Comprehensive Physiology Wiley Online Library

Roles of Ion Transport in Control of Cell Motility

Full Article on Wiley Online Library



Abstract

Cell motility is an essential feature of life. It is essential for reproduction, propagation, embryonic development, and healing processes such as wound closure and a successful immune defense. If out of control, cell motility can become life‐threatening as, for example, in metastasis or autoimmune diseases. Regardless of whether ciliary/flagellar or amoeboid movement, controlled motility always requires a concerted action of ion channels and transporters, cytoskeletal elements, and signaling cascades. Ion transport across the plasma membrane contributes to cell motility by affecting the membrane potential and voltage‐sensitive ion channels, by inducing local volume changes with the help of aquaporins and by modulating cytosolic Ca2+ and H+ concentrations. Voltage‐sensitive ion channels serve as voltage detectors in electric fields thus enabling galvanotaxis; local swelling facilitates the outgrowth of protrusions at the leading edge while local shrinkage accompanies the retraction of the cell rear; the cytosolic Ca2+ concentration exerts its main effect on cytoskeletal dynamics via motor proteins such as myosin or dynein; and both, the intracellular and the extracellular H+ concentration modulate cell migration and adhesion by tuning the activity of enzymes and signaling molecules in the cytosol as well as the activation state of adhesion molecules at the cell surface. In addition to the actual process of ion transport, both, channels and transporters contribute to cell migration by being part of focal adhesion complexes and/or physically interacting with components of the cytoskeleton. The present article provides an overview of how the numerous ion‐transport mechanisms contribute to the various modes of cell motility. © 2013 American Physiological Society. Compr Physiol 3:59‐119, 2013.

Comprehensive Physiology offers downloadable PowerPoint presentations of figures for non-profit, educational use, provided the content is not modified and full credit is given to the author and publication.

Download a PowerPoint presentation of all images


Figure 1. Figure 1.

Comparing the morphology and mechanisms of movement of a flagellated and an amoeboid cell. (A) Simplified depiction of the mammalian spermatozoon structure including the distribution of transporters/channels involved in the generation of Ca2+ domains necessary for sperm motility. The sperm cell consists of the head compartment (head subcompartments are acrosomal, equatorial, and postacrosomal segments), the midpiece, and the tail domain. At least three calcium storage locations are evident: (i) the acrosome, (ii) the redundant nuclear envelope region (RNE) and (iii) the mitochondria located in the midpiece. Ca2+ release from these stores is mediated by inositol 1,4,5‐tripohosphate receptors (IP3Rs) located on the outer acrosome membrane and by IP3Rs and RyRs in the RNE membrane. Moreover, extracellular Ca2+ can enter through a number of voltage‐ and ligand‐activated channels. Removal of Ca2+ occurs via plasmalemmal Na+/Ca2+ exchangers and, more rapidly, through various Ca2+‐ATPases (PMCA4, SPCA1, SERCA?) [modified, with permission, from Bedo‐Addu et al. (41)]. (B). Schematic overview of the subcompartments of a migrating cell and the relevant signaling pathways involved in cytoskeletal assembly. Rho contributes to the formation of stress fibers and focal adhesions, Rac to lamellipodial protrusion and focal complex formation, and Cdc42 to the development of filopodia and to the formation of focal complexes as well [modified, with permission, from Kaverina et al. (409)].

Figure 2. Figure 2.

Functional morphology of the ciliary/flagellar axoneme. (A) Cross section of a typical ciliary or flagellar axoneme of the “9 + 2 structure” including its major components. The central pair of singlet microtubules, C1 and C2, is connected. C1 and C2 can be distinguished by fibrous structures attached to C1 only. The nine microtubule doublets consisting of an α and a β tubule are connected by nexin. The α tubule is decorated with the outer and inner dynein arms that mediate microtubule gliding and with radial spokes whose spokeheads point to the central microtubules. (B) Model of the sliding mechanism between outer doublet mictrotubules. A straight cilium shows the complete pattern (center of diagram). In a bent cilium, approximately half the filaments on the upper side are retracted because of the greater arc on the convex side. So the partial microtubules disappear being drawn below the plane of the slice. As seen here, bending to the left causes the partial microtubules 4, 5, 6, 7, and 8 to disappear. When the cilium bends the other way, the partial microtubules on the opposite side disappear while they reappear on what is now the lower or concave side. (C). In a flagellum as in the cilium, two adjacent doublets cannot slide far because (i) they are physically restrained by proteins (radial spokes and nexin links) and (ii) minus ends are usually anchored to the basal body, so they bend [A‐C were modified, with permission, from Warner and Satir (903) and Lodish et al. (492) according to Goodenough and Heuser (280)].

Figure 3. Figure 3.

Comparison of sperm motility characteristics and activation pathways in mammals (left panel) and echinoderms (right panel). Mammalian spermatozoa are released into the bicarbonate containing millieu of the vagina (internal fertilization). Echinoderm spermatozoa are released into sea water—often synchronized with the release of eggs by female individuals (external fertilization). The bicarbonate (in mammals) and the speract (in echinoderms), a protein secreted from the egg's jelly coat, serve as activators of the signaling cascade resulting in directed motility. In both models, Ca2+ influx and intracellular alkaliniziation in response to cyclic nucleotide production and subsequent changes in the membrane potential play key roles in sperm bending. Mammalian spermatozoa exhibit hyperactivated motility upon Ca2+ influx when reaching the vicinity of the egg. Echinoderm sperm cells approach the egg in spirals with straight periods and turns. For further details see text. Abbreviations: sAC, soluble adenylyl cyclase; sNHE, sperm specific Na+/H+ exchanger; KSper, sperm‐associated potassium channel; CatSper, sperm‐associated cation channel; CM, calmodulin; CMK, calmodulin kinase; TetraKCNG, cGMP‐regulated potassium channel; NCKX, potassium‐dependent Na+/Ca2+ exchanger; SpHCN, sperm hyperpolarization‐activated and cyclic nucleotide‐gated channel; Cav, voltage‐gated Ca2+ channel [modified, with permission, after Navarro et al. (581) and Darszon et al. (161)].

Figure 4. Figure 4.

Structural basis for cell adhesion and migration. (A) Model of actin assembly at the leading edge of the lamellipodium (shaded area) of migrating cells. (i) While being in the resting state, the barbed ends of actin filaments are capped by capping proteins. Upon directing stimuli cells fade from the resting state to a state of morphological and functional polarization. At the leading edge of the lamellipodium free barbed ends are generated by the dissociation of capping proteins. (ii) The activated Arp2/3 complex accounts for the assembly of Y‐junctions. (iii) Active Arp2/3 complex mediates the connection of preexisting filaments. Branched filaments that mainly consist of adenosine triphosphate (ATP)‐ and adenosine diphosphate (ADP)‐Pi‐actin grow fast and represent the fundament of protrusion shape and stability. (iv) Branched filaments are depolymerized at the rear of the lamellipodium by severing or removal of Arp2/3 complexes. (v) Barbed ends of filaments are recapped to prevent further filament growth. (vi) ADF (actin depolymerizing factor)‐cofilin/ADP‐actin complexes and monomers in equilibrium are the intermediate product of filament dissociation. (vii) Transfer of phosphate from ATP to ADP‐actin enhanced by profilin. (viii) ATP‐actin monomers that are prevented from spontaneous nucleation by β‐thymosin are now available for reassembly [adopted, with permission, from Gungabissoon and Bamburg (306)]. (B).Schematic overview of the dynamics of adhesion complexes (AC) and morphological features of a migrating cell. Cell migration requires the continuous formation and release of cell matrix interactions accompanied by a protruding movement at the front of the cell and a retracting movement at the cell rear. Characteristic features of the cell protrusion (shaded area) are the fan‐shaped lamellipodium and finger‐like filopodia, while inside the rear part the cell develops retraction fibers. Adhesion complexes are initially generated at cell protrusions as focal complexes (small red dots) and mature to larger focal adhesions (elongated red ovals) that slide backward toward the rear part where they are finally disassembled. Numbers within circles represent different states of AC dynamics. (i) Priming of AC: Upon external signals the cell polarizes and structures such as the lamellipodium and filopodia are formed involving the polymerization of actin filaments. The adhesion of these protrusions to components of the extracellular matrix (ECM) requires integrin recruitment to transform these sites into “sticky fingers.” (ii) Initiation of AC: The initiation of AC requires the formation of a branched F‐actin meshwork inside the lamellipodia as the fundament for focal complexes. The F‐actin meshwork inside the cell protrusion is induced by the activation of the small GTPase Rac1. F‐actin polymerization is facilitated by the activation of the Arp2/3 complex (see Figure 4A). Cofilin creates free barbed ends by severing the filaments. To become parts of this meshwork integrins have to be incorporated. They cluster and then serve as anchors tying the cell to immobile components of the ECM. Talin is crucial for adapting the actin filaments to integrins at adhesion sites. The newly generated small focal complexes are characterized by a slow integrin turnover and, thus, a high stability supporting their relatively immobilized state. Furthermore, additional structural and signaling components translocate to focal complexes which now serve as signaling platforms to perpetuate lamellipodia formation. (iii) Maturation of AC: The conversion of small focal complexes into larger focal adhesions with high integrin density is referred to as maturation of AC. The RhoA‐dependent generation of stress fibers is a characteristic feature of the cytoskeleton of migrating cells. Tensioning of stress fibers stabilizes the polarized cell structure as well as the lamellipodium. The mission of AC as an anchor tying the cytoskeleton to the ECM is to sense, transmit and respond to intra‐ or extracellular tension. At the level of sensing, enzymatic reactions as well as tension sensitivity of adaptor proteins are discussed to be involved. Adaptor proteins such as zyxin or the ILK‐PINCH‐parvin complex serve as mediators at the level of signaling to the nucleus. (iv) Sliding of AC: Functional components of AC move as consequence of and in the direction of stress fiber tensioning. The sliding of mature AC is characterized by a polarized turnover of AC components such as the integrins. Integrin molecules are assembled at the cell front and disassembled at the cell rear, whereas other molecules undergo a constant exchange. Acto‐myosin tensioning plays a strong role in the control of local AC dynamics. (v) Disassembly of AC: The disassembly of AC is critical to the overall speed of migrating cells and does not exclusively occur at the rear part. Inhibition of AC disassembly inhibits cell migration. AC disassembly is characterized by integrin internalization. Mechanisms that promote AC turnover may also contribute to their disassambly such as RhoA and myosin contractility. Moreover, the cleavage of talin by calpain may be essential for disassembly processes as well as dynamin and focal adhesion kinase (FAK)‐mediated vesicular trafficking [modified, with permission, after Lock et al. (491)].

Figure 5. Figure 5.

The role of the transepithelial potential in galvanotactic wound healing. (A) Molecular basis of the electric potential difference of the cornea epithelium. Upper panel: net flux of Cl ions from the basolateral side toward the apical side and Na+ flux in the opposite direction generates an electric potential difference. Lower panel: ion channels and transporters that are involved in transcellular ion transport (thin arrows) and paracellular ion flux through tight junctions (thick arrows). cAMP‐activated chloride channels, Ca2+‐dependent chloride channels, epithelial sodium channels, and sodium/org cotransporters are involved at the apical membrane. Sodium‐chloride‐potassium cotransporters, sodium/potassium ATPases, potassium channels, and sodium‐potassium/proton exchangers are involved at the basolateral membrane [adopted, with permission, from Zhao (957)]. (B) Generation of wound electric fields. Upon physical disruption the transepithelial potential (see Figure 5 A) is short‐circuited and becomes negative. To maintain the transepithelial potential, cells surrounding the wound fuel a positive charge flow toward the wounded area (red arrow) and consequently out of the wound (black arrows) until the wound is healed [adopted, with permission, from Zhao (957)]. (C) Schematic representation of possible mechanisms that could facilitate galvanotaxis mediated by voltage‐gated sodium channels (VGSC). Upon voltage‐driven influx of Na+ through VGSC several mechanisms may lead to a Ca2+‐dependent reorganization of the cytoskeleton and eventually to directional cell migration. VGSC's β‐subunit is assumed to directly interact with the cytoskeleton. Intracellularly elevated Na+ levels are likely to inhibit or promote other ion‐transport processes finally resulting in an elevation of the intracellular Ca2+ concentration: due to a decrease in the Na+ gradient across the plasma membrane, Ca2+ removal from the cytosol via the Na+/Ca2+ exchanger is reduced; pH‐regulating mechanisms such as Na+/H+ exchange are inhibited and the cytosol becomes acidic. The increase in the cytosolic H+ concentration then (i) lowers cytosolic Ca2+ removal through the mitochondrial Ca2+/H+ exchanger, (ii) lowers ATPase‐mediated Ca2+ uptake into the endoplasmic reticulum (ER), and (iii) triggers Ca2+ release from the ER via IP3 and ryanodin receptors [modified, with permission, after Mycielska and Djamgoz (573)].

Figure 6. Figure 6.

The role of the transepithelial potential in galvanotactic wound healing. (A) Molecular basis of the electric potential difference of the cornea epithelium. Upper panel: net flux of Cl ions from the basolateral side toward the apical side and Na+ flux in the opposite direction generates an electric potential difference. Lower panel: ion channels and transporters that are involved in transcellular ion transport (thin arrows) and paracellular ion flux through tight junctions (thick arrows). cAMP‐activated chloride channels, Ca2+‐dependent chloride channels, epithelial sodium channels, and sodium/org cotransporters are involved at the apical membrane. Sodium‐chloride‐potassium cotransporters, sodium/potassium ATPases, potassium channels, and sodium‐potassium/proton exchangers are involved at the basolateral membrane [adopted, with permission, from Zhao (957)]. (B) Generation of wound electric fields. Upon physical disruption the transepithelial potential (see Figure 5 A) is short‐circuited and becomes negative. To maintain the transepithelial potential, cells surrounding the wound fuel a positive charge flow toward the wounded area (red arrow) and consequently out of the wound (black arrows) until the wound is healed [adopted, with permission, from Zhao (957)]. (C) Schematic representation of possible mechanisms that could facilitate galvanotaxis mediated by voltage‐gated sodium channels (VGSC). Upon voltage‐driven influx of Na+ through VGSC several mechanisms may lead to a Ca2+‐dependent reorganization of the cytoskeleton and eventually to directional cell migration. VGSC's β‐subunit is assumed to directly interact with the cytoskeleton. Intracellularly elevated Na+ levels are likely to inhibit or promote other ion‐transport processes finally resulting in an elevation of the intracellular Ca2+ concentration: due to a decrease in the Na+ gradient across the plasma membrane, Ca2+ removal from the cytosol via the Na+/Ca2+ exchanger is reduced; pH‐regulating mechanisms such as Na+/H+ exchange are inhibited and the cytosol becomes acidic. The increase in the cytosolic H+ concentration then (i) lowers cytosolic Ca2+ removal through the mitochondrial Ca2+/H+ exchanger, (ii) lowers ATPase‐mediated Ca2+ uptake into the endoplasmic reticulum (ER), and (iii) triggers Ca2+ release from the ER via IP3 and ryanodin receptors [modified, with permission, after Mycielska and Djamgoz (573)].

Figure 7. Figure 7.

Hypothetical model summarizing the local function of ion channels and transporters in migrating cells. At the leading edge salt uptake mediated by the Na+/H+ exchanger (NHE1), the Cl/HCO3 exchanger (AE2), and the Na+,K+,2Cl cotransporter (NKCC) is accompanied by osmotic water entry. The water entry is facilitated by the aquaporin AQP1 and contributes to the extension of the lamellipodium. Toward the rear end an increase in membrane tension activates mechanosensitive cation channels resulting in an increase of the intracellular Ca2+ concentration. This rise in intracellular Ca2+ induces the retraction of the rear part of a migrating cell and a massive K+ efflux through Ca2+‐sensitive K+ channels accompanied by shrinkage of the posterior cell pole [modified, with permission, from Schwab (751,752)].

Figure 8. Figure 8.

Hypothetical model summarizing how pH‐regulating and proton‐sensitive (transport) molecules modulate pH‐dependent intra‐ and extracellular processes required for cell migration. (A) Transporters and mechanisms involved in (i) regulating pHi and (ii) in generating a characteristic pH profile at the cell surface. The functional cooperation between AE2, CA IX, and Na+,HCO3 cotransporter (NBC) could maximize the HCO3‐gradient across the membrane and thus optimize the buffering of pHi. (B) Effects of pHi on the cellular migration machinery. The bond between actin and talin is weakened by an alkaline pHi at the cell front (i) and stabilized by an acidic pHi at the rear end (ii). Cofilin is activated at an alkaline pHi and produces free barbed‐end actin required for actin branching (iii), that is, for pushing the leading edge forward. An acidic pHi inactivates cofilin (iv). It also promotes myosin II light chain phosphorylation by Ca2+‐calmodulin which causes actomyosin contraction at the rear part of the cell (v). (C) Effects of pHe on migrating tumor cells. At the cell front, formation and stabilization of integrin/matrix interactions (i) and activity of matrix digesting MMPs (ii) are promoted by an acidic pHe. At the cell rear, the higher pHe facilitates the release of focal adhesions (iii). Activity of TRPM7 channels depends on pHe: an acidic pHe induces inward currents carried by monovalent cations possibly entailing local osmotic swelling that could be facilitated by the presence of aquaporins (AQP1). At the same time, TRPM7 executes α‐kinase activity phosphorylating the myosin IIA heavy chain which causes the disassembly of myosin bundles (iv). An alkaline pHe at the cell rear increases TRPM7's selectivity for Ca2+ leading to (i) an increase in contractility (v) triggered by the Ca2+‐induced activation of the calmodulin‐modulated myosin II regulatory light chain (vi) and (ii) to the disassembly of focal adhesion sites mediated by m‐calpain (vii). ASIC responds to an acidic pHe by mediating Na+ inward currents (viii), ovarian cancer G‐protein‐coupled receptor 1 (OGR1) activates intracellular signaling cascades (ix) [adopted, with permission, from Stock and Schwab (813)].

Figure 9. Figure 9.

Major K+ and Ca2+ channels involved in cell migration. For the sake of clarity, this drawing does not include all of the Ca2+ and K+ channels mentioned in the text. Kv1.3 colocalizes with β1 integrin (23). While Kv1.3 can be evenly distributed all over a migrating cell (189), its clustering with transient receptor potential channel 1 (TRPC1) channels is found at the leading edge and probably involved in electric field detection (419). Kv2.1 shows a fibronectin‐dependent polarized distribution at the leading edge and the trailing end (417). While fibronectin stimulates the interaction between Kv2.1 and focal adhesion kinase (FAK) at the leading edge (910), probably via α8β1 integrin and activated by Ca2+/calmodulin‐dependent protein kinase (CaMKII) (220), the Ca2+‐sensitive calpain2 (m‐calpain), believed to be membrane bound, functions at the trailing edge of the migrating cell to cleave the integrins. Also stimulated by fibronectin, Kv11.1 (hERG1) channels and β1 integrins form a macromolecular complex (132). Once engaged by the proper ligand, integrins can activate Kv11.1 channels which, in turn, modulate integrin function (651). Kir4.2 and α9 integrin colocalize at focal adhesions of the leading edge where the α9 integrin subunit simulates cell migration by a localized polyamine (spermidine/spermin=Sper) catabolism (168): α9 integrin binds the spermidine/spermin acetyltransferase (SSAT). SSAT activity catabolizes the polyamines that otherwise would block K+ ion efflux through Kir4.2. Even though a polarized distribution of KCa1.1 has not been shown to date, its activity impedes migration of glioma cells (65,439) whereas in fibroblast –like synoviocytes it is needed for invasion and for the production of pro‐MMP‐2 (358). KCa1.1 can be activated by Ca2+ influx though TRPM8 channels (921,922). KCa 3.1 recycles to the leading edge (757), however, is mainly active at the cell body and the cell rear (694) upon Ca2+ entry (762) through stretch activated channels such as TRPM7 (128,816). TRPM7‐mediated Ca2+ influx contributes to the guidance of the leading edge (667,908,909), for example, toward a chemoattractant. At lateral and peripheral adhesions, activation of TRPM7 by stretch or by Mg‐ATP depletion causes Ca2+ influx that can be enhanced by ryanodine receptor (RyR) mediated Ca2+ release from the endoplasmic reticulum (ER). This local increase in [Ca2+]i promotes cell migration through m‐calpain‐mediated disassembly of focal adhesions (816) and possibly a stimulation of the cytoskeletal migration machinery. At the trailing end, Ca2+‐dependent phosphorylation of contractile proteins is mediated by Ca2+ influx through L‐type voltage‐gated Ca2+ channels [VGCCs (943)], while TRPV1 (899), TRPM8, and TRPC1 (359) enhance cell migration by still unknown mediators. IP3R‐ and RyR‐mediated Ca2+ mobilization from the ER generally promotes cell migration. Focal adhesion formation and turnover is facilitated by IP3R‐mediated Ca2+ release stimulated through G‐protein coupled receptors causing CaMKII‐dependent FAK phosphorylation (220) and increased actin assembly (not shown) and by stromal interaction molecule 1 (STIM1)‐calcium release‐activated calcium channel protein 1 (ORAI1)‐based store‐operated Ca2+ entry leading to RAS and RAC activation (944), respectively. Ca2+ influx through TRPV2, recruited to the plasma membrane in response to simulation with lysophosphatidylcholine or lysophosphatidylinositol (LPL), induces matrix‐metalloproteases MMP‐2, 9, and cathepsin B (561,667). For further details, please see text and Tables 1 and 3.

Figure 10. Figure 10.

Cellular Cl transport. Cl ions are passively and actively transported across cellular membranes. Passive flux of Cl is facilitated by a variety of channels including Ca2+‐activated Cl channels (CaCC), cell volume‐regulated anion channels (VRAC), voltage‐gated Cl channels (VGClC), ligand‐gated anion channels (LGAC), and cAMP‐activated Cl channels (CFTR). Several proteins facilitate active Cl transport into the cell (Cl loaders) or pump Cl ions out of the cell (Cl extruders). Cl loaders include Na+, K+, Cl cotransporters (NKCC), Cl/HCO3 (AE), and Na+, Cl cotransporters (NCC). Cl extruders include K+, Cl cotransporters (KCC) and the Na+‐dependent Cl/HCO3 exchanger (NDCBE). Furthermore, Cl channels and transporters play a role in vesicular pH and Cl homeostasis that is essential to vesicular trafficking. Blue arrows represent Cl transport [modified, with permission, after Duran et al. (200)].

Figure 11. Figure 11.

Schematic overview of the role of Cl, K+, and water influx in the lamellipodium formation of migrating cells. In contrast to swelling‐activated Cl channels and aquaporins that are evenly distributed in morphologically nonpolarized cells, K+, Cl cotransporters are concentrated at one “pole” of a migrating cell. Upon exposure to a hypoosmotic solution cells swell equally as water and Cl flux occurs all over of the cell (left panel). Superfusing the cells with KCl provokes lamellipodium formation by reversing the flux direction of K+ and Cl ions from outward to inward (K+, Cl cotransporter). Local increases in K+ and Cl concentrations are accompanied by a locally increasing osmolarity that induces water influx via aquaporins and, thus, results in unilateral swelling [modified, with permission, after Zierler et al. (966)].



Figure 1.

Comparing the morphology and mechanisms of movement of a flagellated and an amoeboid cell. (A) Simplified depiction of the mammalian spermatozoon structure including the distribution of transporters/channels involved in the generation of Ca2+ domains necessary for sperm motility. The sperm cell consists of the head compartment (head subcompartments are acrosomal, equatorial, and postacrosomal segments), the midpiece, and the tail domain. At least three calcium storage locations are evident: (i) the acrosome, (ii) the redundant nuclear envelope region (RNE) and (iii) the mitochondria located in the midpiece. Ca2+ release from these stores is mediated by inositol 1,4,5‐tripohosphate receptors (IP3Rs) located on the outer acrosome membrane and by IP3Rs and RyRs in the RNE membrane. Moreover, extracellular Ca2+ can enter through a number of voltage‐ and ligand‐activated channels. Removal of Ca2+ occurs via plasmalemmal Na+/Ca2+ exchangers and, more rapidly, through various Ca2+‐ATPases (PMCA4, SPCA1, SERCA?) [modified, with permission, from Bedo‐Addu et al. (41)]. (B). Schematic overview of the subcompartments of a migrating cell and the relevant signaling pathways involved in cytoskeletal assembly. Rho contributes to the formation of stress fibers and focal adhesions, Rac to lamellipodial protrusion and focal complex formation, and Cdc42 to the development of filopodia and to the formation of focal complexes as well [modified, with permission, from Kaverina et al. (409)].



Figure 2.

Functional morphology of the ciliary/flagellar axoneme. (A) Cross section of a typical ciliary or flagellar axoneme of the “9 + 2 structure” including its major components. The central pair of singlet microtubules, C1 and C2, is connected. C1 and C2 can be distinguished by fibrous structures attached to C1 only. The nine microtubule doublets consisting of an α and a β tubule are connected by nexin. The α tubule is decorated with the outer and inner dynein arms that mediate microtubule gliding and with radial spokes whose spokeheads point to the central microtubules. (B) Model of the sliding mechanism between outer doublet mictrotubules. A straight cilium shows the complete pattern (center of diagram). In a bent cilium, approximately half the filaments on the upper side are retracted because of the greater arc on the convex side. So the partial microtubules disappear being drawn below the plane of the slice. As seen here, bending to the left causes the partial microtubules 4, 5, 6, 7, and 8 to disappear. When the cilium bends the other way, the partial microtubules on the opposite side disappear while they reappear on what is now the lower or concave side. (C). In a flagellum as in the cilium, two adjacent doublets cannot slide far because (i) they are physically restrained by proteins (radial spokes and nexin links) and (ii) minus ends are usually anchored to the basal body, so they bend [A‐C were modified, with permission, from Warner and Satir (903) and Lodish et al. (492) according to Goodenough and Heuser (280)].



Figure 3.

Comparison of sperm motility characteristics and activation pathways in mammals (left panel) and echinoderms (right panel). Mammalian spermatozoa are released into the bicarbonate containing millieu of the vagina (internal fertilization). Echinoderm spermatozoa are released into sea water—often synchronized with the release of eggs by female individuals (external fertilization). The bicarbonate (in mammals) and the speract (in echinoderms), a protein secreted from the egg's jelly coat, serve as activators of the signaling cascade resulting in directed motility. In both models, Ca2+ influx and intracellular alkaliniziation in response to cyclic nucleotide production and subsequent changes in the membrane potential play key roles in sperm bending. Mammalian spermatozoa exhibit hyperactivated motility upon Ca2+ influx when reaching the vicinity of the egg. Echinoderm sperm cells approach the egg in spirals with straight periods and turns. For further details see text. Abbreviations: sAC, soluble adenylyl cyclase; sNHE, sperm specific Na+/H+ exchanger; KSper, sperm‐associated potassium channel; CatSper, sperm‐associated cation channel; CM, calmodulin; CMK, calmodulin kinase; TetraKCNG, cGMP‐regulated potassium channel; NCKX, potassium‐dependent Na+/Ca2+ exchanger; SpHCN, sperm hyperpolarization‐activated and cyclic nucleotide‐gated channel; Cav, voltage‐gated Ca2+ channel [modified, with permission, after Navarro et al. (581) and Darszon et al. (161)].



Figure 4.

Structural basis for cell adhesion and migration. (A) Model of actin assembly at the leading edge of the lamellipodium (shaded area) of migrating cells. (i) While being in the resting state, the barbed ends of actin filaments are capped by capping proteins. Upon directing stimuli cells fade from the resting state to a state of morphological and functional polarization. At the leading edge of the lamellipodium free barbed ends are generated by the dissociation of capping proteins. (ii) The activated Arp2/3 complex accounts for the assembly of Y‐junctions. (iii) Active Arp2/3 complex mediates the connection of preexisting filaments. Branched filaments that mainly consist of adenosine triphosphate (ATP)‐ and adenosine diphosphate (ADP)‐Pi‐actin grow fast and represent the fundament of protrusion shape and stability. (iv) Branched filaments are depolymerized at the rear of the lamellipodium by severing or removal of Arp2/3 complexes. (v) Barbed ends of filaments are recapped to prevent further filament growth. (vi) ADF (actin depolymerizing factor)‐cofilin/ADP‐actin complexes and monomers in equilibrium are the intermediate product of filament dissociation. (vii) Transfer of phosphate from ATP to ADP‐actin enhanced by profilin. (viii) ATP‐actin monomers that are prevented from spontaneous nucleation by β‐thymosin are now available for reassembly [adopted, with permission, from Gungabissoon and Bamburg (306)]. (B).Schematic overview of the dynamics of adhesion complexes (AC) and morphological features of a migrating cell. Cell migration requires the continuous formation and release of cell matrix interactions accompanied by a protruding movement at the front of the cell and a retracting movement at the cell rear. Characteristic features of the cell protrusion (shaded area) are the fan‐shaped lamellipodium and finger‐like filopodia, while inside the rear part the cell develops retraction fibers. Adhesion complexes are initially generated at cell protrusions as focal complexes (small red dots) and mature to larger focal adhesions (elongated red ovals) that slide backward toward the rear part where they are finally disassembled. Numbers within circles represent different states of AC dynamics. (i) Priming of AC: Upon external signals the cell polarizes and structures such as the lamellipodium and filopodia are formed involving the polymerization of actin filaments. The adhesion of these protrusions to components of the extracellular matrix (ECM) requires integrin recruitment to transform these sites into “sticky fingers.” (ii) Initiation of AC: The initiation of AC requires the formation of a branched F‐actin meshwork inside the lamellipodia as the fundament for focal complexes. The F‐actin meshwork inside the cell protrusion is induced by the activation of the small GTPase Rac1. F‐actin polymerization is facilitated by the activation of the Arp2/3 complex (see Figure 4A). Cofilin creates free barbed ends by severing the filaments. To become parts of this meshwork integrins have to be incorporated. They cluster and then serve as anchors tying the cell to immobile components of the ECM. Talin is crucial for adapting the actin filaments to integrins at adhesion sites. The newly generated small focal complexes are characterized by a slow integrin turnover and, thus, a high stability supporting their relatively immobilized state. Furthermore, additional structural and signaling components translocate to focal complexes which now serve as signaling platforms to perpetuate lamellipodia formation. (iii) Maturation of AC: The conversion of small focal complexes into larger focal adhesions with high integrin density is referred to as maturation of AC. The RhoA‐dependent generation of stress fibers is a characteristic feature of the cytoskeleton of migrating cells. Tensioning of stress fibers stabilizes the polarized cell structure as well as the lamellipodium. The mission of AC as an anchor tying the cytoskeleton to the ECM is to sense, transmit and respond to intra‐ or extracellular tension. At the level of sensing, enzymatic reactions as well as tension sensitivity of adaptor proteins are discussed to be involved. Adaptor proteins such as zyxin or the ILK‐PINCH‐parvin complex serve as mediators at the level of signaling to the nucleus. (iv) Sliding of AC: Functional components of AC move as consequence of and in the direction of stress fiber tensioning. The sliding of mature AC is characterized by a polarized turnover of AC components such as the integrins. Integrin molecules are assembled at the cell front and disassembled at the cell rear, whereas other molecules undergo a constant exchange. Acto‐myosin tensioning plays a strong role in the control of local AC dynamics. (v) Disassembly of AC: The disassembly of AC is critical to the overall speed of migrating cells and does not exclusively occur at the rear part. Inhibition of AC disassembly inhibits cell migration. AC disassembly is characterized by integrin internalization. Mechanisms that promote AC turnover may also contribute to their disassambly such as RhoA and myosin contractility. Moreover, the cleavage of talin by calpain may be essential for disassembly processes as well as dynamin and focal adhesion kinase (FAK)‐mediated vesicular trafficking [modified, with permission, after Lock et al. (491)].



Figure 5.

The role of the transepithelial potential in galvanotactic wound healing. (A) Molecular basis of the electric potential difference of the cornea epithelium. Upper panel: net flux of Cl ions from the basolateral side toward the apical side and Na+ flux in the opposite direction generates an electric potential difference. Lower panel: ion channels and transporters that are involved in transcellular ion transport (thin arrows) and paracellular ion flux through tight junctions (thick arrows). cAMP‐activated chloride channels, Ca2+‐dependent chloride channels, epithelial sodium channels, and sodium/org cotransporters are involved at the apical membrane. Sodium‐chloride‐potassium cotransporters, sodium/potassium ATPases, potassium channels, and sodium‐potassium/proton exchangers are involved at the basolateral membrane [adopted, with permission, from Zhao (957)]. (B) Generation of wound electric fields. Upon physical disruption the transepithelial potential (see Figure 5 A) is short‐circuited and becomes negative. To maintain the transepithelial potential, cells surrounding the wound fuel a positive charge flow toward the wounded area (red arrow) and consequently out of the wound (black arrows) until the wound is healed [adopted, with permission, from Zhao (957)]. (C) Schematic representation of possible mechanisms that could facilitate galvanotaxis mediated by voltage‐gated sodium channels (VGSC). Upon voltage‐driven influx of Na+ through VGSC several mechanisms may lead to a Ca2+‐dependent reorganization of the cytoskeleton and eventually to directional cell migration. VGSC's β‐subunit is assumed to directly interact with the cytoskeleton. Intracellularly elevated Na+ levels are likely to inhibit or promote other ion‐transport processes finally resulting in an elevation of the intracellular Ca2+ concentration: due to a decrease in the Na+ gradient across the plasma membrane, Ca2+ removal from the cytosol via the Na+/Ca2+ exchanger is reduced; pH‐regulating mechanisms such as Na+/H+ exchange are inhibited and the cytosol becomes acidic. The increase in the cytosolic H+ concentration then (i) lowers cytosolic Ca2+ removal through the mitochondrial Ca2+/H+ exchanger, (ii) lowers ATPase‐mediated Ca2+ uptake into the endoplasmic reticulum (ER), and (iii) triggers Ca2+ release from the ER via IP3 and ryanodin receptors [modified, with permission, after Mycielska and Djamgoz (573)].



Figure 6.

The role of the transepithelial potential in galvanotactic wound healing. (A) Molecular basis of the electric potential difference of the cornea epithelium. Upper panel: net flux of Cl ions from the basolateral side toward the apical side and Na+ flux in the opposite direction generates an electric potential difference. Lower panel: ion channels and transporters that are involved in transcellular ion transport (thin arrows) and paracellular ion flux through tight junctions (thick arrows). cAMP‐activated chloride channels, Ca2+‐dependent chloride channels, epithelial sodium channels, and sodium/org cotransporters are involved at the apical membrane. Sodium‐chloride‐potassium cotransporters, sodium/potassium ATPases, potassium channels, and sodium‐potassium/proton exchangers are involved at the basolateral membrane [adopted, with permission, from Zhao (957)]. (B) Generation of wound electric fields. Upon physical disruption the transepithelial potential (see Figure 5 A) is short‐circuited and becomes negative. To maintain the transepithelial potential, cells surrounding the wound fuel a positive charge flow toward the wounded area (red arrow) and consequently out of the wound (black arrows) until the wound is healed [adopted, with permission, from Zhao (957)]. (C) Schematic representation of possible mechanisms that could facilitate galvanotaxis mediated by voltage‐gated sodium channels (VGSC). Upon voltage‐driven influx of Na+ through VGSC several mechanisms may lead to a Ca2+‐dependent reorganization of the cytoskeleton and eventually to directional cell migration. VGSC's β‐subunit is assumed to directly interact with the cytoskeleton. Intracellularly elevated Na+ levels are likely to inhibit or promote other ion‐transport processes finally resulting in an elevation of the intracellular Ca2+ concentration: due to a decrease in the Na+ gradient across the plasma membrane, Ca2+ removal from the cytosol via the Na+/Ca2+ exchanger is reduced; pH‐regulating mechanisms such as Na+/H+ exchange are inhibited and the cytosol becomes acidic. The increase in the cytosolic H+ concentration then (i) lowers cytosolic Ca2+ removal through the mitochondrial Ca2+/H+ exchanger, (ii) lowers ATPase‐mediated Ca2+ uptake into the endoplasmic reticulum (ER), and (iii) triggers Ca2+ release from the ER via IP3 and ryanodin receptors [modified, with permission, after Mycielska and Djamgoz (573)].



Figure 7.

Hypothetical model summarizing the local function of ion channels and transporters in migrating cells. At the leading edge salt uptake mediated by the Na+/H+ exchanger (NHE1), the Cl/HCO3 exchanger (AE2), and the Na+,K+,2Cl cotransporter (NKCC) is accompanied by osmotic water entry. The water entry is facilitated by the aquaporin AQP1 and contributes to the extension of the lamellipodium. Toward the rear end an increase in membrane tension activates mechanosensitive cation channels resulting in an increase of the intracellular Ca2+ concentration. This rise in intracellular Ca2+ induces the retraction of the rear part of a migrating cell and a massive K+ efflux through Ca2+‐sensitive K+ channels accompanied by shrinkage of the posterior cell pole [modified, with permission, from Schwab (751,752)].



Figure 8.

Hypothetical model summarizing how pH‐regulating and proton‐sensitive (transport) molecules modulate pH‐dependent intra‐ and extracellular processes required for cell migration. (A) Transporters and mechanisms involved in (i) regulating pHi and (ii) in generating a characteristic pH profile at the cell surface. The functional cooperation between AE2, CA IX, and Na+,HCO3 cotransporter (NBC) could maximize the HCO3‐gradient across the membrane and thus optimize the buffering of pHi. (B) Effects of pHi on the cellular migration machinery. The bond between actin and talin is weakened by an alkaline pHi at the cell front (i) and stabilized by an acidic pHi at the rear end (ii). Cofilin is activated at an alkaline pHi and produces free barbed‐end actin required for actin branching (iii), that is, for pushing the leading edge forward. An acidic pHi inactivates cofilin (iv). It also promotes myosin II light chain phosphorylation by Ca2+‐calmodulin which causes actomyosin contraction at the rear part of the cell (v). (C) Effects of pHe on migrating tumor cells. At the cell front, formation and stabilization of integrin/matrix interactions (i) and activity of matrix digesting MMPs (ii) are promoted by an acidic pHe. At the cell rear, the higher pHe facilitates the release of focal adhesions (iii). Activity of TRPM7 channels depends on pHe: an acidic pHe induces inward currents carried by monovalent cations possibly entailing local osmotic swelling that could be facilitated by the presence of aquaporins (AQP1). At the same time, TRPM7 executes α‐kinase activity phosphorylating the myosin IIA heavy chain which causes the disassembly of myosin bundles (iv). An alkaline pHe at the cell rear increases TRPM7's selectivity for Ca2+ leading to (i) an increase in contractility (v) triggered by the Ca2+‐induced activation of the calmodulin‐modulated myosin II regulatory light chain (vi) and (ii) to the disassembly of focal adhesion sites mediated by m‐calpain (vii). ASIC responds to an acidic pHe by mediating Na+ inward currents (viii), ovarian cancer G‐protein‐coupled receptor 1 (OGR1) activates intracellular signaling cascades (ix) [adopted, with permission, from Stock and Schwab (813)].



Figure 9.

Major K+ and Ca2+ channels involved in cell migration. For the sake of clarity, this drawing does not include all of the Ca2+ and K+ channels mentioned in the text. Kv1.3 colocalizes with β1 integrin (23). While Kv1.3 can be evenly distributed all over a migrating cell (189), its clustering with transient receptor potential channel 1 (TRPC1) channels is found at the leading edge and probably involved in electric field detection (419). Kv2.1 shows a fibronectin‐dependent polarized distribution at the leading edge and the trailing end (417). While fibronectin stimulates the interaction between Kv2.1 and focal adhesion kinase (FAK) at the leading edge (910), probably via α8β1 integrin and activated by Ca2+/calmodulin‐dependent protein kinase (CaMKII) (220), the Ca2+‐sensitive calpain2 (m‐calpain), believed to be membrane bound, functions at the trailing edge of the migrating cell to cleave the integrins. Also stimulated by fibronectin, Kv11.1 (hERG1) channels and β1 integrins form a macromolecular complex (132). Once engaged by the proper ligand, integrins can activate Kv11.1 channels which, in turn, modulate integrin function (651). Kir4.2 and α9 integrin colocalize at focal adhesions of the leading edge where the α9 integrin subunit simulates cell migration by a localized polyamine (spermidine/spermin=Sper) catabolism (168): α9 integrin binds the spermidine/spermin acetyltransferase (SSAT). SSAT activity catabolizes the polyamines that otherwise would block K+ ion efflux through Kir4.2. Even though a polarized distribution of KCa1.1 has not been shown to date, its activity impedes migration of glioma cells (65,439) whereas in fibroblast –like synoviocytes it is needed for invasion and for the production of pro‐MMP‐2 (358). KCa1.1 can be activated by Ca2+ influx though TRPM8 channels (921,922). KCa 3.1 recycles to the leading edge (757), however, is mainly active at the cell body and the cell rear (694) upon Ca2+ entry (762) through stretch activated channels such as TRPM7 (128,816). TRPM7‐mediated Ca2+ influx contributes to the guidance of the leading edge (667,908,909), for example, toward a chemoattractant. At lateral and peripheral adhesions, activation of TRPM7 by stretch or by Mg‐ATP depletion causes Ca2+ influx that can be enhanced by ryanodine receptor (RyR) mediated Ca2+ release from the endoplasmic reticulum (ER). This local increase in [Ca2+]i promotes cell migration through m‐calpain‐mediated disassembly of focal adhesions (816) and possibly a stimulation of the cytoskeletal migration machinery. At the trailing end, Ca2+‐dependent phosphorylation of contractile proteins is mediated by Ca2+ influx through L‐type voltage‐gated Ca2+ channels [VGCCs (943)], while TRPV1 (899), TRPM8, and TRPC1 (359) enhance cell migration by still unknown mediators. IP3R‐ and RyR‐mediated Ca2+ mobilization from the ER generally promotes cell migration. Focal adhesion formation and turnover is facilitated by IP3R‐mediated Ca2+ release stimulated through G‐protein coupled receptors causing CaMKII‐dependent FAK phosphorylation (220) and increased actin assembly (not shown) and by stromal interaction molecule 1 (STIM1)‐calcium release‐activated calcium channel protein 1 (ORAI1)‐based store‐operated Ca2+ entry leading to RAS and RAC activation (944), respectively. Ca2+ influx through TRPV2, recruited to the plasma membrane in response to simulation with lysophosphatidylcholine or lysophosphatidylinositol (LPL), induces matrix‐metalloproteases MMP‐2, 9, and cathepsin B (561,667). For further details, please see text and Tables 1 and 3.



Figure 10.

Cellular Cl transport. Cl ions are passively and actively transported across cellular membranes. Passive flux of Cl is facilitated by a variety of channels including Ca2+‐activated Cl channels (CaCC), cell volume‐regulated anion channels (VRAC), voltage‐gated Cl channels (VGClC), ligand‐gated anion channels (LGAC), and cAMP‐activated Cl channels (CFTR). Several proteins facilitate active Cl transport into the cell (Cl loaders) or pump Cl ions out of the cell (Cl extruders). Cl loaders include Na+, K+, Cl cotransporters (NKCC), Cl/HCO3 (AE), and Na+, Cl cotransporters (NCC). Cl extruders include K+, Cl cotransporters (KCC) and the Na+‐dependent Cl/HCO3 exchanger (NDCBE). Furthermore, Cl channels and transporters play a role in vesicular pH and Cl homeostasis that is essential to vesicular trafficking. Blue arrows represent Cl transport [modified, with permission, after Duran et al. (200)].



Figure 11.

Schematic overview of the role of Cl, K+, and water influx in the lamellipodium formation of migrating cells. In contrast to swelling‐activated Cl channels and aquaporins that are evenly distributed in morphologically nonpolarized cells, K+, Cl cotransporters are concentrated at one “pole” of a migrating cell. Upon exposure to a hypoosmotic solution cells swell equally as water and Cl flux occurs all over of the cell (left panel). Superfusing the cells with KCl provokes lamellipodium formation by reversing the flux direction of K+ and Cl ions from outward to inward (K+, Cl cotransporter). Local increases in K+ and Cl concentrations are accompanied by a locally increasing osmolarity that induces water influx via aquaporins and, thus, results in unilateral swelling [modified, with permission, after Zierler et al. (966)].

References
 1. Abdel‐Ghany M, Cheng HC, Elble RC, Pauli BU. Focal adhesion kinase activated by beta(4) integrin ligation to mCLCA1 mediates early metastatic growth. J Biol Chem 277: 34391‐34400, 2002.
 2. Abed E, Moreau R. Importance of melastatin‐like transient receptor potential 7 and magnesium in the stimulation of osteoblast proliferation and migration by platelet‐derived growth factor. Am J Physiol Cell Physiol 297: C360‐C368, 2009.
 3. Abercrombie M, Heaysman JE, Pegrum SM. The locomotion of fibroblasts in culture. I. Movements of the leading edge. Exp Cell Res 59: 393‐398, 1970.
 4. Abercrombie M, Heaysman JE, Pegrum SM. The locomotion of fibroblasts in culture. IV. Electron microscopy of the leading lamella. Exp Cell Res 67: 359‐367, 1971.
 5. Abram CL, Lowell CA. The ins and outs of leukocyte integrin signaling. Annu Rev Immunol 27: 339‐362, 2009.
 6. Accardi A, Picollo A. CLC channels and transporters: Proteins with borderline personalities. Biochim Biophys Acta 1798: 1457‐1464, 2010.
 7. Afrasiabi E, Hietamaki M, Viitanen T, Sukumaran P, Bergelin N, Tornquist K. Expression and significance of HERG (KCNH2) potassium channels in the regulation of MDA‐MB‐435S melanoma cell proliferation and migration. Cell Signal 22: 57‐64, 2010.
 8. Agarwal JR, Griesinger F, Stuhmer W, Pardo LA. The potassium channel ether a go‐go is a novel prognostic factor with functional relevance in acute myeloid leukemia. Mol Cancer 9: 18, 2010.
 9. Agle KA, Vongsa RA, Dwinell MB. Calcium mobilization triggered by the chemokine CXCL12 regulates migration in wounded intestinal epithelial monolayers. J Biol Chem 285: 16066‐16075, 2010.
 10. Al‐Bazzaz FJ, Gailey C. Ion transport by sheep distal airways in a miniature chamber. Am J Physiol Lung Cell Mol Physiol 281: L1028‐L1034, 2001.
 11. Al‐Shawaf E, Naylor J, Taylor H, Riches K, Milligan CJ, O'Regan D, Porter KE, Li J, Beech DJ. Short‐term stimulation of calcium‐permeable transient receptor potential canonical 5‐containing channels by oxidized phospholipids. Arterioscler Thromb Vasc Biol 30: 1453‐1459, 2010.
 12. Aldehni F, Spitzner M, Martins JR, Barro‐Soria R, Schreiber R, Kunzelmann K. Bestrophin 1 promotes epithelial‐to‐mesenchymal transition of renal collecting duct cells. J Am Soc Nephrol 20: 1556‐1564, 2009.
 13. Aman A, Piotrowski T. Cell migration during morphogenesis. Dev Biol 341: 20‐33, 2010.
 14. Ammer AG, Weed SA. Cortactin branches out: Roles in regulating protrusive actin dynamics. Cell Motil Cytoskeleton 65: 687‐707, 2008.
 15. Anderson TW, Vaughan AN, Cramer LP. Retrograde flow and myosin II activity within the leading cell edge deliver F‐actin to the lamella to seed the formation of graded polarity actomyosin II filament bundles in migrating fibroblasts. Mol Biol Cell 19: 5006‐5018, 2008.
 16. Andrade YN, Fernandes J, Vazquez E, Fernandez‐Fernandez JM, Arniges M, Sanchez TM, Villalon M, Valverde MA. TRPV4 channel is involved in the coupling of fluid viscosity changes to epithelial ciliary activity. J Cell Biol 168: 869‐874, 2005.
 17. Andrew N, Insall RH. Chemotaxis in shallow gradients is mediated independently of PtdIns 3‐kinase by biased choices between random protrusions. Nat Cell Biol 9: 193‐200, 2007.
 18. Antonicek H, Persohn E, Schachner M. Biochemical and functional characterization of a novel neuron‐glia adhesion molecule that is involved in neuronal migration. J Cell Biol 104: 1587‐1595, 1987.
 19. Arcangeli A, Becchetti A. Complex functional interaction between integrin receptors and ion channels. Trends Cell Biol 16: 631‐639, 2006.
 20. Arcangeli A, Becchetti A, Mannini A, Mugnai G, De Filippi P, Tarone G, Del Bene MR, Barletta E, Wanke E, Olivotto M. Integrin‐mediated neurite outgrowth in neuroblastoma cells depends on the activation of potassium channels. J Cell Biol 122: 1131‐1143, 1993.
 21. Arcangeli A, Faravelli L, Bianchi L, Rosati B, Gritti A, Vescovi A, Wanke E, Olivotto M. Soluble or bound laminin elicit in human neuroblastoma cells short‐ or long‐term potentiation of a K+ inwardly rectifying current: Relevance to neuritogenesis. Cell Adhes Commun 4: 369‐385, 1996.
 22. Arreola J, Begenisich T, Nehrke K, Nguyen HV, Park K, Richardson L, Yang B, Schutte BC, Lamb FS, Melvin JE. Secretion and cell volume regulation by salivary acinar cells from mice lacking expression of the Clcn3 Cl‐ channel gene. J Physiol 545: 207‐216, 2002.
 23. Artym VV, Petty HR. Molecular proximity of Kv1.3 voltage‐gated potassium channels and beta(1)‐integrins on the plasma membrane of melanoma cells: Effects of cell adherence and channel blockers. J Gen Physiol 120: 29‐37, 2002.
 24. Aspenstrom P. Formin‐binding proteins: Modulators of formin‐dependent actin polymerization. Biochim Biophys Acta 1803: 174‐182.
 25. Auguste KI, Jin S, Uchida K, Yan D, Manley GT, Papadopoulos MC, Verkman AS. Greatly impaired migration of implanted aquaporin‐4‐deficient astroglial cells in mouse brain toward a site of injury. Faseb J 21: 108‐116, 2007.
 26. Ayoub C, Wasylyk C, Li Y, Thomas E, Marisa L, Robe A, Roux M, Abecassis J, de Reynies A, Wasylyk B. ANO1 amplification and expression in HNSCC with a high propensity for future distant metastasis and its functions in HNSCC cell lines. Br J Cancer 103: 715‐726, 2010.
 27. Babini E, Paukert M, Geisler HS, Grunder S. Alternative splicing and interaction with di‐ and polyvalent cations control the dynamic range of acid‐sensing ion channel 1 (ASIC1). J Biol Chem 277: 41597‐41603, 2002.
 28. Bahat A, Eisenbach M. Sperm thermotaxis. Mol Cell Endocrinol 252: 115‐119, 2006.
 29. Bahat A, Eisenbach M. Human sperm thermotaxis is mediated by phospholipase C and inositol trisphosphate receptor Ca2+ channel. Biol Reprod 82: 606‐616, 2010.
 30. Bahat A, Eisenbach M, Tur‐Kaspa I. Periovulatory increase in temperature difference within the rabbit oviduct. Hum Reprod 20: 2118‐2121, 2005.
 31. Bahat A, Tur‐Kaspa I, Gakamsky A, Giojalas LC, Breitbart H, Eisenbach M. Thermotaxis of mammalian sperm cells: A potential navigation mechanism in the female genital tract. Nat Med 9: 149‐150, 2003.
 32. Barbet G, Demion M, Moura IC, Serafini N, Leger T, Vrtovsnik F, Monteiro RC, Guinamard R, Kinet JP, Launay P. The calcium‐activated nonselective cation channel TRPM4 is essential for the migration but not the maturation of dendritic cells. Nat Immunol 9: 1148‐1156, 2008.
 33. Barker AT, Jaffe LF, Vanable JW, Jr. The glabrous epidermis of cavies contains a powerful battery. Am J Physiol 242: R358‐R366, 1982.
 34. Barnhart EL, Allen GM, Julicher F, Theriot JA. Bipedal locomotion in crawling cells. Biophys J 98: 933‐942, 2010.
 35. Barwe SP, Anilkumar G, Moon SY, Zheng Y, Whitelegge JP, Rajasekaran SA, Rajasekaran AK. Novel role for Na,K‐ATPase in phosphatidylinositol 3‐kinase signaling and suppression of cell motility. Mol Biol Cell 16: 1082‐1094, 2005.
 36. Bauer R, Humphries M, Fassler R, Winklmeier A, Craig SE, Bosserhoff AK. Regulation of integrin activity by MIA. J Biol Chem 281: 11669‐11677, 2006.
 37. Baumgartner M, Patel H, Barber DL. Na(+)/H(+) exchanger NHE1 as plasma membrane scaffold in the assembly of signaling complexes. Am J Physiol Cell Physiol 287: C844‐C850, 2004.
 38. Bearer EL, Friend DS. Morphology of mammalian sperm membranes during differentiation, maturation, and capacitation. J Electron Microsc Tech 16: 281‐297, 1990.
 39. Becchetti A, Arcangeli A. Integrins and ion channels in cell migration: Implications for neuronal development, wound healing and metastatic spread. Adv Exp Med Biol 674: 107‐123, 2010.
 40. Becchetti A, Pillozzi S, Morini R, Nesti E, Arcangeli A. New insights into the regulation of ion channels by integrins. Int Rev Cell Mol Biol 279: 135‐190, 2010.
 41. Bedu‐Addo K, Costello S, Harper C, Machado‐Oliveira G, Lefievre L, Ford C, Barratt C, Publicover S. Mobilisation of stored calcium in the neck region of human sperm–a mechanism for regulation of flagellar activity. Int J Dev Biol 52: 615‐626, 2008.
 42. Behar TN, Scott CA, Greene CL, Wen X, Smith SV, Maric D, Liu QY, Colton CA, Barker JL. Glutamate acting at NMDA receptors stimulates embryonic cortical neuronal migration. J Neurosci 19: 4449‐4461, 1999.
 43. Benfenati V, Caprini M, Dovizio M, Mylonakou MN, Ferroni S, Ottersen OP, Amiry‐Moghaddam M. An aquaporin‐4/transient receptor potential vanilloid 4 (AQP4/TRPV4) complex is essential for cell‐volume control in astrocytes. Proc Natl Acad Sci U S A 108: 2563‐2568, 2011.
 44. Bennett ES, Smith BA, Harper JM. Voltage‐gated Na+ channels confer invasive properties on human prostate cancer cells. Pflugers Arch 447: 908‐914, 2004.
 45. Bereiter‐Hahn J, Voth M. Ionic control of locomotion and shape of epithelial cells: II. Role of monovalent cations. Cell Motil Cytoskeleton 10: 528‐536, 1988.
 46. Bergmann JE, Kupfer A, Singer SJ. Membrane insertion at the leading edge of motile fibroblasts. Proc Natl Acad Sci U S A 80: 1367‐1371, 1983.
 47. Bernstein BW, Bamburg JR. A proposed mechanism for cell polarization with no external cues. Cell Motil Cytoskeleton 58: 96‐103, 2004.
 48. Bernstein BW, Painter WB, Chen H, Minamide LS, Abe H, Bamburg JR. Intracellular pH modulation of ADF/cofilin proteins. Cell Motil Cytoskeleton 47: 319‐336, 2000.
 49. Besson P, Fernandez‐Rachubinski F, Yang W, Fliegel L. Regulation of Na+/H+ exchanger gene expression: Mitogenic stimulation increases NHE1 promoter activity. Am J Physiol 274: C831‐C839, 1998.
 50. Betapudi V. Myosin II motor proteins with different functions determine the fate of lamellipodia extension during cell spreading. PLoS One 5: e8560, 2010.
 51. Betapudi V, Gokulrangan G, Chance MR, Egelhoff TT. A proteomic study of myosin II motor proteins during tumor cell migration. J Mol Biol 407: 673‐686, 2011.
 52. Betapudi V, Rai V, Beach JR, Egelhoff T. Novel regulation and dynamics of myosin II activation during epidermal wound responses. Exp Cell Res 316: 980‐991, 2010.
 53. Bevensee MO, Apkon M, Boron WF. Intracellular pH regulation in cultured astrocytes from rat hippocampus. II. Electrogenic Na/HCO3 cotransport. J Gen Physiol 110: 467‐483, 1997.
 54. Bevensee MO, Weed RA, Boron WF. Intracellular pH regulation in cultured astrocytes from rat hippocampus. I. Role Of HCO3. J Gen Physiol 110: 453‐465, 1997.
 55. Bezanilla F. How membrane proteins sense voltage. Nat Rev Mol Cell Biol 9: 323‐332, 2008.
 56. Bhattacharya I, Boje KM. Potential gamma‐hydroxybutyric acid (GHB) drug interactions through blood‐brain barrier transport inhibition: A pharmacokinetic simulation‐based evaluation. J Pharmacokinet Pharmacodyn 33: 657‐681, 2006.
 57. Bianchini L, Kapus A, Lukacs G, Wasan S, Wakabayashi S, Pouyssegur J, Yu FH, Orlowski J, Grinstein S. Responsiveness of mutants of NHE1 isoform of Na+/H+ antiport to osmotic stress. Am J Physiol 269: C998‐C1007, 1995.
 58. Birnbaumer L. Expansion of signal transduction by G proteins. The second 15 years or so: From 3 to 16 alpha subunits plus betagamma dimers. Biochim Biophys Acta 1768: 772‐793, 2007.
 59. Bisaillon JM, Motiani RK, Gonzalez‐Cobos JC, Potier M, Halligan KE, Alzawahra WF, Barroso M, Singer HA, Jourd'heuil D, Trebak M. Essential role for STIM1/Orai1‐mediated calcium influx in PDGF‐induced smooth muscle migration. Am J Physiol Cell Physiol 298: C993‐C1005, 2010.
 60. Black JA, Liu S, Waxman SG. Sodium channel activity modulates multiple functions in microglia. Glia 57: 1072‐1081, 2009.
 61. Blanco G. Na,K‐ATPase subunit heterogeneity as a mechanism for tissue‐specific ion regulation. Semin Nephrol 25: 292‐303, 2005.
 62. Blaser H, Reichman‐Fried M, Castanon I, Dumstrei K, Marlow FL, Kawakami K, Solnica‐Krezel L, Heisenberg CP, Raz E. Migration of zebrafish primordial germ cells: A role for myosin contraction and cytoplasmic flow. Dev Cell 11: 613‐627, 2006.
 63. Blikslager AT, Moeser AJ, Gookin JL, Jones SL, Odle J. Restoration of barrier function in injured intestinal mucosa. Physiol Rev 87: 545‐564, 2007.
 64. Bomben VC, Turner KL, Barclay TT, Sontheimer H. Transient receptor potential canonical channels are essential for chemotactic migration of human malignant gliomas. J Cell Physiol 226: 1879‐1888, 2011.
 65. Bordey A, Sontheimer H, Trouslard J. Muscarinic activation of BK channels induces membrane oscillations in glioma cells and leads to inhibition of cell migration. J Membr Biol 176: 31‐40, 2000.
 66. Borgens RB, Vanable JW,Jr., Jaffe LF. Role of subdermal current shunts in the failure of frogs to regenerate. J Exp Zool 209: 49‐56, 1979.
 67. Boron WF. Regulation of intracellular pH. Adv Physiol Educ 28: 160‐179, 2004.
 68. Boron WF, Siebens AW, Nakhoul NL. Role of monocarboxylate transport in the regulation of intracellular pH of renal proximal tubule cells. Ciba Found Symp 139: 91‐105, 1988.
 69. Bortone D, Polleux F. KCC2 expression promotes the termination of cortical interneuron migration in a voltage‐sensitive calcium‐dependent manner. Neuron 62: 53‐71, 2009.
 70. Bosco MC, Puppo M, Pastorino S, Mi Z, Melillo G, Massazza S, Rapisarda A, Varesio L. Hypoxia selectively inhibits monocyte chemoattractant protein‐1 production by macrophages. J Immunol 172: 1681‐1690, 2004.
 71. Bosco MC, Reffo G, Puppo M, Varesio L. Hypoxia inhibits the expression of the CCR5 chemokine receptor in macrophages. Cell Immunol 228: 1‐7, 2004.
 72. Bourguignon LY, Singleton PA, Diedrich F, Stern R, Gilad E. CD44 interaction with Na+‐H +exchanger (NHE1) creates acidic microenvironments leading to hyaluronidase‐2 and cathepsin B activation and breast tumor cell invasion. J Biol Chem 279: 26991‐27007, 2004.
 73. Brackenbury WJ, Calhoun JD, Chen C, Miyazaki H, Nukina N, Oyama F, Ranscht B, Isom LL. Functional reciprocity between Na+ channel Nav1.6 and beta1 subunits in the coordinated regulation of excitability and neurite outgrowth. Proc Natl Acad Sci U S A 107: 2283‐2288, 2010.
 74. Brackenbury WJ, Chioni AM, Diss JK, Djamgoz MB. The neonatal splice variant of Nav1.5 potentiates in vitro invasive behaviour of MDA‐MB‐231 human breast cancer cells. Breast Cancer Res Treat 101: 149‐160, 2007.
 75. Brackenbury WJ, Davis TH, Chen C, Slat EA, Detrow MJ, Dickendesher TL, Ranscht B, Isom LL. Voltage‐gated Na+ channel beta1 subunit‐mediated neurite outgrowth requires Fyn kinase and contributes to postnatal CNS development in vivo. J Neurosci 28: 3246‐3256, 2008.
 76. Brackenbury WJ, Djamgoz MB, Isom LL. An emerging role for voltage‐gated Na+ channels in cellular migration: Regulation of central nervous system development and potentiation of invasive cancers. Neuroscientist 14: 571‐583, 2008.
 77. Brackenbury WJ, Isom LL. Voltage‐gated Na+ channels: Potential for beta subunits as therapeutic targets. Expert Opin Ther Targets 12: 1191‐1203, 2008.
 78. Bradding P, Wulff H. The K+ channels K(Ca)3.1 and K(v)1.3 as novel targets for asthma therapy. Br J Pharmacol 157: 1330‐1339, 2009.
 79. Brakemeier S, Eichler I, Knorr A, Fassheber T, Kohler R, Hoyer J. Modulation of Ca2+‐activated K+ channel in renal artery endothelium in situ by nitric oxide and reactive oxygen species. Kidney Int 64: 199‐207, 2003.
 80. Brakemeier S, Kersten A, Eichler I, Grgic I, Zakrzewicz A, Hopp H, Kohler R, Hoyer J. Shear stress‐induced up‐regulation of the intermediate‐conductance Ca(2+)‐activated K(+) channel in human endothelium. Cardiovasc Res 60: 488‐496, 2003.
 81. Bratt T. Lipocalins and cancer. Biochim Biophys Acta 1482: 318‐326, 2000.
 82. Bretscher MS. Circulating integrins: Alpha 5 beta 1, alpha 6 beta 4 and Mac‐1, but not alpha 3 beta 1, alpha 4 beta 1 or LFA‐1. Embo J 11: 405‐410, 1992.
 83. Bretscher MS. Endocytosis and recycling of the fibronectin receptor in CHO cells. Embo J 8: 1341‐1348, 1989.
 84. Brisson L, Gillet L, Calaghan S, Besson P, Le Guennec JY, Roger S, Gore J. Na(V)1.5 enhances breast cancer cell invasiveness by increasing NHE1‐dependent H(+) efflux in caveolae. Oncogene 30: 2070‐2076, 2011.
 85. Brockway LM, Zhou ZH, Bubien JK, Jovov B, Benos DJ, Keyser KT. Rabbit retinal neurons and glia express a variety of ENaC/DEG subunits. Am J Physiol Cell Physiol 283: C126‐C134, 2002.
 86. Brokaw CJ. Calcium and flagellar response during the chemotaxis of bracken spermatozoids. J Cell Physiol 83: 151‐158, 1974.
 87. Brokaw CJ, Josslin R, Bobrow L. Calcium ion regulation of flagellar beat symmetry in reactivated sea urchin spermatozoa. Biochem Biophys Res Commun 58: 795‐800, 1974.
 88. Broussard JA, Webb DJ, Kaverina I. Asymmetric focal adhesion disassembly in motile cells. Curr Opin Cell Biol 20: 85‐90, 2008.
 89. Brown SB, Dransfield I. Electric fields and inflammation: May the force be with you. ScientificWorldJournal 8: 1280‐1294, 2008.
 90. Brown SB, Tucker CS, Ford C, Lee Y, Dunbar DR, Mullins JJ. Class III antiarrhythmic methanesulfonanilides inhibit leukocyte recruitment in zebrafish. J Leukoc Biol 82: 79‐84, 2007.
 91. Brundage RA, Fogarty KE, Tuft RA, Fay FS. Calcium gradients underlying polarization and chemotaxis of eosinophils. Science 254: 703‐706, 1991.
 92. Brust‐Mascher I, Webb WW. Calcium waves induced by large voltage pulses in fish keratocytes. Biophys J 75: 1669‐1678, 1998.
 93. Buccione R, Caldieri G, Ayala I. Invadopodia: Specialized tumor cell structures for the focal degradation of the extracellular matrix. Cancer Metastasis Rev 28: 137‐149, 2009.
 94. Buccione R, Orth JD, McNiven MA. Foot and mouth: Podosomes, invadopodia and circular dorsal ruffles. Nat Rev Mol Cell Biol 5: 647‐657, 2004.
 95. Burckhardt G, Di Sole F, Helmle‐Kolb C. The Na+/H+ exchanger gene family. J Nephrol 15 (Suppl 5): S3‐S21, 2002.
 96. Burridge K, Chrzanowska‐Wodnicka M, Zhong C. Focal adhesion assembly. Trends Cell Biol 7: 342‐347, 1997.
 97. Busco G, Cardone RA, Greco MR, Bellizzi A, Colella M, Antelmi E, Mancini MT, Dell'Aquila ME, Casavola V, Paradiso A, Reshkin SJ. NHE1 promotes invadopodial ECM proteolysis through acidification of the peri‐invadopodial space. Faseb J 24: 3903‐3915, 2010.
 98. Cahalan MD, Chandy KG. The functional network of ion channels in T lymphocytes. Immunol Rev 231: 59‐87, 2009.
 99. Cai R, Ding X, Zhou K, Shi Y, Ge R, Ren G, Jin Y, Wang Y. Blockade of TRPC6 channels induced G2/M phase arrest and suppressed growth in human gastric cancer cells. Int J Cancer 125: 2281‐2287, 2009.
 100. Cain RJ, Ridley AJ. Phosphoinositide 3‐kinases in cell migration. Biol Cell 101: 13‐29, 2009.
 101. Caldieri G, Buccione R. Aiming for invadopodia: Organizing polarized delivery at sites of invasion. Trends Cell Biol 20: 64‐70, 2010.
 102. Caldieri G, Giacchetti G, Beznoussenko G, Attanasio F, Ayala I, Buccione R. Invadopodia biogenesis is regulated by caveolin‐mediated modulation of membrane cholesterol levels. J Cell Mol Med 13: 1728‐1740, 2009.
 103. Calle Y, Burns S, Thrasher AJ, Jones GE. The leukocyte podosome. Eur J Cell Biol 85: 151‐157, 2006.
 104. Callera GE, He Y, Yogi A, Montezano AC, Paravicini T, Yao G, Touyz RM. Regulation of the novel Mg2+ transporter transient receptor potential melastatin 7 (TRPM7) cation channel by bradykinin in vascular smooth muscle cells. J Hypertens 27: 155‐166, 2009.
 105. Cancelas JA, Williams DA. Rho GTPases in hematopoietic stem cell functions. Curr Opin Hematol 16: 249‐254, 2009.
 106. Cantor JM, Ginsberg MH, Rose DM. Integrin‐associated proteins as potential therapeutic targets. Immunol Rev 223: 236‐251, 2008.
 107. Cao C, Sun Y, Healey S, Bi Z, Hu G, Wan S, Kouttab N, Chu W, Wan Y. EGFR‐mediated expression of aquaporin‐3 is involved in human skin fibroblast migration. Biochem J 400: 225‐234, 2006.
 108. Cardone RA, Bagorda A, Bellizzi A, Busco G, Guerra L, Paradiso A, Casavola V, Zaccolo M, Reshkin SJ. Protein kinase a gating of a pseudopodial‐located RhoA/ROCK/p38/NHE1 signal module regulates invasion in breast cancer cell lines. Mol Biol Cell 16: 3117‐3127, 2005.
 109. Cardone RA, Bellizzi A, Busco G, Weinman EJ, Dell'Aquila ME, Casavola V, Azzariti A, Mangia A, Paradiso A, Reshkin SJ. The NHERF1 PDZ2 domain regulates PKA‐RhoA‐p38‐mediated NHE1 activation and invasion in breast tumor cells. Mol Biol Cell 18: 1768‐1780, 2007.
 110. Cardone RA, Busco G, Greco MR, Bellizzi A, Accardi R, Cafarelli A, Monterisi S, Carratu P, Casavola V, Paradiso A, Tommasino M, Reshkin SJ. HPV16 E7‐dependent transformation activates NHE1 through a PKA‐RhoA‐induced inhibition of p38alpha. PLoS One 3: e3529, 2008.
 111. Cardone RA, Casavola V, Reshkin SJ. The role of disturbed pH dynamics and the Na+/H+ exchanger in metastasis. Nat Rev Cancer 5: 786‐795, 2005.
 112. Carlson AE, Quill TA, Westenbroek RE, Schuh SM, Hille B, Babcock DF. Identical phenotypes of CatSper1 and CatSper2 null sperm. J Biol Chem 280: 32238‐32244, 2005.
 113. Carragher NO, Walker SM, Scott Carragher LA, Harris F, Sawyer TK, Brunton VG, Ozanne BW, Frame MC. Calpain 2 and Src dependence distinguishes mesenchymal and amoeboid modes of tumour cell invasion: A link to integrin function. Oncogene 25: 5726‐5740, 2006.
 114. Carrithers MD, Chatterjee G, Carrithers LM, Offoha R, Iheagwara U, Rahner C, Graham M, Waxman SG. Regulation of podosome formation in macrophages by a splice variant of the sodium channel SCN8A. J Biol Chem 284: 8114‐8126, 2009.
 115. Castellano LE, Trevino CL, Rodriguez D, Serrano CJ, Pacheco J, Tsutsumi V, Felix R, Darszon A. Transient receptor potential (TRPC) channels in human sperm: Expression, cellular localization and involvement in the regulation of flagellar motility. FEBS Lett 541: 69‐74, 2003.
 116. Caswell PT, Vadrevu S, Norman JC. Integrins: Masters and slaves of endocytic transport. Nat Rev Mol Cell Biol 10: 843‐853, 2009.
 117. Catterall WA, Perez‐Reyes E, Snutch TP, Striessnig J. International Union of Pharmacology. XLVIII. Nomenclature and structure‐function relationships of voltage‐gated calcium channels. Pharmacol Rev 57: 411‐425, 2005.
 118. Cavanagh LL, Weninger W. Dendritic cell behaviour in vivo: Lessons learned from intravital two‐photon microscopy. Immunol Cell Biol 86: 428‐438, 2008.
 119. Chae YK, Woo J, Kim MJ, Kang SK, Kim MS, Lee J, Lee SK, Gong G, Kim YH, Soria JC, Jang SJ, Sidransky D, Moon C. Expression of aquaporin 5 (AQP5) promotes tumor invasion in human non small cell lung cancer. PLoS One 3: e2162, 2008.
 120. Chan KT, Bennin DA, Huttenlocher A. Regulation of adhesion dynamics by calpain‐mediated proteolysis of focal adhesion kinase (FAK). J Biol Chem 285: 11418‐11426, 2010.
 121. Chang PC, Sulik GI, Soong HK, Parkinson WC. Galvanotropic and galvanotaxic responses of corneal endothelial cells. J Formos Med Assoc 95: 623‐627, 1996.
 122. Chantome A, Girault A, Potier M, Collin C, Vaudin P, Pages JC, Vandier C, Joulin V. KCa2.3 channel‐dependent hyperpolarization increases melanoma cell motility. Exp Cell Res 315: 3620‐3630, 2009.
 123. Chao JT, Gui P, Zamponi GW, Davis GE, Davis MJ. Spatial association of the Cav1.2 calcium channel with {alpha}5{beta}1 integrin. Am J Physiol Cell Physiol 300: C477‐C489, 2011.
 124. Chao PH, Roy R, Mauck RL, Liu W, Valhmu WB, Hung CT. Chondrocyte translocation response to direct current electric fields. J Biomech Eng 122: 261‐267, 2000.
 125. Charras GT, Yarrow JC, Horton MA, Mahadevan L, Mitchison TJ. Non‐equilibration of hydrostatic pressure in blebbing cells. Nature 435: 365‐369, 2005.
 126. Chaudhuri P, Colles SM, Bhat M, Van Wagoner DR, Birnbaumer L, Graham LM. Elucidation of a TRPC6‐TRPC5 channel cascade that restricts endothelial cell movement. Mol Biol Cell 19: 3203‐3211, 2008.
 127. Chen J, Crossland RF, Noorani MM, Marrelli SP. Inhibition of TRPC1/TRPC3 by PKG contributes to NO‐mediated vasorelaxation. Am J Physiol Heart Circ Physiol 297: H417‐H424, 2009.
 128. Chen JP, Luan Y, You CX, Chen XH, Luo RC, Li R. TRPM7 regulates the migration of human nasopharyngeal carcinoma cell by mediating Ca(2+) influx. Cell Calcium 47: 425‐432, 2010.
 129. Chen Y, Corriden R, Inoue Y, Yip L, Hashiguchi N, Zinkernagel A, Nizet V, Insel PA, Junger WG. ATP release guides neutrophil chemotaxis via P2Y2 and A3 receptors. Science 314: 1792‐1795, 2006.
 130. Cheong A, Bingham AJ, Li J, Kumar B, Sukumar P, Munsch C, Buckley NJ, Neylon CB, Porter KE, Beech DJ, Wood IC. Downregulated REST transcription factor is a switch enabling critical potassium channel expression and cell proliferation. Mol Cell 20: 45‐52, 2005.
 131. Cherubini A, Hofmann G, Pillozzi S, Guasti L, Crociani O, Cilia E, Di Stefano P, Degani S, Balzi M, Olivotto M, Wanke E, Becchetti A, Defilippi P, Wymore R, Arcangeli A. Human ether‐a‐go‐go‐related gene 1 channels are physically linked to beta1 integrins and modulate adhesion‐dependent signaling. Mol Biol Cell 16: 2972‐2983, 2005.
 132. Cherubini A, Pillozzi S, Hofmann G, Crociani O, Guasti L, Lastraioli E, Polvani S, Masi A, Becchetti A, Wanke E, Olivotto M, Arcangeli A. HERG K+ channels and beta1 integrins interact through the assembly of a macromolecular complex. Ann N Y Acad Sci 973: 559‐561, 2002.
 133. Chiang M, Robinson KR, Vanable JW, Jr. Electrical fields in the vicinity of epithelial wounds in the isolated bovine eye. Exp Eye Res 54: 999‐1003, 1992.
 134. Chiang Y, Chou CY, Hsu KF, Huang YF, Shen MR. EGF upregulates Na+/H+ exchanger NHE1 by post‐translational regulation that is important for cervical cancer cell invasiveness. J Cell Physiol 214: 810‐819, 2008.
 135. Chifflet S, Hernandez JA, Grasso S. A possible role for membrane depolarization in epithelial wound healing. Am J Physiol Cell Physiol 288: C1420‐C1430, 2005.
 136. Chifflet S, Hernandez JA, Grasso S, Cirillo A. Nonspecific depolarization of the plasma membrane potential induces cytoskeletal modifications of bovine corneal endothelial cells in culture. Exp Cell Res 282: 1‐13, 2003.
 137. Chigurupati S, Venkataraman R, Barrera D, Naganathan A, Madan M, Paul L, Pattisapu JV, Kyriazis GA, Sugaya K, Bushnev S, Lathia JD, Rich JN, Chan SL. Receptor channel TRPC6 is a key mediator of Notch‐driven glioblastoma growth and invasiveness. Cancer Res 70: 418‐427, 2010.
 138. Chioni AM, Brackenbury WJ, Calhoun JD, Isom LL, Djamgoz MB. A novel adhesion molecule in human breast cancer cells: Voltage‐gated Na+ channel beta1 subunit. Int J Biochem Cell Biol 41: 1216‐1227, 2009.
 139. Cho MR, Marler JP, Thatte HS, Golan DE. Control of calcium entry in human fibroblasts by frequency‐dependent electrical stimulation. Front Biosci 7: a1‐a8, 2002.
 140. Choi CH, Patel H, Barber DL. Expression of actin‐interacting protein 1 suppresses impaired chemotaxis of Dictyostelium cells lacking the Na+‐H+ exchanger NHE1. Mol Biol Cell 21: 3162‐3170, 2010.
 141. Christensen ST, Pedersen SF, Satir P, Veland IR, Schneider L. The primary cilium coordinates signaling pathways in cell cycle control and migration during development and tissue repair. Curr Top Dev Biol 85: 261‐301, 2008.
 142. Chung CY, Lee S, Briscoe C, Ellsworth C, Firtel RA. Role of Rac in controlling the actin cytoskeleton and chemotaxis in motile cells. Proc Natl Acad Sci U S A 97: 5225‐5230, 2000.
 143. Clapham DE. Calcium signaling. Cell 131: 1047‐1058, 2007.
 144. Clark EA, Brugge JS. Integrins and signal transduction pathways: The road taken. Science 268: 233‐239, 1995.
 145. Clark K, Langeslag M, van Leeuwen B, Ran L, Ryazanov AG, Figdor CG, Moolenaar WH, Jalink K, van Leeuwen FN. TRPM7, a novel regulator of actomyosin contractility and cell adhesion. Embo J 25: 290‐301, 2006.
 146. Clark K, Middelbeek J, Lasonder E, Dulyaninova NG, Morrice NA, Ryazanov AG, Bresnick AR, Figdor CG, van Leeuwen FN. TRPM7 regulates myosin IIA filament stability and protein localization by heavy chain phosphorylation. J Mol Biol 378: 790‐803, 2008.
 147. Collins SR, Meyer T. Calcium flickers lighting the way in chemotaxis? Dev Cell 16: 160‐161, 2009.
 148. Colvin RA, Means TK, Diefenbach TJ, Moita LF, Friday RP, Sever S, Campanella GS, Abrazinski T, Manice LA, Moita C, Andrews NW, Wu D, Hacohen N, Luster AD. Synaptotagmin‐mediated vesicle fusion regulates cell migration. Nat Immunol 11: 495‐502, 2010.
 149. Conklin MW, Lin MS, Spitzer NC. Local calcium transients contribute to disappearance of pFAK, focal complex removal and deadhesion of neuronal growth cones and fibroblasts. Dev Biol 287: 201‐212, 2005.
 150. Cooper MS, Schliwa M. Motility of cultured fish epidermal cells in the presence and absence of direct current electric fields. J Cell Biol 102: 1384‐1399, 1986.
 151. Cooper MS, Schliwa M. Transmembrane Ca2+ fluxes in the forward and reversed galvanotaxis of fish epidermal cells. Prog Clin Biol Res 210: 311‐318, 1986.
 152. Couchman JR, Rees DA. Organelle‐cytoskeleton relationships in fibroblasts: Mitochondria, Golgi apparatus, and endoplasmic reticulum in phases of movement and growth. Eur J Cell Biol 27: 47‐54, 1982.
 153. Cramer LP. Forming the cell rear first: Breaking cell symmetry to trigger directed cell migration. Nat Cell Biol 12: 628‐632, 2010.
 154. Crowther MA, Marshall JC. Continuing challenges of sepsis research. Jama 286: 1894‐1896, 2001.
 155. Cruse G, Duffy SM, Brightling CE, Bradding P. Functional KCa3.1 K+ channels are required for human lung mast cell migration. Thorax 61: 880‐885, 2006.
 156. Cuddapah VA, Sontheimer H. Molecular interaction and functional regulation of ClC‐3 by Ca2+/calmodulin‐dependent protein kinase II (CaMKII) in human malignant glioma. J Biol Chem 285: 11188‐11196, 2010.
 157. Damann N, Owsianik G, Li S, Poll C, Nilius B. The calcium‐conducting ion channel transient receptor potential canonical 6 is involved in macrophage inflammatory protein‐2‐induced migration of mouse neutrophils. Acta Physiol (Oxf) 195: 3‐11, 2009.
 158. Danker T, Gassner B, Oberleithner H, Schwab A. Extracellular detection of K+ release during migration of transformed Madin‐Darby canine kidney cells. Pflugers Arch 433: 71‐76, 1996.
 159. Darcy DP, Isaacson JS. L‐type calcium channels govern calcium signaling in migrating newborn neurons in the postnatal olfactory bulb. J Neurosci 29: 2510‐2518, 2009.
 160. Darszon A, Acevedo JJ, Galindo BE, Hernandez‐Gonzalez EO, Nishigaki T, Trevino CL, Wood C, Beltran C. Sperm channel diversity and functional multiplicity. Reproduction 131: 977‐988, 2006.
 161. Darszon A, Guerrero A, Galindo BE, Nishigaki T, Wood CD. Sperm‐activating peptides in the regulation of ion fluxes, signal transduction and motility. Int J Dev Biol 52: 595‐606, 2008.
 162. Darszon A, Nishigaki T, Wood C, Trevino CL, Felix R, Beltran C. Calcium channels and Ca2+ fluctuations in sperm physiology. Int Rev Cytol 243: 79‐172, 2005.
 163. Darszon A, Trevino CL, Wood C, Galindo B, Rodriguez‐Miranda E, Acevedo JJ, Hernandez‐Gonzalez EO, Beltran C, Martinez‐Lopez P, Nishigaki T. Ion channels in sperm motility and capacitation. Soc Reprod Fertil Suppl 65: 229‐244, 2007.
 164. Davies EV, Hallett MB. Cytosolic Ca2+ signaling in inflammatory neutrophils: Implications for rheumatoid arthritis (Review). Int J Mol Med 1: 485‐490, 1998.
 165. Davies H, Bignell GR, Cox C, Stephens P, Edkins S, Clegg S, Teague J, Woffendin H, Garnett MJ, Bottomley W, Davis N, Dicks E, Ewing R, Floyd Y, Gray K, Hall S, Hawes R, Hughes J, Kosmidou V, Menzies A, Mould C, Parker A, Stevens C, Watt S, Hooper S, Wilson R, Jayatilake H, Gusterson BA, Cooper C, Shipley J, Hargrave D, Pritchard‐Jones K, Maitland N, Chenevix‐Trench G, Riggins GJ, Bigner DD, Palmieri G, Cossu A, Flanagan A, Nicholson A, Ho JW, Leung SY, Yuen ST, Weber BL, Seigler HF, Darrow TL, Paterson H, Marais R, Marshall CJ, Wooster R, Stratton MR, Futreal PA. Mutations of the BRAF gene in human cancer. Nature 417: 949‐954, 2002.
 166. Davis TH, Chen C, Isom LL. Sodium channel beta1 subunits promote neurite outgrowth in cerebellar granule neurons. J Biol Chem 279: 51424‐51432, 2004.
 167. De Blas GA, Darszon A, Ocampo AY, Serrano CJ, Castellano LE, Hernandez‐Gonzalez EO, Chirinos M, Larrea F, Beltran C, Trevino CL. TRPM8, a versatile channel in human sperm. PLoS One 4: e6095, 2009.
 168. deHart GW, Jin T, McCloskey DE, Pegg AE, Sheppard D. The alpha9beta1 integrin enhances cell migration by polyamine‐mediated modulation of an inward‐rectifier potassium channel. Proc Natl Acad Sci U S A 105: 7188‐7193, 2008.
 169. Deitmer JW. Evidence for two voltage‐dependent calcium currents in the membrane of the ciliate Stylonychia. J Physiol 355: 137‐159, 1984.
 170. Del Monaco SM, Marino GI, Assef YA, Damiano AE, Kotsias BA. Cell migration in BeWo cells and the role of epithelial sodium channels. J Membr Biol 232: 1‐13, 2009.
 171. del Rey A, Renigunta V, Dalpke AH, Leipziger J, Matos JE, Robaye B, Zuzarte M, Kavelaars A, Hanley PJ. Knock‐out mice reveal the contributions of P2Y and P2X receptors to nucleotide‐induced Ca2+ signaling in macrophages. J Biol Chem 281: 35147‐35155, 2006.
 172. Delacour D, Cramm‐Behrens CI, Drobecq H, Le Bivic A, Naim HY, Jacob R. Requirement for galectin‐3 in apical protein sorting. Curr Biol 16: 408‐414, 2006.
 173. Delclaux C, Delacourt C, D'Ortho MP, Boyer V, Lafuma C, Harf A. Role of gelatinase B and elastase in human polymorphonuclear neutrophil migration across basement membrane. Am J Respir Cell Mol Biol 14: 288‐295, 1996.
 174. Denker SP, Barber DL. Cell migration requires both ion translocation and cytoskeletal anchoring by the Na‐H exchanger NHE1. J Cell Biol 159: 1087‐1096, 2002.
 175. Denker SP, Barber DL. Ion transport proteins anchor and regulate the cytoskeleton. Curr Opin Cell Biol 14: 214‐220, 2002.
 176. Denker SP, Huang DC, Orlowski J, Furthmayr H, Barber DL. Direct binding of the Na–H exchanger NHE1 to ERM proteins regulates the cortical cytoskeleton and cell shape independently of H(+) translocation. Mol Cell 6: 1425‐1436, 2000.
 177. Devor DC, Frizzell RA. Calcium‐mediated agonists activate an inwardly rectified K+ channel in colonic secretory cells. Am J Physiol 265: C1271‐C1280, 1993.
 178. Di Ciano‐Oliveira C, Lodyga M, Fan L, Szaszi K, Hosoya H, Rotstein OD, Kapus A. Is myosin light‐chain phosphorylation a regulatory signal for the osmotic activation of the Na+‐K+‐2Cl‐ cotransporter? Am J Physiol Cell Physiol 289: C68‐C81, 2005.
 179. Di Ciano‐Oliveira C, Sirokmany G, Szaszi K, Arthur WT, Masszi A, Peterson M, Rotstein OD, Kapus A. Hyperosmotic stress activates Rho: Differential involvement in Rho kinase‐dependent MLC phosphorylation and NKCC activation. Am J Physiol Cell Physiol 285: C555‐C566, 2003.
 180. Di Ciano C, Nie Z, Szaszi K, Lewis A, Uruno T, Zhan X, Rotstein OD, Mak A, Kapus A. Osmotic stress‐induced remodeling of the cortical cytoskeleton. Am J Physiol Cell Physiol 283: C850‐C865, 2002.
 181. Diaz D, Delgadillo DM, Hernandez‐Gallegos E, Ramirez‐Dominguez ME, Hinojosa LM, Ortiz CS, Berumen J, Camacho J, Gomora JC. Functional expression of voltage‐gated sodium channels in primary cultures of human cervical cancer. J Cell Physiol 210: 469‐478, 2007.
 182. Dib K, Melander F, Andersson T. Role of p190RhoGAP in beta 2 integrin regulation of RhoA in human neutrophils. J Immunol 166: 6311‐6322, 2001.
 183. Dib K, Melander F, Axelsson L, Dagher MC, Aspenstrom P, Andersson T. Down‐regulation of Rac activity during beta 2 integrin‐mediated adhesion of human neutrophils. J Biol Chem 278: 24181‐24188, 2003.
 184. Dieterich P, Klages R, Preuss R, Schwab A. Anomalous dynamics of cell migration. Proc Natl Acad Sci U S A 105: 459‐463, 2008.
 185. Dignass AU. Mechanisms and modulation of intestinal epithelial repair. Inflamm Bowel Dis 7: 68‐77, 2001.
 186. Dineur E. Note sur la sensibilité des leucocytes a l’électricité. Séances Soc Belge Microscopie (Bruxelles) 18: 113‐118, 1891.
 187. Diochot S, Salinas M, Baron A, Escoubas P, Lazdunski M. Peptides inhibitors of acid‐sensing ion channels. Toxicon 49: 271‐284, 2007.
 188. Djamgoz MBA, Mycielska M, Madeja Z, Fraser SP, Korohoda W. Directional movement of rat prostate cancer cells in direct‐current electric field: Involvement of voltagegated Na+ channel activity. J Cell Sci 114: 2697‐2705, 2001.
 189. Doczi MA, Damon DH, Morielli AD. A C‐terminal PDZ binding domain modulates the function and localization of Kv1.3 channels. Exp Cell Res 317: 2333‐2341, 2011.
 190. Dortch‐Carnes J, Van Scott MR, Fedan JS. Changes in smooth muscle tone during osmotic challenge in relation to epithelial bioelectric events in guinea pig isolated trachea. J Pharmacol Exp Ther 289: 911‐917, 1999.
 191. Doughty MJ. Control of ciliary activity in paramecium–IV. Ca2+ modification of Mg2+ dependent dynein ATPase activity. Comp Biochem Physiol B 64: 255‐266, 1979.
 192. Downey GP, Chan CK, Trudel S, Grinstein S. Actin assembly in electropermeabilized neutrophils: Role of intracellular calcium. J Cell Biol 110: 1975‐1982, 1990.
 193. Dreval V, Dieterich P, Stock C, Schwab A. The role of Ca2+ transport across the plasma membrane for cell migration. Cell Physiol Biochem 16: 119‐126, 2005.
 194. Drummond HA, Furtado MM, Myers S, Grifoni S, Parker KA, Hoover A, Stec DE. ENaC proteins are required for NGF‐induced neurite growth. Am J Physiol Cell Physiol 290: C404‐C410, 2006.
 195. Du Bois‐Reymond E. Vorläufiger Abriß einer Untersuchung über den sogenannten Froschstrom und über die elektromotorischen Fische. Poggendorffs Annalen der Physik und Chemie 58: 1‐30, 1843.
 196. Du Bois‐Reymond E. Untersuchungen über tierische Elektrizität, Zweiter Band, Zweite Abteilung (Erste Lieferung). Berlin: Georg Reimer, 1860.
 197. Dube J, Rochette‐Drouin O, Levesque P, Gauvin R, Roberge CJ, Auger FA, Goulet D, Bourdages M, Plante M, Germain L, Moulin VJ. Restoration of the transepithelial potential within tissue‐engineered human skin in vitro and during the wound healing process in vivo. Tissue Eng Part A 16: 3055‐3063, 2010.
 198. Duffy SM, Cruse G, Brightling CE, Bradding P. Adenosine closes the K+ channel KCa3.1 in human lung mast cells and inhibits their migration via the adenosine A2A receptor. Eur J Immunol 37: 1653‐1662, 2007.
 199. Duffy SM, Cruse G, Cockerill SL, Brightling CE, Bradding P. Engagement of the EP2 prostanoid receptor closes the K+ channel KCa3.1 in human lung mast cells and attenuates their migration. Eur J Immunol 38: 2548‐2556, 2008.
 200. Duran C, Thompson CH, Xiao Q, Hartzell HC. Chloride channels: Often enigmatic, rarely predictable. Annu Rev Physiol 72: 95‐121, 2010.
 201. Eble JA, Tuckwell DS. The alpha2beta1 integrin inhibitor rhodocetin binds to the A‐domain of the integrin alpha2 subunit proximal to the collagen‐binding site. Biochem J 376: 77‐85, 2003.
 202. Eckert R. Bioelectric control of ciliary activity. Science 176: 473‐481, 1972.
 203. Eddy RJ, Pierini LM, Matsumura F, Maxfield FR. Ca2+‐dependent myosin II activation is required for uropod retraction during neutrophil migration. J Cell Sci 113 (Pt 7): 1287‐1298, 2000.
 204. Efimov A, Kharitonov A, Efimova N, Loncarek J, Miller PM, Andreyeva N, Gleeson P, Galjart N, Maia AR, McLeod IX, Yates JR, III, Maiato H, Khodjakov A, Akhmanova A, Kaverina I. Asymmetric CLASP‐dependent nucleation of noncentrosomal microtubules at the trans‐Golgi network. Dev Cell 12: 917‐930, 2007.
 205. Eisenbach M, Giojalas LC. Sperm guidance in mammals ‐ an unpaved road to the egg. Nat Rev Mol Cell Biol 7: 276‐285, 2006.
 206. El Chemaly A, Okochi Y, Sasaki M, Arnaudeau S, Okamura Y, Demaurex N. VSOP/Hv1 proton channels sustain calcium entry, neutrophil migration, and superoxide production by limiting cell depolarization and acidification. J Exp Med 207: 129‐139, 2010.
 207. Ellis MA, Potter BA, Cresawn KO, Weisz OA. Polarized biosynthetic traffic in renal epithelial cells: Sorting, sorting, everywhere. Am J Physiol Renal Physiol 291: F707‐F713, 2006.
 208. Enerson BE, Drewes LR. Molecular features, regulation, and function of monocarboxylate transporters: Implications for drug delivery. J Pharm Sci 92: 1531‐1544, 2003.
 209. Epstein FH, Silva P. Na‐K‐Cl cotransport in chloride‐transporting epithelia. Ann N Y Acad Sci 456: 187‐197, 1985.
 210. Erlandsen SL, Greet Bittermann A, White J, Leith A, Marko M. High‐resolution CryoFESEM of individual cell adhesion molecules (CAMs) in the glycocalyx of human platelets: Detection of P‐selectin (CD62P), GPI‐IX complex (CD42A/CD42B alpha,B beta), and integrin GPIIbIIIa (CD41/CD61) by immunogold labeling and stereo imaging. J Histochem Cytochem 49: 809‐819, 2001.
 211. Espineda CE, Chang JH, Twiss J, Rajasekaran SA, Rajasekaran AK. Repression of Na,K‐ATPase beta1‐subunit by the transcription factor snail in carcinoma. Mol Biol Cell 15: 1364‐1373, 2004.
 212. Espinosa L, Paret L, Ojeda C, Tourneur Y, Delmas PD, Chenu C. Osteoclast spreading kinetics are correlated with an oscillatory activation of a calcium‐dependent potassium current. J Cell Sci 115: 3837‐3848, 2002.
 213. Etienne‐Manneville S, Hall A. Integrin‐mediated activation of Cdc42 controls cell polarity in migrating astrocytes through PKCzeta. Cell 106: 489‐498, 2001.
 214. Etienne‐Manneville S, Hall A. Cdc42 regulates GSK‐3beta and adenomatous polyposis coli to control cell polarity. Nature 421: 753‐756, 2003.
 215. Ettaiche M, Guy N, Hofman P, Lazdunski M, Waldmann R. Acid‐sensing ion channel 2 is important for retinal function and protects against light‐induced retinal degeneration. J Neurosci 24: 1005‐1012, 2004.
 216. Evangelista M, Zigmond S, Boone C. Formins: Signaling effectors for assembly and polarization of actin filaments. J Cell Sci 116: 2603‐2611, 2003.
 217. Evans JH, Falke JJ. Ca2+ influx is an essential component of the positive‐feedback loop that maintains leading‐edge structure and activity in macrophages. Proc Natl Acad Sci U S A 104: 16176‐16181, 2007.
 218. Fabian A, Fortmann T, Bulk E, Bomben VC, Sontheimer H, Schwab A. Chemotaxis of MDCK‐F cells toward fibroblast growth factor‐2 depends on transient receptor potential canonical channel 1. Pflugers Arch 461: 295‐306, 2011.
 219. Fabian A, Fortmann T, Dieterich P, Riethmuller C, Schon P, Mally S, Nilius B, Schwab A. TRPC1 channels regulate directionality of migrating cells. Pflugers Arch 457: 475‐484, 2008.
 220. Fan RS, Jacamo RO, Jiang X, Sinnett‐Smith J, Rozengurt E. G protein‐coupled receptor activation rapidly stimulates focal adhesion kinase phosphorylation at Ser‐843. Mediation by Ca2+, calmodulin, and Ca2+/calmodulin‐dependent kinase II. J Biol Chem 280: 24212‐24220, 2005.
 221. Fang J, Quinones QJ, Holman TL, Morowitz MJ, Wang Q, Zhao H, Sivo F, Maris JM, Wahl ML. The H+‐linked monocarboxylate transporter (MCT1/SLC16A1): A potential therapeutic target for high‐risk neuroblastoma. Mol Pharmacol 70: 2108‐2115, 2006.
 222. Fang KS, Farboud B, Nuccitelli R, Isseroff RR. Migration of human keratinocytes in electric fields requires growth factors and extracellular calcium. J Invest Dermatol 111: 751‐756, 1998.
 223. Fels J, Oberleithner H, Kusche‐Vihrog K. Menage a trois: Aldosterone, sodium and nitric oxide in vascular endothelium. Biochim Biophys Acta 1802: 1193‐1202, 2010.
 224. Felsenfeld DP, Schwartzberg PL, Venegas A, Tse R, Sheetz MP. Selective regulation of integrin–cytoskeleton interactions by the tyrosine kinase Src. Nat Cell Biol 1: 200‐206, 1999.
 225. Ferrier J, Ross SM, Kanehisa J, Aubin JE. Osteoclasts and osteoblasts migrate in opposite directions in response to a constant electrical field. J Cell Physiol 129: 283‐288, 1986.
 226. Flagella M, Clarke LL, Miller ML, Erway LC, Giannella RA, Andringa A, Gawenis LR, Kramer J, Duffy JJ, Doetschman T, Lorenz JN, Yamoah EN, Cardell EL, Shull GE. Mice lacking the basolateral Na‐K‐2Cl cotransporter have impaired epithelial chloride secretion and are profoundly deaf. J Biol Chem 274: 26946‐26955, 1999.
 227. Fliegel L. Regulation of the Na(+)/H(+) exchanger in the healthy and diseased myocardium. Expert Opin Ther Targets 13: 55‐68, 2009.
 228. Forget MA, Desrosiers RR, Gingras D, Beliveau R. Phosphorylation states of Cdc42 and RhoA regulate their interactions with Rho GDP dissociation inhibitor and their extraction from biological membranes. Biochem J 361: 243‐254, 2002.
 229. Foulds IS, Barker AT. Human skin battery potentials and their possible role in wound healing. Br J Dermatol 109: 515‐522, 1983.
 230. Foxman EF, Campbell JJ, Butcher EC. Multistep navigation and the combinatorial control of leukocyte chemotaxis. J Cell Biol 139: 1349‐1360, 1997.
 231. Franco SJ, Huttenlocher A. Regulating cell migration: Calpains make the cut. J Cell Sci 118: 3829‐3838, 2005.
 232. Franco SJ, Rodgers MA, Perrin BJ, Han J, Bennin DA, Critchley DR, Huttenlocher A. Calpain‐mediated proteolysis of talin regulates adhesion dynamics. Nat Cell Biol 6: 977‐983, 2004.
 233. Frantz C, Barreiro G, Dominguez L, Chen X, Eddy R, Condeelis J, Kelly MJ, Jacobson MP, Barber DL. Cofilin is a pH sensor for actin free barbed end formation: Role of phosphoinositide binding. J Cell Biol 183: 865‐879, 2008.
 234. Frantz C, Karydis A, Nalbant P, Hahn KM, Barber DL. Positive feedback between Cdc42 activity and H+ efflux by the Na‐H exchanger NHE1 for polarity of migrating cells. J Cell Biol 179: 403‐410, 2007.
 235. Fraser SP, Diss JK, Chioni AM, Mycielska ME, Pan H, Yamaci RF, Pani F, Siwy Z, Krasowska M, Grzywna Z, Brackenbury WJ, Theodorou D, Koyuturk M, Kaya H, Battaloglu E, De Bella MT, Slade MJ, Tolhurst R, Palmieri C, Jiang J, Latchman DS, Coombes RC, Djamgoz MB. Voltage‐gated sodium channel expression and potentiation of human breast cancer metastasis. Clin Cancer Res 11: 5381‐5389, 2005.
 236. Fraser SP, Diss JK, Lloyd LJ, Pani F, Chioni AM, George AJ, Djamgoz MB. T‐lymphocyte invasiveness: Control by voltage‐gated Na+ channel activity. FEBS Lett 569: 191‐194, 2004.
 237. Fraser SP, Salvador V, Manning EA, Mizal J, Altun S, Raza M, Berridge RJ, Djamgoz MB. Contribution of functional voltage‐gated Na+ channel expression to cell behaviors involved in the metastatic cascade in rat prostate cancer: I. Lateral motility. J Cell Physiol 195: 479‐487, 2003.
 238. Freisinger CM, Schneider I, Westfall TA, Slusarski DC. Calcium dynamics integrated into signaling pathways that influence vertebrate axial patterning. Philos Trans R Soc Lond B Biol Sci 363: 1377‐1385, 2008.
 239. Friedl P, Gilmour D. Collective cell migration in morphogenesis, regeneration and cancer. Nat Rev Mol Cell Biol 10: 445‐457, 2009.
 240. Friedl P, Weigelin B. Interstitial leukocyte migration and immune function. Nat Immunol 9: 960‐969, 2008.
 241. Fronius M, Clauss WG. Mechano‐sensitivity of ENaC: May the (shear) force be with you. Pflugers Arch 455: 775‐785, 2008.
 242. Fukumura D, Xu L, Chen Y, Gohongi T, Seed B, Jain RK. Hypoxia and acidosis independently up‐regulate vascular endothelial growth factor transcription in brain tumors in vivo. Cancer Res 61: 6020‐6024, 2001.
 243. Fukushima K, Senda N, Inui H, Miura H, Tamai Y, Murakami Y. Studies on galvanotaxis of leukocytes. I. Galvanotaxis of human neutrophilic leukocytes and methods of measurement. Med J Osaka Univ 4: 195‐208, 1953
 244. Fulgenzi G, Graciotti L, Faronato M, Soldovieri MV, Miceli F, Amoroso S, Annunziato L, Procopio A, Taglialatela M. Human neoplastic mesothelial cells express voltage‐gated sodium channels involved in cell motility. Int J Biochem Cell Biol 38: 1146‐1159, 2006.
 245. Fuller CM, Benos DJ. Putting the brakes on vascular smooth muscle cell migration. Am J Physiol Heart Circ Physiol 294: H1987‐H1988, 2008.
 246. Furuya M, Kirschbaum SB, Paulovich A, Pauli BU, Zhang H, Alexander JS, Farr AG, Ruddell A. Lymphatic endothelial murine chloride channel calcium‐activated 1 is a ligand for leukocyte LFA‐1 and Mac‐1. J Immunol 185: 5769‐5777, 2010.
 247. Galindo BE, Beltran C, Cragoe EJ,Jr., Darszon A. Participation of a K(+) channel modulated directly by cGMP in the speract‐induced signaling cascade of strongylocentrotus purpuratus sea urchin sperm. Dev Biol 221: 285‐294, 2000.
 248. Galindo BE, de la Vega‐Beltran JL, Labarca P, Vacquier VD, Darszon A. Sp‐tetraKCNG: A novel cyclic nucleotide gated K(+) channel. Biochem Biophys Res Commun 354: 668‐675, 2007.
 249. Galindo BE, Neill AT, Vacquier VD. A new hyperpolarization‐activated, cyclic nucleotide‐gated channel from sea urchin sperm flagella. Biochem Biophys Res Commun 334: 96‐101, 2005.
 250. Galindo BE, Nishigaki T, Rodriguez E, Sanchez D, Beltran C, Darszon A. Speract‐receptor interaction and the modulation of ion transport in Strongylocentrotus purpuratus sea urchin sperm. Zygote 8 (Suppl 1): S20‐S21, 2000.
 251. Gallagher SM, Castorino JJ, Philp NJ. Interaction of monocarboxylate transporter 4 with beta1‐integrin and its role in cell migration. Am J Physiol Cell Physiol 296: C414‐C421, 2009.
 252. Gallagher SM, Castorino JJ, Wang D, Philp NJ. Monocarboxylate transporter 4 regulates maturation and trafficking of CD147 to the plasma membrane in the metastatic breast cancer cell line MDA‐MB‐231. Cancer Res 67: 4182‐4189, 2007.
 253. Galvez BG, Matias‐Roman S, Yanez‐Mo M, Vicente‐Manzanares M, Sanchez‐Madrid F, Arroyo AG. Caveolae are a novel pathway for membrane‐type 1 matrix metalloproteinase traffic in human endothelial cells. Mol Biol Cell 15: 678‐687, 2004.
 254. Ganapathy V, Thangaraju M, Gopal E, Martin PM, Itagaki S, Miyauchi S, Prasad PD. Sodium‐coupled monocarboxylate transporters in normal tissues and in cancer. Aaps J 10: 193‐199, 2008.
 255. Gao R, Shen Y, Cai J, Lei M, Wang Z. Expression of voltage‐gated sodium channel alpha subunit in human ovarian cancer. Oncol Rep 23: 1293‐1299, 2010.
 256. Gao YD, Hanley PJ, Rinne S, Zuzarte M, Daut J. Calcium‐activated K(+) channel (K(Ca)3.1) activity during Ca(2+) store depletion and store‐operated Ca(2+) entry in human macrophages. Cell Calcium 48: 19‐27, 2010.
 257. Garcia‐Anoveros J, Derfler B, Neville‐Golden J, Hyman BT, Corey DP. BNaC1 and BNaC2 constitute a new family of human neuronal sodium channels related to degenerins and epithelial sodium channels. Proc Natl Acad Sci U S A 94: 1459‐1464, 1997.
 258. Garty H, Palmer LG. Epithelial sodium channels: Function, structure, and regulation. Physiol Rev 77: 359‐396, 1997.
 259. Gatenby RA, Gillies RJ. Why do cancers have high aerobic glycolysis? Nat Rev Cancer 4: 891‐899, 2004.
 260. Gauss R, Seifert R, Kaupp UB. Molecular identification of a hyperpolarization‐activated channel in sea urchin sperm. Nature 393: 583‐587, 1998.
 261. Gawden‐Bone C, Zhou Z, King E, Prescott A, Watts C, Lucocq J. Dendritic cell podosomes are protrusive and invade the extracellular matrix using metalloproteinase MMP‐14. J Cell Sci 123: 1427‐1437, 2010.
 262. Ge R, Tai Y, Sun Y, Zhou K, Yang S, Cheng T, Zou Q, Shen F, Wang Y. Critical role of TRPC6 channels in VEGF‐mediated angiogenesis. Cancer Lett 283: 43‐51, 2009.
 263. Ge S, Pachter JS. Caveolin‐1 knockdown by small interfering RNA suppresses responses to the chemokine monocyte chemoattractant protein‐1 by human astrocytes. J Biol Chem 279: 6688‐6695, 2004.
 264. Geering K. Functional roles of Na,K‐ATPase subunits. Curr Opin Nephrol Hypertens 17: 526‐532, 2008.
 265. Gees M, Colsoul B, Nilius B. The role of transient receptor potential cation channels in Ca2+ signaling. Cold Spring Harb Perspect Biol 2: a003962, 2010.
 266. Ghashghaei HT, Lai C, Anton ES. Neuronal migration in the adult brain: Are we there yet? Nature Reviews Neuroscience 8: 141‐151, 2007.
 267. Gibbons IR. Cilia and flagella of eukaryotes. J Cell Biol 91: 107s‐124s, 1981.
 268. Gillet L, Roger S, Besson P, Lecaille F, Gore J, Bougnoux P, Lalmanach G, Le Guennec JY. Voltage‐gated sodium channel activity promotes cysteine cathepsin‐dependent invasiveness and colony growth of human cancer cells. J Biol Chem 284: 8680‐8691, 2009.
 269. Gillies RJ, Raghunand N, Karczmar GS, Bhujwalla ZM. MRI of the tumor microenvironment. J Magn Reson Imaging 16: 430‐450, 2002.
 270. Gimona M, Grashoff C, Kopp P. Oktoberfest for adhesion structures. EMBO Rep 6: 922‐926, 2005.
 271. Gkika D, Flourakis M, Lemonnier L, Prevarskaya N. PSA reduces prostate cancer cell motility by stimulating TRPM8 activity and plasma membrane expression. Oncogene 29: 4611‐4616, 2010.
 272. Gloor S, Antonicek H, Sweadner KJ, Pagliusi S, Frank R, Moos M, Schachner M. The adhesion molecule on glia (AMOG) is a homologue of the beta subunit of the Na,K‐ATPase. J Cell Biol 110: 165‐174, 1990.
 273. Goldfarb SB, Kashlan OB, Watkins JN, Suaud L, Yan W, Kleyman TR, Rubenstein RC. Differential effects of Hsc70 and Hsp70 on the intracellular trafficking and functional expression of epithelial sodium channels. Proc Natl Acad Sci U S A 103: 5817‐5822, 2006.
 274. Gomez‐Mouton C, Abad JL, Mira E, Lacalle RA, Gallardo E, Jimenez‐Baranda S, Illa I, Bernad A, Manes S, Martinez AC. Segregation of leading‐edge and uropod components into specific lipid rafts during T cell polarization. Proc Natl Acad Sci U S A 98: 9642‐9647, 2001.
 275. Gomez‐Mouton C, Manes S. Establishment and maintenance of cell polarity during leukocyte chemotaxis. Cell Adh Migr 1: 69‐76, 2007.
 276. Gomez‐Varela D, Zwick‐Wallasch E, Knotgen H, Sanchez A, Hettmann T, Ossipov D, Weseloh R, Contreras‐Jurado C, Rothe M, Stuhmer W, Pardo LA. Monoclonal antibody blockade of the human Eag1 potassium channel function exerts antitumor activity. Cancer Res 67: 7343‐7349, 2007.
 277. Gomez TM, Spitzer NC. In vivo regulation of axon extension and pathfinding by growth‐cone calcium transients. Nature 397: 350‐355, 1999.
 278. Gong W, Xu H, Shimizu T, Morishima S, Tanabe S, Tachibe T, Uchida S, Sasaki S, Okada Y. ClC‐3‐independent, PKC‐dependent activity of volume‐sensitive Cl channel in mouse ventricular cardiomyocytes. Cell Physiol Biochem 14: 213‐224, 2004.
 279. Gonzalez‐Martinez MT, Guerrero A, Morales E, de De La Torre L, Darszon A. A depolarization can trigger Ca2+ uptake and the acrosome reaction when preceded by a hyperpolarization in L. pictus sea urchin sperm. Dev Biol 150: 193‐202, 1992.
 280. Goodenough UW, Heuser JE. Substructure of inner dynein arms, radial spokes, and the central pair/projection complex of cilia and flagella. J Cell Biol 100: 2008‐2018, 1985.
 281. Goswami C, Dreger M, Jahnel R, Bogen O, Gillen C, Hucho F. Identification and characterization of a Ca2+‐sensitive interaction of the vanilloid receptor TRPV1 with tubulin. J Neurochem 91: 1092‐1103, 2004.
 282. Goswami C, Dreger M, Otto H, Schwappach B, Hucho F. Rapid disassembly of dynamic microtubules upon activation of the capsaicin receptor TRPV1. J Neurochem 96: 254‐266, 2006.
 283. Goswami C, Hucho T. TRPV1 expression‐dependent initiation and regulation of filopodia. J Neurochem 103: 1319‐1333, 2007.
 284. Goswami C, Hucho TB, Hucho F. Identification and characterisation of novel tubulin‐binding motifs located within the C‐terminus of TRPV1. J Neurochem 101: 250‐262, 2007.
 285. Goswami C, Kuhn J, Heppenstall PA, Hucho T. Importance of non‐selective cation channel TRPV4 interaction with cytoskeleton and their reciprocal regulations in cultured cells. PLoS One 5: e11654, 2010.
 286. Goswami C, Schmidt H, Hucho F. TRPV1 at nerve endings regulates growth cone morphology and movement through cytoskeleton reorganization. Febs J 274: 760‐772, 2007.
 287. Gottlieb P, Folgering J, Maroto R, Raso A, Wood TG, Kurosky A, Bowman C, Bichet D, Patel A, Sachs F, Martinac B, Hamill OP, Honore E. Revisiting TRPC1 and TRPC6 mechanosensitivity. Pflugers Arch 455: 1097‐1103, 2008.
 288. Granados‐Gonzalez G, Mendoza‐Lujambio I, Rodriguez E, Galindo BE, Beltran C, Darszon A. Identification of voltage‐dependent Ca2+ channels in sea urchin sperm. FEBS Lett 579: 6667‐6672, 2005.
 289. Graziani A, Poteser M, Heupel WM, Schleifer H, Krenn M, Drenckhahn D, Romanin C, Baumgartner W, Groschner K. Cell‐cell contact formation governs Ca2+ signaling by TRPC4 in the vascular endothelium: Evidence for a regulatory TRPC4‐beta‐catenin interaction. J Biol Chem 285: 4213‐4223, 2010.
 290. Greka A, Mundel P. Balancing calcium signals through TRPC5 and TRPC6 in podocytes. J Am Soc Nephrol 22: 1969‐1980, 2011.
 291. Greka A, Navarro B, Oancea E, Duggan A, Clapham DE. TRPC5 is a regulator of hippocampal neurite length and growth cone morphology. Nat Neurosci 6: 837‐845, 2003.
 292. Grifoni SC, Gannon KP, Stec DE, Drummond HA. ENaC proteins contribute to VSMC migration. Am J Physiol Heart Circ Physiol 291: H3076‐H3086, 2006.
 293. Grifoni SC, Jernigan NL, Hamilton G, Drummond HA. ASIC proteins regulate smooth muscle cell migration. Microvasc Res 75: 202‐210, 2008.
 294. Grifoni SC, McKey SE, Drummond HA. Hsc70 regulates cell surface ASIC2 expression and vascular smooth muscle cell migration. Am J Physiol Heart Circ Physiol 294: H2022‐H2030, 2008.
 295. Grimes JA, Fraser SP, Stephens GJ, Downing JE, Laniado ME, Foster CS, Abel PD, Djamgoz MB. Differential expression of voltage‐activated Na+ currents in two prostatic tumour cell lines: Contribution to invasiveness in vitro. FEBS Lett 369: 290‐294, 1995.
 296. Grinstein S, Woodside M, Sardet C, Pouyssegur J, Rotin D. Activation of the Na+/H+ antiporter during cell volume regulation. Evidence for a phosphorylation‐independent mechanism. J Biol Chem 267: 23823‐23828, 1992.
 297. Grinstein S, Woodside M, Waddell TK, Downey GP, Orlowski J, Pouyssegur J, Wong DC, Foskett JK. Focal localization of the NHE‐1 isoform of the Na+/H+ antiport: Assessment of effects on intracellular pH. Embo J 12: 5209‐5218, 1993.
 298. Gruler H, Nuccitelli R. Neural crest cell galvanotaxis: New data and a novel approach to the analysis of both galvanotaxis and chemotaxis. Cell Motil Cytoskeleton 19: 121‐133, 1991.
 299. Grunder S, Geissler HS, Bassler EL, Ruppersberg JP. A new member of acid‐sensing ion channels from pituitary gland. Neuroreport 11: 1607‐1611, 2000.
 300. Grzmil M, Kaulfuss S, Thelen P, Hemmerlein B, Schweyer S, Obenauer S, Kang TW, Burfeind P. Expression and functional analysis of Bax inhibitor‐1 in human breast cancer cells. J Pathol 208: 340‐349, 2006.
 301. Grzmil M, Thelen P, Hemmerlein B, Schweyer S, Voigt S, Mury D, Burfeind P. Bax inhibitor‐1 is overexpressed in prostate cancer and its specific down‐regulation by RNA interference leads to cell death in human prostate carcinoma cells. Am J Pathol 163: 543‐552, 2003.
 302. Guan JL, Chen HC. Signal transduction in cell‐matrix interactions. Int Rev Cytol 168: 81‐121, 1996.
 303. Gubitosi‐Klug RA, Mancuso DJ, Gross RW. The human Kv1.1 channel is palmitoylated, modulating voltage sensing: Identification of a palmitoylation consensus sequence. Proc Natl Acad Sci U S A 102: 5964‐5968, 2005.
 304. Gui P, Wu X, Ling S, Stotz SC, Winkfein RJ, Wilson E, Davis GE, Braun AP, Zamponi GW, Davis MJ. Integrin receptor activation triggers converging regulation of Cav1.2 calcium channels by c‐Src and protein kinase A pathways. J Biol Chem 281: 14015‐14025, 2006.
 305. Guidobaldi HA, Teves ME, Unates DR, Anastasia A, Giojalas LC. Progesterone from the cumulus cells is the sperm chemoattractant secreted by the rabbit oocyte cumulus complex. PLoS One 3: e3040, 2008.
 306. Gungabissoon RA, Bamburg JR. Regulation of growth cone actin dynamics by ADF/cofilin. J Histochem Cytochem 51: 411‐420, 2003.
 307. Gutman GA, Chandy KG, Grissmer S, Lazdunski M, McKinnon D, Pardo LA, Robertson GA, Rudy B, Sanguinetti MC, Stuhmer W, Wang X. International Union of Pharmacology. LIII. Nomenclature and molecular relationships of voltage‐gated potassium channels. Pharmacol Rev 57: 473‐508, 2005.
 308. Haas BR, Sontheimer H. Inhibition of the sodium‐potassium‐chloride cotransporter isoform‐1 reduces glioma invasion. Cancer Res 70: 5597‐5606, 2010.
 309. Habela CW, Ernest NJ, Swindall AF, Sontheimer H. Chloride accumulation drives volume dynamics underlying cell proliferation and migration. J Neurophysiol 101: 750‐757, 2009.
 310. Hahn K, DeBiasio R, Taylor DL. Patterns of elevated free calcium and calmodulin activation in living cells. Nature 359: 736‐738, 1992.
 311. Hajdu P, Varga Z, Pieri C, Panyi G, Gaspar R, Jr. Cholesterol modifies the gating of Kv1.3 in human T lymphocytes. Pflugers Arch 445: 674‐682, 2003.
 312. Halestrap AP, Meredith D. The SLC16 gene family‐from monocarboxylate transporters (MCTs) to aromatic amino acid transporters and beyond. Pflugers Arch 447: 619‐628, 2004.
 313. Hallows KR, Packman CH, Knauf PA. Acute cell volume changes in anisotonic media affect F‐actin content of HL‐60 cells. Am J Physiol 261: C1154‐C1161, 1991.
 314. Hamdollah Zadeh MA, Glass CA, Magnussen A, Hancox JC, Bates DO. VEGF‐mediated elevated intracellular calcium and angiogenesis in human microvascular endothelial cells in vitro are inhibited by dominant negative TRPC6. Microcirculation 15: 605‐614, 2008.
 315. Hammerton RW, Krzeminski KA, Mays RW, Ryan TA, Wollner DA, Nelson WJ. Mechanism for regulating cell surface distribution of Na+,K(+)‐ATPase in polarized epithelial cells. Science 254: 847‐850, 1991.
 316. Hamming KS, Soliman D, Webster NJ, Searle GJ, Matemisz LC, Liknes DA, Dai XQ, Pulinilkunnil T, Riedel MJ, Dyck JR, Macdonald PE, Light PE. Inhibition of beta‐cell sodium‐calcium exchange enhances glucose‐dependent elevations in cytoplasmic calcium and insulin secretion. Diabetes 59: 1686‐1693, 2010.
 317. Hanahan D, Weinberg RA. The hallmarks of cancer. Cell 100: 57‐70, 2000.
 318. Hanley PJ, Musset B, Renigunta V, Limberg SH, Dalpke AH, Sus R, Heeg KM, Preisig‐Muller R, Daut J. Extracellular ATP induces oscillations of intracellular Ca2+ and membrane potential and promotes transcription of IL‐6 in macrophages. Proc Natl Acad Sci U S A 101: 9479‐9484, 2004.
 319. Hanley PJ, Xu Y, Kronlage M, Grobe K, Schon P, Song J, Sorokin L, Schwab A, Bahler M. Motorized RhoGAP myosin IXb (Myo9b) controls cell shape and motility. Proc Natl Acad Sci U S A 107: 12145‐12150, 2010.
 320. Happel P, Moller K, Kunz R, Dietzel ID. A boundary delimitation algorithm to approximate cell soma volumes of bipolar cells from topographical data obtained by scanning probe microscopy. BMC Bioinformatics 11: 323, 2010.
 321. Hara‐Chikuma M, Verkman AS. Aquaporin‐1 facilitates epithelial cell migration in kidney proximal tubule. J Am Soc Nephrol 17: 39‐45, 2006.
 322. Hara‐Chikuma M, Verkman AS. Physiological roles of glycerol‐transporting aquaporins: The aquaglyceroporins. Cell Mol Life Sci 63: 1386‐1392, 2006.
 323. Hara‐Chikuma M, Verkman AS. Aquaporin‐3 facilitates epidermal cell migration and proliferation during wound healing. J Mol Med 86: 221‐231, 2008.
 324. Hara‐Chikuma M, Verkman AS. Prevention of skin tumorigenesis and impairment of epidermal cell proliferation by targeted aquaporin‐3 gene disruption. Mol Cell Biol 28: 326‐332, 2008.
 325. Hara Y, Wakamori M, Ishii M, Maeno E, Nishida M, Yoshida T, Yamada H, Shimizu S, Mori E, Kudoh J, Shimizu N, Kurose H, Okada Y, Imoto K, Mori Y. LTRPC2 Ca2+‐permeable channel activated by changes in redox status confers susceptibility to cell death. Mol Cell 9: 163‐173, 2002.
 326. Hardt M, Plattner H. Sub‐second quenched‐flow/X‐ray microanalysis shows rapid Ca2+ mobilization front cortical stores paralleled by Ca2+ influx during synchronous exocytosis in Paramecium cells. Eur J Cell Biol 79: 642‐652, 2000.
 327. Haren N, Khorsi H, Faouzi M, Ahidouch A, Sevestre H, Ouadid‐Ahidouch H. Intermediate conductance Ca2+ activated K+ channels are expressed and functional in breast adenocarcinomas: Correlation with tumour grade and metastasis status. Histol Histopathol 25: 1247‐1255, 2010.
 328. Harima Y, Togashi A, Horikoshi K, Imamura M, Sougawa M, Sawada S, Tsunoda T, Nakamura Y, Katagiri T. Prediction of outcome of advanced cervical cancer to thermoradiotherapy according to expression profiles of 35 genes selected by cDNA microarray analysis. Int J Radiat Oncol Biol Phys 60: 237‐248, 2004.
 329. Harold FM, Papineau D. Cation transport and electrogenesis by Streptococcus faecalis. II. Proton and sodium extrusion. J Membr Biol 8: 45‐62, 1972.
 330. Hauser K, Pavlovic N, Klauke N, Geissinger D, Plattner H. Green fluorescent protein‐tagged sarco(endo)plasmic reticulum Ca2+‐ATPase overexpression in Paramecium cells: Isoforms, subcellular localization, biogenesis of cortical calcium stores and functional aspects. Mol Microbiol 37: 773‐787, 2000.
 331. Hayashi H, Aharonovitz O, Alexander RT, Touret N, Furuya W, Orlowski J, Grinstein S. Na+/H+ exchange and pH regulation in the control of neutrophil chemokinesis and chemotaxis. Am J Physiol Cell Physiol 294: C526‐C534, 2008.
 332. Hayashi S, Nakamura E, Endo T, Kubo Y, Takeuchi K. Impairment by activation of TRPA1 of gastric epithelial restitution in a wound model using RGM1 cell monolayer. Inflammopharmacology 15: 218‐222, 2007.
 333. Hayashi S, Takahashi N, Kurata N, Yamaguchi A, Matsui H, Kato S, Takeuchi K. Involvement of aquaporin‐1 in gastric epithelial cell migration during wound repair. Biochem Biophys Res Commun 386: 483‐487, 2009.
 334. Hebert M, Potin S, Sebbagh M, Bertoglio J, Breard J, Hamelin J. Rho‐ROCK‐dependent ezrin‐radixin‐moesin phosphorylation regulates Fas‐mediated apoptosis in Jurkat cells. J Immunol 181: 5963‐5973, 2008.
 335. Heck N, Kilb W, Reiprich P, Kubota H, Furukawa T, Fukuda A, Luhmann HJ. GABA‐A receptors regulate neocortical neuronal migration in vitro and in vivo. Cereb Cortex 17: 138‐148, 2007.
 336. Hecquet CM, Ahmmed GU, Vogel SM, Malik AB. Role of TRPM2 channel in mediating H2O2‐induced Ca2+ entry and endothelial hyperpermeability. Circ Res 102: 347‐355, 2008.
 337. Heiner I, Eisfeld J, Warnstedt M, Radukina N, Jungling E, Luckhoff A. Endogenous ADP‐ribose enables calcium‐regulated cation currents through TRPM2 channels in neutrophil granulocytes. Biochem J 398: 225‐232, 2006.
 338. Heit B, Liu L, Colarusso P, Puri KD, Kubes P. PI3K accelerates, but is not required for, neutrophil chemotaxis to fMLP. J Cell Sci 121: 205‐214, 2008.
 339. Heit B, Robbins SM, Downey CM, Guan Z, Colarusso P, Miller BJ, Jirik FR, Kubes P. PTEN functions to ‘prioritize’ chemotactic cues and prevent ‘distraction’ in migrating neutrophils. Nat Immunol 9: 743‐752, 2008.
 340. Heit B, Tavener S, Raharjo E, Kubes P. An intracellular signaling hierarchy determines direction of migration in opposing chemotactic gradients. J Cell Biol 159: 91‐102, 2002.
 341. Helmlinger G, Sckell A, Dellian M, Forbes NS, Jain RK. Acid production in glycolysis‐impaired tumors provides new insights into tumor metabolism. Clin Cancer Res 8: 1284‐1291, 2002.
 342. Hendey B, Maxfield FR. Regulation of neutrophil motility and adhesion by intracellular calcium transients. Blood Cells 19: 143‐161; discussion 161‐144, 1993.
 343. Hendriks R, Morest DK, Kaczmarek LK. Role in neuronal cell migration for high‐threshold potassium currents in the chicken hindbrain. J Neurosci Res 58: 805‐814, 1999.
 344. Henke G, Maier G, Wallisch S, Boehmer C, Lang F. Regulation of the voltage gated K+ channel Kv1.3 by the ubiquitin ligase Nedd4‐2 and the serum and glucocorticoid inducible kinase SGK1. J Cell Physiol 199: 194‐199, 2004.
 345. Henriksen K, Sorensen MG, Jensen VK, Dziegiel MH, Nosjean O, Karsdal MA. Ion transporters involved in acidification of the resorption lacuna in osteoclasts. Calcif Tissue Int 83: 230‐242, 2008.
 346. Hibino H, Inanobe A, Furutani K, Murakami S, Findlay I, Kurachi Y. Inwardly rectifying potassium channels: Their structure, function, and physiological roles. Physiol Rev 90: 291‐366, 2010.
 347. Hinton A, Sennoune SR, Bond S, Fang M, Reuveni M, Sahagian GG, Jay D, Martinez‐Zaguilan R, Forgac M. Function of a subunit isoforms of the V‐ATPase in pH homeostasis and in vitro invasion of MDA‐MB231 human breast cancer cells. J Biol Chem 284: 16400‐16408, 2009.
 348. Ho HC, Suarez SS. Hyperactivation of mammalian spermatozoa: Function and regulation. Reproduction 122: 519‐526, 2001.
 349. Hoeller O, Kay RR. Chemotaxis in the absence of PIP3 gradients. Curr Biol 17: 813‐817, 2007.
 350. Hoffmann EK, Lambert IH, Pedersen SF. Physiology of cell volume regulation in vertebrates. Physiol Rev 89: 193‐277, 2009.
 351. Holman CM, Kan CC, Gehring MR, Van Wart HE. Role of His‐224 in the anomalous pH dependence of human stromelysin‐1. Biochemistry 38: 677‐681, 1999.
 352. Holzer P. Acid‐sensitive ion channels and receptors. Handb Exp Pharmacol 283‐332, 2009.
 353. Hopkins DL. The effect of hydrogen‐ion concentration on locomotion and other life‐processes in amoeba proteus. Proc Natl Acad Sci U S A 12: 311‐315, 1926.
 354. Hormeno S, Ibarra B, Chichon FJ, Habermann K, Lange BM, Valpuesta JM, Carrascosa JL, Arias‐Gonzalez JR. Single centrosome manipulation reveals its electric charge and associated dynamic structure. Biophys J 97: 1022‐1030, 2009.
 355. Horvath RJ, DeLeo JA. Morphine enhances microglial migration through modulation of P2×4 receptor signaling. J Neurosci 29: 998‐1005, 2009.
 356. House CD, Vaske CJ, Schwartz AM, Obias V, Frank B, Luu T, Sarvazyan N, Irby R, Strausberg RL, Hales TG, Stuart JM, Lee NH. Voltage‐gated Na+ channel SCN5A is a key regulator of a gene transcriptional network that controls colon cancer invasion. Cancer Res 70: 6957‐6967, 2010.
 357. Hu J, Verkman AS. Increased migration and metastatic potential of tumor cells expressing aquaporin water channels. Faseb J 20: 1892‐1894, 2006.
 358. Hu X, Laragione T, Sun L, Koshy S, Jones KR, Ismailov, II, Yotnda P, Horrigan FT, Gulko PS, Beeton C. KCa1.1 potassium channels regulate key proinflammatory and invasive properties of fibroblast‐like synoviocytes in rheumatoid arthritis. J Biol Chem 287: 4014‐4022, 2012.
 359. Huang JB, Kindzelskii AL, Clark AJ, Petty HR. Identification of channels promoting calcium spikes and waves in HT1080 tumor cells: Their apparent roles in cell motility and invasion. Cancer Res 64: 2482‐2489, 2004.
 360. Huang S, Carlson GM, Cheung WY. Calmodulin‐dependent enzymes undergo a protein‐induced conformational change that is associated with their interactions with calmodulin. J Biol Chem 269: 7631‐7638, 1994.
 361. Huang S, Cheung WY. H+ is involved in the activation of calcineurin by calmodulin. J Biol Chem 269: 22067‐22074, 1994.
 362. Huang Y, Zhu Z, Sun M, Wang J, Guo R, Shen L, Wu W. Critical role of aquaporin‐3 in the human epidermal growth factor‐induced migration and proliferation in the human gastric adenocarcinoma cells. Cancer Biol Ther 9: 1000‐1007, 2010.
 363. Huebert RC, Vasdev MM, Shergill U, Das A, Huang BQ, Charlton MR, LaRusso NF, Shah VH. Aquaporin‐1 facilitates angiogenic invasion in the pathological neovasculature that accompanies cirrhosis. Hepatology 52: 238‐248, 2010.
 364. Hunter RH, Nichol R. A preovulatory temperature gradient between the isthmus and ampulla of pig oviducts during the phase of sperm storage. J Reprod Fertil 77: 599‐606, 1986.
 365. Huttenlocher A. Cell polarization mechanisms during directed cell migration. Nat Cell Biol 7: 336‐337, 2005.
 366. Huttenlocher A, Horwitz AR. Wound healing with electric potential. N Engl J Med 356: 303‐304, 2007.
 367. Huttenlocher A, Sandborg RR, Horwitz AF. Adhesion in cell migration. Curr Opin Cell Biol 7: 697‐706, 1995.
 368. Hynes RO. Integrins: Bidirectional, allosteric signaling machines. Cell 110: 673‐687, 2002.
 369. Ifuku M, Farber K, Okuno Y, Yamakawa Y, Miyamoto T, Nolte C, Merrino VF, Kita S, Iwamoto T, Komuro I, Wang B, Cheung G, Ishikawa E, Ooboshi H, Bader M, Wada K, Kettenmann H, Noda M. Bradykinin‐induced microglial migration mediated by B1‐bradykinin receptors depends on Ca2+ influx via reverse‐mode activity of the Na+/Ca2+ exchanger. J Neurosci 27: 13065‐13073, 2007.
 370. Iglesias PA, Devreotes PN. Navigating through models of chemotaxis. Curr Opin Cell Biol 20: 35‐40, 2008.
 371. Ingber DE, Prusty D, Frangioni JV, Cragoe EJ,Jr., Lechene C, Schwartz MA. Control of intracellular pH and growth by fibronectin in capillary endothelial cells. J Cell Biol 110: 1803‐1811, 1990.
 372. Inoue Y, Shingyoji C. The roles of noncatalytic ATP binding and ADP binding in the regulation of dynein motile activity in flagella. Cell Motil Cytoskeleton 64: 690‐704, 2007.
 373. Insall RH. Understanding eukaryotic chemotaxis: A pseudopod‐centred view. Nat Rev Mol Cell Biol 11: 453‐458, 2010.
 374. Ishibashi K, Marumo F. Molecular cloning of a DEG/ENaC sodium channel cDNA from human testis. Biochem Biophys Res Commun 245: 589‐593, 1998.
 375. Ishibashi Y, Matsumoto T, Niwa M, Suzuki Y, Omura N, Hanyu N, Nakada K, Yanaga K, Yamada K, Ohkawa K, Kawakami M, Urashima M. CD147 and matrix metalloproteinase‐2 protein expression as significant prognostic factors in esophageal squamous cell carcinoma. Cancer 101: 1994‐2000, 2004.
 376. Ishiguro T, Avila H, Lin SY, Nakamura T, Yamamoto M, Boyd DD. Gene trapping identifies chloride channel 4 as a novel inducer of colon cancer cell migration, invasion and metastases. Br J Cancer 102: 774‐782, 2010.
 377. Ishikawa R, Shingyoji C. Induction of beating by imposed bending or mechanical pulse in demembranated, motionless sea urchin sperm flagella at very low ATP concentrations. Cell Struct Funct 32: 17‐27, 2007.
 378. Ito T, Suzuki A, Stossel TP. Regulation of water flow by actin‐binding protein‐induced actin gelatin. Biophys J 61: 1301‐1305, 1992.
 379. Ito T, Yamazaki M. The “Le Chatelier's principle”‐governed response of actin filaments to osmotic stress. J Phys Chem B 110: 13572‐13581, 2006.
 380. Itoh S, Hamada E, Kamoshida G, Takeshita K, Oku T, Tsuji T. Staphylococcal superantigen‐like protein 5 inhibits matrix metalloproteinase 9 from human neutrophils. Infect Immun 78: 3298‐3305, 2010.
 381. Iwamoto T, Watano T, Shigekawa M. A novel isothiourea derivative selectively inhibits the reverse mode of Na+/Ca2+ exchange in cells expressing NCX1. J Biol Chem 271: 22391‐22397, 1996.
 382. Iwasaki H, Murata Y, Kim Y, Hossain MI, Worby CA, Dixon JE, McCormack T, Sasaki T, Okamura Y. A voltage‐sensing phosphatase, Ci‐VSP, which shares sequence identity with PTEN, dephosphorylates phosphatidylinositol 4,5‐bisphosphate. Proc Natl Acad Sci U S A 105: 7970‐7975, 2008.
 383. Izumi H, Torigoe T, Ishiguchi H, Uramoto H, Yoshida Y, Tanabe M, Ise T, Murakami T, Yoshida T, Nomoto M, Kohno K. Cellular pH regulators: Potentially promising molecular targets for cancer chemotherapy. Cancer Treat Rev 29: 541‐549, 2003.
 384. Jacob P, Christiani S, Rossmann H, Lamprecht G, Vieillard‐Baron D, Muller R, Gregor M, Seidler U. Role of Na(+)HCO(3)(‐) cotransporter NBC1, Na(+)/H(+) exchanger NHE1, and carbonic anhydrase in rabbit duodenal bicarbonate secretion. Gastroenterology 119: 406‐419, 2000.
 385. Jaconi ME, Rivest RW, Schlegel W, Wollheim CB, Pittet D, Lew PD. Spontaneous and chemoattractant‐induced oscillations of cytosolic free calcium in single adherent human neutrophils. J Biol Chem 263: 10557‐10560, 1988.
 386. Jaffe LF, Nuccitelli R. Electrical controls of development. Annu Rev Biophys Bioeng 6: 445‐476, 1977.
 387. Jaffe LF, Vanable JW, Jr. Electric fields and wound healing. Clin Dermatol 2: 34‐44, 1984.
 388. Jager H, Dreker T, Buck A, Giehl K, Gress T, Grissmer S. Blockage of intermediate‐conductance Ca2+‐activated K+ channels inhibit human pancreatic cancer cell growth in vitro. Mol Pharmacol 65: 630‐638, 2004.
 389. Jahn R, Lang T, Sudhof TC. Membrane fusion. Cell 112: 519‐533, 2003.
 390. Jahr H, van Driel M, van Osch GJ, Weinans H, van Leeuwen JP. Identification of acid‐sensing ion channels in bone. Biochem Biophys Res Commun 337: 349‐354, 2005.
 391. Jekely G. Evolution of phototaxis. Philos Trans R Soc Lond B Biol Sci 364: 2795‐2808, 2009.
 392. Jelassi B, Chantome A, Alcaraz‐Perez F, Baroja‐Mazo A, Cayuela ML, Pelegrin P, Surprenant A, Roger S. P2X(7) receptor activation enhances SK3 channels‐ and cystein cathepsin‐dependent cancer cells invasiveness. Oncogene 30: 2108‐2122, 2011.
 393. Jerng HH, Pfaffinger PJ, Covarrubias M. Molecular physiology and modulation of somatodendritic A‐type potassium channels. Mol Cell Neurosci 27: 343‐369, 2004.
 394. Jia Z, Barbier L, Stuart H, Amraei M, Pelech S, Dennis JW, Metalnikov P, O'Donnell P, Nabi IR. Tumor cell pseudopodial protrusions. Localized signaling domains coordinating cytoskeleton remodeling, cell adhesion, glycolysis, RNA translocation, and protein translation. J Biol Chem 280: 30564‐30573, 2005.
 395. Jiang H, Kuang Y, Wu Y, Xie W, Simon MI, Wu D. Roles of phospholipase C beta2 in chemoattractant‐elicited responses. Proc Natl Acad Sci U S A 94: 7971‐7975, 1997.
 396. Jiang J, Li M, Yue L. Potentiation of TRPM7 inward currents by protons. J Gen Physiol 126: 137‐150, 2005.
 397. Jin M, Defoe DM, Wondergem R. Hepatocyte growth factor/scatter factor stimulates Ca2+‐activated membrane K+ current and migration of MDCK II cells. J Membr Biol 191: 77‐86, 2003.
 398. Jones MC, Caswell PT, Norman JC. Endocytic recycling pathways: Emerging regulators of cell migration. Curr Opin Cell Biol 18: 549‐557, 2006.
 399. Jorgensen NK, Pedersen SF, Rasmussen HB, Grunnet M, Klaerke DA, Olesen SP. Cell swelling activates cloned Ca(2+)‐activated K(+) channels: A role for the F‐actin cytoskeleton. Biochim Biophys Acta 1615: 115‐125, 2003.
 400. Jung MJ, Murzik U, Wehder L, Hemmerich P, Melle C. Regulation of cellular actin architecture by S100A10. Exp Cell Res 316: 1234‐1240, 2010.
 401. Jungnickel MK, Marrero H, Birnbaumer L, Lemos JR, Florman HM. Trp2 regulates entry of Ca2+ into mouse sperm triggered by egg ZP3. Nat Cell Biol 3: 499‐502, 2001.
 402. Kamouchi M, Droogmans G, Nilius B. Membrane potential as a modulator of the free intracellular Ca2+ concentration in agonist‐activated endothelial cells. Gen Physiol Biophys 18: 199‐208, 1999.
 403. Kapoor N, Bartoszewski R, Qadri YJ, Bebok Z, Bubien JK, Fuller CM, Benos DJ. Knockdown of ASIC1 and epithelial sodium channel subunits inhibits glioblastoma whole cell current and cell migration. J Biol Chem 284: 24526‐24541, 2009.
 404. Karki P, Li X, Schrama D, Fliegel L. B‐Raf associates with and activates the NHE1 isoform of the Na+/H+ exchanger. J Biol Chem 286: 13096‐13105, 2011.
 405. Karydis A, Jimenez‐Vidal M, Denker SP, Barber DL. Mislocalized scaffolding by the Na‐H exchanger NHE1 dominantly inhibits fibronectin production and TGF‐beta activation. Mol Biol Cell 20: 2327‐2336, 2009.
 406. Kato Y, Lambert CA, Colige AC, Mineur P, Noel A, Frankenne F, Foidart JM, Baba M, Hata R, Miyazaki K, Tsukuda M. Acidic extracellular pH induces matrix metalloproteinase‐9 expression in mouse metastatic melanoma cells through the phospholipase D‐mitogen‐activated protein kinase signaling. J Biol Chem 280: 10938‐10944, 2005.
 407. Kato Y, Nakayama Y, Umeda M, Miyazaki K. Induction of 103‐kDa gelatinase/type IV collagenase by acidic culture conditions in mouse metastatic melanoma cell lines. J Biol Chem 267: 11424‐11430, 1992.
 408. Kato Y, Ozawa S, Tsukuda M, Kubota E, Miyazaki K, St‐Pierre Y, Hata R. Acidic extracellular pH increases calcium influx‐triggered phospholipase D activity along with acidic sphingomyelinase activation to induce matrix metalloproteinase‐9 expression in mouse metastatic melanoma. Febs J 274: 3171‐3183, 2007.
 409. Kaverina I, Krylyshkina O, Small JV. Regulation of substrate adhesion dynamics during cell motility. Int J Biochem Cell Biol 34: 746‐761, 2002.
 410. Kawasaki J, Davis GE, Davis MJ. Regulation of Ca2+‐dependent K+ current by alphavbeta3 integrin engagement in vascular endothelium. J Biol Chem 279: 12959‐12966, 2004.
 411. Kay RR, Langridge P, Traynor D, Hoeller O. Changing directions in the study of chemotaxis. Nat Rev Mol Cell Biol 9: 455‐463, 2008.
 412. Kellenberger S, Schild L. Epithelial sodium channel/degenerin family of ion channels: A variety of functions for a shared structure. Physiol Rev 82: 735‐767, 2002.
 413. Kennedy KM, Dewhirst MW. Tumor metabolism of lactate: The influence and therapeutic potential for MCT and CD147 regulation. Future Oncol 6: 127‐148, 2010.
 414. Kessenbrock K, Plaks V, Werb Z. Matrix metalloproteinases: Regulators of the tumor microenvironment. Cell 141: 52‐67, 2010.
 415. Kessler W, Budde T, Gekle M, Fabian A, Schwab A. Activation of cell migration with fibroblast growth factor‐2 requires calcium‐sensitive potassium channels. Pflugers Arch 456: 813‐823, 2008.
 416. Kim MJ, Cheng G, Agrawal DK. Cl‐ channels are expressed in human normal monocytes: A functional role in migration, adhesion and volume change. Clin Exp Immunol 138: 453‐459, 2004.
 417. Kimura K, Kawano S, Mori T, Inoue J, Hadachi H, Saito T, Nishida T. Quantitative analysis of the effects of extracellular matrix proteins on membrane dynamics associated with corneal epithelial cell motility. Invest Ophthalmol Vis Sci 51: 4492‐4499, 2010.
 418. Kindzelskii AL, Amhad I, Keller D, Zhou MJ, Haugland RP, Garni‐Wagner BA, Gyetko MR, Todd RF, III, Petty HR. Pericellular proteolysis by leukocytes and tumor cells on substrates: Focal activation and the role of urokinase‐type plasminogen activator. Histochem Cell Biol 121: 299‐310, 2004.
 419. Kindzelskii AL, Petty HR. Ion channel clustering enhances weak electric field detection by neutrophils: Apparent roles of SKF96365‐sensitive cation channels and myeloperoxidase trafficking in cellular responses. Eur Biophys J 35: 1‐26, 2005.
 420. Kindzelskii AL, Sitrin RG, Petty HR. Cutting edge: Optical microspectrophotometry supports the existence of gel phase lipid rafts at the lamellipodium of neutrophils: Apparent role in calcium signaling. J Immunol 172: 4681‐4685, 2004.
 421. King KL, Essig J, Roberts TM, Moerland TS. Regulation of the Ascaris major sperm protein (MSP) cytoskeleton by intracellular pH. Cell Motil Cytoskeleton 27: 193‐205, 1994.
 422. Kini V, Chavez A, Mehta D. A new role for PTEN in regulating transient receptor potential canonical channel 6‐mediated Ca2+ entry, endothelial permeability, and angiogenesis. J Biol Chem 285: 33082‐33091, 2010.
 423. Klausen TK, Hougaard C, Hoffmann EK, Pedersen SF. Cholesterol modulates the volume‐regulated anion current in Ehrlich‐Lettre ascites cells via effects on Rho and F‐actin. Am J Physiol Cell Physiol 291: C757‐C771, 2006.
 424. Klein M, Seeger P, Schuricht B, Alper SL, Schwab A. Polarization of Na(+)/H(+) and Cl(‐)/HCO (3)(‐) exchangers in migrating renal epithelial cells. J Gen Physiol 115: 599‐608, 2000.
 425. Koblinski JE, Ahram M, Sloane BF. Unraveling the role of proteases in cancer. Clin Chim Acta 291: 113‐135, 2000.
 426. Koestler SA, Rottner K, Lai F, Block J, Vinzenz M, Small JV. F‐ and G‐actin concentrations in lamellipodia of moving cells. PLoS One 4: e4810, 2009.
 427. Kohler R, Wulff H, Eichler I, Kneifel M, Neumann D, Knorr A, Grgic I, Kampfe D, Si H, Wibawa J, Real R, Borner K, Brakemeier S, Orzechowski HD, Reusch HP, Paul M, Chandy KG, Hoyer J. Blockade of the intermediate‐conductance calcium‐activated potassium channel as a new therapeutic strategy for restenosis. Circulation 108: 1119‐1125, 2003.
 428. Kominsky DJ, Campbell EL, Colgan SP. Metabolic shifts in immunity and inflammation. J Immunol 184: 4062‐4068, 2010.
 429. Komuro H, Kumada T. Ca2+ transients control CNS neuronal migration. Cell Calcium 37: 387‐393, 2005.
 430. Komuro H, Rakic P. Selective role of N‐type calcium channels in neuronal migration. Science 257: 806‐809, 1992.
 431. Komuro H, Rakic P. Modulation of neuronal migration by NMDA receptors. Science 260: 95‐97, 1993.
 432. Komuro H, Rakic P. Distinct modes of neuronal migration in different domains of developing cerebellar cortex. J Neurosci 18: 1478‐1490, 1998.
 433. Komuro H, Rakic P. Orchestration of neuronal migration by activity of ion channels, neurotransmitter receptors, and intracellular Ca2+ fluctuations. J Neurobiol 37: 110‐130, 1998.
 434. Kong H, Fan Y, Xie J, Ding J, Sha L, Shi X, Sun X, Hu G. AQP4 knockout impairs proliferation, migration and neuronal differentiation of adult neural stem cells. J Cell Sci 121: 4029‐4036, 2008.
 435. Kong H, Sha LL, Fan Y, Xiao M, Ding JH, Wu J, Hu G. Requirement of AQP4 for antidepressive efficiency of fluoxetine: Implication in adult hippocampal neurogenesis. Neuropsychopharmacology 34: 1263‐1276, 2009.
 436. Koukourakis MI, Giatromanolaki A, Bougioukas G, Sivridis E. Lung cancer: A comparative study of metabolism related protein expression in cancer cells and tumor associated stroma. Cancer Biol Ther 6: 1476‐1479, 2007.
 437. Koukourakis MI, Giatromanolaki A, Harris AL, Sivridis E. Comparison of metabolic pathways between cancer cells and stromal cells in colorectal carcinomas: A metabolic survival role for tumor‐associated stroma. Cancer Res 66: 632‐637, 2006.
 438. Kraft R, Harteneck C. The mammalian melastatin‐related transient receptor potential cation channels: An overview. Pflugers Arch 451: 204‐211, 2005.
 439. Kraft R, Krause P, Jung S, Basrai D, Liebmann L, Bolz J, Patt S. BK channel openers inhibit migration of human glioma cells. Pflugers Arch 446: 248‐255, 2003.
 440. Krahling H, Mally S, Eble JA, Noel J, Schwab A, Stock C. The glycocalyx maintains a cell surface pH nanoenvironment crucial for integrin‐mediated migration of human melanoma cells. Pflugers Arch 458: 1069‐1083, 2009.
 441. Krishtal O. The ASICs: Signaling molecules? Modulators? Trends Neurosci 26: 477‐483, 2003.
 442. Kronlage M, Song J, Sorokin L, Isfort K, Schwerdtle T, Leipziger J, Robaye B, Conley PB, Kim HC, Sargin S, Schon P, Schwab A, Hanley PJ. Autocrine purinergic receptor signaling is essential for macrophage chemotaxis. Sci Signal 3: ra55, 2010.
 443. Kruppel T, Rabe H, Dummler B, Lueken W. The depolarizing mechanoreceptor potential and Ca/Mg receptor‐current of the marine ciliate euplotes vannus. J Comp Physiol A 177: 511‐517, 1995.
 444. Kubo Y, Adelman JP, Clapham DE, Jan LY, Karschin A, Kurachi Y, Lazdunski M, Nichols CG, Seino S, Vandenberg CA. International Union of Pharmacology. LIV. Nomenclature and molecular relationships of inwardly rectifying potassium channels. Pharmacol Rev 57: 509‐526, 2005.
 445. Kucerova R, Walczysko P, Reid B, Ou J, Leiper LJ, Rajnicek AM, McCaig CD, Zhao M, Collinson JM. The role of electrical signals in murine corneal wound re‐epithelialization. J Cell Physiol 226: 1544‐1553. 2011.
 446. Kulesa PM, Bailey CM, Kasemeier‐Kulesa JC, McLennan R. Cranial neural crest migration: New rules for an old road. Dev Biol 344: 543‐554, 2010.
 447. Kusche‐Vihrog K, Callies C, Fels J, Oberleithner H. The epithelial sodium channel (ENaC): Mediator of the aldosterone response in the vascular endothelium? Steroids 75: 544‐549, 2010.
 448. Lagana A, Vadnais J, Le PU, Nguyen TN, Laprade R, Nabi IR, Noel J. Regulation of the formation of tumor cell pseudopodia by the Na(+)/H(+) exchanger NHE1. J Cell Sci 113 (Pt 20): 3649‐3662, 2000.
 449. Lallet‐Daher H, Roudbaraki M, Bavencoffe A, Mariot P, Gackiere F, Bidaux G, Urbain R, Gosset P, Delcourt P, Fleurisse L, Slomianny C, Dewailly E, Mauroy B, Bonnal JL, Skryma R, Prevarskaya N. Intermediate‐conductance Ca2+‐activated K+ channels (IKCa1) regulate human prostate cancer cell proliferation through a close control of calcium entry. Oncogene 28: 1792‐1806, 2009.
 450. Lammermann T, Bader BL, Monkley SJ, Worbs T, Wedlich‐Soldner R, Hirsch K, Keller M, Forster R, Critchley DR, Fassler R, Sixt M. Rapid leukocyte migration by integrin‐independent flowing and squeezing. Nature 453: 51‐55, 2008.
 451. Lang P, Gesbert F, Delespine‐Carmagnat M, Stancou R, Pouchelet M, Bertoglio J. Protein kinase a phosphorylation of RhoA mediates the morphological and functional effects of cyclic AMP in cytotoxic lymphocytes. Embo J 15: 510‐519, 1996.
 452. Laniado ME, Lalani EN, Fraser SP, Grimes JA, Bhangal G, Djamgoz MB, Abel PD. Expression and functional analysis of voltage‐activated Na+ channels in human prostate cancer cell lines and their contribution to invasion in vitro. Am J Pathol 150: 1213‐1221, 1997.
 453. Lastraioli E, Guasti L, Crociani O, Polvani S, Hofmann G, Witchel H, Bencini L, Calistri M, Messerini L, Scatizzi M, Moretti R, Wanke E, Olivotto M, Mugnai G, Arcangeli A. herg1 gene and HERG1 protein are overexpressed in colorectal cancers and regulate cell invasion of tumor cells. Cancer Res 64: 606‐611, 2004.
 454. Lastraioli E, Taddei A, Messerini L, Comin CE, Festini M, Giannelli M, Tomezzoli A, Paglierani M, Mugnai G, De Manzoni G, Bechi P, Arcangeli A. hERG1 channels in human esophagus: Evidence for their aberrant expression in the malignant progression of Barrett's esophagus. J Cell Physiol 209: 398‐404, 2006.
 455. Lauffenburger DA, Horwitz AF. Cell migration: A physically integrated molecular process. Cell 84: 359‐369, 1996.
 456. Launay P, Cheng H, Srivatsan S, Penner R, Fleig A, Kinet JP. TRPM4 regulates calcium oscillations after T cell activation. Science 306: 1374‐1377, 2004.
 457. Launay P, Fleig A, Perraud AL, Scharenberg AM, Penner R, Kinet JP. TRPM4 is a Ca2+‐activated nonselective cation channel mediating cell membrane depolarization. Cell 109: 397‐407, 2002.
 458. Laurent VM, Kasas S, Yersin A, Schaffer TE, Catsicas S, Dietler G, Verkhovsky AB, Meister JJ. Gradient of rigidity in the lamellipodia of migrating cells revealed by atomic force microscopy. Biophys J 89: 667‐675, 2005.
 459. Lauritzen G, Jensen MB, Boedtkjer E, Dybboe R, Aalkjaer C, Nylandsted J, Pedersen SF. NBCn1 and NHE1 expression and activity in DeltaNErbB2 receptor‐expressing MCF‐7 breast cancer cells: Contributions to pHi regulation and chemotherapy resistance. Exp Cell Res 316: 2538‐2553, 2010.
 460. Lauritzen G, Stock CM, Lemaire J, Lund SF, Jensen MF, Damsgaard B, Petersen KS, Wiwel M, Ronnov‐Jessen L, Schwab A, Pedersen SF. The Na(+)/H(+) exchanger NHE1, but not the Na(+), HCO(3)(‐) cotransporter NBCn1, regulates motility of MCF7 breast cancer cells expressing constitutively active ErbB2. Cancer Lett 317: 172‐183, 2012.
 461. Lawson MA, Maxfield FR. Ca(2+)‐ and calcineurin‐dependent recycling of an integrin to the front of migrating neutrophils. Nature 377: 75‐79, 1995.
 462. Le Clainche C, Carlier MF. Regulation of actin assembly associated with protrusion and adhesion in cell migration. Physiol Rev 88: 489‐513, 2008.
 463. Lecut C, Frederix K, Johnson DM, Deroanne C, Thiry M, Faccinetto C, Maree R, Evans RJ, Volders PG, Bours V, Oury C. P2×1 ion channels promote neutrophil chemotaxis through Rho kinase activation. J Immunol 183: 2801‐2809, 2009.
 464. Lee GH, Yan C, Shin SJ, Hong SC, Ahn T, Moon A, Park SJ, Lee YC, Yoo WH, Kim HT, Kim DS, Chae SW, Kim HR, Chae HJ. BAX inhibitor‐1 enhances cancer metastasis by altering glucose metabolism and activating the sodium‐hydrogen exchanger: The alteration of mitochondrial function. Oncogene 29: 2130‐2141, 2010.
 465. Lee HC, Garbers DL. Modulation of the voltage‐sensitive Na+/H+ exchange in sea urchin spermatozoa through membrane potential changes induced by the egg peptide speract. J Biol Chem 261: 16026‐16032, 1986.
 466. Lee J, Ishihara A, Oxford G, Johnson B, Jacobson K. Regulation of cell movement is mediated by stretch‐activated calcium channels. Nature 400: 382‐386, 1999.
 467. Lee SH, Kim T, Park ES, Yang S, Jeong D, Choi Y, Rho J. NHE10, an osteoclast‐specific member of the Na+/H+ exchanger family, regulates osteoclast differentiation and survival [corrected]. Biochem Biophys Res Commun 369: 320‐326, 2008.
 468. Lefranc F, Kiss R. The sodium pump alpha1 subunit as a potential target to combat apoptosis‐resistant glioblastomas. Neoplasia 10: 198‐206, 2008.
 469. Lefranc F, Mijatovic T, Kondo Y, Sauvage S, Roland I, Debeir O, Krstic D, Vasic V, Gailly P, Kondo S, Blanco G, Kiss R. Targeting the alpha 1 subunit of the sodium pump to combat glioblastoma cells. Neurosurgery 62: 211‐221; discussion 221‐212, 2008.
 470. Lehenkari PP, Horton MA. Single integrin molecule adhesion forces in intact cells measured by atomic force microscopy. Biochem Biophys Res Commun 259: 645‐650, 1999.
 471. Lemonnier L, Shuba Y, Crepin A, Roudbaraki M, Slomianny C, Mauroy B, Nilius B, Prevarskaya N, Skryma R. Bcl‐2‐dependent modulation of swelling‐activated Cl‐ current and ClC‐3 expression in human prostate cancer epithelial cells. Cancer Res 64: 4841‐4848, 2004.
 472. Levin MH, Verkman AS. CFTR‐regulated chloride transport at the ocular surface in living mice measured by potential differences. Invest Ophthalmol Vis Sci 46: 1428‐1434, 2005.
 473. Levin MH, Verkman AS. Aquaporin‐3‐dependent cell migration and proliferation during corneal re‐epithelialization. Invest Ophthalmol Vis Sci 47: 4365‐4372, 2006.
 474. Levin MH, Verkman AS. Aquaporins and CFTR in ocular epithelial fluid transport. J Membr Biol 210: 105‐115, 2006.
 475. Levitan I, Almonte C, Mollard P, Garber SS. Modulation of a volume‐regulated chloride current by F‐actin. J Membr Biol 147: 283‐294, 1995.
 476. Levitan I, Christian AE, Tulenko TN, Rothblat GH. Membrane cholesterol content modulates activation of volume‐regulated anion current in bovine endothelial cells. J Gen Physiol 115: 405‐416, 2000.
 477. Levite M, Cahalon L, Peretz A, Hershkoviz R, Sobko A, Ariel A, Desai R, Attali B, Lider O. Extracellular K(+) and opening of voltage‐gated potassium channels activate T cell integrin function: Physical and functional association between Kv1.3 channels and beta1 integrins. J Exp Med 191: 1167‐1176, 2000.
 478. Li J, Cubbon RM, Wilson LA, Amer MS, McKeown L, Hou B, Majeed Y, Tumova S, Seymour VA, Taylor H, Stacey M, O'Regan D, Foster R, Porter KE, Kearney MT, Beech DJ. Orai1 and CRAC channel dependence of VEGF‐Activated Ca2+ entry and endothelial tube formation. Circ Res 108: 1190‐1198, 2011.
 479. Li X, Kolega J. Effects of direct current electric fields on cell migration and actin filament distribution in bovine vascular endothelial cells. J Vasc Res 39: 391‐404, 2002.
 480. Li Y, Jia YC, Cui K, Li N, Zheng ZY, Wang YZ, Yuan XB. Essential role of TRPC channels in the guidance of nerve growth cones by brain‐derived neurotrophic factor. Nature 434: 894‐898, 2005.
 481. Liang HT, Feng XC, Ma TH. Water channel activity of plasma membrane affects chondrocyte migration and adhesion. Clin Exp Pharmacol Physiol 35: 7‐10, 2008.
 482. Liaudet‐Coopman E, Beaujouin M, Derocq D, Garcia M, Glondu‐Lassis M, Laurent‐Matha V, Prebois C, Rochefort H, Vignon F. Cathepsin D: Newly discovered functions of a long‐standing aspartic protease in cancer and apoptosis. Cancer Lett 237: 167‐179, 2006.
 483. Liebau S, Vaida B, Proepper C, Grissmer S, Storch A, Boeckers TM, Dietl P, Wittekindt OH. Formation of cellular projections in neural progenitor cells depends on SK3 channel activity. J Neurochem 101: 1338‐1350, 2007.
 484. Liedtke W. Molecular mechanisms of TRPV4‐mediated neural signaling. Ann N Y Acad Sci 1144: 42‐52, 2008.
 485. Liedtke W, Choe Y, Marti‐Renom MA, Bell AM, Denis CS, Sali A, Hudspeth AJ, Friedman JM, Heller S. Vanilloid receptor‐related osmotically activated channel (VR‐OAC), a candidate vertebrate osmoreceptor. Cell 103: 525‐535, 2000.
 486. Lindemann CB, Goltz JS. Calcium regulation of flagellar curvature and swimming pattern in triton X‐100–extracted rat sperm. Cell Motil Cytoskeleton 10: 420‐431, 1988.
 487. Ling K, Schill NJ, Wagoner MP, Sun Y, Anderson RA. Movin’ on up: The role of PtdIns(4,5)P(2) in cell migration. Trends Cell Biol 16: 276‐284, 2006.
 488. Lingueglia E. Acid‐sensing ion channels in sensory perception. J Biol Chem 282: 17325‐17329, 2007.
 489. Link TM, Park U, Vonakis BM, Raben DM, Soloski MJ, Caterina MJ. TRPV2 has a pivotal role in macrophage particle binding and phagocytosis. Nat Immunol 11: 232‐239, 2010.
 490. Liu B, Zhang C, Qin F. Functional recovery from desensitization of vanilloid receptor TRPV1 requires resynthesis of phosphatidylinositol 4,5‐bisphosphate. J Neurosci 25: 4835‐4843, 2005.
 491. Lock JG, Wehrle‐Haller B, Stromblad S. Cell‐matrix adhesion complexes: Master control machinery of cell migration. Semin Cancer Biol 18: 65‐76, 2008.
 492. Lodish H, Baltimore D, Berk A, Zipursky SL, Matsudaira P, Darnell J. Molecular Cell Biology. New York, W H Freeman & Co (Ed), 1995.
 493. Logothetis DE, Petrou VI, Adney SK, Mahajan R. Channelopathies linked to plasma membrane phosphoinositides. Pflugers Arch 460: 321‐341, 2010.
 494. Lohr C, Heil JE, Deitmer JW. Blockage of voltage‐gated calcium signaling impairs migration of glial cells in vivo. Glia 50: 198‐211, 2005.
 495. Loitto VM, Forslund T, Sundqvist T, Magnusson KE, Gustafsson M. Neutrophil leukocyte motility requires directed water influx. J Leukoc Biol 71: 212‐222, 2002.
 496. Loitto VM, Huang C, Sigal YJ, Jacobson K. Filopodia are induced by aquaporin‐9 expression. Exp Cell Res 313: 1295‐1306, 2007.
 497. Lorenzo IM, Liedtke W, Sanderson MJ, Valverde MA. TRPV4 channel participates in receptor‐operated calcium entry and ciliary beat frequency regulation in mouse airway epithelial cells. Proc Natl Acad Sci U S A 105: 12611‐12616, 2008.
 498. Lotz MM, Wang H, Song JC, Pories SE, Matthews JB. K+ channel inhibition accelerates intestinal epithelial cell wound healing. Wound Repair Regen 12: 565‐574, 2004.
 499. Louis M, Zanou N, van Schoor M, Gailly P. TRPC1 regulates skeletal myoblast migration and differentiation. J Cell Sci 121: 3951‐3959, 2008.
 500. Loukin S, Zhou X, Su Z, Saimi Y, Kung C. Wild‐type and brachyolmia‐causing mutant TRPV4 channels respond directly to stretch force. J Biol Chem 285: 27176‐27181, 2010.
 501. Lui VC, Lung SS, Pu JK, Hung KN, Leung GK. Invasion of human glioma cells is regulated by multiple chloride channels including ClC‐3. Anticancer Res 30: 4515‐4524, 2010.
 502. Lytton J. Na+/Ca2+ exchangers: Three mammalian gene families control Ca2+ transport. Biochem J 406: 365‐382, 2007.
 503. Ma J, McCarl CA, Khalil S, Luthy K, Feske S. T‐cell‐specific deletion of STIM1 and STIM2 protects mice from EAE by impairing the effector functions of Th1 and Th17 cells. Eur J Immunol 40: 3028‐3042, 2010.
 504. Maccarrone M, Barboni B, Paradisi A, Bernabo N, Gasperi V, Pistilli MG, Fezza F, Lucidi P, Mattioli M. Characterization of the endocannabinoid system in boar spermatozoa and implications for sperm capacitation and acrosome reaction. J Cell Sci 118: 4393‐4404, 2005.
 505. Macnab RM, Koshland DE, Jr. The gradient‐sensing mechanism in bacterial chemotaxis. Proc Natl Acad Sci U S A 69: 2509‐2512, 1972.
 506. Magalhaes MA, Larson DR, Mader CC, Bravo‐Cordero JJ, Gil‐Henn H, Oser M, Chen X, Koleske AJ, Condeelis J. Cortactin phosphorylation regulates cell invasion through a pH‐dependent pathway. J Cell Biol 195: 903‐920, 2011.
 507. Mandeville JT, Maxfield FR. Effects of buffering intracellular free calcium on neutrophil migration through three‐dimensional matrices. J Cell Physiol 171: 168‐178, 1997.
 508. Manes S, Mira E, Gomez‐Mouton C, Lacalle RA, Keller P, Labrador JP, Martinez AC. Membrane raft microdomains mediate front‐rear polarity in migrating cells. Embo J 18: 6211‐6220, 1999.
 509. Mao J, Chen L, Xu B, Wang L, Li H, Guo J, Li W, Nie S, Jacob TJ, Wang L. Suppression of ClC‐3 channel expression reduces migration of nasopharyngeal carcinoma cells. Biochem Pharmacol 75: 1706‐1716, 2008.
 510. Mao J, Chen L, Xu B, Wang L, Wang W, Li M, Zheng M, Li H, Guo J, Li W, Jacob TJ, Wang L. Volume‐activated chloride channels contribute to cell‐cycle‐dependent regulation of HeLa cell migration. Biochem Pharmacol 77: 159‐168, 2009.
 511. Mao J, Wang L, Fan A, Wang J, Xu B, Jacob TJ, Chen L. Blockage of volume‐activated chloride channels inhibits migration of nasopharyngeal carcinoma cells. Cell Physiol Biochem 19: 249‐258, 2007.
 512. Mao JW, Wang LW, Jacob T, Sun XR, Li H, Zhu LY, Li P, Zhong P, Nie SH, Chen LX. Involvement of regulatory volume decrease in the migration of nasopharyngeal carcinoma cells. Cell Res 15: 371‐378, 2005.
 513. Mao YS, Yin HL. Regulation of the actin cytoskeleton by phosphatidylinositol 4‐phosphate 5 kinases. Pflugers Arch 455: 5‐18, 2007.
 514. Marks PW, Maxfield FR. Transient increases in cytosolic free calcium appear to be required for the migration of adherent human neutrophils. J Cell Biol 110: 43‐52, 1990.
 515. Maroto R, Raso A, Wood TG, Kurosky A, Martinac B, Hamill OP. TRPC1 forms the stretch‐activated cation channel in vertebrate cells. Nat Cell Biol 7: 179‐185, 2005.
 516. Martin C, Pedersen SF, Schwab A, Stock C. Intracellular pH gradients in migrating cells. Am J Physiol Cell Physiol 300: C490‐C495, 2011.
 517. Martin P, Leibovich SJ. Inflammatory cells during wound repair: The good, the bad and the ugly. Trends Cell Biol 15: 599‐607, 2005.
 518. Martinez‐Lopez P, Trevino CL, de la Vega‐Beltran JL, Blas GD, Monroy E, Beltran C, Orta G, Gibbs GM, O'Bryan MK, Darszon A. TRPM8 in mouse sperm detects temperature changes and may influence the acrosome reaction. J Cell Physiol 226: 1620‐1631, 2011.
 519. Martinez‐Zaguilan R, Lynch RM, Martinez GM, Gillies RJ. Vacuolar‐type H(+)‐ATPases are functionally expressed in plasma membranes of human tumor cells. Am J Physiol 265: C1015‐C1029, 1993.
 520. Martinez A, Orozco G, Varade J, Sanchez Lopez M, Pascual D, Balsa A, Garcia A, de la Concha EG, Fernandez‐Gutierrez B, Martin J, Urcelay E. Macrophage migration inhibitory factor gene: Influence on rheumatoid arthritis susceptibility. Hum Immunol 68: 744‐747, 2007.
 521. Martinez D, Vermeulen M, Trevani A, Ceballos A, Sabatte J, Gamberale R, Alvarez ME, Salamone G, Tanos T, Coso OA, Geffner J. Extracellular acidosis induces neutrophil activation by a mechanism dependent on activation of phosphatidylinositol 3‐kinase/Akt and ERK pathways. J Immunol 176: 1163‐1171, 2006.
 522. Martini FJ, Valdeolmillos M. Actomyosin contraction at the cell rear drives nuclear translocation in migrating cortical interneurons. J Neurosci 30: 8660‐8670, 2010.
 523. Martins de Oliveira R, Antunes E, Pedrazzoli J,Jr., Gambero A. The inhibitory effects of H+ K+ ATPase inhibitors on human neutrophils in vitro: Restoration by a K+ ionophore. Inflamm Res 56: 105‐111, 2007.
 524. Massullo P, Sumoza‐Toledo A, Bhagat H, Partida‐Sanchez S. TRPM channels, calcium and redox sensors during innate immune responses. Semin Cell Dev Biol 17: 654‐666, 2006.
 525. Mast SO. Mechanics of Locomotion in Amoeba. Proc Natl Acad Sci U S A 9: 258‐261, 1923.
 526. Matheu MP, Beeton C, Garcia A, Chi V, Rangaraju S, Safrina O, Monaghan K, Uemura MI, Li D, Pal S, de la Maza LM, Monuki E, Flugel A, Pennington MW, Parker I, Chandy KG, Cahalan MD. Imaging of effector memory T cells during a delayed‐type hypersensitivity reaction and suppression by Kv1.3 channel block. Immunity 29: 602‐614, 2008.
 527. Mathieu V, Pirker C, Martin de Lassalle E, Vernier M, Mijatovic T, DeNeve N, Gaussin JF, Dehoux M, Lefranc F, Berger W, Kiss R. The sodium pump alpha1 sub‐unit: A disease progression‐related target for metastatic melanoma treatment. J Cell Mol Med 13: 3960‐3972, 2009.
 528. Matsui T, Maeda M, Doi Y, Yonemura S, Amano M, Kaibuchi K, Tsukita S, Tsukita S. Rho‐kinase phosphorylates COOH‐terminal threonines of ezrin/radixin/moesin (ERM) proteins and regulates their head‐to‐tail association. J Cell Biol 140: 647‐657, 1998.
 529. Matsui T, Yonemura S, Tsukita S, Tsukita S. Activation of ERM proteins in vivo by Rho involves phosphatidyl‐inositol 4‐phosphate 5‐kinase and not ROCK kinases. Curr Biol 9: 1259‐1262, 1999.
 530. Matthews BD, Thodeti CK, Tytell JD, Mammoto A, Overby DR, Ingber DE. Ultra‐rapid activation of TRPV4 ion channels by mechanical forces applied to cell surface beta1 integrins. Integr Biol (Camb) 2: 435‐442, 2010.
 531. Matyash M, Matyash V, Nolte C, Sorrentino V, Kettenmann H. Requirement of functional ryanodine receptor type 3 for astrocyte migration. Faseb J 16: 84‐86, 2002.
 532. Mayer C, Maaser K, Daryab N, Zanker KS, Brocker EB, Friedl P. Release of cell fragments by invading melanoma cells. Eur J Cell Biol 83: 709‐715, 2004.
 533. McCaig CD, Rajnicek AM, Song B, Zhao M. Controlling cell behavior electrically: Current views and future potential. Physiol Rev 85: 943‐978, 2005.
 534. McCoy CL, McIntyre DJ, Robinson SP, Aboagye EO, Griffiths JR. Magnetic resonance spectroscopy and imaging methods for measuring tumour and tissue oxygenation. Br J Cancer Suppl 27: S226‐S231, 1996.
 535. McCoy E, Sontheimer H. Expression and function of water channels (aquaporins) in migrating malignant astrocytes. Glia 55: 1034‐1043, 2007.
 536. McCoy ES, Haas BR, Sontheimer H. Water permeability through aquaporin‐4 is regulated by protein kinase C and becomes rate‐limiting for glioma invasion. Neuroscience 168: 971‐981, 2010.
 537. McFerrin MB, Sontheimer H. A role for ion channels in glioma cell invasion. Neuron Glia Biol 2: 39‐49, 2006.
 538. McGough AM, Staiger CJ, Min JK, Simonetti KD. The gelsolin family of actin regulatory proteins: Modular structures, versatile functions. FEBS Lett 552: 75‐81, 2003.
 539. McLaughlin SG, Szabo G, Eisenman G. Divalent ions and the surface potential of charged phospholipid membranes. J Gen Physiol 58: 667‐687, 1971.
 540. McMeekin SR, Dransfield I, Rossi AG, Haslett C, Walker TR. E‐selectin permits communication between PAF receptors and TRPC channels in human neutrophils. Blood 107: 4938‐4945, 2006.
 541. McSwine RL, Li J, Villereal ML. Examination of the role for Ca2+ in regulation and phosphorylation of the Na+/H+ antiporter NHE1 via mitogen and hypertonic stimulation. J Cell Physiol 168: 8‐17, 1996.
 542. Meima ME, Mackley JR, Barber DL. Beyond ion translocation: Structural functions of the sodium‐hydrogen exchanger isoform‐1. Curr Opin Nephrol Hypertens 16: 365‐372, 2007.
 543. Meima ME, Webb BA, Witkowska HE, Barber DL. The sodium‐hydrogen exchanger NHE1 is an Akt substrate necessary for actin filament reorganization by growth factors. J Biol Chem 284: 26666‐26675, 2009.
 544. Mellor H. Cell motility: Golgi signaling shapes up to ship out. Curr Biol 14: R434‐R435, 2004.
 545. Mendoza SA, Fang J, Gutterman DD, Wilcox DA, Bubolz AH, Li R, Suzuki M, Zhang DX. TRPV4‐mediated endothelial Ca2+ influx and vasodilation in response to shear stress. Am J Physiol Heart Circ Physiol 298: H466‐H476, 2010.
 546. Mery L, Strauss B, Dufour JF, Krause KH, Hoth M. The PDZ‐interacting domain of TRPC4 controls its localization and surface expression in HEK293 cells. J Cell Sci 115: 3497‐3508, 2002.
 547. Messerli MA, Graham DM. Extracellular electrical fields direct wound healing and regeneration. Biol Bull 221: 79‐92, 2011.
 548. Middelbeek J, Clark K, Venselaar H, Huynen MA, van Leeuwen FN. The alpha‐kinase family: An exceptional branch on the protein kinase tree. Cell Mol Life Sci 67: 875‐890, 2010.
 549. Mijatovic T, Roland I, Van Quaquebeke E, Nilsson B, Mathieu A, Van Vynckt F, Darro F, Blanco G, Facchini V, Kiss R. The alpha1 subunit of the sodium pump could represent a novel target to combat non‐small cell lung cancers. J Pathol 212: 170‐179, 2007.
 550. Mijatovic T, Van Quaquebeke E, Delest B, Debeir O, Darro F, Kiss R. Cardiotonic steroids on the road to anti‐cancer therapy. Biochim Biophys Acta 1776: 32‐57, 2007.
 551. Miller TJ, Davis PB. S163 is critical for FXYD5 modulation of wound healing in airway epithelial cells. Wound Repair Regen 16: 791‐799, 2008.
 552. Mintz CD, Dickson TC, Gripp ML, Salton SR, Benson DL. ERMs colocalize transiently with L1 during neocortical axon outgrowth. J Comp Neurol 464: 438‐448, 2003.
 553. Mitchison TJ, Charras GT, Mahadevan L. Implications of a poroelastic cytoplasm for the dynamics of animal cell shape. Semin Cell Dev Biol 19: 215‐223, 2008.
 554. Mitra SK, Schlaepfer DD. Integrin‐regulated FAK‐Src signaling in normal and cancer cells. Curr Opin Cell Biol 18: 516‐523, 2006.
 555. Mizoguchi F, Mizuno A, Hayata T, Nakashima K, Heller S, Ushida T, Sokabe M, Miyasaka N, Suzuki M, Ezura Y, Noda M. Transient receptor potential vanilloid 4 deficiency suppresses unloading‐induced bone loss. J Cell Physiol 216: 47‐53, 2008.
 556. Mogilner A, Oster G. Cell motility driven by actin polymerization. Biophys J 71: 3030‐3045, 1996.
 557. Mogilner A, Oster G. Polymer motors: Pushing out the front and pulling up the back. Curr Biol 13: R721‐R733, 2003.
 558. Mohamed MM, Sloane BF. Cysteine cathepsins: Multifunctional enzymes in cancer. Nat Rev Cancer 6: 764‐775, 2006.
 559. Monaco S, Gioia M, Rodriguez J, Fasciglione GF, Di Pierro D, Lupidi G, Krippahl L, Marini S, Coletta M. Modulation of the proteolytic activity of matrix metalloproteinase‐2 (gelatinase A) on fibrinogen. Biochem J 402: 503‐513, 2007.
 560. Monet M, Gkika D, Lehen'kyi V, Pourtier A, Vanden Abeele F, Bidaux G, Juvin V, Rassendren F, Humez S, Prevarsakaya N. Lysophospholipids stimulate prostate cancer cell migration via TRPV2 channel activation. Biochim Biophys Acta 1793: 528‐539, 2009.
 561. Monet M, Lehen'kyi V, Gackiere F, Firlej V, Vandenberghe M, Roudbaraki M, Gkika D, Pourtier A, Bidaux G, Slomianny C, Delcourt P, Rassendren F, Bergerat JP, Ceraline J, Cabon F, Humez S, Prevarskaya N. Role of cationic channel TRPV2 in promoting prostate cancer migration and progression to androgen resistance. Cancer Res 70: 1225‐1235, 2010.
 562. Monzani E, Bazzotti R, Perego C, La Porta CA. AQP1 is not only a water channel: It contributes to cell migration through Lin7/beta‐catenin. PLoS One 4: e6167, 2009.
 563. Monzani E, Shtil AA, La Porta CA. The water channels, new druggable targets to combat cancer cell survival, invasiveness and metastasis. Curr Drug Targets 8: 1132‐1137, 2007.
 564. Moolenaar WH, Tsien RY, van der Saag PT, de Laat SW. Na+/H+ exchange and cytoplasmic pH in the action of growth factors in human fibroblasts. Nature 304: 645‐648, 1983.
 565. Moran D. Voltage‐dependent ‐L‐type Ca2+ channels participate in regulating neural crest migration and differentiation. Am J Anat 192: 14‐22, 1991.
 566. Moreland JG, Davis AP, Bailey G, Nauseef WM, Lamb FS. Anion channels, including ClC‐3, are required for normal neutrophil oxidative function, phagocytosis, and transendothelial migration. J Biol Chem 281: 12277‐12288, 2006.
 567. Morokuma J, Blackiston D, Adams DS, Seebohm G, Trimmer B, Levin M. Modulation of potassium channel function confers a hyperproliferative invasive phenotype on embryonic stem cells. Proc Natl Acad Sci U S A 105: 16608‐16613, 2008.
 568. Morris ME, Felmlee MA. Overview of the proton‐coupled MCT (SLC16A) family of transporters: Characterization, function and role in the transport of the drug of abuse gamma‐hydroxybutyric acid. Aaps J 10: 311‐321, 2008.
 569. Munevar S, Wang YL, Dembo M. Regulation of mechanical interactions between fibroblasts and the substratum by stretch‐activated Ca2+ entry. J Cell Sci 117: 85‐92, 2004.
 570. Murata Y, Okamura Y. Depolarization activates the phosphoinositide phosphatase Ci‐VSP, as detected in Xenopus oocytes coexpressing sensors of PIP2. J Physiol 583: 875‐889, 2007.
 571. Musch A, Xu H, Shields D, Rodriguez‐Boulan E. Transport of vesicular stomatitis virus G protein to the cell surface is signal mediated in polarized and nonpolarized cells. J Cell Biol 133: 543‐558, 1996.
 572. Mutai H, Heller S. Vertebrate and invertebrate TRPV‐like mechanoreceptors. Cell Calcium 33: 471‐478, 2003.
 573. Mycielska ME, Djamgoz MB. Cellular mechanisms of direct‐current electric field effects: Galvanotaxis and metastatic disease. J Cell Sci 117: 1631‐1639, 2004.
 574. Mycielska ME, Fraser SP, Szatkowski M, Djamgoz MB. Contribution of functional voltage‐gated Na +channel expression to cell behaviors involved in the metastatic cascade in rat prostate cancer: II. Secretory membrane activity. J Cell Physiol 195: 461‐469, 2003.
 575. Nabi IR. The polarization of the motile cell. J Cell Sci 112 (Pt 12): 1803‐1811, 1999.
 576. Nagasawa M, Nakagawa Y, Tanaka S, Kojima I. Chemotactic peptide fMetLeuPhe induces translocation of the TRPV2 channel in macrophages. J Cell Physiol 210: 692‐702, 2007.
 577. Naito Y, Kaneko H. Reactivated triton‐extracted models o paramecium: Modification of ciliary movement by calcium ions. Science 176: 523‐524, 1972.
 578. Nakajima K, Miyazaki H, Niisato N, Marunaka Y. Essential role of NKCC1 in NGF‐induced neurite outgrowth. Biochem Biophys Res Commun 359: 604‐610, 2007.
 579. Nanda A, Gukovskaya A, Tseng J, Grinstein S. Activation of vacuolar‐type proton pumps by protein kinase C. Role in neutrophil pH regulation. J Biol Chem 267: 22740‐22746, 1992.
 580. Navarro A, Anand‐Apte B, Parat MO. A role for caveolae in cell migration. Faseb J 18: 1801‐1811, 2004.
 581. Navarro B, Kirichok Y, Chung JJ, Clapham DE. Ion channels that control fertility in mammalian spermatozoa. Int J Dev Biol 52: 607‐613, 2008.
 582. Navarro B, Kirichok Y, Clapham DE. KSper, a pH‐sensitive K+ current that controls sperm membrane potential. Proc Natl Acad Sci U S A 104: 7688‐7692, 2007.
 583. Nemethova M, Auinger S, Small JV. Building the actin cytoskeleton: Filopodia contribute to the construction of contractile bundles in the lamella. J Cell Biol 180: 1233‐1244, 2008.
 584. Ng KM, Cho CH, Chang FY, Luo JC, Lin HC, Lin HY, Chi CW, Lee SD. Omeprazole promotes gastric epithelial cell migration. J Pharm Pharmacol 60: 655‐660, 2008.
 585. Nguyen TN, Wang HJ, Zalzal S, Nanci A, Nabi IR. Purification and characterization of beta‐actin‐rich tumor cell pseudopodia: Role of glycolysis. Exp Cell Res 258: 171‐183, 2000.
 586. Nielsen DK, Jensen AK, Harbak H, Christensen SC, Simonsen LO. Cell content of phosphatidylinositol (4,5)bisphosphate in Ehrlich mouse ascites tumour cells in response to cell volume perturbations in anisotonic and in isosmotic media. J Physiol 582: 1027‐1036, 2007.
 587. Nilius B. TRP channels in disease. Biochim Biophys Acta 1772: 805‐812, 2007.
 588. Nilius B, Mahieu F, Prenen J, Janssens A, Owsianik G, Vennekens R, Voets T. The Ca2+‐activated cation channel TRPM4 is regulated by phosphatidylinositol 4,5‐biphosphate. Embo J 25: 467‐478, 2006.
 589. Nilius B, Prenen J, Tang J, Wang C, Owsianik G, Janssens A, Voets T, Zhu MX. Regulation of the Ca2+ sensitivity of the nonselective cation channel TRPM4. J Biol Chem 280: 6423‐6433, 2005.
 590. Nishimura KY, Isseroff RR, Nuccitelli R. Human keratinocytes migrate to the negative pole in direct current electric fields comparable to those measured in mammalian wounds. J Cell Sci 109 (Pt 1): 199‐207, 1996.
 591. Nishiya N, Kiosses WB, Han J, Ginsberg MH. An alpha4 integrin‐paxillin‐Arf‐GAP complex restricts Rac activation to the leading edge of migrating cells. Nat Cell Biol 7: 343‐352, 2005.
 592. Nomura M, Beltran C, Darszon A, Vacquier VD. A soluble adenylyl cyclase from sea urchin spermatozoa. Gene 353: 231‐238, 2005.
 593. Nomura M, Vacquier VD. Proteins associated with soluble adenylyl cyclase in sea urchin sperm flagella. Cell Motil Cytoskeleton 63: 582‐590, 2006.
 594. North RA. Molecular physiology of P2X receptors. Physiol Rev 82: 1013‐1067, 2002.
 595. Nourshargh S, Hordijk PL, Sixt M. Breaching multiple barriers: Leukocyte motility through venular walls and the interstitium. Nat Rev Mol Cell Biol 11: 366‐378, 2010.
 596. Nourshargh S, Marelli‐Berg FM. Transmigration through venular walls: A key regulator of leukocyte phenotype and function. Trends Immunol 26: 157‐165, 2005.
 597. Nuccitelli R. Physiological electric fields can influence cell motility, growth and polarity. Adv Cell Biol 2: 213‐233, 1988.
 598. Nuccitelli R. Endogenous ionic currents and DC electric fields in multicellular animal tissues. Bioelectromagnetics (Suppl 1): 147‐157, 1992.
 599. Nuccitelli R. A role for endogenous electric fields in wound healing. Curr Top Dev Biol 58: 1‐26, 2003.
 600. Nuccitelli R, Erickson CA. Embryonic cell motility can be guided by physiological electric fields. Exp Cell Res 147: 195‐201, 1983.
 601. Numata T, Shimizu T, Okada Y. Direct mechano‐stress sensitivity of TRPM7 channel. Cell Physiol Biochem 19: 1‐8, 2007.
 602. Nutile‐McMenemy N, Elfenbein A, Deleo JA. Minocycline decreases in vitro microglial motility, beta1‐integrin, and Kv1.3 channel expression. J Neurochem 103: 2035‐2046, 2007.
 603. Nuzzi PA, Senetar MA, Huttenlocher A. Asymmetric localization of calpain 2 during neutrophil chemotaxis. Mol Biol Cell 18: 795‐805, 2007.
 604. Nygaard EB, Lagerstedt JO, Bjerre G, Shi B, Budamagunta M, Poulsen KA, Meinild S, Rigor RR, Voss JC, Cala PM, Pedersen SF. Structural modeling and electron paramagnetic resonance spectroscopy of the human Na+/H+ exchanger isoform 1, NHE1. J Biol Chem 286: 634‐648, 2011.
 605. Ogawa Y, Tanokura M. Calcium binding to calmodulin: Effects of ionic strength, Mg2+, pH and temperature. J Biochem 95: 19‐28, 1984.
 606. Ohsawa K, Irino Y, Nakamura Y, Akazawa C, Inoue K, Kohsaka S. Involvement of P2×4 and P2Y12 receptors in ATP‐induced microglial chemotaxis. Glia 55: 604‐616, 2007.
 607. Ohya S, Kimura K, Niwa S, Ohno A, Kojima Y, Sasaki S, Kohri K, Imaizumi Y. Malignancy grade‐dependent expression of K+‐channel subtypes in human prostate cancer. J Pharmacol Sci 109: 148‐151, 2009.
 608. Ojingwa JC, Isseroff RR. Electrical stimulation of wound healing. J Invest Dermatol 121: 1‐12, 2003.
 609. Olivotto M, Arcangeli A, Carla M, Wanke E. Electric fields at the plasma membrane level: A neglected element in the mechanisms of cell signaling. Bioessays 18: 495‐504, 1996.
 610. Olsen H, ter Veld F, Herbrand U, Ahmadian MR, Kinne RK, Wehner F. Differential regulation of cell volume and shape in confluent rat hepatocytes under hypertonic stress. Cell Physiol Biochem 19: 259‐268, 2007.
 611. Onganer PU, Djamgoz MB. Small‐cell lung cancer (human): Potentiation of endocytic membrane activity by voltage‐gated Na(+) channel expression in vitro. J Membr Biol 204: 67‐75, 2005.
 612. Onkal R, Djamgoz MB. Molecular pharmacology of voltage‐gated sodium channel expression in metastatic disease: Clinical potential of neonatal Nav1.5 in breast cancer. Eur J Pharmacol 625: 206‐219, 2009.
 613. Onuma EK, Hui SW. A calcium requirement for electric field‐induced cell shape changes and preferential orientation. Cell Calcium 6: 281‐292, 1985.
 614. Onuma EK, Hui SW. Electric field‐directed cell shape changes, displacement, and cytoskeletal reorganization are calcium dependent. J Cell Biol 106: 2067‐2075, 1988.
 615. Oren‐Benaroya R, Orvieto R, Gakamsky A, Pinchasov M, Eisenbach M. The sperm chemoattractant secreted from human cumulus cells is progesterone. Hum Reprod 23: 2339‐2345, 2008.
 616. Orida N, Feldman JD. Directional protrusive pseudopodial activity and motility in macrophages induced by extracellular electric fields. Cell Motil 2: 243‐255, 1982.
 617. Orlowski J, Grinstein S. Diversity of the mammalian sodium/proton exchanger SLC9 gene family. Pflugers Arch 447: 549‐565, 2004.
 618. Oser M, Condeelis J. The cofilin activity cycle in lamellipodia and invadopodia. J Cell Biochem 108: 1252‐1262, 2009.
 619. Oser M, Yamaguchi H, Mader CC, Bravo‐Cordero JJ, Arias M, Chen X, Desmarais V, van Rheenen J, Koleske AJ, Condeelis J. Cortactin regulates cofilin and N‐WASp activities to control the stages of invadopodium assembly and maturation. J Cell Biol 186: 571‐587, 2009.
 620. Ouadid‐Ahidouch H, Roudbaraki M, Delcourt P, Ahidouch A, Joury N, Prevarskaya N. Functional and molecular identification of intermediate‐conductance Ca(2+)‐activated K(+) channels in breast cancer cells: Association with cell cycle progression. Am J Physiol Cell Physiol 287: C125‐C134, 2004.
 621. Ousingsawat J, Spitzner M, Puntheeranurak S, Terracciano L, Tornillo L, Bubendorf L, Kunzelmann K, Schreiber R. Expression of voltage‐gated potassium channels in human and mouse colonic carcinoma. Clin Cancer Res 13: 824‐831, 2007.
 622. Paez PM, Fulton DJ, Spreuer V, Handley V, Campagnoni CW, Macklin WB, Colwell C, Campagnoni AT. Golli myelin basic proteins regulate oligodendroglial progenitor cell migration through voltage‐gated Ca2+ influx. J Neurosci 29: 6663‐6676, 2009.
 623. Paez PM, Fulton DJ, Spreur V, Handley V, Campagnoni AT. Multiple kinase pathways regulate voltage‐dependent Ca2+ influx and migration in oligodendrocyte precursor cells. J Neurosci 30: 6422‐6433, 2010.
 624. Palecek SP, Huttenlocher A, Horwitz AF, Lauffenburger DA. Physical and biochemical regulation of integrin release during rear detachment of migrating cells. J Cell Sci 111 (Pt 7): 929‐940, 1998.
 625. Palecek SP, Schmidt CE, Lauffenburger DA, Horwitz AF. Integrin dynamics on the tail region of migrating fibroblasts. J Cell Sci 109 (Pt 5): 941‐952, 1996.
 626. Pancrazio JJ, Viglione MP, Tabbara IA, Kim YI. Voltage‐dependent ion channels in small‐cell lung cancer cells. Cancer Res 49: 5901‐5906, 1989.
 627. Pantaler E, Luckhoff A. Inhibitors of TRP channels reveal stimulus‐dependent differential activation of Ca2+ influx pathways in human neutrophil granulocytes. Naunyn Schmiedebergs Arch Pharmacol 380: 497‐507, 2009.
 628. Papadopoulos MC, Saadoun S, Verkman AS. Aquaporins and cell migration. Pflugers Arch 456: 693‐700, 2008.
 629. Paradise RK, Lauffenburger DA, Van Vliet KJ. Acidic extracellular pH promotes activation of integrin alpha(v)beta(3). PLoS One 6: e15746, 2011.
 630. Paradiso A, Cardone RA, Bellizzi A, Bagorda A, Guerra L, Tommasino M, Casavola V, Reshkin SJ. The Na+‐H+ exchanger‐1 induces cytoskeletal changes involving reciprocal RhoA and Rac1 signaling, resulting in motility and invasion in MDA‐MB‐435 cells. Breast Cancer Res 6: R616‐R628, 2004.
 631. Park SA, Lee YC, Ma TZ, Park JA, Han MK, Lee HH, Kim HG, Kwak YG. hKv1.5 channels play a pivotal role in the functions of human alveolar macrophages. Biochem Biophys Res Commun 346: 567‐571, 2006.
 632. Parsons JT, Horwitz AR, Schwartz MA. Cell adhesion: Integrating cytoskeletal dynamics and cellular tension. Nat Rev Mol Cell Biol 11: 633‐643, 2010.
 633. Partida‐Sanchez S, Gasser A, Fliegert R, Siebrands CC, Dammermann W, Shi G, Mousseau BJ, Sumoza‐Toledo A, Bhagat H, Walseth TF, Guse AH, Lund FE. Chemotaxis of mouse bone marrow neutrophils and dendritic cells is controlled by adp‐ribose, the major product generated by the CD38 enzyme reaction. J Immunol 179: 7827‐7839, 2007.
 634. Patel H, Barber DL. A developmentally regulated Na‐H exchanger in Dictyostelium discoideum is necessary for cell polarity during chemotaxis. J Cell Biol 169: 321‐329, 2005.
 635. Pedersen KA, Jorgensen NK, Jensen BS, Olesen SP. Inhibition of the human intermediate‐conductance, Ca2+‐activated K+ channel by intracellular acidification. Pflugers Arch 440: 153‐156, 2000.
 636. Pedersen SF. The Na+/H+ exchanger NHE1 in stress‐induced signal transduction: Implications for cell proliferation and cell death. Pflugers Arch 452: 249‐259, 2006.
 637. Pedersen SF, Darborg BV, Rentsch ML, Rasmussen M. Regulation of mitogen‐activated protein kinase pathways by the plasma membrane Na+/H+ exchanger, NHE1. Arch Biochem Biophys 462: 195‐201, 2007.
 638. Pedersen SF, Hoffmann EK. Possible interrelationship between changes in F‐actin and myosin II, protein phosphorylation, and cell volume regulation in Ehrlich ascites tumor cells. Exp Cell Res 277: 57‐73, 2002.
 639. Pedersen SF, Mills JW, Hoffmann EK. Role of the F‐actin cytoskeleton in the RVD and RVI processes in Ehrlich ascites tumor cells. Exp Cell Res 252: 63‐74, 1999.
 640. Pellinen T, Arjonen A, Vuoriluoto K, Kallio K, Fransen JA, Ivaska J. Small GTPase Rab21 regulates cell adhesion and controls endosomal traffic of beta1‐integrins. J Cell Biol 173: 767‐780, 2006.
 641. Pellinen T, Ivaska J. Integrin traffic. J Cell Sci 119: 3723‐3731, 2006.
 642. Peranen J, Auvinen P, Virta H, Wepf R, Simons K. Rab8 promotes polarized membrane transport through reorganization of actin and microtubules in fibroblasts. J Cell Biol 135: 153‐167, 1996.
 643. Pernberg J, Machemer H. Fluorometric measurement of the intracellular free Ca(2+)‐concentration in the ciliate Didinium nasutum using Fura‐2. Cell Calcium 18: 484‐494, 1995.
 644. Perret S, Cantereau A, Audin J, Dufy B, Georgescauld D. Interplay between Ca2+ release and Ca2+ influx underlies localized hyperpolarization‐induced [Ca2+]i waves in prostatic cells. Cell Calcium 25: 297‐311, 1999.
 645. Petrie RJ, Doyle AD, Yamada KM. Random versus directionally persistent cell migration. Nat Rev Mol Cell Biol 10: 538‐549, 2009.
 646. Pettit EJ, Fay FS. Cytosolic free calcium and the cytoskeleton in the control of leukocyte chemotaxis. Physiol Rev 78: 949‐967, 1998.
 647. Pettit EJ, Hallett MB. Localised and global cytosolic Ca2+ changes in neutrophils during engagement of Cd11b/CD18 integrin visualised using confocal laser scanning reconstruction. J Cell Sci 109 (Pt 7): 1689‐1694, 1996.
 648. Phillipson M, Heit B, Parsons SA, Petri B, Mullaly SC, Colarusso P, Gower RM, Neely G, Simon SI, Kubes P. Vav1 is essential for mechanotactic crawling and migration of neutrophils out of the inflamed microvasculature. J Immunol 182: 6870‐6878, 2009.
 649. Picollo A, Pusch M. Chloride/proton antiporter activity of mammalian CLC proteins ClC‐4 and ClC‐5. Nature 436: 420‐423, 2005.
 650. Pierini LM, Lawson MA, Eddy RJ, Hendey B, Maxfield FR. Oriented endocytic recycling of alpha5beta1 in motile neutrophils. Blood 95: 2471‐2480, 2000.
 651. Pillozzi S, Arcangeli A. Physical and functional interaction between integrins and hERG1 channels in cancer cells. Adv Exp Med Biol 674: 55‐67, 2010.
 652. Pillozzi S, Brizzi MF, Bernabei PA, Bartolozzi B, Caporale R, Basile V, Boddi V, Pegoraro L, Becchetti A, Arcangeli A. VEGFR‐1 (FLT‐1), beta1 integrin, and hERG K +channel for a macromolecular signaling complex in acute myeloid leukemia: Role in cell migration and clinical outcome. Blood 110: 1238‐1250, 2007.
 653. Pinheiro C, Longatto‐Filho A, Ferreira L, Pereira SM, Etlinger D, Moreira MA, Jube LF, Queiroz GS, Schmitt F, Baltazar F. Increasing expression of monocarboxylate transporters 1 and 4 along progression to invasive cervical carcinoma. Int J Gynecol Pathol 27: 568‐574, 2008.
 654. Pinheiro C, Longatto‐Filho A, Scapulatempo C, Ferreira L, Martins S, Pellerin L, Rodrigues M, Alves VA, Schmitt F, Baltazar F. Increased expression of monocarboxylate transporters 1, 2, and 4 in colorectal carcinomas. Virchows Arch 452: 139‐146, 2008.
 655. Platel JC, Dave KA, Bordey A. Control of neuroblast production and migration by converging GABA and glutamate signals in the postnatal forebrain. J Physiol 586: 3739‐3743, 2008.
 656. Plopper GE, McNamee HP, Dike LE, Bojanowski K, Ingber DE. Convergence of integrin and growth factor receptor signaling pathways within the focal adhesion complex. Mol Biol Cell 6: 1349‐1365, 1995.
 657. Poincloux R, Lizarraga F, Chavrier P. Matrix invasion by tumour cells: A focus on MT1‐MMP trafficking to invadopodia. J Cell Sci 122: 3015‐3024, 2009.
 658. Pollard TD. Regulation of actin filament assembly by Arp2/3 complex and formins. Annu Rev Biophys Biomol Struct 36: 451‐477, 2007.
 659. Ponti A, Machacek M, Gupton SL, Waterman‐Storer CM, Danuser G. Two distinct actin networks drive the protrusion of migrating cells. Science 305: 1782‐1786, 2004.
 660. Pope BJ, Zierler‐Gould KM, Kuhne R, Weeds AG, Ball LJ. Solution structure of human cofilin: Actin binding, pH sensitivity, and relationship to actin‐depolymerizing factor. J Biol Chem 279: 4840‐4848, 2004.
 661. Potier M, Chantome A, Joulin V, Girault A, Roger S, Besson P, Jourdan ML, LeGuennec JY, Bougnoux P, Vandier C. The SK3/K(Ca)2.3 potassium channel is a new cellular target for edelfosine. Br J Pharmacol 162: 464‐479, 2011.
 662. Potier M, Joulin V, Roger S, Besson P, Jourdan ML, Leguennec JY, Bougnoux P, Vandier C. Identification of SK3 channel as a new mediator of breast cancer cell migration. Mol Cancer Ther 5: 2946‐2953, 2006.
 663. Potier M, Tran TA, Chantome A, Girault A, Joulin V, Bougnoux P, Vandier C, Pierre F. Altered SK3/KCa2.3‐mediated migration in adenomatous polyposis coli (Apc) mutated mouse colon epithelial cells. Biochem Biophys Res Commun 397: 42‐47, 2010.
 664. Pouyssegur J, Franchi A, Pages G. pHi, aerobic glycolysis and vascular endothelial growth factor in tumour growth. Novartis Found Symp 240: 186‐196; discussion 196‐188, 2001.
 665. Pouyssegur J, Sardet C, Franchi A, L'Allemain G, Paris S. A specific mutation abolishing Na+/H+ antiport activity in hamster fibroblasts precludes growth at neutral and acidic pH. Proc Natl Acad Sci U S A 81: 4833‐4837, 1984.
 666. Preisinger C, Short B, De Corte V, Bruyneel E, Haas A, Kopajtich R, Gettemans J, Barr FA. YSK1 is activated by the golgi matrix protein GM130 and plays a role in cell migration through its substrate 14‐3‐3zeta. J Cell Biol 164: 1009‐1020, 2004.
 667. Prevarskaya N, Skryma R, Shuba Y. Calcium in tumour metastasis: New roles for known actors. Nat Rev Cancer 11: 609‐618, 2011.
 668. Priel A, Ramos AJ, Tuszynski JA, Cantiello HF. A biopolymer transistor: Electrical amplification by microtubules. Biophys J 90: 4639‐4643, 2006.
 669. Pu J, Zhao M. Golgi polarization in a strong electric field. J Cell Sci 118: 1117‐1128, 2005.
 670. Pullar CE, Baier BS, Kariya Y, Russell AJ, Horst BA, Marinkovich MP, Isseroff RR. beta4 integrin and epidermal growth factor coordinately regulate electric field‐mediated directional migration via Rac1. Mol Biol Cell 17: 4925‐4935, 2006.
 671. Pullar CE, Isseroff RR. Cyclic AMP mediates keratinocyte directional migration in an electric field. J Cell Sci 118: 2023‐2034, 2005.
 672. Pullar CE, Isseroff RR, Nuccitelli R. Cyclic AMP‐dependent protein kinase A plays a role in the directed migration of human keratinocytes in a DC electric field. Cell Motil Cytoskeleton 50: 207‐217, 2001.
 673. Pusch M, Zifarelli G, Murgia AR, Picollo A, Babini E. Channel or transporter? The CLC saga continues. Exp Physiol 91: 149‐152, 2006.
 674. Putney LK, Barber DL. Na‐H exchange‐dependent increase in intracellular pH times G2/M entry and transition. J Biol Chem 278: 44645‐44649, 2003.
 675. Putney LK, Barber DL. Expression profile of genes regulated by activity of the Na‐H exchanger NHE1. BMC Genomics 5: 46, 2004.
 676. Radmacher M, Fritz M, Kacher CM, Cleveland JP, Hansma PK. Measuring the viscoelastic properties of human platelets with the atomic force microscope. Biophys J 70: 556‐567, 1996.
 677. Rafelski SM, Theriot JA. Crawling toward a unified model of cell mobility: Spatial and temporal regulation of actin dynamics. Annu Rev Biochem 73: 209‐239, 2004.
 678. Raghunand N, Gatenby RA, Gillies RJ. Microenvironmental and cellular consequences of altered blood flow in tumours. Br J Radiol 76 (Spec No 1): S11‐S22, 2003.
 679. Raizman JE, Komljenovic J, Chang R, Deng C, Bedosky KM, Rattan SG, Cunnington RH, Freed DH, Dixon IM. The participation of the Na+‐Ca2+ exchanger in primary cardiac myofibroblast migration, contraction, and proliferation. J Cell Physiol 213: 540‐551, 2007.
 680. Rajasekaran SA, Palmer LG, Quan K, Harper JF, Ball WJ,Jr., Bander NH, Peralta Soler A, Rajasekaran AK. Na,K‐ATPase beta‐subunit is required for epithelial polarization, suppression of invasion, and cell motility. Mol Biol Cell 12: 279‐295, 2001.
 681. Ramadass R, Becker D, Jendrach M, Bereiter‐Hahn J. Spectrally and spatially resolved fluorescence lifetime imaging in living cells: TRPV4‐microfilament interactions. Arch Biochem Biophys 463: 27‐36, 2007.
 682. Ransom CB, O'Neal JT, Sontheimer H. Volume‐activated chloride currents contribute to the resting conductance and invasive migration of human glioma cells. J Neurosci 21: 7674‐7683, 2001.
 683. Rao GN, Sardet C, Pouyssegur J, Berk BC. Na+/H+ antiporter gene expression increases during retinoic acid‐induced granulocytic differentiation of HL60 cells. J Cell Physiol 151: 361‐366, 1992.
 684. Rao JN, Platoshyn O, Golovina VA, Liu L, Zou T, Marasa BS, Turner DJ, Yuan JX, Wang JY. TRPC1 functions as a store‐operated Ca2+ channel in intestinal epithelial cells and regulates early mucosal restitution after wounding. Am J Physiol Gastrointest Liver Physiol 290: G782‐G792, 2006.
 685. Rao JN, Platoshyn O, Li L, Guo X, Golovina VA, Yuan JX, Wang JY. Activation of K(+) channels and increased migration of differentiated intestinal epithelial cells after wounding. Am J Physiol Cell Physiol 282: C885‐C898, 2002.
 686. Rao JN, Rathor N, Zou T, Liu L, Xiao L, Yu TX, Cui YH, Wang JY. STIM1 translocation to the plasma membrane enhances intestinal epithelial restitution by inducing TRPC1‐mediated Ca2+ signaling after wounding. Am J Physiol Cell Physiol 299: C579‐C588, 2010.
 687. Rapp B, de Boisfleury‐Chevance A, Gruler H. Galvanotaxis of human granulocytes. Dose‐response curve. Eur Biophys J 16: 313‐319, 1988.
 688. Rappert A, Biber K, Nolte C, Lipp M, Schubel A, Lu B, Gerard NP, Gerard C, Boddeke HW, Kettenmann H. Secondary lymphoid tissue chemokine (CCL21) activates CXCR3 to trigger a Cl‐ current and chemotaxis in murine microglia. J Immunol 168: 3221‐3226, 2002.
 689. Rasmussen M, Alexander RT, Darborg BV, Mobjerg N, Hoffmann EK, Kapus A, Pedersen SF. Osmotic cell shrinkage activates ezrin/radixin/moesin (ERM) proteins: Activation mechanisms and physiological implications. Am J Physiol Cell Physiol 294: C197‐C212, 2008.
 690. Rawicz W, Olbrich KC, McIntosh T, Needham D, Evans E. Effect of chain length and unsaturation on elasticity of lipid bilayers. Biophys J 79: 328‐339, 2000.
 691. Rebecchi MJ, Pentyala SN. Structure, function, and control of phosphoinositide‐specific phospholipase C. Physiol Rev 80: 1291‐1335, 2000.
 692. Reddy T, Ding J, Li X, Sykes BD, Rainey JK, Fliegel L. Structural and functional characterization of transmembrane segment IX of the NHE1 isoform of the Na+/H+ exchanger. J Biol Chem 283: 22018‐22030, 2008.
 693. Reid B, Song B, McCaig CD, Zhao M. Wound healing in rat cornea: The role of electric currents. Faseb J 19: 379‐386, 2005.
 694. Reinhardt J, Golenhofen N, Pongs O, Oberleithner H, Schwab A. Migrating transformed MDCK cells are able to structurally polarize a voltage‐activated K+ channel. Proc Natl Acad Sci U S A 95: 5378‐5382, 1998.
 695. Ren XD, Kiosses WB, Schwartz MA. Regulation of the small GTP‐binding protein Rho by cell adhesion and the cytoskeleton. Embo J 18: 578‐585, 1999.
 696. Ren XD, Kiosses WB, Sieg DJ, Otey CA, Schlaepfer DD, Schwartz MA. Focal adhesion kinase suppresses Rho activity to promote focal adhesion turnover. J Cell Sci 113 (Pt 20): 3673‐3678, 2000.
 697. Renkawitz J, Schumann K, Weber M, Lammermann T, Pflicke H, Piel M, Polleux J, Spatz JP, Sixt M. Adaptive force transmission in amoeboid cell migration. Nat Cell Biol 11: 1438‐1443, 2009.
 698. Renold A, Cescato R, Beuret N, Vogel LK, Wahlberg JM, Brown JL, Fiedler K, Spiess M. Basolateral sorting signals differ in their ability to redirect apical proteins to the basolateral cell surface. J Biol Chem 275: 9290‐9295, 2000.
 699. Reshkin SJ, Bellizzi A, Albarani V, Guerra L, Tommasino M, Paradiso A, Casavola V. Phosphoinositide 3‐kinase is involved in the tumor‐specific activation of human breast cancer cell Na(+)/H(+) exchange, motility, and invasion induced by serum deprivation. J Biol Chem 275: 5361‐5369, 2000.
 700. Reshkin SJ, Bellizzi A, Caldeira S, Albarani V, Malanchi I, Poignee M, Alunni‐Fabbroni M, Casavola V, Tommasino M. Na+/H+ exchanger‐dependent intracellular alkalinization is an early event in malignant transformation and plays an essential role in the development of subsequent transformation‐associated phenotypes. Faseb J 14: 2185‐2197, 2000.
 701. Rezzonico R, Cayatte C, Bourget‐Ponzio I, Romey G, Belhacene N, Loubat A, Rocchi S, Van Obberghen E, Girault JA, Rossi B, Schmid‐Antomarchi H. Focal adhesion kinase pp125FAK interacts with the large conductance calcium‐activated hSlo potassium channel in human osteoblasts: Potential role in mechanotransduction. J Bone Miner Res 18: 1863‐1871, 2003.
 702. Rickert P, Weiner OD, Wang F, Bourne HR, Servant G. Leukocytes navigate by compass: Roles of PI3Kgamma and its lipid products. Trends Cell Biol 10: 466‐473, 2000.
 703. Ridley AJ, Schwartz MA, Burridge K, Firtel RA, Ginsberg MH, Borisy G, Parsons JT, Horwitz AR. Cell migration: Integrating signals from front to back. Science 302: 1704‐1709, 2003.
 704. Riquelme G, Diaz M, Sepulveda FV. Possible thiol group involvement in intracellular pH effect on low‐conductance Ca(2+)‐dependent K+ channels. Am J Physiol 273: C230‐C238, 1997.
 705. Ritter M. Cell volume regulatory ion transport in cell migration. Contrib Nephrol 123: 135‐157, 1998.
 706. Ritter M, Fuerst J, Woll E, Chwatal S, Gschwentner M, Lang F, Deetjen P, Paulmichl M. Na(+)/H(+)exchangers: Linking osmotic dysequilibrium to modified cell function. Cell Physiol Biochem 11: 1‐18, 2001.
 707. Ritter M, Schratzberger P, Rossmann H, Woll E, Seiler K, Seidler U, Reinisch N, Kahler CM, Zwierzina H, Lang HJ, Lang F, Paulmichl M, Wiedermann CJ. Effect of inhibitors of Na+/H+‐exchange and gastric H+/K+ ATPase on cell volume, intracellular pH and migration of human polymorphonuclear leucocytes. Br J Pharmacol 124: 627‐638, 1998.
 708. Rizoli SB, Rotstein OD, Parodo J, Phillips MJ, Kapus A. Hypertonic inhibition of exocytosis in neutrophils: Central role for osmotic actin skeleton remodeling. Am J Physiol Cell Physiol 279: C619‐C633, 2000.
 709. Robey IF, Baggett BK, Kirkpatrick ND, Roe DJ, Dosescu J, Sloane BF, Hashim AI, Morse DL, Raghunand N, Gatenby RA, Gillies RJ. Bicarbonate increases tumor pH and inhibits spontaneous metastases. Cancer Res 69: 2260‐2268, 2009.
 710. Robinson KR. The responses of cells to electrical fields: A review. J Cell Biol 101: 2023‐2027, 1985.
 711. Rodriguez N, Amarouch MY, Montnach J, Piron J, Labro AJ, Charpentier F, Merot J, Baro I, Loussouarn G. Phosphatidylinositol‐4,5‐bisphosphate (PIP(2)) stabilizes the open pore conformation of the Kv11.1 (hERG) channel. Biophys J 99: 1110‐1118, 2010.
 712. Roger S, Besson P, Le Guennec JY. Influence of the whole‐cell patch‐clamp configuration on electrophysiological properties of the voltage‐dependent sodium current expressed in MDA‐MB‐231 breast cancer cells. Eur Biophys J 33: 274‐279, 2004.
 713. Roger S, Rollin J, Barascu A, Besson P, Raynal PI, Iochmann S, Lei M, Bougnoux P, Gruel Y, Le Guennec JY. Voltage‐gated sodium channels potentiate the invasive capacities of human non‐small‐cell lung cancer cell lines. Int J Biochem Cell Biol 39: 774‐786, 2007.
 714. Rohatgi R, Ma L, Miki H, Lopez M, Kirchhausen T, Takenawa T, Kirschner MW. The interaction between N‐WASP and the Arp2/3 complex links Cdc42‐dependent signals to actin assembly. Cell 97: 221‐231, 1999.
 715. Rohatgi R, Snell WJ. The ciliary membrane. Curr Opin Cell Biol 22: 541‐546.
 716. Rojas JD, Sennoune SR, Maiti D, Bakunts K, Reuveni M, Sanka SC, Martinez GM, Seftor EA, Meininger CJ, Wu G, Wesson DE, Hendrix MJ, Martinez‐Zaguilan R. Vacuolar‐type H+‐ATPases at the plasma membrane regulate pH and cell migration in microvascular endothelial cells. Am J Physiol Heart Circ Physiol 291: H1147‐H1157, 2006.
 717. Romero MF, Fulton CM, Boron WF. The SLC4 family of HCO 3 ‐ transporters. Pflugers Arch 447: 495‐509, 2004.
 718. Roos A, Boron WF. Intracellular pH. Physiol Rev 61: 296‐434, 1981.
 719. Rosengren S, Henson PM, Worthen GS. Migration‐associated volume changes in neutrophils facilitate the migratory process in vitro. Am J Physiol 267: C1623‐C1632, 1994.
 720. Rot A, von Andrian UH. Chemokines in innate and adaptive host defense: Basic chemokinese grammar for immune cells. Annu Rev Immunol 22: 891‐928, 2004.
 721. Ruiz‐Ederra J, Verkman AS. Aquaporin‐1‐facilitated keratocyte migration in cell culture and in vivo corneal wound healing models. Exp Eye Res 89: 159‐165, 2009.
 722. Runnels LW. TRPM6 and TRPM7: A Mul‐TRP‐PLIK‐cation of channel functions. Curr Pharm Biotechnol 12: 42‐53, 2011.
 723. Runnels LW, Yue L, Clapham DE. TRP‐PLIK, a bifunctional protein with kinase and ion channel activities. Science 291: 1043‐1047, 2001.
 724. Runnels LW, Yue L, Clapham DE. The TRPM7 channel is inactivated by PIP(2) hydrolysis. Nat Cell Biol 4: 329‐336, 2002.
 725. Saadoun S, Papadopoulos MC, Hara‐Chikuma M, Verkman AS. Impairment of angiogenesis and cell migration by targeted aquaporin‐1 gene disruption. Nature 434: 786‐792, 2005.
 726. Saadoun S, Papadopoulos MC, Watanabe H, Yan D, Manley GT, Verkman AS. Involvement of aquaporin‐4 in astroglial cell migration and glial scar formation. J Cell Sci 118: 5691‐5698, 2005.
 727. Sakamoto K, Owada Y, Shikama Y, Wada I, Waguri S, Iwamoto T, Kimura J. Involvement of Na+/Ca2+ exchanger in migration and contraction of rat cultured tendon fibroblasts. J Physiol 587: 5345‐5359, 2009.
 728. Sakmann B, Trube G. Conductance properties of single inwardly rectifying potassium channels in ventricular cells from guinea‐pig heart. J Physiol 347: 641‐657, 1984.
 729. Saoncella S, Echtermeyer F, Denhez F, Nowlen JK, Mosher DF, Robinson SD, Hynes RO, Goetinck PF. Syndecan‐4 signals cooperatively with integrins in a Rho‐dependent manner in the assembly of focal adhesions and actin stress fibers. Proc Natl Acad Sci U S A 96: 2805‐2810, 1999.
 730. Sardet C, Fafournoux P, Pouyssegur J. Alpha‐thrombin, epidermal growth factor, and okadaic acid activate the Na+/H+ exchanger, NHE‐1, by phosphorylating a set of common sites. J Biol Chem 266: 19166‐19171, 1991.
 731. Sardet C, Franchi A, Pouyssegur J. Molecular cloning, primary structure, and expression of the human growth factor‐activatable Na+/H+ antiporter. Cell 56: 271‐280, 1989.
 732. Satir P, Christensen ST. Overview of structure and function of mammalian cilia. Annu Rev Physiol 69: 377‐400, 2007.
 733. Schaff UY, Dixit N, Procyk E, Yamayoshi I, Tse T, Simon SI. Orai1 regulates intracellular calcium, arrest, and shape polarization during neutrophil recruitment in shear flow. Blood 115: 657‐666, 2010.
 734. Schelling JR, Abu Jawdeh BG. Regulation of cell survival by Na+/H+ exchanger‐1. Am J Physiol Renal Physiol 295: F625‐F632, 2008.
 735. Scherberich A, Campos‐Toimil M, Ronde P, Takeda K, Beretz A. Migration of human vascular smooth muscle cells involves serum‐dependent repeated cytosolic calcium transients. J Cell Sci 113 (Pt 4): 653‐662, 2000.
 736. Schiffmann E. Leukocyte chemotaxis. Annu Rev Physiol 44: 553‐568, 1982.
 737. Schiller KR, Maniak PJ, O'Grady SM. Cystic fibrosis transmembrane conductance regulator is involved in airway epithelial wound repair. Am J Physiol Cell Physiol 299: C912‐C921, 2010.
 738. Schilling T, Eder C. Lysophosphatidylcholine‐ and MCP‐1‐induced chemotaxis of monocytes requires potassium channel activity. Pflugers Arch 459: 71‐77, 2009.
 739. Schilling T, Stock C, Schwab A, Eder C. Functional importance of Ca2+‐activated K+ channels for lysophosphatidic acid‐induced microglial migration. Eur J Neurosci 19: 1469‐1474, 2004.
 740. Schmalzing G, Kroner S, Schachner M, Gloor S. The adhesion molecule on glia (AMOG/beta 2) and alpha 1 subunits assemble to functional sodium pumps in Xenopus oocytes. J Biol Chem 267: 20212‐20216, 1992.
 741. Schmidt J, Friebel K, Schonherr R, Coppolino MG, Bosserhoff AK. Migration‐associated secretion of melanoma inhibitory activity at the cell rear is supported by KCa3.1 potassium channels. Cell Res 20: 1224‐1238, 2010.
 742. Schmidt S, Friedl P. Interstitial cell migration: Integrin‐dependent and alternative adhesion mechanisms. Cell Tissue Res 339: 83‐92, 2010.
 743. Schmitt BM, Biemesderfer D, Romero MF, Boulpaep EL, Boron WF. Immunolocalization of the electrogenic Na+‐HCO‐3 cotransporter in mammalian and amphibian kidney. Am J Physiol 276: F27‐F38, 1999.
 744. Schmoranzer J, Kreitzer G, Simon SM. Migrating fibroblasts perform polarized, microtubule‐dependent exocytosis towards the leading edge. J Cell Sci 116: 4513‐4519, 2003.
 745. Schneider L, Cammer M, Lehman J, Nielsen SK, Guerra CF, Veland IR, Stock C, Hoffmann EK, Yoder BK, Schwab A, Satir P, Christensen ST. Directional cell migration and chemotaxis in wound healing response to PDGF‐AA are coordinated by the primary cilium in fibroblasts. Cell Physiol Biochem 25: 279‐292, 2010.
 746. Schneider L, Clement CA, Teilmann SC, Pazour GJ, Hoffmann EK, Satir P, Christensen ST. PDGFRalphaalpha signaling is regulated through the primary cilium in fibroblasts. Curr Biol 15: 1861‐1866, 2005.
 747. Schneider L, Klausen TK, Stock C, Mally S, Christensen ST, Pedersen SF, Hoffmann EK, Schwab A. H‐ras transformation sensitizes volume‐activated anion channels and increases migratory activity of NIH3T3 fibroblasts. Pflugers Arch 455: 1055‐1062, 2008.
 748. Schneider L, Stock CM, Dieterich P, Jensen BH, Pedersen LB, Satir P, Schwab A, Christensen ST, Pedersen SF. The Na+/H+ exchanger NHE1 is required for directional migration stimulated via PDGFR‐alpha in the primary cilium. J Cell Biol 185: 163‐176, 2009.
 749. Schneider SW, Pagel P, Rotsch C, Danker T, Oberleithner H, Radmacher M, Schwab A. Volume dynamics in migrating epithelial cells measured with atomic force microscopy. Pflugers Arch 439: 297‐303, 2000.
 750. Schneiderhan W, Scheler M, Holzmann KH, Marx M, Gschwend JE, Bucholz M, Gress TM, Seufferlein T, Adler G, Oswald F. CD147 silencing inhibits lactate transport and reduces malignant potential of pancreatic cancer cells in in vivo and in vitro models. Gut 58: 1391‐1398, 2009.
 751. Schwab A. Function and spatial distribution of ion channels and transporters in cell migration. Am J Physiol Renal Physiol 280: F739‐F747, 2001.
 752. Schwab A. Ion channels and transporters on the move. News Physiol Sci 16: 29‐33, 2001.
 753. Schwab A, Finsterwalder F, Kersting U, Danker T, Oberleithner H. Intracellular Ca2+ distribution in migrating transformed epithelial cells. Pflugers Arch 434: 70‐76, 1997.
 754. Schwab A, Gabriel K, Finsterwalder F, Folprecht G, Greger R, Kramer A, Oberleithner H. Polarized ion transport during migration of transformed Madin‐Darby canine kidney cells. Pflugers Arch 430: 802‐807, 1995.
 755. Schwab A, Hanley P, Fabian A, Stock C. Potassium channels keep mobile cells on the go. Physiology (Bethesda) 23: 212‐220, 2008.
 756. Schwab A, Nechyporuk‐Zloy V, Fabian A, Stock C. Cells move when ions and water flow. Pflugers Arch 453: 421‐432, 2007.
 757. Schwab A, Nechyporuk‐Zloy V, Gassner B, Schulz C, Kessler W, Mally S, Romer M, Stock C. Dynamic redistribution of calcium sensitive potassium channels (hK(Ca)3.1) in migrating cells. J Cell Physiol 227: 686‐696, 2012.
 758. Schwab A, Reinhardt J, Schneider SW, Gassner B, Schuricht B. K(+) channel‐dependent migration of fibroblasts and human melanoma cells. Cell Physiol Biochem 9: 126‐132, 1999.
 759. Schwab A, Rossmann H, Klein M, Dieterich P, Gassner B, Neff C, Stock C, Seidler U. Functional role of Na+‐HCO3‐ cotransport in migration of transformed renal epithelial cells. J Physiol 568: 445‐458, 2005.
 760. Schwab A, Schuricht B, Seeger P, Reinhardt J, Dartsch PC. Migration of transformed renal epithelial cells is regulated by K+ channel modulation of actin cytoskeleton and cell volume. Pflugers Arch 438: 330‐337, 1999.
 761. Schwab A, Westphale HJ, Wojnowski L, Wunsch S, Oberleithner H. Spontaneously oscillating K+ channel activity in transformed Madin‐Darby canine kidney cells. J Clin Invest 92: 218‐223, 1993.
 762. Schwab A, Wojnowski L, Gabriel K, Oberleithner H. Oscillating activity of a Ca(2+)‐sensitive K +channel. A prerequisite for migration of transformed Madin‐Darby canine kidney focus cells. J Clin Invest 93: 1631‐1636, 1994.
 763. Schwab A, Wulf A, Schulz C, Kessler W, Nechyporuk‐Zloy V, Romer M, Reinhardt J, Weinhold D, Dieterich P, Stock C, Hebert SC. Subcellular distribution of calcium‐sensitive potassium channels (IK1) in migrating cells. J Cell Physiol 206: 86‐94, 2006.
 764. Schwartz MA, Lechene C, Ingber DE. Insoluble fibronectin activates the Na/H antiporter by clustering and immobilizing integrin alpha 5 beta 1, independent of cell shape. Proc Natl Acad Sci U S A 88: 7849‐7853, 1991.
 765. Sciaccaluga M, Fioretti B, Catacuzzeno L, Pagani F, Bertollini C, Rosito M, Catalano M, D'Alessandro G, Santoro A, Cantore G, Ragozzino D, Castigli E, Franciolini F, Limatola C. CXCL12‐induced glioblastoma cell migration requires intermediate conductance Ca2+‐activated K+ channel activity. Am J Physiol Cell Physiol 299: C175‐C184, 2010.
 766. Seidler U, Rossmann H, Jacob P, Bachmann O, Christiani S, Lamprecht G, Gregor M. Expression and function of Na+HCO3‐ cotransporters in the gastrointestinal tract. Ann N Y Acad Sci 915: 1‐14, 2000.
 767. Sel S, Rost BR, Yildirim AO, Sel B, Kalwa H, Fehrenbach H, Renz H, Gudermann T, Dietrich A. Loss of classical transient receptor potential 6 channel reduces allergic airway response. Clin Exp Allergy 38: 1548‐1558, 2008.
 768. Semtner M, Schaefer M, Pinkenburg O, Plant TD. Potentiation of TRPC5 by protons. J Biol Chem 282: 33868‐33878, 2007.
 769. Senner V, Schmidtpeter S, Braune S, Puttmann S, Thanos S, Bartsch U, Schachner M, Paulus W. AMOG/beta2 and glioma invasion: Does loss of AMOG make tumour cells run amok? Neuropathol Appl Neurobiol 29: 370‐377, 2003.
 770. Sennoune SR, Luo D, Martinez‐Zaguilan R. Plasmalemmal vacuolar‐type H+‐ATPase in cancer biology. Cell Biochem Biophys 40: 185‐206, 2004.
 771. Shen L, Zhu Z, Huang Y, Shu Y, Sun M, Xu H, Zhang G, Guo R, Wei W, Wu W. Expression profile of multiple aquaporins in human gastric carcinoma and its clinical significance. Biomed Pharmacother 64: 313‐318, 2010.
 772. Sheridan DM, Isseroff RR, Nuccitelli R. Imposition of a physiologic DC electric field alters the migratory response of human keratinocytes on extracellular matrix molecules. J Invest Dermatol 106: 642‐646, 1996.
 773. Shim S, Goh EL, Ge S, Sailor K, Yuan JP, Roderick HL, Bootman MD, Worley PF, Song H, Ming GL. XTRPC1‐dependent chemotropic guidance of neuronal growth cones. Nat Neurosci 8: 730‐735, 2005.
 774. Shim S, Yuan JP, Kim JY, Zeng W, Huang G, Milshteyn A, Kern D, Muallem S, Ming GL, Worley PF. Peptidyl‐prolyl isomerase FKBP52 controls chemotropic guidance of neuronal growth cones via regulation of TRPC1 channel opening. Neuron 64: 471‐483, 2009.
 775. Shimamura T, Yasuda J, Ino Y, Gotoh M, Tsuchiya A, Nakajima A, Sakamoto M, Kanai Y, Hirohashi S. Dysadherin expression facilitates cell motility and metastatic potential of human pancreatic cancer cells. Cancer Res 64: 6989‐6995, 2004.
 776. Shimizu T, Owsianik G, Freichel M, Flockerzi V, Nilius B, Vennekens R. TRPM4 regulates migration of mast cells in mice. Cell Calcium 45: 226‐232, 2009.
 777. Shimoda LA, Fallon M, Pisarcik S, Wang J, Semenza GL. HIF‐1 regulates hypoxic induction of NHE1 expression and alkalinization of intracellular pH in pulmonary arterial myocytes. Am J Physiol Lung Cell Mol Physiol 291: L941‐L949, 2006.
 778. Shin JM, Munson K, Vagin O, Sachs G. The gastric HK‐ATPase: Structure, function, and inhibition. Pflugers Arch 457: 609‐622, 2009.
 779. Shin VY, Liu ES, Koo MW, Luo JC, So WH, Cho CH. Nicotine suppresses gastric wound repair via the inhibition of polyamine and K(+) channel expression. Eur J Pharmacol 444: 115‐121, 2002.
 780. Silva MT. When two is better than one: Macrophages and neutrophils work in concert in innate immunity as complementary and cooperative partners of a myeloid phagocyte system. J Leukoc Biol 87: 93‐106, 2010.
 781. Silva MT. Macrophage phagocytosis of neutrophils at inflammatory/infectious foci: A cooperative mechanism in the control of infection and infectious inflammation. J Leukoc Biol 89: 675‐683, 2011.
 782. Sim JA, Park CK, Oh SB, Evans RJ, North RA. P2×1 and P2×4 receptor currents in mouse macrophages. Br J Pharmacol 152: 1283‐1290, 2007.
 783. Simchowitz L, Cragoe EJ, Jr. Regulation of human neutrophil chemotaxis by intracellular pH. J Biol Chem 261: 6492‐6500, 1986.
 784. Simmen HP, Blaser J. Analysis of pH and pO2 in abscesses, peritoneal fluid, and drainage fluid in the presence or absence of bacterial infection during and after abdominal surgery. Am J Surg 166: 24‐27, 1993.
 785. Singh H, Cousin MA, Ashley RH. Functional reconstitution of mammalian ‘chloride intracellular channels’ CLIC1, CLIC4 and CLIC5 reveals differential regulation by cytoskeletal actin. Febs J 274: 6306‐6316, 2007.
 786. Singh I, Knezevic N, Ahmmed GU, Kini V, Malik AB, Mehta D. Galphaq‐TRPC6‐mediated Ca2+ entry induces RhoA activation and resultant endothelial cell shape change in response to thrombin. J Biol Chem 282: 7833‐7843, 2007.
 787. Sitrin RG, Sassanella TM, Landers JJ, Petty HR. Migrating human neutrophils exhibit dynamic spatiotemporal variation in membrane lipid organization. Am J Respir Cell Mol Biol 43: 498‐506, 2010.
 788. Sluka KA, Winter OC, Wemmie JA. Acid‐sensing ion channels: A new target for pain and CNS diseases. Curr Opin Drug Discov Devel 12: 693‐704, 2009.
 789. Small JV, Geiger B, Kaverina I, Bershadsky A. How do microtubules guide migrating cells? Nat Rev Mol Cell Biol 3: 957‐964, 2002.
 790. Small JV, Kaverina I. Microtubules meet substrate adhesions to arrange cell polarity. Curr Opin Cell Biol 15: 40‐47, 2003.
 791. Smedlund K, Tano JY, Vazquez G. The constitutive function of native TRPC3 channels modulates vascular cell adhesion molecule‐1 expression in coronary endothelial cells through nuclear factor kappaB signaling. Circ Res 106: 1479‐1488, 2010.
 792. Smilenov LB, Mikhailov A, Pelham RJ, Marcantonio EE, Gundersen GG. Focal adhesion motility revealed in stationary fibroblasts. Science 286: 1172‐1174, 1999.
 793. Smith P, Rhodes NP, Shortland AP, Fraser SP, Djamgoz MB, Ke Y, Foster CS. Sodium channel protein expression enhances the invasiveness of rat and human prostate cancer cells. FEBS Lett 423: 19‐24, 1998.
 794. Soleimani M, Burnham CE. Physiologic and molecular aspects of the Na+:HCO3‐ cotransporter in health and disease processes. Kidney Int 57: 371‐384, 2000.
 795. Solini A, Cuccato S, Ferrari D, Santini E, Gulinelli S, Callegari MG, Dardano A, Faviana P, Madec S, Di Virgilio F, Monzani F. Increased P2×7 receptor expression and function in thyroid papillary cancer: A new potential marker of the disease? Endocrinology 149: 389‐396, 2008.
 796. Somlyo AP, Somlyo AV. Ca2+ sensitivity of smooth muscle and nonmuscle myosin II: Modulated by G proteins, kinases, and myosin phosphatase. Physiol Rev 83: 1325‐1358, 2003.
 797. Sonveaux P, Vegran F, Schroeder T, Wergin MC, Verrax J, Rabbani ZN, De Saedeleer CJ, Kennedy KM, Diepart C, Jordan BF, Kelley MJ, Gallez B, Wahl ML, Feron O, Dewhirst MW. Targeting lactate‐fueled respiration selectively kills hypoxic tumor cells in mice. J Clin Invest 118: 3930‐3942, 2008.
 798. Soroceanu L, Manning TJ,Jr., Sontheimer H. Modulation of glioma cell migration and invasion using Cl(‐) and K(+) ion channel blockers. J Neurosci 19: 5942‐5954, 1999.
 799. Spiekerkoetter E, Guignabert C, de Jesus Perez V, Alastalo TP, Powers JM, Wang L, Lawrie A, Ambartsumian N, Schmidt AM, Berryman M, Ashley RH, Rabinovitch M. S100A4 and bone morphogenetic protein‐2 codependently induce vascular smooth muscle cell migration via phospho‐extracellular signal‐regulated kinase and chloride intracellular channel 4. Circ Res 105: 639‐647, 2009.
 800. Srivastava J, Barber DL, Jacobson MP. Intracellular pH sensors: Design principles and functional significance. Physiology (Bethesda) 22: 30‐39, 2007.
 801. Srivastava J, Barreiro G, Groscurth S, Gingras AR, Goult BT, Critchley DR, Kelly MJ, Jacobson MP, Barber DL. Structural model and functional significance of pH‐dependent talin‐actin binding for focal adhesion remodeling. Proc Natl Acad Sci U S A 105: 14436‐14441, 2008.
 802. Steffan JJ, Williams BC, Welbourne T, Cardelli JA. HGF‐induced invasion by prostate tumor cells requires anterograde lysosome trafficking and activity of Na+‐H+ exchangers. J Cell Sci 123: 1151‐1159, 2010.
 803. Stettner MR, Wang W, Nabors LB, Bharara S, Flynn DC, Grammer JR, Gillespie GY, Gladson CL. Lyn kinase activity is the predominant cellular SRC kinase activity in glioblastoma tumor cells. Cancer Res 65: 5535‐5543, 2005.
 804. Stewart AK, Yamamoto A, Nakakuki M, Kondo T, Alper SL, Ishiguro H. Functional coupling of apical Cl‐/HCO3‐ exchange with CFTR in stimulated HCO3‐ secretion by guinea pig interlobular pancreatic duct. Am J Physiol Gastrointest Liver Physiol 296: G1307‐G1317, 2009.
 805. Stock C, Gassner B, Hauck CR, Arnold H, Mally S, Eble JA, Dieterich P, Schwab A. Migration of human melanoma cells depends on extracellular pH and Na+/H+ exchange. J Physiol 567: 225‐238, 2005.
 806. Stock C, Gronlien HK, Allen RD. The ionic composition of the contractile vacuole fluid of Paramecium mirrors ion transport across the plasma membrane. Eur J Cell Biol 81: 505‐515, 2002.
 807. Stock C, Gronlien HK, Allen RD, Naitoh Y. Osmoregulation in paramecium: In situ ion gradients permit water to cascade through the cytosol to the contractile vacuole. J Cell Sci 115: 2339‐2348, 2002.
 808. Stock C, Kr UT, Key G, Lueken W. Sexual behaviour in Euplotes raikovi is accompanied by pheromone‐induced modifications of ionic currents. J Exp Biol 202: 475‐483, 1999.
 809. Stock C, Kruppel T, Lueken W. Kinesis in Euplotes vannus ‐ ethological and electrophysiological characteristics of chemosensory behavior. J Eukaryot Microbiol 44: 427‐433, 1997.
 810. Stock C, Kruppel T, Lueken W, Key G. Congruence of electrical properties in two Antarctic and two middle‐latitude marine species of Euplotes (Ciliata, Hypotrichida). Polar Biology 20: 127‐133, 1998.
 811. Stock C, Mueller M, Kraehling H, Mally S, Noel J, Eder C, Schwab A. pH nanoenvironment at the surface of single melanoma cells. Cell Physiol Biochem 20: 679‐686, 2007.
 812. Stock C, Schwab A. Role of the Na/H exchanger NHE1 in cell migration. Acta Physiol (Oxf) 187: 149‐157, 2006.
 813. Stock C, Schwab A. Protons make tumor cells move like clockwork. Pflugers Arch 458: 981‐992, 2009.
 814. Stupack DG, Cheresh DA. Integrins and angiogenesis. Curr Top Dev Biol 64: 207‐238, 2004.
 815. Stuwe L, Muller M, Fabian A, Waning J, Mally S, Noel J, Schwab A, Stock C. pH dependence of melanoma cell migration: Protons extruded by NHE1 dominate protons of the bulk solution. J Physiol 585: 351‐360, 2007.
 816. Su LT, Agapito MA, Li M, Simonson WT, Huttenlocher A, Habas R, Yue L, Runnels LW. TRPM7 regulates cell adhesion by controlling the calcium‐dependent protease calpain. J Biol Chem 281: 11260‐11270, 2006.
 817. Su LT, Liu W, Chen HC, Gonzalez‐Pagan O, Habas R, Runnels LW. TRPM7 regulates polarized cell movements. Biochem J 434: 513‐521, 2011.
 818. Su YH, Vacquier VD. A flagellar K(+)‐dependent Na(+)/Ca(2+) exchanger keeps Ca(2+) low in sea urchin spermatozoa. Proc Natl Acad Sci U S A 99: 6743‐6748, 2002.
 819. Sulik GL, Soong HK, Chang PC, Parkinson WC, Elner SG, Elner VM. Effects of steady electric fields on human retinal pigment epithelial cell orientation and migration in culture. Acta Ophthalmol (Copenh) 70: 115‐122, 1992.
 820. Sun F, Bahat A, Gakamsky A, Girsh E, Katz N, Giojalas LC, Tur‐Kaspa I, Eisenbach M. Human sperm chemotaxis: Both the oocyte and its surrounding cumulus cells secrete sperm chemoattractants. Hum Reprod 20: 761‐767, 2005.
 821. Sun X, Li Y, Yu W, Wang B, Tao Y, Dai Z. MT1‐MMP as a downstream target of BCR‐ABL/ABL interactor 1 signaling: Polarized distribution and involvement in BCR‐ABL‐stimulated leukemic cell migration. Leukemia 22: 1053‐1056, 2008.
 822. Swaney KF, Huang CH, Devreotes PN. Eukaryotic chemotaxis: A network of signaling pathways controls motility, directional sensing, and polarity. Annu Rev Biophys 39: 265‐289, 2010.
 823. Swietach P, Patiar S, Supuran CT, Harris AL, Vaughan‐Jones RD. The role of carbonic anhydrase 9 in regulating extracellular and intracellular ph in three‐dimensional tumor cell growths. J Biol Chem 284: 20299‐20310, 2009.
 824. Szaszi K, Sirokmany G, Di Ciano‐Oliveira C, Rotstein OD, Kapus A. Depolarization induces Rho‐Rho kinase‐mediated myosin light chain phosphorylation in kidney tubular cells. Am J Physiol Cell Physiol 289: C673‐C685, 2005.
 825. Szpaderska AM, Frankfater A. An intracellular form of cathepsin B contributes to invasiveness in cancer. Cancer Res 61: 3493‐3500, 2001.
 826. Tahirovic S, Bradke F. Neuronal polarity. Cold Spring Harb Perspect Biol 1: a001644, 2009.
 827. Tahirovic S, Hellal F, Neukirchen D, Hindges R, Garvalov BK, Flynn KC, Stradal TE, Chrostek‐Grashoff A, Brakebusch C, Bradke F. Rac1 regulates neuronal polarization through the WAVE complex. J Neurosci 30: 6930‐6943, 2010.
 828. Tajima N, Schonherr K, Niedling S, Kaatz M, Kanno H, Schonherr R, Heinemann SH. Ca2+‐activated K+ channels in human melanoma cells are up‐regulated by hypoxia involving hypoxia‐inducible factor‐1alpha and the von Hippel‐Lindau protein. J Physiol 571: 349‐359, 2006.
 829. Takagi J. Structural basis for ligand recognition by integrins. Curr Opin Cell Biol 19: 557‐564, 2007.
 830. Takagi J, Petre BM, Walz T, Springer TA. Global conformational rearrangements in integrin extracellular domains in outside‐in and inside‐out signaling. Cell 110: 599‐511, 2002.
 831. Tam T, Mathews E, Snutch TP, Schafer WR. Voltage‐gated calcium channels direct neuronal migration in Caenorhabditis elegans. Dev Biol 226: 104‐117, 2000.
 832. Tamura K, Mizutani T, Haga H, Kawabata K. Nano‐mechanical properties of living cells expressing constitutively active RhoA effectors. Biochem Biophys Res Commun 403: 363‐367, 2010.
 833. Tang BL, Ng EL. Rabs and cancer cell motility. Cell Motil Cytoskeleton 66: 365‐370, 2009.
 834. Tang Y, Kesavan P, Nakada MT, Yan L. Tumor‐stroma interaction: Positive feedback regulation of extracellular matrix metalloproteinase inducer (EMMPRIN) expression and matrix metalloproteinase‐dependent generation of soluble EMMPRIN. Mol Cancer Res 2: 73‐80, 2004.
 835. Tarnok K, Czondor K, Jelitai M, Czirok A, Schlett K. NMDA receptor NR2B subunit over‐expression increases cerebellar granule cell migratory activity. J Neurochem 104: 818‐829, 2008.
 836. Taylor CJ, Hardcastle J, Southern KW. Physiological measurements confirming the diagnosis of cystic fibrosis: The sweat test and measurements of transepithelial potential difference. Paediatr Respir Rev 10: 220‐226, 2009.
 837. Tedone T, Correale M, Barbarossa G, Casavola V, Paradiso A, Reshkin SJ. Release of the aspartyl protease cathepsin D is associated with and facilitates human breast cancer cell invasion. Faseb Journal 11: 785‐792, 1997.
 838. Teves ME, Barbano F, Guidobaldi HA, Sanchez R, Miska W, Giojalas LC. Progesterone at the picomolar range is a chemoattractant for mammalian spermatozoa. Fertil Steril 86: 745‐749, 2006.
 839. Tharp DL, Wamhoff BR, Turk JR, Bowles DK. Upregulation of intermediate‐conductance Ca2+‐activated K+ channel (IKCa1) mediates phenotypic modulation of coronary smooth muscle. Am J Physiol Heart Circ Physiol 291: H2493‐H2503, 2006.
 840. Thebault S, Flourakis M, Vanoverberghe K, Vandermoere F, Roudbaraki M, Lehen'kyi V, Slomianny C, Beck B, Mariot P, Bonnal JL, Mauroy B, Shuba Y, Capiod T, Skryma R, Prevarskaya N. Differential role of transient receptor potential channels in Ca2+ entry and proliferation of prostate cancer epithelial cells. Cancer Res 66: 2038‐2047, 2006.
 841. Thodeti CK, Matthews B, Ravi A, Mammoto A, Ghosh K, Bracha AL, Ingber DE. TRPV4 channels mediate cyclic strain‐induced endothelial cell reorientation through integrin‐to‐integrin signaling. Circ Res 104: 1123‐1130, 2009.
 842. Thorne RG, Nicholson C. In vivo diffusion analysis with quantum dots and dextrans predicts the width of brain extracellular space. Proc Natl Acad Sci U S A 103: 5567‐5572, 2006.
 843. Thrasher AJ, Burns SO. WASP: A key immunological multitasker. Nat Rev Immunol 10: 182‐192, 2010.
 844. Tian D, Jacobo SM, Billing D, Rozkalne A, Gage SD, Anagnostou T, Pavenstadt H, Hsu HH, Schlondorff J, Ramos A, Greka A. Antagonistic regulation of actin dynamics and cell motility by TRPC5 and TRPC6 channels. Sci Signal 3: ra77, 2010.
 845. Tian L, Chen L, McClafferty H, Sailer CA, Ruth P, Knaus HG, Shipston MJ. A noncanonical SH3 domain binding motif links BK channels to the actin cytoskeleton via the SH3 adapter cortactin. Faseb J 20: 2588‐2590, 2006.
 846. Tiwari‐Woodruff S, Beltran‐Parrazal L, Charles A, Keck T, Vu T, Bronstein J. K+ channel KV3.1 associates with OSP/claudin‐11 and regulates oligodendrocyte development. Am J Physiol Cell Physiol 291: C687‐C698, 2006.
 847. Tominaga T, Barber DL. Na‐H exchange acts downstream of RhoA to regulate integrin‐induced cell adhesion and spreading. Mol Biol Cell 9: 2287‐2303, 1998.
 848. Tominaga T, Ishizaki T, Narumiya S, Barber DL. p160ROCK mediates RhoA activation of Na‐H exchange. Embo J 17: 4712‐4722, 1998.
 849. Tong XP, Li XY, Zhou B, Shen W, Zhang ZJ, Xu TL, Duan S. Ca(2+) signaling evoked by activation of Na(+) channels and Na(+)/Ca(2+) exchangers is required for GABA‐induced NG2 cell migration. J Cell Biol 186: 113‐128, 2009.
 850. Toyama K, Wulff H, Chandy KG, Azam P, Raman G, Saito T, Fujiwara Y, Mattson DL, Das S, Melvin JE, Pratt PF, Hatoum OA, Gutterman DD, Harder DR, Miura H. The intermediate‐conductance calcium‐activated potassium channel KCa3.1 contributes to atherogenesis in mice and humans. J Clin Invest 118: 3025‐3037, 2008.
 851. Trevino CL, Serrano CJ, Beltran C, Felix R, Darszon A. Identification of mouse trp homologs and lipid rafts from spermatogenic cells and sperm. FEBS Lett 509: 119‐125, 2001.
 852. Trinh NT, Prive A, Kheir L, Bourret JC, Hijazi T, Amraei MG, Noel J, Brochiero E. Involvement of KATP and KvLQT1 K+ channels in EGF‐stimulated alveolar epithelial cell repair processes. Am J Physiol Lung Cell Mol Physiol 293: L870‐L882, 2007.
 853. Trinh NT, Prive A, Maille E, Noel J, Brochiero E. EGF and K+ channel activity control normal and cystic fibrosis bronchial epithelia repair. Am J Physiol Lung Cell Mol Physiol 295: L866‐L880, 2008.
 854. Trollinger DR, Isseroff RR, Nuccitelli R. Calcium channel blockers inhibit galvanotaxis in human keratinocytes. J Cell Physiol 193: 1‐9, 2002.
 855. Tung JJ, Kitajewski J. Chloride intracellular channel 1 functions in endothelial cell growth and migration. J Angiogenes Res 2: 23, 2010.
 856. Turnheim K. Intrinsic regulation of apical sodium entry in epithelia. Physiol Rev 71: 429‐445, 1991.
 857. Tuszynski JA, Portet S, Dixon JM, Luxford C, Cantiello HF. Ionic wave propagation along actin filaments. Biophys J 86: 1890‐1903, 2004.
 858. Tyner KM, Kopelman R, Philbert MA. “ Nanosized voltmeter” enables cellular‐wide electric field mapping. Biophys J 93: 1163‐1174, 2007.
 859. Uddin MN, Horvat D, Glaser SS, Danchuk S, Mitchell BM, Sullivan DE, Morris CA, Puschett JB. Marinobufagenin inhibits proliferation and migration of cytotrophoblast and CHO cells. Placenta 29: 266‐273, 2008.
 860. Ugawa S, Ueda T, Takahashi E, Hirabayashi Y, Yoneda T, Komai S, Shimada S. Cloning and functional expression of ASIC‐beta2, a splice variant of ASIC‐beta. Neuroreport 12: 2865‐2869, 2001.
 861. Ullah MS, Davies AJ, Halestrap AP. The plasma membrane lactate transporter MCT4, but not MCT1, is up‐regulated by hypoxia through a HIF‐1alpha‐dependent mechanism. J Biol Chem 281: 9030‐9037, 2006.
 862. Urban E, Jacob S, Nemethova M, Resch GP, Small JV. Electron tomography reveals unbranched networks of actin filaments in lamellipodia. Nat Cell Biol 12: 429‐435, 2010.
 863. Uysal‐Onganer P, Djamgoz MB. Epidermal growth factor potentiates in vitro metastatic behaviour of human prostate cancer PC‐3M cells: Involvement of voltage‐gated sodium channel. Mol Cancer 6: 76, 2007.
 864. Vaananen HK, Karhukorpi EK, Sundquist K, Wallmark B, Roininen I, Hentunen T, Tuukkanen J, Lakkakorpi P. Evidence for the presence of a proton pump of the vacuolar H(+)‐ATPase type in the ruffled borders of osteoclasts. J Cell Biol 111: 1305‐1311, 1990.
 865. Valeyev NV, Downing AK, Skorinkin AI, Campbell ID, Kotov NV. A calcium dependent de‐adhesion mechanism regulates the direction and rate of cell migration: A mathematical model. In Silico Biol 6: 545‐572, 2006.
 866. Valiente M, Marin O. Neuronal migration mechanisms in development and disease. Curr Opin Neurobiol 20: 68‐78, 2010.
 867. van Kempen LC, Rhee JS, Dehne K, Lee J, Edwards DR, Coussens LM. Epithelial carcinogenesis: Dynamic interplay between neoplastic cells and their microenvironment. Differentiation 70: 610‐623, 2002.
 868. van Oudenaarden A, Theriot JA. Cooperative symmetry‐breaking by actin polymerization in a model for cell motility. Nat Cell Biol 1: 493‐499, 1999.
 869. Vasanji A, Ghosh PK, Graham LM, Eppell SJ, Fox PL. Polarization of plasma membrane microviscosity during endothelial cell migration. Dev Cell 6: 29‐41, 2004.
 870. Vasilyev A, Liu Y, Mudumana S, Mangos S, Lam PY, Majumdar A, Zhao JH, Poon KL, Kondrychyn I, Korzh V, Drummond IA. Collective cell migration drives morphogenesis of the kidney nephron. Plos Biology 7: 101‐114, 2009.
 871. Vaupel P. Is there a critical tissue oxygen tension for bioenergetic status and cellular pH regulation in solid tumors? Experientia 52: 464‐468, 1996.
 872. Vaupel P, Harrison L. Tumor hypoxia: Causative factors, compensatory mechanisms, and cellular response. Oncologist 9 (Suppl 5): 4‐9, 2004.
 873. Vaupel P, Kallinowski F, Okunieff P. Blood flow, oxygen and nutrient supply, and metabolic microenvironment of human tumors: A review. Cancer Res 49: 6449‐6465, 1989.
 874. Veliceasa D, Ivanovic M, Hoepfner FT, Thumbikat P, Volpert OV, Smith ND. Transient potential receptor channel 4 controls thrombospondin‐1 secretion and angiogenesis in renal cell carcinoma. Febs J 274: 6365‐6377, 2007.
 875. Verfaillie CM, Benis A, Iida J, McGlave PB, McCarthy JB. Adhesion of committed human hematopoietic progenitors to synthetic peptides from the C‐terminal heparin‐binding domain of fibronectin: Cooperation between the integrin alpha 4 beta 1 and the CD44 adhesion receptor. Blood 84: 1802‐1811, 1994.
 876. Verkman AS. More than just water channels: Unexpected cellular roles of aquaporins. J Cell Sci 118: 3225‐3232, 2005.
 877. Verkman AS, Lukacs GL, Galietta LJ. CFTR chloride channel drug discovery–inhibitors as antidiarrheals and activators for therapy of cystic fibrosis. Curr Pharm Des 12: 2235‐2247, 2006.
 878. Vexler ZS, Symons M, Barber DL. Activation of Na+‐H+ exchange is necessary for RhoA‐induced stress fiber formation. J Biol Chem 271: 22281‐22284, 1996.
 879. Vicente‐Manzanares M, Koach MA, Whitmore L, Lamers ML, Horwitz AF. Segregation and activation of myosin IIB creates a rear in migrating cells. J Cell Biol 183: 543‐554, 2008.
 880. Vicente‐Manzanares M, Ma X, Adelstein RS, Horwitz AR. Non‐muscle myosin II takes centre stage in cell adhesion and migration. Nat Rev Mol Cell Biol 10: 778‐790, 2009.
 881. Vila‐Carriles WH, Kovacs GG, Jovov B, Zhou ZH, Pahwa AK, Colby G, Esimai O, Gillespie GY, Mapstone TB, Markert JM, Fuller CM, Bubien JK, Benos DJ. Surface expression of ASIC2 inhibits the amiloride‐sensitive current and migration of glioma cells. J Biol Chem 281: 19220‐19232, 2006.
 882. Vila‐Carriles WH, Zhou ZH, Bubien JK, Fuller CM, Benos DJ. Participation of the chaperone Hsc70 in the trafficking and functional expression of ASIC2 in glioma cells. J Biol Chem 282: 34381‐34391, 2007.
 883. Vladimirov N, Sourjik V. Chemotaxis: How bacteria use memory. Biol Chem 390: 1097‐1104, 2009.
 884. Vogt S, Grosse R, Schultz G, Offermanns S. Receptor‐dependent RhoA activation in G12/G13‐deficient cells: Genetic evidence for an involvement of Gq/G11. J Biol Chem 278: 28743‐28749, 2003.
 885. Volk AP, Heise CK, Hougen JL, Artman CM, Volk KA, Wessels D, Soll DR, Nauseef WM, Lamb FS, Moreland JG. ClC‐3 and IClswell are required for normal neutrophil chemotaxis and shape change. J Biol Chem 283: 34315‐34326, 2008.
 886. Waheed F, Speight P, Kawai G, Dan Q, Kapus A, Szaszi K. Extracellular signal‐regulated kinase and GEF‐H1 mediate depolarization‐induced Rho activation and paracellular permeability increase. Am J Physiol Cell Physiol 298: C1376‐C1387, 2010.
 887. Wahl ML, Owen JA, Burd R, Herlands RA, Nogami SS, Rodeck U, Berd D, Leeper DB, Owen CS. Regulation of intracellular pH in human melanoma: Potential therapeutic implications. Mol Cancer Ther 1: 617‐628, 2002.
 888. Wakabayashi S, Fafournoux P, Sardet C, Pouyssegur J. The Na+/H+ antiporter cytoplasmic domain mediates growth factor signals and controls “H(+)‐sensing”. Proc Natl Acad Sci U S A 89: 2424‐2428, 1992.
 889. Waldmann R, Champigny G, Bassilana F, Heurteaux C, Lazdunski M. A proton‐gated cation channel involved in acid‐sensing. Nature 386: 173‐177, 1997.
 890. Wang D, Hu J, Bobulescu IA, Quill TA, McLeroy P, Moe OW, Garbers DL. A sperm‐specific Na+/H+ exchanger (sNHE) is critical for expression and in vivo bicarbonate regulation of the soluble adenylyl cyclase (sAC). Proc Natl Acad Sci U S A 104: 9325‐9330, 2007.
 891. Wang D, King SM, Quill TA, Doolittle LK, Garbers DL. A new sperm‐specific Na+/H+ exchanger required for sperm motility and fertility. Nat Cell Biol 5: 1117‐1122, 2003.
 892. Wang GX, Poo MM. Requirement of TRPC channels in netrin‐1‐induced chemotropic turning of nerve growth cones. Nature 434: 898‐904, 2005.
 893. Wang H, Singh D, Fliegel L. The Na+/H+ antiporter potentiates growth and retinoic acid‐induced differentiation of P19 embryonal carcinoma cells. J Biol Chem 272: 26545‐26549, 1997.
 894. Wang J, Xu H, Morishima S, Tanabe S, Jishage K, Uchida S, Sasaki S, Okada Y, Shimizu T. Single‐channel properties of volume‐sensitive Cl‐ channel in ClC‐3‐deficient cardiomyocytes. Jpn J Physiol 55: 379‐383, 2005.
 895. Wang JY, Wang J, Golovina VA, Li L, Platoshyn O, Yuan JX. Role of K(+) channel expression in polyamine‐dependent intestinal epithelial cell migration. Am J Physiol Cell Physiol 278: C303‐C314, 2000.
 896. Wang Q, Zhong S, Ouyang J, Jiang L, Zhang Z, Xie Y, Luo S. Osteogenesis of electrically stimulated bone cells mediated in part by calcium ions. Clin Orthop Relat Res 259‐268, 1998.
 897. Wang ZH, Feng YJ, Su M, Yi XF. [Intermediate‐conductance‐Ca2+‐activated K+ channels are overexpressed in endometrial cancer and involved in regulating proliferation of endometrial cancer cells]. Zhonghua Fu Chan Ke Za Zhi 42: 111‐115, 2007.
 898. Wang ZH, Shen B, Yao HL, Jia YC, Ren J, Feng YJ, Wang YZ. Blockage of intermediate‐conductance‐Ca(2+)‐activated K(+) channels inhibits progression of human endometrial cancer. Oncogene 26: 5107‐5114, 2007.
 899. Waning J, Vriens J, Owsianik G, Stuwe L, Mally S, Fabian A, Frippiat C, Nilius B, Schwab A. A novel function of capsaicin‐sensitive TRPV1 channels: Involvement in cell migration. Cell Calcium 42: 17‐25, 2007.
 900. Warburg O. On the origin of cancer cells. Science 123: 309‐314, 1956.
 901. Ward TT, Steigbigel RT. Acidosis of synovial fluid correlates with synovial fluid leukocytosis. Am J Med 64: 933‐936, 1978.
 902. Wareham K, Vial C, Wykes RC, Bradding P, Seward EP. Functional evidence for the expression of P2×1, P2×4 and P2×7 receptors in human lung mast cells. Br J Pharmacol 157: 1215‐1224, 2009.
 903. Warner FD, Satir P. The structural basis of ciliary bend formation. Radial spoke positional changes accompanying microtubule sliding. J Cell Biol 63: 35‐63, 1974.
 904. Weaver AK, Bomben VC, Sontheimer H. Expression and function of calcium‐activated potassium channels in human glioma cells. Glia 54: 223‐233, 2006.
 905. Webb DJ, Parsons JT, Horwitz AF. Adhesion assembly, disassembly and turnover in migrating cells – over and over and over again. Nat Cell Biol 4: E97‐E100, 2002.
 906. Weber KS, Hildner K, Murphy KM, Allen PM. Trpm4 differentially regulates Th1 and Th2 function by altering calcium signaling and NFAT localization. J Immunol 185: 2836‐2846, 2010.
 907. Wehrle‐Haller B, Imhof BA. Actin, microtubules and focal adhesion dynamics during cell migration. Int J Biochem Cell Biol 35: 39‐50, 2003.
 908. Wei C, Wang X, Chen M, Ouyang K, Song LS, Cheng H. Calcium flickers steer cell migration. Nature 457: 901‐905, 2009.
 909. Wei C, Wang X, Chen M, Ouyang K, Zheng M, Cheng H. Flickering calcium microdomains signal turning of migrating cells. Can J Physiol Pharmacol 88: 105‐110, 2010.
 910. Wei JF, Wei L, Zhou X, Lu ZY, Francis K, Hu XY, Liu Y, Xiong WC, Zhang X, Banik NL, Zheng SS, Yu SP. Formation of Kv2.1‐FAK complex as a mechanism of FAK activation, cell polarization and enhanced motility. J Cell Physiol 217: 544‐557, 2008.
 911. Wei Y, Yang X, Liu Q, Wilkins JA, Chapman HA. A role for caveolin and the urokinase receptor in integrin‐mediated adhesion and signaling. J Cell Biol 144: 1285‐1294, 1999.
 912. Weick JP, Austin Johnson M, Zhang SC. Developmental regulation of human embryonic stem cell‐derived neurons by calcium entry via transient receptor potential channels. Stem Cells 27: 2906‐2916, 2009.
 913. Weihua Z, Tsan R, Schroit AJ, Fidler IJ. Apoptotic cells initiate endothelial cell sprouting via electrostatic signaling. Cancer Res 65: 11529‐11535, 2005.
 914. Weisswange I, Bretschneider T, Anderson KI. The leading edge is a lipid diffusion barrier. J Cell Sci 118: 4375‐4380, 2005.
 915. Wemmie JA, Askwith CC, Lamani E, Cassell MD, Freeman JH, Jr., Welsh MJ. Acid‐sensing ion channel 1 is localized in brain regions with high synaptic density and contributes to fear conditioning. J Neurosci 23: 5496‐5502, 2003.
 916. Wemmie JA, Price MP, Welsh MJ. Acid‐sensing ion channels: Advances, questions and therapeutic opportunities. Trends Neurosci 29: 578‐586, 2006.
 917. Wen Z, Han L, Bamburg JR, Shim S, Ming GL, Zheng JQ. BMP gradients steer nerve growth cones by a balancing act of LIM kinase and Slingshot phosphatase on ADF/cofilin. J Cell Biol 178: 107‐119, 2007.
 918. Wettschureck N, Offermanns S. Mammalian G proteins and their cell type specific functions. Physiol Rev 85: 1159‐1204, 2005.
 919. Williams MR, Markey JC, Doczi MA, Morielli AD. An essential role for cortactin in the modulation of the potassium channel Kv1.2. Proc Natl Acad Sci U S A 104: 17412‐17417, 2007.
 920. Winder SJ, Ayscough KR. Actin‐binding proteins. J Cell Sci 118: 651‐654, 2005.
 921. Wondergem R, Bartley JW. Menthol increases human glioblastoma intracellular Ca2+, BK channel activity and cell migration. J Biomed Sci 16: 90, 2009.
 922. Wondergem R, Ecay TW, Mahieu F, Owsianik G, Nilius B. HGF/SF and menthol increase human glioblastoma cell calcium and migration. Biochem Biophys Res Commun 372: 210‐215, 2008.
 923. Wong D, Prameya R, Dorovini‐Zis K. Adhesion and migration of polymorphonuclear leukocytes across human brain microvessel endothelial cells are differentially regulated by endothelial cell adhesion molecules and modulate monolayer permeability. J Neuroimmunol 184: 136‐148, 2007.
 924. Wood CD, Nishigaki T, Tatsu Y, Yumoto N, Baba SA, Whitaker M, Darszon A. Altering the speract‐induced ion permeability changes that generate flagellar Ca2+ spikes regulates their kinetics and sea urchin sperm motility. Dev Biol 306: 525‐537, 2007.
 925. Woods A, Longley RL, Tumova S, Couchman JR. Syndecan‐4 binding to the high affinity heparin‐binding domain of fibronectin drives focal adhesion formation in fibroblasts. Arch Biochem Biophys 374: 66‐72, 2000.
 926. Woods AJ, White DP, Caswell PT, Norman JC. PKD1/PKCmu promotes alphavbeta3 integrin recycling and delivery to nascent focal adhesions. Embo J 23: 2531‐2543, 2004.
 927. Worthen GS, Henson PM, Rosengren S, Downey GP, Hyde DM. Neutrophils increase volume during migration in vivo and in vitro. Am J Respir Cell Mol Biol 10: 1‐7, 1994.
 928. Wu D, Huang W, Richardson PM, Priestley JV, Liu M. TRPC4 in rat dorsal root ganglion neurons is increased after nerve injury and is necessary for neurite outgrowth. J Biol Chem 283: 416‐426, 2008.
 929. Wu KL, Khan S, Lakhe‐Reddy S, Jarad G, Mukherjee A, Obejero‐Paz CA, Konieczkowski M, Sedor JR, Schelling JR. The NHE1 Na+/H+ exchanger recruits ezrin/radixin/moesin proteins to regulate Akt‐dependent cell survival. J Biol Chem 279: 26280‐26286, 2004.
 930. Wu W, Wong K, Chen J, Jiang Z, Dupuis S, Wu JY, Rao Y. Directional guidance of neuronal migration in the olfactory system by the protein Slit. Nature 400: 331‐336, 1999.
 931. Wu X, Yang Y, Gui P, Sohma Y, Meininger GA, Davis GE, Braun AP, Davis MJ. Potentiation of large conductance, Ca2+‐activated K+ (BK) channels by alpha5beta1 integrin activation in arteriolar smooth muscle. J Physiol 586: 1699‐1713, 2008.
 932. Xie Z, Askari A. Na(+)/K(+)‐ATPase as a signal transducer. Eur J Biochem 269: 2434‐2439, 2002.
 933. Xie Z, Cai T. Na+‐K+–ATPase‐mediated signal transduction: From protein interaction to cellular function. Mol Interv 3: 157‐168, 2003.
 934. Xu J, Wang F, Van Keymeulen A, Herzmark P, Straight A, Kelly K, Takuwa Y, Sugimoto N, Mitchison T, Bourne HR. Divergent signals and cytoskeletal assemblies regulate self‐organizing polarity in neutrophils. Cell 114: 201‐214, 2003.
 935. Xu L, Fidler IJ. Acidic pH‐induced elevation in interleukin 8 expression by human ovarian carcinoma cells. Cancer Res 60: 4610‐4616, 2000.
 936. Xu SZ, Muraki K, Zeng F, Li J, Sukumar P, Shah S, Dedman AM, Flemming PK, McHugh D, Naylor J, Cheong A, Bateson AN, Munsch CM, Porter KE, Beech DJ. A sphingosine‐1‐phosphate‐activated calcium channel controlling vascular smooth muscle cell motility. Circ Res 98: 1381‐1389, 2006.
 937. Xue J, Mraiche F, Zhou D, Karmazyn M, Oka T, Fliegel L, Haddad GG. Elevated myocardial Na+/H+ exchanger isoform 1 activity elicits gene expression that leads to cardiac hypertrophy. Physiol Genomics 42: 374‐383, 2010.
 938. Yamamoto S, Shimizu S, Kiyonaka S, Takahashi N, Wajima T, Hara Y, Negoro T, Hiroi T, Kiuchi Y, Okada T, Kaneko S, Lange I, Fleig A, Penner R, Nishi M, Takeshima H, Mori Y. TRPM2‐mediated Ca2+influx induces chemokine production in monocytes that aggravates inflammatory neutrophil infiltration. Nat Med 14: 738‐747, 2008.
 939. Yan L, Zucker S, Toole BP. Roles of the multifunctional glycoprotein, emmprin (basigin; CD147), in tumour progression. Thromb Haemost 93: 199‐204, 2005.
 940. Yan W, Nehrke K, Choi J, Barber DL. The Nck‐interacting kinase (NIK) phosphorylates the Na+‐H+ exchanger NHE1 and regulates NHE1 activation by platelet‐derived growth factor. J Biol Chem 276: 31349‐31356, 2001.
 941. Yang C, Hoelzle M, Disanza A, Scita G, Svitkina T. Coordination of membrane and actin cytoskeleton dynamics during filopodia protrusion. PLoS One 4: e5678, 2009.
 942. Yang H, Wang Z, Capo‐Aponte JE, Zhang F, Pan Z, Reinach PS. Epidermal growth factor receptor transactivation by the cannabinoid receptor (CB1) and transient receptor potential vanilloid 1 (TRPV1) induces differential responses in corneal epithelial cells. Exp Eye Res 91: 462‐471, 2010.
 943. Yang S, Huang XY. Ca2+ influx through L‐type Ca2+ channels controls the trailing tail contraction in growth factor‐induced fibroblast cell migration. J Biol Chem 280: 27130‐27137, 2005.
 944. Yang S, Zhang JJ, Huang XY. Orai1 and STIM1 are critical for breast tumor cell migration and metastasis. Cancer Cell 15: 124‐134, 2009.
 945. Yang Y, Wu X, Gui P, Wu J, Sheng JZ, Ling S, Braun AP, Davis GE, Davis MJ. Alpha5beta1 integrin engagement increases large conductance, Ca2+‐activated K+ channel current and Ca2+ sensitivity through c‐src‐mediated channel phosphorylation. J Biol Chem 285: 131‐141, 2010.
 946. Yang ZH, Wang XH, Wang HP, Hu LQ. Effects of TRPM8 on the proliferation and motility of prostate cancer PC‐3 cells. Asian J Androl 11: 157‐165, 2009.
 947. Yen H, Zhang Y, Penfold S, Rollins BJ. MCP‐1‐mediated chemotaxis requires activation of non‐overlapping signal transduction pathways. J Leukoc Biol 61: 529‐532, 1997.
 948. Yen TH, Wright NA. The gastrointestinal tract stem cell niche. Stem Cell Rev 2: 203‐212, 2006.
 949. Yi YH, Ho PY, Chen TW, Lin WJ, Gukassyan V, Tsai TH, Wang DW, Lew TS, Tang CY, Lo SJ, Chen TY, Kao FJ, Lin CH. Membrane targeting and coupling of NHE1‐integrinalphaIIbbeta3‐NCX1 by lipid rafts following integrin‐ligand interactions trigger Ca2+ oscillations. J Biol Chem 284: 3855‐3864, 2009.
 950. Yin HL, Janmey PA. Phosphoinositide regulation of the actin cytoskeleton. Annu Rev Physiol 65: 761‐789, 2003.
 951. Yoshida K, Soldati T. Dissection of amoeboid movement into two mechanically distinct modes. J Cell Sci 119: 3833‐3844, 2006.
 952. Yoshimori T, Keller P, Roth MG, Simons K. Different biosynthetic transport routes to the plasma membrane in BHK and CHO cells. J Cell Biol 133: 247‐256, 1996.
 953. Yu PC, Gu SY, Bu JW, Du JL. TRPC1 is essential for in vivo angiogenesis in zebrafish. Circ Res 106: 1221‐1232, 2010.
 954. Zaidel‐Bar R, Geiger B. The switchable integrin adhesome. J Cell Sci 123: 1385‐1388, 2010.
 955. Zaninetti R, Fornarelli A, Ciarletta M, Lim D, Caldarelli A, Pirali T, Cariboni A, Owsianik G, Nilius B, Canonico PL, Distasi C, Genazzani AA. Activation of TRPV4 channels reduces migration of immortalized neuroendocrine cells. J Neurochem 116: 606‐615, 2011.
 956. Zhang L, Barritt GJ. Evidence that TRPM8 is an androgen‐dependent Ca2+ channel required for the survival of prostate cancer cells. Cancer Res 64: 8365‐8373, 2004.
 957. Zhao M. Electrical fields in wound healing‐An overriding signal that directs cell migration. Semin Cell Dev Biol 20: 674‐682, 2009.
 958. Zhao M, Agius‐Fernandez A, Forrester JV, McCaig CD. Directed migration of corneal epithelial sheets in physiological electric fields. Invest Ophthalmol Vis Sci 37: 2548‐2558, 1996.
 959. Zhao M, Agius‐Fernandez A, Forrester JV, McCaig CD. Orientation and directed migration of cultured corneal epithelial cells in small electric fields are serum dependent. J Cell Sci 109 (Pt 6): 1405‐1414, 1996.
 960. Zhao M, Bai H, Wang E, Forrester JV, McCaig CD. Electrical stimulation directly induces pre‐angiogenic responses in vascular endothelial cells by signaling through VEGF receptors. J Cell Sci 117: 397‐405, 2004.
 961. Zhao M, McCaig CD, Agius‐Fernandez A, Forrester JV, Araki‐Sasaki K. Human corneal epithelial cells reorient and migrate cathodally in a small applied electric field. Curr Eye Res 16: 973‐984, 1997.
 962. Zhao M, Song B, Pu J, Wada T, Reid B, Tai G, Wang F, Guo A, Walczysko P, Gu Y, Sasaki T, Suzuki A, Forrester JV, Bourne HR, Devreotes PN, McCaig CD, Penninger JM. Electrical signals control wound healing through phosphatidylinositol‐3‐OH kinase‐gamma and PTEN. Nature 442: 457‐460, 2006.
 963. Zhao Z, Watt C, Karystinou A, Roelofs AJ, McCaig CD, Gibson IR, De Bari C. Directed migration of human bone marrow mesenchymal stem cells in a physiological direct current electric field. Eur Cell Mater 22: 344‐358, 2011.
 964. Zheng GQ, Li Y, Gu Y, Chen XM, Zhou Y, Zhao SZ, Shen J. Beyond water channel: Aquaporin‐4 in adult neurogenesis. Neurochem Int 56: 651‐654, 2010.
 965. Zheng JQ, Poo MM. Calcium signaling in neuronal motility. Annu Rev Cell Dev Biol 23: 375‐404, 2007.
 966. Zierler S, Frei E, Grissmer S, Kerschbaum HH. Chloride influx provokes lamellipodium formation in microglial cells. Cell Physiol Biochem 21: 55‐62, 2008.
 967. Zigmond SH. Beginning and ending an actin filament: Control at the barbed end. Curr Top Dev Biol 63: 145‐188, 2004.
 968. Zigmond SH. Formin‐induced nucleation of actin filaments. Curr Opin Cell Biol 16: 99‐105, 2004.
 969. Zinkernagel AS, Johnson RS, Nizet V. Hypoxia inducible factor (HIF) function in innate immunity and infection. J Mol Med 85: 1339‐1346, 2007.
 970. Zohar R, Suzuki N, Suzuki K, Arora P, Glogauer M, McCulloch CA, Sodek J. Intracellular osteopontin is an integral component of the CD44‐ERM complex involved in cell migration. J Cell Physiol 184: 118‐130, 2000.

Contact Editor

Submit a note to the editor about this article by filling in the form below.

* Required Field

How to Cite

Christian Stock, Florian T. Ludwig, Peter J. Hanley, Albrecht Schwab. Roles of Ion Transport in Control of Cell Motility. Compr Physiol 2013, 3: 59-119. doi: 10.1002/cphy.c110056