Comprehensive Physiology Wiley Online Library

Regulation of Transport in the Connecting Tubule and Cortical Collecting Duct

Full Article on Wiley Online Library



Abstract

The central goal of this overview article is to summarize recent findings in renal epithelial transport, focusing chiefly on the connecting tubule (CNT) and the cortical collecting duct (CCD). Mammalian CCD and CNT are involved in fine‐tuning of electrolyte and fluid balance through reabsorption and secretion. Specific transporters and channels mediate vectorial movements of water and solutes in these segments. Although only a small percent of the glomerular filtrate reaches the CNT and CCD, these segments are critical for water and electrolyte homeostasis since several hormones, for example, aldosterone and arginine vasopressin, exert their main effects in these nephron sites. Importantly, hormones regulate the function of the entire nephron and kidney by affecting channels and transporters in the CNT and CCD. Knowledge about the physiological and pathophysiological regulation of transport in the CNT and CCD and particular roles of specific channels/transporters has increased tremendously over the last two decades. Recent studies shed new light on several key questions concerning the regulation of renal transport. Precise distribution patterns of transport proteins in the CCD and CNT will be reviewed, and their physiological roles and mechanisms mediating ion transport in these segments will also be covered. Special emphasis will be given to pathophysiological conditions appearing as a result of abnormalities in renal transport in the CNT and CCD. © 2012 American Physiological Society. Compr Physiol 2:1541‐1584, 2012.

Comprehensive Physiology offers downloadable PowerPoint presentations of figures for non-profit, educational use, provided the content is not modified and full credit is given to the author and publication.

Download a PowerPoint presentation of all images


Figure 1. Figure 1.

Consecutive segments of the nephron. Tubules discussed in this overview article are highlighted in red.

Figure 2. Figure 2.

(A) Structure of the nephron. Abbreviations for the nephron segments are described in Figure 1. The relative lengths of different segments are not drawn to scale. (B) The initial collecting tubule (ICT) and cortical collecting duct (CCD) are composed of principal and intercalated cells. Structure of the CCD shown as a cross‐section and schematic presentation of principal and intercalated cells that comprises these segments. The connecting tubule cells and the principal cells have a polygonal shape. The intercalated cells have a rounded shape. Compared to intercalated cells, the connecting tubule cells and the principal cells have fewer mitochondria and only modestly develop invaginations of the basolateral membrane. Both types of cells develop apical microvilli. However, primary cilia is found only in principal cells.

Figure 3. Figure 3.

Representative immunohistochemical staining for aquaporin 2 (AQP2) in the cortical sections of the Sprague‐Dawley rat kidney. Original magnifications are 20× and 60×, scale bars are shown on the pictures. Negative controls (stained with secondary antibodies in the absence of primary antibodies or stained without primary and secondary antibodies) did not have any staining (data not shown). Several profiles of proximal tubules (PT), distal convoluted tubules (DCT), cortical collecting duct (CCD), and glomerulus (G) are marked by arrows at 20×. Representative examples of intercalated (IC; no staining) and principal (PC; stained for AQP2, shown in brown) cells are indicated on the closeup image. The kidney was fixed for 24 h in zinc formalin and processed for paraffin embedding as described previously 240,314,413. The kidney sections were cut, dried, and deparaffinized for subsequent labeled streptavidin‐biotin immunohistochemistry. All slides were counterstained with Mayer's hematoxylin (Dako, Carpinteria, CA). Tissue sections were incubated for 45 min in a 1:200 concentration of anti‐AQP2 (sc‐28629; Santa Cruz Biotechnology).

Figure 4. Figure 4.

Primary transport characteristics of the cortical collecting duct. Principal and intercalated cells are in colored beige and green, respectively. Tight junctions are also schematically represented in between the cells.

Figure 5. Figure 5.

Major channels and transporters involved in water and electrolyte homeostasis in principal cells of the cortical collecting duct (CCD).

Figure 6. Figure 6.

Mechanism of action of aldosterone in principal cells of the cortical collecting duct (CCD). Aldosterone binds to mineralocorticoid receptor (MR) that then translocates to the nucleus and upregulates transcription of aldosterone‐induced proteins, which regulate sodium reabsorption and potassium secretion via affecting ENaC, ROMK, and Na+/K+‐ATPase. Effect of 11β‐HSD2 that metabolizes cortisol to cortisone, which has little affinity for MR or glucocorticoid receptor (GR), is shown.

Figure 7. Figure 7.

Predicted structure for human epithelial Na+ channel (hENaC) based on the structure for cASIC1 248. (A) Predicted subunit structure for α‐subunit of hENaC. Predicted domain organization of adjusted α‐hENaC modeled on the cASIC1 A monomer (using 2QTS coordinates). Secondary structure, domain labeling, and coloring follows that used by Jasti and colleagues for cASIC1 248: transmembrane domains TM1 and TM2 and linker regions red, palm is yellow, β‐ball orange, knuckle cyan, and thumb green. The exception is that the finger domain is magenta and blue. Blue highlights areas of hENaC that likely have marked differences compared to cASIC1. Putative disulfide bridges are labeled 1 to 7 and shown as yellow sticks. The conserved Trp87 (green side chain) at the beginning of TM1 and Tyr391 (red side chain) within the putative coupling loop are shown. Conserved Ser115 and Glu538 possibly involved in intrasubunit H‐bond formation are shown with red side chains. (B) View of the ribbon structure of the predicted heterotrimeric hENaC. Adapted α‐ (red), β‐ (yellow), and γ‐(blue) hENaC modeled using the 2QTS structural coordinates for the A, B, and C subunits of the cASIC1 homotrimer. Figure is adapted from reference 542, with permission.

Figure 8. Figure 8.

Structure and distribution of renal outer medullary K+ (ROMK) channels. (A) Schematic presentation of ROMK structure shows two characteristic transmembrane segments (TM1 and TM2; blue and green, respectively), NH2 and COOH termini and an extracellular domain. (B) Predicted structure of ROMK subunit stoichiometry. (C) Distribution of ROMK isoforms expression along the nephron. TAL, thick ascending limb of Henle's loop; DCT, distal convoluted tubule; CNT, connecting tubule; CCD, cortical collecting duct; OMCD, outer medullary collecting duct.

Figure 9. Figure 9.

The structure of the pore‐forming α‐subunit and regulatory β‐subunit of the big‐conductance (BK) channel (A). α‐subunit contains seven putative transmembrane domains, S0 to S6, a conserved K+‐selective pore region between S5 and S6, and a long COOH‐terminal cytosolic tail. β‐subunit contains two transmembrane segments and short NH2 and COOH termini. (B) Proposed model of BK channel. Four BK α‐subunits coassemble with four BK β‐subunits to form the channel heteromultimer.

Figure 10. Figure 10.

Types of intercalated cells. Type A intercalated cells secrete H+ via a V‐type H+‐ATPase in the apical plasma membrane and transport HCO3 in exchange for Cl via basolateral Cl/HCO3 exchangers including the AE1 anion exchanger. Type B intercalated cells exhibit an inverse functional polarity to that of type A intercalated cells. A non‐A, non‐B type coexpress Cl/HCO3 exchangers such as pendrin and H+‐ATPase in the apical plasma membrane. Schematic representations of the V‐ATPse, pendrin and AE‐2 are shown in Figures 11 and 12.

Figure 11. Figure 11.

Scheme of the V‐type H+‐ATPase. H+‐ATPases use the energy released by the hydrolysis of ATP to move protons against their concentration gradients. The V0 domain is involved in translocation of the protein. The V1 domain is involved in ATP‐hydrolysis. The precise subunits composition is not entirely clear and several slightly different schemes are proposed. For details, see recent excellent reviews providing details about subunits and domains of V‐type H+‐ATPase 68,162,474,635.

Figure 12. Figure 12.

Proposed schematics of Cl/HCO3 exchangers. The structures of anion exchanger AE1 (SLC4A1) (A) and pendrin (SLC26A4) (B) are shown. As seen from these schemes, both NH2 and COOH termini of AE1 are intracellular. In contrast, COOH terminus of pendrin is extracellular.

Figure 13. Figure 13.

Regulation of the aquaporin‐2 (AQP2)‐mediated water transport by arginine vasopressin (AVP). (A) Proposed topology of AQP2. An AQP2 monomer consists of six transmembrane domains connected by five loops. NH2 and COOH termini are located intracellularly. (B) A scheme of water‐transport regulation by AVP. Vasopressin receptor (V2R), stimulatory GTP‐binding protein (Gs), adenylate cyclase (AC), adenosine triphosphate (ATP), and cyclic adenosine monophosphate (cAMP) are indicated.

Figure 14. Figure 14.

Transmembrane topology of transient receptor potential (TRP) channels. TRP channels belong to the large superfamily of cation channels with six transmembrane‐spanning segments forming a transmembrane domain with a pore loop inserted between TM5 and TM6 and NH2‐ and COOH‐intracellular termini (A). In contrast, polycystin 1 (PKD1 or PC1) has 11 transmembrane domains and a large extracellular NH2 domain (B).

Figure 15. Figure 15.

Mutations in genes encoding proteins functionally expressed in cortical collecting duct (CCD) cause severe kidney disorders. (A) Mechanisms of cyst formation in autosomal recessive (ARPKD) and dominant (ADPKD) polycystic kidney diseases. Normal tubule is also shown. Representative images of kidney cortical sections of Sprague‐Dawley (B) and PCK (C) rats. PCK rat, a model of ARPKD, demonstrates abundant formation of cysts. Original magnifications are 40×. Scale bar is presented.

Figure 16. Figure 16.

Modes of transepithelial transport and major proteins involved in the paracellular transport. Schemes of the transcellular (A) and paracellular (B) epithelial transport. (C) Schematic three‐dimensional structure of tight junctions. Proposed structures of claudin (D) and occludin (E).



Figure 1.

Consecutive segments of the nephron. Tubules discussed in this overview article are highlighted in red.



Figure 2.

(A) Structure of the nephron. Abbreviations for the nephron segments are described in Figure 1. The relative lengths of different segments are not drawn to scale. (B) The initial collecting tubule (ICT) and cortical collecting duct (CCD) are composed of principal and intercalated cells. Structure of the CCD shown as a cross‐section and schematic presentation of principal and intercalated cells that comprises these segments. The connecting tubule cells and the principal cells have a polygonal shape. The intercalated cells have a rounded shape. Compared to intercalated cells, the connecting tubule cells and the principal cells have fewer mitochondria and only modestly develop invaginations of the basolateral membrane. Both types of cells develop apical microvilli. However, primary cilia is found only in principal cells.



Figure 3.

Representative immunohistochemical staining for aquaporin 2 (AQP2) in the cortical sections of the Sprague‐Dawley rat kidney. Original magnifications are 20× and 60×, scale bars are shown on the pictures. Negative controls (stained with secondary antibodies in the absence of primary antibodies or stained without primary and secondary antibodies) did not have any staining (data not shown). Several profiles of proximal tubules (PT), distal convoluted tubules (DCT), cortical collecting duct (CCD), and glomerulus (G) are marked by arrows at 20×. Representative examples of intercalated (IC; no staining) and principal (PC; stained for AQP2, shown in brown) cells are indicated on the closeup image. The kidney was fixed for 24 h in zinc formalin and processed for paraffin embedding as described previously 240,314,413. The kidney sections were cut, dried, and deparaffinized for subsequent labeled streptavidin‐biotin immunohistochemistry. All slides were counterstained with Mayer's hematoxylin (Dako, Carpinteria, CA). Tissue sections were incubated for 45 min in a 1:200 concentration of anti‐AQP2 (sc‐28629; Santa Cruz Biotechnology).



Figure 4.

Primary transport characteristics of the cortical collecting duct. Principal and intercalated cells are in colored beige and green, respectively. Tight junctions are also schematically represented in between the cells.



Figure 5.

Major channels and transporters involved in water and electrolyte homeostasis in principal cells of the cortical collecting duct (CCD).



Figure 6.

Mechanism of action of aldosterone in principal cells of the cortical collecting duct (CCD). Aldosterone binds to mineralocorticoid receptor (MR) that then translocates to the nucleus and upregulates transcription of aldosterone‐induced proteins, which regulate sodium reabsorption and potassium secretion via affecting ENaC, ROMK, and Na+/K+‐ATPase. Effect of 11β‐HSD2 that metabolizes cortisol to cortisone, which has little affinity for MR or glucocorticoid receptor (GR), is shown.



Figure 7.

Predicted structure for human epithelial Na+ channel (hENaC) based on the structure for cASIC1 248. (A) Predicted subunit structure for α‐subunit of hENaC. Predicted domain organization of adjusted α‐hENaC modeled on the cASIC1 A monomer (using 2QTS coordinates). Secondary structure, domain labeling, and coloring follows that used by Jasti and colleagues for cASIC1 248: transmembrane domains TM1 and TM2 and linker regions red, palm is yellow, β‐ball orange, knuckle cyan, and thumb green. The exception is that the finger domain is magenta and blue. Blue highlights areas of hENaC that likely have marked differences compared to cASIC1. Putative disulfide bridges are labeled 1 to 7 and shown as yellow sticks. The conserved Trp87 (green side chain) at the beginning of TM1 and Tyr391 (red side chain) within the putative coupling loop are shown. Conserved Ser115 and Glu538 possibly involved in intrasubunit H‐bond formation are shown with red side chains. (B) View of the ribbon structure of the predicted heterotrimeric hENaC. Adapted α‐ (red), β‐ (yellow), and γ‐(blue) hENaC modeled using the 2QTS structural coordinates for the A, B, and C subunits of the cASIC1 homotrimer. Figure is adapted from reference 542, with permission.



Figure 8.

Structure and distribution of renal outer medullary K+ (ROMK) channels. (A) Schematic presentation of ROMK structure shows two characteristic transmembrane segments (TM1 and TM2; blue and green, respectively), NH2 and COOH termini and an extracellular domain. (B) Predicted structure of ROMK subunit stoichiometry. (C) Distribution of ROMK isoforms expression along the nephron. TAL, thick ascending limb of Henle's loop; DCT, distal convoluted tubule; CNT, connecting tubule; CCD, cortical collecting duct; OMCD, outer medullary collecting duct.



Figure 9.

The structure of the pore‐forming α‐subunit and regulatory β‐subunit of the big‐conductance (BK) channel (A). α‐subunit contains seven putative transmembrane domains, S0 to S6, a conserved K+‐selective pore region between S5 and S6, and a long COOH‐terminal cytosolic tail. β‐subunit contains two transmembrane segments and short NH2 and COOH termini. (B) Proposed model of BK channel. Four BK α‐subunits coassemble with four BK β‐subunits to form the channel heteromultimer.



Figure 10.

Types of intercalated cells. Type A intercalated cells secrete H+ via a V‐type H+‐ATPase in the apical plasma membrane and transport HCO3 in exchange for Cl via basolateral Cl/HCO3 exchangers including the AE1 anion exchanger. Type B intercalated cells exhibit an inverse functional polarity to that of type A intercalated cells. A non‐A, non‐B type coexpress Cl/HCO3 exchangers such as pendrin and H+‐ATPase in the apical plasma membrane. Schematic representations of the V‐ATPse, pendrin and AE‐2 are shown in Figures 11 and 12.



Figure 11.

Scheme of the V‐type H+‐ATPase. H+‐ATPases use the energy released by the hydrolysis of ATP to move protons against their concentration gradients. The V0 domain is involved in translocation of the protein. The V1 domain is involved in ATP‐hydrolysis. The precise subunits composition is not entirely clear and several slightly different schemes are proposed. For details, see recent excellent reviews providing details about subunits and domains of V‐type H+‐ATPase 68,162,474,635.



Figure 12.

Proposed schematics of Cl/HCO3 exchangers. The structures of anion exchanger AE1 (SLC4A1) (A) and pendrin (SLC26A4) (B) are shown. As seen from these schemes, both NH2 and COOH termini of AE1 are intracellular. In contrast, COOH terminus of pendrin is extracellular.



Figure 13.

Regulation of the aquaporin‐2 (AQP2)‐mediated water transport by arginine vasopressin (AVP). (A) Proposed topology of AQP2. An AQP2 monomer consists of six transmembrane domains connected by five loops. NH2 and COOH termini are located intracellularly. (B) A scheme of water‐transport regulation by AVP. Vasopressin receptor (V2R), stimulatory GTP‐binding protein (Gs), adenylate cyclase (AC), adenosine triphosphate (ATP), and cyclic adenosine monophosphate (cAMP) are indicated.



Figure 14.

Transmembrane topology of transient receptor potential (TRP) channels. TRP channels belong to the large superfamily of cation channels with six transmembrane‐spanning segments forming a transmembrane domain with a pore loop inserted between TM5 and TM6 and NH2‐ and COOH‐intracellular termini (A). In contrast, polycystin 1 (PKD1 or PC1) has 11 transmembrane domains and a large extracellular NH2 domain (B).



Figure 15.

Mutations in genes encoding proteins functionally expressed in cortical collecting duct (CCD) cause severe kidney disorders. (A) Mechanisms of cyst formation in autosomal recessive (ARPKD) and dominant (ADPKD) polycystic kidney diseases. Normal tubule is also shown. Representative images of kidney cortical sections of Sprague‐Dawley (B) and PCK (C) rats. PCK rat, a model of ARPKD, demonstrates abundant formation of cysts. Original magnifications are 40×. Scale bar is presented.



Figure 16.

Modes of transepithelial transport and major proteins involved in the paracellular transport. Schemes of the transcellular (A) and paracellular (B) epithelial transport. (C) Schematic three‐dimensional structure of tight junctions. Proposed structures of claudin (D) and occludin (E).

References
 1. Abe K, Tani K, Fujiyoshi Y. Conformational rearrangement of gastric H+,K+‐ATPase induced by an acid suppressant. Nat Commun 2: 155, 2011.
 2. Abe K, Tani K, Nishizawa T, Fujiyoshi Y. Inter‐subunit interaction of gastric H+,K+‐ATPase prevents reverse reaction of the transport cycle. EMBO J 28: 1637‐1643, 2009.
 3. Abramowitz J, Birnbaumer L. Physiology and pathophysiology of canonical transient receptor potential channels. FASEB J 23: 297‐328, 2009.
 4. Adachi S, Uchida S, Ito H, Hata M, Hiroe M, Marumo F, Sasaki S. Two isoforms of a chloride channel predominantly expressed in thick ascending limb of Henle's loop and collecting ducts of rat kidney. J Biol Chem 269: 17677‐17683, 1994.
 5. Ahn KY, Turner PB, Madsen KM, Kone BC. Effects of chronic hypokalemia on renal expression of the “gastric” H+,K+‐ATPase α‐subunit gene. Am J Physiol Renal Physiol 270: F557‐F566, 1996.
 6. Al‐Awqati Q, Beauwens R. Cellular mechanisms of H+ and HCO3− transport in tight urinary epithelia. Compr Physiol 2011, Supplement 25: Handbook of Physiology, Renal Physiology. doi:10.1002/cphy.cp080108.
 7. Alexander RT, Woudenberg‐Vrenken TE, Buurman J, Dijkman H, van der Eerden BC, van Leeuwen JP, Bindels RJ, Hoenderop JG. Klotho prevents renal calcium loss. J Am Soc Nephrol 20: 2371‐2379, 2009.
 8. Alper SL. Molecular physiology and genetics of Na+‐independent SLC4 anion exchangers. J Exp Biol 212: 1672‐1683, 2009.
 9. Alper SL, Natale J, Gluck S, Lodish HF, Brown D. Subtypes of intercalated cells in rat kidney collecting duct defined by antibodies against erythroid band 3 and renal vacuolar H+‐ATPase. Proc Natl Acad Sci U S A 86: 5429‐5433, 1989.
 10. Althaus M, Bogdan R, Clauss WG, Fronius M. Mechano‐sensitivity of epithelial sodium channels (ENaCs): Laminar shear stress increases ion channel open probability. FASEB J 21: 2389‐2399, 2007.
 11. Alvarez de la Rosa D, Canessa CM. Role of SGK in hormonal regulation of epithelial sodium channel in A6 cells. Am J Physiol Cell Physiol 284: C404‐C414, 2003.
 12. Alvarez de la Rosa D, Canessa CM, Fyfe GK, Zhang P. Structure and regulation of amiloride‐sensitive sodium channels. Annu Rev Physiol 62: 573‐594, 2000.
 13. Alvarez de la Rosa D, Zhang P, Naray‐Fejes‐Toth A, Fejes‐Toth G, Canessa CM. The serum and glucocorticoid kinase sgk increases the abundance of epithelial sodium channels in the plasma membrane of Xenopus oocytes. J Biol Chem 274: 37834‐37839, 1999.
 14. Alzamora R, Gong F, Rondanino C, Lee JK, Smolak C, Pastor‐Soler NM, Hallows KR. AMP‐activated protein kinase inhibits KCNQ1 channels through regulation of the ubiquitin ligase Nedd4‐2 in renal epithelial cells. Am J Physiol Renal Physiol 299: F1308‐F1319, 2010.
 15. Ambuhl PM, Amemiya M, Danczkay M, Lotscher M, Kaissling B, Moe OW, Preisig PA, Alpern RJ. Chronic metabolic acidosis increases NHE3 protein abundance in rat kidney. Am J Physiol Renal Physiol 271: F917‐F925, 1996.
 16. Anantharam A, Palmer LG. Determination of epithelial Na+ channel subunit stoichiometry from single‐channel conductances. J Gen Physiol 130: 55‐70, 2007.
 17. Andersen MN, Olesen SP, Rasmussen HB. Kv7.1 surface expression is regulated by epithelial cell polarization. Am J Physiol Cell Physiol 300: C814‐C824, 2011.
 18. Anderson JM, Van Itallie CM. Physiology and function of the tight junction. Cold Spring Harb Perspect Biol 1: a002584, 2009.
 19. Angelow S, Ahlstrom R, Yu AS. Biology of claudins. Am J Physiol Renal Physiol 295: F867‐F876, 2008.
 20. Arreola J, Begenisich T, Nehrke K, Nguyen HV, Park K, Richardson L, Yang B, Schutte BC, Lamb FS, Melvin JE. Secretion and cell volume regulation by salivary acinar cells from mice lacking expression of the Clcn3 Cl− channel gene. J Physiol 545: 207‐216, 2002.
 21. Ashkroft, FM. Ion channels and Disease. San Diego, CA: Academic Press, 2000, p. 1‐502.
 22. Avner ED, Sweeney WE Jr, Nelson WJ. Abnormal sodium pump distribution during renal tubulogenesis in congenital murine polycystic kidney disease. Proc Natl Acad Sci U S A 89: 7447‐7451, 1992.
 23. Azad AK, Rauh R, Vermeulen F, Jaspers M, Korbmacher J, Boissier B, Bassinet L, Fichou Y, des GM, Stanke F, De BK, Dupont L, Balascakova M, Hjelte L, Lebecque P, Radojkovic D, Castellani C, Schwartz M, Stuhrmann M, Schwarz M, Skalicka V, de Monestrol I, Girodon E, Ferec C, Claustres M, Tummler B, Cassiman JJ, Korbmacher C, Cuppens H. Mutations in the amiloride‐sensitive epithelial sodium channel in patients with cystic fibrosis‐like disease. Hum Mutat 30: 1093‐1103, 2009.
 24. Babilonia E, Li D, Wang Z, Sun P, Lin DH, Jin Y, Wang WH. Mitogen‐activated protein kinases inhibit the ROMK (Kir 1.1)‐like small conductance K channels in the cortical collecting duct. J Am Soc Nephrol 17: 2687‐2696, 2006.
 25. Bai CX, Giamarchi A, Rodat‐Despoix L, Padilla F, Downs T, Tsiokas L, Delmas P. Formation of a new receptor‐operated channel by heteromeric assembly of TRPP2 and TRPC1 subunits. EMBO Rep 9: 472‐479, 2008.
 26. Bailey MA, Craigie E, Livingstone DE, Kotelevtsev YV, Al‐Dujaili EA, Kenyon CJ, Mullins JJ. Hsd11β2 haploinsufficiency in mice causes salt sensitivity of blood pressure. Hypertension 57: 515‐520, 2011.
 27. Bandyopadhyay BC, Swaim WD, Liu X, Redman RS, Patterson RL, Ambudkar IS. Apical localization of a functional TRPC3/TRPC6‐Ca2+‐signaling complex in polarized epithelial cells. Role in apical Ca2+ influx. J Biol Chem 280: 12908‐12916, 2005.
 28. Bankir L, Bichet DG, Bouby N. Vasopressin V2 receptors, ENaC, and sodium reabsorption: A risk factor for hypertension? Am J Physiol Renal Physiol 299: F917‐F928, 2010.
 29. Barile M, Pisitkun T, Yu MJ, Chou CL, Verbalis MJ, Shen RF, Knepper MA. Large scale protein identification in intracellular aquaporin‐2 vesicles from renal inner medullary collecting duct. Mol Cell Proteomics 4: 1095‐1106, 2005.
 30. Barker PM, Nguyen MS, Gatzy JT, Grubb B, Norman H, Hummler E, Rossier B, Boucher RC, Koller B. Role of γENaC subunit in lung liquid clearance and electrolyte balance in newborn mice. Insights into perinatal adaptation and pseudohypoaldosteronism. J Clin Invest 102: 1634‐1640, 1998.
 31. Barr MM, DeModena J, Braun D, Nguyen CQ, Hall DH, Sternberg PW. The Caenorhabditis elegans autosomal dominant polycystic kidney disease gene homologs lov‐1 and pkd‐2 act in the same pathway. Curr Biol 11: 1341‐1346, 2001.
 32. Barr MM, Sternberg PW. A polycystic kidney‐disease gene homologue required for male mating behaviour in C. elegans. Nature 401: 386‐389, 1999.
 33. Bastani B, Purcell H, Hemken P, Trigg D, Gluck S. Expression and distribution of renal vacuolar proton‐translocating adenosine triphosphatase in response to chronic acid and alkali loads in the rat. J Clin Invest 88: 126‐136, 1991.
 34. Beesley AH, Hornby D, White SJ. Regulation of distal nephron K+ channels (ROMK) mRNA expression by aldosterone in rat kidney. J Physiol 509: 629‐634, 1998.
 35. Benos DJ, Stanton BA. Functional domains within the degenerin/epithelial sodium channel (Deg/ENaC) superfamily of ion channels. J Physiol 520: 631‐644, 1999.
 36. Berdiev BK, Qadri YJ, Benos DJ. Assessment of the CFTR and ENaC association. Mol Biosyst 5: 123‐127, 2009.
 37. Berdiev BK, Shlyonsky VG, Karlson KH, Stanton BA, Ismailov II. Gating of amiloride‐sensitive Na+ channels: Subunit‐subunit interactions and inhibition by the cystic fibrosis transmembrane conductance regulator. Biophys J 78: 1881‐1894, 2000.
 38. Berger S, Bleich M, Schmid W, Cole TJ, Peters J, Watanabe H, Kriz W, Warth R, Greger R, Schutz G. Mineralocorticoid receptor knockout mice: Pathophysiology of Na+ metabolism. Proc Natl Acad Sci U S A 95: 9424‐9429, 1998.
 39. Bergmann C, Senderek J, Kupper F, Schneider F, Dornia C, Windelen E, Eggermann T, Rudnik‐Schoneborn S, Kirfel J, Furu L, Onuchic LF, Rossetti S, Harris PC, Somlo S, Guay‐Woodford L, Germino GG, Moser M, Buttner R, Zerres K. PKHD1 mutations in autosomal recessive polycystic kidney disease (ARPKD). Hum Mutat 23: 453‐463, 2004.
 40. Bertrand CA, Frizzell RA. The role of regulated CFTR trafficking in epithelial secretion. Am J Physiol Cell Physiol 285: C1‐C18, 2003.
 41. Bezzerides VJ, Ramsey IS, Kotecha S, Greka A, Clapham DE. Rapid vesicular translocation and insertion of TRP channels. Nat Cell Biol 6: 709‐720, 2004.
 42. Bhalla V, Daidie D, Li H, Pao AC, LaGrange LP, Wang J, Vandewalle A, Stockand JD, Staub O, Pearce D. Serum‐ and glucocorticoid‐regulated kinase 1 regulates ubiquitin ligase neural precursor cell‐expressed, developmentally down‐regulated protein 4‐2 by inducing interaction with 14‐3‐3. Mol Endocrinol 19: 3073‐3084, 2005.
 43. Bhalla V, Hallows KR. Mechanisms of ENaC regulation and clinical implications. J Am Soc Nephrol 19: 1845‐1854, 2008.
 44. Bhalla V, Oyster NM, Fitch AC, Wijngaarden MA, Neumann D, Schlattner U, Pearce D, Hallows KR. AMP‐activated kinase inhibits the epithelial Na+ channel through functional regulation of the ubiquitin ligase Nedd4‐2. J Biol Chem 281: 26159‐26169, 2006.
 45. Bhalla V, Soundararajan R, Pao AC, Li H, Pearce D. Disinhibitory pathways for control of sodium transport: Regulation of ENaC by SGK1 and GILZ. Am J Physiol Renal Physiol 291: F714‐F721, 2006.
 46. Bindels RJ. A molecularly guided tour along the nephron. Pflugers Arch 458: 1‐3, 2009.
 47. Bindels RJ. 2009 Homer W. Smith Award: Minerals in motion: From new ion transporters to new concepts. J Am Soc Nephrol 21: 1263‐1269, 2010.
 48. Birkenhager R, Otto E, Schurmann MJ, Vollmer M, Ruf EM, Maier‐Lutz I, Beekmann F, Fekete A, Omran H, Feldmann D, Milford DV, Jeck N, Konrad M, Landau D, Knoers NV, Antignac C, Sudbrak R, Kispert A, Hildebrandt F. Mutation of BSND causes Bartter syndrome with sensorineural deafness and kidney failure. Nat Genet 29: 310‐314, 2001.
 49. Bissig M, Hagenbuch B, Stieger B, Koller T, Meier PJ. Functional expression cloning of the canalicular sulfate transport system of rat hepatocytes. J Biol Chem 269: 3017‐3021, 1994.
 50. Blazer‐Yost BL, Esterman MA, Vlahos CJ. Insulin‐stimulated trafficking of ENaC in renal cells requires PI 3‐kinase activity. Am J Physiol Cell Physiol 284: C1645‐C1653, 2003.
 51. Blazer‐Yost BL, Haydon J, Eggleston‐Gulyas T, Chen JH, Wang X, Gattone V, Torres VE. Pioglitazone attenuates cystic burden in the PCK rodent model of polycystic kidney disease. PPAR Res 2010: 274376, 2010.
 52. Blazer‐Yost BL, Liu X, Helman SI. Hormonal regulation of ENaCs: Insulin and aldosterone. Am J Physiol Cell Physiol 274: C1373‐C1379, 1998.
 53. Bockenhauer D, Feather S, Stanescu HC, Bandulik S, Zdebik AA, Reichold M, Tobin J, Lieberer E, Sterner C, Landoure G, Arora R, Sirimanna T, Thompson D, Cross JH, van't HW, Al MO, Tullus K, Yeung S, Anikster Y, Klootwijk E, Hubank M, Dillon MJ, Heitzmann D, rcos‐Burgos M, Knepper MA, Dobbie A, Gahl WA, Warth R, Sheridan E, Kleta R. Epilepsy, ataxia, sensorineural deafness, tubulopathy, and KCNJ10 mutations. N Engl J Med 360: 1960‐1970, 2009.
 54. Boim MA, Ho K, Shuck ME, Bienkowski MJ, Block JH, Slightom JL, Yang Y, Brenner BM, Hebert SC. ROMK inwardly rectifying ATP‐sensitive K+ channel. II. Cloning and distribution of alternative forms. Am J Physiol Renal Physiol 268: F1132‐F1140, 1995.
 55. Bonny O, Hummler E. Dysfunction of epithelial sodium transport: From human to mouse. Kidney Int 57: 1313‐1318, 2000.
 56. Boone M, Deen PM. Congenital nephrogenic diabetes insipidus: What can we learn from mouse models? Exp Physiol 94: 186‐190, 2009.
 57. Boone M, Kortenoeven ML, Robben JH, Tamma G, Deen PM. Counteracting vasopressin‐mediated water reabsorption by ATP, dopamine, and phorbol esters: Mechanisms of action. Am J Physiol Renal Physiol 300: F761‐F771, 2011.
 58. Boros S, Bindels RJ, Hoenderop JG. Active Ca2+ reabsorption in the connecting tubule. Pflugers Arch 458: 99‐109, 2009.
 59. Braunstein GM, Roman RM, Clancy JP, Kudlow BA, Taylor AL, Shylonsky VG, Jovov B, Peter K, Jilling T, Ismailov II, Benos DJ, Schwiebert LM, Fitz JG, Schwiebert EM. Cystic fibrosis transmembrane conductance regulator facilitates ATP release by stimulating a separate ATP release channel for autocrine control of cell volume regulation. J Biol Chem 276: 6621‐6630, 2001.
 60. Brenner R, Perez GJ, Bonev AD, Eckman DM, Kosek JC, Wiler SW, Patterson AJ, Nelson MT, Aldrich RW. Vasoregulation by the β1 subunit of the calcium‐activated potassium channel. Nature 407: 870‐876, 2000.
 61. Breton S, Brown D. New insights into the regulation of V‐ATPase‐dependent proton secretion. Am J Physiol Renal Physiol 292: F1‐F10, 2007.
 62. Briet M, Schiffrin EL. Aldosterone: Effects on the kidney and cardiovascular system. Nat Rev Nephrol 6: 261‐273, 2010.
 63. Briet M, Schiffrin EL. The role of aldosterone in the metabolic syndrome. Curr Hypertens Rep 13: 163‐172, 2011.
 64. Brown D, Breton S. Mitochondria‐rich, proton‐secreting epithelial cells. J Exp Biol 199: 2345‐2358, 1996.
 65. Brown D, Breton S, Ausiello DA, Marshansky V. Sensing, signaling and sorting events in kidney epithelial cell physiology. Traffic 10: 275‐284, 2009.
 66. Brown D, Hirsch S, Gluck S. An H+‐ATPase in opposite plasma membrane domains in kidney epithelial cell subpopulations. Nature 331: 622‐624, 1988a.
 67. Brown D, Hirsch S, Gluck S. Localization of a proton‐pumping ATPase in rat kidney. J Clin Invest 82: 2114‐2126, 1988b.
 68. Brown D, Paunescu TG, Breton S, Marshansky V. Regulation of the V‐ATPase in kidney epithelial cells: Dual role in acid‐base homeostasis and vesicle trafficking. J Exp Biol 212: 1762‐1772, 2009.
 69. Bruce LJ, Cope DL, Jones GK, Schofield AE, Burley M, Povey S, Unwin RJ, Wrong O, Tanner MJ. Familial distal renal tubular acidosis is associated with mutations in the red cell anion exchanger (Band 3, AE1) gene. J Clin Invest 100: 1693‐1707, 1997.
 70. Bruns JB, Carattino MD, Sheng S, Maarouf AB, Weisz OA, Pilewski JM, Hughey RP, Kleyman TR. Epithelial Na+ channels are fully activated by furin‐ and prostasin‐dependent release of an inhibitory peptide from the γ‐subunit. J Biol Chem 282: 6153‐6160, 2007.
 71. Bublitz M, Morth JP, Nissen P. P‐type ATPases at a glance. J Cell Sci 124: 2515‐2519, 2011.
 72. Bugaj V, Pochynyuk O, Mironova E, Vandewalle A, Medina JL, Stockand JD. Regulation of the epithelial Na+ channel by endothelin‐1 in rat collecting duct. Am J Physiol Renal Physiol 295: F1063‐F1070, 2008.
 73. Bugaj V, Pochynyuk O, Stockand JD. Activation of the epithelial Na+ channel in the collecting duct by vasopressin contributes to water reabsorption. Am J Physiol Renal Physiol 297: F1411‐F1418, 2009.
 74. Burch LH, Talbot CR, Knowles MR, Canessa CM, Rossier BC, Boucher RC. Relative expression of the human epithelial Na+ channel subunits in normal and cystic fibrosis airways. Am J Physiol Cell Physiol 269: C511‐C518, 1995.
 75. Butler A, Tsunoda S, McCobb DP, Wei A, Salkoff L. mSlo, a complex mouse gene encoding “maxi” calcium‐activated potassium channels. Science 261: 221‐224, 1993.
 76. Butterworth MB, Edinger RS, Frizzell RA, Johnson JP. Regulation of the epithelial sodium channel by membrane trafficking. Am J Physiol Renal Physiol 296: F10‐F24, 2009.
 77. Butterworth MB, Edinger RS, Ovaa H, Burg D, Johnson JP, Frizzell RA. The deubiquitinating enzyme UCH‐L3 regulates the apical membrane recycling of the epithelial sodium channel. J Biol Chem 282: 37885‐37893, 2007.
 78. Canessa CM, Horisberger JD, Rossier BC. Epithelial sodium channel related to proteins involved in neurodegeneration. Nature 361: 467‐470, 1993.
 79. Canessa CM, Merillat AM, Rossier BC. Membrane topology of the epithelial sodium channel in intact cells. Am J Physiol Cell Physiol 267: C1682‐C1690, 1994.
 80. Canessa CM, Schild L, Buell G, Thorens B, Gautschi I, Horisberger JD, Rossier BC. Amiloride‐sensitive epithelial Na+ channel is made of three homologous subunits. Nature 367: 463‐467, 1994.
 81. Cantone A, Yang X, Yan Q, Giebisch G, Hebert SC, Wang T. Mouse model of type II Bartter's syndrome. I. Upregulation of thiazide‐sensitive Na‐Cl cotransport activity. Am J Physiol Renal Physiol 294: F1366‐F1372, 2008.
 82. Caputo A, Caci E, Ferrera L, Pedemonte N, Barsanti C, Sondo E, Pfeffer U, Ravazzolo R, Zegarra‐Moran O, Galietta LJ. TMEM16A, a membrane protein associated with calcium‐dependent chloride channel activity. Science 322: 590‐594, 2008.
 83. Carattino MD. Structural mechanisms underlying the function of epithelial sodium channel/acid‐sensing ion channel. Curr Opin Nephrol Hypertens 20: 555‐560, 2011.
 84. Carattino MD, Liu W, Hill WG, Satlin LM, Kleyman TR. Lack of a role of membrane‐protein interactions in flow‐dependent activation of ENaC. Am J Physiol Renal Physiol 293: F316‐F324, 2007.
 85. Carattino MD, Sheng S, Bruns JB, Pilewski JM, Hughey RP, Kleyman TR. The epithelial Na+ channel is inhibited by a peptide derived from proteolytic processing of its α subunit. J Biol Chem 281: 18901‐18907, 2006.
 86. Carattino MD, Sheng S, Kleyman TR. Epithelial Na+ channels are activated by laminar shear stress. J Biol Chem 279: 4120‐4126, 2004.
 87. Carrisoza R, Salvador C, Bobadilla N, Trujillo J, Escobar L. Expression and immunolocalization of ERG1 potassium channels in the rat kidney. Histochem Cell Biol 133: 189‐199, 2010.
 88. Cassola AC, Giebisch G, Wang W. Vasopressin increases density of apical low‐conductance K+ channels in rat CCD. Am J Physiol Renal Physiol 264: F502‐F509, 1993.
 89. Chang JH, Kim S. Role of pendrin in acid‐base balance. Electrolyte Blood Press 7: 20‐24, 2009.
 90. Chang Q, Hoefs S, van der Kemp AW, Topala CN, Bindels RJ, Hoenderop JG. The β‐glucuronidase klotho hydrolyzes and activates the TRPV5 channel. Science 310: 490‐493, 2005.
 91. Chang SS, Grunder S, Hanukoglu A, Rosler A, Mathew PM, Hanukoglu I, Schild L, Lu Y, Shimkets RA, Nelson‐Williams C, Rossier BC, Lifton RP. Mutations in subunits of the epithelial sodium channel cause salt wasting with hyperkalaemic acidosis, pseudohypoaldosteronism type 1. Nat Genet 12: 248‐253, 1996.
 92. Chen JH, Stoltz DA, Karp PH, Ernst SE, Pezzulo AA, Moninger TO, Rector MV, Reznikov LR, Launspach JL, Chaloner K, Zabner J, Welsh MJ. Loss of anion transport without increased sodium absorption characterizes newborn porcine cystic fibrosis airway epithelia. Cell 143: 911‐923, 2010.
 93. Chen SY, Bhargava A, Mastroberardino L, Meijer OC, Wang J, Buse P, Firestone GL, Verrey F, Pearce D. Epithelial sodium channel regulated by aldosterone‐induced protein sgk. Proc Natl Acad Sci U S A 96: 2514‐2519, 1999.
 94. Cheng C, Prince LS, Snyder PM, Welsh MJ. Assembly of the epithelial Na+ channel evaluated using sucrose gradient sedimentation analysis. J Biol Chem 273: 22693‐22700, 1998.
 95. Cheng CJ, Huang CL. Activation of PI3‐kinase stimulates endocytosis of ROMK via Akt1/SGK1‐dependent phosphorylation of WNK1. J Am Soc Nephrol 22: 460‐471, 2011.
 96. Choe H, Zhou H, Palmer LG, Sackin H. A conserved cytoplasmic region of ROMK modulates pH sensitivity, conductance, and gating. Am J Physiol Renal Physiol 273: F516‐F529, 1997.
 97. Christensen BM, Zuber AM, Loffing J, Stehle JC, Deen PM, Rossier BC, Hummler E. αENaC‐mediated lithium absorption promotes nephrogenic diabetes insipidus. J Am Soc Nephrol 22: 253‐261, 2011.
 98. Chu PY, Quigley R, Babich V, Huang CL. Dietary potassium restriction stimulates endocytosis of ROMK channel in rat cortical collecting duct. Am J Physiol Renal Physiol 285: F1179‐F1187, 2003.
 99. Cirovic S, Markovic‐Lipkovski J, Todorovic J, Nesovic‐Ostojic J, Jovic M, Ilic S, Tatic S, Cemerikic D. Differential expression of KCNQ1 K+ channel in tubular cells of frog kidney. Eur J Histochem 54: e7, 2010.
 100. Clapham DE, Julius D, Montell C, Schultz G. International Union of Pharmacology. XLIX. Nomenclature and structure‐function relationships of transient receptor potential channels. Pharmacol Rev 57: 427‐450, 2005.
 101. Cluzeaud F, Reyes R, Escoubet B, Fay M, Lazdunski M, Bonvalet JP, Lesage F, Farman N. Expression of TWIK‐1, a novel weakly inward rectifying potassium channel in rat kidney. Am J Physiol Cell Physiol 275: C1602‐C1609, 1998.
 102. Codina J, DuBose TD Jr. Molecular regulation and physiology of the H+,K+‐ATPases in kidney. Semin Nephrol 26: 345‐351, 2006.
 103. Collier DM, Snyder PM. Extracellular chloride regulates the epithelial sodium channel. J Biol Chem 284: 29320‐29325, 2009.
 104. Collier DM, Snyder PM. Identification of epithelial Na+ channel (ENaC) intersubunit Cl− inhibitory residues suggests a trimeric αγβ channel architecture. J Biol Chem 286: 6027‐6032, 2011.
 105. Cope G, Murthy M, Golbang AP, Hamad A, Liu CH, Cuthbert AW, O'Shaughnessy KM. WNK1 affects surface expression of the ROMK potassium channel independent of WNK4. J Am Soc Nephrol 17: 1867‐1874, 2006.
 106. Coscoy S, Lingueglia E, Lazdunski M, Barbry P. The Phe‐Met‐Arg‐Phe‐amide‐activated sodium channel is a tetramer. J Biol Chem 273: 8317‐8322, 1998.
 107. Costanzo LS, Windhager EE. Renal tubular transport of calcium. Compr Physiol 2011, Supplement 25: Handbook of Physiology, Renal Physiology. doi: 10.1002/cphy.cp080236.
 108. Coyle B, Coffey R, Armour JA, Gausden E, Hochberg Z, Grossman A, Britton K, Pembrey M, Reardon W, Trembath R. Pendred syndrome (goitre and sensorineural hearing loss) maps to chromosome 7 in the region containing the nonsyndromic deafness gene DFNB4. Nat Genet 12: 421‐423, 1996.
 109. Crawford I, Maloney PC, Zeitlin PL, Guggino WB, Hyde SC, Turley H, Gatter KC, Harris A, Higgins CF. Immunocytochemical localization of the cystic fibrosis gene product CFTR. Proc Natl Acad Sci U S A 88: 9262‐9266, 1991.
 110. Crowson MS, Shull GE. Isolation and characterization of a cDNA encoding the putative distal colon H+,K+‐ATPase. Similarity of deduced amino acid sequence to gastric H+,K+‐ATPase and Na+,K+‐ATPase and mRNA expression in distal colon, kidney, and uterus. J Biol Chem 267: 13740‐13748, 1992.
 111. Da SN, Pisitkun T, Belleannee C, Miller LR, Nelson R, Knepper MA, Brown D, Breton S. Proteomic analysis of V‐ATPase‐rich cells harvested from the kidney and epididymis by fluorescence‐activated cell sorting. Am J Physiol Cell Physiol 298: C1326‐C1342, 2010.
 112. Davidow CJ, Maser RL, Rome LA, Calvet JP, Grantham JJ. The cystic fibrosis transmembrane conductance regulator mediates transepithelial fluid secretion by human autosomal dominant polycystic kidney disease epithelium in vitro. Kidney Int 50: 208‐218, 1996.
 113. de Groot T, Verkaart S, Xi Q, Bindels RJ, Hoenderop JG. The identification of Histidine 712 as a critical residue for constitutive TRPV5 internalization. J Biol Chem 285: 28481‐28487, 2010.
 114. Debonneville C, Flores SY, Kamynina E, Plant PJ, Tauxe C, Thomas MA, Munster C, Chraibi A, Pratt JH, Horisberger JD, Pearce D, Loffing J, Staub O. Phosphorylation of Nedd4‐2 by Sgk1 regulates epithelial Na+ channel cell surface expression. EMBO J 20: 7052‐7059, 2001.
 115. Deen PM, Verdijk MA, Knoers NV, Wieringa B, Monnens LA, van Os CH, van Oost BA. Requirement of human renal water channel aquaporin‐2 for vasopressin‐dependent concentration of urine. Science 264: 92‐95, 1994.
 116. Delous M, Baala L, Salomon R, Laclef C, Vierkotten J, Tory K, Golzio C, Lacoste T, Besse L, Ozilou C, Moutkine I, Hellman NE, Anselme I, Silbermann F, Vesque C, Gerhardt C, Rattenberry E, Wolf MT, Gubler MC, Martinovic J, Encha‐Razavi F, Boddaert N, Gonzales M, Macher MA, Nivet H, Champion G, Bertheleme JP, Niaudet P, McDonald F, Hildebrandt F, Johnson CA, Vekemans M, Antignac C, Ruther U, Schneider‐Maunoury S, Attie‐Bitach T, Saunier S. The ciliary gene RPGRIP1L is mutated in cerebello‐oculo‐renal syndrome (Joubert syndrome type B) and Meckel syndrome. Nat Genet 39: 875‐881, 2007.
 117. Denker BM, Sabath E. The biology of epithelial cell tight junctions in the kidney. J Am Soc Nephrol 22: 622‐625, 2011.
 118. Derst C, Konrad M, Kockerling A, Karolyi L, Deschenes G, Daut J, Karschin A, Seyberth HW. Mutations in the ROMK gene in antenatal Bartter syndrome are associated with impaired K+ channel function. Biochem Biophys Res Commun 230: 641‐645, 1997.
 119. Devuyst O, Guggino WB. Chloride channels in the kidney: Lessons learned from knockout animals. Am J Physiol Renal Physiol 283: F1176‐F1191, 2002.
 120. DiBona DR, Mills JW. Distribution of Na+‐pump sites in transporting epithelia. Fed Proc 38: 134‐143, 1979.
 121. Dietrich A, Chubanov V, Gudermann T. Renal TRPathies. J Am Soc Nephrol 21: 736‐744, 2010.
 122. Dijkink L, Hartog A, van Os CH, Bindels RJ. The epithelial sodium channel (ENaC) is intracellularly located as a tetramer. Pflugers Arch 444: 549‐555, 2002.
 123. Dinudom A, Fotia AB, Lefkowitz RJ, Young JA, Kumar S, Cook DI. The kinase Grk2 regulates Nedd4/Nedd4‐2‐dependent control of epithelial Na+ channels. Proc Natl Acad Sci U S A 101: 11886‐11890, 2004.
 124. Dorwart MR, Shcheynikov N, Yang D, Muallem S. The solute carrier 26 family of proteins in epithelial ion transport. Physiology 23: 104‐114, 2008.
 125. Doyle DA, Morais CJ, Pfuetzner RA, Kuo A, Gulbis JM, Cohen SL, Chait BT, MacKinnon R. The structure of the potassium channel: Molecular basis of K+ conduction and selectivity. Science 280: 69‐77, 1998.
 126. Du J, Wilson PD. Abnormal polarization of EGF receptors and autocrine stimulation of cyst epithelial growth in human ADPKD. Am J Physiol Cell Physiol 269: C487‐C495, 1995.
 127. DuBose TD Jr, Caflisch CR. Effect of selective aldosterone deficiency on acidification in nephron segments of the rat inner medulla. J Clin Invest 82: 1624‐1632, 1988.
 128. DuBose TD Jr, Codina J, Burges A, Pressley TA. Regulation of H+‐K+‐ATPase expression in kidney. Am J Physiol Renal Physiol 269: F500‐F507, 1995.
 129. Durdagi S, Subbotina J, Lees‐Miller J, Guo J, Duff HJ, Noskov SY. Insights into the molecular mechanism of hERG1 channel activation and blockade by drugs. Curr Med Chem 17: 3514‐3532, 2010.
 130. Eaton DC, Malik B, Bao HF, Yu L, Jain L. Regulation of epithelial sodium channel trafficking by ubiquitination. Proc Am Thorac Soc 7: 54‐64, 2010.
 131. Echevarria M, Windhager EE, Tate SS, Frindt G. Cloning and expression of AQP3, a water channel from the medullary collecting duct of rat kidney. Proc Natl Acad Sci U S A 91: 10997‐11001, 1994.
 132. Eder P, Molkentin JD. TRPC channels as effectors of cardiac hypertrophy. Circ Res 108: 265‐272, 2011.
 133. Edinger RS, Lebowitz J, Li H, Alzamora R, Wang H, Johnson JP, Hallows KR. Functional regulation of the epithelial Na+ channel by IκB kinase‐β occurs via phosphorylation of the ubiquitin ligase Nedd4‐2. J Biol Chem 284: 150‐157, 2009.
 134. El Moghrabi S, Houillier P, Picard N, Sohet F, Wootla B, Bloch‐Faure M, Leviel F, Cheval L, Frische S, Meneton P, Eladari D, Chambrey R. Tissue kallikrein permits early renal adaptation to potassium load. Proc Natl Acad Sci U S A 107: 13526‐13531, 2010.
 135. Eladari D, Chambrey R, Frische S, Vallet M, Edwards A. Pendrin as a regulator of ECF and blood pressure. Curr Opin Nephrol Hypertens 18: 356‐362, 2009.
 136. Embark HM, Bohmer C, Vallon V, Luft F, Lang F. Regulation of KCNE1‐dependent K+ current by the serum and glucocorticoid‐inducible kinase (SGK) isoforms. Pflugers Arch 445: 601‐606, 2003.
 137. Embark HM, Bohmer C, Palmada M, Rajamanickam J, Wyatt AW, Wallisch S, Capasso G, Waldegger P, Seyberth HW, Waldegger S, Lang F. Regulation of CLC‐Ka/barttin by the ubiquitin ligase Nedd4‐2 and the serum‐ and glucocorticoid‐dependent kinases. Kidney Int 66: 1918‐1925, 2004.
 138. Eskandari S, Snyder PM, Kreman M, Zampighi GA, Welsh MJ, Wright EM. Number of subunits comprising the epithelial sodium channel. J Biol Chem 274: 27281‐27286, 1999.
 139. Estevez R, Boettger T, Stein V, Birkenhager R, Otto E, Hildebrandt F, Jentsch TJ. Barttin is a Cl− channel β‐subunit crucial for renal Cl− reabsorption and inner ear K+ secretion. Nature 414: 558‐561, 2001.
 140. Estilo G, Liu W, Pastor‐Soler N, Mitchell P, Carattino MD, Kleyman TR, Satlin LM. Effect of aldosterone on BK channel expression in mammalian cortical collecting duct. Am J Physiol Renal Physiol 295: F780‐F788, 2008.
 141. Fakitsas P, Adam G, Daidie D, van Bemmelen MX, Fouladkou F, Patrignani A, Wagner U, Warth R, Camargo SM, Staub O, Verrey F. Early aldosterone‐induced gene product regulates the epithelial sodium channel by deubiquitylation. J Am Soc Nephrol 18: 1084‐1092, 2007.
 142. Fakler B, Schultz JH, Yang J, Schulte U, Brandle U, Zenner HP, Jan LY, Ruppersberg JP. Identification of a titratable lysine residue that determines sensitivity of kidney potassium channels (ROMK) to intracellular pH. EMBO J 15: 4093‐4099, 1996.
 143. Fang L, Garuti R, Kim BY, Wade JB, Welling PA. The ARH adaptor protein regulates endocytosis of the ROMK potassium secretory channel in mouse kidney. J Clin Invest 119: 3278‐3289, 2009.
 144. Farquhar MG, Palade GE. Junctional complexes in various epithelia. J Cell Biol 17: 375‐412, 1963.
 145. Farquhar MG, Palade GE. Cell junctions in amphibian skin. J Cell Biol 26: 263‐291, 1965.
 146. Fejes‐Toth G, Naray‐Fejes‐Toth A. Differentiation of intercalated cells in culture. Pediatr Nephrol 7: 780‐784, 1993.
 147. Fejes‐Toth G, Frindt G, Naray‐Fejes‐Toth A, Palmer LG. Epithelial Na+ channel activation and processing in mice lacking SGK1. Am J Physiol Renal Physiol 294: F1298‐F1305, 2008.
 148. Fejes‐Toth G, Naray‐Fejes‐Toth A. Isolated principal and intercalated cells: Hormone responsiveness and Na+‐K+‐ATPase activity. Am J Physiol Renal Physiol 256: F742‐F750, 1989.
 149. Fenton RA, Knepper MA. Mouse models and the urinary concentrating mechanism in the new millennium. Physiol Rev 87: 1083‐1112, 2007.
 150. Fenton R. Essential role of vasopressin‐regulated urea transport processes in the mammalian kidney. Pflugers Arch 458: 169‐177, 2009.
 151. Fenton RA, Praetorius J. Molecular physiology of the medullary collecting duct. Comp Physiol 1: 1031‐1056, 2011.
 152. Fernandez‐Fernandez JM, Tomas M, Vazquez E, Orio P, Latorre R, Senti M, Marrugat J, Valverde MA. Gain‐of‐function mutation in the KCNMB1 potassium channel subunit is associated with low prevalence of diastolic hypertension. J Clin Invest 113: 1032‐1039, 2004.
 153. Ferrari P. The role of 11β‐hydroxysteroid dehydrogenase type 2 in human hypertension. Biochim Biophys Acta 1802: 1178‐1187, 2010.
 154. Ferre S, Hoenderop JG, Bindels RJ. Insight into renal Mg2+ transporters. Curr Opin Nephrol Hypertens 20: 169‐176, 2011.
 155. Ferrera L, Caputo A, Galietta LJ. TMEM16A protein: A new identity for Ca2+‐dependent Cl channels. Physiology 25: 357‐363, 2010.
 156. Firsov D, Gautschi I, Merillat AM, Rossier BC, Schild L. The heterotetrameric architecture of the epithelial sodium channel (ENaC). EMBO J 17: 344‐352, 1998.
 157. Fischer M, Janssen AG, Fahlke C. Barttin activates ClC‐K channel function by modulating gating. J Am Soc Nephrol 21: 1281‐1289, 2010.
 158. Flagg TP, Tate M, Merot J, Welling PA. A mutation linked with Bartter's syndrome locks Kir 1.1a (ROMK1) channels in a closed state. J Gen Physiol 114: 685‐700, 1999.
 159. Flagg TP, Yoo D, Sciortino CM, Tate M, Romero MF, Welling PA. Molecular mechanism of a COOH‐terminal gating determinant in the ROMK channel revealed by a Bartter's disease mutation. J Physiol 544: 351‐362, 2002.
 160. Flores SY, Loffing‐Cueni D, Kamynina E, Daidie D, Gerbex C, Chabanel S, Dudler J, Loffing J, Staub O. Aldosterone‐induced serum and glucocorticoid‐induced kinase 1 expression is accompanied by Nedd4‐2 phosphorylation and increased Na+ transport in cortical collecting duct cells. J Am Soc Nephrol 16: 2279‐2287, 2005.
 161. Fodstad H, Gonzalez‐Rodriguez E, Bron S, Gaeggeler H, Guisan B, Rossier BC, Horisberger JD. Effects of mineralocorticoid and K+ concentration on K+ secretion and ROMK channel expression in a mouse cortical collecting duct cell line. Am J Physiol Renal Physiol 296: F966‐F975, 2009.
 162. Forgac M. Vacuolar ATPases: Rotary proton pumps in physiology and pathophysiology. Nat Rev Mol Cell Biol 8: 917‐929, 2007.
 163. Frindt G, Palmer LG. Ca‐activated K channels in apical membrane of mammalian CCT, and their role in K secretion. Am J Physiol Renal Physiol 252: F458‐F467, 1987.
 164. Frindt G, Palmer LG. Apical potassium channels in the rat connecting tubule. Am J Physiol Renal Physiol 287: F1030‐F1037, 2004.
 165. Frindt G, Palmer LG. K+ secretion in the rat kidney: Na+ channel‐dependent and ‐independent mechanisms. Am J Physiol Renal Physiol 297: F389‐F396, 2009.
 166. Frindt G, Houde V, Palmer LG. Conservation of Na+ versus K+ by the rat cortical collecting duct. Am J Physiol Renal Physiol 301: F14‐F20, 2011.
 167. Frindt G, Shah A, Edvinsson J, Palmer LG. Dietary K regulates ROMK channels in connecting tubule and cortical collecting duct of rat kidney. Am J Physiol Renal Physiol 296: F347‐F354, 2009.
 168. Funder JW, Pearce PT, Smith R, Smith AI. Mineralocorticoid action: Target tissue specificity is enzyme, not receptor, mediated. Science 242: 583‐585, 1988.
 169. Furuse M, Hirase T, Itoh M, Nagafuchi A, Yonemura S, Tsukita S, Tsukita S. Occludin: A novel integral membrane protein localizing at tight junctions. J Cell Biol 123: 1777‐1788, 1993.
 170. Fushimi K, Uchida S, Hara Y, Hirata Y, Marumo F, Sasaki S. Cloning and expression of apical membrane water channel of rat kidney collecting tubule. Nature 361: 549‐552, 1993.
 171. Fushimi K, Sasaki S, Marumo F. Phosphorylation of serine 256 is required for cAMP‐dependent regulatory exocytosis of the aquaporin‐2 water channel. J Biol Chem 272: 14800‐14804, 1997.
 172. Garg LC, Narang N. Effects of aldosterone on NEM‐sensitive ATPase in rabbit nephron segments. Kidney Int 34: 13‐17, 1988.
 173. Garty H, Palmer LG. Epithelial sodium channels: Function, structure, and regulation. Physiol Rev 77: 359‐396, 1997.
 174. Geller DS, Farhi A, Pinkerton N, Fradley M, Moritz M, Spitzer A, Meinke G, Tsai FT, Sigler PB, Lifton RP. Activating mineralocorticoid receptor mutation in hypertension exacerbated by pregnancy. Science 289: 119‐123, 2000.
 175. Giamarchi A, Feng S, Rodat‐Despoix L, Xu Y, Bubenshchikova E, Newby LJ, Hao J, Gaudioso C, Crest M, Lupas AN, Honore E, Williamson MP, Obara T, Ong AC, Delmas P. A polycystin‐2 (TRPP2) dimerization domain essential for the function of heteromeric polycystin complexes. EMBO J 29: 1176‐1191, 2010.
 176. Giamarchi A, Padilla F, Coste B, Raoux M, Crest M, Honore E, Delmas P. The versatile nature of the calcium‐permeable cation channel TRPP2. EMBO Rep 7: 787‐793, 2006.
 177. Gkika D, Hsu YJ, van der Kemp AW, Christakos S, Bindels RJ, Hoenderop JG. Critical role of the epithelial Ca2+ channel TRPV5 in active Ca2+ reabsorption as revealed by TRPV5/calbindin‐D28K knockout mice. J Am Soc Nephrol 17: 3020‐3027, 2006.
 178. Glaudemans B, Knoers NV, Hoenderop JG, Bindels RJ. New molecular players facilitating Mg2+ reabsorption in the distal convoluted tubule. Kidney Int 77: 17‐22, 2009.
 179. Gluck SL. Acid sensing in renal epithelial cells. J Clin Invest 114: 1696‐1699, 2004.
 180. Gluck SL, Underhill DM, Iyori M, Holliday LS, Kostrominova TY, Lee BS. Physiology and biochemistry of the kidney vacuolar H+‐ATPase. Annu Rev Physiol 58: 427‐445, 1996.
 181. Glynn IM. A hundred years of sodium pumping. Annu Rev Physiol 64: 1‐18, 2002.
 182. Goel M, Sinkins WG, Zuo CD, Estacion M, Schilling WP. Identification and localization of TRPC channels in the rat kidney. Am J Physiol Renal Physiol 290: F1241‐F1252, 2006.
 183. Goel M, Sinkins WG, Zuo CD, Hopfer U, Schilling WP. Vasopressin‐induced membrane trafficking of TRPC3 and AQP2 channels in cells of the rat renal collecting duct. Am J Physiol Renal Physiol 293: F1476‐F1488, 2007.
 184. Goel M, Zuo CD, Schilling WP. Role of cAMP/PKA signaling cascade in vasopressin‐induced trafficking of TRPC3 channels in principal cells of the collecting duct. Am J Physiol Renal Physiol 298: F988‐F996, 2010.
 185. Goldstein B, Macara IG. The PAR proteins: Fundamental players in animal cell polarization. Dev Cell 13: 609‐622, 2007.
 186. Gomes D, Agasse A, Thiebaud P, Delrot S, Geros H, Chaumont F. Aquaporins are multifunctional water and solute transporters highly divergent in living organisms. Biochim Biophys Acta 1788: 1213‐1228, 2009.
 187. Gonzales EB, Kawate T, Gouaux E. Pore architecture and ion sites in acid‐sensing ion channels and P2X receptors. Nature 460: 599‐604, 2009.
 188. Gonzalez‐Perrett S, Batelli M, Kim K, Essafi M, Timpanaro G, Moltabetti N, Reisin IL, Arnaout MA, Cantiello HF. Voltage dependence and pH regulation of human polycystin‐2‐mediated cation channel activity. J Biol Chem 277: 24959‐24966, 2002.
 189. Gonzalez‐Perrett S, Kim K, Ibarra C, Damiano AE, Zotta E, Batelli M, Harris PC, Reisin IL, Arnaout MA, Cantiello HF. Polycystin‐2, the protein mutated in autosomal dominant polycystic kidney disease (ADPKD), is a Ca2+‐permeable nonselective cation channel. Proc Natl Acad Sci U S A 98: 1182‐1187, 2001.
 190. Gonzalez‐Rodriguez E, Gaeggeler HP, Rossier BC. IGF‐1 vs insulin: Respective roles in modulating sodium transport via the PI‐3 kinase/Sgk1 pathway in a cortical collecting duct cell line. Kidney Int 71: 116‐125, 2007.
 191. Greenlee MM, Lynch IJ, Gumz ML, Cain BD, Wingo CS. Mineralocorticoids stimulate the activity and expression of renal H+,K+‐ATPases. J Am Soc Nephrol 22: 49‐58, 2011.
 192. Grimm PR, Foutz RM, Brenner R, Sansom SC. Identification and localization of BK‐β subunits in the distal nephron of the mouse kidney. Am J Physiol Renal Physiol 293: F350‐F359, 2007.
 193. Grimm PR, Irsik DL, Settles DC, Holtzclaw JD, Sansom SC. Hypertension of Kcnmb1−/− is linked to deficient K secretion and aldosteronism. Proc Natl Acad Sci U S A 106: 11800‐11805, 2009.
 194. Grimm PR, Sansom SC. BK channels in the kidney. Curr Opin Nephrol Hypertens 16: 430‐436, 2007.
 195. Grimm PR, Sansom SC. BK channels and a new form of hypertension. Kidney Int 78: 956‐962, 2010.
 196. Grimm PR, Irsik DL, Liu L, Holtzclaw JD, Sansom SC. Role of BKβ1 in Na+ reabsorption by cortical collecting ducts of Na+‐deprived mice. Am J Physiol Renal Physiol 297: F420‐F428, 2009.
 197. Grunder S, Firsov D, Chang SS, Jaeger NF, Gautschi I, Schild L, Lifton RP, Rossier BC. A mutation causing pseudohypoaldosteronism type 1 identifies a conserved glycine that is involved in the gating of the epithelial sodium channel. EMBO J 16: 899‐907, 1997.
 198. Guggino WB, Stanton BA. New insights into cystic fibrosis: Molecular switches that regulate CFTR. Nat Rev Mol Cell Biol 7: 426‐436, 2006.
 199. Gumz ML, Lynch IJ, Greenlee MM, Cain BD, Wingo CS. The renal H+‐K+‐ATPases: Physiology, regulation, and structure. Am J Physiol Renal Physiol 298: F12‐F21, 2010.
 200. Hallows KR, Mount PF, Pastor‐Soler NM, Power DA. Role of the energy sensor AMP‐activated protein kinase in renal physiology and disease. Am J Physiol Renal Physiol 298: F1067‐F1077, 2010.
 201. Hanaoka K, Qian F, Boletta A, Bhunia AK, Piontek K, Tsiokas L, Sukhatme VP, Guggino WB, Germino GG. Co‐assembly of polycystin‐1 and ‐2 produces unique cation‐permeable currents. Nature 408: 990‐994, 2000.
 202. Hansson JH, Nelson‐Williams C, Suzuki H, Schild L, Shimkets R, Lu Y, Canessa C, Iwasaki T, Rossier B, Lifton RP. Hypertension caused by a truncated epithelial sodium channel γ subunit: Genetic heterogeneity of Liddle syndrome. Nat Genet 11: 76‐82, 1995.
 203. Hansson JH, Schild L, Lu Y, Wilson TA, Gautschi I, Shimkets R, Nelson‐Williams C, Rossier BC, Lifton RP. A de novo missense mutation of the β subunit of the epithelial sodium channel causes hypertension and Liddle syndrome, identifying a proline‐rich segment critical for regulation of channel activity. Proc Natl Acad Sci U S A 92: 11495‐11499, 1995.
 204. Hara‐Chikuma M, Verkman A. Physiological roles of glycerol‐transporting aquaporins: The aquaglyceroporins. Cell Mol Life Sci 63: 1386‐1392, 2006.
 205. Harris PC, Torres VE. Polycystic kidney disease. Annu Rev Med 60: 321‐337, 2009.
 206. He G, Wang HR, Huang SK, Huang CL. Intersectin links WNK kinases to endocytosis of ROMK1. J Clin Invest 117: 1078‐1087, 2007.
 207. Hebert SC. Bartter syndrome. Curr Opin Nephrol Hypertens 12: 527‐532, 2003.
 208. Hebert SC, Desir G, Giebisch G, Wang W. Molecular diversity and regulation of renal potassium channels. Physiol Rev 85: 319‐371, 2005.
 209. Heeringa SF, Moller CC, Du J, Yue L, Hinkes B, Chernin G, Vlangos CN, Hoyer PF, Reiser J, Hildebrandt F. A novel TRPC6 mutation that causes childhood FSGS. PLoS ONE 4: e7771, 2009.
 210. Helman SI, Grantham JJ, Burg MB. Effect of vasopressin on electrical resistance of renal cortical collecting tubules. Am J Physiol 220: 1825‐1832, 1971.
 211. Hibino H, Fujita A, Iwai K, Yamada M, Kurachi Y. Differential assembly of inwardly rectifying K+ channel subunits, Kir4.1 and Kir5.1, in brain astrocytes. J Biol Chem 279: 44065‐44073, 2004.
 212. Hibino H, Inanobe A, Furutani K, Murakami S, Findlay I, Kurachi Y. Inwardly rectifying potassium channels: Their structure, function, and physiological roles. Physiol Rev 90: 291‐366, 2010.
 213. Ho K, Nichols CG, Lederer WJ, Lytton J, Vassilev PM, Kanazirska MV, Hebert SC. Cloning and expression of an inwardly rectifying ATP‐regulated potassium channel. Nature 362: 31‐38, 1993.
 214. Hoenderop JG, Muller D, van der Kemp AW, Hartog A, Suzuki M, Ishibashi K, Imai M, Sweep F, Willems PH, van Os CH, Bindels RJ. Calcitriol controls the epithelial calcium channel in kidney. J Am Soc Nephrol 12: 1342‐1349, 2001.
 215. Hoenderop JG, Nilius B, Bindels RJ. Calcium absorption across epithelia. Physiol Rev 85: 373‐422, 2005.
 216. Hoenderop JG, van Leeuwen JP, van der Eerden BC, Kersten FF, van der Kemp AW, Merillat AM, Waarsing JH, Rossier BC, Vallon V, Hummler E, Bindels RJ. Renal Ca2+ wasting, hyperabsorption, and reduced bone thickness in mice lacking TRPV5. J Clin Invest 112: 1906‐1914, 2003.
 217. Hoenderop JG, Voets T, Hoefs S, Weidema F, Prenen J, Nilius B, Bindels RJ. Homo‐ and heterotetrameric architecture of the epithelial Ca2+ channels TRPV5 and TRPV6. EMBO J 22: 776‐785, 2003.
 218. Holtzclaw JD, Grimm PR, Sansom SC. Intercalated cell BK‐α/β4 channels modulate sodium and potassium handling during potassium adaptation. J Am Soc Nephrol 21: 634‐645, 2010.
 219. Hoorn EJ, Nelson JH, McCormick JA, Ellison DH. The WNK kinase network regulating sodium, potassium, and blood pressure. J Am Soc Nephrol 22: 605‐614, 2011.
 220. Hou J, Renigunta A, Yang J, Waldegger S. Claudin‐4 forms paracellular chloride channel in the kidney and requires claudin‐8 for tight junction localization. Proc Natl Acad Sci U S A 107: 18010‐18015, 2010.
 221. Hou J, Gomes AS, Paul DL, Goodenough DA. Study of claudin function by RNA interference. J Biol Chem 281: 36117‐36123, 2006.
 222. Hou J, Renigunta A, Yang J, Waldegger S. Claudin‐4 forms paracellular chloride channel in the kidney and requires claudin‐8 for tight junction localization. Proc Natl Acad Sci U S A 107: 18010‐18015, 2010.
 223. Hoy WE, Hughson MD, Bertram JF, Douglas‐Denton R, Amann K. Nephron number, hypertension, renal disease, and renal failure. J Am Soc Nephrol 16: 2557‐2564, 2005.
 224. Hu MC, Kuro‐o M, Moe OW. Klotho and kidney disease. J Nephrol 23: S136‐S144, 2010.
 225. Hu MC, Shi M, Zhang J, Quinones H, Griffith C, Kuro‐o M, Moe OW. Klotho deficiency causes vascular calcification in chronic kidney disease. J Am Soc Nephrol 22: 124‐136, 2011.
 226. Huang CL, Kuo E. Mechanisms of disease: WNK‐ing at the mechanism of salt‐sensitive hypertension. Nat Clin Pract Nephrol 3: 623‐630, 2007.
 227. Huang CL. Regulation of ion channels by secreted Klotho: Mechanisms and implications. Kidney Int 77: 855‐860, 2010.
 228. Huang DY, Wulff P, Volkl H, Loffing J, Richter K, Kuhl D, Lang F, Vallon V. Impaired regulation of renal K+ elimination in the sgk1‐knockout mouse. J Am Soc Nephrol 15: 885‐891, 2004.
 229. Huang P, Liu J, Di A, Robinson NC, Musch MW, Kaetzel MA, Nelson DJ. Regulation of human CLC‐3 channels by multifunctional Ca2+/calmodulin‐dependent protein kinase. J Biol Chem 276: 20093‐20100, 2001.
 230. Huber R, Krueger B, Diakov A, Korbmacher J, Haerteis S, Einsiedel J, Gmeiner P, Azad AK, Cuppens H, Cassiman JJ, Korbmacher C, Rauh R. Functional characterization of a partial loss‐of‐function mutation of the epithelial sodium channel (ENaC) associated with atypical cystic fibrosis. Cell Physiol Biochem 25: 145‐158, 2010.
 231. Hughes J, Ward CJ, Peral B, Aspinwall R, Clark K, San Millan JL, Gamble V, Harris PC. The polycystic kidney disease 1 (PKD1) gene encodes a novel protein with multiple cell recognition domains. Nat Genet 10: 151‐160, 1995.
 232. Hughey RP, Bruns JB, Kinlough CL, Harkleroad KL, Tong Q, Carattino MD, Johnson JP, Stockand JD, Kleyman TR. Epithelial sodium channels are activated by furin‐dependent proteolysis. J Biol Chem 279: 18111‐18114, 2004.
 233. Hughey RP, Carattino MD, Kleyman TR. Role of proteolysis in the activation of epithelial sodium channels. Curr Opin Nephrol Hypertens 16: 444‐450, 2007.
 234. Hummler E, Barker P, Gatzy J, Beermann F, Verdumo C, Schmidt A, Boucher R, Rossier BC. Early death due to defective neonatal lung liquid clearance in α‐ENaC‐deficient mice. Nat Genet 12: 325‐328, 1996.
 235. Hummler E, Horisberger JD. Genetic disorders of membrane transport. V. The epithelial sodium channel and its implication in human diseases. Am J Physiol Gastrointest Liver Physiol 276: G567‐G571, 1999.
 236. Hunter M, Lopes AG, Boulpaep EL, Giebisch GH. Single channel recordings of calcium‐activated potassium channels in the apical membrane of rabbit cortical collecting tubules. Proc Natl Acad Sci U S A 81: 4237‐4239, 1984.
 237. Husted RF, Volk KA, Sigmund RD, Stokes JB. Anion secretion by the inner medullary collecting duct. Evidence for involvement of the cystic fibrosis transmembrane conductance regulator. J Clin Invest 95: 644‐650, 1995.
 238. Iden S, Collard JG. Crosstalk between small GTPases and polarity proteins in cell polarization. Nat Rev Mol Cell Biol 9: 846‐859, 2008.
 239. ikhani‐Koupaei R, Fouladkou F, Fustier P, Cenni B, Sharma AM, Deter HC, Frey BM, Frey FJ. Identification of polymorphisms in the human 11beta‐hydroxysteroid dehydrogenase type 2 gene promoter: Functional characterization and relevance for salt sensitivity. FASEB J 21: 3618‐3628, 2007.
 240. Ilatovskaya DV, Pavlov TS, Levchenko V, Negulyaev YA, Staruschenko A. Cortical actin binding protein cortactin mediates ENaC activity via Arp2/3 complex. FASEB J 25: 2688‐2699, 2011.
 241. Imamura H, Nakano M, Noji H, Muneyuki E, Ohkuma S, Yoshida M, Yokoyama K. Evidence for rotation of V1‐ATPase. Proc Natl Acad Sci U S A 100: 2312‐2315, 2003.
 242. Ishibashi K, Sasaki S, Fushimi K, Yamamoto T, Kuwahara M, Marumo F. Immunolocalization and effect of dehydration on AQP3, a basolateral water channel of kidney collecting ducts. Am J Physiol Renal Physiol 272: F235‐F241, 1997.
 243. Ishibashi K, Kondo S, Hara S, Morishita Y. The evolutionary aspects of aquaporin family. Am J Physiol Regul Integr Comp Physiol 300: R566‐R576, 2011.
 244. Ishikawa T, Marunaka Y, Rotin D. Electrophysiological characterization of the rat epithelial Na+ channel (rENaC) expressed in MDCK cells. Effects of Na+ and Ca2+. J Gen Physiol 111: 825‐846, 1998.
 245. Itani OA, Chen JH, Karp PH, Ernst S, Keshavjee S, Parekh K, Klesney‐Tait J, Zabner J, Welsh MJ. Human cystic fibrosis airway epithelia have reduced Cl− conductance but not increased Na+ conductance. Proc Natl Acad Sci U S A 108: 10260‐10265, 2011.
 246. Ito M, Inanobe A, Horio Y, Hibino H, Isomoto S, Ito H, Mori K, Tonosaki A, Tomoike H, Kurachi Y. Immunolocalization of an inwardly rectifying K+ channel, KAB‐2 (Kir4.1), in the basolateral membrane of renal distal tubular epithelia. FEBS Lett 388: 11‐15, 1996.
 247. Janssen AG, Scholl U, Domeyer C, Nothmann D, Leinenweber A, Fahlke C. Disease‐causing dysfunctions of barttin in Bartter syndrome type IV. J Am Soc Nephrol 20: 145‐153, 2009.
 248. Jasti J, Furukawa H, Gonzales EB, Gouaux E. Structure of acid‐sensing ion channel 1 at 1.9 A resolution and low pH. Nature 449: 316‐323, 2007.
 249. Jentsch TJ, Poet M, Fuhrmann JC, Zdebik AA. Physiological functions of CLC Cl− channels gleaned from human genetic disease and mouse models. Annu Rev Physiol 67: 779‐807, 2005.
 250. Jespersen T, Membrez M, Nicolas CS, Pitard B, Staub O, Olesen SP, Baro I, Abriel H. The KCNQ1 potassium channel is down‐regulated by ubiquitylating enzymes of the Nedd4/Nedd4‐like family. Cardiovasc Res 74: 64‐74, 2007.
 251. Ji HL, Chalfant ML, Jovov B, Lockhart JP, Parker SB, Fuller CM, Stanton BA, Benos DJ. The cytosolic termini of the β‐ and γ‐ENaC subunits are involved in the functional interactions between cystic fibrosis transmembrane conductance regulator and epithelial sodium channel. J Biol Chem 275: 27947‐27956, 2000.
 252. Jiang Q, Li J, Dubroff R, Ahn YJ, Foskett JK, Engelhardt J, Kleyman TR. Epithelial sodium channels regulate cystic fibrosis transmembrane conductance regulator chloride channels in Xenopus oocytes. J Biol Chem 275: 13266‐13274, 2000.
 253. Jin Y, Wang Z, Zhang Y, Yang B, Wang WH. PGE2 inhibits apical K channels in the CCD through activation of the MAPK pathway. Am J Physiol Renal Physiol 293: F1299‐F1307, 2007.
 254. Jin Y, Wang Y, Wang ZJ, Lin DH, Wang WH. Inhibition of angiotensin type 1 receptor impairs renal ability of K conservation in response to K restriction. Am J Physiol Renal Physiol 296: F1179‐F1184, 2009.
 255. Jouret F, Devuyst O. CFTR and defective endocytosis: New insights in the renal phenotype of cystic fibrosis. Pflugers Arch 457: 1227‐1236, 2009.
 256. Kabra R, Knight KK, Zhou R, Snyder PM. Nedd4‐2 induces endocytosis and degradation of proteolytically cleaved epithelial Na+ channels. J Biol Chem 283: 6033‐6039, 2008.
 257. Kahle KT, Wilson FH, Leng Q, Lalioti MD, O'Connell AD, Dong K, Rapson AK, MacGregor GG, Giebisch G, Hebert SC, Lifton RP. WNK4 regulates the balance between renal NaCl reabsorption and K+ secretion. Nat Genet 35: 372‐376, 2003.
 258. Kahle KT, MacGregor GG, Wilson FH, Van Hoek AN, Brown D, Ardito T, Kashgarian M, Giebisch G, Hebert SC, Boulpaep EL, Lifton RP. Paracellular Cl− permeability is regulated by WNK4 kinase: Insight into normal physiology and hypertension. Proc Natl Acad Sci U S A 101: 14877‐14882, 2004.
 259. Kaissling B, Kriz W. Morphology of the loop of Henle, distal tubule, and collecting duct. Compr Physiol 2011, Handbook of Physiology, Supplement 25: Renal Physiology. doi:10.1002/cphy.cp080103.
 260. Kamsteeg EJ, Heijnen I, van Os CH, Deen PM. The subcellular localization of an aquaporin‐2 tetramer depends on the stoichiometry of phosphorylated and nonphosphorylated monomers. J Cell Biol 151: 919‐930, 2000.
 261. Karet FE, Finberg KE, Nayir A, Bakkaloglu A, Ozen S, Hulton SA, Sanjad SA, Al‐Sabban EA, Medina JF, Lifton RP. Localization of a gene for autosomal recessive distal renal tubular acidosis with normal hearing (rdRTA2) to 7q33‐34. Am J Hum Genet 65: 1656‐1665, 1999.
 262. Karet FE, Finberg KE, Nelson RD, Nayir A, Mocan H, Sanjad SA, Rodriguez‐Soriano J, Santos F, Cremers CW, Di PA, Hoffbrand BI, Winiarski J, Bakkaloglu A, Ozen S, Dusunsel R, Goodyer P, Hulton SA, Wu DK, Skvorak AB, Morton CC, Cunningham MJ, Jha V, Lifton RP. Mutations in the gene encoding B1 subunit of H+‐ATPase cause renal tubular acidosis with sensorineural deafness. Nat Genet 21: 84‐90, 1999.
 263. Karet FE, Gainza FJ, Gyory AZ, Unwin RJ, Wrong O, Tanner MJ, Nayir A, Alpay H, Santos F, Hulton SA, Bakkaloglu A, Ozen S, Cunningham MJ, Di PA, Walker WG, Lifton RP. Mutations in the chloride‐bicarbonate exchanger gene AE1 cause autosomal dominant but not autosomal recessive distal renal tubular acidosis. Proc Natl Acad Sci U S A 95: 6337‐6342, 1998.
 264. Karpushev A, Pavlov T, Staruschenko A. Regulation of the epithelial sodium channels (ENaC) by small G proteins and phosphatidylinositides. Biol Membrany 26: 265‐279, 2009.
 265. Karpushev AV, Ilatovskaya DV, Staruschenko A. The actin cytoskeleton and small G protein RhoA are not involved in flow‐dependent activation of ENaC. BMC Res Notes 3: 210, 2010.
 266. Karpushev AV, Levchenko V, Pavlov TS, Lam VY, Vinnakota KC, Vandewalle A, Wakatsuki T, Staruschenko A. Regulation of ENaC expression at the cell surface by Rab11. Biochem Biophys Res Commun 377: 521‐525, 2008.
 267. Karpushev AV, Levchenko V, Ilatovskaya DV, Pavlov TS, Staruschenko A. Novel role of Rac1/WAVE signaling mechanism in regulation of the epithelial Na+ channel. Hypertension 57: 996‐1002, 2011.
 268. Kashlan OB, Kleyman TR. ENaC structure and function in the wake of a resolved structure of a family member. Am J Physiol Renal Physiol 301: F684‐F696, 2011.
 269. Katsura T, Gustafson CE, Ausiello DA, Brown D. Protein kinase A phosphorylation is involved in regulated exocytosis of aquaporin‐2 in transfected LLC‐PK1 cells. Am J Physiol Renal Physiol 272: F816‐F822, 1997.
 270. Katsuyama M, Masuyama T, Komura I, Hibino T, Takahashi H. Characterization of a novel polycystic kidney rat model with accompanying polycystic liver. Exp Anim 49: 51‐55, 2000.
 271. Keller G, Zimmer G, Mall G, Ritz E, Amann K. Nephron number in patients with primary hypertension. N Engl J Med 348: 101‐108, 2003.
 272. Kerem B, Rommens JM, Buchanan JA, Markiewicz D, Cox TK, Chakravarti A, Buchwald M, Tsui LC. Identification of the cystic fibrosis gene: Genetic analysis. Science 245: 1073‐1080, 1989.
 273. Kieferle S, Fong P, Bens M, Vandewalle A, Jentsch TJ. Two highly homologous members of the ClC chloride channel family in both rat and human kidney. Proc Natl Acad Sci U S A 91: 6943‐6947, 1994.
 274. Kim J, Kim YH, Cha JH, Tisher CC, Madsen KM. Intercalated cell subtypes in connecting tubule and cortical collecting duct of rat and mouse. J Am Soc Nephrol 10: 1‐12, 1999.
 275. Kim J, Tisher CC, Madsen KM. Differentiation of intercalated cells in developing rat kidney: An immunohistochemical study. Am J Physiol Renal Physiol 266: F977‐F990, 1994.
 276. Kim SW, Gresz V, Rojek A, Wang W, Verkman AS, Frokiaer J, Nielsen S. Decreased expression of AQP2 and AQP4 water channels and Na,K‐ATPase in kidney collecting duct in AQP3 null mice. Biol Cell 97: 765‐778, 2005.
 277. Kim YH, Pech V, Spencer KB, Beierwaltes WH, Everett LA, Green ED, Shin W, Verlander JW, Sutliff RL, Wall SM. Reduced ENaC protein abundance contributes to the lower blood pressure observed in pendrin‐null mice. Am J Physiol Renal Physiol 293: F1314‐F1324, 2007.
 278. Kirk A, Campbell S, Bass P, Mason J, Collins J. Differential expression of claudin tight junction proteins in the human cortical nephron. Nephrol Dial Transplant 25: 2107‐2119, 2010.
 279. Kiselyov K, Patterson RL. The integrative function of TRPC channels. Front Biosci 14: 45‐58, 2009.
 280. Kishore BK, Chou CL, Knepper MA. Extracellular nucleotide receptor inhibits AVP‐stimulated water permeability in inner medullary collecting duct. Am J Physiol Renal Physiol 269: F863‐F869, 1995.
 281. Kitamura K, Tomita K. Regulation of renal sodium handling through the interaction between serine proteases and serine protease inhibitors. Clin Exp Nephrol 14: 405‐410, 2010.
 282. Kiuchi‐Saishin Y, Gotoh S, Furuse M, Takasuga A, Tano Y, Tsukita S. Differential expression patterns of claudins, tight junction membrane proteins, in mouse nephron segments. J Am Soc Nephrol 13: 875‐886, 2002.
 283. Kleyman TR, Carattino MD, Hughey RP. ENaC at the cutting edge: Regulation of epithelial sodium channels by proteases. J Biol Chem 284: 20447‐20451, 2009.
 284. Knepper MA. Proteomics and the kidney. J Am Soc Nephrol 13: 1398‐1408, 2002.
 285. Knepper MA, Packer R, Good DW. Ammonium transport in the kidney. Physiol Rev 69: 179‐249, 1989.
 286. Knepper MA, Star RA. The vasopressin‐regulated urea transporter in renal inner medullary collecting duct. Am J Physiol Renal Physiol 259: F393‐F401, 1990.
 287. Ko SB, Shcheynikov N, Choi JY, Luo X, Ishibashi K, Thomas PJ, Kim JY, Kim KH, Lee MG, Naruse S, Muallem S. A molecular mechanism for aberrant CFTR‐dependent HCO3− transport in cystic fibrosis. EMBO J 21: 5662‐5672, 2002.
 288. Kobayashi K, Uchida S, Mizutani S, Sasaki S, Marumo F. Intrarenal and cellular localization of CLC‐K2 protein in the mouse kidney. J Am Soc Nephrol 12: 1327‐1334, 2001.
 289. Kobayashi K, Uchida S, Okamura HO, Marumo F, Sasaki S. Human CLC‐KB gene promoter drives the EGFP expression in the specific distal nephron segments and inner ear. J Am Soc Nephrol 13: 1992‐1998, 2002.
 290. Kohan DE, Rossi NF, Inscho EW, Pollock DM. Regulation of blood pressure and salt homeostasis by endothelin. Physiol Rev 91: 1‐77, 2011.
 291. Kohda Y, Ding W, Phan E, Housini I, Wang J, Star RA, Huang CL. Localization of the ROMK potassium channel to the apical membrane of distal nephron in rat kidney. Kidney Int 54: 1214‐1223, 1998.
 292. Kondo C, Isomoto S, Matsumoto S, Yamada M, Horio Y, Yamashita S, Takemura‐Kameda K, Matsuzawa Y, Kurachi Y. Cloning and functional expression of a novel isoform of ROMK inwardly rectifying ATP‐dependent K+ channel, ROMK6 (Kir1.1f). FEBS Lett 399: 122‐126, 1996.
 293. Kosari F, Sheng S, Li J, Mak DO, Foskett JK, Kleyman TR. Subunit stoichiometry of the epithelial sodium channel. J Biol Chem 273: 13469‐13474, 1998.
 294. Kotelevtsev Y, Brown RW, Fleming S, Kenyon C, Edwards CR, Seckl JR, Mullins JJ. Hypertension in mice lacking 11β‐hydroxysteroid dehydrogenase type 2. J Clin Invest 103: 683‐689, 1999.
 295. Kottgen M, Buchholz B, Garcia‐Gonzalez MA, Kotsis F, Fu X, Doerken M, Boehlke C, Steffl D, Tauber R, Wegierski T, Nitschke R, Suzuki M, Kramer‐Zucker A, Germino GG, Watnick T, Prenen J, Nilius B, Kuehn EW, Walz G. TRPP2 and TRPV4 form a polymodal sensory channel complex. J Cell Biol 182: 437‐447, 2008.
 296. Koulen P, Cai Y, Geng L, Maeda Y, Nishimura S, Witzgall R, Ehrlich BE, Somlo S. Polycystin‐2 is an intracellular calcium release channel. Nat Cell Biol 4: 191‐197, 2002.
 297. Kovacikova J, Winter C, Loffing‐Cueni D, Loffing J, Finberg KE, Lifton RP, Hummler E, Rossier B, Wagner CA. The connecting tubule is the main site of the furosemide‐induced urinary acidification by the vacuolar H+‐ATPase. Kidney Int 70: 1706‐1716, 2006.
 298. Kramer BK, Bergler T, Stoelcker B, Waldegger S. Mechanisms of disease: The kidney‐specific chloride channels ClCKA and ClCKB, the Barttin subunit, and their clinical relevance. Nat Clin Pract Neph 4: 38‐46, 2008.
 299. Kunau RT Jr., Webb HL, Borman SC. Characteristics of the relationship between the flow rate of tubular fluid and potassium transport in the distal tubule of the rat. J Clin Invest 54: 1488‐1495, 1974.
 300. Kunzelmann K, Schreiber R, Nitschke R, Mall M. Control of epithelial Na+ conductance by the cystic fibrosis transmembrane conductance regulator. Pflugers Arch 440: 193‐201, 2000.
 301. Kuo A, Gulbis JM, Antcliff JF, Rahman T, Lowe ED, Zimmer J, Cuthbertson J, Ashcroft FM, Ezaki T, Doyle DA. Crystal structure of the potassium channel KirBac1.1 in the closed state. Science 300: 1922‐1926, 2003.
 302. Kuro‐o M, Matsumura Y, Aizawa H, Kawaguchi H, Suga T, Utsugi T, Ohyama Y, Kurabayashi M, Kaname T, Kume E, Iwasaki H, Iida A, Shiraki‐Iida T, Nishikawa S, Nagai R, Nabeshima Yi. Mutation of the mouse klotho gene leads to a syndrome resembling ageing. Nature 390: 45‐51, 1997.
 303. Lachheb S, Cluzeaud F, Bens M, Genete M, Hibino H, Lourdel Sp, Kurachi Y, Vandewalle A, Teulon J, Paulais M. Kir4.1/Kir5.1 channel forms the major K+ channel in the basolateral membrane of mouse renal collecting duct principal cells. Am J Physiol Renal Physiol 294: F1398‐F1407, 2008.
 304. Lager DJ, Qian Q, Bengal RJ, Ishibashi M, Torres VE. The pck rat: A new model that resembles human autosomal dominant polycystic kidney and liver disease. Kidney Int 59: 126‐136, 2001.
 305. Lambers TT, Oancea E, de Groot T, Topala CN, Hoenderop JG, Bindels RJ. Extracellular pH dynamically controls cell surface delivery of functional TRPV5 channels. Mol Cell Biol 27: 1486‐1494, 2007.
 306. Lang F, Huang DY, Vallon V. SGK, renal function and hypertension. J Nephrol 23: S124‐S129, 2010.
 307.Le Moellic C, Boulkroun S, Gonzalez‐Nunez D, Dublineau I, Cluzeaud F, Fay M, Blot‐Chabaud M, Farman N. Aldosterone and tight junctions: Modulation of claudin‐4 phosphorylation in renal collecting duct cells. Am J Physiol Cell Physiol 289: C1513‐C1521, 2005.
 308. Leduc‐Nadeau A, Lussier Y, Arthus MF, Lonergan Ml, Martinez‐Aguayo A, Riveira‐Munoz E, Devuyst O, Bissonnette P, Bichet DG. New autosomal recessive mutations in aquaporin‐2 causing nephrogenic diabetes insipidus through deficient targeting display normal expression in Xenopus oocytes. J Physiol 588: 2205‐2218, 2010.
 309. Lee IH, Dinudom A, Sanchez‐Perez A, Kumar S, Cook DI. Akt mediates the effect of insulin on epithelial sodium channels by inhibiting Nedd4‐2. J Biol Chem 282: 29866‐29873, 2007.
 310. Lee US, Cui J. BK channel activation: Structural and functional insights. Trends Neurosci 33: 415‐423, 2010.
 311. Lee WS, Hebert SC. ROMK inwardly rectifying ATP‐sensitive K+ channel. I. Expression in rat distal nephron segments. Am J Physiol Renal Physiol 268: F1124‐F1131, 1995.
 312. Leng Q, MacGregor GG, Dong K, Giebisch G, Hebert SC. Subunit‐subunit interactions are critical for proton sensitivity of ROMK: Evidence in support of an intermolecular gating mechanism. Proc Natl Acad Sci U S A 103: 1982‐1987, 2006.
 313. Letz B, Korbmacher C. cAMP stimulates CFTR‐like Cl− channels and inhibits amiloride‐sensitive Na+ channels in mouse CCD cells. Am J Physiol Cell Physiol 272: C657‐C666, 1997.
 314. Levchenko V, Zheleznova NN, Pavlov TS, Vandewalle A, Wilson PD, Staruschenko A. EGF and its related growth factors mediate sodium transport in mpkCCDc14 cells via ErbB2 (neu/HER‐2) receptor. J Cell Physiol 223: 252‐259, 2010.
 315. Leviel F, Hubner CA, Houillier P, Morla L, El MS, Brideau G, Hatim H, Parker MD, Kurth I, Kougioumtzes A, Sinning A, Pech V, Riemondy KA, Miller RL, Hummler E, Shull GE, Aronson PS, Doucet A, Wall SM, Chambrey R, Eladari D. The Na+‐dependent chloride‐bicarbonate exchanger SLC4A8 mediates an electroneutral Na+ reabsorption process in the renal cortical collecting ducts of mice. J Clin Invest 120: 1627‐1635, 2010.
 316. Li C, Wang W, Rivard CJ, Lanaspa MA, Summer S, Schrier RW. Molecular mechanisms of angiotensin II stimulation on aquaporin‐2 expression and trafficking. Am J Physiol Renal Physiol 300: F1255‐F1261, 2011.
 317. Li D, Wang Z, Sun P, Jin Y, Lin DH, Hebert SC, Giebisch G, Wang WH. Inhibition of MAPK stimulates the Ca2+‐dependent big‐conductance K channels in cortical collecting duct. Proc Natl Acad Sci U S A 103: 19569‐19574, 2006.
 318. Li J, Ananthapanyasut W, Yu AS. Claudins in renal physiology and disease. Pediatr Nephrol 26: 2133‐2142, 2011.
 319. Li L, Schafer JA. Dopamine inhibits vasopressin‐dependent cAMP production in the rat cortical collecting duct. Am J Physiol Renal Physiol 275: F62‐F67, 1998.
 320. Liedtke W, Tobin DM, Bargmann CI, Friedman JM. Mammalian TRPV4 (VR‐OAC) directs behavioral responses to osmotic and mechanical stimuli in Caenorhabditis elegans. Proc Natl Acad Sci U S A 100: 14531‐14536, 2003.
 321. Lifton RP. Genetic determinants of human hypertension. Proc Natl Acad Sci U S A 92: 8545‐8551, 1995.
 322. Lifton RP, Gharavi AG, Geller DS. Molecular mechanisms of human hypertension. Cell 104: 545‐556, 2001.
 323. Lin D, Sterling H, Lerea KM, Giebisch G, Wang WH. Protein kinase C (PKC)‐induced phosphorylation of ROMK1 is essential for the surface expression of ROMK1 channels. J Biol Chem 277: 44278‐44284, 2002.
 324. Lin DH, Yue P, Pan C, Sun P, Wang WH. MicroRNA 802 stimulates ROMK channels by suppressing caveolin‐1. J Am Soc Nephrol 22: 1087‐1098, 2011.
 325. Lin DH, Yue P, Pan CY, Sun P, Zhang X, Han Z, Roos M, Caplan M, Giebisch G, Wang WH. POSH stimulates the ubiquitination and the clathrin‐independent endocytosis of ROMK1 channels. J Biol Chem 284: 29614‐29624, 2009.
 326. Ling BN, Zuckerman JB, Lin C, Harte BJ, McNulty KA, Smith PR, Gomez LM, Worrell RT, Eaton DC, Kleyman TR. Expression of the cystic fibrosis phenotype in a renal amphibian epithelial cell line. J Biol Chem 272: 594‐600, 1997.
 327. Liu L, Duke BJ, Malik B, Yue Q, Eaton DC. Biphasic regulation of ENaC by TGF‐α and EGF in renal epithelial cells. Am J Physiol Renal Physiol 296: F1417‐F1427, 2009.
 328. Liu W, Morimoto T, Woda C, Kleyman TR, Satlin LM. Ca2+ dependence of flow‐stimulated K secretion in the mammalian cortical collecting duct. Am J Physiol Renal Physiol 293: F227‐F235, 2007.
 329. Liu W, Wei Y, Sun P, Wang WH, Kleyman TR, Satlin LM. Mechanoregulation of BK channel activity in the mammalian cortical collecting duct: Role of protein kinases A and C. Am J Physiol Renal Physiol 297: F904‐F915, 2009.
 330. Liu W, Xu S, Woda C, Kim P, Weinbaum S, Satlin LM. Effect of flow and stretch on the [Ca2+]i response of principal and intercalated cells in cortical collecting duct. Am J Physiol Renal Physiol 285: F998‐F1012, 2003.
 331. Liu Z, Wang HR, Huang CL. Regulation of ROMK channel and K+ homeostasis by kidney‐specific WNK1 kinase. J Biol Chem 284: 12198‐12206, 2009.
 332. Lloyd DJ, Hall FW, Tarantino LM, Gekakis N. Diabetes insipidus in mice with a mutation in aquaporin‐2. PLoS Genet 1: e20, 2005.
 333. Loffing J, Kaissling B. Sodium and calcium transport pathways along the mammalian distal nephron: From rabbit to human. Am J Physiol Renal Physiol 284: F628‐F643, 2003.
 334. Loffing J, Korbmacher C. Regulated sodium transport in the renal connecting tubule (CNT) via the epithelial sodium channel (ENaC). Pflugers Arch 458: 111‐135, 2009.
 335. Loffing J, Loffing‐Cueni D, Valderrabano V, Klausli L, Hebert SC, Rossier BC, Hoenderop JG, Bindels RJ, Kaissling B. Distribution of transcellular calcium and sodium transport pathways along mouse distal nephron. Am J Physiol Renal Physiol 281: F1021‐F1027, 2001.
 336. Lolait SJ, O'Carroll AM, McBride OW, Konig M, Morel A, Brownstein MJ. Cloning and characterization of a vasopressin V2 receptor and possible link to nephrogenic diabetes insipidus. Nature 357: 336‐339, 1992.
 337. Long JF, Chiu PJ, Derelanko MJ, Steinberg M. Gastric antisecretory and cytoprotective activities of SCH 28080. J Pharmacol Exp Ther 226: 114‐120, 1983.
 338. Lopes CM, Zhang H, Rohacs T, Jin T, Yang J, Logothetis DE. Alterations in conserved Kir channel‐PIP2 interactions underlie channelopathies. Neuron 34: 933‐944, 2002.
 339. Lourdel S, Paulais M, Cluzeaud F, Bens M, Tanemoto M, Kurachi Y, Vandewalle A, Teulon J. An inward rectifier K+ channel at the basolateral membrane of the mouse distal convoluted tubule: Similarities with Kir4‐Kir5.1 heteromeric channels. J Physiol 538: 391‐404, 2002.
 340. Lu M, Dong K, Egan ME, Giebisch GH, Boulpaep EL, Hebert SC. Mouse cystic fibrosis transmembrane conductance regulator forms cAMP‐PKA‐regulated apical chloride channels in cortical collecting duct. Proc Natl Acad Sci U S A 107: 6082‐6087, 2010.
 341. Lu M, Leng Q, Egan ME, Caplan MJ, Boulpaep EL, Giebisch GH, Hebert SC. CFTR is required for PKA‐regulated ATP sensitivity of Kir1.1 potassium channels in mouse kidney. J Clin Invest 116: 797‐807, 2006.
 342. Lu M, Wang T, Yan Q, Yang X, Dong K, Knepper MA, Wang W, Giebisch G, Shull GE, Hebert SC. Absence of small conductance K+ channel (SK) activity in apical membranes of thick ascending limb and cortical collecting duct in ROMK (Bartter's) knockout mice. J Biol Chem 277: 37881‐37887, 2002.
 343. Lu P, Boros S, Chang Q, Bindels RJ, Hoenderop JG. The beta‐glucuronidase klotho exclusively activates the epithelial Ca2+ channels TRPV5 and TRPV6. Nephrol Dial Transplant 23: 3397‐3402, 2008.
 344. Luo Y, Vassilev PM, Li X, Kawanabe Y, Zhou J. Native polycystin 2 functions as a plasma membrane Ca2+‐permeable cation channel in renal epithelia. Mol Cell Biol 23: 2600‐2607, 2003.
 345. Lutken SC, Kim SW, Jonassen T, Marples D, Knepper MA, Kwon TH, Frøkiaer J, Nielsen S. Changes of renal AQP2, ENaC, and NHE3 in experimentally induced heart failure: Response to angiotensin II AT1 receptor blockade. Am J Physiol Renal Physiol 297: F1678‐F1688, 2009.
 346. Lynch IJ, Rudin A, Xia SL, Stow LR, Shull GE, Weiner ID, Cain BD, Wingo CS. Impaired acid secretion in cortical collecting duct intercalated cells from H‐K‐ATPase‐deficient mice: Role of HKα isoforms. Am J Physiol Renal Physiol 294: F621‐F627, 2008.
 347. Ma HP, Eaton DC. Acute regulation of epithelial sodium channel by anionic phospholipids. J Am Soc Nephrol 16: 3182‐3187, 2005.
 348. Ma HP, Saxena S, Warnock DG. Anionic phospholipids regulate native and expressed epithelial sodium channel (ENaC). J Biol Chem 277: 7641‐7644, 2002.
 349. Ma T, Frigeri A, Hasegawa H, Verkman AS. Cloning of a water channel homolog expressed in brain meningeal cells and kidney collecting duct that functions as a stilbene‐sensitive glycerol transporter. J Biol Chem 269: 21845‐21849, 1994.
 350. MacKnight ADC. Ion and water transport in toad urinary epithelia in vitro. Compr Physiol 2011, Handbook of Physiology, Supplement 25: Renal Physiology. doi: 10.1002/cphy.cp080107.
 351. Madsen KM, Tisher CC. Structural‐functional relationships along the distal nephron. Am J Physiol Renal Physiol 250: F1‐F15, 1986.
 352. Madsen KM, Verlander JW, Tisher CC. Relationship between structure and function in distal tubule and collecting duct. J Electron Microsc Tech 9: 187‐208, 1988.
 353. Malik B, Price SR, Mitch WE, Yue Q, Eaton DC. Regulation of epithelial sodium channels by the ubiquitin‐proteasome proteolytic pathway. Am J Physiol Renal Physiol 290: F1285‐F1294, 2006.
 354. Mall M, Grubb BR, Harkema JR, O'Neal WK, Boucher RC. Increased airway epithelial Na+ absorption produces cystic fibrosis‐like lung disease in mice. Nat Med 10: 487‐493, 2004.
 355. Mamenko M, Zaika O, Jin M, O'Neil RG, Pochynyuk O. Purinergic activation of Ca2+‐permeable TRPV4 channels is essential for mechano‐sensitivity in the aldosterone‐sensitive distal nephron. PLoS ONE 6: e22824, 2011.
 356. Markadieu N, Bindels RJ, Hoenderop JG. The renal connecting tubule: Resolved and unresolved issues in Ca2+ transport. Int J Biochem Cell Biol 43: 1‐4, 2011.
 357. Markadieu N, Crutzen R, Blero D, Erneux C, Beauwens R. Hydrogen peroxide and epidermal growth factor activate phosphatidylinositol 3‐kinase and increase sodium transport in A6 cell monolayers. Am J Physiol Renal Physiol 288: F1201‐F1212, 2005.
 358. Marsy S, Elalouf JM, Doucet A. Quantitative RT‐PCR analysis of mRNAs encoding a colonic putative H,K‐ATPase α subunit along the rat nephron: Effect of K+ depletion. Pflugers Arch 432: 494‐500, 1996.
 359. McCormick JA, Bhalla V, Pao AC, Pearce D. SGK1: A rapid aldosterone‐induced regulator of renal sodium reabsorption. Physiology 20: 134‐139, 2005.
 360. McDill BW, Li SZ, Kovach PA, Ding L, Chen F. Congenital progressive hydronephrosis (cph) is caused by an S256L mutation in aquaporin‐2 that affects its phosphorylation and apical membrane accumulation. Proc Natl Acad Sci U S A 103: 6952‐6957, 2006.
 361. McDonald FJ, Yang B, Hrstka RF, Drummond HA, Tarr DE, McCray PB Jr, Stokes JB, Welsh MJ, Williamson RA. Disruption of the beta subunit of the epithelial Na+ channel in mice: Hyperkalemia and neonatal death associated with a pseudohypoaldosteronism phenotype. Proc Natl Acad Sci U S A 96: 1727‐1731, 1999.
 362. McNicholas CM, Canessa CM. Diversity of channels generated by different combinations of epithelial sodium channel subunits. J Gen Physiol 109: 681‐692, 1997.
 363. McNicholas CM, MacGregor GG, Islas LD, Yang Y, Hebert SC, Giebisch G. pH‐dependent modulation of the cloned renal K+ channel, ROMK. Am J Physiol Renal Physiol 275: F972‐F981, 1998.
 364. Mendoza SA, Fang J, Gutterman DD, Wilcox DA, Bubolz AH, Li R, Suzuki M, Zhang DX. TRPV4‐mediated endothelial Ca2+ influx and vasodilation in response to shear stress. Am J Physiol Heart Circ Physiol 298: H466‐H476, 2010.
 365. Meneton P, Bloch‐Faure M, Hagege AA, Ruetten H, Huang W, Bergaya S, Ceiler D, Gehring D, Martins I, Salmon G, Boulanger CM, Nussberger J, Crozatier B, Gasc JM, Heudes D, Bruneval P, Doetschman T, Menard J, Alhenc‐Gelas F. Cardiovascular abnormalities with normal blood pressure in tissue kallikrein‐deficient mice. Proc Natl Acad Sci U S A 98: 2634‐2639, 2001.
 366. Meneton P, Loffing J, Warnock DG. Sodium and potassium handling by the aldosterone‐sensitive distal nephron: The pivotal role of the distal and connecting tubule. Am J Physiol Renal Physiol 287: F593‐F601, 2004.
 367. Mochizuki T, Wu G, Hayashi T, Xenophontos SL, Veldhuisen B, Saris JJ, Reynolds DM, Cai Y, Gabow PA, Pierides A, Kimberling WJ, Breuning MH, Deltas CC, Peters DJ, Somlo S. PKD2, a gene for polycystic kidney disease that encodes an integral membrane protein. Science 272: 1339‐1342, 1996.
 368. Moe OW. Acute regulation of proximal tubule apical membrane Na/H exchanger NHE‐3: Role of phosphorylation, protein trafficking, and regulatory factors. J Am Soc Nephrol 10: 2412‐2425, 1999.
 369. Moeller HB, Olesen ETB, Fenton RA. Regulation of the water channel aquaporin‐2 by posttranslational modification. Am J Physiol Renal Physiol 300: F1062‐F1073, 2011.
 370. Moeller HB, Praetorius J, Rutzler MR, Fenton RA. Phosphorylation of aquaporin‐2 regulates its endocytosis and protein‐protein interactions. Proc Natl Acad Sci U S A 107: 424‐429, 2010.
 371. Moral Z, Dong K, Wei Y, Sterling H, Deng H, Ali S, Gu R, Huang XY, Hebert SC, Giebisch G, Wang WH. Regulation of ROMK1 channels by protein‐tyrosine kinase and ‐tyrosine phosphatase. J Biol Chem 276: 7156‐7163, 2001.
 372. Morton MJ, Hutchinson K, Mathieson PW, Witherden IR, Saleem MA, Hunter M. Human podocytes possess a stretch‐sensitive, Ca2+‐activated K+ channel: Potential implications for the control of glomerular filtration. J Am Soc Nephrol 15: 2981‐2987, 2004.
 373. Mount D, Romero M. The SLC26 gene family of multifunctional anion exchangers. Pflugers Arch 447: 710‐721, 2004.
 374. Mullins LJ, Bailey MA, Mullins JJ. Hypertension, kidney, and transgenics: A fresh perspective. Physiol Rev 86: 709‐746, 2006.
 375. Murata K, Mitsuoka K, Hirai T, Walz T, Agre P, Heymann JB, Engel A, Fujiyoshi Y. Structural determinants of water permeation through aquaporin‐1. Nature 407: 599‐605, 2000.
 376. Muto S. Potassium transport in the mammalian collecting duct. Physiol Rev 81: 85‐116, 2001.
 377. Muto S, Tsuruoka S, Miyata Y, Fujimura A, Kusano E, Wang W, Seldin D, Giebisch G. Basolateral Na+/H+ exchange maintains potassium secretion during diminished sodium transport in the rabbit cortical collecting duct. Kidney Int 75: 25‐30, 2009.
 378. Muto S, Yasoshima K, Yoshitomi K, Imai M, Asano Y. Electrophysiological identification of α‐ and β‐intercalated cells and their distribution along the rabbit distal nephron segments. J Clin Invest 86: 1829‐1839, 1990.
 379. Nadler SP, Zimpelmann JA, Hebert RL. Endothelin inhibits vasopressin‐stimulated water permeability in rat terminal inner medullary collecting duct. J Clin Invest 90: 1458‐1466, 1992.
 380. Najjar F, Zhou H, Morimoto T, Bruns JB, Li HS, Liu W, Kleyman TR, Satlin LM. Dietary K+ regulates apical membrane expression of maxi‐K channels in rabbit cortical collecting duct. Am J Physiol Renal Physiol 289: F922‐F932, 2005.
 381. Nakamura S, Amlal H, Schultheis PJ, Galla JH, Shull GE, Soleimani M. HCO3− reabsorption in renal collecting duct of NHE‐3‐deficient mouse: A compensatory response. Am J Physiol Renal Physiol 276: F914‐F921, 1999.
 382. Nakamura S, Wang Z, Galla JH, Soleimani M. K+ depletion increases HCO3− reabsorption in OMCD by activation of colonic H+‐K+‐ATPase. Am J Physiol Renal Physiol 274: F687‐F692, 1998.
 383. Nelson WJ. Remodeling epithelial cell organization: Transitions between front‐rear and apical‐basal polarity. Cold Spring Harb Perspect Biol 1: a000513, 2009.
 384. Nelson WJ, Veshnock PJ. Ankyrin binding to (Na++K+)ATPase and implications for the organization of membrane domains in polarized cells. Nature 328: 533‐536, 1987.
 385. Newby LJ, Streets AJ, Zhao Y, Harris PC, Ward CJ, Ong AC. Identification, characterization, and localization of a novel kidney polycystin‐1‐polycystin‐2 complex. J Biol Chem 277: 20763‐20773, 2002.
 386. Nie X, Arrighi I, Kaissling B, Pfaff I, Mann J, Barhanin J, Vallon V. Expression and insights on function of potassium channel TWIK‐1 in mouse kidney. Pflugers Arch 451: 479‐488, 2005.
 387. Nielsen S, Chou CL, Marples D, Christensen EI, Kishore BK, Knepper MA. Vasopressin increases water permeability of kidney collecting duct by inducing translocation of aquaporin‐CD water channels to plasma membrane. Proc Natl Acad Sci U S A 92: 1013‐1017, 1995.
 388. Nielsen S, DiGiovanni SR, Christensen EI, Knepper MA, Harris HW. Cellular and subcellular immunolocalization of vasopressin‐regulated water channel in rat kidney. Proc Natl Acad Sci U S A 90: 11663‐11667, 1993.
 389. Nielsen S, Frokiaer J, Marples D, Kwon TH, Agre P, Knepper MA. Aquaporins in the kidney: From molecules to medicine. Physiol Rev 82: 205‐244, 2002.
 390. Nielsen S, Terris J, Andersen D, Ecelbarger C, Frokier J, Jonassen T, Marples D, Knepper MA, Petersen JS. Congestive heart failure in rats is associated with increased expression and targeting of aquaporin‐2 water channel in collecting duct. Proc Natl Acad Sci U S A 94: 5450‐5455, 1997.
 391. Niisato N, Taruno A, Marunaka Y. Aldosterone‐induced modification of osmoregulated ENaC trafficking. Biochem Biophys Res Commun 361: 162‐168, 2007.
 392. Nijenhuis T, Hoenderop JG, van der Kemp AW, Bindels RJ. Localization and regulation of the epithelial Ca2+ channel TRPV6 in the kidney. J Am Soc Nephrol 14: 2731‐2740, 2003.
 393. Nijenhuis T, Renkema KY, Hoenderop JG, Bindels RJ. Acid‐base status determines the renal expression of Ca2+ and Mg2+ transport proteins. J Am Soc Nephrol 17: 617‐626, 2006.
 394. Nissant A, Paulais M, Lachheb S, Lourdel S, Teulon J. Similar chloride channels in the connecting tubule and cortical collecting duct of the mouse kidney. Am J Physiol Renal Physiol 290: F1421‐F1429, 2006.
 395. Noda Y, Sohara E, Ohta E, Sasaki S. Aquaporins in kidney pathophysiology. Nat Rev Nephrol 6: 168‐178, 2010.
 396. Nusing RM, Pantalone F, Grone HJ, Seyberth HW, Wegmann M. Expression of the potassium channel ROMK in adult and fetal human kidney. Histochem Cell Biol 123: 553‐559, 2005.
 397. O'Neil RG, Sansom SC. Electrophysiological properties of cellular and paracellular conductive pathways of the rabbit cortical collecting duct. J Membr Biol 82: 281‐295, 1984.
 398. Onuchic LF, Furu L, Nagasawa Y, Hou X, Eggermann T, Ren Z, Bergmann C, Senderek J, Esquivel E, Zeltner R, Rudnik‐Schoneborn S, Mrug M, Sweeney W, Avner ED, Zerres K, Guay‐Woodford LM, Somlo S, Germino GG. PKHD1, the polycystic kidney and hepatic disease 1 gene, encodes a novel large protein containing multiple immunoglobulin‐like plexin‐transcription‐factor domains and parallel beta‐helix 1 repeats. Am J Hum Genet 70: 1305‐1317, 2002.
 399. Orias M, Velazquez H, Tung F, Lee G, Desir GV. Cloning and localization of a double‐pore K channel, KCNK1: Exclusive expression in distal nephron segments. Am J Physiol Renal Physiol 273: F663‐F666, 1997.
 400. Pacha J, Frindt G, Sackin H, Palmer LG. Apical maxi K channels in intercalated cells of CCT. Am J Physiol Renal Physiol 261: F696‐F705, 1991.
 401. Palmer LG, Andersen OS. The two‐membrane model of epithelial transport: Koefoed‐Johnsen and Ussing (1958). J Gen Physiol 132: 607‐612, 2008.
 402. Palmer LG, Antonian L, Frindt G. Regulation of apical K and Na channels and Na/K pumps in rat cortical collecting tubule by dietary K. J Gen Physiol 104: 693‐710, 1994.
 403. Palmer LG, Frindt G. Regulation of apical K channels in rat cortical collecting tubule during changes in dietary K intake. Am J Physiol Renal Physiol 277: F805‐F812, 1999.
 404.Palmer LG, Frindt G. Aldosterone and potassium secretion by the cortical collecting duct. Kidney Int 57: 1324‐1328, 2000.
 405.Palmer LG, Frindt G. Cl− channels of the distal nephron. Am J Physiol Renal Physiol 291: F1157‐F1168, 2006.
 406.Palmer LG, Frindt G. High‐conductance K channels in intercalated cells of the rat distal nephron. Am J Physiol Renal Physiol 292: F966‐F973, 2007a.
 407.Palmer LG, Frindt G. Na+ and K+ transport by the renal connecting tubule. Curr Opin Nephrol Hypertens 16: 477‐483, 2007b.
 408. Passero CJ, Hughey RP, Kleyman TR. New role for plasmin in sodium homeostasis. Curr Opin Nephrol Hypertens 19: 13‐19, 2010.
 409. Passero CJ, Mueller GM, Rondon‐Berrios H, Tofovic SP, Hughey RP, Kleyman TR. Plasmin activates epithelial Na+ channels by cleaving the γ subunit. J Biol Chem 283: 36586‐36591, 2008.
 410. Pastor‐Soler N, Beaulieu Vr, Litvin TN, Da Silva N, Chen Y, Brown D, Buck J, Levin LR, Breton S. Bicarbonate‐regulated adenylyl cyclase (sAC) is a sensor that regulates pH‐dependent V‐ATPase recycling. J Biol Chem 278: 49523‐49529, 2003.
 411. Patel V, Chowdhury R, Igarashi P. Advances in the pathogenesis and treatment of polycystic kidney disease. Curr Opin Nephrol Hypertens 18: 99‐106, 2009.
 412. Paulais M, Bloch‐Faure M, Picard N, Jacques T, Ramakrishnan SK, Keck M, Sohet F, Eladari D, Houillier P, Lourdel Sp, Teulon J, Tucker SJ. Renal phenotype in mice lacking the Kir5.1 (Kcnj16) K+ channel subunit contrasts with that observed in SeSAME/EAST syndrome. Proc Natl Acad Sci U S A 108: 10361‐10366, 2011.
 413. Pavlov TS, Chahdi A, Ilatovskaya DV, Levchenko V, Vandewalle A, Pochynyuk O, Sorokin A, Staruschenko A. Endothelin‐1 inhibits the epithelial Na+ channel through βPix/14‐3‐3/Nedd4‐2. J Am Soc Nephrol 21: 833‐843, 2010.
 414. Pavlov TS, Ilatovskaya DV, Levchenko V, Mattson DL, Roman RJ, Staruschenko A. Effects of cytochrome P450 metabolites of arachidonic acid on the epithelial sodium channel (ENaC). Am J Physiol Renal Physiol 301: F672‐F681, 2011.
 415. Pech V, Kim YH, Weinstein AM, Everett LA, Pham TD, Wall SM. Angiotensin II increases chloride absorption in the cortical collecting duct in mice through a pendrin‐dependent mechanism. Am J Physiol Renal Physiol 292: F914‐F920, 2007.
 416. Pech V, Pham TD, Hong S, Weinstein AM, Spencer KB, Duke BJ, Walp E, Kim YH, Sutliff RL, Bao HF, Eaton DC, Wall SM. Pendrin modulates ENaC function by changing luminal HCO3−. J Am Soc Nephrol 21: 1928‐1941, 2010.
 417. Peti‐Peterdi J, Warnock DG, Bell PD. Angiotensin II directly stimulates ENaC activity in the cortical collecting duct via AT1 receptors. J Am Soc Nephrol 13: 1131‐1135, 2002.
 418. Picard N, Eladari D, El MS, Planes C, Bourgeois S, Houillier P, Wang Q, Burnier M, Deschenes G, Knepper MA, Meneton P, Chambrey R. Defective ENaC processing and function in tissue kallikrein‐deficient mice. J Biol Chem 283: 4602‐4611, 2008.
 419. Pieczynski J, Margolis B. Protein complexes that control renal epithelial polarity. Am J Physiol Renal Physiol 300: F589‐F601, 2011.
 420. Pluznick JL, Wei P, Grimm PR, Sansom SC. BK‐β1 subunit: Immunolocalization in the mammalian connecting tubule and its role in the kaliuretic response to volume expansion. Am J Physiol Renal Physiol 288: F846‐F854, 2005.
 421. Pochynyuk O, Bugaj V, Rieg T, Insel PA, Mironova E, Vallon V, Stockand JD. Paracrine regulation of the epithelial Na+ channel in the mammalian collecting duct by purinergic P2Y2 receptor tone. J Biol Chem 283: 36599‐36607, 2008.
 422. Pochynyuk O, Bugaj V, Stockand JD. Physiologic regulation of the epithelial sodium channel by phosphatidylinositides. Curr Opin Nephrol Hypertens 17: 533‐540, 2008.
 423. Pochynyuk O, Bugaj V, Vandewalle A, Stockand JD. Purinergic control of apical plasma membrane PI(4,5)P2 levels sets ENaC activity in principal cells. Am J Physiol Renal Physiol 294: F38‐F46, 2008.
 424. Pochynyuk O, Medina J, Gamper N, Genth H, Stockand JD, Staruschenko A. Rapid translocation and insertion of the epithelial Na+ channel in response to RhoA signaling. J Biol Chem 281: 26520‐26527, 2006.
 425. Pochynyuk O, Staruschenko A, Bugaj V, Lagrange L, Stockand JD. Quantifying RhoA facilitated trafficking of the epithelial Na+ channel toward the plasma membrane with total internal reflection fluorescence‐fluorescence recovery after photobleaching. J Biol Chem 282: 14576‐14585, 2007.
 426. Pochynyuk O, Staruschenko A, Tong Q, Medina J, Stockand JD. Identification of a functional phosphatidylinositol 3,4,5‐trisphosphate binding site in the epithelial Na+ channel. J Biol Chem 280: 37565‐37571, 2005.
 427. Pochynyuk O, Stockand JD, Staruschenko A. Ion channel regulation by Ras, Rho, and Rab small GTPases. Exp Biol Med 232: 1258‐1265, 2007.
 428. Pochynyuk O, Tong Q, Medina J, Vandewalle A, Staruschenko A, Bugaj V, Stockand JD. Molecular determinants of PI(4,5)P2 and PI(3,4,5)P3 regulation of the epithelial Na+ channel. J Gen Physiol 130: 399‐413, 2007.
 429. Pochynyuk O, Tong Q, Staruschenko A, Stockand JD. Binding and direct activation of the epithelial Na+ channel (ENaC) by phosphatidylinositides. J Physiol 580: 365‐372, 2007.
 430. Pradervand S, Zuber MA, Centeno G, Bonny O, Firsov D. A comprehensive analysis of gene expression profiles in distal parts of the mouse renal tubule. Pflugers Arch 460: 925‐952, 2010.
 431. Praetorius HA, Spring KR. A physiological view of the primary cilium. Annu Rev Physiol 67: 515‐529, 2005.
 432. Puelles VG, Hoy WE, Hughson MD, Diouf B, Douglas‐Denton RN, Bertram JF. Glomerular number and size variability and risk for kidney disease. Curr Opin Nephrol Hypertens 20: 7‐15, 2010.
 433. Qin H, Zheng X, Zhong X, Shetty AK, Elias PM, Bollag WB. Aquaporin‐3 in keratinocytes and skin: Its role and interaction with phospholipase D2. Arch Biochem Biophys 508: 138‐143, 2011.
 434. Quamme GA. Molecular identification of ancient and modern mammalian magnesium transporters. Am J Physiol Cell Physiol 298: C407‐C429, 2010.
 435. Raikwar NS, Vandewalle A, Thomas CP. Nedd4‐2 interacts with occludin to inhibit tight junction formation and enhance paracellular conductance in collecting duct epithelia. Am J Physiol Renal Physiol 299: F436‐F444, 2010.
 436. Rajasekaran SA, Barwe SP, Rajasekaran AK. Multiple functions of Na,K‐ATPase in epithelial cells. Semin Nephrol 25: 328‐334, 2005.
 437. Rauh R, Diakov A, Tzschoppe A, Korbmacher J, Azad AK, Cuppens H, Cassiman JJ, Dotsch J, Sticht H, Korbmacher C. A mutation of the epithelial sodium channel associated with atypical cystic fibrosis increases channel open probability and reduces Na+ self inhibition. J Physiol 588: 1211‐1225, 2010.
 438. Reddy MM, Light MJ, Quinton PM. Activation of the epithelial Na+ channel (ENaC) requires CFTR Cl− channel function. Nature 402: 301‐304, 1999.
 439. Reif MC, Troutman SL, Schafer JA. Sustained response to vasopressin in isolated rat cortical collecting tubule. Kidney Int 26: 725‐732, 1984.
 440. Reif MC, Troutman SL, Schafer JA. Sodium transport by rat cortical collecting tubule. Effects of vasopressin and desoxycorticosterone. J Clin Invest 77: 1291‐1298, 1986.
 441. Reilly RF, Ellison DH. Mammalian distal tubule: Physiology, pathophysiology, and molecular anatomy. Physiol Rev 80: 277‐313, 2000.
 442. Reiser J, Polu KR, Moller CC, Kenlan P, Altintas MM, Wei C, Faul C, Herbert S, Villegas I, vila‐Casado C, McGee M, Sugimoto H, Brown D, Kalluri R, Mundel P, Smith PL, Clapham DE, Pollak MR. TRPC6 is a glomerular slit diaphragm‐associated channel required for normal renal function. Nat Genet 37: 739‐744, 2005.
 443. Renard S, Lingueglia E, Voilley N, Lazdunski M, Barbry P. Biochemical analysis of the membrane topology of the amiloride‐sensitive Na+ channel. J Biol Chem 269: 12981‐12986, 1994.
 444. Renkema KY, Lee K, Topala CN, Goossens M, Houillier P, Bindels RJ, Hoenderop JG. TRPV5 gene polymorphisms in renal hypercalciuria. Nephrol Dial Transplant 24: 1919‐1924, 2009.
 445. Renkema KY, Nijenhuis T, van der Eerden BC, van der Kemp AW, Weinans H, van Leeuwen JP, Bindels RJ, Hoenderop JG. Hypervitaminosis D mediates compensatory Ca2+ hyperabsorption in TRPV5 knockout mice. J Am Soc Nephrol 16: 3188‐3195, 2005.
 446. Richards WG, Sweeney WE, Yoder BK, Wilkinson JE, Woychik RP, Avner ED. Epidermal growth factor receptor activity mediates renal cyst formation in polycystic kidney disease. J Clin Invest 101: 935‐939, 1998.
 447. Ridderstrale Y, Kashgarian M, Koeppen B, Giebisch G, Stetson D, Ardito T, Stanton B. Morphological heterogeneity of the rabbit collecting duct. Kidney Int 34: 655‐670, 1988.
 448. Rieg T, Vallon V, Sausbier M, Sausbier U, Kaissling B, Ruth P, Osswald H. The role of the BK channel in potassium homeostasis and flow‐induced renal potassium excretion. Kidney Int 72: 566‐573, 2007.
 449. Riordan JR, Rommens JM, Kerem B, Alon N, Rozmahel R, Grzelczak Z, Zielenski J, Lok S, Plavsic N, Chou JL,. Identification of the cystic fibrosis gene: Cloning and characterization of complementary DNA. Science 245: 1066‐1073, 1989.
 450. Robben JH, Knoers NV, Deen PM. Cell biological aspects of the vasopressin type‐2 receptor and aquaporin 2 water channel in nephrogenic diabetes insipidus. Am J Physiol Renal Physiol 291: F257‐F270, 2006.
 451. Rodan AR, Cheng CJ, Huang CL. Recent advances in distal tubular potassium handling. Am J Physiol Renal Physiol 300: F821‐F827, 2011.
 452. Rohatgi R, Greenberg A, Burrow CR, Wilson PD, Satlin LM. Na transport in autosomal recessive polycystic kidney disease (ARPKD) cyst lining epithelial cells. J Am Soc Nephrol 14: 827‐836, 2003.
 453. Rojek A, Fuchtbauer EM, Kwon TH, Frokier J, Nielsen S. Severe urinary concentrating defect in renal collecting duct‐selective AQP2 conditional‐knockout mice. Proc Natl Acad Sci U S A 103: 6037‐6042, 2006.
 454. Romero M, Fulton C, Boron W. The SLC4 family of HCO3− transporters. Pflugers Arch 447: 495‐509, 2004.
 455. Rommens JM, Iannuzzi MC, Kerem B, Drumm ML, Melmer G, Dean M, Rozmahel R, Cole JL, Kennedy D, Hidaka N, Zsiga M, Buchwald M, RIordan JR, Lap‐Chee T, Collins FS. Identification of the cystic fibrosis gene: Chromosome walking and jumping. Science 245: 1059‐1065, 1989.
 456. Rossier BC. Hormonal regulation of the epithelial sodium channel ENaC: N or Po? J Gen Physiol 120: 67‐70, 2002.
 457. Rossier BC, Pradervand S, Schild L, Hummler E. Epithelial sodium channel and the control of sodium balance: Interaction between genetic and environmental factors. Annu Rev Physiol 64: 877‐897, 2002.
 458. Rotin D, Kumar S. Physiological functions of the HECT family of ubiquitin ligases. Nat Rev Mol Cell Biol 10: 398‐409, 2009.
 459. Rotin D, Schild L. ENaC and its regulatory proteins as drug targets for blood pressure control. Curr Drug Targets 9: 709‐716, 2008.
 460. Rotin D, Staub O. Role of the ubiquitin system in regulating ion transport. Pflugers Arch 461: 1‐21, 2011.
 461. Royaux IE, Wall SM, Karniski LP, Everett LA, Suzuki K, Knepper MA, Green ED. Pendrin, encoded by the Pendred syndrome gene, resides in the apical region of renal intercalated cells and mediates bicarbonate secretion. Proc Natl Acad Sci U S A 98: 4221‐4226, 2001.
 462. Rubera I, Hummler E, Beermann F. Transgenic mice and their impact on kidney research. Pflugers Arch 458: 211‐222, 2009.
 463. Rubera I, Loffing J, Palmer LG, Frindt G, Fowler‐Jaeger N, Sauter D, Carroll T, McMahon A, Hummler E, Rossier BC. Collecting duct‐specific gene inactivation of αENaC in the mouse kidney does not impair sodium and potassium balance. J Clin Invest 112: 554‐565, 2003.
 464. Rungroj N, Devonald MAJ, Cuthbert AW, Reimann F, Akkarapatumwong V, Yenchitsomanus Pt, Bennett WM, Karet FE. A novel missense mutation in AE1 causing autosomal dominant distal renal tubular acidosis retains normal transport function but is mistargeted in polarized epithelial cells. J Biol Chem 279: 13833‐13838, 2004.
 465. Sabolic I, Brown D, Gluck SL, Alper SL. Regulation of AE1 anion exchanger and H+‐ATPase in rat cortex by acute metabolic acidosis and alkalosis. Kidney Int 51: 125‐137, 1997.
 466. Sachs AN, Pisitkun T, Hoffert JD, Yu MJ, Knepper MA. LC‐MS/MS analysis of differential centrifugation fractions from native inner medullary collecting duct of rat. Am J Physiol Renal Physiol 295: F1799‐F1806, 2008.
 467. Sackin H, Nanazashvili M, Li H, Palmer LG, Yang L. Modulation of kir1.1 inactivation by extracellular Ca and Mg. Biophys J 100: 1207‐1215, 2011.
 468. Saitou M, Furuse M, Sasaki H, Schulzke JD, Fromm M, Takano H, Noda T, Tsukita S. Complex phenotype of mice lacking occludin, a component of tight junction strands. Mol Biol Cell 11: 4131‐4142, 2000.
 469. Sanchez‐Perez A, Kumar S, Cook DI. GRK2 interacts with and phosphorylates Nedd4 and Nedd4‐2. Biochem Biophys Res Commun 359: 611‐615, 2007.
 470. Sands JM. Renal urea transporters. Curr Opin Nephrol Hypertens 13: 525‐532, 2004.
 471. Sands JM, Blount MA, Klein JD. Regulation of renal urea transport by vasopressin. Trans Am Clin Climatol Assoc 122: 82‐92, 2010.
 472. Sands JM, Layton HE. The physiology of urinary concentration: An update. Semin Nephrol 29: 178‐195, 2009.
 473. Sansom SC, O'Neil RG. Mineralocorticoid regulation of apical cell membrane Na+ and K+ transport of the cortical collecting duct. Am J Physiol Renal Physiol 248: F858‐F868, 1985.
 474. Saroussi S, Nelson N. The little we know on the structure and machinery of V‐ATPase. J Exp Biol 212: 1604‐1610, 2009.
 475. Satir P, Pedersen LB, Christensen ST. The primary cilium at a glance. J Cell Sci 123: 499‐503, 2010.
 476. Satlin LM, Schwartz GJ. Cellular remodeling of HCO3−‐secreting cells in rabbit renal collecting duct in response to an acidic environment. J Cell Biol 109: 1279‐1288, 1989.
 477. Satlin LM, Sheng S, Woda CB, Kleyman TR. Epithelial Na+ channels are regulated by flow. Am J Physiol Renal Physiol 280: F1010‐F1018, 2001.
 478. Sauer M, Dorge A, Thurau K, Beck FX. Effect of ouabain on electrolyte concentrations in principal and intercalated cells of the isolated perfused cortical collecting duct. Pflugers Arch 413: 651‐655, 1989.
 479. Sausbier M, Arntz C, Bucurenciu I, Zhao H, Zhou XB, Sausbier U, Feil S, Kamm S, Essin K, Sailer CA, Abdullah U, Krippeit‐Drews P, Feil R, Hofmann F, Knaus HG, Kenyon C, Shipston MJ, Storm JF, Neuhuber W, Korth M, Schubert R, Gollasch M, Ruth P. Elevated blood pressure linked to primary hyperaldosteronism and impaired vasodilation in BK channel‐deficient mice. Circulation 112: 60‐68, 2005.
 480. Saxena SK, Horiuchi H, Fukuda M. Rab27a regulates epithelial sodium channel (ENaC) activity through synaptotagmin‐like protein (SLP‐5) and Munc13‐4 effector mechanism. Biochem Biophys Res Commun 344: 651‐657, 2006.
 481. Saxena SK, Kaur S. Regulation of epithelial ion channels by Rab GTPases. Biochem Biophys Res Commun 351: 582‐587, 2006.
 482. Schaedel C, Marthinsen L, Kristoffersson AC, Kornfalt R, Nilsson KO, Orlenius B, Holmberg L. Lung symptoms in pseudohypoaldosteronism type 1 are associated with deficiency of the α‐subunit of the epithelial sodium channel. J Pediatr 135: 739‐745, 1999.
 483. Schaefer M. Homo‐ and heteromeric assembly of TRP channel subunits. Pflugers Arch 451: 35‐42, 2005.
 484. Schafer JA, Troutman SL, Schlatter E. Vasopressin and mineralocorticoid increase apical membrane driving force for K+ secretion in rat CCD. Am J Physiol Renal Physiol 258: F199‐F210, 1990.
 485. Schenk AD, Werten PJL, Scheuring S, de Groot BL, Mnller SA, Stahlberg H, Philippsen A, Engel A. The 4.5 A structure of human AQP2. J Mol Biol 350: 278‐289, 2005.
 486. Schild L. The epithelial sodium channel: From molecule to disease. Rev Physiol Biochem Pharmacol 151: 93‐107, 2004.
 487. Schild L. The epithelial sodium channel and the control of sodium balance. Biochim Biophys Acta 1802: 1159‐1165, 2010.
 488. Schlatter E, Greger R, Schafer JA. Principal cells of cortical collecting ducts of the rat are not a route of transepithelial Cl− transport. Pflugers Arch 417: 317‐323, 1990.
 489. Schlatter E, Haxelmans S, Hirsch J, Leipziger J. pH dependence of K+ conductances of rat cortical collecting duct principal cells. Pflugers Arch 428: 631‐640, 1994.
 490. Schlingmann KP, Konrad M, Jeck N, Waldegger P, Reinalter SC, Holder M, Seyberth HW, Waldegger S. Salt wasting and deafness resulting from mutations in two chloride channels. N Engl J Med 350: 1314‐1319, 2004.
 491. Scholl U, Hebeisen S, Janssen AG, Muller‐Newen G, Alekov A, Fahlke C. Barttin modulates trafficking and function of ClC‐K channels. Proc Natl Acad Sci U S A 103: 11411‐11416, 2006.
 492. Scholl UI, Choi M, Liu T, Ramaekers VT, Hausler MG, Grimmer J, Tobe SW, Farhi A, Nelson‐Williams C, Lifton RP. Seizures, sensorineural deafness, ataxia, mental retardation, and electrolyte imbalance (SeSAME syndrome) caused by mutations in KCNJ10. Proc Natl Acad Sci U S A 106: 5842‐5847, 2009.
 493. Schrier RW. Vasopressin and aquaporin 2 in clinical disorders of water homeostasis. Semin Nephrol 28: 289‐296, 2008.
 494. Schrier RW, Cadnapaphornchai MA. Renal aquaporin water channels: From molecules to human disease. Prog Biophys Mol Biol 81: 117‐131, 2003.
 495. Schroeder BC, Cheng T, Jan YN, Jan LY. Expression cloning of TMEM16A as a calcium‐activated chloride channel subunit. Cell 134: 1019‐1029, 2008.
 496. Schulte U, Hahn H, Konrad M, Jeck N, Derst C, Wild K, Weidemann S, Ruppersberg JP, Fakler B, Ludwig J. pH gating of ROMK (Kir1.1) channels: Control by an Arg‐Lys‐Arg triad disrupted in antenatal Bartter syndrome. Proc Natl Acad Sci U S A 96: 15298‐15303, 1999.
 497. Schwalbe RA, Bianchi L, Accili EA, Brown AM. Functional consequences of ROMK mutants linked to antenatal Bartter's syndrome and implications for treatment. Hum Mol Genet 7: 975‐980, 1998.
 498. Schwartz GJ, Al‐Awqati Q. Regulation of transepithelial H+ transport by exocytosis and endocytosis. Annu Rev Physiol 48: 153‐161, 1986.
 499. Schwartz GJ, Barasch J, Al‐Awqati Q. Plasticity of functional epithelial polarity. Nature 318: 368‐371, 1985.
 500. Shao L, Xu Y, Dong Q, Lang Y, Yue S, Miao Z. A novel SLC4A1 variant in an autosomal dominant distal renal tubular acidosis family with a severe phenotype. Endocrine 37: 473‐478, 2010.
 501. Sheffield VC, Kraiem Z, Beck JC, Nishimura D, Stone EM, Salameh M, Sadeh O, Glaser B. Pendred syndrome maps to chromosome 7q21‐34 and is caused by an intrinsic defect in thyroid iodine organification. Nat Genet 12: 424‐426, 1996.
 502. Sheng S, Carattino MD, Bruns JB, Hughey RP, Kleyman TR. Furin cleavage activates the epithelial Na+ channel by relieving Na+ self‐inhibition. Am J Physiol Renal Physiol 290: F1488‐F1496, 2006.
 503. Sheppard DN, Welsh MJ. Structure and function of the CFTR chloride channel. Physiol Rev 79: S23‐S45, 1999.
 504. Shi PP, Cao XR, Sweezer EM, Kinney TS, Williams NR, Husted RF, Nair R, Weiss RM, Williamson RA, Sigmund CD, Snyder PM, Staub O, Stokes JB, Yang B. Salt‐sensitive hypertension and cardiac hypertrophy in mice deficient in the ubiquitin ligase Nedd4‐2. Am J Physiol Renal Physiol 295: F462‐F470, 2008.
 505. Shi PP, Cao XR, Qu J, Volk KA, Kirby P, Williamson RA, Stokes JB, Yang B. Nephrogenic diabetes insipidus in mice caused by deleting COOH‐terminal tail of aquaporin‐2. Am J Physiol Renal Physiol 292: F1334‐F1344, 2007.
 506. Shibata S, Fujita T. The kidneys and aldosterone/mineralocorticoid receptor system in salt‐sensitive hypertension. Curr Hypertens Rep 13: 109‐115, 2011.
 507. Shimkets RA, Warnock DG, Bositis CM, Nelson‐Williams C, Hansson JH, Schambelan M, Gill JR Jr, Ulick S, Milora RV, Findling JW, Canessa CM, Rossier BC, Lifton RP. Liddle's syndrome: Heritable human hypertension caused by mutations in the β subunit of the epithelial sodium channel. Cell 79: 407‐414, 1994.
 508. Silva GB, Garvin JL. TRPV4 mediates hypotonicity‐induced ATP release by the thick ascending limb. Am J Physiol Renal Physiol 295: F1090‐F1095, 2008.
 509. Silver RB, Choe H, Frindt G. Low‐NaCl diet increases H‐K‐ATPase in intercalated cells from rat cortical collecting duct. Am J Physiol Renal Physiol 275: F94‐F102, 1998.
 510. Silver RB, Frindt G. Functional identification of H‐K‐ATPase in intercalated cells of cortical collecting tubule. Am J Physiol Renal Physiol 264: F259‐F266, 1993.
 511. Silver RB, Soleimani M. H+‐K+‐ATPases: Regulation and role in pathophysiological states. Am J Physiol Renal Physiol 276: F799‐F811, 1999.
 512. Simon DB, Bindra RS, Mansfield TA, Nelson‐Williams C, Mendonca E, Stone R, Schurman S, Nayir A, Alpay H, Bakkaloglu A, Rodriguez‐Soriano J, Morales JM, Sanjad SA, Taylor CM, Pilz D, Brem A, Trachtman H, Griswold W, Richard GA, John E, Lifton RP. Mutations in the chloride channel gene, CLCNKB, cause Bartter's syndrome type III. Nat Genet 17: 171‐178, 1997.
 513. Simon DB, Karet FE, Rodriguez‐Soriano J, Hamdan JH, DiPietro A, Trachtman H, Sanjad SA, Lifton RP. Genetic heterogeneity of Bartter's syndrome revealed by mutations in the K+ channel, ROMK. Nat Genet 14: 152‐156, 1996.
 514. Smith AN, Skaug J, Choate KA, Nayir A, Bakkaloglu A, Ozen S, Hulton SA, Sanjad SA, Al‐Sabban EA, Lifton RP, Scherer SW, Karet FE. Mutations in ATP6N1B, encoding a new kidney vacuolar proton pump 116‐kD subunit, cause recessive distal renal tubular acidosis with preserved hearing. Nat Genet 26: 71‐75, 2000.
 515. Snyder PM. Down‐regulating destruction: Phosphorylation regulates the E3 ubiquitin ligase Nedd4‐2. Sci Signal 2: e41, 2009.
 516. Snyder PM, Cheng C, Prince LS, Rogers JC, Welsh MJ. Electrophysiological and biochemical evidence that DEG/ENaC cation channels are composed of nine subunits. J Biol Chem 273: 681‐684, 1998.
 517. Snyder PM, McDonald FJ, Stokes JB, Welsh MJ. Membrane topology of the amiloride‐sensitive epithelial sodium channel. J Biol Chem 269: 24379‐24383, 1994.
 518. Snyder PM, Olson DR, Kabra R, Zhou R, Steines JC. cAMP and serum and glucocorticoid‐inducible kinase (SGK) regulate the epithelial Na+ channel through convergent phosphorylation of Nedd4‐2. J Biol Chem 279: 45753‐45758, 2004.
 519. Sohara E, Rai T, Yang SS, Uchida K, Nitta K, Horita S, Ohno M, Harada A, Sasaki S, Uchida S. Pathogenesis and treatment of autosomal‐dominant nephrogenic diabetes insipidus caused by an aquaporin 2 mutation. Proc Natl Acad Sci U S A 103: 14217‐14222, 2006.
 520. Soleimani M, Greeley T, Petrovic S, Wang Z, Amlal H, Kopp P, Burnham CE. Pendrin: An apical Cl−/OH−/HCO3− exchanger in the kidney cortex. Am J Physiol Renal Physiol 280: F356‐F364, 2001.
 521. Soleimani M, Xu J. SLC26 chloride/base exchangers in the kidney in health and disease. Semin Nephrol 26: 375‐385, 2006.
 522. Soundararajan R, Melters D, Shih IC, Wang J, Pearce D. Epithelial sodium channel regulated by differential composition of a signaling complex. Proc Natl Acad Sci U S A 106: 7804‐7809, 2009.
 523. Soundararajan R, Pearce D, Hughey RP, Kleyman TR. Role of epithelial sodium channels and their regulators in hypertension. J Biol Chem 285: 30363‐30369, 2010.
 524. Soundararajan R, Wang J, Melters D, Pearce D. Differential activities of glucocorticoid‐induced leucine zipper protein isoforms. J Biol Chem 282: 36303‐36313, 2007.
 525. Soundararajan R, Zhang TT, Wang J, Vandewalle A, Pearce D. A novel role for glucocorticoid‐induced leucine zipper protein in epithelial sodium channel‐mediated sodium transport. J Biol Chem 280: 39970‐39981, 2005.
 526. Stanton BA. Cystic fibrosis transmembrane conductance regulator (CFTR) and renal function. Wien Klin Wochenschr 109: 457‐464, 1997.
 527. Starremans PG, van der Kemp AW, Knoers NV, van den Heuvel LP, Bindels RJ. Functional implications of mutations in the human renal outer medullary potassium channel (ROMK2) identified in Bartter syndrome. Pflugers Arch 443: 466‐472, 2002.
 528. Staruschenko A, Adams E, Booth RE, Stockand JD. Epithelial Na+ channel subunit stoichiometry. Biophys J 88: 3966‐3975, 2005.
 529. Staruschenko A, Medina JL, Patel P, Shapiro MS, Booth RE, Stockand JD. Fluorescence resonance energy transfer analysis of subunit stoichiometry of the epithelial Na+ channel. J Biol Chem 279: 27729‐27734, 2004.
 530. Staruschenko A, Nichols A, Medina JL, Camacho P, Zheleznova NN, Stockand JD. Rho small GTPases activate the epithelial Na+ channel. J Biol Chem 279: 49989‐49994, 2004.
 531. Staruschenko A, Patel P, Tong Q, Medina JL, Stockand JD. Ras activates the epithelial Na+ channel through phosphoinositide 3‐OH kinase signaling. J Biol Chem 279: 37771‐37778, 2004.
 532. Staruschenko A, Pochynyuk O, Vandewalle A, Bugaj V, Stockand JD. Acute regulation of the epithelial Na+ channel by phosphatidylinositide 3‐OH kinase signaling in native collecting duct principal cells. J Am Soc Nephrol 18: 1652‐1661, 2007.
 533. Staruschenko A, Pochynyuk OM, Tong Q, Stockand JD. Ras couples phosphoinositide 3‐OH kinase to the epithelial Na+ channel. Biochim Biophys Acta 1669: 108‐115, 2005.
 534. Staruschenko A, Jeske NA, Akopian AN. Contribution of TRPV1‐TRPA1 Interaction to the Single Channel Properties of the TRPA1 Channel. J Biol Chem 285: 15167‐15177, 2010.
 535. Staub O, Abriel H, Plant P, Ishikawa T, Kanelis V, Saleki R, Horisberger JD, Schild L, Rotin D. Regulation of the epithelial Na+ channel by Nedd4 and ubiquitination. Kidney Int 57: 809‐815, 2000.
 536. Staub O, Dho S, Henry P, Correa J, Ishikawa T, McGlade J, Rotin D. WW domains of Nedd4 bind to the proline‐rich PY motifs in the epithelial Na+ channel deleted in Liddle's syndrome. EMBO J 15: 2371‐2380, 1996.
 537. Staub O, Gautschi I, Ishikawa T, Breitschopf K, Ciechanover A, Schild L, Rotin D. Regulation of stability and function of the epithelial Na+ channel (ENaC) by ubiquitination. EMBO J 16: 6325‐6336, 1997.
 538. Staub O, Verrey F. Impact of Nedd4 proteins and serum and glucocorticoid‐induced kinases on epithelial Na+ transport in the distal nephron. J Am Soc Nephrol 16: 3167‐3174, 2005.
 539. Stewart AP, Haerteis S, Diakov A, Korbmacher C, Edwardson JM. Atomic force microscopy reveals the architecture of the epithelial sodium channel (ENaC). J Biol Chem 286: 31944‐31952, 2011.
 540. Stockand JD. New ideas about aldosterone signaling in epithelia. Am J Physiol Renal Physiol 282: F559‐F576, 2002.
 541. Stockand JD. Vasopressin regulation of renal sodium excretion. Kidney Int 78: 849‐856, 2010.
 542. Stockand JD, Staruschenko A, Pochynyuk O, Booth RE, Silverthorn DU. Insight toward epithelial Na+ channel mechanism revealed by the acid‐sensing ion channel 1 structure. IUBMB Life 60: 620‐628, 2008.
 543. Stokes JB. Potassium secretion by cortical collecting tubule: Relation to sodium absorption, luminal sodium concentration, and transepithelial voltage. Am J Physiol 241: F395‐F402, 1981.
 544. Stover EH, Borthwick KJ, Bavalia C, Eady N, Fritz DM, Rungroj N, Giersch AB, Morton CC, Axon PR, Akil I, Al‐Sabban EA, Baguley DM, Bianca S, Bakkaloglu A, Bircan Z, Chauveau D, Clermont MJ, Guala A, Hulton SA, Kroes H, Li Volti G, Mir S, Mocan H, Nayir A, Ozen S, Rodriguez Soriano J, Sanjad SA, Tasic V, Taylor CM, Topaloglu R, Smith AN, Karet FE. Novel ATP6V1B1 and ATP6V0A4 mutations in autosomal recessive distal renal tubular acidosis with new evidence for hearing loss. J Med Genet 39: 796‐803, 2002.
 545. Strautnieks SS, Thompson RJ, Gardiner RM, Chung E. A novel splice‐site mutation in the γ subunit of the epithelial sodium channel gene in three pseudohypoaldosteronism type 1 families. Nat Genet 13: 248‐250, 1996.
 546. Stutts MJ, Canessa CM, Olsen JC, Hamrick M, Cohn JA, Rossier BC, Boucher RC. CFTR as a cAMP‐dependent regulator of sodium channels. Science 269: 847‐850, 1995.
 547. Stutts MJ, Rossier BC, Boucher RC. Cystic fibrosis transmembrane conductance regulator inverts protein kinase A‐mediated regulation of epithelial sodium channel single channel kinetics. J Biol Chem 272: 14037‐14040, 1997.
 548. Subramanya AR, Yang CL, McCormick JA, Ellison DH. WNK kinases regulate sodium chloride and potassium transport by the aldosterone‐sensitive distal nephron. Kidney Int 70: 630‐634, 2006.
 549. Sun P, Lin DH, Wang T, Babilonia E, Wang Z, Jin Y, Kemp R, Nasjletti A, Wang WH. Low Na intake suppresses expression of CYP2C23 and arachidonic acid‐induced inhibition of ENaC. Am J Physiol Renal Physiol 291: F1192‐F1200, 2006.
 550. Sun P, Lin DH, Yue P, Jiang H, Gotlinger KH, Schwartzman ML, Falck JR, Goli M, Wang WH. High potassium intake enhances the inhibitory effect of 11,12‐EET on ENaC. J Am Soc Nephrol 21: 1667‐1677, 2010.
 551. Sun P, Liu W, Lin DH, Yue P, Kemp R, Satlin LM, Wang WH. Epoxyeicosatrienoic acid activates BK channels in the cortical collecting duct. J Am Soc Nephrol 20: 513‐523, 2009.
 552. Svenningsen P, Bistrup C, Friis UG, Bertog M, Haerteis S, Krueger B, Stubbe J, Jensen ON, Thiesson HC, Uhrenholt TR, Jespersen B, Jensen BL, Korbmacher C, Skott O. Plasmin in nephrotic urine activates the epithelial sodium channel. J Am Soc Nephrol 20: 299‐310, 2009.
 553. Svenningsen P, Friis UG, Bistrup C, Buhl KB, Jensen BL, Skøtt O. Physiological regulation of epithelial sodium channel by proteolysis. Curr Opin Nephrol Hypertens 20: 529‐533, 2011.
 554. Sweeney WE Jr, Avner ED. Functional activity of epidermal growth factor receptors in autosomal recessive polycystic kidney disease. Am J Physiol Renal Physiol 275: F387‐F394, 1998.
 555. Takahashi S, Iwamoto N, Sasaki H, Ohashi M, Oda Y, Tsukita S, Furuse M. The E3 ubiquitin ligase LNX1p80 promotes the removal of claudins from tight junctions in MDCK cells. J Cell Sci 122: 985‐994, 2009.
 556. Takai Y, Sasaki T, Matozaki T. Small GTP‐binding proteins. Physiol Rev 81: 153‐208, 2001.
 557. Takemura Y, Goodson P, Bao HF, Jain L, Helms MN. Rac1‐mediated NADPH oxidase release of O2− regulates epithelial sodium channel activity in the alveolar epithelium. Am J Physiol Lung Cell Mol Physiol 298: L509‐L520, 2010.
 558. Takiar V, Nishio S, Seo‐Mayer P, King JDJr, Li H, Zhang L, Karihaloo A, Hallows KR, Somlo S, Caplan MJ. Activating AMP‐activated protein kinase (AMPK) slows renal cystogenesis. Proc Natl Acad Sci U S A 108: 2462‐2467, 2011.
 559. Tamma G, Robben JH, Trimpert C, Boone M, Deen PM. Regulation of AQP2 localization by S256 and S261 phosphorylation and ubiquitination. Am J Physiol Cell Physiol 300: C636‐C646, 2011.
 560. Tammachote R, Hommerding CJ, Sinders RM, Miller CA, Czarnecki PG, Leightner AC, Salisbury JL, Ward CJ, Torres VE, Gattone VH, Harris PC. Ciliary and centrosomal defects associated with mutation and depletion of the Meckel syndrome genes MKS1 and MKS3. Hum Mol Genet 18: 3311‐3323, 2009.
 561. Tang VW, Goodenough DA. Paracellular ion channel at the tight junction. Biophys J 84: 1660‐1673, 2003.
 562. Taniguchi J, Tsuruoka S, Mizuno A, Sato Ji, Fujimura A, Suzuki M. TRPV4 as a flow sensor in flow‐dependent K+ secretion from the cortical collecting duct. Am J Physiol Renal Physiol 292: F667‐F673, 2007.
 563. Teng‐umnuay P, Verlander JW, Yuan W, Tisher CC, Madsen KM. Identification of distinct subpopulations of intercalated cells in the mouse collecting duct. J Am Soc Nephrol 7: 260‐274, 1996.
 564. Terryn S, Ho A, Beauwens R, Devuyst O. Fluid transport and cystogenesis in autosomal dominant polycystic kidney disease. Biochim Biophys Acta 1812: 1314‐1321, 2011.
 565. The Renal Commission of the International Union of Physiological Sciences (IUPS). A standard nomenclature for structures of the kidney. Am J Physiol Renal Physiol 254: F1‐F8, 1988.
 566. Tian W, Salanova M, Xu H, Lindsley JN, Oyama TT, Anderson S, Bachmann S, Cohen DM. Renal expression of osmotically responsive cation channel TRPV4 is restricted to water‐impermeant nephron segments. Am J Physiol Renal Physiol 287: F17‐F24, 2004.
 567. Tiwari S, Sharma N, Gill PS, Igarashi P, Kahn CR, Wade JB, Ecelbarger CM. Impaired sodium excretion and increased blood pressure in mice with targeted deletion of renal epithelial insulin receptor. Proc Natl Acad Sci U S A 105: 6469‐6474, 2008.
 568. Tobin MD, Tomaszewski M, Braund PS, Hajat C, Raleigh SM, Palmer TM, Caulfield M, Burton PR, Samani NJ. Common variants in genes underlying monogenic hypertension and hypotension and blood pressure in the general population. Hypertension 51: 1658‐1664, 2008.
 569. Togawa H, Nakanishi K, Mukaiyama H, Hama T, Shima Y, Sako M, Miyajima M, Nozu K, Nishii K, Nagao S, Takahashi H, Iijima K, Yoshikawa N. Epithelial‐to‐mesenchymal transition in cyst lining epithelial cells in an orthologous PCK rat model of autosomal‐recessive polycystic kidney disease. Am J Physiol Renal Physiol 300: F511‐F520, 2011.
 570. Tong Q, Booth RE, Worrell RT, Stockand JD. Regulation of Na+ transport by aldosterone: Signaling convergence and cross talk between the PI3‐K and MAPK1/2 cascades. Am J Physiol Renal Physiol 286: F1232‐F1238, 2004.
 571. Torres VE, Harris PC. Mechanisms of Disease: Autosomal dominant and recessive polycystic kidney diseases. Nat Clin Pract Nephrol 2: 40‐55, 2006.
 572. Torres VE, Harris PC. Polycystic kidney disease: Genes, proteins, animal models, disease mechanisms and therapeutic opportunities. J Intern Med 261: 17‐31, 2007.
 573. Torres VE, Harris PC. Autosomal dominant polycystic kidney disease: The last 3 years. Kidney Int 76: 149‐168, 2009.
 574. Torres VE, Harris PC, Pirson Y. Autosomal dominant polycystic kidney disease. Lancet 369: 1287‐1301, 2007.
 575. Tsiokas L. Function and regulation of TRPP2 at the plasma membrane. Am J Physiol Renal Physiol 297: F1‐F9, 2009.
 576. Tsiokas L, Arnould T, Zhu C, Kim E, Walz G, Sukhatme VP. Specific association of the gene product of PKD2 with the TRPC1 channel. Proc Natl Acad Sci U S A 96: 3934‐3939, 1999.
 577. Tsukita S, Furuse M, Itoh M. Multifunctional strands in tight junctions. Nat Rev Mol Cell Biol 2: 285‐293, 2001.
 578. Tucker SJ, Imbrici P, Salvatore L, D'Adamo MC, Pessia M. pH Dependence of the inwardly rectifying potassium channel, Kir5.1, and localization in renal tubular epithelia. J Biol Chem 275: 16404‐16407, 2000.
 579. Uchida S, Sasaki S. Function of chloride channels in the kidney. Annu Rev Physiol 67: 759‐778, 2004.
 580. Uchida S, Sasaki S, Nitta K, Uchida K, Horita S, Nihei H, Marumo F. Localization and functional characterization of rat kidney‐specific chloride channel, ClC‐K1. J Clin Invest 95: 104‐113, 1995.
 581. Vachugova DV, Morachevskaia EA. Mechanosensitivity of cationic channels of DEG/ENaC family. Tsitologiia 51: 806‐814, 2009.
 582. Vallet M, Picard N, Loffing‐Cueni D, Fysekidis M, Bloch‐Faure M, Deschenes G, Breton S, Meneton P, Loffing J, Aronson PS, Chambrey R, Eladari D. Pendrin regulation in mouse kidney primarily is chloride‐dependent. J Am Soc Nephrol 17: 2153‐2163, 2006.
 583. Vallet V, Chraibi A, Gaeggeler HP, Horisberger JD, Rossier BC. An epithelial serine protease activates the amiloride‐sensitive sodium channel. Nature 389: 607‐610, 1997.
 584. Vallet V, Pfister C, Loffing J, Rossier BC. Cell‐surface expression of the channel activating protease xCAP‐1 is required for activation of ENaC in the Xenopus oocyte. J Am Soc Nephrol 13: 588‐594, 2002.
 585. Vallon V, Wulff P, Huang DY, Loffing J, Volkl H, Kuhl D, Lang F. Role of Sgk1 in salt and potassium homeostasis. Am J Physiol Regul Integr Comp Physiol 288: R4‐R10, 2005.
 586. van Balkom BW, Savelkoul PJ, Markovich D, Hofman E, Nielsen S, van der Sluijs P, Deen PM. The role of putative phosphorylation sites in the targeting and shuttling of the aquaporin‐2 water channel. J Biol Chem 277: 41473‐41479, 2002.
 587. van de Graaf SF, Chang Q, Mensenkamp AR, Hoenderop JG, Bindels RJ. Direct interaction with Rab11a targets the epithelial Ca2+ channels TRPV5 and TRPV6 to the plasma membrane. Mol Cell Biol 26: 303‐312, 2006.
 588. van de Graaf SF, Hoenderop JG, Bindels RJ. Regulation of TRPV5 and TRPV6 by associated proteins. Am J Physiol Renal Physiol 290: F1295‐F1302, 2006.
 589. Van Itallie CM, Anderson JM. The molecular physiology of tight junction pores. Physiology 19: 331‐338, 2004.
 590. Van Itallie CM, Anderson JM. Claudins and epithelial paracellular transport. Annu Rev Physiol 68: 403‐429, 2006.
 591. Vandewalle A. Expression and function of CLC and cystic fibrosis transmembrane conductance regulator chloride channels in renal epithelial tubule cells: Pathophysiological implications. Chang Gung Med J 30: 17‐25, 2007.
 592. Vandorpe D, Kizer N, Ciampollilo F, Moyer B, Karlson K, Guggino WB, Stanton BA. CFTR mediates electrogenic chloride secretion in mouse inner medullary collecting duct (mIMCD‐K2) cells. Am J Physiol Cell Physiol 269: C683‐C689, 1995.
 593. Vassilev PM, Guo L, Chen XZ, Segal Y, Peng JB, Basora N, Babakhanlou H, Cruger G, Kanazirska M, Ye C, Brown EM, Hediger MA, Zhou J. Polycystin‐2 is a novel cation channel implicated in defective intracellular Ca2+ homeostasis in polycystic kidney disease. Biochem Biophys Res Commun 282: 341‐350, 2001.
 594. Veizis EI, Carlin CR, Cotton CU. Decreased amiloride‐sensitive Na+ absorption in collecting duct principal cells isolated from BPK ARPKD mice. Am J Physiol Renal Physiol 286: F244‐F254, 2004.
 595. Vennekens R, Prenen J, Hoenderop JG, Bindels RJ, Droogmans G, Nilius B. Modulation of the epithelial Ca2+ channel ECaC by extracellular pH. Pflugers Arch 442: 237‐242, 2001.
 596. Verkman AS, Galietta LJ. Chloride channels as drug targets. Nat Rev Drug Discov 8: 153‐171, 2009.
 597. Verlander JW, Hassell KA, Royaux IE, Glapion DM, Wang ME, Everett LA, Green ED, Wall SM. Deoxycorticosterone upregulates PDS (Slc26a4) in mouse kidney: Role of pendrin in mineralocorticoid‐induced hypertension. Hypertension 42: 356‐362, 2003.
 598. Verrey F, Fakitsas P, Adam G, Staub O. Early transcriptional control of ENaC (de)ubiquitylation by aldosterone. Kidney Int 73: 691‐696, 2008.
 599. Vuagniaux G, Vallet V, Jaeger NF, Pfister C, Bens M, Farman N, Courtois‐Coutry N, Vandewalle A, Rossier BC, Hummler E. Activation of the amiloride‐sensitive epithelial sodium channel by the serine protease mCAP1 expressed in a mouse cortical collecting duct cell line. J Am Soc Nephrol 11: 828‐834, 2000.
 600. Wade JB, Fang L, Coleman RA, Liu J, Grimm PR, Wang T, Welling PA. Differential regulation of ROMK (Kir1.1) in distal nephron segments by dietary potassium. Am J Physiol Renal Physiol 300: F1385‐F1393, 2011.
 601. Wade JB, Fang L, Liu J, Li D, Yang CL, Subramanya AR, Maouyo D, Mason A, Ellison DH, Welling PA. WNK1 kinase isoform switch regulates renal potassium excretion. Proc Natl Acad Sci U S A 103: 8558‐8563, 2006.
 602. Wade JB, Stanton BA, Brown D. Structural correlates of transport in distal tubule and collecting duct segments. Comp Physiol 2011, Supplement 25: Handbook of Physiology, Renal Physiology. doi:10.1002/cphy.cp080104.
 603. Wagner CA, Devuyst O, Bourgeois S, Mohebbi N. Regulated acid‐base transport in the collecting duct. Pflugers Arch 458: 137‐156, 2009.
 604. Wagner CA, Finberg KE, Breton S, Marshansky V, Brown D, Geibel JP. Renal vacuolar H+‐ATPase. Physiol Rev 84: 1263‐1314, 2004.
 605. Wagner CA, Loffing‐Cueni D, Yan Q, Schulz N, Fakitsas P, Carrel M, Wang T, Verrey F, Geibel JP, Giebisch G, Hebert SC, Loffing J. Mouse model of type II Bartter's syndrome. II. Altered expression of renal sodium‐ and water‐transporting proteins. Am J Physiol Renal Physiol 294: F1373‐F1380, 2008.
 606. Waldmann R, Champigny G, Bassilana F, Voilley N, Lazdunski M. Molecular cloning and functional expression of a novel amiloride‐sensitive Na+ channel. J Biol Chem 270: 27411‐27414, 1995.
 607. Wall SM. Recent advances in our understanding of intercalated cells. Curr Opin Nephrol Hypertens 14: 480‐484, 2005.
 608. Wall SM, Hassell KA, Royaux IE, Green ED, Chang JY, Shipley GL, Verlander JW. Localization of pendrin in mouse kidney. Am J Physiol Renal Physiol 284: F229‐F241, 2003.
 609. Wall SM, Kim YH, Stanley L, Glapion DM, Everett LA, Green ED, Verlander JW. NaCl restriction upregulates renal Slc26a4 through subcellular redistribution: Role in Cl− conservation. Hypertension 44: 982‐987, 2004.
 610. Wall SM, Pech V. The interaction of pendrin and the epithelial sodium channel in blood pressure regulation. Curr Opin Nephrol Hypertens 17: 18‐24, 2008.
 611. Wallace DP. Cyclic AMP‐mediated cyst expansion. Biochim Biophys Acta 1812: 1291‐1300, 2011.
 612. Wang W. Regulation of renal K transport by dietary K intake. Annu Rev Physiol 66: 547‐569, 2004.
 613. Wang W, Hebert SC, Giebisch G. Renal K+ channels: Structure and function. Annu Rev Physiol 59: 413‐436, 1997.
 614.Wang W, Henderson RM, Geibel J, White S, Giebisch G. Mechanism of aldosterone‐induced increase of K+ conductance in early distal renal tubule cells of the frog. J Membr Biol 111: 277‐289, 1989.
 615.Wang WH, Giebisch G. Regulation of potassium (K) handling in the renal collecting duct. Pflugers Arch 458: 157‐168, 2009.
 616.Wang WH, Schwab A, Giebisch G. Regulation of small‐conductance K+ channel in apical membrane of rat cortical collecting tubule. Am J Physiol Renal Physiol 259: F494‐F502, 1990.
 617.Wang WH, Yue P, Sun P, Lin DH. Regulation and function of potassium channels in aldosterone‐sensitive distal nephron. Curr Opin Nephrol Hypertens 19: 463‐470, 2010.
 618. Wang X, Armando I, Upadhyay K, Pascua A, Jose PA. The regulation of proximal tubular salt transport in hypertension: An update. Curr Opin Nephrol Hypertens 18: 412‐420, 2009.
 619. Wang Y, Klein JD, Liedtke CM, Sands JM. Protein kinase C regulates urea permeability in the rat inner medullary collecting duct. Am J Physiol Renal Physiol 299: F1401‐F1406, 2010.
 620. Wang ZJ, Sun P, Xing W, Pan C, Lin DH, Wang WH. Decrease in dietary K intake stimulates the generation of superoxide anions in the kidney and inhibits K secretory channels in the CCD. Am J Physiol Renal Physiol 298: F1515‐F1522, 2010.
 621. Warnock DG, Rossier BC. Renal sodium handling: The role of the epithelial sodium channel. J Am Soc Nephrol 16: 3151‐3153, 2005.
 622. Watanabe H, Murakami M, Ohba T, Ono K, Ito H. The pathological role of transient receptor potential channels in heart disease. Circ J 73: 419‐427, 2009.
 623. Wei Y, Bloom P, Gu R, Wang W. Protein‐tyrosine phosphatase reduces the number of apical small conductance K+ channels in the rat cortical collecting duct. J Biol Chem 275: 20502‐20507, 2000.
 624. Wei Y, Bloom P, Lin D, Gu R, Wang WH. Effect of dietary K intake on apical small‐conductance K channel in CCD: Role of protein tyrosine kinase. Am J Physiol Renal Physiol 281: F206‐F212, 2001.
 625. Wei Y, Lin DH, Kemp R, Yaddanapudi GS, Nasjletti A, Falck JR, Wang WH. Arachidonic acid inhibits epithelial Na channel via cytochrome P450 (CYP) epoxygenase‐dependent metabolic pathways. J Gen Physiol 124: 719‐727, 2004.
 626. Wei Y, Sun P, Wang Z, Yang B, Carroll MA, Wang WH. Adenosine inhibits ENaC via cytochrome P‐450 epoxygenase‐dependent metabolites of arachidonic acid. Am J Physiol Renal Physiol 290: F1163‐F1168, 2006.
 627. Wei Y, Wang Z, Babilonia E, Sterling H, Sun P, Wang W. Effect of hydrogen peroxide on ROMK channels in the cortical collecting duct. Am J Physiol Renal Physiol 292: F1151‐F1156, 2007.
 628. Wei Y, Zavilowitz B, Satlin LM, Wang WH. Angiotensin II inhibits the ROMK‐like small conductance K channel in renal cortical collecting duct during dietary potassium restriction. J Biol Chem 282: 6455‐6462, 2007.
 629. Weinbaum S, Duan Y, Satlin LM, Wang T, Weinstein AM. Mechanotransduction in the renal tubule. Am J Physiol Renal Physiol 299: F1220‐F1236, 2010.
 630. Weinstein AM. A mathematical model of rat distal convoluted tubule. II. Potassium secretion along the connecting segment. Am J Physiol Renal Physiol 289: F721‐F741, 2005.
 631. Welling PA, Chang YP, Delpire E, Wade JB. Multigene kinase network, kidney transport, and salt in essential hypertension. Kidney Int 77: 1063‐1069, 2010.
 632. Welling PA, Ho K. A comprehensive guide to the ROMK potassium channel: Form and function in health and disease. Am J Physiol Renal Physiol 297: F849‐F863, 2009.
 633. Welling PA, Weisz OA. Sorting it out in endosomes: An emerging concept in renal epithelial cell transport regulation. Physiology 25: 280‐292, 2010.
 634. Wesch D, Miranda P, Afonso‐Oramas D, Althaus M, Castro‐Hernandez J, Dominguez J, Morty RE, Clauss W, Gonzalez‐Hernandez T, Alvarez de la Rosa D, Giraldez T. The neuronal‐specific SGK1.1 kinase regulates δ‐epithelial Na+ channel independently of PY motifs and couples it to phospholipase C signaling. Am J Physiol Cell Physiol 299: C779‐C790, 2010.
 635. Wieczorek H, Beyenbach KW, Huss M, Vitavska O. Vacuolar‐type proton pumps in insect epithelia. J Exp Biol 212: 1611‐1619, 2009.
 636. Wiemuth D, Ke Y, Rohlfs M, McDonald FJ. Epithelial sodium channel (ENaC) is multi‐ubiquitinated at the cell surface. Biochem J 405: 147‐155, 2007.
 637. Wilson FH, Disse‐Nicodeme S, Choate KA, Ishikawa K, Nelson‐Williams C, Desitter I, Gunel M, Milford DV, Lipkin GW, Achard JM, Feely MP, Dussol B, Berland Y, Unwin RJ, Mayan H, Simon DB, Farfel Z, Jeunemaitre X, Lifton RP. Human hypertension caused by mutations in WNK kinases. Science 293: 1107‐1112, 2001.
 638. Wilson PD. Polycystic kidney disease. N Engl J Med 350: 151‐164, 2004.
 639. Wilson PD. Apico‐basal polarity in polycystic kidney disease epithelia. Biochim Biophys Acta 1812: 1239‐1248, 2011.
 640. Wilson PD, Goilav B. Cystic disease of the kidney. Annu Rev Pathol 2: 341‐368, 2007.
 641. Wilson PD, Devuyst O, Li X, Gatti L, Falkenstein D, Robinson S, Fambrough D, Burrow CR. Apical plasma membrane mispolarization of NaK‐ATPase in polycystic kidney disease epithelia is associated with aberrant expression of the β2 Isoform. Am J Pathol 156: 253‐268, 2000.
 642. Wilson PD, Sherwood AC, Palla K, Du J, Watson R, Norman JT. Reversed polarity of Na+‐K+‐ATPase: Mislocation to apical plasma membranes in polycystic kidney disease epithelia. Am J Physiol Renal Physiol 260: F420‐F430, 1991.
 643. Wingo CS, Seldin DW, Kokko JP, Jacobson HR. Dietary modulation of active potassium secretion in the cortical collecting tubule of adrenalectomized rabbits. J Clin Invest 70: 579‐586, 1982.
 644. Winn MP, Conlon PJ, Lynn KL, Farrington MK, Creazzo T, Hawkins AF, Daskalakis N, Kwan SY, Ebersviller S, Burchette JL, Pericak‐Vance MA, Howell DN, Vance JM, Rosenberg PB. A mutation in the TRPC6 cation channel causes familial focal segmental glomerulosclerosis. Science 308: 1801‐1804, 2005.
 645. Winter C, Schulz N, Giebisch G, Geibel JP, Wagner CA. Nongenomic stimulation of vacuolar H+‐ATPases in intercalated renal tubule cells by aldosterone. Proc Natl Acad Sci U S A 101: 2636‐2641, 2004.
 646. Woda CB, Bragin A, Kleyman TR, Satlin LM. Flow‐dependent K+ secretion in the cortical collecting duct is mediated by a maxi‐K channel. Am J Physiol Renal Physiol 280: F786‐F793, 2001.
 647. Woudenberg‐Vrenken TE, Bindels RJ, Hoenderop JG. The role of transient receptor potential channels in kidney disease. Nat Rev Nephrol 5: 441‐449, 2009.
 648. Wu L, Gao X, Brown RC, Heller S, O'Neil RG. Dual role of the TRPV4 channel as a sensor of flow and osmolality in renal epithelial cells. Am J Physiol Renal Physiol 293: F1699‐F1713, 2007.
 649. Wu LJ, Sweet TB, Clapham DE. International Union of Basic and Clinical Pharmacology. LXXVI. Current progress in the mammalian TRP ion channel family. Pharmacol Rev 62: 381‐404, 2010.
 650. Wyckoff JA, Seely EW, Hurwitz S, Anderson BF, Lifton RP, Dluhy RG. Glucocorticoid‐remediable aldosteronism and pregnancy. Hypertension 35: 668‐672, 2000.
 651. Xie L, Hoffert JD, Chou CL, Yu MJ, Pisitkun T, Knepper MA, Fenton RA. Quantitative analysis of aquaporin‐2 phosphorylation. Am J Physiol Renal Physiol 298: F1018‐F1023, 2010.
 652. Xu B, English JM, Wilsbacher JL, Stippec S, Goldsmith EJ, Cobb MH. WNK1, a novel mammalian serine/threonine protein kinase lacking the catalytic lysine in subdomain II. J Biol Chem 275: 16795‐16801, 2000.
 653. Xu BE, Stippec S, Chu PY, Lazrak A, Li XJ, Lee BH, English JM, Ortega B, Huang CL, Cobb MH. WNK1 activates SGK1 to regulate the epithelial sodium channel. Proc Natl Acad Sci U S A 102: 10315‐10320, 2005.
 654. Xu DL, Martin PY, Ohara M, St John J, Pattison T, Meng X, Morris K, Kim JK, Schrier RW. Upregulation of aquaporin‐2 water channel expression in chronic heart failure rat. J Clin Invest 99: 1500‐1505, 1997.
 655. Xu JZ, Hall AE, Peterson LN, Bienkowski MJ, Eessalu TE, Hebert SC. Localization of the ROMK protein on apical membranes of rat kidney nephron segments. Am J Physiol Renal Physiol 273: F739‐F748, 1997.
 656. Xu ZC, Yang Y, Hebert SC. Phosphorylation of the ATP‐sensitive, inwardly rectifying K+ channel, ROMK, by cyclic AMP‐dependent protein kinase. J Biol Chem 271: 9313‐9319, 1996.
 657. Yamauchi K, Rai T, Kobayashi K, Sohara E, Suzuki T, Itoh T, Suda S, Hayama A, Sasaki S, Uchida S. Disease‐causing mutant WNK4 increases paracellular chloride permeability and phosphorylates claudins. Proc Natl Acad Sci U S A 101: 4690‐4694, 2004.
 658. Yamauchi K, Yang SS, Ohta A, Sohara E, Rai T, Sasaki S, Uchida S. Apical localization of renal K channel was not altered in mutant WNK4 transgenic mice. Biochem Biophys Res Commun 332: 750‐755, 2005.
 659. Yang B, Gillespie A, Carlson EJ, Epstein CJ, Verkman AS. Neonatal mortality in an aquaporin‐2 knock‐in mouse model of recessive nephrogenic diabetes insipidus. J Biol Chem 276: 2775‐2779, 2001.
 660. Yang B, Sonawane ND, Zhao D, Somlo S, Verkman AS. Small‐molecule CFTR inhibitors slow cyst growth in polycystic kidney disease. J Am Soc Nephrol 19: 1300‐1310, 2008.
 661. Yang B, Verkman AS. Water and glycerol permeabilities of aquaporins 1‐5 and MIP determined quantitatively by expression of epitope‐tagged constructs in Xenopus oocytes. J Biol Chem 272: 16140‐16146, 1997.
 662. Yang B, Zhao D, Verkman AS. Hsp90 inhibitor partially corrects nephrogenic diabetes insipidus in a conditional knock‐in mouse model of aquaporin‐2 mutation. FASEB J 23: 503‐512, 2009.
 663. Yang J, Jan YN, Jan LY. Determination of the subunit stoichiometry of an inwardly rectifying potassium channel. Neuron 15: 1441‐1447, 1995.
 664. Yang L, Frindt G, Palmer LG. Magnesium modulates ROMK channel‐mediated potassium secretion. J Am Soc Nephrol 21: 2109‐2116, 2010.
 665. Yang SS, Hsu YJ, Chiga M, Rai T, Sasaki S, Uchida S, Lin SH. Mechanisms for hypercalciuria in pseudohypoaldosteronism type II‐causing WNK4 knock‐in mice. Endocrinology 151: 1829‐1836, 2010.
 666. Yang YD, Cho H, Koo JY, Tak MH, Cho Y, Shim WS, Park SP, Lee J, Lee B, Kim BM, Raouf R, Shin YK, Oh U. TMEM16A confers receptor‐activated calcium‐dependent chloride conductance. Nature 455: 1210‐1215, 2008.
 667. Yasoshima K, Satlin LM, Schwartz GJ. Adaptation of rabbit cortical collecting duct to in vitro acid incubation. Am J Physiol Renal Physiol 263: F749‐F756, 1992.
 668. Yeh BI, Kim YK, Jabbar W, Huang CL. Conformational changes of pore helix coupled to gating of TRPV5 by protons. EMBO J 24: 3224‐3234, 2005.
 669. Yeh BI, Sun TJ, Lee JZ, Chen HH, Huang CL. Mechanism and molecular determinant for regulation of rabbit transient receptor potential type 5 (TRPV5) channel by extracellular pH. J Biol Chem 278: 51044‐51052, 2003.
 670. Yeh BI, Yoon J, Huang CL. On the role of pore helix in regulation of TRPV5 by extracellular protons. J Membr Biol 212: 191‐198, 2006.
 671. Yoo D, Fang L, Mason A, Kim BY, Welling PA. A phosphorylation‐dependent export structure in ROMK (Kir 1.1) channel overrides an endoplasmic reticulum localization signal. J Biol Chem 280: 35281‐35289, 2005.
 672. Yoo D, Kim BY, Campo C, Nance L, King A, Maouyo D, Welling PA. Cell surface expression of the ROMK (Kir 1.1) channel is regulated by the aldosterone‐induced kinase, SGK‐1, and protein kinase A. J Biol Chem 278: 23066‐23075, 2003.
 673. Youn JH, McDonough AA. Recent advances in understanding integrative control of potassium homeostasis. Annu Rev Physiol 71: 381‐401, 2009.
 674. Yu ASL, McCarthy KM, Francis SA, McCormack JM, Lai J, Rogers RA, Lynch RD, Schneeberger EE. Knockdown of occludin expression leads to diverse phenotypic alterations in epithelial cells. Am J Physiol Cell Physiol 288: C1231‐C1241, 2005.
 675. Yuan P, Leonetti MD, Pico AR, Hsiung Y, MacKinnon R. Structure of the human BK channel Ca2+‐activation apparatus at 3.0 A resolution. Science 329: 182‐186, 2010.
 676. Yue P, Lin DH, Pan CY, Leng Q, Giebisch G, Lifton RP, Wang WH. Src family protein tyrosine kinase (PTK) modulates the effect of SGK1 and WNK4 on ROMK channels. Proc Natl Acad Sci U S A 106: 15061‐15066, 2009.
 677. Yue P, Sun P, Lin DH, Pan C, Xing W, Wang W. Angiotensin II diminishes the effect of SGK1 on the WNK4‐mediated inhibition of ROMK1 channels. Kidney Int 79: 423‐431, 2011.
 678. Zaika O, Mamenko M, O'Neil RG, Pochynyuk O. Bradykinin acutely inhibits activity of the epithelial Na+ channel in mammalian aldosterone‐sensitive distal nephron. Am J Physiol Renal Physiol 300: F1105‐F1115, 2011.
 679. Zelenina M, Tritto S, Bondar AA, Zelenin S, Aperia A. Copper inhibits the water and glycerol permeability of aquaporin‐3. J Biol Chem 279: 51939‐51943, 2004.
 680. Zheleznova NN, Wilson PD, Staruschenko A. Epidermal growth factor‐mediated proliferation and sodium transport in normal and PKD epithelial cells. Biochim Biophys Acta 1812: 1301‐1313, 2011.
 681. Zheng W, Verlander JW, Lynch IJ, Cash M, Shao J, Stow LR, Cain BD, Weiner ID, Wall SM, Wingo CS. Cellular distribution of the potassium channel KCNQ1 in normal mouse kidney. Am J Physiol Renal Physiol 292: F456‐F466, 2007.
 682. Zhou R, Snyder PM. Nedd4‐2 phosphorylation induces serum and glucocorticoid‐regulated kinase (SGK) ubiquitination and degradation. J Biol Chem 280: 4518‐4523, 2005.
 683. Zhuang J, Zhang X, Wang D, Li J, Zhou B, Shi Z, Gu D, Denson DD, Eaton DC, Cai H. WNK4 kinase inhibits Maxi K channel activity by a kinase‐dependent mechanism. Am J Physiol Renal Physiol 301: F410‐F419, 2011.
 684. Zuber AM, Centeno G, Pradervand S, Nikolaeva S, Maquelin L, Cardinaux L, Bonny O, Firsov D. Molecular clock is involved in predictive circadian adjustment of renal function. Proc Natl Acad Sci U S A 106: 16523‐16528, 2009.

Contact Editor

Submit a note to the editor about this article by filling in the form below.

* Required Field

How to Cite

Alexander Staruschenko. Regulation of Transport in the Connecting Tubule and Cortical Collecting Duct. Compr Physiol 2012, 2: 1541-1584. doi: 10.1002/cphy.c110052