003.
 786. Zlomuzica A, Reichinnek S, Maxeiner S, Both M, May E, Worsdorfer P, Draguhn A, Willecke K, Dere E. Deletion of connexin45 in mouse neurons disrupts one‐trial object recognition and alters kainate‐induced gamma‐oscillations in the hippocampus. Physiol Behav 101: 245‐253, 2010.
 787. Zoidl G, Dermietzel R. Gap junctions in inherited human disease. Pflugers Arch 460: 451‐466, 2010.

Related Articles:

Top cited articles of 2018

Contact Editor

Submit a note to the editor about this article by filling in the form below.

* Required Field

How to Cite

Morten Schak Nielsen, Lene Nygaard Axelsen, Paul L. Sorgen, Vandana Verma, Mario Delmar, Niels‐Henrik Holstein‐Rathlou. Gap Junctions. Compr Physiol 2012, 2: 1981-2035. doi: 10.1002/cphy.c110051