References |
1. |
Aagaard P.
Making muscles “stronger”: Exercise, nutrition, drugs.
J Musculoskelet Neuronal Interact
4:
165‐174,
2004.
|
2. |
ACSM.
American College of Sports Medicine position stand. Progression models in resistance training for healthy adults.
Med Sci Sports Exerc
41:
687‐708,
2009.
|
3. |
Adams GR.
Invited review: Autocrine/paracrine IGF‐I and skeletal muscle adaptation.
J Appl Physiol
93:
1159‐1167,
2002.
|
4. |
Adams GR,
Caiozzo VJ,
Haddad F,
Baldwin KM.
Cellular and molecular responses to increased skeletal muscle loading after irradiation.
Am J Physiol
283:
C1182‐C1195,
2002.
|
5. |
Adams GR,
Cheng DC,
Haddad F,
Baldwin KM.
Skeletal muscle hypertrophy in response to isometric, lengthening and shortening training bouts of equivalent duration.
J Appl Physiol
96:
1613‐1618,
2004.
|
6. |
Adams GR,
Haddad F.
The relationships among IGF‐1, DNA content, and protein accumulation during skeletal muscle hypertrophy.
J Appl Physiol
81:
2509‐2516,
1996.
|
7. |
Adams GR,
Haddad F,
Baldwin KM.
Time course of changes in markers of myogenesis in overloaded rat skeletal muscles.
J Appl Physiol
87:
1705‐1712,
1999.
|
8. |
Adams GR,
Haddad F,
Bodell PW,
Tran PD,
Baldwin KM.
Combined isometric, concentric and eccentric resistance exercise prevents unloading induced muscle atrophy in rats.
J Appl Physiol
103:
1644‐1654,
2007.
|
9. |
Adams GR,
McCue SA.
Localized infusion of IGF‐I results in skeletal muscle hypertrophy in rats.
J Appl Physiol
84:
1716‐1722,
1998.
|
10. |
Alexander WS.
Suppressors of cytokine signalling (SOCS) in the immune system.
Nat Rev Immunol
2:
410‐416,
2002.
|
11. |
Allen DL,
Roy RR,
Edgerton VR.
Myonuclear domains in muscle adaptation and disease.
Muscle Nerve
22:
1350‐1360,
1999.
|
12. |
Allen DL,
Teitelbaum DH,
Kurachi K.
Growth factor stimulation of matrix metalloproteinase expression and myoblast migration and invasion in vitro.
Am J Physiol Cell Physiol
284:
C805‐C815,
2003.
|
13. |
Allen RE,
Temm‐Grove CJ,
Sheehan SM,
Rice G.
Skeletal muscle satellite cell cultures.
Meth Cell Biol
52:
155‐176,
1998.
|
14. |
Al‐Shanti N,
Stewart CE.
Ca2+/calmodulin‐dependent transcriptional pathways: Potential mediators of skeletal muscle growth and development.
Biol Rev Camb Philos Soc
84:
637‐652,
2009.
|
15. |
Alway SE,
Siu PM,
Murlasits Z,
Butler DC.
Muscle hypertrophy models: Applications for research on aging.
Can J Appl Physiol
30:
591‐624,
2005.
|
16. |
Amirouche A,
Durieux AC,
Banzet S,
Koulmann N,
Bonnefoy R,
Mouret C,
Bigard X,
Peinnequin A,
Freyssenet D.
Down‐regulation of Akt/mammalian target of rapamycin signaling pathway in response to myostatin overexpression in skeletal muscle.
Endocrinology
150:
286‐294,
2009.
|
17. |
Amthor H,
Macharia R,
Navarrete R,
Schuelke M,
Brown SC,
Otto A,
Voit T,
Muntoni F,
Vrbova G,
Partridge T,
Zammit P,
Bunger L,
Patel K.
Lack of myostatin results in excessive muscle growth but impaired force generation.
Proc Natl Acad Sci U S A
104:
1835‐1840,
2007.
|
18. |
Amthor H,
Otto A,
Vulin A,
Rochat A,
Dumonceaux J,
Garcia L,
Mouisel E,
Hourdé C,
Macharia R,
Friedrichs M,
Relaix F,
Zammit PS,
Matsakas A,
Patel K,
Partridge T.
Muscle hypertrophy driven by myostatin blockade does not require stem/precursor‐cell activity.
Proc Natl Acad Sci U S A
106:
7479‐7484,
2009.
|
19. |
Anderson J,
Pilipowicz O.
Activation of muscle satellite cells in single‐fiber cultures.
Nitric Oxide
2002:
36‐41,
2002.
|
20. |
Apró W,
Blomstrand E.
Influence of supplementation with branched‐chain amino acids in combination with resistance exercise on p70S6 kinase phosphorylation in resting and exercising human skeletal muscle.
Acta Physiol (Oxf)
200:
237‐248,
2010.
|
21. |
Armand AS,
Laziz I,
Chanoine C.
FGF6 in myogenesis.
Biochim Biophys Acta
1763:
773‐778,
2006.
|
22. |
Armand AS,
Lécolle S,
Launay T,
Pariset C,
Fiore F,
Della‐Gaspera B,
Birnbaum D,
Chanoine C,
Charbonnier F.
IGF‐II is up‐regulated and myofibres are hypertrophied in regenerating soleus of mice lacking FGF6.
Exp Cell Res
297:
27‐38,
2004.
|
23. |
Armstrong RB,
Marum P,
Tullson P,
Saubert CW.
Acute hypertrophic response of skeletal muscle to removal of synergists.
J Appl Physio
46:
835‐842,
1979.
|
24. |
Ates K,
Yang SY,
Orrell RW,
Sinanan ACM,
Simons P,
Solomon A,
Beech S,
Goldspink G,
Lewis MP.
The IGF‐I splice variant MGF increases progenitor cells in ALS, dystrophic, and normal muscle.
FEBS Lett
581:
2727‐2732,
2007.
|
25. |
Austin L,
Bower J,
Kurek J,
Vakakis N.
Effects of leukaemia inhibitory factor and other cytokines on murine and human myoblast proliferation.
J Neurol Sci
112:
185‐191,
1992.
|
26. |
Baar K,
Esser K.
Phosphorylation of p70(S6k) correlates with increased skeletal muscle mass following resistance exercise.
Am J Physiol
276:
C120‐C127,
1999.
|
27. |
Baldwin KM,
Haddad F.
Effects of different activity and inactivity paradigms on myosin heavy chain gene expression in striated muscle.
J Appl Physiol
90:
345‐357,
2001.
|
28. |
Bamman MM,
Newcomer BR,
Larson‐Meyer DE,
Weinsier RL,
Hunter GR.
Evaluation of the strength‐size relationship in vivo using various muscle size indices.
Med Sci Sports Exerc
32:
1307‐1313,
2000.
|
29. |
Bamman MM,
Petrella JK,
Kim JS,
Mayhew DL,
Cross JM.
Cluster analysis tests the importance of myogenic gene expression during myofiber hypertrophy in humans.
J Appl Physiol
102:
2232‐2239,
2007.
|
30. |
Bamman MM,
Ragan RC,
Kim JS,
Cross JM,
Hill VJ,
Tuggle SC,
Allman RM.
Myogenic protein expression before and after resistance loading in 26‐ and 64‐year‐old men and women.
J Appl Physiol
97:
1329‐1337,
2004.
|
31. |
Bamman MM,
Shipp JR,
Jiang J,
Gower BA,
Hunter GR,
Goodman A,
McLafferty CL,
Urban RJ.
Mechanical load increases muscle IGF‐I and androgen receptor mRNA concentrations in humans.
Am J Physiol
280:
E383‐E390,
2001.
|
32. |
Barjot C,
Cotten ML,
Goblet C,
Whalen RG,
Bacou F.
Expression of myosin heavy chain and of myogenic regulatory factor genes in fast or slow rabbit muscle satellite cell cultures.
J Musc Res Cel Motil
16:
619‐628,
1995.
|
33. |
Barreau C,
Paillard L,
Osborne HB.
AU‐rich elements and associated factors: Are there unifying principles?
Nucleic Acids Res
33:
7138‐7150,
2005.
|
34. |
Barton‐Davis ER,
Shoturma DI,
Musaro A,
Rosenthal N,
Sweeney HL.
Viral mediated expresion of insulin‐like growth factor I blocks the aging‐related loss of skeletal muscle function.
Proc Nat Acad Sci U S A
95:
15603‐15607,
1998.
|
35. |
Barton‐Davis ER,
Shoturma DI,
Sweeney HL.
Contribution of satellite cells to IGF‐I induced hypertrophy of skeletal muscle.
Acta Physiol Scand
167:
301‐305,
1999.
|
36. |
Barton ER,
DeMeo J,
Lei H.
The insulin‐like growth factor (IGF)‐I E‐peptides are required for isoform‐specific gene expression and muscle hypertrophy after local IGF‐I production.
J Appl Physiol
108:
1069‐1076,
2010.
|
37. |
Beitzel F,
Gregorevic P,
Ryall JG,
Plant DR,
Sillence MN,
Lynch GS.
Beta2‐adrenoceptor agonist fenoterol enhances functional repair of regenerating rat skeletal muscle after injury.
J Appl Physiol
96:
1385‐1392,
2004.
|
38. |
Benziane B,
Burton TJ,
Scanlan B,
Galuska D,
Canny BJ,
Chibalin AV,
Zierath JR,
Stepto NK.
Divergent cell signaling after short‐term intensified endurance training in human skeletal muscle.
Am J Physiol
295:
E1427‐E1438,
2008.
|
39. |
Bickel C,
Cross J,
Bamman M.
Exercise dosing to retain resistance training adaptations in young and older adults.
Med Sci Sports Exerc
43:
1177‐1187,
2011.
|
40. |
Bickel CS,
Slade J,
Mahoney E,
Haddad F,
Dudley GA,
Adams GR.
Time course of molecular responses of human skeletal muscle to acute bouts of resistance exercise.
J Appl Physiol
98:
482‐488,
2005.
|
41. |
Bickel CS,
Slade JM,
Haddad F,
Adams GR,
Dudley GA.
Acute molecular responses of skeletal muscle to resistance exercise in able‐bodied and spinal cord‐injured subjects.
J Appl Physiol
94:
2255‐2262,
2003.
|
42. |
Bidlingmaier M,
Strasburger CJ.
Growth hormone.
Handb Exp Pharmacol
195:
187‐200,
2010.
|
43. |
Biolo G,
Maggi SP,
Williams BD,
Tipton KD,
Wolfe RR.
Increased rates of muscle protein turnover and amino acid transport after resistance exercise in humans.
Am J Physiol
268:
E514‐E520,
1995.
|
44. |
Bischoff R.
Enzymatic liberation of myogenic cells from adult rat muscle.
Anat Rec
1974:
645‐661,
1974.
|
45. |
Bischoff R.
Proliferation of muscle satellite cells on intact myofibers in culture.
Develop Biology
115:
129‐139,
1986.
|
46. |
Bischoff R.
Analysis of muscle regeneration using single myofibers in culture.
Med Sci Sport Exerc
21:
S164‐S172,
1989.
|
47. |
Blaauw B,
Canato M,
Agatea L,
Toniolo L,
Mammucari C,
Masiero E,
Abraham R,
Sandri M,
Schiaffino S,
Reggiani C.
Inducible activation of Akt increases skeletal muscle mass and force without satellite cell activation.
FASEB J
23:
3896‐3905,
2009.
|
48. |
Blair HC,
Jordan SE,
Peterson TG,
Barnes S.
Variable effects of tyrosine kinase inhibitors on avian osteoclastic activity and reduction of bone loss in ovariectomized rat.
J Cellular Biochem
61:
629‐637,
1996.
|
49. |
Blomstrand E,
Eliasson J,
Karlsson HK,
Kohnke R.
Branched‐chain amino acids activate key enzymes in protein synthesis after physical exercise.
J Nutr
136:
269S‐273S,
2006.
|
50. |
Bodell PW,
Kodesh E,
Haddad F,
Zaldivar FP,
Cooper DM,
Adams GR.
Skeletal muscle growth in young rats is inhibited by chronic exposure to IL‐6 but preserved by concurrent voluntary endurance exercise.
J Appl Physiol
106:
443‐453,
2009.
|
51. |
Bodine SC,
Stitt TN,
Gonzalez M,
Kline WO,
Stover GL,
Bauerlein R,
Zlotchenko E,
Scrimgeour A,
Lawrence JC,
Glass DJ,
Yancopoulos GD.
Akt/mTOR pathway is a crucial regulator of skeletal muscle hypertrophy and can prevent muscle atrophy in vivo.
Nat Cell Biol
3:
1014‐1019,
2001.
|
52. |
Bolster DR,
Jefferson LS,
Kimball SR.
Regulation of protein synthesis associated with skeletal muscle hypertrophy by insulin‐, amino acid‐ and exercise‐induced signalling.
Proc Nutr Soc
63:
351‐356,
2004.
|
53. |
Bolster DR,
Kubica N,
Crozier SJ,
Williamson DL,
Farrell PA,
Kimball SR,
Jefferson LS.
Immediate response of mammalian target of rapamycin (mTOR)‐mediated signalling following acute resistance exercise in rat skeletal muscle.
J Physiol
553:
213‐220,
2003.
|
54. |
Bonavaud S,
Agbulut O,
D'Honneur G,
Nizard R,
Mouly V,
Butler‐Browne G.
Preparation of isolated human muscle fibers: A technical report.
In Vitro Cell Dev Biol Anim
38:
66‐72,
2002.
|
55. |
Bonavaud S,
Thibert P,
Gherardi RK,
Barlovatz‐Meimon G.
Primary human muscle satellite cell culture: Variations of cell yield, proliferation and differentiation rates according to age and sex of donors, site of muscle biopsy, and delay before processing.
Biol Cell
89:
233‐240,
1997.
|
56. |
Booth FW,
Tseng BS,
Fluck M,
Carson JA.
Molecular and cellular adaptation of muscle in response to physical training.
Acta Physiol Scand
162:
343‐350,
1998.
|
57. |
Boxer LM,
Prywes R,
Roeder RG,
Kedes L.
The sarcomeric actin CArG‐binding factor is indistinguishable from the c‐fos serum response factor.
Mol Cell Biol
9:
515‐522,
1989.
|
58. |
Brack AS,
Bildsoe H,
Hughes SM.
Evidence that satellite cell decrement contributes to preferential decline in nuclear number from large fibres during murine age‐related muscle atrophy.
J Cell Sci
118:
4813‐4821,
2005.
|
59. |
Brack AS,
Conboy MJ,
Roy S,
Lee M,
Kuo CJ,
Keller C,
Rando TA.
Increased Wnt signaling during aging alters muscle stem cell fate and increases fibrosis.
Science
317:
807‐810,
2007.
|
60. |
Briata P,
Forcales SV,
Ponassi M,
Corte G,
Chen CY,
Karin M,
Puri PL,
Gherzi R.
p38‐dependent phosphorylation of the mRNA decay‐promoting factor KSRP controls the stability of select myogenic transcripts.
Mol Cell
20:
891‐903,
2005.
|
61. |
Brosig M,
Ferralli J,
Gelman L,
Chiquet M,
Chiquet‐Ehrismann R.
Interfering with the connection between the nucleus and the cytoskeleton affects nuclear rotation, mechanotransduction and myogenesis.
Int J Biochem Cell Biol
42:
1717‐1728,
2010.
|
62. |
Brunetti A,
Goldfine ID.
Role of myogenin in myoblast differentiation and its regulation by fibroblast growth factor.
J Biol Chem
265:
5960‐5963,
1990.
|
63. |
Bruusgaard JC,
Johansen IB,
Egner IM,
Rana ZA,
Gundersen K.
Myonuclei acquired by overload exercise precede hypertrophy and are not lost on detraining.
Proc Nat Acad Sci U S A
107:
15111‐15116,
2010.
|
64. |
Buchowicz B,
Yu T,
Nance DM,
Zaldivar FP,
Cooper DM,
Adams GR.
Increased rat neonatal activity influences adult cytokine levels and relative muscle mass.
Ped Res
68:
399‐404,
2010.
|
65. |
Buford T,
Cooke M,
Willoughby D.
Resistance exercise‐induced changes of inflammatory gene expression within human skeletal muscle.
Eur J Appl Physiol
107:
463‐471,
2009.
|
66. |
Burd NA,
Holwerda AM,
Selby KC,
West DWD,
Staples AW,
Cain NE,
Cashaback JGA,
Potvin JR,
Baker SK,
Phillips SM.
Resistance exercise volume affects myofibrillar protein synthesis and anabolic signalling molecule phosphorylation in young men.
J Physiol
588:
3119‐3130
2010.
|
67. |
Burgomaster K,
Moore D,
Schofield L,
Phillips S,
Sale D,
Gibala M.
Resistance training with vascular occlusion: Metabolic adaptations in human muscle.
Med Sci Sports Exerc
35:
203‐208,
2003.
|
68. |
Busse M,
Schwarzburger M,
Berger F,
Hacker C,
Munz B.
Strong induction of the Tis11B gene in myogenic differentiation.
Eur J Cell Biol
87:
31‐38,
2008.
|
69. |
Cabric M,
Appell HJ,
Resic A.
Efects of electrical stimulation of different frequencies on the myonuclei and fiber size in human muscle.
Int J Sports Med
8:
323‐326,
1987.
|
70. |
Caiozzo VJ,
Haddad F,
Baker M,
McCue S,
Baldwin KM.
MHC polymorphism in rodent plantaris muscle: Effects of mechanical overload and hypothyroidism.
Am J Physiol Cell Physiol
278:
C709‐C717,
2000.
|
71. |
Camera DM,
Edge J,
Short MJ,
Hawley JA,
Coffey VG.
Early time‐course of akt phosphorylation following endurance and resistance exercise.
Med Sci Sports Exerc
42:
1843‐1852,
2010.
|
72. |
Cantini M,
Massimino ML,
Rapizzi E,
Rossini K,
Catani C,
Libera LD,
Carraro U.
Human satellite cell proliferation in vitro is regulated by autocrine secretion of IL‐6 stimulated by a soluble factor(s) released by activated monocytes.
Biochem Biophys Res Com
216:
49‐53,
1995.
|
73. |
Carpenter V,
Matthews K,
Devlin G,
Stuart S,
Jensen J,
Conaglen J,
Jeanplong F,
Goldspink P,
Yang S‐Y,
Goldspink G,
Bass J,
McMahon C.
Mechano‐Growth factor reduces loss of cardiac function in acute myocardial infarction.
Heart Lung Circ
17:
33‐39,
2008.
|
74. |
Carpinelli RN.
Challenging the american college of sports medicine 2009 position stand on resistance training.
Med Sport
13:
131‐137,
2009.
|
75. |
Carson JA,
Schwartz RJ,
Booth FW.
SRF and TEF‐1 control of chicken skeletal alpha‐actin gene during slow‐muscle hypertrophy.
Am J Physiol
270:
C1624‐C1633,
1996.
|
76. |
Cassano M,
Biressi S,
Finan A,
Benedetti L,
Omes C,
Boratto R,
Martin F,
Allegretti M,
Broccoli V,
Cusella‐DeAngelis G,
Comoglio PM,
Basilico C,
Torrente Y,
Michieli P,
Cossu G,
Sampaolesi M.
Magic‐factor 1, a partial agonist of Met, induces muscle hypertrophy by protecting myogenic progenitors from apoptosis.
PLoS ONE
3:
e3223,
2009.
|
77. |
Cavalier‐Smith T.
Nuclear volume control by nucleoskeletal DNA, selection for cell volume and cell growth rate, and the solution of the DNA C‐value paradox.
J Cell Sci
34:
247‐278,
1978.
|
78. |
Chakravarthy MV,
Spangenburg EE,
Booth FW.
Culture in low levels of oxygen enhances in vitro proliferation potential of satellite cells from old skeletal muscles.
Cell Mol Life Sci
58:
1150‐1158,
2001.
|
79. |
Chambers RL,
McDermott JC.
Molecular basis fo skeletal muscle regeneration.
Can J Appl Physiol
21:
155‐184,
1996.
|
80. |
Changeux JP.
Compartmentalized transcription of acetylcholine receptor genes during motor endplate epigenesis.
New Biol
3:
413‐429,
1991.
|
81. |
Cheek D.
The control of cell mass and replication. The DNA unit ‐ a personal 20‐year study.
Early Hum Dev
12:
211‐239,
1985.
|
82. |
Chelh I,
Meunier B,
Picard B,
Reecy MJ,
Chevalier C,
Hocquette JF,
Cassar‐Malek I.
Molecular profiles of Quadriceps muscle in myostatin‐null mice reveal PI3K and apoptotic pathways as myostatin targets.
BMC Genomics
10:
196,
2009.
|
83. |
Chen JF,
Mandel EM,
Thomson JM,
Wu Q,
Callis TE,
Hammond SM,
Conlon FL,
Wang DZ.
The role of microRNA‐1 and microRNA‐133 in skeletal muscle proliferation and differentiation.
Nat Genet
38:
228‐233,
2006.
|
84. |
Chen J‐F,
Tao Y,
Li J,
Deng Z,
Yan Z,
Xiao X,
Wang D‐Z.
microRNA‐1 and microRNA‐206 regulate skeletal muscle satellite cell proliferation and differentiation by repressing Pax7.
J Cell Biol
190:
867‐879,
2010.
|
85. |
Chen YW,
Nader GA,
Baar KR,
Fedele MJ,
Hoffman EP,
Esser KA.
Response of rat muscle to acute resistance exercise defined by transcriptional and translational profiling.
J Physiol
545:
27‐41,
2002.
|
86. |
Chin ER,
Olson EN,
Richardson JA,
Yang Q,
Humphries C,
Shelton JM,
Wu H,
Zhu W,
Bassel‐Duby R,
Williams RS.
A calcineurin‐dependent transcriptional pathway controls skeletal muscle fiber type.
Genes Dev
12:
2499‐2509,
1998.
|
87. |
Cho M,
Webster SG,
Blau HM.
Evidence for myoblast‐extrinsic regulation of slow myosin heavy chain expression during muscle fiber formation in embryonic de.
J Cel Biol
121:
785‐810,
1993.
|
88. |
Chretien F,
Dreyfus PA,
Christov C,
Caramelle P,
Lagrange JL,
Chazaud B,
Gherardi RK.
In vivo fusion of circulating fluorescent cells with dystrophin‐deficient myofibers results in extensive sarcoplasmic fluorescence expression but limited dystrophin sarcolemmal expression.
Am J Pathol
166:
1741‐1748,
2005.
|
89. |
Christov C,
Chrétien F,
Abou‐Khalil R,
Bassez G,
Vallet G,
Authier FJ,
Bassaglia Y,
Shinin V,
Tajbakhsh S,
Chazaud B,
Gherardi RK.
Muscle satellite cells and endothelial cells: close neighbors and privileged partners.
Mol Biol Cell
18:
1397‐1409,
2007.
|
90. |
Claassen H,
Gerber C,
Hoppeler H,
Lüthi JM,
Vock P.
Muscle filament spacing and short‐term heavy‐resistance exercise in humans.
J Physiol
409:
491‐495,
1989.
|
91. |
Clark A,
Dean J,
Tudor C,
Saklatvala J.
Post‐transcriptional gene regulation by MAP kinases via AU‐rich elements.
Front Biosci
14:
847‐871,
2009.
|
92. |
Clarke MS,
Feeback DL.
Mechanical load induces sarcoplasmic wounding and FGF relase in differentiated human skeleltal muscle cultures.
FASEB J
10:
502‐509,
1996.
|
93. |
Cleasby ME,
Reinten TA,
Cooney GJ,
James DE,
Kraegen EW.
Functional studies of akt isoform specificity in skeletal muscle in vivo; maintained insulin sensitivity despite reduced insulin receptor substrate‐1 expression.
Mol Endocrinol
21:
215‐228,
2007.
|
94. |
Close RI.
Dynamic properties of mammalian skeletal muscles.
Physiol Rev
51:
129‐183,
1972.
|
95. |
Coffer P,
Lutticken C,
van Puijenbroek A,
Klop‐de Jonge M,
Horn F,
Kruijer W.
Transcriptional regulation of the junB promoter: Analysis of STAT‐mediated signal transduction.
Oncogene
10:
985‐994,
1995.
|
96. |
Coffey VG,
Pilegaard H,
Garnham AP,
O'Brien BJ,
Hawley JA.
Consecutive bouts of diverse contractile activity alter acute responses in human skeletal muscle.
J Appl Physiol
106:
1187‐1197,
2009.
|
97. |
Cohen T,
Nahari D,
Cerem LW,
Neufeld G,
Levi BZ.
Interleukin 6 induces the expression of vascular endothelial growth factor.
J Bio Chem
271:
736‐741,
1996.
|
98. |
Coleman ME,
DeMayo F,
Yin KC,
Lee HM,
Geske R,
Montgomery C,
Schwartz RJ.
Myogenic vector expression of insulin‐like growth factor I stimulates muscle cell differentiation and myofiber hypertrophy in transgenic mice.
J Biol Chem
270:
12109‐12116,
1995.
|
99. |
Collins CA,
Partridge TA.
Self‐renewal of the adult skeletal muscle satellite cell.
Cell Cycle
4:
1338‐1341,
2005.
|
100. |
Conte C,
Ainaoui N,
Delluc‐Clavières A,
Khoury MP,
Azar R,
Pujol F,
Martineau Y,
Pyronnet S,
Prats A‐C.
Fibroblast growth factor 1 induced during myogenesis by a transcription–translation coupling mechanism.
Nucleic Acids Res
37:
5267‐5278,
2009.
|
101. |
Cornelison DD.
Context matters: In vivo and in vitro influences on muscle satellite cell activity.
J Cell Biochem
105:
663‐669,
2008.
|
102. |
Cornelison DD,
Olwin BB,
Rudnicki MA,
Wold BJ.
MyoD(‐/‐) satellite cells in single‐fiber culture are differentiation defective and MRF4 deficient.
Dev Biol
224:
122‐137,
2000.
|
103. |
Cossu G,
Biressi S.
Satellite cells, myoblasts and other occasional myogenic progenitors: Possible origin, phenotypic features and role in muscle regeneration.
Semin Cell Dev Biol
16:
623‐631,
2005.
|
104. |
Credeur D,
Hollis B,
Welsch M.
Effects of handgrip training with venous restriction on brachial artery vasodilation.
Med Sci Sports Exerc
42:
1296‐1302,
2010.
|
105. |
Creer A,
Gallagher P,
Slivka D,
Jemiolo B,
Fink W,
Trappe S.
Influence of muscle glycogen availability on ERK1/2 and Akt signaling after resistance exercise in human skeletal muscle.
J Appl Physiol
99:
950‐956,
2005.
|
106. |
Crepaldi T,
Bersani F,
Scuoppo C,
Accornero P,
Prunotto C,
Taulli R,
Forni PE,
Leo C,
Chiarle R,
Griffiths J,
Glass DJ,
Ponzetto C.
Conditional activation of MET in differentiated skeletal muscle induces atrophy.
J Biol Chem
282:
6812‐6822,
2007.
|
107. |
Crewther B,
Keogh J,
Cronin J,
Cook C.
Possible stimuli for strength and power adaptation: Acute hormonal responses.
Sports Med
36:
215‐238,
2006.
|
108. |
Crowley MA,
Matt KS.
Hormonal regulation of skeletal muscle hypertrophy in rats: The testosterone to cortisol ratio.
Eur J Appl Physiol Occup Physiol
73:
66‐72,
1996.
|
109. |
Csete M,
Walikonis J,
Slawny N,
Wei Y,
Korsnes S,
Doyle JC,
Wold B.
Oxygen‐mediated regulation of skeletal muscle satellite cell proliferation and adipogenesis in culture.
J Cell Physiol
189:
189‐196,
2001.
|
110. |
Cuervo AM,
Wong ESP,
Martinez‐Vicente M.
Protein degradation, aggregation, and misfolding.
Mov Disord
25:
S49‐S54,
2010.
|
111. |
Dalla Costa AP,
Clemente CF,
Carvalho HF,
Carvalheira JB,
Nadruz W, Jr.,
Franchini KG.
FAK mediates the activation of cardiac fibroblasts induced by mechanical stress through regulation of the mTOR complex.
Cardiovasc Res
86:
421‐431.
|
112. |
Dangott B,
Schultz E,
Mozdziak PE.
Dietary creatine monohydrate supplementation increases satellite cell mitotic activity during compensatory hypertrophy.
Int J Sports Med
21:
13‐16,
2000.
|
113. |
Davidsen PK,
Gallagher IJ,
Hartman JW,
Tarnopolsky MA,
Dela F,
Helge JW,
Timmons JA,
Phillips SM.
High responders to resistance exercise training demonstrate differential regulation of skeletal muscle microRNA expression.
J Appl Physiol
110:
309‐317,
2010.
|
114. |
Davis RL,
Weintraub H,
Lassar AB.
Expression of a single transfected cDNA converts fibroblasts to myoblasts.
Cell
51:
987‐1000,
1987.
|
115. |
Davuluri RV,
Suzuki Y,
Sugano S,
Zhang MQ.
CART classification of human 5′ UTR sequences.
Genome Res
10:
1807‐1816,
2000.
|
116. |
DeBenedetti F,
Alonzi T,
Moretta A,
Lazzaro D,
Costa P,
Poli V,
Martini A,
Ciliberto G,
Fattori E.
Interleukin 6 causes growth impairment in transgenic mice through a decrease in insulin‐like growth factor‐1. A model for stunted growth in children with chronic inflammation.
J Clin Invest
99:
643‐650,
1997.
|
117. |
DeBenedetti F,
Meazza C,
Oliveri M,
Pignatti P,
Vivarelli M,
Alonzi T,
Fattori E,
Garrone S,
Barreca A,
Martini A.
Effect of IL‐6 on IGF binding protein‐3: A study in IL‐6 transgenic mice and in patients with systemic juvenile idiopathic arthritis.
Endocrinology
142:
4818‐4826,
2001.
|
118. |
Deldicque L,
Atherton P,
Patel R,
Theisen D,
Nielens H,
Rennie MJ,
Francaux M.
Decrease in Akt/PKB signalling in human skeletal muscle by resistance exercise.
Eur J Appl Physiol
104:
57‐65,
2008.
|
119. |
Deldicque L,
Atherton P,
Patel R,
Theisen D,
Nielens H,
Rennie MJ,
Francaux M.
Effects of resistance exercise with and without creatine supplementation on gene expression and cell signaling in human skeletal muscle.
J Appl Physiol
104:
371‐378,
2008.
|
120. |
Deldicque L,
De Bock K,
Maris M,
Ramaekers M,
Nielens H,
Francaux M,
Hespel P.
Increased p70s6k phosphorylation during intake of a protein–carbohydrate drink following resistance exercise in the fasted state.
Eur J Appl Physiol
108:
791‐800,
2010.
|
121. |
Dennis PB,
Pullen N,
Pearson RB,
Kozma SC,
Thomas G.
Phosphorylation sites in the autoinhibitory domain participate in p70(s6k) activation loop phosphorylation.
J Biol Chem
273:
14845‐14852,
1998.
|
122. |
Deschenes MR,
Judelson DA,
Kraemer WJ,
Meskaitis VJ,
Volek JS,
Nindl BC,
Harman FS,
Deaver DR.
Effects of resistance training on neuromuscular junction morphology.
Muscle Nerve
23:
1576‐1581,
2000.
|
123. |
Deschenes MR,
Maresh CM,
Armstrong LE,
Covault J,
Kraemer WJ,
Crivello JF.
Endurance and resistance exercise induce muscle fiber type specific responses in androgen binding capacity.
J Steroid Biochem Mol Biol
50:
175‐179,
1994.
|
124. |
DeVol DL,
Rotwein P,
Sadow JL,
Novakofski J,
Bechtel PJ.
Activation of insulin like growth factor gene expression during work induced skeletal muscle growth.
Am J Physiol
259:
E89‐E95,
1990.
|
125. |
Doessing S,
Heinemeier KM,
Holm L,
Mackey AL,
Schjerling P,
Rennie M,
Smith K,
Reitelseder S,
Kappelgaard AM,
Rasmussen MH,
Flyvbjerg A,
Kjaer M.
Growth hormone stimulates the collagen synthesis in human tendon and skeletal muscle without affecting myofibrillar protein synthesis.
J Physiol
588:
341‐351,
2010.
|
126. |
Drake JC,
Alway SE,
Hollander JM,
Williamson DL.
AICAR treatment for 14 days normalizes obesity‐induced dysregulation of TORC1 signaling and translational capacity in fasted skeletal muscle.
Am J Physiol Regul Inteqr Comp Physiol
299:
R1546‐R1554,
2010.
|
127. |
Dreyer HC,
Drummond MJ,
Pennings B,
Fujita S,
Glynn EL,
Chinkes DL,
Dhanani S,
Volpi E,
Rasmussen BB.
Leucine‐enriched essential amino acid and carbohydrate ingestion following resistance exercise enhances mTOR signaling and protein synthesis in human muscle.
Am J Physiol
294:
E392‐E400,
2008.
|
128. |
Dreyer HC,
Fujita S,
Cadenas JG,
Chinkes DL,
Volpi E,
Rasmussen BB.
Resistance exercise increases AMPK activity and reduces 4E‐BP1 phosphorylation and protein synthesis in human skeletal muscle.
J Physiology
576:
613‐624,
2006.
|
129. |
Dreyer HC,
Fujita S,
Glynn EL,
Drummond MJ,
Volpi E,
Rasmussen BB.
Resistance exercise increases leg muscle protein synthesis and mTOR signalling independent of sex.
Acta Physiol (Oxf)
199:
71‐81,
2010.
|
130. |
Drummond MJ,
Conlee RK,
Mack GW,
Sudweeks S,
Schaalje GB,
Parcell AC.
Myogenic regulatory factor response to resistance exercise volume in skeletal muscle.
Eur J Appl Physiol
108:
771‐778,
2010.
|
131. |
Drummond MJ,
McCarthy JJ,
Fry CS,
Esser KA,
Rasmussen BB.
Aging differentially affects human skeletal muscle microRNA expression at rest and after an anabolic stimulus of resistance exercise and essential amino acids.
Am J Physiol
295:
E1333‐E1340,
2008.
|
132. |
Drummond MJ,
McCarthy JJ,
Sinha M,
Spratt HM,
Volpi E,
Esser KA,
Rasmussen BB.
Aging and microRNA expression in human skeletal muscle: A microarray and bioinformatics analysis.
Physiol Genomics
43:
595‐603,
2010.
|
133. |
Duncan ND,
Williams DA,
Lynch GS.
Adaptations in rat skeletal muscle following long‐term resistance exercise training.
Eur J Appl Physiol Occup Physiol
77:
372‐378,
1998.
|
134. |
Dunn SE,
Burns JL,
Michel RN.
Calcineurin is required for skeletal muscle hypertrophy.
J Biol Chem
274:
21908‐21912,
1999.
|
135. |
Dunn SE,
Simard AR,
Bassel‐Duby R,
Williams RS,
Michel RN.
Nerve activity‐dependent modulation of calcineurin signaling in adult fast and slow skeletal muscle fibers.
J Biol Chem
276:
45243‐45254,
2001.
|
136. |
Dupont‐Versteegden EE,
Knox M,
Gurley CM,
Houle JD,
Peterson CA.
Maintenance of muscle mass is not dependent on the calcineurin‐NFAT pathway.
Am J Physiol
282:
C1387‐C1395,
2002.
|
137. |
Ecob‐Prince MS,
Jenkison M,
Butler‐Browne GS,
Whalen RG.
Neonatal and adult myosin heavy chain isoforms in a nerve‐muscle culture system.
J Cell Biol
103:
995‐1005,
1986.
|
138. |
Edwards J,
Pasqualini R,
Arap W,
Calin G.
MicroRNAs and ultraconserved genes as diagnostic markers and therapeutic targets in cancer and cardiovascular diseases.
J Cardiovasc Transl Res
3:
271‐279,
2010.
|
139. |
Ehrnborg C,
Ellegård L,
Bosaeus I,
Bengtsson BA,
Rosén T.
Supraphysiological growth hormone: Less fat, more extracellular fluid but uncertain effects on muscles in healthy, active young adults.
Clin Endocrinol (Oxf)
62:
449‐457,
2005.
|
140. |
Elder GCB,
Bradbury K,
Roberts R.
Variability of fiber type distributions within human muscles.
J Appl Physiol
53:
1473‐1480,
1982.
|
141. |
Fabian MR,
Sonenberg N,
Filipowicz W.
Regulation of mRNA translation and stability by microRNAs.
Annu Rev Biochem
79:
351‐379,
2010.
|
142. |
Farrell PA,
Fedele MJ,
Hernandez J,
Fluckey JD,
Miller JL,
Lang CH,
Vary TC,
Kimball SR,
Jefferson LS.
Hypetrophy of skeletal muscle in diabetic rats in response to chronic resistance exercise.
J Appl Physiol
87:
1075‐1082,
1999.
|
143. |
Farrell PA,
Hernandez JM,
Fedele MJ,
Vary TC,
Kimball SR,
Jefferson LS.
Eukaryotic initiation factors and protein synthesis after resistance exercise in rats.
J Appl Physiol
88:
1036‐1042,
2000.
|
144. |
Faulkner J.
Terminology for contractions of muscles during shortening, while isometric, and during lengthening.
J Appl Physiol
95:
455‐459,
2003.
|
145. |
Favier FB,
Benoit H,
Freyssenet D.
Cellular and molecular events controlling skeletal muscle mass in response to altered use.
Pflugers Arch
456:
587‐600,
2008.
|
146. |
Fernández AM,
Dupont J,
Farrar RP,
Lee S,
Stannard B,
LeRoith D.
Muscle‐specific inactivation of the IGF‐I receptor induces compensatory hyperplasia in skeletal muscle.
J Clin Invest
109:
347‐355,
2002.
|
147. |
Ferrari S,
Thomas G.
S6 phosphorylation and the p70s6k/p85s6k.
Crit Rev Biochem Mol Biol
29:
385‐413,
1994.
|
148. |
Figueras M,
Busquets S,
Carbó N,
Barreiro E,
Almendro V,
Argilés JM,
López‐Soriano FJ.
Interleukin‐15 is able to suppress the increased DNA fragmentation associated with muscle wasting in tumour‐bearing rats.
FEBS Lett
569:
201‐206,
2004.
|
149. |
Figueroa A,
Cuadrado A,
Fan J,
Atasoy U,
Muscat GE,
Muñoz‐Canoves P,
Gorospe M,
Muñoz A.
Role of HuR in skeletal myogenesis through coordinate regulation of muscle differentiation genes.
Mol Cell Biol
23:
4991‐5004,
2003.
|
150. |
Fiore F,
Sebille A,
Birnbaum D.
Skeletal muscle regeneration is not impaired in Fgf6‐/‐ mutant mice.
Biochem Biophys Res Commun
272:
138‐143,
2000.
|
151. |
Firth SM,
Baxter RC.
Cellular actions of the insulin‐like growth factor binding proteins.
Endocr Rev
23:
824‐854,
2002.
|
152. |
Fitts RH,
Trappe SW,
Costill DL,
Gallagher PM,
Creer AC,
Colloton PA,
Peters JR,
Romatowski JG,
Bain JL,
Riley DA.
Prolonged space flight‐induced alterations in the structure and function of human skeletal muscle fibres.
J Physiol
588:
3567‐3592,
2010.
|
153. |
Flores EA,
Bistrian BR,
Pomposelli JJ,
Dinarello CA,
Blackburn GL,
Istfan NW.
Infusion of tumor necrosis factor/cachectin promotes muscle catabolism in the rat. A synergistic effect with interleukin 1.
J Clin Invest
83:
1614‐1622,
1989.
|
154. |
Florini JR,
Ewton DZ,
Magri KA.
Hormones, growth factors, and myogenic differentiation.
Ann Rev Physiol
53:
201‐216,
1991.
|
155. |
Flück M,
Waxham MN,
Hamilton MT,
Booth FW.
Skeletal muscle Ca(2+)‐independent kinase activity increases during either hypertrophy or running.
J Appl Physiol
88:
352‐358,
2000.
|
156. |
Folland JP,
Williams AG.
The adaptations to strength training: Morphological and neurological contributions to increased strength.
Sports Med
37:
145‐168,
2007.
|
157. |
Fong Y,
Moldawer LL,
Marano M,
Wei H,
Barber A,
Manogue K,
Tracey KJ,
Kuo G,
Fischman DA,
Cerami A,
Lowry SF.
Cachectin/TNF or IL‐1 alpha induces cachexia with redistribution of body proteins.
Am J Physiol
256:
R659‐R665,
1989.
|
158. |
Friday BB,
Horsley V,
Pavlath GK.
Calcineurin activity is required for the initiation of skeletal muscle differentiation.
J Cell Biol
149:
657‐665,
2000.
|
159. |
Friday BB,
Pavlath GK.
A calcineurin‐ and NFAT‐dependent pathway regulates Myf5 gene expression in skeletal muscle reserve cells.
J Cell Sci
114:
303‐310,
2001.
|
160. |
Fry AC,
Allemeier CA,
Staron RS.
Correlation between percentage fiber type area and myosin heavy chain content in human skeletal muscle.
Eur J Appl Physiol Occup Physiol
68:
246‐251,
1994.
|
161. |
Fry CS,
Glynn EL,
Drummond MJ,
Timmerman KL,
Fujita S,
Abe T,
Dhanani S,
Volpi E,
Rasmussen BB.
Blood flow restriction exercise stimulates mTORC1 signaling and muscle protein synthesis in older men.
J Appl Physiol
108:
1199‐1209,
2010.
|
162. |
Fujita S,
Dreyer HC,
Drummond MJ,
Glynn EL,
Volpi E,
Rasmussen BB.
Essential amino acid and carbohydrate ingestion before resistance exercise does not enhance postexercise muscle protein synthesis.
J Appl Physiol
106:
1730‐1739,
2009.
|
163. |
Funai K,
Parkington JD,
Carambula S,
Fielding RA.
Age‐associated decrease in contraction‐induced activation of downstream targets of Akt/mTor signaling in skeletal muscle.
Am J Physiol
290:
R1080‐R1086,
2006.
|
164. |
Furmanczyk PS,
Quinn LS.
Interleukin‐15 increases myosin accretion in human skeletal myogenic cultures.
Cell Biol Int
27:
845‐851,
2003.
|
165. |
García‐Mayoral MF,
Díaz‐Moreno I,
Hollingworth D,
Ramos A.
The sequence selectivity of KSRP explains its flexibility in the recognition of the RNA targets.
Nucleic Acids Res
36:
5290‐5296,
2008.
|
166. |
Garma T,
Kobayashi C,
Haddad F,
Adams GR,
Bodell PW,
Baldwin KM.
Similar acute molecular responses to equivalent volumes of isometric, lengthening, or shortening mode resistance exercise.
J Appl Physiol
102:
135‐143,
2007.
|
167. |
Gebauer F,
Hentze MW.
Molecular mechanisms of translational control.
Nat Rev Mol Cell Biol
5:
827‐835,
2004.
|
168. |
Gherzi R,
Trabucchi M,
Ponassi M,
Gallouzi IE,
Rosenfeld MG,
Briata P.
Akt2‐mediated phosphorylation of Pitx2 controls Ccnd1 mRNA decay during muscle cell differentiation.
Cell Death Differ
17:
975‐983,
2010.
|
169. |
Giger JM,
Haddad F,
Qin AX,
Baldwin KM.
Functional overload increases beta‐MHC promoter activity in rodent fast muscle via the proximal MCAT (betae3) site.
Am J Physiol Cell Physiol
282:
C518‐C527,
2002.
|
170. |
Gilson H,
Schakman O,
Kalista S,
Lause P,
Tsuchida K,
Thissen JP.
Follistatin induces muscle hypertrophy through satellite cell proliferation and inhibition of both myostatin and activin.
Am J Physiol
297:
E157‐E164,
2009.
|
171. |
Giraud S,
Greco A,
Brink M,
Diaz J‐J,
Delafontaine P.
Translation initiation of the insulin‐like growth factor I receptor mRNA is mediated by an internal ribosome entry site.
J Biol Chem
276:
5668‐5675,
2001.
|
172. |
Glass D.
PI3 kinase regulation of skeletal muscle hypertrophy and atrophy.
Curr Top Microbiol Immunol
346:
267‐278,
2011.
|
173. |
Glover EI,
Oates BR,
Tang JE,
Moore DR,
Tarnopolsky MA,
Phillips SM.
Resistance exercise decreases eIF2Bɛ phosphorylation and potentiates the feeding‐induced stimulation of p70S6K1 and rpS6 in young men.
Am J Physiol
295:
R604‐R610,
2008.
|
174. |
Gokhin DS,
Ward SR,
Bremner SN,
Lieber RL.
Quantitative analysis of neonatal skeletal muscle functional improvement in the mouse.
J Exp Biol
211:
837‐843,
2008.
|
175. |
Goldberg AL.
Protein synthesis in tonic and phasic skeletal muscles.
Nature
216:
1219‐1220,
1967.
|
176. |
Goldberg AL.
Work induced growth of skeletal muscle in normal and hypophsectomized rats.
Am J Physiol
213:
1193‐1198,
1967.
|
177. |
Gollnick PD,
Timson BF,
Moore RL,
Riedy M.
Muscular enlargement and number of fibers in skeletal muscles of rats.
J Appl Physiol
50:
936‐943,
1981.
|
178. |
Goncalves MD,
Pistilli EE,
Balduzzi A,
Birnbaum MJ,
Lachey J,
Khurana TS, and
Ahima RS.
Akt deficiency attenuates muscle size and function but not the response to ActRIIB inhibition.
PLoS ONE
5:
e12707,
2010.
|
179. |
Goodman CA,
Miu MH,
Frey JW,
Mabrey DM,
Lincoln HC,
Ge Y,
Chen J,
Hornberger TA.
A Phosphatidylinositol 3‐Kinase/protein kinase B‐independent activation of mammalian target of rapamycin signaling is sufficient to induce skeletal muscle hypertrophy.
Mol Biol Cell
21:
3258‐3268,
2010.
|
180. |
Goodman MN.
Interleukin‐6 induces skeletal muscle protein breakdown in rats.
Proc Soc Exp Biol Med
205:
182‐185,
1994.
|
181. |
Gordon S,
Fluck M,
Booth F.
elected Contribution: Skeletal muscle focal adhesion kinase, paxillin, and serum response factor are loading dependent.
J Appl Physiol
90:
1174‐1183,
2001.
|
182. |
Gordon SE,
Westerkamp CM,
Savage KJ,
Hickner RC,
George SC,
Fick CA,
McCormick KM.
Basal, but not overload‐induced, myonuclear addition is attenuated by NG‐nitro‐L‐arginine methyl ester (L‐NAME) administration.
Can J Physiol Pharmacol
85:
646‐651,
2007.
|
183. |
Greenhalgh CJ,
Rico‐Bautista E,
Lorentzon M,
Thaus AL,
Morgan PO,
Willson TA,
Zervoudakis P,
Metcalf D,
Street I,
Nicola NA,
Nash AD,
Fabri LJ,
Norstedt G,
Ohlsson C,
Flores‐Morales A,
Alexander WS,
Hilton DJ.
SOCS2 negatively regulates growth hormone action in vitro and in vivo.
J Clin Invest
115:
397‐406,
2005.
|
184. |
Gregory TR.
Coincidence, coevolution, or causation? DNA content, cell size, and the C‐value enigma.
Biol Rev Camb Philos Soc
76:
65‐101,
2001.
|
185. |
Grounds MD,
Garrett KL,
Lai MC,
Wright WE,
Beilharz MW.
Identification of skeletal muscle precursor cells in vivo by use of MyoD1 and myogenin probes.
Cell Tissue Res
267:
99‐104,
1992.
|
186. |
Grounds MD,
Sorokin L,
White J.
Strength at the extracellular matrix‐muscle interface.
Scand J Med Sci Sports
15:
381‐391,
2005.
|
187. |
Guller I,
Russell AP.
MicroRNAs in skeletal muscle: Their role and regulation in development, disease and function.
J Physiol
588:
4075‐4087,
2010.
|
188. |
Gundermann DM,
Fry CS,
Dickinson JM,
Walker DK,
Timmerman KL,
Drummond MJ,
Volpi E,
Rasmussen BB.
Reactive hyperemia is not responsible for stimulating muscle protein synthesis following blood flow restriction exercise.
J Appl Physiol
112:
1520‐1528,
2012.
|
189. |
Gundersen K,
Bruusgaard JC.
Nuclear domains during muscle atrophy: Nuclei lost or paradigm lost?
J Physiol
586:
2675‐2681,
2008.
|
190. |
Gutiérrez J,
Brandan E.
A novel mechanism of sequestering fibroblast growth factor 2 by glypican in lipid rafts, allowing skeletal muscle differentiation.
Mol Cell Biol
30:
1634‐1649,
2010.
|
191. |
Haddad F,
Adams GR.
Selected contribution: Acute cellular and molecular responses to resistance exercise.
J Appl Physiol
93:
394‐403,
2002.
|
192. |
Haddad F,
Adams GR.
Inhibition of MAP/ERK kinase prevents IGF‐I induced hypertrophy in rat muscles.
J Appl Physiol
96:
203‐210,
2004.
|
193. |
Haddad F,
Adams GR.
Aging sensitive cellular and molecular mechanisms associated with skeletal muscle hypertrophy.
J Appl Physiol
100:
1188‐1203,
2006.
|
194. |
Haddad F,
Baldwin KM,
Tesch PA.
Pretranslational markers of contractile protein expression in human skeletal muscle: Effect of limb unloading plus resistance exercise.
J Appl Physiol
98:
46‐52,
2005.
|
195. |
Haddad F,
Qin AX,
Bodell PW,
Zhang LY,
Guo H,
Giger JM,
Baldwin KM.
Regulation of antisense RNA expression during cardiac MHC gene switching in response to pressure overload.
Am J Physiol Heart Circ Physiol
290:
H2351‐2361,
2006.
|
196. |
Haddad F,
Roy RR,
Zhong H,
Edgerton VR,
Baldwin KM.
Atrophy responses to muscle inactivity. I. Cellular markers of protein deficits.
J Appl Physiol
95:
781‐790,
2003.
|
197. |
Haddad F,
Zaldivar FP,
Cooper DM,
Adams GR.
IL‐6 Induced skeletal muscle atrophy.
J Appl Physiol
98:
911‐917,
2005.
|
198. |
Hakkinen K,
Alen M,
Komi PV.
Changes in isometric force‐ and relaxation‐time, electromyographic and muscle fibre characteristics of human skeletal muscle during strength training and detraining.
Acta Physiol Scand
125:
573‐585,
1985.
|
199. |
Hall ZW,
Ralston E.
Nuclear domains in muscle cells.
Cell
59:
771‐772,
1989.
|
200. |
Hameed M,
Orrell R,
Cobbold M,
Goldspink G,
Harridge S.
Expression of IGF‐I splice variants in young and old human skeletal muscle after high resistance exercise.
J Physiol
547:
247‐254,
2003.
|
201. |
Hamilton DL,
Philp A,
MacKenzie MG,
Baar K.
A limited role for PI(3,4,5)P3 regulation in controlling skeletal muscle mass in response to resistance exercise.
PLoS ONE
5:
e11624,
2010.
|
202. |
Hamosch M LM,
Baron J,
Kaufman S.
Enhanced protein synthesis in a cell‐free system from hypertrophied skeletal muscle.
Science
157
(3791):
935‐937,
1967.
|
203. |
Hannan KM,
Hannan RD,
Rothblum LI.
Transcription by RNA polymerase I.
Front Biosci
3:
376‐398,
1998.
|
204. |
Hansen JM,
Klass M,
Harris C,
Csete M.
A reducing redox environment promotes C2C12 myogenesis: implications for regeneration in aged muscle.
Cell Biol Int
31:
546‐553,
2007.
|
205. |
Harcourt LJ,
Holmes AG,
Gregorevic P,
Schertzer JD,
Stupka N,
Plant DR,
Lynch GS.
Interleukin‐15 administration improves diaphragm muscle pathology and function in dystrophic mdx mice.
Am J Pathol
166:
1131‐1141,
2005.
|
206. |
Hardt SE,
Tomita H,
Katus HA,
Sadoshima J.
Phosphorylation of eukaryotic translation initiation factor 2B{epsilon} by glycogen synthase kinase‐3{beta} regulates {beta}‐adrenergic cardiac myocyte hypertrophy.
Circ Res
94:
926‐935,
2004.
|
207. |
Hartgens F,
Kuipers H.
Effects of androgenic‐anabolic steroids in athletes.
Sports Med
34:
513‐554,
2004.
|
208. |
Hartman JW,
Tang JE,
Wilkinson SB,
Tarnopolsky MA,
Lawrence RL,
Fullerton AV,
Phillips SM.
Consumption of fat‐free fluid milk after resistance exercise promotes greater lean mass accretion than does consumption of soy or carbohydrate in young, novice, male weightlifters.
Am J Clin Nutr
86:
373‐381,
2007.
|
209. |
Hawke TJ.
Muscle stem cells and exercise training.
Exerc Sport Sci Rev
33:
63‐68,
2005.
|
210. |
Heinemeier KM,
Olesen JL,
Schjerling P,
Haddad F,
Langberg H,
Baldwin KM,
Kjaer M.
Short‐term strength training and the expression of myostatin and IGF‐I isoforms in rat muscle and tendon: Differential effects of specific contraction types.
J Appl Physiol
102:
573‐581,
2007.
|
211. |
Heinrich PC,
Behrmann I,
Haan S,
Hermanns HM,
Muller‐Newen G,
Schaper F.
Principles of IL‐6‐type cytokine signalling and its regulation.
Biochem J
374:
1‐20,
2003.
|
212. |
Hellen CUT,
Sarnow P.
Internal ribosome entry sites in eukaryotic mRNA molecules.
Genes Dev
15:
1593‐1612,
2001.
|
213. |
Herbst KL,
Bhasin S.
Testosterone action on skeletal muscle.
Curr Opin Clin Nutr Metab Care
7:
271‐277,
2004.
|
214. |
Heron‐Milhavet L,
Mamaeva D,
Leroith D,
Lamb NJ,
Fernandez A.
Impaired muscle regeneration and myoblast differentiation in mice with a muscle‐specific KO of IGF‐IR.
J Cell Physio
225:
1‐6,
2010.
|
215. |
Hickson RC,
Galassi TM,
Kurowski TT,
Daniels DG,
Chatterton RT.
Skeletal muscle cytosol [3H]methyltrienolone receptor binding and serum androgens: Effects of hypertrophy and hormonal state.
J Steroid Biochem
19:
1705‐1712,
1983.
|
216. |
Himpe E,
Kooijman R.
Insulin‐like growth factor‐I receptor signal transduction and the janus kinase/signal transducer and activator of transcription (JAK‐STAT) pathway.
BioFactors
35:
76‐81,
2009.
|
217. |
Holm L,
Reitelseder S,
Pedersen TG,
Doessing S,
Petersen SG,
Flyvbjerg A,
Andersen JL,
Aagaard P,
Kjaer M.
Changes in muscle size and MHC composition in response to resistance exercise with heavy and light loading intensity.
J Appl Physiol
105:
1454‐1461,
2008.
|
218. |
Holm L,
van Hall G,
Rose AJ,
Miller BF,
Doessing S,
Richter EA,
Kjaer M.
Contraction intensity and feeding affect collagen and myofibrillar protein synthesis rates differently in human skeletal muscle.
Am J Physiol
298:
E257‐E269,
2010.
|
219. |
Holz MK,
Ballif BA,
Gygi SP,
Blenis J.
mTOR and S6K1 mediate assembly of the translation preinitiation complex through dynamic protein interchange and ordered phosphorylation events.
Cell
123:
569‐580,
2005.
|
220. |
Hornberger TA.
Mechanotransduction and the regulation of mTORC1 signaling in skeletal muscle.
Int J Biochem Cell Biol
43:
1267‐1276,
2011.
|
221. |
Hornberger TA,
Chien S.
Mechanical stimuli and nutrients regulate rapamycin‐sensitive signaling through distinct mechanisms in skeletal muscle.
J Cell Biochem
97:
1207‐1216,
2006.
|
222. |
Hornberger TA,
Farrar RP.
Physiological hypertrophy of the FHL muscle following 8 weeks of progressive resistance exercise in the rat.
Can J Appl Physiol
29:
16‐31,
2004.
|
223. |
Hornberger TA,
Sukhija KB,
Wang X‐R,
Chien S.
mTOR is the rapamycin‐sensitive kinase that confers mechanically‐induced phosphorylation of the hydrophobic motif site Thr(389) in p70S6k.
FEBS Lett
581:
4562‐4566,
2007.
|
224. |
Horsley V,
Jansen KM,
Mills ST,
Pavlath GK.
IL‐4 acts as a myoblast recruitment factor during mammalian muscle growth.
Cell
113:
483‐494,
2003.
|
225. |
Howells KF,
Jordan TC,
Howells JD.
Myofibril content of histochemical fibre types in rat skeletal muscle.
Acta Histochem
1978:
177‐182,
1978.
|
226. |
Huey KA,
Haddad F,
Qin AX,
Baldwin KM.
Transcriptional regulation of the type I myosin heavy chain gene in denervated rat soleus.
Am J Physiol Cell Physiol
284:
C738‐C748,
2003.
|
227. |
Huey KA,
Roy RR,
Haddad F,
Edgerton VR,
Baldwin KM.
Transcriptional regulation of the type I myosin heavy chain promoter in inactive rat soleus.
Am J Physiol Cell Physiol
282:
C528‐537,
2002.
|
228. |
Hughes SM,
Schiaffino S.
Control of muscle fiber size: A crucial factor in ageing.
Acta Physiol Scand
167:
307‐312,
1999.
|
229. |
Huichalaf C,
Schoser B,
Schneider‐Gold C,
Jin B,
Sarkar P,
Timchenko L.
Reduction of the rate of protein translation in patients with myotonic dystrophy 2.
J Neurosci
29:
9042‐9049,
2009.
|
230. |
Hulmi JJ,
Kovanen V,
Lisko I,
Selänne H,
Mero AA.
The effects of whey protein on myostatin and cell cycle‐related gene expression responses to a single heavy resistance exercise bout in trained older men.
Eur J Appl Physiol
102:
205‐213,
2008.
|
231. |
Hulmi JJ,
Tannerstedt J,
Selänne H,
Kainulainen H,
Kovanen V,
Mero AA.
Resistance exercise with whey protein ingestion affects mTOR signaling pathway and myostatin in men.
J Appl Physiol
106:
1720‐1729,
2009.
|
232. |
Hunt LC,
Tudor EM,
White JD.
Leukemia inhibitory factor‐dependent increase in myoblast cell number is associated with phosphotidylinositol 3‐kinase‐mediated inhibition of apoptosis and not mitosis.
Exp Cell Res
316:
1002‐1009,
2010.
|
233. |
Ihle JN.
Janus kinases in cytokine signaling.
Phil Trans R Soc Lond B
351:
159‐166,
1996.
|
234. |
Inaba M,
Saito H,
Fujimoto M,
Sumitani S,
Ohkawara T,
Tanaka T,
Kouhara H,
Kasayama S,
Kawase I,
Kishimoto T,
Naka T.
Suppressor of cytokine signaling 1 suppresses muscle differentiation through modulation of IGF‐I receptor signal transduction.
Biochem Biophys Res Commun
328:
953‐961,
2005.
|
235. |
Iversen E,
Røstad V.
Low‐load ischemic exercise‐induced rhabdomyolysis.
Clin J Sport Med
20:
218‐219,
2010.
|
236. |
Ivy JL,
Ding Z,
Hwang H,
Cialdella‐Kam LC,
Morrison PJ.
Post exercise carbohydrate–protein supplementation: Phosphorylation of muscle proteins involved in glycogen synthesis and protein translation.
Amino Acids
35:
89‐97,
2008.
|
237. |
Iyer D,
Chang D,
Marx J,
Wei L,
Olson EN,
Parmacek MS,
Balasubramanyam A,
Schwartz RJ.
Serum response factor MADS box serine‐162 phosphorylation switches proliferation and myogenic gene programs.
Proc Natl Acad Sci U S A
103:
4516‐4521,
2006.
|
238. |
Jacquemin V,
Furling D,
Bigot A,
Butler‐Browne GS,
Mouly V.
IGF‐1 induces human myotube hypertrophy by increasing cell recruitment.
Exp Cell Res
299:
148‐158,
2004.
|
239. |
Jefferies HBJ,
Fumagalli S,
Dennis PB,
Reinhard C,
Pearson RB,
Thomas G.
Rapamycin suppresses 5[prime]TOP mRNA translation through inhibition of p70s6k.
EMBO J
3693‐3704,
1997.
|
240. |
Jefferson LS,
Vary TC,
Kimball SR.
Supplement 21: Handbook of Physiology: Regulation of Protein Metabolism in Muscle
Hoboken, NJ USA:
John Wiley & Sons, Inc.,
2010.
|
241. |
Jo C,
Kim H,
Jo I,
Choi I,
Jung SC,
Kim J,
Kim SS,
Jo SA.
Leukemia inhibitory factor blocks early differentiation of skeletal muscle cells by activating ERK.
Bochim Biophys Acta
1743:
187‐197,
2005.
|
242. |
Kadi F,
Eriksson A,
Holmner S,
Butler‐Browne GS,
Thornell LE.
Cellular adaptation of the trapezius muscle in strength‐trained athletes.
Histochem Cell Biol
111:
189‐195,
1999.
|
243. |
Kadi F,
Schjerling P,
Andersen LL,
Charifi N,
Madsen JL,
Christensen LR,
Andersen JL.
The effects of heavy resistance training and detraining on satellite cells in human skeletal muscles.
J Physiol
558:
1005‐1012,
2004.
|
244. |
Kadi F,
Thornell LE.
Concomitant increases in myonuclear and satellite cell content in female trapezius muscle following strength training.
Histochem Cell Bio
113:
99‐103,
2000.
|
245. |
Kakigi R,
Naito H,
Ogura Y,
Kobayashi H,
Saga N,
Ichinoseki‐Sekine N,
Yoshihara T,
Katamoto S.
Heat stress enhances mTOR signaling after resistance exercise in human skeletal muscle.
J Physiol Sci
61:
131‐140,
2011.
|
246. |
Kamanga‐Sollo E,
Pampusch MS,
White ME,
Hathaway MR,
Dayton WR.
Insulin‐like growth factor binding protein (IGFBP)‐3 and IGFBP‐5 mediate TGF‐β‐ and myostatin‐induced suppression of proliferation in porcine embryonic myogenic cell cultures.
Exp Cell Res
311:
167‐176,
2005.
|
247. |
Kami K,
Morikawa Y,
Sekimoto M,
Senba E.
Gene expression of receptors for IL‐6, LIF and CNTF in regenerating skeletal muscles.
J Histochem Cytoche
1203‐1213,
2000.
|
248. |
Kandalla PK,
Goldspink G,
Butler‐Browne G,
Mouly V.
Mechano growth factor E peptide (MGF‐E), derived from an isoform of IGF‐1, activates human muscle progenitor cells and induces an increase in their fusion potential at different ages.
Mech Ageing Dev
132:
154‐162,
2011.
|
249. |
Karagounis L,
Yaspelkis B,
Reeder D,
Lancaster G,
Hawley J,
Coffey V.
Contraction‐induced changes in TNFα and Akt‐mediated signalling are associated with increased myofibrillar protein in rat skeletal muscle.
Eur J Appl Physiol
109:
839‐848,
2010.
|
250. |
Kästner S,
Elias MC,
Rivera AJ,
Yablonka‐Reuveni Z.
Gene expression patterns of the fibroblast growth factors and their receptors during myogenesis of rat satellite cells.
J Histochem Cytochem
48:
1079‐1096,
2000.
|
251. |
Kawada S,
Tachi C,
Ishii N.
Content and localization of myostatin in mouse skeletal muscles during aging, mechanical unloading and reloading.
J Muscle Res Cell Motil
22:
627‐633,
2001.
|
252. |
Kelley G.
Mechanical overload and skeletal muscle fiber hyperplasia: A meta‐analysis.
J Appl Physiol
81:
1584‐1588,
1996.
|
253. |
Kelly AM.
Satellite cells and myofiber growth in the rat soleus and extensor digitorum longus muscles.
Dev Biol
65:
1‐10,
1978.
|
254. |
Kim H,
Barton E,
Muja N,
Yakar S,
Pennisi P,
Leroith D.
Intact insulin and insulin‐like growth factor‐I receptor signaling is required for growth hormone effects on skeletal muscle growth and function in vivo.
Endocrinology
146:
1772‐1779,
2005.
|
255. |
Kim HK,
Lee YS,
Sivaprasad U,
Malhotra A,
Dutta A.
Muscle‐specific microRNA miR‐206 promotes muscle differentiation.
J Cell Biol
2006:
677‐687,
2006.
|
256. |
Kim JS,
Cross JM,
Bamman MM.
Impact of resistance loading on myostatin expression and cell cycle regulation in young and older men and women.
Am J Physiol
288:
E1110‐E1119,
2005.
|
257. |
Kim JS,
Petrella JK,
Cross JM,
Bamman MM.
Load‐mediated down‐regulation of myostatin mrna is not sufficient to promote myofiber hypertrophy in humans: a cluster analysis.
J Appl Physiol
103:
1488‐1495,
2007.
|
258. |
Kim MJ,
Froehner SC,
Adams ME,
Kim HS.
alpha‐Syntrophin is required for the hepatocyte growth factor‐induced migration of cultured myoblasts.
Exp Cell Res
317:
2914‐2924.
|
259. |
Kim MJ,
Hwang SH,
Lim JA,
Froehner SC,
Adams ME,
Kim HS.
Alpha‐syntrophin modulates myogenin expression in differentiating myoblasts.
PLoS One
5:
e15355.
|
260. |
Kim PL,
Staron RS,
Phillips SM.
Fasted‐state skeletal muscle protein synthesis after resistance exercise is altered with training.
J Physiol
568:
283‐290,
2005.
|
261. |
Kimball SR,
Horetsky RL,
Jefferson LS.
Implication of eIF2B rather than eIF4E in the regulation of global protein synthesis by amino acids in L6 myoblasts.
J Biol Chem
273:
30945‐30953,
1998.
|
262. |
Klossner S,
Durieux A‐C,
Freyssenet D,
Flueck M.
Mechano‐transduction to muscle protein synthesis is modulated by FAK.
Eur J Appl Physiol
106:
389‐398,
2009.
|
263. |
Kollias HD,
Perry RLS,
Miyake T,
Aziz A,
McDermott JC.
Smad7 promotes and enhances skeletal muscle differentiation.
Mol Cell Biol
26:
6248‐6260,
2006.
|
264. |
Kook SH,
Lee HJ,
Chung WT,
Hwang IH,
Lee SA,
Kim BS,
Lee JC.
Cyclic mechanical stretch stimulates the proliferation of C2C12 myoblasts and inhibits their differentiation via prolonged activation of p38 MAPK.
Mol Cells
25:
479‐486,
2008.
|
265. |
Kosek DJ,
Bamman MM.
Modulation of the dystrophin‐associated protein complex in response to resistance training in young and older men.
J Appl Physiol
104:
1476‐1484,
2008.
|
266. |
Kosek DJ,
Kim JS,
Petrella JK,
Cross JM,
Bamman MM.
Efficacy of 3 days/wk resistance training on myofiber hypertrophy and myogenic mechanisms in young vs. older adults.
J Appl Physiol
101:
531‐544,
2006.
|
267. |
Kostek MC,
Delmonico MJ,
Reichel JB,
Roth SM,
Douglass L,
Ferrell RE,
Hurley BF.
Muscle strength response to strength training is influenced by insulin‐like growth factor 1 genotype in older adults.
J Appl Physiol
98:
2147‐2154,
2005.
|
268. |
Kozak M.
Faulty old ideas about translational regulation paved the way for current confusion about how microRNAs function.
Gene
423:
108‐115,
2008.
|
269. |
Kraemer WJ,
Marchitelli L,
Gordon SE,
Harman E,
Dziados JE,
Mello R,
Frykman P,
McCurry D,
Fleck SJ.
Hormonal and growth factor responses to heavy resistance exercise protocols.
J Appl Physiol
69:
1442‐1450,
1990.
|
270. |
Kraemer WJ,
Ratamess NA.
Hormonal responses and adaptations to resistance exercise and training.
Sports Med
2005:
339‐361,
2005.
|
271. |
Krisan AD,
Collins DE,
Crain AM,
Kwong CC,
Singh MK,
Bernard JR,
Yaspelkis BB.
Resistance training enhances components of the insulin signaling cascade in normal and high‐fat‐fed rodent skeletal muscle.
J Appl Physiol
96:
1691‐1700,
2004.
|
272. |
Kuang W,
Tan J,
Duan Y,
Duan J,
Wang W,
Jin F,
Jin Z,
Yuan X,
Liu Y.
Cyclic stretch induced miR‐146a upregulation delays C2C12 myogenic differentiation through inhibition of Numb.
Biochem Biophys Res Commun
2009:
259‐263,
2009.
|
273. |
Kubica N,
Bolster DR,
Farrell PA,
Kimball SR,
Jefferson LS.
Resistance exercise increases muscle protein synthesis and translation of eukaryotic initiation factor 2Bɛ mRNA in a mammalian target of rapamycin‐dependent manner.
J Biol Chem
280:
7570‐7580,
2005.
|
274. |
Kumar A,
Murphy R,
Robinson P,
Wei L,
Boriek AM.
Cyclic mechanical strain inhibits skeletal myogenesis through activation of focal adhesion kinase, Rac‐1 GTPase, and NF‐kappaB transcription factor.
FASEB J
18:
1524‐1535,
2004.
|
275. |
Kumar V,
Atherton P,
Smith K,
Rennie MJ.
Human muscle protein synthesis and breakdown during and after exercise.
J Appl Physiol
106:
2026‐2039,
2009.
|
276. |
Kumar V,
Selby A,
Rankin D,
Patel R,
Atherton P,
Hildebrandt W,
Williams J,
Smith K,
Seynnes O,
Hiscock N,
Rennie MJ.
Age‐related differences in the dose‐response relationship of muscle protein synthesis to resistance exercise in young and old men.
J Physiol
587:
211‐217,
2009.
|
277. |
Kupa EJ,
Roy SH,
Kandarian SC,
DeLuca CJ.
Effects of muscle fiber type and size on EMG median frequency and conduction velocity.
J Appl Physiol
79:
23‐32,
1995.
|
278. |
Kurowski TT,
Chatterton RT,
Hickson RC.
Countereffects of compensatory overload and glucocorticoids in skeletal muscle: Androgen and glucocorticoid cytosol receptor binding.
J Steroid Biochem
21:
137‐145,
1984.
|
279. |
Kvorning T,
Andersen M,
Brixen K,
Schjerling P,
Suetta C,
Madsen K.
Suppression of testosterone does not blunt mRNA expression of myoD, myogenin, IGF, myostatin or androgen receptor post strength training in humans.
J Physiol
578:
579‐593,
2007.
|
280. |
LaFramboise WA,
Guthrie RD,
Scalise D,
Elborne V,
Bombach KL,
Armanious CS,
Magovern JA.
Effect of muscle origin and phenotype on satellite cell muscle‐specific gene expression.
J Mol Cell Cardiol
35:
1307‐1318,
2003.
|
281. |
Lafreniere JF,
Mills P,
Bouchentouf M,
Tremblay JP.
Interleukin‐4 improves the migration of human myogenic precursor cells in vitro and in vivo.
Exp Cell Re
2006.
|
282. |
Lahoute C,
Sotiropoulos A,
Favier M,
Guillet‐Deniau I,
Charvet C,
Ferry A,
Butler‐Browne G,
Metzger D,
Tuil D,
Daegelen D.
Premature aging in skeletal muscle lacking serum response factor.
PLoS ONE
3:
e3910,
2008.
|
283. |
Lambert CP,
Wright NR,
Finck BN,
Villareal DT.
Exercise but not diet‐induced weight loss decreases skeletal muscle inflammatory gene expression in frail obese elderly persons.
J Appl Physiol
105:
473‐478,
2008.
|
284. |
Langley B,
Thomas M,
Bishop A,
Sharma M,
Gilmour S,
Kambadur R.
Myostatin inhibits myoblast differentiation by down‐regulating MyoD expression.
J Biol Chem
277:
49831‐49840,
2002.
|
285. |
Lee S,
Barton ER,
Sweeney HL,
Farrar RP.
Viral expression of insulin‐like growth factor‐I enhances muscle hypertrophy in resistance‐trained rats.
J Appl Physiol
96:
1097‐1104,
2004.
|
286. |
Lees SJ,
Childs TE,
Booth FW.
p21(Cip1) expression is increased in ambient oxygen, compared to estimated physiological (5%) levels in rat muscle precursor cell culture.
Cell Prolif
41:
193‐507,
2008.
|
287. |
Leshem Y,
Gitelman I,
Ponzetto C,
Halevy O.
Preferential binding of Grb2 or phosphatidylinositol 3‐kinase to the met receptor has opposite effects on HGF‐induced myoblast proliferation.
Exp Cell Res
274:
288‐298,
2002.
|
288. |
Leshem Y,
Spicer DB,
Gal‐Levi R,
Halevy O.
Hepatocyte growth factor (HGF) inhibits skeletal muscle cell differentiation: A role for the bHLH protein twist and the cdk inhibitor p27.
J Cellular Physiol
184:
101‐109,
2000.
|
289. |
Lexell J,
Taylor CC.
Variability in muscle fibre areas in whole human quardiceps muscle: effects of increasing age.
J Anat
174:
239‐249,
1991.
|
290. |
Li L,
Chambard J,
Karin M,
Olson E.
Fos and Jun repress transcriptional activation by myogenin and MyoD: The amino terminus of Jun can mediate repression.
Genes Dev
6:
676‐689,
1992.
|
291. |
Li P,
Akimoto T,
Zhang M,
Williams RS,
Yan Z.
Resident stem cells are not required for exercise‐induced fiber type‐switching and angiogenesis, but required for activity‐dependent muscle growth.
Am J Physio
290:
C1461‐C1468,
2006.
|
292. |
Li YP,
Schwartz RJ,
Waddell ID,
Holloway BR,
Reid MB.
Skeletal muscle myocytes undergo protein loss and reactive‐oxygen mediated NF‐kB activation in response to tumor necrosis factor‐alpha.
FASEB
12:
871‐880,
1998.
|
293. |
Liberati NT,
Datto MB,
Frederick JP,
Shen X,
Wong C,
Rougier‐Chapman EM,
Wang X‐F.
Smads bind directly to the Jun family of AP‐1 transcription factors.
Proc Natl Acad Sci U S A
96:
4844‐4849,
1999.
|
294. |
Lieskovska J,
Guo D,
Derman E.
IL‐6‐overexpression brings about growth impairment potentially through a GH receptor defect.
Growth Horm IGF Res
12:
388‐398,
2002.
|
295. |
Ling PR,
Schwartz JH,
Bistrian BR.
Mechanisms of host wasting induced by administration of cytokines in rats.
Am J Physiol
272:
E333‐E339,
1997.
|
296. |
Liu Y,
Heinichen M,
Wirth K,
Schmidtbleicher D,
Steinacker JM.
Response of growth and myogenic factors in human skeletal muscle to strength training.
Br J Sports Med
42:
989‐993,
2008.
|
297. |
Liu Y,
Schlumberger A,
Wirth K,
Schmidtbleicher D,
Steinacker JM.
Different effects on human skeletal myosin heavy chain isoform expression: Strength vs. combination training.
J Appl Physiol
94:
2282‐2288,
2003.
|
298. |
Lodish HF.
Translational control of protein synthesis.
Annu Rev Biochem
45:
39‐72,
1976.
|
299. |
Lowe DA,
Alway SE.
Stretch‐induced myogenin, MyoD, and MRF4 expression and acute hypertrophy in quail slow‐tonic muscle are not dependent upon satellite cell proliferation.
Cell Tis Res
296:
531‐539,
1999.
|
300. |
Lueders TN,
Zou K,
Huntsman HD,
Meador B,
Mahmassani Z,
Abel M,
Valero MC,
Huey KA,
Boppart MD.
The alpha7beta1‐integrin accelerates fiber hypertrophy and myogenesis following a single bout of eccentric exercise.
Am J Physiol Cell Physiol
301:
C938‐946.
|
301. |
Ma XM,
Blenis J.
Molecular mechanisms of mTOR‐mediated translational control.
Nat Rev Mol Cell Biol
10:
307‐318,
2009.
|
302. |
MacDougall JD,
Sale DG,
Moroz JR,
Elder GC,
Sutton JR,
Howald H.
Mitochondrial volume density in human skeletal muscle following heavy resistance training.
Med Sci Sports
11:
164‐166,
1979.
|
303. |
Mackey AL,
Heinemeier KM,
Koskinen SO,
Kjaer M.
Dynamic adaptation of tendon and muscle connective tissue to mechanical loading.
Connect Tissue Res
49:
165‐168,
2008.
|
304. |
Mackey AL,
Kjaer M,
Dandanell S,
Mikkelsen KH,
Holm L,
Døssing S,
Kadi F,
Koskinen SO,
Jensen CH,
Schrøder HD,
Langberg H.
The influence of anti‐inflammatory medication on exercise‐induced myogenic precursor cell responses in humans.
J Appl Physiol
103:
425‐431,
2007.
|
305. |
Madarame H,
Kurano M,
Takano H,
Iida H,
Sato Y,
Ohshima H,
Abe T,
Ishii N,
Morita T,
Nakajima T.
Effects of low‐intensity resistance exercise with blood flow restriction on coagulation system in healthy subjects.
Clin Physiol Funct Imaging
30:
210‐213,
2010.
|
306. |
Manini T,
Clark B.
Blood flow restricted exercise and skeletal muscle health.
Exerc Sport Sci Rev
37:
78‐85,
2009.
|
307. |
Marino JS,
Tausch BJ,
Dearth CL,
Manacci MV,
McLoughlin TJ,
Rakyta SJ,
Linsenmayer MP,
Pizza FX.
Beta2‐integrins contribute to skeletal muscle hypertrophy in mice.
Am J Physiol
295:
C1026‐C1036,
2008.
|
308. |
Martin SD,
Collier FM,
Kirkland MA,
Walder K,
Stupka N.
Enhanced proliferation of human skeletal muscle precursor cells derived from elderly donors cultured in estimated physiological (5%) oxygen.
Cytotechnology
61:
93‐107,
2009.
|
309. |
Martineau LC,
Gardiner PF.
Insight into skeletal muscle mechanotransduction: MAPK activation is quantitatively related to tension.
J Appl Physiol
91:
693‐702,
2001.
|
310. |
Mascher H,
Tannerstedt J,
Brink‐Elfegoun T,
Ekblom B,
Gustafsson T,
Blomstrand E.
Repeated resistance exercise training induces different changes in mRNA expression of MAFbx and MuRF‐1 in human skeletal muscle.
E43‐E51,
2008.
|
311. |
Matheny RW,
Nindl BC,
Adamo ML.
Minireview: Mechano‐growth factor: A putative product of IGF‐I gene expression involved in tissue repair and regeneration.
Endocrinology
151:
865‐875,
2010.
|
312. |
Mavalli MD,
DiGirolamo DJ,
Fan Y,
Riddle RC,
Campbell KS,
van Groen T,
Frank SJ,
Sperling MA,
Esser KA,
Bamman MM,
Clemens TL.
Distinct growth hormone receptor signaling modes regulate skeletal muscle development and insulin sensitivity in mice.
J Clin Invest
120:
4007‐4020,
2010.
|
313. |
Mayhew DL,
Hornberger TA,
Lincoln HC,
Bamman MM.
Eukaryotic initiation factor 2B∈ (eIF2B∈) induces cap‐dependent translation and skeletal muscle hypertrophy.
J Physiol
589:
3023‐3037,
2011.
|
314. |
Mayhew DL,
Kim JS,
Cross JM,
Ferrando AA,
Bamman MM.
Translational signaling responses preceding resistance training‐mediated myofiber hypertrophy in young and old humans.
J Appl Physiol
107:
1655‐1662,
2009.
|
315. |
McCall GE,
Haddad F,
Roy RR,
Zhong H,
Edgerton VR,
Baldwin KM.
Transcriptional regulation of the myosin heavy chain IIb gene in inactive rat soleus.
Muscle Nerve
40:
411‐419,
2009.
|
316. |
McCarthy JJ,
Esser KA.
Counterpoint: Satellite cell addition is not obligatory for skeletal muscle hypertrophy.
J Appl Physiol
103:
1102‐1103,
2007.
|
317. |
McCarthy JJ,
Esser KA.
MicroRNA‐1 and microRNA‐133a expression are decreased during skeletal muscle hypertrophy.
J Appl Physiol
102:
306‐313,
2007.
|
318. |
McCarthy JJ,
Mula J,
Miyazaki M,
Erfani R,
Garrison K,
Farooqui AB,
Srikuea R,
Lawson BA,
Grimes B,
Keller C,
Van Zant G,
Campbell KS,
Esser KA,
Dupont‐Versteegden EE,
Peterson CA.
Effective fiber hypertrophy in satellite cell‐depleted skeletal muscle.
Development
138:
3657‐3666,
2011.
|
319. |
McFarland DC.
Cell culture as a tool for the study of poultry skeletal muscle development.
J Nut
122:
818‐829,
1992.
|
320. |
McFarlane C,
Hui GZ,
Amanda WZW,
Lau HY,
Lokireddy S,
XiaoJia G,
Mouly V,
Butler‐Browne G,
Gluckman PD,
Sharma M,
Kambadur R.
Human myostatin negatively regulates human myoblast growth and differentiation.
Am J Physiol
301:
C195‐C203,
2011.
|
321. |
McKay BR,
O'Reilly CE,
Phillips SM,
Tarnopolsky MA,
Parise G.
Co‐expression of IGF‐1 family members with myogenic regulatory factors following acute damaging muscle‐lengthening contractions in humans.
J Physiol
586:
5549‐5560,
2008.
|
322. |
McMullen JR,
Shioi T,
Zhang L,
Tarnavski O,
Sherwood MC,
Dorfman AL,
Longnus S,
Pende M,
Martin KA,
Blenis J,
Thomas G,
Izumo S.
Deletion of ribosomal S6 kinases does not attenuate pathological, physiological, or insulin‐like growth factor 1 receptor‐phosphoinositide 3‐kinase‐induced cardiac hypertrophy.
Mol Cell Biol
24:
6231‐6240,
2004.
|
323. |
McPherron AC,
Lawler AM,
Lee SJ.
Regulation of skeletal muscle mass in mice by a new TGF‐b superfamily member.
Nature
387:
83‐90,
1997.
|
324. |
McPherron AC,
Lee SJ.
Double muscling in cattle due to mutations in the myostatin gene.
Proc Natl Acad Sci U S A
94:
12457‐12461,
1997.
|
325. |
Meech R,
Gomez M,
Woolley C,
Barro M,
Hulin JA,
Walcott EC,
Delgado J,
Makarenkova HP.
The homeobox transcription factor barx2 regulates plasticity of young primary myofibers.
PLoS ONE
5:
e11612,
2010.
|
326. |
Menconi MJ,
Arany ZP,
Alamdari N,
Aversa Z,
Gonnella P,
O'Neal P,
Smith IJ,
Tizio S,
Hasselgren PO.
Sepsis and glucocorticoids downregulate the expression of the nuclear cofactor pgc‐1{beta} in skeletal muscle.
Am J Physiol Endocrinol Metab
299:
E533‐E543,
2010.
|
327. |
Merrick WC.
Eukaryotic protein synthesis: Still a mystery.
J Biol Chem
285:
21197‐21201,
2010.
|
328. |
Mientjes E,
Willemsen R,
Kirkpatrick L,
Nieuwenhuizen I,
Hoogeveen‐Westerveld M,
Verweij M,
Reis S,
Bardoni B,
Hoogeveen A,
Oostra B,
Nelson D.
Fxr1 knockout mice show a striated muscle phenotype: Implications for Fxr1p function in vivo.
Hum Mol Genet
13:
1291‐1302,
2004.
|
329. |
Miller AM,
Brestoff JR,
Phelps CB,
Berk EZ,
Reynolds TH, IV.
Rapamycin does not improve insulin sensitivity despite elevated mammalian target of rapamycin complex 1 activity in muscles of ob/ob mice.
Am J Physiol
295:
R1431‐R1438,
2008.
|
330. |
Miller GR,
Stauber WT.
Use of computer‐assisted analysis for myofiber size measurements of rat soleus muscles from photographed images.
J Histochem Cytochem
42:
377‐382,
1994.
|
331. |
Miller KJ,
Thaloor D,
Matteson S,
Pavlath GK.
Hepatocyte growth factor affects satellite cell activation and differentiation in regenerating skeletal muscle.
Am J Physiol
278:
C174‐C181,
2000.
|
332. |
Millward DJ,
Garlick PJ,
Stewart RJ,
Nnanyelugo DO,
Waterlow JC.
Skeletal‐muscle growth and protein turnover.
Biochem J
150:
235‐243,
1975.
|
333. |
Min H,
Turck CW,
Nikolic JM,
Black DL.
A new regulatory protein, KSRP, mediates exon inclusion through an intronic splicing enhancer.
Genes Dev
11:
1023‐1036,
1997.
|
334. |
Miura P,
Coriati A,
Bélanger G,
De Repentigny Y,
Lee J,
Kothary R,
Holcik M,
Jasmin BJ.
The utrophin A 5′‐UTR drives cap‐independent translation exclusively in skeletal muscles of transgenic mice and interacts with eEF1A2.
Hum Mol Genet
19:
1211‐1220,
2010.
|
335. |
Miyazaki M,
Esser KA.
Cellular mechanisms regulating protein synthesis and skeletal muscle hypertrophy in animals.
J Appl Physiol
106:
1367‐1373,
2009.
|
336. |
Miyazaki M,
McCarthy JJ,
Fedele MJ,
Esser KA.
Early activation of mTORC1 in response to mechanical overload is independent of PI3K/Akt signaling.
J Physiol
589:
1831‐1846,
2011.
|
337. |
Montagne J.
Genetic and molecular mechanisms of cell size control.
Mol Cell Biol Res Commun
4:
195‐202,
2000.
|
338. |
Moore DR,
Atherton PJ,
Rennie MJ,
Tarnopolsky MA,
Phillips SM.
Resistance exercise enhances mTOR and MAPK signalling in human muscle over that seen at rest after bolus protein ingestion.
Acta Physiol (Oxf)
201:
365‐372,
2010.
|
339. |
Moore DR,
Burgomaster KA,
Schofield LM,
Gibala MJ,
Sale DG,
Phillips SM.
Neuromuscular adaptations in human muscle following low intensity resistance training with vascular occlusion.
Eur J Appl Physiol
92:
399‐406,
2004.
|
340. |
Morkin E.
Postnatal muscle fiber assembly: Localization of newly synthesized myofibrillar proteins.
Science
167:
1499‐1501,
1970.
|
341. |
Morse CI,
Thom JM,
Reeves ND,
Birch KM,
Narici MV.
In vivo physiological cross‐sectional area and specific force are reduced in the gastrocnemius of elderly men.
J Appl Physiol
99:
1050‐1055,
2005.
|
342. |
Moss FP.
The relationship between the dimensions of the fibres and the number of nuclei during restricted growth, degrowth and compensatory growth of skeletal muscle.
Am J Anat
122:
555‐564,
1968.
|
343. |
Mozdziak PE,
Schultz E,
Cassens RG.
The effect of in vivo and in vitro irradiation (25 Gy) on the subsequent in vitro growth of satellite cells.
Cell Tissue Res
283:
203‐208,
1996.
|
344. |
Musarò A,
McCullagh K,
Paul A,
Houghton L,
Dobrowolny G,
Molinaro M,
Barton ER,
Sweeney HL,
Rosenthal N.
Localized Igf‐1 transgene expression sustains hypertrophy and regeneration in senescent skeletal muscle.
Nat Genet
27:
195‐200,
2001.
|
345. |
Nader GA,
McLoughlin TJ,
Esser KA.
mTOR function in skeletal muscle hypertrophy: Increased ribosomal RNA via cell cycle regulators.
Am J Physiol
289:
C1457‐C1465,
2005.
|
346. |
Nagatomo Y,
Carabello BA,
Hamawaki M,
Nemoto S,
Matsuo T,
McDermott PJ.
Translational mechanisms accelerate the rate of protein synthesis during canine pressure‐overload hypertrophy.
Am J Physiol
277:
H2176‐H2184,
1999.
|
347. |
Narici MV,
Hoppeler H,
Kayser B,
Landoni L,
Claassen H,
Gavardi C,
Conti M,
Cerretelli P.
Human quadriceps cross‐sectional area, torque and neural activation during 6 months strength training.
Acta Physiol Scand
157:
175‐186,
1996.
|
348. |
Naya FJ,
Mercer B,
Shelton J,
Richardson JA,
Williams RS,
Olson EN.
Stimulation of slow skeletal muscle fiber expression by calcineurin in vivo.
J Biol Chem
275:
4545‐4548,
2000.
|
349. |
Neville C,
Rosenthal N,
McGrew M,
Bogdanova N,
Hauschka S.
Skeletal muscle cultures.
Methods Cell Biol
52:
85‐116,
1997.
|
350. |
Nielsen AR,
Mounier R,
Plomgaard P,
Mortensen OH,
Penkowa M,
Speerschneider T,
Pilegaard H,
Pedersen BK.
Expression of interleukin‐15 in human skeletal muscle effect of exercise and muscle fibre type composition.
J Physiol
584:
305‐312,
2007.
|
351. |
Nieman DC,
Davis JM,
Brown VA,
Henson DA,
Dumke CL,
Utter AC,
Vinci DM,
Downs MF,
Smith JC,
Carson J,
Brown A,
McAnulty SR,
McAnulty LS.
Influence of carbohydrate ingestion on immune changes after 2 h of intensive resistance training.
J Appl Physiol
96:
1292‐1298,
2004.
|
352. |
Niu W,
Bilan PJ,
Yu J,
Gao J,
Boguslavsky S,
Schertzer JD,
Chu G,
Yao Z,
Klip A.
PKCepsilon regulates contraction‐stimulated GLUT4 traffic in skeletal muscle cells.
J Cell Physiol
226:
173‐180,
2010.
|
353. |
O'Neil TK,
Duffy LR,
Frey JW,
Hornberger TA.
The role of phosphoinositide 3‐kinase and phosphatidic acid in the regulation of mammalian target of rapamycin following eccentric contractions.
J Physiol
587:
3691‐3701,
2009.
|
354. |
Oh YM,
Kim JK,
Choi Y,
Choi S,
Yoo J‐Y.
Prediction and experimental validation of novel STAT3 target genes in human cancer cells.
PLoS ONE
4:
e6911,
2009.
|
355. |
Olwin BB,
Arthur K,
Hannon K,
Hein P,
McFall A,
Riley B,
Szebenyi G,
Zhou Z,
Zuber ME,
Rapraeger AC.
Role of FGF's in skeletal muscle and limb development.
Mol Repro Dev
39:
90‐101,
1994.
|
356. |
Ono Y,
Calhabeu F,
Morgan JE,
Katagiri T,
Amthor H,
Zammit PS.
BMP signalling permits population expansion by preventing premature myogenic differentiation in muscle satellite cells.
Cell Death Differ
18:
222‐234,
2011.
|
357. |
Ouyang X,
Fujimoto M,
Nakagawa R,
Serada S,
Tanaka T,
Nomura S,
Kawase I,
Kishimoto T,
Naka T.
SOCS‐2 interferes with myotube formation and potentiates osteoblast differentiation through upregulation of JunB in C2C12 cells.
J Cell Physiol
207:
428‐436,
2006.
|
358. |
Pandorf CE,
Haddad F,
Roy RR,
Qin AX,
Edgerton VR,
Baldwin KM.
Dynamics of myosin heavy chain gene regulation in slow skeletal muscle: Role of natural antisense RNA.
J Biol Chem
281:
38330‐38342,
2006.
|
359. |
Pandorf CE,
Haddad F,
Wright C,
Bodell PW,
Baldwin KM.
Differential epigenetic modifications of histones at the myosin heavy chain genes in fast and slow skeletal muscle fibers and in response to muscle unloading.
Am J Physiol Cell Physiol
297:
C6‐C16,
2009.
|
360. |
Parkington JD,
LeBrasseur NK,
Siebert AP,
Fielding RA.
Contraction‐mediated mTOR, p70S6k, and ERK1/2 phosphorylation in aged skeletal muscle.
J Appl Physiol
97:
243‐248,
2004.
|
361. |
Parsons SA,
Millay DP,
Wilkins BJ,
Bueno OF,
Tsika GL,
Neilson JR,
Liberatore CM,
Yutzey KE,
Crabtree GR,
Tsika RW,
Molkentin JD.
Genetic loss of calcineurin blocks mechanical overload‐induced skeletal muscle fiber type switching but not hypertrophy.
J Biol Chem
279:
26192‐26200,
2004.
|
362. |
Patursky‐Polischuk I,
Stolovich‐Rain M,
Hausner‐Hanochi M,
Kasir J,
Cybulski N,
Avruch J,
Ruegg MA,
Hall MN,
Meyuhas O.
The TSC‐mTOR pathway mediates translational activation of TOP mRNAs by insulin largely in a raptor‐ or rictor‐independent manner.
Mol Cell Biol
29:
640‐649,
2009.
|
363. |
Paul AC,
Rosenthal N.
Different modes of hypertrophy in skeletal muscle fibers.
J Cell Biol
156:
751‐760,
2002.
|
364. |
Pavlath GK,
Rich K,
Webster SG,
Blau HM.
Localization of muscle gene products in nuclear domains.
Nature
337:
570‐573,
1989.
|
365. |
Pedersen BK.
IL‐6 signalling in exercise and disease.
Biochem Soc Trans
35:
1295‐1297,
2007.
|
366. |
Pende M,
Um SH,
Mieulet V,
Sticker M,
Goss VL,
Mestan J,
Mueller M,
Fumagalli S,
Kozma SC,
Thomas G.
S6K1(‐/‐)/S6K2(‐/‐) mice exhibit perinatal lethality and rapamycin‐sensitive 5′‐terminal oligopyrimidine mRNA translation and reveal a mitogen‐activated protein kinase‐dependent S6 kinase pathway.
Mol Cell Biol
24:
3112‐3124,
2004.
|
367. |
Percival JM,
Anderson KN,
Huang P,
Adams ME,
Froehner SC.
Golgi and sarcolemmal neuronal NOS differentially regulate contraction‐induced fatigue and vasoconstriction in exercising mouse skeletal muscle.
J Clin Invest
120:
816‐826,
2010.
|
368. |
Petrella JK,
Kim JS,
Cross JM,
Kosek DJ,
Bamman MM.
Efficacy of myonuclear addition may explain differential myofiber growth among resistance‐trained young and older men and women.
Am J Physiol
291:
E937‐E946,
2006.
|
369. |
Petrella JK,
Kim JS,
Mayhew DL,
Cross JM,
Bamman MM.
Potent myofiber hypertrophy during resistance training in humans is associated with satellite cell‐mediated myonuclear addition: A cluster analysis.
J Appl Physiol
104:
1736‐1742,
2008.
|
370. |
Phelan JN,
Gonyea WJ.
Effect of radiation on satellite cell activity and protein expresion in overloaded mammalian skeletal muscle.
Anat Rec
247:
179‐188,
1997.
|
371. |
Phillips SM,
Parise G,
Roy BD,
Tipton KD,
Wolfe RR,
Tamopolsky MA.
Resistance‐training‐induced adaptations in skeletal muscle protein turnover in the fed state.
Can J Physiol Pharmacol
80:
1045‐1053,
2002.
|
372. |
Phillips SM,
Tipton KD,
Aarsland A,
Wolf SE,
Wolfe RR.
Mixed muscle protein synthesis and breakdown after resistance exercise in humans.
Am J Physiol
273:
E99‐E107,
1997.
|
373. |
Phillips SM,
Tipton KD,
Ferrando AA,
Wolfe RR.
Resistance training reduces the acute exercise‐induced increase in muscle protein turnover.
Am J Physiol
276:
E118‐E124,
1999.
|
374. |
Philp A,
Hamilton D,
Baar K.
Signals mediating skeletal muscle remodeling by resistance exercise: PI3‐kinase independent activation of mTORC1.
J Appl Physiol
110:
561‐568,
2011.
|
375. |
Pierce JR,
Tuckow AP,
Alemany JA,
Rarick KR,
Staab JS,
Harman EA,
Nindl BC.
Effects of acute and chronic exercise on disulfide‐linked growth hormone variants.
Med Sci Sports Exerc
41:
581‐587,
2009.
|
376. |
Pistilli EE,
Alway SE.
Systemic elevation of interleukin‐15 in vivo promotes apoptosis in skeletal muscles of young adult and aged rats.
Biochem Biophys Res Commun
373:
20‐24,
2008.
|
377. |
Prokopchuk O,
Liu Y,
Wang L,
Wirth K,
Schmidtbleicher D,
Steinacker JM.
Skeletal muscle IL‐4, IL‐4Ralpha, IL‐13 and IL‐13Ralpha1 expression and response to strength training.
Exerc Immunol Rev
13:
67‐75,
2007.
|
378. |
Proud C.
mTORC1 signalling and mRNA translation.
Biochem Soc Trans
37:
227‐231,
2009.
|
379. |
Proud CG.
Signalling to translation: How signal transduction pathways control the protein synthetic machinery.
Biochem J
403:
217‐234,
2007.
|
380. |
Prunotto C,
Crepaldi T,
Forni PE,
Ieraci A,
Kelly RG,
Tajbakhsh S,
Buckingham M,
Ponzetto C.
Analysis of Mlc‐lacZ Met mutants highlights the essential function of Met for migratory precursors of hypaxial muscles and reveals a role for Met in the development of hyoid arch‐derived facial muscles.
Dev Dyn
231:
582‐591,
2004.
|
381. |
Psilander N,
Damsgaard R,
Pilegaard H.
Resistance exercise alters MRF and IGF‐I mRNA content in human skeletal muscle.
J Appl Physiol
95:
1038‐1044,
2003.
|
382. |
Pullen N,
Thomas G.
The modular phosphorylation and activation of p70s6k.
FEBS Lett
410:
78‐82,
1997.
|
383. |
Quinn LS,
Anderson BG,
Drivdahl RH,
Alvarez B,
Argilés JM.
Overexpression of interleukin‐15 induces skeletal muscle hypertrophy in vitro: Implications for treatment of muscle wasting disorders.
Exp Cell Res
280:
55‐63,
2002.
|
384. |
Quinn LS,
Anderson BG,
Plymate SR.
Muscle‐specific overexpression of the type 1 IGF receptor results in myoblast‐independent muscle hypertrophy via PI3K, and not calcineurin, signaling.
Am J Physiol
293:
E1538‐E1551,
2007.
|
385. |
Quinn LS,
Anderson BG,
Strait‐Bodey L,
Stroud AM,
Argilés JM.
Oversecretion of interleukin‐15 from skeletal muscle reduces adiposity.
Am J Physiol
296:
E191‐E202,
2009.
|
386. |
Quinn LS,
Haugk KL,
Grabstein KH.
Interleukin‐15: A novel anabolic cytokine for skeletal muscle.
Endocrinol
136:
3669‐3672,
1995.
|
387. |
Raffaello A,
Milan G,
Masiero E,
Carnio S,
Lee D,
Lanfranchi G,
Goldberg AL,
Sandri M.
JunB transcription factor maintains skeletal muscle mass and promotes hypertrophy.
J Cell Biol
191:
101‐113,
2010.
|
388. |
Raj DS,
Shah H,
Shah VO,
Ferrando A,
Bankhurst A,
Wolfe R,
Zager PG.
Markers of inflammation, proteolysis, and apoptosis in ESRD.
Am J Kidney Dis
42:
1212‐1220,
2003.
|
389. |
Ralston E,
Hall ZW.
Restricted distribution of mRNA produced from a single nucleus in hybrid myotubes.
J Cell Biol
119:
1063‐1068,
1992.
|
390. |
Rantanen J,
Hurme T,
Lukka R,
Heino J,
Kalimo H.
Satellite cell proliferation and the expression of myogenin and desmin in regenerating skeletal muscle: evidence for two different populations of satellite cells.
Lab Invest
72:
341‐347,
1995.
|
391. |
Rao PK,
Kumar RM,
Farkhondeh M,
Baskerville S,
Lodish HF.
Myogenic factors that regulate expression of muscle‐specific microRNAs.
Proc Natl Acad Sci U S A
103:
8721‐8726,
2006.
|
392. |
Rasmussen BB,
Tipton KD,
Miller SL,
Wolf SE,
Wolfe RR.
An oral essential amino acid‐carbohydrate supplement enhances muscle protein anabolism after resistance exercise.
J Appl Physiol
88:
386‐392,
2000.
|
393. |
Raue U,
Slivka D,
Jemiolo B,
Hollon C,
Trappe S.
Myogenic gene expression at rest and after a bout of resistance exercise in young (18‐30 yr) and old (80‐89 yr) women.
J Appl Physiol
101:
53‐59,
2006.
|
394. |
Raue U,
Slivka D,
Minchev K,
Trappe S.
Improvements in whole muscle and myocellular function are limited with high‐intensity resistance training in octogenarian women.
J Appl Physiol
106:
1611‐1617,
2009.
|
395. |
Reeves GV,
Kraemer RR,
Hollander DB,
Clavier J,
Thomas C,
Francois M,
Castracane VD.
Comparison of hormone responses following light resistance exercise with partial vascular occlusion and moderately difficult resistance exercise without occlusion.
J Appl Physiol
101:
1616‐1622,
2006.
|
396. |
Rennie MJ.
Claims for the anabolic effects of growth hormone: A case of the emperor's new clothes?
Br J Sports Med
37:
100‐105,
2003.
|
397. |
Reynolds TH,
Bodine SC,
Lawrence JC, Jr.
Control of Ser2448 phosphorylation in the mammalian target of rapamycin by insulin and skeletal muscle load.
J Biol Chem
277:
17657‐17662,
2002.
|
398. |
Riechman SE,
Balasekaran G,
Roth SM,
Ferrell RE.
Association of interleukin‐15 protein and interleukin‐15 receptor genetic variation with resistance exercise training responses.
J Appl Physiol
97:
2214‐2219,
2004.
|
399. |
Rigamonti AE,
Locatelli L,
Cella SG,
Bonomo SM,
Giunta M,
Molinari F,
Sartorio A,
Müller EE.
Muscle expressions of MGF, IGF‐IEa, and myostatin in intact and hypophysectomized rats: Effects of rhGH and testosterone alone or combined.
Horm Metab Res
41:
23‐29,
2009.
|
400. |
Roberts M,
Dalbo V,
Sunderland K,
Poole C,
Hassell S,
Bemben D,
Cramer J,
Stout J,
Kerksick C.
IGF‐1 splice variant and IGF‐1 peptide expression patterns in young and old human skeletal muscle prior to and following sequential exercise bouts.
Eur J Appl Physiol
110:
961‐969,
2010.
|
401. |
Roberts MD,
Dalbo VJ,
Hassell SE,
Kerksick CM.
Effects of pre‐exercise feeding on markers of satellite cell activation.
Med Sci Sports Exerc
42:
1861‐1869,
2010.
|
402. |
Robertson TA,
Grounds MD,
Papadimitriou JM.
Elucidation of aspects of murine skeletal muscle regeneration using local and whole body irradiaiton.
J Anat
181:
265‐276,
1992.
|
403. |
Rommel C,
Bodine SC,
Clarke BA,
Rossman R,
Nunez L,
Stitt TN,
Yancopoulos GD,
Glass DJ.
Mediation of IGF‐1‐induced skeletal myotube hypertrophy by PI(3)K/Akt/mTOR and PI(3)K/Akt/GSK3 pathways.
Nature Cell Biol
3:
1009‐1013,
2001.
|
404. |
Rose AJ,
Alsted TJ,
Kobberø JB,
Richter EA.
Regulation and function of Ca2+–calmodulin‐dependent protein kinase II of fast‐twitch rat skeletal muscle.
J Physiol
580:
993‐1005,
2007.
|
405. |
Rose AJ,
Richter EA.
Regulatory mechanisms of skeletal muscle protein turnover during exercise.
J Appl Physiol
106:
1702‐1711,
2009.
|
406. |
Rosenblatt JD,
Lunt AI,
Parry DJ,
Partridge TA.
Culturing satellite cells from living single muscle fiber explants.
In Vitro Cell Dev Biol Anim
31:
773‐779,
1995.
|
407. |
Rosenblatt JD,
Parry DJ.
Gamma irradiation prevents compensatory hypertrophy of overloaded mouse extensor digitorum longus msucle.
J Appl Physiol
73:
2538‐2543,
1992.
|
408. |
Rosenblatt JD,
Parry DJ.
Adaptation of rat extensor digitorum longus muscle to gamma irradiation and overload.
Pflugers Arch
423:
255‐264,
1993.
|
409. |
Rosenblatt JD,
Parry DJ,
Partridge TA.
Phenotype of adult mouse muscle myoblasts reflects their fiber type of origin.
Differentiation
60:
39‐45,
1996.
|
410. |
Rosenblatt JD,
Yong D,
Parry DJ.
Satellite cell activity is required for hypertrophy of overloaded adult rat skeletal muscle.
Muscle Nerve
17:
608‐613,
1994.
|
411. |
Rotwein P,
Wilson EM.
Distinct actions of Akt1 and Akt2 in skeletal muscle differentiation.
J Cell Physiol
219:
503‐511,
2009.
|
412. |
Roux PP,
Shahbazian D,
Vu H,
Holz MK,
Cohen MS,
Taunton J,
Sonenberg N,
Blenis J.
RAS/ERK signaling promotes site‐specific ribosomal p‐rotein S6 phosphorylation via RSK and stimulates cap‐dependent translation.
J Biol Chem
282:
14056‐14064,
2007.
|
413. |
Roy RR WR,
Edgerton VR.
Architectural and mechanical properties of the rat adductor longus: response to weight‐lifting training.
Anat Rec
247:
170‐178,
1997.
|
414. |
Ruggiero T,
Trabucchi M,
Ponassi M,
Corte G,
Chen CY,
al‐Haj L,
Khabar KS,
Briata P,
Gherzi R.
Identification of a set of KSRP target transcripts upregulated by PI3K‐AKT signaling.
BMC Mol Bio
8:
28,
2007.
|
415. |
Ryder JW,
Fahlman R,
Wallberg‐Henriksson H,
Alessi DR,
Krook A,
Zierath JR.
Effect of contraction on mitogen‐activated protein kinase signal transduction in skeletal muscle.
J Biol Chem
275:
1457‐1462,
2000.
|
416. |
Sakuma K,
Nishikawa J,
Nakao R,
Nakano H,
Sano M,
Yasuhara M.
Serum response factor plays an important role in the mechanically overloaded plantaris muscle of rats.
Histochem Cell Biol
119:
149‐160,
2003.
|
417. |
Sakuma K,
Watanabe K,
Hotta N,
Koike T,
Ishida K,
Katayama K,
Akima H.
The adaptive responses in several mediators linked with hypertrophy and atrophy of skeletal muscle after lower limb unloading in humans.
Acta Physiol (Oxf)
197:
151‐159,
2009.
|
418. |
Sakuma K,
Watanabe K,
Totsuka T,
Uramoto I,
Sano M,
Sakamoto K.
Differential adaptations of insulin‐like growth factor‐I, basic fibroblast growth factor, and leukemia inhibitory factor in the plantaris muscle of rats by mechanical overloading: an immunohistochemical study.
Acta Neuropathol
95:
123‐130,
1998.
|
419. |
Salviati G,
Biasia E,
Aloisi M.
Synthesis of fast myosin induced by fast ectopic innervation of rat soleus muscle is restricted to the ectopic endplate region.
Nature
322:
637‐639,
1986.
|
420. |
Sartori R,
Milan G,
Patron M,
Mammucari C,
Blaauw B,
Abraham R,
Sandri M.
Smad2 and 3 transcription factors control muscle mass in adulthood.
Am J Physiol
296:
C1248‐C1257,
2009.
|
421. |
Sasai N,
Agata N,
Inoue‐Miyazu M,
Kawakami K,
Kobayashi K,
Sokabe M,
Hayakawa K.
Involvement of PI3K/Akt/TOR pathway in stretch‐induced hypertrophy of myotubes.
Muscle Nerve
41:
100‐106,
2010.
|
422. |
Schaap LA,
Pluijm SM,
Deeg DJ,
Visser M.
Inflammatory markers and loss of muscle mass (sarcopenia) and strength.
Am J Med
119:
e9‐e17,
2006.
|
423. |
Schakman O,
Gilson H,
deConinck V,
Lause P,
Verniers J,
Havaux X,
Ketelslegers JM,
Thissen JP.
Insulin‐like growth factor‐I gene transfer by electroporation prevents skeletal muscle atrophy in glucocorticoid‐treated rats.
Endocrinology
2005:
1789‐1797,
2005.
|
424. |
Seale P,
Rudnicki MA.
A new look at the origin, function, and “stem‐cell” status of muscle satellite cells.
Devel Bio
218:
115‐124,
2000.
|
425. |
Sellman JE,
DeRuisseau KC,
Betters JL,
Lira VA,
Soltow QA,
Selsby JT,
Criswell DS.
In vivo inhibition of nitric oxide synthase impairs upregulation of contractile protein mRNA in overloaded plantaris muscle.
J Appl Physiol
100:
258‐265,
2006.
|
426. |
Semsarian C,
Wu MJ,
Ju YK,
Marciniec T,
Yeoh T,
Allen DG,
Harvey RP,
Graham RM.
Skeletal muscle hypertrophy is mediated by a Ca2+‐dependent calcineurin signalling pathway.
Nature
400:
576‐581,
1999.
|
427. |
Serrano AL,
Baeza‐Raja B,
Perdiguero E,
Jardí M,
Muñoz‐Cánoves P.
Interleukin‐6 is an essential regulator of satellite cell‐mediated skeletal muscle hypertrophy.
Cell Metab
27:
33‐44,
2008.
|
428. |
Serrano AL,
Murgia M,
Pallafacchina G,
Calabria E,
Coniglio P,
Lomo T,
Schiaffino S.
Calcineurin controls nerve activity‐dependent specification of slow skeletal muscle fibers but not muscle growth.
Proc Natl Acad Sci U S A
98:
13108‐13113,
2001.
|
429. |
Sheehan SM,
Tatsumi R,
Temm‐Grove CJ,
Allen RE.
HGF is an autocrine growth factor for skeletal muscle satellite cells in vitro.
Muscle Nerve
23:
239‐245,
2000.
|
430. |
Shinohara M,
Kouzaki M,
Yoshihisa T,
Fukunaga T.
Efficacy of tourniquet ischemia for strength training with low resistance.
Eur J Appl Physiol Occup Physiol
77:
189‐191,
1997.
|
431. |
Siegel AL,
Atchison K,
Fisher KE,
Davis GE,
Cornelison DD.
3D timelapse analysis of muscle satellite cell motility.
Stem Cells
2009:
2527‐2538,
2009.
|
432. |
Siehl D,
Chua BH,
Lautensack‐Belser N,
Morgan HE.
Faster protein and ribosome synthesis in thyroxine‐induced hypertrophy of rat heart.
Am J Physiol
248:
C309‐C319,
1985.
|
433. |
Sinha‐Hikim I,
Cornford M,
Gaytan H,
Lee ML,
Bhasin S.
Effects of testosterone supplementation on skeletal muscle fiber hypertrophy and satellite cells in community‐dwelling older men.
J Clin Endocrinol Metab
91:
3024‐3033,
2006.
|
434. |
Sinha‐Hikim I,
Roth SM,
Lee MI,
Bhasin S.
Testosterone‐induced muscle hypertrophy is associated with an increase in satellite cell number in healthy, young men.
Am J Physiol Endocrinol Meta
285:
E197‐E205,
2003.
|
435. |
Sjöholm A,
Nyström T.
Inflammation and the etiology of type 2 diabetes.
Diabetes Metab Res Rev
22:
4‐10,
2006.
|
436. |
Smith LW,
Smith JD,
Criswell DS.
Involvement of nitric oxide synthase in skeletal muscle adaptation to chronic overload.
J Appl Physiol
92:
2005‐2011,
2002.
|
437. |
Smith MA,
Moylan JS,
Smith JD,
Li W,
Reid MB.
IFN‐gamma does not mimic the catabolic effects of TNF‐alpha.
Am J Physiol C
293:
C1947‐C1952,
2007.
|
438. |
Sonenberg N,
Hinnebusch AG.
Regulation of translation initiation in eukaryotes: Mechanisms and biological targets.
Cell
136:
731‐745,
2009.
|
439. |
Spangenburg EE.
SOCS‐3 induces myoblast differentiation.
J Biol Chem
280:
10749‐10758,
2005.
|
440. |
Spangenburg EE,
Booth FW.
Multiple signaling pathways mediate LIF‐induced skeletal muscle satellite cell proliferation.
Am J Physiol
283:
C204‐C211,
2002.
|
441. |
Spangenburg EE,
Booth FW.
Leukemia inhibitory factor restores the hypertrophic response to increased loading in the LIF(‐/‐) mouse.
Cytokine
34:
125‐130,
2006.
|
442. |
Spangenburg EE,
Chakravarthy MV,
Booth FW.
p27Kip1: a key regulator of skeletal muscle satellite cell proliferation.
Clin Orthop
403:
S221‐S227,
2002.
|
443. |
Spangenburg EE,
Le Roith D,
Ward CW,
Bodine SC.
A functional insulin‐like growth factor receptor is not necessary for load‐induced skeletal muscle hypertrophy.
J Physiol
586:
283‐291,
2008.
|
444. |
Spangenburg EE,
McBride TA.
Inhibition of stretch‐activated channels during eccentric muscle contraction attenuates p70S6K activation.
J Appl Physiol
100:
129‐135,
2006.
|
445. |
Spiering B,
Kraemer W,
Anderson J,
Armstrong L,
Nindl B,
Volek J,
Judelson D,
Joseph M,
Vingren J,
Hatfield D,
Fragala M,
Ho J,
Maresh C.
Effects of elevated circulating hormones on resistance exercise‐induced Akt signaling.
Med Sci Sports Exerc
40:
1039‐1048,
2008.
|
446. |
Staron RS,
Malicky ES,
Leonardi MJ,
Falkel JE,
Hagerman FC,
Dudley GA.
Muscle hypertrophy and fast fiber type conversions in heavy resistance‐trained women.
Eur J Appl Physiol Occup Physiol
60:
71‐79,
1990.
|
447. |
Starr R,
Hilton DJ.
Negative regulation of the JAK/STAT pathway.
BioEssays
21:
47‐52,
1999.
|
448. |
Steib S,
Schoene D,
Pfeifer K.
Dose‐response relationship of resistance training in older adults: A meta‐analysis.
Med Sci Sports Exerc
42:
902‐914.
|
449. |
Steitz JA,
Vasudevan S.
miRNPs: Versatile regulators of gene expression in vertebrate cells.
Biochem Soc Trans
037:
931‐935,
2009.
|
450. |
Stewart CE,
Pell JM,
Flueck M,
Goldspink G.
Point:Counterpoint: IGF is/is not the major physiological regulator of muscle mass. Point: IGF is the major physiological regulator of muscle mass.
J Appl Physiol
108:
1820‐1823.
|
451. |
Stewart CE,
Rittweger J.
Adaptive processes in skeletal muscle: Molecular regulators and genetic influences.
J Musculoskelet Neuronal Interact
6:
73‐86,
2006.
|
452. |
Stiber JA,
Seth M,
Rosenberg PB.
Mechanosensitive channels in striated muscle and the cardiovascular system: Not quite a stretch anymore.
J Cardiovasc Pharmacol
54:
116‐122,
2009.
|
453. |
Stockdale FE,
Holtzer H.
DNA synthesis and myogenesis.
Exp Cell Res
24:
508‐520,
1961.
|
454. |
Stuart CA,
Howell MEA,
Baker JD,
Dykes RJ,
Duffourc MM,
Ramsey MW,
Stone MH.
Cycle training increased GLUT4 and activation of mammalian target of rapamycin in fast twitch muscle fibers.
Med Sci Sports Exerc
42:
96‐106,
2010.
|
455. |
Suetta C,
Clemmensen C,
Andersen JL,
Magnusson SP,
Schjerling P,
Kjaer M.
Coordinated increase in skeletal muscle fiber area and expression of IGF‐I with resistance exercise in elderly post‐operative patients.
Growth Horm IGF Res
20:
134‐140,
2010.
|
456. |
Suga T,
Okita K,
Morita N,
Yokota T,
Hirabayashi K,
Horiuchi M,
Takada S,
Omokawa M,
Kinugawa S,
Tsutsui H.
Dose effect on intramuscular metabolic stress during low‐intensity resistance exercise with blood flow restriction.
J Appl Physiol
108:
1563‐1567,
2010.
|
457. |
Sun L,
Ma K,
Wang H,
Xiao F,
Gao Y,
Zhang W,
Wang K,
Gao X,
Ip N,
Wu Z.
JAK1‐STAT1‐STAT3, a key pathway promoting proliferation and preventing premature differentiation of myoblasts.
J Cell Biol
179:
129‐138,
2007.
|
458. |
Sweetman D,
Goljanek K,
Rathjen T,
Oustanina S,
Braun T,
Dalmay T,
Münsterberg A.
Specific requirements of MRFs for the expression of muscle specific microRNAs, miR‐1, miR‐206 and miR‐133.
Dev Biol
321:
491‐499,
2008.
|
459. |
Swoap SJ,
Hunter RB,
Stevenson EJ,
Felton HM,
Kansagra NV,
Lang JM,
Esser KA,
Kandarian SC.
The calcineurin‐NFAT pathway and muscle fiber‐type gene expression.
Am J Physiol
279:
C915‐C924,
2000.
|
460. |
Takahashi T,
Fukuda K,
Pan J,
Kodama H,
Sano M,
Makino S,
Kato T,
Manabe T,
Ogawa S.
Characterization of insulin‐like growth factor‐I‐induced activation of the JAK/STAT pathway in rat cardiomyocytes.
Cir Res
85:
884‐891,
1999.
|
461. |
Takarada Y,
Takazawa H,
Sato Y,
Takebayashi S,
Tanaka Y,
Ishii N.
Effects of resistance exercise combined with moderate vascular occlusion on muscular function in humans.
J Appl Physiol
88:
2097‐2106,
2000.
|
462. |
Tan JC,
Rabkin R.
Suppressors of cytokine signaling in health and disease.
Pediatr Nephrol
20:
567‐575,
2005.
|
463. |
Tanaka Y,
Yamaguchi A,
Fujikawa T,
Sakuma K,
Morita I,
Ishii K.
Expression of mRNA for specific fibroblast growth factors associates with that of the myogenic markers MyoD and proliferating cell nuclear antigen in regenerating and overloaded rat plantaris muscle.
Acta Physiol (Oxf)
194:
149‐159,
2008.
|
464. |
Tapscott SJ,
Davis RL,
Thayer MJ,
Cheng PF,
Weintraub H,
Lassar AB.
MyoD1: A nuclear phosphoprotein requiring a Myc homology region to convert fibroblasts to myoblasts.
Science
242:
405‐411,
1988.
|
465. |
Tatsumi R.
Mechano‐biology of skeletal muscle hypertrophy and regeneration: Possible mechanism of stretch‐induced activation of resident myogenic stem cells.
Anim Sci J
81:
11‐20,
2010.
|
466. |
Taylor JA,
Kandarian SC.
Advantage of normalizing force production to myofibrillar protein in skeletal muscle cross‐sectional area.
J Appl Physiol
76:
974‐978,
1994.
|
467. |
Taylor‐Jones JM,
McGehee RE,
Rando TA,
Lecka‐Czernik B,
Lipschitz DA,
Peterson CA.
Activation of an adipogenic program in adult myoblasts with age.
Mech Ageing Dev
123:
649‐661,
2002.
|
468. |
Terzis G,
Georgiadis G,
Stratakos G,
Vogiatzis I,
Kavouras S,
Manta P,
Mascher H,
Blomstrand E.
Resistance exercise‐induced increase in muscle mass correlates with p70S6 kinase phosphorylation in human subjects.
Eur J Appl Physiol
102:
145‐152,
2008.
|
469. |
Thalacker‐Mercer AE,
Petrella JK,
Bamman MM.
Does habitual dietary intake influence myofiber hypertrophy in response to resistance training? A cluster analysis.
Appl Physiol Nutr Metab
34:
632‐639,
2009.
|
470. |
Thomson DM,
Gordon SE.
Impaired overload‐induced muscle growth is associated with diminished translational signalling in aged rat fast‐twitch skeletal muscle.
J Physiology
574:
291‐305,
2006.
|
471. |
Tipton KD,
Ferrando AA,
Phillips SM,
Doyle D, Jr.,
Wolfe RR.
Postexercise net protein synthesis in human muscle from orally administered amino acids.
Am J Physiol
276:
E628‐E634,
1999.
|
472. |
Tipton KD,
Rasmussen BB,
Miller SL,
Wolf SE,
Owens‐Stovall SK,
Petrini BE,
Wolfe RR.
Timing of amino acid‐carbohydrate ingestion alters anabolic response of muscle to resistance exercise.
Am J Physiol Endocrinol Metab
281:
E197‐E206,
2001.
|
473. |
Torsoni AS,
Constancio SS,
Nadruz W, Jr.,
Hanks SK,
Franchini KG.
Focal adhesion kinase is activated and mediates the early hypertrophic response to stretch in cardiac myocytes.
Circ Res
93:
140‐147,
2003.
|
474. |
Trappe S,
Costill D,
Gallagher P,
Creer A,
Peters JR,
Evans H,
Riley DA,
Fitts RH.
Exercise in space: Human skeletal muscle after 6 months aboard the International Space Station.
J Appl Physiol
106:
1159‐1168,
2009.
|
475. |
Trappe T,
Carroll C,
Dickinson J,
LeMoine J,
Haus J,
Sullivan B,
Lee J,
Jemiolo B,
Weinheimer E,
Hollon C.
Influence of acetaminophen and ibuprofen on skeletal muscle adaptations to resistance exercise in older adults.
Am J Physiol
300:
R655‐R662,
2011.
|
476. |
Trappe TA,
White F,
Lambert CP,
Cesar D,
Hellerstein M,
Evans WJ.
Effect of ibuprofen and acetaminophen on postexercise muscle protein synthesis.
Am J Physiol
282:
E551‐E556,
2002.
|
477. |
Trendelenburg A,
Meyer A,
Jacobi C,
Feige J,
Glass D.
TAK‐1/p38/nNFκB signaling inhibits myoblast differentiation by increasing levels of Activin A.
Skelet Muscle
2:
2012.
|
478. |
Trenerry M,
Carey K,
Ward A,
Farnfield M,
Cameron‐Smith D.
Exercise‐induced activation of STAT3 signaling is increased with age.
Rejuvenation Res
11:
717‐724,
2008.
|
479. |
Trujillo RD,
Yue S‐B,
Tang Y,
O'Gorman WE,
Chen C‐Z.
The potential functions of primary microRNAs in target recognition and repression.
EMBO J
29:
3272‐3285,
2010.
|
480. |
Umbel J,
Hoffman R,
Dearth D,
Chleboun G,
Manini T,
Clark B.
Delayed‐onset muscle soreness induced by low‐load blood flow‐restricted exercise.
Eur J Appl Physiol
107:
687‐695,
2009.
|
481. |
Urban RJ,
Bodenburg YH,
Gilkison C,
Foxworth J,
Coggan AR,
Wolfe RR,
Ferrando A.
Testosterone administration to elderly men increases skeletal muscle strength and protein synthesis.
Am J Physiol
269:
E820‐E826,
1995.
|
482. |
Vandebrouck A,
Sabourin J,
Rivet J,
Balghi H,
Sebille S,
Kitzis A,
Raymond G,
Cognard C,
Bourmeyster N,
Constantin B.
Regulation of capacitative calcium entries by alpha1‐syntrophin: Association of TRPC1 with dystrophin complex and the PDZ domain of alpha1‐syntrophin.
FASEB J
21:
608‐617,
2007.
|
483. |
Voelkel T,
Linke WA.
Conformation‐regulated mechanosensory control via titin domains in cardiac muscle.
Pflugers Arch
462:
143‐154.
|
484. |
Wagers AJ,
Conboy IM.
Cellular and molecular signatures of muscle regeneration: Current concepts and controversies in adult myogenesis.
Cell
122:
659‐667,
2005.
|
485. |
Wang XD,
Kawano F,
Matsuoka Y,
Fukunaga K,
Terada M,
Sudoh M,
Ishihara A,
Ohira Y.
Mechanical load‐dependent regulation of satellite cell and fiber size in rat soleus muscle.
Am J Physiol
290:
C981‐C999,
2006.
|
486. |
Watt KI,
Jaspers RT,
Atherton P,
Smith K,
Rennie MJ,
Ratkevicius A,
Wackerhage H.
SB431542 treatment promotes the hypertrophy of skeletal muscle fibers but decreases specific force.
Muscle Nerve
41:
624‐629,
2010.
|
487. |
Weeds AG,
Trentham DR,
Kean CJC,
Buller AJ.
Myosin from cross‐reinnervated cat muscles.
Nature
247:
135‐138,
1974.
|
488. |
Wegrowski J,
Lefaix JL,
Lafuma C.
Accumulation of glycosaminoglycans in radiation‐induced muscular fibrosis.
Int J Radiat Biol
61:
685‐693,
1992.
|
489. |
Welle S,
Bhatt K,
Thornton CA.
Stimulation of myofibrillar synthesis by exercise is mediated by more efficient translation of mRNA.
J Appl Physiol
86:
1220‐1225,
1999.
|
490. |
Weng QP,
Andrabi K,
Kozlowski MT,
Grove JR,
Avruch J.
Multiple independent inputs are required for activation of the p70 S6 kinase.
Mol Cell Biol
15:
2333‐2340,
1995.
|
491. |
Wernbom M,
Augustsson J,
Thomee R.
The influence of frequency, intensity, volume and mode of strength training on whole muscle cross‐sectional area in humans.
Sports Med
37:
225‐264,
2007.
|
492. |
Wernbom M,
Paulsen G,
Nilsen T,
Hisdal J,
Raastad T.
Contractile function and sarcolemmal permeability after acute low‐load resistance exercise with blood flow restriction.
Eur J Appl Physiol
112:
2051‐2063,
2012.
|
493. |
Wernig A,
Zweyer M,
Irintchev A.
Function of skeletal muscle tissue formed after myoblast transplantation into irradiated mouse muscles.
J Physiol
522:
333‐345,
2000.
|
494. |
West DW,
Burd NA,
Tang JE,
Moore DR,
Staples AW,
Holwerda AM,
Baker SK,
Phillips SM.
Elevations in ostensibly anabolic hormones with resistance exercise enhance neither training‐induced muscle hypertrophy nor strength of the elbow flexors.
J Appl Physiol
108:
60‐67,
2010.
|
495. |
White JP,
Reecy JM,
Washington TA,
Sato S,
Le ME,
Mark Davis J,
Britt Wilson L,
Carson JA.
Overload‐induced skeletal muscle extracellular matrix remodeling and myofiber growth in mice lacking IL‐6.
Acta Physiol (Oxf)
197:
321‐332,
2009.
|
496. |
Widdowson WM,
Healy ML,
Sönksen PH,
Gibney J.
The physiology of growth hormone and sport.
Growth Horm IGF Res
19:
308‐319,
2009.
|
497. |
Wiesner RJ,
Ehmke H,
Faulhaber J,
Zak R,
Ruegg JC.
Dissociation of left ventricular hypertrophy, ß‐myosin heavy chain gene expression, and myosin isoform switch in rats after ascending aortic stenosis.
Circulation
95:
1253‐1259,
1997.
|
498. |
Wilborn C,
Taylor L,
Greenwood M,
Kreider R,
Willoughby D.
Effects of different intensities of resistance exercise on regulators of myogenesis.
J Strength Cond Res
23:
2179‐2187,
2009.
|
499. |
Wilkinson SB,
Phillips SM,
Atherton PJ,
Patel R,
Yarasheski KE,
Tarnopolsky MA,
Rennie MJ.
Differential effects of resistance and endurance exercise in the fed state on signalling molecule phosphorylation and protein synthesis in human muscle.
J Physiol
586:
3701‐3717,
2008.
|
500. |
Williamson D,
Gallagher P,
Harber M,
Hollon C,
Trappe S.
Mitogen‐activated protein kinase (MAPK) pathway activation: Effects of age and acute exercise on human skeletal muscle.
J Physiol
547:
977‐987,
2003.
|
501. |
Wirth O,
Gregory EW,
Cutlip RG,
Miller GR.
Control and quantitation of voluntary weight‐lifting performance of rats.
J Appl Physiol
95:
402‐412,
2003.
|
502. |
Witard O,
Tieland M,
Beelen M,
Tipton K,
van Loon L,
Koopman R.
Resistance exercise increases postprandial muscle protein synthesis in humans.
Med Sci Sports Exerc
41:
144‐154,
2009.
|
503. |
Wojtaszewski JFP,
Lynge J,
Jakobsen AB,
Goodyear LJ,
Richter EA.
Differential regulation of MAP kinase by contraction and insulin in skeletal muscle: Metabolic implications.
Am J Physiol
277:
E724‐E732,
1999.
|
504. |
Wong TS,
Booth FW.
Protein metabolism in rat gastrocnemius muscle after stimulated chronic concentric exercise.
J Appl Physiol
69:
1709‐1717,
1990.
|
505. |
Wong TS,
Booth FW.
Protein metabolism in rat tibialis anterior muscle after stimulated chronic eccentric exercise.
J Appl Physiol
69:
1718‐1724,
1990.
|
506. |
Wozniak AC,
Anderson JE.
Nitric oxide‐dependence of satellite stem cell activation and quiescence on normal skeletal muscle fibers.
Dev Dyn
236:
240‐250,
2007.
|
507. |
Wozniak AC,
Kong J,
Bock E,
Pilipowicz O,
Anderson JE.
Signaling satellite‐cell activation in skeletal muscle: Markers, models, stretch, and potential alternate pathways.
Muscle Nerve
31:
283‐300,
2005.
|
508. |
Wozniak AC,
Pilipowicz O,
Yablonka‐Reuveni Z,
Greenway S,
Craven S,
Scott E,
Anderson JE.
C‐Met expression and mechanical activation of satellite cells on cultured muscle fibers.
J Histochem Cytochem
51:
1437‐1445,
2003.
|
509. |
Wu Y,
Zhao W,
Zhao J,
Pan J,
Wu Q,
Zhang Y,
Bauman WA,
Cardozo CP.
Identification of androgen response elements in the insulin‐like growth factor I upstream promoter.
Endocrinology
148:
2984‐2993,
2007.
|
510. |
Yablonka‐Reuveni Z.
Developmental and postnatal regulation of adult myoblasts.
Microscopy Res Tech
30:
366‐380,
1995.
|
511. |
Yamada M,
Tatsumi R,
Yamanouchi K,
Hosoyama T,
Shiratsuchi S,
Sato A,
Mizunoya W,
Ikeuchi Y,
Furuse M,
Allen RE.
High concentrations of HGF inhibit skeletal muscle satellite cell proliferation in vitro by inducing expression of myostatin: A possible mechanism for reestablishing satellite cell quiescence in vivo.
Am J Physiol
298:
C465‐C476,
2010.
|
512. |
Yamada S,
Buffinger N,
Dimario J,
Strohman RC.
Fibroblast growth factor is stored in the fiber extracellular matrix and plays a role in regulating muscle hypertrophy.
Med Sci Sport Exerc
21:
S173‐S180,
1989.
|
513. |
Yang SY,
Goldspink G.
Different roles of the IGF‐I Ec peptide (MGF) and mature IGF‐I in myoblast proliferation and differentiation.
FEBS Lett
522:
156‐160,
2002.
|
514. |
Yang W,
Zhang Y,
Li Y,
Wu Z,
Zhu D.
Myostatin induces cyclin D1 degradation to cause cell cycle arrest through a phosphatidylinositol 3‐kinase/AKT/GSK‐3 beta pathway and is antagonized by insulin‐like growth factor 1.
J Biol Chem
282:
3799‐3808,
2007.
|
515. |
Yarasheski KE,
Campbell JA,
Smith K,
Rennie MJ,
Holloszy JO,
Bier DM.
Effect of growth hormone and resistance exercise on muscle growth in young men.
Am J Physiol
262:
E261‐E267,
1992.
|
516. |
Yarasheski KE,
Lemon PW,
Gilloteaux J.
Effect of heavy‐resistance exercise training on muscle fiber composition in young rats.
J Appl Physiol
69:
434‐437,
1990.
|
517. |
Yasuda N,
Glover EI,
Phillips SM,
Isfort RJ,
Tarnopolsky MA.
Sex‐based differences in skeletal muscle function and morphology with short‐term limb immobilization.
J Appl Physiol
99:
1085‐1092,
2005.
|
518. |
Yoon M‐S,
Sun Y,
Arauz E,
Jiang Y,
Chen J.
Phosphatidic acid activates mammalian target of rapamycin complex 1 (mTORC1) kinase by displacing FK506 binding protein 38 (FKBP38) and exerting an allosteric effect.
J Biol Chem
286:
29568‐29574,
2011.
|
519. |
Yoshizawa F,
Kimball SR,
Jefferson LS.
Modulation of translation initiation in rat skeletal muscle and liver in response to food intake.
Biochem Biophys Res Comm
240:
825‐831,
1997.
|
520. |
Zammit PS,
Partridge TA,
Yablonka‐Reuveni Z.
The skeletal muscle satellite cell: The stem cell that came in from the cold.
J Histochem Cytochem
54:
1177‐1191,
2006.
|
521. |
Zanchi NE,
Lancha AH.
Mechanical stimuli of skeletal muscle: Implications on mTOR/p70s6k and protein synthesis.
Eur J Appl Physiol
102:
253‐263,
2010.
|
522. |
Zhang X,
Azhar G,
Helms S,
Wei J.
Regulation of cardiac microRNAs by serum response factor.
J Biomed Sci
18:
15,
2011.
|
523. |
Zong C,
Chan J,
Levy DE,
Horvath C,
Sadowski HB,
Wang L.
Mechanism of STAT3 activation by insulin‐like growth factor I receptor.
J Biol Chem
275:
15099‐15105,
2000.
|
524. |
Zou K,
Meador BM,
Johnson B,
Huntsman HD,
Mahmassani Z,
Valero MC,
Huey KA,
Boppart MD.
The {alpha}7{beta}1 integrin increases muscle hypertrophy following multiple bouts of eccentric exercise.
J Appl Physiol
111:
1134‐1141,
2011. |