Comprehensive Physiology Wiley Online Library

Evolution of Air Breathing: Oxygen Homeostasis and the Transitions from Water to Land and Sky

Full Article on Wiley Online Library



Abstract

Life originated in anoxia, but many organisms came to depend upon oxygen for survival, independently evolving diverse respiratory systems for acquiring oxygen from the environment. Ambient oxygen tension (PO2) fluctuated through the ages in correlation with biodiversity and body size, enabling organisms to migrate from water to land and air and sometimes in the opposite direction. Habitat expansion compels the use of different gas exchangers, for example, skin, gills, tracheae, lungs, and their intermediate stages, that may coexist within the same species; coexistence may be temporally disjunct (e.g., larval gills vs. adult lungs) or simultaneous (e.g., skin, gills, and lungs in some salamanders). Disparate systems exhibit similar directions of adaptation: toward larger diffusion interfaces, thinner barriers, finer dynamic regulation, and reduced cost of breathing. Efficient respiratory gas exchange, coupled to downstream convective and diffusive resistances, comprise the “oxygen cascade”—step‐down of PO2 that balances supply against toxicity. Here, we review the origin of oxygen homeostasis, a primal selection factor for all respiratory systems, which in turn function as gatekeepers of the cascade. Within an organism's lifespan, the respiratory apparatus adapts in various ways to upregulate oxygen uptake in hypoxia and restrict uptake in hyperoxia. In an evolutionary context, certain species also become adapted to environmental conditions or habitual organismic demands. We, therefore, survey the comparative anatomy and physiology of respiratory systems from invertebrates to vertebrates, water to air breathers, and terrestrial to aerial inhabitants. Through the evolutionary directions and variety of gas exchangers, their shared features and individual compromises may be appreciated. © 2013 American Physiological Society. Compr Physiol 3:849‐915, 2013.

Comprehensive Physiology offers downloadable PowerPoint presentations of figures for non-profit, educational use, provided the content is not modified and full credit is given to the author and publication.

Download a PowerPoint presentation of all images


Figure 1. Figure 1.

(A) Origin of oxygen and reactive oxygen species (ROS). Molecular O2 is generated during photolysis (ultraviolet range) and photosynthesis (visible light range via chlorophyll). (B) Photosynthesis and irradiation are equivalent processes that successively remove electrons from water to yield O2. Aerobic respiration is the reciprocal process that adds electrons to O2 to generate water. The same intermediate ROS are involved in all of these processes. Adapted from Lane (407).

Figure 2. Figure 2.

(A) Transitional metals ions functioned as signaling and antioxidant molecules in the earliest organisms. A molecular cage, for example, prophyrin ring, trapped these metal ions, for example, forming a heme molecule. Adding various polypeptides modulated the action of heme, resulting in heme proteins. By exaptation heme proteins participated in the neutralization of reactive O2 species as well as the sensing, storage, transport, and release of O2. (B) Structure of heme (containing iron) is remarkably similar to that of chlorophyll (containing magnesium).

Figure 3. Figure 3.

Heme proteins trace to the Last Universal Common Ancestor (LUCA), which is thought to have arisen approximately 3.8 billion years ago and evolved into the three domains of life: bacteria, archea, and eucarya. Adapted from the phylogenetic tree of all extant organisms based on 16S rRNA gene sequence data, originally proposed by Woese et al. (836).

Figure 4. Figure 4.

A general model of early evolution and atmospheric O2 concentration. Last Universal Common Ancestor (LUCA) was anaerobic and unicellular, but possessed heme proteins and their equivalents for antioxidation and reactive O2 species‐mediated cell signaling and possibly ATP production. Photosynthesis by cyanobacteria led to O2 accumulation, which was initially stored in rocks and sediments but later enriched the atmosphere. Eukaryotic plant and animal cells evolved that can more efficiently produce and utilize O2, leading to multicellular organisms of increasing complexity. Around 500 Ma, atmospheric O2 level reached the contemporary range, coinciding with an explosive appearance of terrestrial plants and animals.

Figure 5. Figure 5.

Phanerozoic time line shows atmospheric O2 concentration and major evolutionary events, including major mass extinctions (indicated by *: Ordovician‐Silurian, late Permian, and Cretaceous‐Paleogene). Based on data from various sources (55,335,775). See text for explanation.

Figure 6. Figure 6.

Oxygen cascade—the series of convective, diffusive, and biochemical barriers that progressively lower O2 tension until it reaches the near‐anoxic level necessary for optimal mitochondrial function within cells.

Figure 7. Figure 7.

Lungs of isopods, a taxon of crustaceans that include woodlice and pill bugs. From dry to humid environments the size of the lungs and the type of embedding into the body is reduced. After Hoese (328).

Figure 8. Figure 8.

Phylogeny of the the Arachnida, which includes spiders, scorpions, ticks, mites, harvestmen, and their relatives. This tree relates especially to the feature “loss of lungs.” Whether this loss really happened remains speculative. After Weygoldt und Paulus (820),

Figure 9. Figure 9.

Lungs and tracheae in arachnids. Lungs are present in Scorpiones, Amblipygi, and Uropygi and also spiders (Araneae). In the other groups a tracheal system is present. After various authors (227,365,366,695). A atrium of the tracheae, Ch chelicera, OpSp opisthosomal spiracle, PrSp prosomal spiracle, and STr secondary tracheae.

Figure 10. Figure 10.

Lungs, tracheae, and spiracles in spiders. Orthognatha species possess two pairs of book lungs lying directly behind the thorax. In Dysdera, tracheal spiracles are situated just behind the lungs, which are markedly reduced. In most Araneae, for example, wolf spiders or garden spiders and also shown in the spider in the middle of the figure, two lungs and a tracheal system with four simple tube tracheae are realised. In Misumena, for example, crab spiders, tracheae are restricted to the pleon. In Argyroneta, for example, water spider, lungs are completely reduced and tracheae fill the entire body. In Nops only tracheae exist, while in Pholcus only one pair of lungs is realised. In jumping spiders, shown for Salticus and Euophrys, the secondary tracheae reach into the thorax. Two electron micrographs show sections through the thorax with tracheae in the gut epithelium (Gu) and the nervous system (NS). At tracheal atrium, He heart, Lu lungs, Mu muscles, Ptr primary tracheae, and STr secondary tracheae.

Figure 11. Figure 11.

Tracheae and spiracles in myriapods. A Lithobius (Chilopoda, Lithobiomorpha), B Scutigerella (Progoneata, Symphyta), C and D Scutigera (Chilopoda, Notostigmophora) the dorsal side of the animal with spiracles (C) and one segment is shown in detail (D). Adapted from Westheide and Rieger (817).

Figure 12. Figure 12.

Discontinuous respiration in insects. A Hyalophora cecropia at the end of diapause, a stage of dormancy, B Periplaneta americana resting at 20°C, after Kestler (371).

Figure 13. Figure 13.

Hagfish. Schematic frontal section of a gill pouch from the left side of a hagfish shows the path of water flow (black area and white arrows) and blood flow (black arrows). Stippled blood vessels indicate oxygen‐poor blood. After Perry (615), with kind permission from Springer Science+Business Media.

Figure 14. Figure 14.

Lamprey. Schematic frontal section of a gill pouch from the left side of a lamprey, during expiration (A) and inspiration (B). The + and – signs indicate pressure. Note pressure reduction as water leaves the gill pouch during expiration (A). Black arrows show path of water flow. After Perry (615), with kind permission from Springer Science+Business Media.

Figure 15. Figure 15.

Shark gill. Schematic section of a gill element in frontal plane from the left side of a shark, showing (A) most important anatomical structures, (B) terminology and functional units. (C) Block diagram and cross section of gill filaments. Black arrows indicate direction of water flow; white arrows, blood flow. After Perry (615), based on Kempton (368) and Mallat (508) with kind permissions from Springer Science+Business Media, the Marine Biological Laboratory, Woods Hole, MA, and John Wiley & Sons, Inc.

Figure 16. Figure 16.

Fish breathing. Comparison of breathing movements in sharks (A,B) and bony fishes (C,D), schematically illustrated in frontal sections. Left‐hand diagrams indicate expiration; right‐hand, inspiration. The + and – signs indicate pressure. Thick arrows indicate movement of external body wall or operculum; thin arrows, direction of water flow. After Perry (615), with kind permission from Springer Science+Business Media.

Figure 17. Figure 17.

Teleost gill. Semischematic diagram of a portion of teleost gill arch, showing filaments, lamellae, blood vessels, and supporting elements. Thick arrow, direction of water flow; thin arrow, blood flow. After Perry (615), with kind permission from Springer Science+Business Media.

Figure 18. Figure 18.

Gill pouches. Frontal views of the posterior pharynx region in a sturgeon (A,B) and a gymnophione amphibian (C,D). Note the dorsal swimbladder anlage (Sb) in the sturgeon and the ventral paired origin of the lungs (Lu) in the amphibian, in this case with the formation of a pseudotrachea (Pt). Abbreviations: Dl, dorsolateral ridge: Dm, dorsomedial ridge; Es, esophagus; St, stomach. Numbers represent gill pouch numbers. After Perry (611), with permission from Elsevier.

Figure 19. Figure 19.

Respiratory pharynx. Relationships of the major lineages of jawed vertebrates (Gnathostomata) and a plausible scenario for the origin of their derivatives of the posterior pharynx. Note that lungs (L, L’) and swimbladder (SB, SB’) each originated twice, either directly from the respiratory pharynx (RP), or from the pulmonoid swimbladder (PSB) in the more derived ray‐finned fishes (Actinopterygii). The RP most likely was present in the most basal bony fishes (Osteichtyes = Osteognathostomata), but could even predate the origin of the cartilaginous fishes (Chondrichthyes). Upper row: Schematic cross‐sections show the origin of the lungs/swimbladder as well as their principal blood supply. Swimbladder and pulmonary veins are not labeled. Abbreviations: BA6, artery of the sixth branchial arch; FL, fat filled lung; RL, right lung. After Perry and Sander (620), with permission from Elsevier.

Figure 20. Figure 20.

Parenchyma. Semischematic diagram of lung parenchyma of an amphibian or reptile is shown. Capillary net is not shown on surface of vertical septum (S). Abbreviations: A, artery; C, capillary; Ce, ciliated epithelium; Ed, edicula; Is, intercapillary space; Sm, smooth muscle; St, striated muscle; Ps, perivascular lymphatic space; Tr, trabecula; V, vein. After Perry (611), with permission from Elsevier.

Figure 21. Figure 21.

Interaction of central neural control element, active pump, passive pump, and exchanger in an amniote respiratory apparatus. Light gray arrows indicate neural control pathways; dark gray arrow, biomechanical force; black arrows, oxygen‐poor blood; and white arrows, oxygen‐rich blood (Lambertz and Perry, original).

Figure 22. Figure 22.

Macroscopic structure. Schematic diagram of the three principal macroscopic variables in amniote lung structure: type of lung, type of parenchyma, and parenchymal distribution. After Perry (612) with permission from Taylor and Francis.

Figure 23. Figure 23.

Amniote tree that shows the relationships among the major amniote lineages, their principal lung types, and the occurrence of a postpulmonary septum (PPS). In underlined taxa all representatives possess a PPS, whereas in the Iguania only the Chamaeleonidae do (indicated by parentheses). For taxa with a dashed underline, the situation remains unclear and mainly depends on the unknown plesiomorphic condition for the Lepidosauria (indicated by arrows). Either (scenario 1), a PPS was present and was independently lost in most groups (black squares) but retained in varanoids (open square) and chamaeleonids (black and white square), or (scenario 2, inset) was plesiomorphically not present and reevolved independently in varanoids (red square) and chamaeleonids (red and white square). After Lambertz et al. (402) with permission from Elsevier.

Figure 24. Figure 24.

Body wall muscles of tuatara (Sphendon punctatus) in lateral view shows sequential removal of muscle layers from A to F. Note that several groups are disposed in deep and superficial layers, UP means uncinate processes. After Perry et al. (621) with permission from Elsevier.

Figure 25. Figure 25.

Generalized amniote embryo in frontal (A) and sagittal (B) sections shows the position of anlagen from which the postpulmonary (PPS) and posthepatic septa (PHS) develop. Gall bladder is shown lying in the peritoneal cavity (e.g., archosaurs). In teiioid lizards, PHS develops from a mesentery fold rather than from the capsula fibrosa of the liver, hence the gall bladder is included in the pleurohepatic cavity. Dorsal and ventral mesopneumonia are shown at the left. Note that the PPS and the D. cuvieri encircle the developing lungs. After Perry et al. (621) with permission from Elsevier.

Figure 26. Figure 26.

Mammalian lung. (A) Latex cast of the airway system of the pig, Sus scrofa showing dichotomous branching. Tr, trachea. Scale bar, 2 cm. (B) Latex cast of the lung of a baboon, Papio anubis, showing an acinus supplied with air by a respiratory bronchus (RB). Al, alveoli. Scale bar, 100 μm. (C) Latex cast of the lung of the pig, Sus scrofa, showing spherical alveoli (Al). Arrows, interalveolar pores. Scale bar, 0.5 mm. (D) Blood‐gas barrier of the lung of a vervet monkey, Chlorocebus aethiops, showing an epithelial cell (arrows), basement membrane (asterisks), and an endothelial cell (stars). Al, alveolar space; BP, blood plasma; RBC, red blood cell. Scale bar, 0.5 μm. (E) Ciliated epithelial cells (CC) line the upper airways of the vervet monkey, C. aethiops. RBC, red blood cells in a subepithelial blood vessel; BM, basement membrane; arrows, cilia. Scale bar, 0.05 mm. (F) Pulmonary macrophage on the alveolar surface of the lung of the vervet monkey, C. aethiops, showing filopodia (arrows) that allow the cells to move, and cytoplasmic vacuoles (asterisks) containing lytic enzymes. RBC, red blood cells. Scale bar, 5 μm. (G) Alveolar capillary of the lung of the baboon, Papio anubis, showing a thick side (white asterisk) containing supporting connective tissue (mainly collagen) and a thin side (box) that is predominantly involved in gas exchange. RBC, red blood cell; Al, alveoli. Scale bar, 10 μm. (H) Alveolar surface showing a granular pneumocyte (type‐II cell) (II) and a squamous pneumocyte (type‐I cell) (I); both are encircled to show the surfaces they cover. Arrows, interalveolar pore. Scale bar, 10 μm. (I) Type‐II (granular) pneumocyte of the lung of the vervet monkey, C. aethiops, attached to a capillary containing RBCs. The type‐II cell contains osmiophilic lamellated bodies (arrows) that produce precursors of surfactant. Al, alveolus; stars, mitochondria; boxed areas, blood‐gas barrier. Scale bars, 10 μm.

Figure 27. Figure 27.

Mammalian lung—continued. (A) Close‐up of a type‐II cell from the lung of the vervet monkey, Chlorocebus aethiops, secreting surfactant (arrow) onto the alveolar surface (Al). Stars, mitochondria. Scale bar, 0.1 μm. (B and C) Branching pattern of the pulmonary arterial (B) and venous (C) systems of the pig, Sus scrofa. The airway (see A) and the arterial and venous systems pattern each other. Scale bars, 2 cm. (D) Close‐up of the surface of an alveolus in the lung of the baboon, Papio anubis, showing blood capillaries (BC) protruding into the alveolar space. Arrows, cellular junctions of type‐I pneumocytes. Scale bar, 40 μm. (E) Blood capillaries (BC) protruding into the alveolar space (Al) contain red blood cells (RBC) and are associated with elastic tissue (arrows) and pericytes (stars). Circle, surface lining fluid washed off during tissue preparation. Scale bar, 30 μm.

Figure 28. Figure 28.

Developing lung of the domestic fowl. (A) Lung bud on embryonic day 3.5. Epithelial cells (EC) extend into surrounding mesenchymal cells (MC). Scale bar, 25 μm. (B) Embryonic day 8. The lung (Ln) begins to engage the ribs (arrows) on its vertebral and costal surfaces. (C) Longitudinal section of an embryonic lung (day 9) shows deep impressions (costal sulci) made by the ribs and the vertebrae (arrows). (D) On embryonic day 10, the primary bronchus (PB) giving rise to secondary bronchi (SB). Arrows, blood vessels. (E) On embryonic day 11, a cluster of ECs is forming a parabronchus surrounded by MC, some of which attach onto the formative basement membrane (stars). Both epithelial and the mesenchymal cells express basic FGF‐2 (brown color). Scale bar, 20 μm. (F and G) On embryonic day 12, parabronchi show a central lumen (PL) surrounded by ECs attached onto a basement membrane (arrows). BV, blood vessel; stars, mesenchymal cells attaching onto the outer aspect of the basement membrane. Scale bar (F), 20 μm. (H) A parabronchus on embryonic day 14 shows atria (arrows) projecting into gas‐exchange tissue (ET). PL, parabronchial lumen; stars, atrial muscles; dashed curve, interparabronchial septum. Scale bar, 50 μm. (I) On embryonic day 14, a parabronchial lumen opens into an atrium (arrow). The atria (At) give rise to infundibula (If) and air capillaries (asterisks). PL, parabronchial lumen; AM, atrial muscles; circles, type‐II pneumocytes confined to the atria and infundibulae (dashed line). Scale bar, 20 μm.

Figure 29. Figure 29.

Developing lung (A‐C) and mature lung (D‐I) of the domestic fowl. (A) The lung on embryonic day 10 shows formative air sacs (arrows) and airways (encircled area) that express bFGF‐2 (red). Pr, parabronchi; SB, secondary bronchi. Scale bar, 1 cm. (B) Mesenchymal cells (MC) accumulate hemoglobin (arrows) and transform into nucleated erythroblasts (RBC) on embryonic day 7. Scale bar, 15 μm. (C) Mesenchymal cells differentiate into an erythroblast (star) and angioblasts (arrows) on embryonic day 8. Circles, filopodia. (D) Lateral (side) view of the latex cast of lung‐air sac system, showing the relatively smaller lung (asterisk) intercalated between large air sacs (numbered from i‐v). Circles, ostia (connections between the lung and air sacs); arrow, trachea. The paired air sacs are: i, abdominal; ii, caudal thoracic; iii, cranial thoracic; iv, interclavicular; v, cervical. Scale bars, 2 cm. (E) Dorsal view of the lung of a juvenile ostrich, Struthio camelus, showing deep vertebral and costal impressions (arrows). Tr, trachea; circles, extrapulmonary primary bronchi. Scale bar, 5 cm. (F) Medial view of the lung showing the costal impressions (arrows) and the elaborate airway system. MVSB, medioventral secondary bronchi; PB, primary bronchus; PPPR, paleopulmonic parabronchi; NPPR, neopulmonic parabronchi; asterisk, ostium. Scale bars, 1 cm. (G) The hexagonal (geodesic) shapes of parabronchi (dashed outlines), parabronchial lumen (PL), exchange tissue (ET), atria (arrows), interparabronchial blood vessels (asterisks), and the interparabronchial septum (circle). Scale bar, 0.1 mm. (H) Latex cast of the arterial vasculature of a parabronchus. Deoxygenated blood flows from peripheral interparabronchial arteries (asterisks) into intraparabronchial arteries (arrows) that enter the exchange tissue. Dashed area, parabronchial lumen. Scale bar, 0.1 mm. (I) Close‐up of atria (dashed outlines), separated by atrial muscles (AM), giving rise to infundibulae (If). Scale bar, 1 mm.

Figure 30. Figure 30.

Mature lung of the domestic fowl—continued. (A) Latex cast of air capillaries (ACs) showing areas where they anastomose (circles) and interdigitate with blood capillaries (arrows). Scale bar, 25 μm. (B) Latex cast of the blood capillaries (BCs) intertwining with ACs. Scale bar, 20 μm. (C) The network of ACs and BCs containing red blood cells (RBCs). Arrows, blood‐gas barrier. Scale bar, 10 μm. (D) The blood‐gas barrier (arrow) separates ACs from BCs. Scale bars, 0.5 μm.

Figure 31. Figure 31.

Cross‐section of histological preparation of a parabronchus from lung of a juvenile ostrich. From the parabronchial lumen (PL), air convectively flows into atria (black dots) that give rise to infundibulae that in turn to air capillaries where air moves by diffusion. Deoxygenated blood flows from peripheral interparabronchial artery (star) into an intraparabronchial artery (asterisk), which gives rise to arterioles and blood capillaries in the exchange tissue (ET). Blood flow in ET (black arrow) is orthogonal (perpendicular) to the axial air flow along parabronchial lumen (dashed arrow in the parabronchial lumen): this forms the crosscurrent system. In the exchange tissue, the flow of blood in the ET (black arrow) runs in opposite direction to that of air (white arrow): this forms the countercurrent‐like system.

Figure 32. Figure 32.

Mature lung of the domestic fowl. (A) Double latex injection preparation (latex was injected into the airway‐ and the arterial vascular systems) to show the spatial relationships of the structural components of the lung. It shows the perpendicular “cross‐current” disposition between the direction of airflow in the parabronchial lumen (large dashed open arrow) and that of deoxygenated blood (smaller solid black arrows), via the intraparabronchial arteries (asterisks). The circled areas show sites where blood capillaries (BCs) contact the air capillaries (ACs), which project in opposite direction from the infundibulae that in turn arise from the atria (At), forming the countercurrent‐like arrangement. Scale bar, 0.5 mm. See also schematic diagrams (Figs. 33 and 34) for orientation. (B) Double latex injection preparation (latex was injected into the airway‐ and the arterial vascular systems) to show the spatial relationships of the structural components of the lung. It shows the perpendicular “cross‐current” disposition between the direction of air flow in the parabronchial lumen (large dashed open arrow) and that of deoxygenated blood (smaller solid black arrow) from an interparabronchial artery (asterisk) via intraparabronchial arteries (stars). The boxed (enclosed) areas show sites where blood capillaries (BCs) contact the air capillaries (ACs), which project in opposite direction, that is, from the infundibulae that in turn arise from the atria (At), forming the countercurrent‐like arrangement. Scale bar, 0.2 mm. See also schematic diagrams (Figs. 33 and 34) for orientation.

Figure 33. Figure 33.

“Countercurrent‐like” and “cross‐current” gas exchange in the avian lung. Schematic illustration of air flow (black arrows) through the parabronchial lumen and flow of deoxygenated blood (brown arrows) from the interparabronchial arteries into intraparabronchial arteries that give rise to arterioles and blood capillaries. Oxygenated blood (red arrows) is conveyed by intraparabronchial and interparabronchial veins. The orthogonal directions of air flow within parabronchial lumen relative to the flow of deoxygenated blood into gas‐exchange tissue forms the cross‐current system. The opposed directions of air flow by diffusion in the air capillaries across the exchange tissue away from parabronchial lumen and that of blood flow in the blood capillaries toward the parabronchial lumen forms the countercurrent‐like system.

Figure 34. Figure 34.

“Multicapillary serial arterialization system” in the avian lung. Schematic illustration of the multicapillary serial arterialization system between the blood capillaries and air capillaries in the exchange tissue: the respiratory components exchange gases at an infinite number of contact points (dashed circle) along the length of a parabronchus. Increasing shading intensity (red) from the intraparabronchial artery (deoxygenated blood) across the blood capillaries to the intraparabronchial vein (oxygenated blood) illustrates the oxygenation of blood during transit across the exchange tissue and the parabronchus. Increasing shading intensity (gray) in the parabronchial lumen and the air capillaries illustrates the vitiation of air, that is, accumulation of carbon dioxide in respiratory air. The large arrows show the flow of air in a mediodorsal secondary bronchus (arrow with continuous line), in a parabronchus (arrow with short dashes), and in a medioventral secondary bronchus (arrow with long dashes).



Figure 1.

(A) Origin of oxygen and reactive oxygen species (ROS). Molecular O2 is generated during photolysis (ultraviolet range) and photosynthesis (visible light range via chlorophyll). (B) Photosynthesis and irradiation are equivalent processes that successively remove electrons from water to yield O2. Aerobic respiration is the reciprocal process that adds electrons to O2 to generate water. The same intermediate ROS are involved in all of these processes. Adapted from Lane (407).



Figure 2.

(A) Transitional metals ions functioned as signaling and antioxidant molecules in the earliest organisms. A molecular cage, for example, prophyrin ring, trapped these metal ions, for example, forming a heme molecule. Adding various polypeptides modulated the action of heme, resulting in heme proteins. By exaptation heme proteins participated in the neutralization of reactive O2 species as well as the sensing, storage, transport, and release of O2. (B) Structure of heme (containing iron) is remarkably similar to that of chlorophyll (containing magnesium).



Figure 3.

Heme proteins trace to the Last Universal Common Ancestor (LUCA), which is thought to have arisen approximately 3.8 billion years ago and evolved into the three domains of life: bacteria, archea, and eucarya. Adapted from the phylogenetic tree of all extant organisms based on 16S rRNA gene sequence data, originally proposed by Woese et al. (836).



Figure 4.

A general model of early evolution and atmospheric O2 concentration. Last Universal Common Ancestor (LUCA) was anaerobic and unicellular, but possessed heme proteins and their equivalents for antioxidation and reactive O2 species‐mediated cell signaling and possibly ATP production. Photosynthesis by cyanobacteria led to O2 accumulation, which was initially stored in rocks and sediments but later enriched the atmosphere. Eukaryotic plant and animal cells evolved that can more efficiently produce and utilize O2, leading to multicellular organisms of increasing complexity. Around 500 Ma, atmospheric O2 level reached the contemporary range, coinciding with an explosive appearance of terrestrial plants and animals.



Figure 5.

Phanerozoic time line shows atmospheric O2 concentration and major evolutionary events, including major mass extinctions (indicated by *: Ordovician‐Silurian, late Permian, and Cretaceous‐Paleogene). Based on data from various sources (55,335,775). See text for explanation.



Figure 6.

Oxygen cascade—the series of convective, diffusive, and biochemical barriers that progressively lower O2 tension until it reaches the near‐anoxic level necessary for optimal mitochondrial function within cells.



Figure 7.

Lungs of isopods, a taxon of crustaceans that include woodlice and pill bugs. From dry to humid environments the size of the lungs and the type of embedding into the body is reduced. After Hoese (328).



Figure 8.

Phylogeny of the the Arachnida, which includes spiders, scorpions, ticks, mites, harvestmen, and their relatives. This tree relates especially to the feature “loss of lungs.” Whether this loss really happened remains speculative. After Weygoldt und Paulus (820),



Figure 9.

Lungs and tracheae in arachnids. Lungs are present in Scorpiones, Amblipygi, and Uropygi and also spiders (Araneae). In the other groups a tracheal system is present. After various authors (227,365,366,695). A atrium of the tracheae, Ch chelicera, OpSp opisthosomal spiracle, PrSp prosomal spiracle, and STr secondary tracheae.



Figure 10.

Lungs, tracheae, and spiracles in spiders. Orthognatha species possess two pairs of book lungs lying directly behind the thorax. In Dysdera, tracheal spiracles are situated just behind the lungs, which are markedly reduced. In most Araneae, for example, wolf spiders or garden spiders and also shown in the spider in the middle of the figure, two lungs and a tracheal system with four simple tube tracheae are realised. In Misumena, for example, crab spiders, tracheae are restricted to the pleon. In Argyroneta, for example, water spider, lungs are completely reduced and tracheae fill the entire body. In Nops only tracheae exist, while in Pholcus only one pair of lungs is realised. In jumping spiders, shown for Salticus and Euophrys, the secondary tracheae reach into the thorax. Two electron micrographs show sections through the thorax with tracheae in the gut epithelium (Gu) and the nervous system (NS). At tracheal atrium, He heart, Lu lungs, Mu muscles, Ptr primary tracheae, and STr secondary tracheae.



Figure 11.

Tracheae and spiracles in myriapods. A Lithobius (Chilopoda, Lithobiomorpha), B Scutigerella (Progoneata, Symphyta), C and D Scutigera (Chilopoda, Notostigmophora) the dorsal side of the animal with spiracles (C) and one segment is shown in detail (D). Adapted from Westheide and Rieger (817).



Figure 12.

Discontinuous respiration in insects. A Hyalophora cecropia at the end of diapause, a stage of dormancy, B Periplaneta americana resting at 20°C, after Kestler (371).



Figure 13.

Hagfish. Schematic frontal section of a gill pouch from the left side of a hagfish shows the path of water flow (black area and white arrows) and blood flow (black arrows). Stippled blood vessels indicate oxygen‐poor blood. After Perry (615), with kind permission from Springer Science+Business Media.



Figure 14.

Lamprey. Schematic frontal section of a gill pouch from the left side of a lamprey, during expiration (A) and inspiration (B). The + and – signs indicate pressure. Note pressure reduction as water leaves the gill pouch during expiration (A). Black arrows show path of water flow. After Perry (615), with kind permission from Springer Science+Business Media.



Figure 15.

Shark gill. Schematic section of a gill element in frontal plane from the left side of a shark, showing (A) most important anatomical structures, (B) terminology and functional units. (C) Block diagram and cross section of gill filaments. Black arrows indicate direction of water flow; white arrows, blood flow. After Perry (615), based on Kempton (368) and Mallat (508) with kind permissions from Springer Science+Business Media, the Marine Biological Laboratory, Woods Hole, MA, and John Wiley & Sons, Inc.



Figure 16.

Fish breathing. Comparison of breathing movements in sharks (A,B) and bony fishes (C,D), schematically illustrated in frontal sections. Left‐hand diagrams indicate expiration; right‐hand, inspiration. The + and – signs indicate pressure. Thick arrows indicate movement of external body wall or operculum; thin arrows, direction of water flow. After Perry (615), with kind permission from Springer Science+Business Media.



Figure 17.

Teleost gill. Semischematic diagram of a portion of teleost gill arch, showing filaments, lamellae, blood vessels, and supporting elements. Thick arrow, direction of water flow; thin arrow, blood flow. After Perry (615), with kind permission from Springer Science+Business Media.



Figure 18.

Gill pouches. Frontal views of the posterior pharynx region in a sturgeon (A,B) and a gymnophione amphibian (C,D). Note the dorsal swimbladder anlage (Sb) in the sturgeon and the ventral paired origin of the lungs (Lu) in the amphibian, in this case with the formation of a pseudotrachea (Pt). Abbreviations: Dl, dorsolateral ridge: Dm, dorsomedial ridge; Es, esophagus; St, stomach. Numbers represent gill pouch numbers. After Perry (611), with permission from Elsevier.



Figure 19.

Respiratory pharynx. Relationships of the major lineages of jawed vertebrates (Gnathostomata) and a plausible scenario for the origin of their derivatives of the posterior pharynx. Note that lungs (L, L’) and swimbladder (SB, SB’) each originated twice, either directly from the respiratory pharynx (RP), or from the pulmonoid swimbladder (PSB) in the more derived ray‐finned fishes (Actinopterygii). The RP most likely was present in the most basal bony fishes (Osteichtyes = Osteognathostomata), but could even predate the origin of the cartilaginous fishes (Chondrichthyes). Upper row: Schematic cross‐sections show the origin of the lungs/swimbladder as well as their principal blood supply. Swimbladder and pulmonary veins are not labeled. Abbreviations: BA6, artery of the sixth branchial arch; FL, fat filled lung; RL, right lung. After Perry and Sander (620), with permission from Elsevier.



Figure 20.

Parenchyma. Semischematic diagram of lung parenchyma of an amphibian or reptile is shown. Capillary net is not shown on surface of vertical septum (S). Abbreviations: A, artery; C, capillary; Ce, ciliated epithelium; Ed, edicula; Is, intercapillary space; Sm, smooth muscle; St, striated muscle; Ps, perivascular lymphatic space; Tr, trabecula; V, vein. After Perry (611), with permission from Elsevier.



Figure 21.

Interaction of central neural control element, active pump, passive pump, and exchanger in an amniote respiratory apparatus. Light gray arrows indicate neural control pathways; dark gray arrow, biomechanical force; black arrows, oxygen‐poor blood; and white arrows, oxygen‐rich blood (Lambertz and Perry, original).



Figure 22.

Macroscopic structure. Schematic diagram of the three principal macroscopic variables in amniote lung structure: type of lung, type of parenchyma, and parenchymal distribution. After Perry (612) with permission from Taylor and Francis.



Figure 23.

Amniote tree that shows the relationships among the major amniote lineages, their principal lung types, and the occurrence of a postpulmonary septum (PPS). In underlined taxa all representatives possess a PPS, whereas in the Iguania only the Chamaeleonidae do (indicated by parentheses). For taxa with a dashed underline, the situation remains unclear and mainly depends on the unknown plesiomorphic condition for the Lepidosauria (indicated by arrows). Either (scenario 1), a PPS was present and was independently lost in most groups (black squares) but retained in varanoids (open square) and chamaeleonids (black and white square), or (scenario 2, inset) was plesiomorphically not present and reevolved independently in varanoids (red square) and chamaeleonids (red and white square). After Lambertz et al. (402) with permission from Elsevier.



Figure 24.

Body wall muscles of tuatara (Sphendon punctatus) in lateral view shows sequential removal of muscle layers from A to F. Note that several groups are disposed in deep and superficial layers, UP means uncinate processes. After Perry et al. (621) with permission from Elsevier.



Figure 25.

Generalized amniote embryo in frontal (A) and sagittal (B) sections shows the position of anlagen from which the postpulmonary (PPS) and posthepatic septa (PHS) develop. Gall bladder is shown lying in the peritoneal cavity (e.g., archosaurs). In teiioid lizards, PHS develops from a mesentery fold rather than from the capsula fibrosa of the liver, hence the gall bladder is included in the pleurohepatic cavity. Dorsal and ventral mesopneumonia are shown at the left. Note that the PPS and the D. cuvieri encircle the developing lungs. After Perry et al. (621) with permission from Elsevier.



Figure 26.

Mammalian lung. (A) Latex cast of the airway system of the pig, Sus scrofa showing dichotomous branching. Tr, trachea. Scale bar, 2 cm. (B) Latex cast of the lung of a baboon, Papio anubis, showing an acinus supplied with air by a respiratory bronchus (RB). Al, alveoli. Scale bar, 100 μm. (C) Latex cast of the lung of the pig, Sus scrofa, showing spherical alveoli (Al). Arrows, interalveolar pores. Scale bar, 0.5 mm. (D) Blood‐gas barrier of the lung of a vervet monkey, Chlorocebus aethiops, showing an epithelial cell (arrows), basement membrane (asterisks), and an endothelial cell (stars). Al, alveolar space; BP, blood plasma; RBC, red blood cell. Scale bar, 0.5 μm. (E) Ciliated epithelial cells (CC) line the upper airways of the vervet monkey, C. aethiops. RBC, red blood cells in a subepithelial blood vessel; BM, basement membrane; arrows, cilia. Scale bar, 0.05 mm. (F) Pulmonary macrophage on the alveolar surface of the lung of the vervet monkey, C. aethiops, showing filopodia (arrows) that allow the cells to move, and cytoplasmic vacuoles (asterisks) containing lytic enzymes. RBC, red blood cells. Scale bar, 5 μm. (G) Alveolar capillary of the lung of the baboon, Papio anubis, showing a thick side (white asterisk) containing supporting connective tissue (mainly collagen) and a thin side (box) that is predominantly involved in gas exchange. RBC, red blood cell; Al, alveoli. Scale bar, 10 μm. (H) Alveolar surface showing a granular pneumocyte (type‐II cell) (II) and a squamous pneumocyte (type‐I cell) (I); both are encircled to show the surfaces they cover. Arrows, interalveolar pore. Scale bar, 10 μm. (I) Type‐II (granular) pneumocyte of the lung of the vervet monkey, C. aethiops, attached to a capillary containing RBCs. The type‐II cell contains osmiophilic lamellated bodies (arrows) that produce precursors of surfactant. Al, alveolus; stars, mitochondria; boxed areas, blood‐gas barrier. Scale bars, 10 μm.



Figure 27.

Mammalian lung—continued. (A) Close‐up of a type‐II cell from the lung of the vervet monkey, Chlorocebus aethiops, secreting surfactant (arrow) onto the alveolar surface (Al). Stars, mitochondria. Scale bar, 0.1 μm. (B and C) Branching pattern of the pulmonary arterial (B) and venous (C) systems of the pig, Sus scrofa. The airway (see A) and the arterial and venous systems pattern each other. Scale bars, 2 cm. (D) Close‐up of the surface of an alveolus in the lung of the baboon, Papio anubis, showing blood capillaries (BC) protruding into the alveolar space. Arrows, cellular junctions of type‐I pneumocytes. Scale bar, 40 μm. (E) Blood capillaries (BC) protruding into the alveolar space (Al) contain red blood cells (RBC) and are associated with elastic tissue (arrows) and pericytes (stars). Circle, surface lining fluid washed off during tissue preparation. Scale bar, 30 μm.



Figure 28.

Developing lung of the domestic fowl. (A) Lung bud on embryonic day 3.5. Epithelial cells (EC) extend into surrounding mesenchymal cells (MC). Scale bar, 25 μm. (B) Embryonic day 8. The lung (Ln) begins to engage the ribs (arrows) on its vertebral and costal surfaces. (C) Longitudinal section of an embryonic lung (day 9) shows deep impressions (costal sulci) made by the ribs and the vertebrae (arrows). (D) On embryonic day 10, the primary bronchus (PB) giving rise to secondary bronchi (SB). Arrows, blood vessels. (E) On embryonic day 11, a cluster of ECs is forming a parabronchus surrounded by MC, some of which attach onto the formative basement membrane (stars). Both epithelial and the mesenchymal cells express basic FGF‐2 (brown color). Scale bar, 20 μm. (F and G) On embryonic day 12, parabronchi show a central lumen (PL) surrounded by ECs attached onto a basement membrane (arrows). BV, blood vessel; stars, mesenchymal cells attaching onto the outer aspect of the basement membrane. Scale bar (F), 20 μm. (H) A parabronchus on embryonic day 14 shows atria (arrows) projecting into gas‐exchange tissue (ET). PL, parabronchial lumen; stars, atrial muscles; dashed curve, interparabronchial septum. Scale bar, 50 μm. (I) On embryonic day 14, a parabronchial lumen opens into an atrium (arrow). The atria (At) give rise to infundibula (If) and air capillaries (asterisks). PL, parabronchial lumen; AM, atrial muscles; circles, type‐II pneumocytes confined to the atria and infundibulae (dashed line). Scale bar, 20 μm.



Figure 29.

Developing lung (A‐C) and mature lung (D‐I) of the domestic fowl. (A) The lung on embryonic day 10 shows formative air sacs (arrows) and airways (encircled area) that express bFGF‐2 (red). Pr, parabronchi; SB, secondary bronchi. Scale bar, 1 cm. (B) Mesenchymal cells (MC) accumulate hemoglobin (arrows) and transform into nucleated erythroblasts (RBC) on embryonic day 7. Scale bar, 15 μm. (C) Mesenchymal cells differentiate into an erythroblast (star) and angioblasts (arrows) on embryonic day 8. Circles, filopodia. (D) Lateral (side) view of the latex cast of lung‐air sac system, showing the relatively smaller lung (asterisk) intercalated between large air sacs (numbered from i‐v). Circles, ostia (connections between the lung and air sacs); arrow, trachea. The paired air sacs are: i, abdominal; ii, caudal thoracic; iii, cranial thoracic; iv, interclavicular; v, cervical. Scale bars, 2 cm. (E) Dorsal view of the lung of a juvenile ostrich, Struthio camelus, showing deep vertebral and costal impressions (arrows). Tr, trachea; circles, extrapulmonary primary bronchi. Scale bar, 5 cm. (F) Medial view of the lung showing the costal impressions (arrows) and the elaborate airway system. MVSB, medioventral secondary bronchi; PB, primary bronchus; PPPR, paleopulmonic parabronchi; NPPR, neopulmonic parabronchi; asterisk, ostium. Scale bars, 1 cm. (G) The hexagonal (geodesic) shapes of parabronchi (dashed outlines), parabronchial lumen (PL), exchange tissue (ET), atria (arrows), interparabronchial blood vessels (asterisks), and the interparabronchial septum (circle). Scale bar, 0.1 mm. (H) Latex cast of the arterial vasculature of a parabronchus. Deoxygenated blood flows from peripheral interparabronchial arteries (asterisks) into intraparabronchial arteries (arrows) that enter the exchange tissue. Dashed area, parabronchial lumen. Scale bar, 0.1 mm. (I) Close‐up of atria (dashed outlines), separated by atrial muscles (AM), giving rise to infundibulae (If). Scale bar, 1 mm.



Figure 30.

Mature lung of the domestic fowl—continued. (A) Latex cast of air capillaries (ACs) showing areas where they anastomose (circles) and interdigitate with blood capillaries (arrows). Scale bar, 25 μm. (B) Latex cast of the blood capillaries (BCs) intertwining with ACs. Scale bar, 20 μm. (C) The network of ACs and BCs containing red blood cells (RBCs). Arrows, blood‐gas barrier. Scale bar, 10 μm. (D) The blood‐gas barrier (arrow) separates ACs from BCs. Scale bars, 0.5 μm.



Figure 31.

Cross‐section of histological preparation of a parabronchus from lung of a juvenile ostrich. From the parabronchial lumen (PL), air convectively flows into atria (black dots) that give rise to infundibulae that in turn to air capillaries where air moves by diffusion. Deoxygenated blood flows from peripheral interparabronchial artery (star) into an intraparabronchial artery (asterisk), which gives rise to arterioles and blood capillaries in the exchange tissue (ET). Blood flow in ET (black arrow) is orthogonal (perpendicular) to the axial air flow along parabronchial lumen (dashed arrow in the parabronchial lumen): this forms the crosscurrent system. In the exchange tissue, the flow of blood in the ET (black arrow) runs in opposite direction to that of air (white arrow): this forms the countercurrent‐like system.



Figure 32.

Mature lung of the domestic fowl. (A) Double latex injection preparation (latex was injected into the airway‐ and the arterial vascular systems) to show the spatial relationships of the structural components of the lung. It shows the perpendicular “cross‐current” disposition between the direction of airflow in the parabronchial lumen (large dashed open arrow) and that of deoxygenated blood (smaller solid black arrows), via the intraparabronchial arteries (asterisks). The circled areas show sites where blood capillaries (BCs) contact the air capillaries (ACs), which project in opposite direction from the infundibulae that in turn arise from the atria (At), forming the countercurrent‐like arrangement. Scale bar, 0.5 mm. See also schematic diagrams (Figs. 33 and 34) for orientation. (B) Double latex injection preparation (latex was injected into the airway‐ and the arterial vascular systems) to show the spatial relationships of the structural components of the lung. It shows the perpendicular “cross‐current” disposition between the direction of air flow in the parabronchial lumen (large dashed open arrow) and that of deoxygenated blood (smaller solid black arrow) from an interparabronchial artery (asterisk) via intraparabronchial arteries (stars). The boxed (enclosed) areas show sites where blood capillaries (BCs) contact the air capillaries (ACs), which project in opposite direction, that is, from the infundibulae that in turn arise from the atria (At), forming the countercurrent‐like arrangement. Scale bar, 0.2 mm. See also schematic diagrams (Figs. 33 and 34) for orientation.



Figure 33.

“Countercurrent‐like” and “cross‐current” gas exchange in the avian lung. Schematic illustration of air flow (black arrows) through the parabronchial lumen and flow of deoxygenated blood (brown arrows) from the interparabronchial arteries into intraparabronchial arteries that give rise to arterioles and blood capillaries. Oxygenated blood (red arrows) is conveyed by intraparabronchial and interparabronchial veins. The orthogonal directions of air flow within parabronchial lumen relative to the flow of deoxygenated blood into gas‐exchange tissue forms the cross‐current system. The opposed directions of air flow by diffusion in the air capillaries across the exchange tissue away from parabronchial lumen and that of blood flow in the blood capillaries toward the parabronchial lumen forms the countercurrent‐like system.



Figure 34.

“Multicapillary serial arterialization system” in the avian lung. Schematic illustration of the multicapillary serial arterialization system between the blood capillaries and air capillaries in the exchange tissue: the respiratory components exchange gases at an infinite number of contact points (dashed circle) along the length of a parabronchus. Increasing shading intensity (red) from the intraparabronchial artery (deoxygenated blood) across the blood capillaries to the intraparabronchial vein (oxygenated blood) illustrates the oxygenation of blood during transit across the exchange tissue and the parabronchus. Increasing shading intensity (gray) in the parabronchial lumen and the air capillaries illustrates the vitiation of air, that is, accumulation of carbon dioxide in respiratory air. The large arrows show the flow of air in a mediodorsal secondary bronchus (arrow with continuous line), in a parabronchus (arrow with short dashes), and in a medioventral secondary bronchus (arrow with long dashes).

References
 1. Abdalla MA. The blood supply to the lung. In: King AS, McLelland J, editors. Form and Funciton in Birds, Vol. 4. London: Academic Press, 1989, pp. 281‐306.
 2. Abdalla MA, King AS. The functional anatomy of the pulmonary circulation of the domestic fowl. Respir Physiol 23: 267‐290, 1975.
 3. Adamczewska AM, Morris S. Locomotion, respiratory physiology, and energetics of amphibious and terrestrial crabs. Physiol Biochem Zool 73: 706‐725, 2000.
 4. Affolter M, Bellusci S, Itoh N, Shilo B, Thiery JP, Werb Z. Tube or not tube: Remodeling epithelial tissues by branching morphogenesis. Dev Cell 4: 11‐18, 2003.
 5. Affolter M, Shilo BZ. Genetic control of branching morphogenesis during Drosophila tracheal development. Curr Opin Cell Biol 12: 731‐735, 2000.
 6. Affolter M, Zeller R, Caussinus E. Tissue remodelling through branching morphogenesis. Nat Rev Mol Cell Biol 10: 831‐842, 2009.
 7. Allwood AC, Walter MR, Kamber BS, Marshall CP, Burch IW. Stromatolite reef from the Early Archaean era of Australia. Nature 441: 714‐718, 2006.
 8. Alonso C, Waring A, Zasadzinski JA. Keeping lung surfactant where it belongs: Protein regulation of two‐dimensional viscosity. Biophys J 89: 266‐273, 2005.
 9. Anderson JF. Metabolic rates in spiders. Comp Biochem Physiol 33: 51‐72, 1970.
 10. Anderson JF. Responses to starvation in the spiders Lycosa lenta (Hentz) und Filistata hibernalis (Hentz). Ecology 55: 576‐585, 1974.
 11. Anderson JF. Respiratory energetics of two florida harvestmen. Comp Biochem Physiol 105A: 67‐72, 1993.
 12. Anderson JF. Comparative energetics of comb‐footed spiders (Araneae: Theridiidae). Comp Biochem Physiol 109A(1): 181‐189, 1994.
 13. Anderson JF. Metabolic rates of resting salticid and thomisid spiders. J Arachnol 24: 129‐134, 1996.
 14. Anderson JF, Prestwich KN. The fluid pressure pumps of spiders (Chelicerata, Araneae). Z Morph Tiere 81: 257‐277, 1975.
 15. Anderson JF, Prestwich KN. Scaling of subunit structures in book lungs of spiders (Araneae). J Morphol 165: 167‐174, 1980.
 16. Anderson JF, Prestwich KN. The physiology of exercise at and above maximal aerobic capacity in a theraphosid (tarantula) spider, Brachypelma smithi. J Comp Physiol B 155: 529‐539, 1985.
 17. Anderson JJ, Prestwich KN. Respiratory gas exchange in spiders. Physiol Zool 55(1): 72‐90, 1982.
 18. Anderson‐Berry A, O'Brien EA, Bleyl SB, Lawson A, Gundersen N, Ryssman D, Sweeley J, Dahl MJ, Drake CJ, Schoenwolf GC, Albertine KH. Vasculogenesis drives pulmonary vascular growth in the developing chick embryo. Dev Dyn 233: 145‐153, 2005.
 19. Angersbach D. Oxygen transport in the blood of the tarantula Eurypelma californicum: pO2 and pH during rest, activity and recovery. J Comp Physiol 123: 113‐125, 1978.
 20. Aschoff J, Pohl H. Rhythmic variations in energy metabolism. Fed Proc 29: 1541‐1552, 1970.
 21. Awramik SM, Riding R. Role of algal eukaryotes in subtidal columnar stromatolite formation. Proc Natl Acad Sci U S A 85: 1327‐1329, 1988.
 22. Babiuk RP, Zhang W, Clugston R, Allan DW, Greer JJ. Embryological origins and development of the rat diaphragm. J Comp Neurol 455: 477‐487, 2003.
 23. Bachofen H. Why are the lungs dry?. Pneumologie 63: 346‐351, 2009.
 24. Bachofen H, Bachofen M, Weibel ER. Ultrastructural aspects of pulmonary edema. J Thor Imag 3: 1‐7, 1988.
 25. Bachofen H, Schurch S. Alveolar surface forces and lung architecture. Comp Biochem Physiol A Mol Integr Physiol 129: 183‐193, 2001.
 26. Backer H, Fanenbruck M, Wägele JW. A forgotten homology supporting the monophyly of Tracheata: The subcoxa of insects and myriapods re‐visited. Zool Anz 247: 185‐207, 2008.
 27. Bakhle YS. Pharmacokinetic function of the lung. In: Junod AF, Haller R, editors. Lung Metabolism. New York: Academic Press, 1975, pp. 293‐299.
 28. Bakker RT. Dinosaur renaissance. Sci Am 232: 58‐78, 1975.
 29. Balasubramaniam V, Mervis CF, Maxey AM, Markham NE, Abman SH. Hyperoxia reduces bone marrow, circulating, and lung endothelial progenitor cells in the developing lung: implications for the pathogenesis of bronchopulmonary dysplasia. Am J Physiol Lung Cell Mol Physiol 292: L1073‐L1084, 2007.
 30. Ballantijn CM. Functional anatomy and movement co‐ordination of the respiratory pump of the carp (Cyprinus carpio L.). J Exp Biol 50: 547‐567, 1969.
 31. Ballantijn CM, Hughes GM. The muscular basis of the respiratory pumps in the trout. J Exp Biol 43: 349‐362, 1965.
 32. Bancaud A, Huet S, Daigle N, Mozziconacci J, Beaudouin J, Ellenberg J. Molecular crowding affects diffusion and binding of nuclear proteins in heterochromatin and reveals the fractal organization of chromatin. EMBO J 28: 3785‐3798, 2009.
 33. Barej MF, Böhme W, Perry SF, Wagner P, Schmitz A. The hairy frog, a curly fighter? ‐ A novel hypothesis on the function of hairs and claw‐like terminal phalanges, including their biological and systematic significance (Anura: Arthroleptidae: Trichobatrachus). Rev Suisse Zool 117: 243‐263, 2010.
 34. Barnes RD. Invertebrate Zoology. Philadelphia West Washington Square, Saunders College: Holt‐Saunders International Editions, 1980.
 35. Bartels H. Diffusion coefficients and Krogh's diffusion constants. In: Altman PL, Dittmer DS, editors. Respiration and Circulation. Bethesda: Biological Handbooks, Federation of American Societies for Experimental Biology, 1971, pp. 21‐33.
 36. Bartholomew GA. Energy metabolism. In: Gordon MS, editor. Animal Physiology: Principles and Adaptations. New York: Macmillan, 1982, pp. 57‐110.
 37. Bartholomew GA, Casey TM. Oxygen consumption of moths during rest, pre‐flight warm‐up, and flight in relation to body size and wing morphology. J Exp Biol 76: 11‐25, 1978.
 38. Bartsch P. Actinopterygii, Strahl(en)flosser. In: Westheide W, Rieger R, editors. Spezielle Zoologie ‐ Teil 2: Wirbel‐oder Schädeltiere (2nd ed). Heidelberg and Berlin: Spektrum Akademischer Verlag, 2010, pp. 244‐247.
 39. Bartsch P. Ginglymodi (Lepisosteiformes), Knochenhechte, Kaimanfische. In: Westheide W, Rieger R, editors. Spezielle Zoologie ‐ Teil 2: Wirbel‐oder Schädeltiere (2nd ed). Heidelberg and Berlin: Spektrum Akademischer Verlag, 2010, pp. 254‐257.
 40. Bartsch P. Halecomorphi (Amiiformes), Kahlhechte, Bogenflosser. In: Westheide W, Rieger R, editors. Spezielle Zoologie ‐ Teil 2: Wirbel‐oder Schädeltiere (2nd ed). Heidelberg and Berlin: Spektrum Akademischer Verlag, 2010c, pp. 257‐259.
 41. Bassi M, Klein W, Fernandes MN, Perry SF, Glass ML. Pulmonary oxygen diffusing capacity of the South American lungfish Lepidosiren paradoxa: Physiological values by the Bohr method. Physiol Biochem Zool 78: 560‐569, 2005.
 42. Bastacky J, Goerke J, Lee CY, Yager D, Kenaga L, Koushafar H, Hayes TL, Chen Y, Clements JA. Alveolar lining liquid layer in thin and continuous: low‐temperature scanning electron microscoy of normal rat lung. Am Rev Respir Dis 147: 148‐159, 1993.
 43. Bayle F. Dissertation Sur Quelques Points de Physique et de Médecine. Toulouse: Fouchac and Bely, 1688.
 44. Bech C, Johansen K. Ventilation and gas exchange in the mute swan, Cygnus olor. Respir Physiol 39: 285‐295, 1980.
 45. Beckel WE, Schneiderman HA. The spiracle of the cecropia moth as an independent effector. Anat Rec 125: 559‐560, 1956.
 46. Becker HO, Bõhme W, Perry SF. Die Lungenmorphologie der Warane (Reptilia: Varanidae) und ihre systematisch‐stammesgeschichtliche Bedeutung. Bonn Zool Beitr 40: 27‐56, 1989.
 47. Bellairs R, Osmond M. The Atlas of Chick Development. London: Academic Press, 1998.
 48. Bennett AF. Structural and fuctional determinants of metabolic rate. Am Zool 28: 699‐708, 1988.
 49. Bennett AF, Dawson WR. Metabolism. In: Gans C, Dawson WR, editors. Biology of Reptilia, Vol. 5. New York: Academic Press, 1976, pp. 127‐223.
 50. Bennett AF, John‐Alder HB. The effect of body temperature on the locomotory energetics of lizards. J Comp Physiol B 155: 21‐27, 1984.
 51. Bennett AF, Nagy KA. Energy expenditure in free ranging lizards. Ecology 58: 697‐700, 1977.
 52. Bennett AF, Ruben JA. Endothermy and activity in vertebrates. Science 206: 649‐654, 1979.
 53. Benton MJ. Diversification and extinction in the history of life. Science 268: 52‐58, 1995.
 54. Berenbrink M, Koldkjaer P, Kepp O, Cossins AR. Evolution of oxygen secretion in fishes and the emergence of a complex physiological system. Science 307: 1752‐1757, 2005.
 55. Berner RA. Atmospheric oxygen over Phanerozoic time. Proc Natl Acad Sci U S A 96: 10955‐10957, 1999.
 56. Berner RA, Vandenbrooks JM. Ward PD. Oyxgen and evolution. Science 316: 557‐558, 2007.
 57. Berner RA, Petsch ST, Lake JA, Beerling DJ, Popp BN, Lane RS, Laws EA, Westley MB, Cassar N, Woodward FI, Quick WP. Isotope fractionation and atmospheric oxygen: Implications for phanerozoic O(2) evolution. Science 287: 1630‐1633, 2000.
 58. Berner RA, VandenBrooks JM, Ward PD. Oxygen and evolution. Science 316: 557‐558, 2007.
 59. Bezuidenhout AJ. Light and electron microscopic study of the thoracic respiratory air sacs of the fowl. Anat Histol Embryol 34: 185‐191, 2005.
 60. Bezuidenhout AJ, Groenewald HB. An anatomical study of the respiratory air sacs in ostriches. Onderst J Vet Res 66: 317‐325, 2000.
 61. Bicudo JEPW, Campiglia S. A morphometric study of the tracheal system of Peripatus acacioi Marcus and Marcus (Onychophora). Resp Physiol 60: 75‐82, 1985.
 62. Birks EK, Mathieu‐Costello O, Fu Z, Tyler WS, West JB. Comparative aspects of the strength of pulmonary capillaries in rabbit, dog, and horse. Respir Physiol 97: 235‐246, 1994.
 63. Birks EK, Mathieu‐Costello O, Fu Z, Tyler WS, West JB. Very high pressures are required to cause stress failure of pulmonary capillaries in thoroughbred racehorses. J Appl Physiol 82: 1584‐1592, 1997.
 64. Black CP, Tenney SM. Oxygen transport during progressive hypoxia in high‐altitude and sea‐level waterfowl. Respir Physiol 39: 217‐239, 1980.
 65. Blest AD. The tracheal arrangement and the classification of linyphiid spiders. J Zool Lond 180: 185‐194, 1976.
 66. Bliss D. The transition from water to land in decapod Crustaceans. Amer Zool 8: 355‐392, 1968.
 67.Bojanus LH. Anatome Testudinis Europaeae. Vilnae: Impensis Auctoris, Typis Josephi Zawadzki, Typographi Universitatis, 1819‐1821.
 68. Bond AN. An analysis of the response of salamander gills to changes in the oxygen concentration of the medium. Dev Biol 2: 1‐20, 1960.
 69. Bradley TJ. Discontinous ventilation in insects: Protecting tissues from O2. Resp Physiol & Neurobiol 154: 30‐36, 2006.
 70. Bradley TJ. Control of the respiratory pattern in insects. In: Robert Roach. Peter D. Wegne. Peter Hachett, editors. Hypoxia And The Circulation. Berlin: Springer‐Verlag Berlin, 2007, pp. 211‐220.
 71. Brainerd EL. The evolution of lung‐gill bimodal breathing and the homology of vertebrate respiratory pumps. Amer Zool 34: 289‐299, 1994.
 72. Brainerd EL. New perspectives on the evolution of lung ventilation mechanisms in vertebrates. Exp Biol Online 4: 11‐28, 1999.
 73. Brainerd EL, Ditelberg JS, Bramble DM. Lung ventilation in salamanders and the evolution of vertebrate air‐breathing mechanisms. Biol J Linn Soc 43: 163‐183, 1993.
 74. Brainerd EL, Ferry‐Graham LA. Biomechanics of respiratory pumps. In: Shadwick R, Lauder GV, editors. Fish Biomechanics. San Diego: Academic Press, 2006, pp. 1‐28.
 75. Brainerd EL, Liem KF, Samper CT. Air ventilation by recoil aspiration in polypterid fishes. Science 246: 1593‐1595, 1989.
 76. Brainerd EL, Owerkowicz T. Functional morphology and evolution of aspiration breathing in tetrapods. Respir Physiol Neurobiol 154: 73‐88, 2006.
 77. Bramwell CD. Aerodynamics of Pteranodon. J Linn Soc Biol 3: 313‐328, 1971.
 78. Braun F. Beiträge zur Biologie und Atmungsphysiologie der Argyroneta aquatica Cl. Zoolog Jahrb Syst 62: 175‐262, 1931.
 79. Brayard A, Escarguel G, Bucher H, Monnet C, Bruhwiler T, Goudemand N, Galfetti T, Guex J. Good genes and good luck: Ammonoid diversity and the end‐permian mass extinction. Science 325: 1118‐1121, 2009.
 80. Breeze RG, Wheeldon EB. The cells of the pulmonary airways. Am Rev Respir Dis 116: 705‐777, 1977.
 81. Bridges CR, Scheid P. Buffering and CO2 dissociation of body fluids in the pupa of the silkworm moth, Hyalophora cecropia. Respir Physiol 48: 183‐197, 1982.
 82. Brink AS. Speculations on some advanced mammalian characteristics in the higher mammalian‐like reptiles. Palaeont Afr 4: 77‐96, 1956.
 83. Brito PM, Meunier FJ, Clément G, Geffard‐Kuriyama D. The histological structure of the calcified lung of the fossil coelacanth Axelrodichthys araripensis (Actinistia: Mawsonidae). Palaeontology 53: 1281‐1290, 2010.
 84. Brittain T. The root effect. Comp Biochem Physiol B 86: 473‐481, 1987.
 85. Broman I. Die Entwickelungsgeschichte der Bursa omentalis und ähnlicher Rezessbildungen bei den Wirbeltieren. Wiesbaden: Bergmann, 1904.
 86. Bromhall C. Spider heart‐rates and locomotion. J Comp Physiol B 157: 451‐460, 1987.
 87. Bromhall C. Spider tracheal systems. Tissue Cell 19: 793‐807, 1987.
 88. Brunelle JK, Bell EL, Quesada NM, Vercauteren K, Tiranti V, Zeviani M, Scarpulla RC, Chandel NS. Oxygen sensing requires mitochondrial ROS but not oxidative phosphorylation. Cell Metab 1: 409‐414, 2005.
 89. Buck J. Some physical aspects of insect respiration. Ann Rev Entomol 7: 27‐56, 1962.
 90. Buck J, Friedman S. Cyclic CO2 release in diapausing pupae III CO2 capacity of the blood: Carbonic anhydrase. J Ins Physiol 2: 52‐60, 1958.
 91. Buck J, Keister M. Cyclic CO2 release in diapausing Agapema pupae. Biol Bull 109: 144‐164, 1955.
 92. Buck J, Keister M. Cyclic CO2 release in diapausing pupae II Tracheal anatomy, volume and pCO2; blood volume; interburst CO2 reease rate. J Insect Physiol 1: 327‐340, 1958.
 93. Buck J, Keister M, Specht H. Discontinous respiration in diapausing Agapema pupae. Anat Rec 117(1): 541, 1953.
 94. Buck JB. Cyclic CO2 relaese in insects IV. A theory of mechanism. Biol Bull 114: 118‐140, 1958.
 95. Burggren W, Mwalukoma A. Respiration during chronic hypoxia and hyperoxia in larval and adult bullfrogs (Rana catesbeiana). I. Morphological responses of lungs, skin and gills. J Exp Biol 105: 191‐203, 1983.
 96. Burggren WW. Pulmonary blood plasma filtration in reptiles: a “wet” vertebrate lung? Science 215: 77‐78, 1982.
 97. Burggren WW. Respiration and circulation in land crabs: novel variations on the marine design. Amer Zool 32: 417‐427, 1992.
 98. Burggren WW, Moalli R. “Active” regulation of cutaneous gas exchange by capillary recruitment in amphibians: Experimental evidence and a revised model for skin respiration. Resp Physiol 55: 379‐392, 1984.
 99. Burleson ML, Mercer SE, Wilk‐Blaszczak MA. Isolation and characterization of putative O2 chemoreceptor cells from the gills of the channel catfish (Ictalurus punctatus). Brain Res 1092: 100‐107, 2006.
 100. Burmester T. Evolutionary history and diversity of arthropod hemocyanins. Micron 35: 121‐122, 2004.
 101. Burri PH. Morphology and respiratory function of the alveolar unit. Int Arch Allergy Appl Immunol 76(Suppl 1): 2‐12, 1985.
 102. Burri PH. Lung development and pulmonary angiogenesis. In: Gaultier C, Bourbon J, Post M, editors. Lung Development. New York: Oxford University Press, 1999, pp. 122‐151.
 103. Burri PH. Structural aspects of postnatal lung development ‐ alveolar formation and growth. Biol Neonate 89: 313‐322, 2006.
 104. Burri PH, Weibel ER. Influence of environmental PO2 on the growth of the pulmonary gas exchange apparatus. Chest 59: 25s‐26s, 1971.
 105. Burri PH, Weibel ER. Morphometric estimation of pulmonary diffusion capacity. II. Effect of PO2 on the growing lung, adaptation of the growing rat lung to hypoxia and hyperoxia. Respir Physiol 11: 247‐264, 1971.
 106. Byrne MJ, Duncan FD. The role of the subelytral spiracles in respiration in the flightless dung beetle Circellium bacchus. J Exp Biol 206: 1309‐1318, 2003.
 107. Cameron JN. Aerial gas exchange in the terrestrial Brachyura Gecarcinus lateralis and Cardisoma guanhumi. Comp Biochem Physiol 52A: 129‐134, 1975.
 108. Cameron JN. Brief introduction to the land crabs of the Palau Islands: Stages in the transition to air breathing. J Exp Zool 218: 1‐5, 1981.
 109. Cameron JN, Mecklenburg TA. Aerial gas exchange in the coconut crab, Birgus latro. Respir Physiol 19: 245‐261, 1973.
 110. Canfield DE, Teske A. Late Proterozoic rise in atmospheric oxygen concentration inferred from phylogenetic and sulphur‐isotope studies. Nature 382: 127‐132, 1996.
 111. Caniggia I, Mostachfi H, Winter J, Gassmann M, Lye SJ, Kuliszewski M, Post M. Hypoxia‐inducible factor‐1 mediates the biological effects of oxygen on human trophoblast differentiation through TGFbeta(3). J Clin Invest 105: 577‐587, 2000.
 112. Cardoso WV, Lu J. Regulation of early lung morphogenesis: Questions, facts and controversies. Development 133: 1611‐1624, 2006.
 113. Cardoso WV, Whitsett JA. Resident cellular components of the lung: developmental aspects. Proc Am Thorac Soc 5: 767‐771, 2008.
 114. Carey FG, Teal JM, Kanwisher JW, Lawson KD. Warm‐blooded fish. Am Zool 11: 135‐145, 1971.
 115. Carlson HC, Beggs EC. Ultrastructure of the abdominal air sac of the fowl. Res Vet Sci 14: 148‐150, 1973.
 116. Carrel JE. Heart rate and physiological ecology. In: Nentwig, W, editor. Ecophysiology of Spiders. Berlin Heidelberg: Springer Verlag, 1987, pp. 95‐110.
 117. Carrel JE, Heathcote RD. Heart rate in spiders: influence of body size and foraging strategies. Science 193: 148‐150, 1976.
 118. Carrier DR. Lung ventilation during walking and running in four species of lizards. Exp Biol 47: 33‐42, 1987.
 119. Carrier DR. Function of the intercostal muscles in trotting dogs: Ventilation or locomotion? J Exp Biol 199: 1455‐1465, 1996.
 120. Carrier DR, Farmer CG. The evolution of pelvic aspiration in archosaurs. Paleobiol 26: 271‐293, 2000a.
 121. Carrier DR, Farmer CG. The integration of ventilation and locomotion in archosaurs. Amer Zool 40: 87‐100, 2000b.
 122. Carroll RL. Quantitative aspects of the amphibian‐reptilian transition. Forma et Functio 3: 165‐178, 1970.
 123. Carroll SB, Grenier J, Weatherbee SD. From DNA to Diversity: Molecular Genetics and the Evolution of Animal Design. Cambridge: Blackwell, 2001.
 124. Casey TM. Allometric scaling of muscle performance and metabolism: Insects. In: Sutton JR, Coates G, Houston CS, editors. Hypoxia and Mountain Medicine. Oxford: Pergamon Press, 1992, pp. 152‐162.
 125. Casey TM, May ML, Morgan KR. Flight energetics of euglossine bees in relation to morphology and wing stroke frequency. J Exp Biol 116: 271‐289, 1985.
 126. Chandel NS, McClintock DS, Feliciano CE, Wood TM, Melendez JA, Rodriguez AM, Schumacker PT. Reactive oxygen species generated at mitochondrial complex III stabilize hypoxia‐inducible factor‐1alpha during hypoxia: A mechanism of O2 sensing. J Biol Chem 275: 25130‐25138, 2000.
 127. Chappell MA, Rogowitz GL. Mass, temperature and metabolic effects on discontinous gas exchange cycles in eucalyptus‐boring beetles (Coleoptera: Cerambycidae). J Exp Biol 203: 3809‐3820, 2000.
 128. Chappell MA, Roverud RC. Temperature effects on metabolism, ventilation, and oxygen extraction in a Neotropical bat. Respir Physiol 81: 401‐412, 1990.
 129. Chen HL, Pistollato F, Hoeppner DJ, Ni HT, McKay RD, Panchision DM. Oxygen tension regulates survival and fate of mouse central nervous system precursors at multiple levels. Stem Cells 25: 2291‐2301, 2007.
 130. Chen WT, Chen JM, Mueller SC. Coupled expression and colocalization of 140K cell adhesion molecules, fibronectin, and laminin during morphogenesis and cytodifferentiation of chick lung cells. J Cell Biol 103: 1073‐1090, 1986.
 131. Chown SL. Respiratory water loss in insects. Comp Biochem Physiol A Mol Integr Physiol 133: 791‐804, 2002.
 132. Chown SL, Davis ALV. Discontinous gas exchange and the significance of respiratory water loss in scarabaeine beetles. J Exp Biol 206: 3547‐3556, 2003.
 133. Chown SL, Gibbs AG, Hetz SK, Klok CJ, Lighton JRB, Marais E. Discontinuous gas exchange in insects: A clarification of hypotheses and approaches. Physiol Biochem Zool 79: 333‐343, 2006.
 134. Chown SL, Holter P. Discontinuous gas exchange cycles in Aphodius fossor (Scarabaeidae): A test of hypotheses concerning origins and mechanisms. J Exp Biol 203: 397‐403, 2000.
 135. Chown SL, Marais E, Picker MD, Terblanche JS. Gas exchange characteristics, metabolic rate and water loss of the Heelwalker, Karoophasma biedouwensis (Mantophasmatodea : Austrophasmatidae). J Insect Physiol 52: 442‐449, 2006.
 136. Chua YL, Dufour E, Dassa EP, Rustin P, Jacobs HT, Taylor CT, Hagen T. Stabilization of hypoxia‐inducible factor‐1alpha protein in hypoxia occurs independently of mitochondrial reactive oxygen species production. J Biol Chem 285: 31277‐31284, 2010.
 137. Chuang PT, McMahon AP. Branching morphogenesis of the lung: New molecular insights into an old problem. Trends Cell Biol 13: 86‐91, 2003.
 138. Clack JA. Gaining Ground ‐ The Origin and Evolution of Tetrapods. Bloomington: Indiana University Press, 2002.
 139. Clack JA. Devonian climate change, breathing, and the origin of the tetrapod stem group. Integr Comp Physiol 47: 510‐523, 2007.
 140. Claessens LPAM. Archosaurian respiration and the pelvic girdle aspiration breathing of crocodyliforms. Proc R Soc Lond B 271: 1461‐1465, 2004.
 141. Claessens LPAM. A cineradiographic study of lung ventilation in Alligator mississippiensis. J Exp Zool A 311: 563‐585, 2009.
 142. Cloud PE, Jr. Atmospheric and hydrospheric evolution on the primitive earth. Both secular accretion and biological and geochemical processes have affected earth's volatile envelope. Science 160: 729‐736, 1968.
 143. Clusella‐Trullas S, Chown SL. Investigating onychophoran gas exchange and water balance as a means to inform current controversies in arthropod physiology. J Exp Biol 211: 3139‐3146, 2008.
 144. Codd JR, Boggs DF, Perry SF, Carrier DR. Activity of three muscles associated with the uncinate processes of the giant Canada goose (Branta canadensis maximus). J Exp Biol 208: 849‐857, 2005.
 145. Contreras HL, Bradley TJ. Metabolic rate controls respiratory pattern in insects. J Exp Biol 212: 424‐428, 2009.
 146. Cook RD, King AS. Observations on the ultrastructure of the smooth muscle and its innervation in the avian lung. J Anat 106: 273‐283, 1970.
 147. Cook RD, Vaillant C, King AS. The structure and innervation of the saccopleural membrane of the domestic fowl, Gallus gallus: An ultrastructural and immunohistochemical study. J Anat 150: 1‐9, 1987.
 148. Cook RD, Vaillant CR, King AS. The abdominal air sac ostium of the domestic fowl: A sphincter regulated by neuro‐epithelial cells? J Anat 149: 101‐111, 1986.
 149. Cox CM, Poole TJ. Angioblast differentiation is influenced by the local environment: FGF‐2 induces angioblasts and patterns vessel formation in the quail embryo. Dev Dyn 218: 371‐382, 2000.
 150. Crapo JD, Barry BE, Gehr P, Bachofen M, Weibel ER. Cell number and cell characteristics of the normal human lung. Am Rev Respir Dis 126: 332‐337, 1982.
 151. Crapo JD, Young SL, Fram EK, Pinkerton KE, Barry BE, Crapo RO. Morphometric characteristics of cells in the alveolar region of mammalian lungs. Am Rev Respir Dis 128: S42‐S46, 1983.
 152. Crouch E, Wright JR. Surfactant proteins a and d and pulmonary host defense. Annu Rev Physiol 63: 521‐554, 2001.
 153. Csete M, Walikonis J, Slawny N, Wei Y, Korsnes S, Doyle JC, Wold B. Oxygen‐mediated regulation of skeletal muscle satellite cell proliferation and adipogenesis in culture. J Cell Physiol 189: 189‐196, 2001.
 154. Culik BM, McQueen DJ. Monitoring respiration and activity in the spider Geolycosa domifex (Hancock) using time‐lapse televison and CO2‐analysis. Can J Zool 63: 843‐846, 1985.
 155. Czopek J. Quantitative studies on the morphology of respiratory surface in amphibians. Acta Anat 62: 296‐323, 1965.
 156. Dagan T, Artzy‐Randrup Y, Martin W. Modular networks and cumulative impact of lateral transfer in prokaryote genome evolution. Proc Natl Acad Sci U S A 105: 10039‐10044, 2008.
 157. Dagan T, Martin W. Ancestral genome sizes specify the minimum rate of lateral gene transfer during prokaryote evolution. Proc Natl Acad Sci U S A 104: 870‐875, 2007.
 158. Damen WGM, Saridaki T, Averof M. Diverse adaptations of an ancestral gill: A common evolutionary origin for wings, breathing organs, and spinnerets. Curr Biol 12: 1711‐1716, 2002.
 159. Daniels CB, Orgeig S. The comparative biology of pulmonary surfactant: Past, present and future. Comp Biochem Physiol A Mol Integr Physiol 129: 9‐36, 2001.
 160. Dawson TJ, Dawson WR. Metabolic scope and conductance in response to cold of some dasyurid marsupials and Australian rodents. Comp Biochem Physiol 71: 59‐64, 1982.
 161. Dawson TJ, Hulbert AJ. Standard metabolism, body temperature, and surface areas of Australian marsupials. Am J Physiol 218: 1233‐1238, 1970.
 162. Dayan FE, Dayan EA. Porphyrins: One ring in the colors of life. Am Sci 99: 236‐243, 2011.
 163. de Beer G. Archeopteryx lithographica. London: British Museum of Natural History, 1954.
 164. de Jongh HJ, Gans C. On the mechanism of respiration in the bullfrog, Rana catesbeiana). J Morphol 127: 259‐290, 1969.
 165. de Moraes MFPG, Hõller S, da Costa OTE, Glass ML, Fernandes MN, Perry SF. Morphometric comparison of the respiratory organs in the South American lungfish Lepidosiren paradoxa (Dipnoi). Physiol Biochem Zool 78: 546‐559, 2005.
 166. de Troyer A. Respiratory action of the intercostal muscles. Physiol Rev 85: 717‐756, 2005.
 167. de Troyer A, Sampson M, Sigrist S, Macklem PT. The diaphragm: Two muscles. Science 213: 237‐238, 1981.
 168. Dean B. Fishes, Living and Fossil: An Outline of Their Forms and Possible Relationships. New York: Macmillan, 1895.
 169. Del Corral JPD. Anatomy and histology of the lung and air sacs of birds. In: Pastor LM, editor. Histology, Ultrastructure and Immunohistochemistry of the Respiratory Organs in Non‐mammalian Vertebrtaes Murcia: Publicaciones de la Universitatd de University of Murcia, 1995, pp. 179‐233.
 170. Diaz H, Rodriguez G. The branchial chamber in terrestrial crabs: A comparative study. Biol Bulletin 153: 485‐504, 1977.
 171. Dickinson MH, Lighton JRB. Muscle efficiency and elastic storage in the flight motor of Drosophila. Science 268: 87‐90, 1995.
 172. Dietrich LE, Tice MM, Newman DK. The co‐evolution of life and Earth. Curr Biol 16: R395‐R400, 2006.
 173. Dock DS, Kraus WL, Mc GL, Hyland JW, Haynes FW, Dexter L. The pulmonary blood volume in man. J Clin Invest 40: 317‐328, 1961.
 174. Dornescu G, Miscalencu D. Cele trei tipuri branhii ale teleosteenilor. Annul Bucharest University 17: 11‐20, 1968.
 175. Dreher D, Kok M, Cochand L, Kiama SG, Gehr P, Pechere JC, Nicod LP. Genetic background of attenuated Salmonella typhimurium has profound influence on infection and cytokine patterns in human dendritic cells. J Leukoc Biol 69: 583‐589, 2001.
 176. Dubach M. Quantitative analysis of the respiratory system of the house sparrow, budgerigar and violet‐eared hummingbird. Respir Physiol 46: 43‐60, 1981.
 177. Ducluzeau AL, van Lis R, Duval S, Schoepp‐Cothenet B, Russell MJ, Nitschke W. Was nitric oxide the first deep electron sink? Trends Biochem Sci 34: 9‐15, 2009.
 178. Dudley R. Atmospheric oxygen, giant Paleozoic insects and the evolution of aerial locomotor performance. J Exp Biol 201: 1043‐1050, 1998.
 179. Dudley R. The evolutionary physiology of animal flight: Paleobiological and present perspectives. Annu Rev Physiol 62: 135‐155, 2000.
 180. Duncan FD, Byrne MJ. Discontinous gas exchange in dung beetles: Patterns and ecological implications. Oecologia 122: 452‐458, 2000.
 181. Duncan FD, Byrne MJ. The role of the mesothoracic spiracles in respiration in flighted and flightless dung beetles. J Exp Biol 208: 907‐914, 2005.
 182. Duncan FD, Krasnov B, McMaster M. Metabolic rate and respiratory gas‐exchange patterns in tenebrionid beetles from the Negev Highlands, Israel. J Exp Biol 205: 791‐798, 2002.
 183. Duncan FD, Krasnov B, McMaster M. Novel case of a tenebrionid beetle using discontinuous gas exchange cycle when dehydrated. Physiol Entomol 27: 79‐83, 2002b.
 184. Duncker HR. The lung air sac system of birds. A contribution to the functional anatomy of the respiratory apparatus. Ergeb Anat Entwicklungsgesch 45: 7‐171, 1971.
 185. Duncker HR. Structure of avian lungs. Respir Physiol 14: 4‐63, 1972.
 186. Duncker HR. Structure of the avian respiratory tract. Respir Physiol 22: 1‐34, 1974.
 187. Duncker HR. Coelom‐Gliederung der Wirbeltiere ‐ Funktionelle Aspekte. Verh Anat Ges 72: 91‐112, 1978a.
 188. Duncker HR. Development of the avian respiratory and circulatry systems. In: Piiper J, editor. Respiratory Function in Birds, Adult and Embryonic. Berlin: Springer‐Verlag, 1978b, pp. 260‐273.
 189. Duncker HR. Structural and functional integration across the reptile‐bird transition: Locomotor and respiratory systems. In: Wake DB, Roth G, editors. Complex Organismal Functions: Integration and Evolution in Vertebrates, New York: John Wiley and Sons Ltd., 1989, pp. 147‐169.
 190. Duncker HR. Vertebrate lungs: structure, topography and mechanics. A comparative perspective of the progressive integration of respiratory system, locomotor apparatus and ontogenetic development. Respir Physiol Neurobiol 144: 111‐124, 2004.
 191. Dunlop JA, Anderson LI, Kerp H, Hass H. Preserved organs of Devonian harvestmen. Nature 425: 916, 2003.
 192. Dunlop JA, Anderson LI, Kerp H, Hass H. A harvestman (Arachnida: Opiliones) from the Early Devonian Rhynie cherts, Aberdeenshire, Scotland. Trans R Soc Edin Earth Sci 94: 341‐354, 2004.
 193. Dunlop JA, Kamenz C, Scholtz G. Reinterpreting the morphology of the Jurassic scorpion Liassoscorpionides. Arthropod Struct Dev 36: 245‐252, 2007.
 194. Dunlop JA, Webster M. Fossil evidence, terrestrialization and arachnid phylogeny. J Arachnol 27: 86‐93, 1999.
 195. Durner J, Gow AJ, Stamler JS, Glazebrook J. Ancient origins of nitric oxide signaling in biological systems. Proc Natl Acad Sci U S A 96: 14206‐14207, 1999.
 196. Elias M, Archibald JM. Sizing up the genomic footprint of endosymbiosis. Bioessays 31: 1273‐1279, 2009.
 197. Ellington CP, Machin KE, Casey TM. Oxygen consumption of bumblebees in forward flight. Nature 347: 472‐473, 1990.
 198. Ellis CH. The mechanism of extension in the legs of spiders. Biol Bull 86: 41‐50, 1944.
 199. Elsik CG, Tellam RL, Worley KC, Gibbs RA, Muzny DM, Weinstock GM, Adelson DL, Eichler EE, Elnitski L, Guigo R, Hamernik DL, Kappes SM, Lewin HA, Lynn DJ, Nicholas FW, Reymond A, Rijnkels M, Skow LC, Zdobnov EM, Schook L, Womack J, Alioto T, Antonarakis SE, Astashyn A, Chapple CE, Chen HC, Chrast J, Camara F, Ermolaeva O, Henrichsen CN, Hlavina W, Kapustin Y, Kiryutin B, Kitts P, Kokocinski F, Landrum M, Maglott D, Pruitt K, Sapojnikov V, Searle SM, Solovyev V, Souvorov A, Ucla C, Wyss C, Anzola JM, Gerlach D, Elhaik E, Graur D, Reese JT, Edgar RC, McEwan JC, Payne GM, Raison JM, Junier T, Kriventseva EV, Eyras E, Plass M, Donthu R, Larkin DM, Reecy J, Yang MQ, Chen L, Cheng Z, Chitko‐McKown CG, Liu GE, Matukumalli LK, Song J, Zhu B, Bradley DG, Brinkman FS, Lau LP, Whiteside MD, Walker A, Wheeler TT, Casey T, German JB, Lemay DG, Maqbool NJ, Molenaar AJ, Seo S, Stothard P, Baldwin CL, Baxter R, Brinkmeyer‐Langford CL, Brown WC, Childers CP, Connelley T, Ellis SA, Fritz K, Glass EJ, Herzig CT, Iivanainen A, Lahmers KK, Bennett AK, Dickens CM, Gilbert JG, Hagen DE, Salih H, Aerts J, Caetano AR, Dalrymple B, Garcia JF, Gill CA, Hiendleder SG, Memili E, Spurlock D, Williams JL, Alexander L, Brownstein MJ, Guan L, Holt RA, Jones SJ, Marra MA, Moore R, Moore SS, Roberts A, Taniguchi M, Waterman RC, Chacko J, Chandrabose MM, Cree A, Dao MD, Dinh HH, Gabisi RA, Hines S, Hume J, Jhangiani SN, Joshi V, Kovar CL, Lewis LR, Liu YS, Lopez J, Morgan MB, Nguyen NB, Okwuonu GO, Ruiz SJ, Santibanez J, Wright RA, Buhay C, Ding Y, Dugan‐Rocha S, Herdandez J, Holder M, Sabo A, Egan A, Goodell J, Wilczek‐Boney K, Fowler GR, Hitchens ME, Lozado RJ, Moen C, Steffen D, Warren JT, Zhang J, Chiu R, Schein JE, Durbin KJ, Havlak P, Jiang H, Liu Y, Qin X, Ren Y, Shen Y, Song H, Bell SN, Davis C, Johnson AJ, Lee S, Nazareth LV, Patel BM, Pu LL, Vattathil S, Williams RL, Jr, Curry S, Hamilton C, Sodergren E, Wheeler DA, Barris W, Bennett GL, Eggen A, Green RD, Harhay GP, Hobbs M, Jann O, Keele JW, Kent MP, Lien S, McKay SD, McWilliam S, Ratnakumar A, Schnabel RD, Smith T, Snelling WM, Sonstegard TS, Stone RT, Sugimoto Y, Takasuga A, Taylor JF, Van Tassell CP, Macneil MD, Abatepaulo AR, Abbey CA, Ahola V, Almeida IG, Amadio AF, Anatriello E, Bahadue SM, Biase FH, Boldt CR, Carroll JA, Carvalho WA, Cervelatti EP, Chacko E, Chapin JE, Cheng Y, Choi J, Colley AJ, de Campos TA, De Donato M, Santos IK, de Oliveira CJ, Deobald H, Devinoy E, Donohue KE, Dovc P, Eberlein A, Fitzsimmons CJ, Franzin AM, Garcia GR, Genini S, Gladney CJ, Grant JR, Greaser ML, Green JA, Hadsell DL, Hakimov HA, Halgren R, Harrow JL, Hart EA, Hastings N, Hernandez M, Hu ZL, Ingham A, Iso‐Touru T, Jamis C, Jensen K, Kapetis D, Kerr T, Khalil SS, Khatib H, Kolbehdari D, Kumar CG, Kumar D, Leach R, Lee JC, Li C, Logan KM, Malinverni R, Marques E, Martin WF, Martins NF, Maruyama SR, Mazza R, McLean KL, Medrano JF, Moreno BT, More DD, Muntean CT, Nandakumar HP, Nogueira MF, Olsaker I, Pant SD, Panzitta F, Pastor RC, Poli MA, Poslusny N, Rachagani S, Ranganathan S, Razpet A, Riggs PK, Rincon G, Rodriguez‐Osorio N, Rodriguez‐Zas SL, Romero NE, Rosenwald A, Sando L, Schmutz SM, Shen L, Sherman L, Southey BR, Lutzow YS, Sweedler JV, Tammen I, Telugu BP, Urbanski JM, Utsunomiya YT, Verschoor CP, Waardenberg AJ, Wang Z, Ward R, Weikard R, Welsh TH, Jr, White SN, Wilming LG, Wunderlich KR, Yang J, Zhao FQ. The genome sequence of taurine cattle: A window to ruminant biology and evolution. Science 324: 522‐528, 2009.
 200. Embley TM, Martin W. Eukaryotic evolution, changes and challenges. Nature 440: 623‐630, 2006.
 201. Epp TS, McDonough P, Padilla DJ, Gentile JM, Edwards KL, Erickson HH, Poole DC. Exercise‐induced pulmonary haemorrhage during submaximal exercise. Equine Vet J Suppl 502‐507, 2006.
 202. Esser C, Martin W. Supertrees and symbiosis in eukaryote genome evolution. Trends Microbiol 15: 435‐437, 2007.
 203. Fagerland JA, Arp LH. A morphologic study of bronchus‐associated lymphoid tissue in turkeys. Am J Anat 189: 24‐34, 1990.
 204. Fagerland JA, Arp LH. Distribution and quantitation of plasma cells, T lymphocyte subsets, and B lymphocytes in bronchus‐associated lymphoid tissue of chickens: age‐related differences. Reg Immunol 5: 28‐36, 1993.
 205. Farley RD. Regulation of air and blood flow through the booklungs of the desert scorpion, Paruroctonus mesaensis. Tissue Cell 22(4): 547‐569, 1990.
 206. Farley RD. Abdominal plates, spiracles and sternites in the ventral mesosoma of embryos of the desert scorpion Paruroctonus mesaensis (Scorpiones, Vaejovidae). Invertebr Reprod Dev 40: 193‐208, 2001.
 207. Farley RD. Development of respiratory structures in embryos and first and second instars of the bark scorpion, Centruroides gracilis (Scorpiones: Buthidae). J Morphol 269: 1134‐1156, 2008.
 208. Farmer CG. On the origin of avian air sacs. Respir Physiol Neurobiol 154: 89‐106, 2006.
 209. Farmer CG. The provenance of alveolar and parabronchial lungs: Insights from paleoecology and the discovery of cardiogenic, unidirectional airflow in the American alligator (Alligator mississippiensis). Physiol Biochem Zool 83: 561‐575, 2010.
 210. Farmer CG, Carrier DR. Pelvic aspiration in the American alligator (Alligator mississippiensis). J Exp Biol 203: 2691‐2697, 2000.
 211. Farmer CG, Saunders K. Unidirectional airflow in the lungs of alligators. Science 327: 338‐340, 2010.
 212. Farner DS. Some glimpses of comparative avian physiology. Fed Proc 29: 1649‐1663, 1970.
 213. Farrelly CA, Greenaway P. The morphology and vasculature of the respiratory organs of terrestrial hermit crabs (Coenobita and Birgus): gills, branchiostegal lungs and abdominal lungs. Arthropod Struct Dev 34: 63‐87, 2005.
 214. Fedde MR. Structure and gas‐flow pattern in the avian respiratory system. Poult Sci 59: 2642‐2653, 1980.
 215. Feder ME, Burggren WW. Cutaneous gas exchange in vertebrates: Design, patterns, control and implications. Biol Rev 60: 1‐45, 1985.
 216. Fedo CM, Whitehouse MJ. Metasomatic origin of quartz‐pyroxene rock, Akilia, Greenland, and implications for Earth's earliest life. Science 296: 1448‐1452, 2002.
 217. Fedo CM, Whitehouse MJ, Kamber BS. Geological constraints on detecting the earliest life on Earth: a perspective from the Early Archaean (older than 3.7 Gyr) of southwest Greenland. Philos Trans R Soc Lond B Biol Sci 361: 851‐867, 2006.
 218. Fenton MB, Bringham RM, Mills AM, Rautenbach IL. The roosting and foraging areas of Epomophorus wahlbergi (Pteropodida) and Scotophilus viridis (Vespertilionidae) in Kruger National Park, South Africa. J Mammal 66: 461‐468, 1985.
 219. Ferguson JS, Martin JL, Azad AK, McCarthy TR, Kang PB, Voelker DR, Crouch EC, Schlesinger LS. Surfactant protein D increases fusion of Mycobacterium tuberculosis‐containing phagosomes with lysosomes in human macrophages. Infect Immun 74: 7005‐7009, 2006.
 220. Fernandes MS, Giusti H, Glass ML. An assessment of dead space in pulmonary ventilation of the toad Bufo schneideri. Comp Biochem Physiol A 142: 446‐450, 2005.
 221. Ferrera F, Paoli P, Taiti S. An original respiratory structure in the xeric genus Periscyphis Gerstacker, 1873 (Crustacea: Oniscoidea: Eubelidae). Zool Anz 235: 147‐156, 1996/1997.
 222. Fick R. Ueber die Atemmuskeln. Anat Anz 14: 178‐181, 1898.
 223. Fielden LJ, Duncan FD, Rechav Y, Crewe RM. Respiratory gas exchange in the tick Amblyomma hebraeum (Acari: Ixodidae). Entomol Soc Am 30‐35, 1994.
 224. Fielden LJ, Jones RM, Goldberg M, Rechav Y. Feeding and respiratory gas exchange in the American dog tick, Dermacantor variabilis. J Ins Physiol 45: 297‐304, 1999.
 225. Fletcher OJ. Pathology of the avian respiratory system. Poult Sci 59: 2666‐2679, 1980.
 226. Florindo LH, Leite CAC, Kalinin AL, Reid SG, Milsom WKFT, Rantin FT. The role of branchial and orobranchial O2 chemoreceptors in the control of aquatic surface respiration in the neotropical fish tambaqui (Colossoma macropomum): Progressive responses to prolonged hypoxia. J Exp Biol 209: 1709‐1715, 2006.
 227. Foelix RF. Biology of Spiders (3rd ed). New York: Oxford University Press, 2011, pp. 17‐48.
 228. Foot NJ, Orgeig S, Daniels CB. The evolution of a physiological system: The pulmonary surfactant system in diving mammals. Respir Physiol Neurobiol 154: 118‐138, 2006.
 229. Forster CA, Sampson SD, Chiappe LM, Krause DW. The theropod ancestry of birds: New evidence from the late cretaceous of madagascar. Science 279: 1915‐1919, 1998.
 230. Forster RR. Evolution of the tarsal organ, the respiratory system and the female genitalia in spiders. Int Congr Arachnol 8: 269‐284, 1980.
 231. Franch‐Marro X, Martin N, Averof M, Casanova J. Association of tracheal placodes with leg primordia in drosophila and implications for the origin of insect tracheal systems. Development 133: 785‐790, 2006.
 232. Franz V. Morphologie der Akranier. Ergeb Anat Entwicklungsgesch 27: 464‐692, 1927.
 233. French R. Invention and Evolution Design in Nature and Engineering. Cambridge: Cambridge University Press, 1988.
 234. Fricke H, Plante R. Habitat requirements of the living coelacanth Latimeria chalumnae at grande comore, Indian Ocean. Naturwissenschaften 75: 149‐151, 1988.
 235. Full RJ. Locomotion energetics of the ghost crab I. Metabolic cost and endurance. J Exp Biol 130: 137‐153, 1987.
 236. Full RJ, Zuccarello DA, Tullis A. Effect of variation in form on the cost of terrestrial locomotion. J Exp Biol 150: 233‐246, 1990.
 237. Fuller RB. Inventions ‐ The Pattened Works of Buckminster Fuller. New York: St Martin's Press, 1983.
 238. Fung YB, Sobin SS. Pulmonary alveolar blood flow. In: West JB, editor. Bioengineering Aspects of the Lung. New York: Dekker, 1977, pp. 267‐359.
 239. Fung YC, Sobin SS. Theory of sheet flow in lung alveoli. J Appl Physiol 26: 472‐488, 1969.
 240. Gaillard F, Scaillet B, Arndt NT. Atmospheric oxygenation caused by a change in volcanic degassing pressure. Nature 478: 229‐232, 2011.
 241. Gallagher BC. Basal laminar thinning in branching morphogenesis of the chick lung as demonstrated by lectin probes. J Embryol Exp Morphol 94: 173‐188, 1986.
 242. Gallagher BC. Branching morphogenesis in the avian lung: Electron microscopic studies using cationic dyes. J Embryol Exp Morphol 94: 189‐205, 1986.
 243. Gans C. Respiration in early tetrapods ‐ the frog is a red herring. Evolution 24: 723‐734, 1970.
 244. Gans C. Strategy and sequence in the evolution of external gas exchangers of ectothermal vertebrates. Forma et Functio 3: 61‐104, 1971.
 245. Gans C. Ventilation mechanisms: problems in evaluating the transition to birds. In: Piiper J, editor. Respiratory Functions in Birds, Adult and Embryonic. Berlin: Springer, 1978, pp. 16‐22.
 246. Gans C, Clark B. Studies on ventilation of Caiman crocodilus (Crocodilia: Reptilia). Resp Physiol 26: 285‐301, 1976.
 247. Gans C, Hughes GM. The mechanism of lung ventilation in the tortoise Testudo graeca Linné. J Exp Biol 47: 1‐20, 1967.
 248. Gasc J‐P. Axial musculature. In: Gans C, and Parsons TS, editors. Biology of the Reptilia Vol 11: Morphology F. New York: Academic Press, 1981, pp. 355‐435.
 249. Gaunt AS, Gans C. Mechanics of respiration in the snapping turtle, Chelydra serpentina (Linné). J Morphol 128: 195‐228, 1969.
 250. Gee H. Life, but not as we know it. Nature Science Update, June 27, 2000. doi:10.1038/news000629‐5.
 251. Gehr P, Bachofen M, Weibel ER. The normal human lung: ultrastructure and morphometric estimation of diffusion capacity. Respir Physiol 32: 121‐140, 1978.
 252. Gehr P, Mwangi DK, Ammann A, Maloiy GM, Taylor CR, Weibel ER. Design of the mammalian respiratory system. V. Scaling morphometric pulmonary diffusing capacity to body mass: wild and domestic mammals. Respir Physiol 44: 61‐86, 1981.
 253. Gehr P, Schurch S, Berthiaume Y, Im Hof V, Geiser M. Particle retention in airways by surfactant. J Aerosol Med 3: 27‐43, 1990.
 254. Gehr P, Sehovic S, Burri PH, Claassen H, Weibel ER. The lung of shrews: Morphometric estimation of diffusion capacity. Respir Physiol 40: 33‐47, 1980.
 255. Geiser M, Cruz‐Orive LM, Im Hof V, Gehr P. Assessment of particle retention and clearance in the intrapulmonary conducting airways of hamster lungs with the fractionator. J Microsc 160: 75‐88, 1990.
 256. Geiser M, Matter M, Maye I, Im Hof V, Gehr P, Schurch S. Influence of airspace geometry and surfactant on the retention of man‐made vitreous fibers (MMVF 10a). Environ Health Perspect 111: 895‐901, 2003.
 257. George JC, Shah SV. The occurrence of a striated outer muscular sheath in the lungs of Lissemys punctata granosa Schoepff. J Anim Morphol Physiol 1: 13‐16, 1954.
 258. Ghabrial A, Luschnig S, Metzstein MM, Krasnow MA. Branching morphogenesis of the Drosophila tracheal system. Annu Rev Cell Dev Biol 19: 623‐647, 2003.
 259. Gibbs AG, Johnson RA. The role of discontinuous gas exchange in insects: The chthonic hypothesis does not hold water. J Exp Biol 207: 3477‐3482, 2004.
 260. Gil J, Weibel ER. Extracellular lining of bronchioles after perfusion‐fixation of rat lungs for electron microscopy. Anat Rec 169: 131‐145, 1971.
 261. Giribet G, Edgecombe GD, Wheeler WC. Arthropod phylogeny based on eight molecular loci and morphology. Nature 413: 157‐161, 2001.
 262. Glass ML, Johansen K, Abe AS. Pulmonary diffusing capacities in reptiles (relations to temperature and O2‐uptake). J Comp Physiol 142: 509‐514, 1981.
 263. Glazer L, Shilo BZ. The Drosophila FGF‐R homolog is expressed in the embryonic tracheal system and appears to be required for directed tracheal cell extension. Genes Dev 5: 697‐705, 1991.
 264. Gleeson TT. Patterns of metabolic recovery from exercise in amphibians and reptiles. J Exp Biol 160: 187‐207, 1991.
 265. Glenner H, Thomsen PF, Hebsgaard MB, Sorensen MV, Willerslev E. The origin of insects. Science 314: 1883‐1884, 2006.
 266. Godfrey RW. Human airway epithelial tight junctions. Microsc Res Tech 38: 488‐499, 1997.
 267. Goette A. Die Entwicklungsgeschichte der Unke (Bombina igneus) als Grundlage einer vergleichenden Morphologie der Wirbeltiere. Leipzig: Leopold Voss, 1875.
 268. Goldin GV, Opperman LA. Induction of supernumerary tracheal buds and the stimulation of DNA synthesis in the embryonic chick lung and trachea by epidermal growth factor. J Embryol Exp Morphol 60: 235‐243, 1980.
 269. Goldschmid A. Chondrichthyes, Knorpelfische. In: Westheide W, Rieger R, editors. Spezielle Zoologie ‐ Teil 2: Wirbel‐oder Schädeltiere (2nd ed). Heidelberg: Spektrum Akademischer Verlag, 2010, pp. 217‐236.
 270. Gomi T. Electron microscopic studies on the alveolar brush cell of the striped snake (Elaphe quadrivirgata). J Med Soc Toho Univ 29: 481‐489, 1982.
 271. Gomi T, Kimura A, Tsuchiya H, Hashimito T, Higashi K, Sasa S. Electron microscopic observations of the alveolar brush cells of the bullfrog. Zool Sci 4: 613‐620, 1987.
 272. Goncalves CA, Figueiredo MH, Bairos VA. Three‐dimensional organization of the elastic fibres in the rat lung. Anat Rec 243: 63‐70, 1995.
 273. Goniakowska‐Witalińska L. The histology and ultrastructure of the amphibian lung. In: Pastor LM, editor. Histology, Ultrastructure and Immunohistochemistry of the Respiratory Organs in Non‐mammalian Vertebrates. Murcia: Servicio de Publicaciones de la Universidad de Murcia, 1995, pp. 73‐112.
 274. Goniakowska‐Witalińska L. Neuroepithelial bodies and solitary neuroendocrine cells in the lungs of amphibia. Microsc Res Tech 37: 13‐30, 1997.
 275. Goodrich ES. Studies on the Structure and Development of Vertebrates. London, New York: Macmillan, 1930.
 276. Graham JB. Air‐Breathing Fishes ‐ Evolution, Diversity and Adaptation. San Diego: Academic Press, 1997.
 277. Granowitz EV, Tonomura N, Benson RM, Katz DM, Band V, Makari‐Judson GP, Osborne BA. Hyperbaric oxygen inhibits benign and malignant human mammary epithelial cell proliferation. Anticancer Res 25: 3833‐3842, 2005.
 278. Gray EM, Bradley TJ. Evidence from mosquitoes suggests that cyclic gas exchange and discontinuous gas exchange are two manifestations of a single respiratory pattern. J Exp Biol 209: 1603‐1611, 2006.
 279. Greenaway P, Morris S, McMahon B. Adapations to a terrestrial existence by the robber crab Birgus latro II. In vivo respiratory gas exchange and transport. J Exp Biol 140: 493‐509, 1988.
 280. Greenaway P, Morris, S., McMahon BR, Farrelly CA, Gallagher KL. Air breathing by the purple shore crab, Hemigrapsus nudus I. Morphology, behaviour, and respiratory gas exchange. Physiol Zool 69(4): 785‐805, 1996.
 281. Greenlee KJ, Harrison JF. Development of respiratory function in the American locust Schistocerca americana I. Across‐instar effects. J Exp Biol 207: 497‐508, 2004.
 282. Greenlee KJ, Nebeker C, Harrison JF. Body size‐independent safety margins for gas exchange across grasshopper species. J Exp Biol 210: 1288‐1296, 2007.
 283. Greenstone MH, Bennett AF. Foraging strategy and metabolic rates in spiders. Ecology 61(5): 1255‐1259, 1980.
 284. Gregor M, Daniels C, Nicholas T. Lung ultrastructure and the surfactant‐like system of the central netted dragon, Ctenophorus nuchalis. Copeia 2: 326‐333, 1993.
 285. Greil A. Über die Anlage der Lungen, sowie der ultimobranchialen (postbranchialen, supraperikardialen) Körper bei anuren Amphibien. Anat Hefte 29: 445‐506, 1905.
 286. Grigg GC. Studies on the Queensland lungfish, Neoceradotus forsteri (Krefft). Austr J Zool 13: 243‐253, 1965.
 287. Guzy RD, Hoyos B, Robin E, Chen H, Liu L, Mansfield KD, Simon MC, Hammerling U, Schumacker PT. Mitochondrial complex III is required for hypoxia‐induced ROS production and cellular oxygen sensing. Cell Metab 1: 401‐408, 2005.
 288. Haagsman HP, Diemel RV. Surfactant‐associated proteins: Functions and structural variation. Comp Biochem Physiol A Mol Integr Physiol 129: 91‐108, 2001.
 289. Hadley NF, Quinlan MC. Discontinous carbon dioxide release in the eastern lubber grasshopper Romalea guttata and its effect on respiratory transpiration. J exp Biol 177: 169‐180, 1993.
 290. Haefeli‐Bleuer B, Weibel ER. Morphometry of the human pulmonary acinus. Anat Rec 220: 401‐414, 1988.
 291. Halperin J, Ansaldo M, Pellerano GN, Luquet CM. Bimodal breathing in the estuarine crab Chasmagnathus granulatus Dana 1851 ‐ physiological and morphological studies. Comp Biochem Physiol Part A 126: 341‐349, 2000.
 292. Hamberger GE. De Respirationis Mechanismo et Usu Genuino. Jena: Croeker, 1749.
 293. Hamburger V, Hamilton HL. A series of normal stages in the development of the chick embryo. J Morph 88: 49‐92, 1951.
 294. Hammel JU, Herzen J, Beckmann F, Nickel M. Sponge budding is a spatiotemporal morphological patterning process: Insights from synchrotron radiation‐based x‐ray microtomography into the asexual reproduction of Tethya wilhelma. Front Zool 6: 19, 2009.
 295. Harder W. Anatomie der Fische. In: Dermoll R, Maier HN, Wundsch HH, editors. Handbuch der Binnenfischerei Mitteleuropas ‐ Vol IIA. Stuttgart: E. Schweizerbart'sche Verlagsbuchhandlung, 1964, pp. 1‐404.
 296. Hardisty MW. General introduction to lampreys. In: Holcík J, editor. The Freshwater Fishes of Europe Vol 1/I Petromyzontiformes. Wiesbaden: Aula‐Verlag, 1986, p. 19‐84.
 297. Harkema JR, Mariassy A, George J, Hyde DM, Plopper C. Epithelial cells of the conducting airways: A species comparison. In: Farmer SG, Hay DWP, editors. Lung Biology in Health and Disease: The Airway Epithelium. New York: Marcel Dekker Inc., 1991, pp. 3‐39.
 298. Harrison J, Frazier MR, Henry JR, Kaiser A, Klok CJ, Rascon B. Responses of terrestrial insects to hypoxia or hyperoxia. Respir Physiol Neurobiol 154: 4‐17, 2006.
 299. Harrison JF, Hadley NF, Quinlan MC. Acid‐base status and spiracular control during discontinuous ventilation in grasshoppers. J Exp Biol 198: 1755‐1763, 1995.
 300. Harrison JF, Kaiser A, VandenBrooks JM. Atmospheric oxygen level and the evolution of insect body size. Proc Biol Sci 277: 1937‐1946, 2010.
 301. Harrison JF, Lighton JRB. Oxygen‐sensitive flight metabolism in the dragonfly Erythemis simplicicollis. J Exp Biol 201: 1739‐1744, 1998.
 302. Harrison JF, Phillips JE, Gleeson TT. Activity physiology of the two‐striped grasshopper, Melanoplus bivittatus: gas exchange, hemolymph acid‐base status, lactate production, and the effect of temperature. Physiol Zool 64(2): 451‐472, 1991.
 303. Harrison JF, Roberts SP. Flight respiration and energetics. Annu Rev Physiol 62: 179‐205, 2000.
 304. Harrison JM. Caste‐specific changes in honeybee flight capacity. Physiol Zool 59: 175‐187, 1986.
 305. Hartung DK, Kirkton SD, Harrison JF. Ontogeny of tracheal system structure: A light and electron‐microscopy study of the metathoracic femur of the American locust, Schistocerca americana. J Morphol 262: 800‐812, 2004.
 306. Heinrich B. Why have some animals evolved to regulate high body temperature. Am Nat 111: 623‐640, 1977.
 307. Heinrich B. Insect Thermoregulation. New York: Wiley, 1981.
 308. Heller J. Sauerstoffverbrauch der Schmetterlingspuppen in Abhängigkeit von der Temperatur. Z vergl Physiol 11: 448‐460, 1930.
 309. Hemmingsen AM. Energy metabolism as related to body size and respiratory surfaces, and its evolution. Rep Steno Mem Hosp 9: 1‐110, 1960.
 310. Henry JR, Harrison JF. Plastic and evolved responses of larval tracheae and mass to varying atmospheric oxygen content in Drosophila melanogaster. J Exp Biol 207: 3559‐3567, 2004.
 311. Henry RP. Morphological, behavioral, and physiological characterization of bimodal breathing crustaceans. Amer Zool 34: 205‐215, 1994.
 312. Henry RP, Wheatly MG. Interaction of respiration, ion regulation, amd acid‐base balance in the everyday life of aquatic Crustaceans. Amer Zool 32: 407‐416, 1992.
 313. Hermida GN, Farías A, Fiorito LE. Ultrastructural characteristics of the lung of Melanophryniscus stelzneri stelzneri (Weyenberg, 1875) (Anura, Bufonidae). Biocell 26: 347‐355, 2002.
 314. Hermida GN, Fiorito LE, Farías A. The lung of the common toad, Bufo arenarum (Anura: Bufonidae). A light and electron microscopy study. Biocell 22: 19‐26, 1998.
 315. Herreid CF. Energetics of pedestrian arthropods. In: Herreid CF, Fourtner CR, editors. Locomotion and Energetics in Arthropods. New York: Plenum, pp. 491‐526, 1981.
 316. Herreid CFI, Full RF. Cockroaches on a treadmill: Aerobic running. J Insect Physiol 30: 395‐403, 1984.
 317. Herreid CFI, Full RJ, Prawel DA. Energetics of cockroach locomotion. J Exp Biol 94: 189‐202, 1981.
 318. Herrel A, Gibb AC. Ontogeny of performance in vertebrates. Physiol Biochem Zool 79: 1‐6, 2006.
 319. Hetz SK. The role of the spiracles in gas exchange during development of Samia cynthia (Lepidoptera, Saturniidae). Comp Biochem Physiol A 148: 743‐754, 2007.
 320. Hetz SK, Bradley TJ. Insects breathe discontinuously to avoid oxygen toxicity. Nature 433: 516‐519, 2005.
 321. Hildebrand M, Goslow GE. Analysis of Vertebrate Structure (5th ed). New York: John Wiley & Sons, Inc., 2001.
 322. Hilken G. Tracheal systems in Chilopoda: a comparison under phylogenetic aspects. Ent Scand Suppl 51: 49‐60, 1997.
 323. Hilken G. Vergleich von Tracheensystemen unter phylogenetischen Aspekten. Verh Naturwiss Ver Hamburg (NF)37: 5‐94, 1998.
 324. Hillenius WJ, Ruben JA. The evolution of endothermy in terrestrial vertebrates: Who? When? Why? Physiol Biochem Zool 77: 1019‐1042, 2004.
 325. Hochstetter F. Über die Entwicklung der Scheidewandbildungen in der Leibeshöhle der Krokodile. In: Voeltzkow A, editor. Reise in Ostafrika in den Jahren 1903‐05, Wissenschaftliche Ergebnisse 4. Stuttgart: E. Schweizerbarthsche Verlagsbuchhandlung, 1906, pp. 141‐205.
 326. Hodges RD. The Histology of the Fowl. London: Academic Press, 1974.
 327. Hodgson AN. The biology of siphonariid limpets (Gastropoda: Pulmonata). In: Oceanography and Marine Biology. London: Taylor & Francis Ltd, 1999, vol. 37, pp. 245‐314.
 328. Hoese B. Morphologie und Evolution der Lungen bei den terrestrischen Isopoden (Crustacea, Isopoda, Oniscoidea). Zool Jb Anat 107: 396‐422, 1982.
 329. Hofer AM, Perry SF, Schmitz A. Respiratory system of arachnids II: Morphology of the tracheal system of Leiobunum rotundum and Nemastoma lugubre (Arachnida, Opiliones). Arthropod Struct Dev 29: 13‐21, 2000.
 330. Hoffman DL, Salter JD, Brookes PS. Response of mitochondrial reactive oxygen species generation to steady‐state oxygen tension: implications for hypoxic cell signaling. Am J Physiol Heart Circ Physiol 292: H101‐H108, 2007.
 331. Horsfield K. Diameters, generations, and orders of branches in the bronchial tree. J Appl Physiol 68: 457‐461, 1990.
 332. Horsfield K, Cumming G. Morphology of the bronchial tree in man. J Appl Physiol 24: 373‐383, 1968.
 333. Hsia CC. Coordinated adaptation of oxygen transport in cardiopulmonary disease. Circulation 104: 963‐969., 2001.
 334. Hsia CCW, Polo Carbayo JJ, Yan X, Bellotto DJ. Enhanced alveolar growth and remodeling in guinea pigs raised at high altitude. Respir Physiol Neurobiol 147: 105‐115, 2005.
 335. Huey RB, Ward PD. Hypoxia, global warming, and terrestrial late Permian extinctions. Science 308: 398‐401, 2005.
 336. Hughes GM. Ultrastructure and morphometry of the gills of Latimeria chalumnae, and a comparison with the gills of associated fishes. Proc R Soc Lond B 208: 309‐328, 1980.
 337. Hughes GM. The gills of the coelacanth, Latimeria chalumnae, a study in relation to body size. Phil Trans R Soc Lond B 347: 427‐438, 1995.
 338. Hughes GM, Munshi JSD. Nature of the air‐breathing organs of the Indian fishes Channa, Amphipnous, Clarias and Saccobranchus as shown by electron microscopy. J Zool Lond 170: 245‐270, 1973.
 339. Hughes GM, Shelton G. The mechanism of gill ventilation in three freshwater teleosts. J Exp Biol 35: 807‐823, 1958.
 340. Hughes GM, Weibel ER. Morphometry of fish lungs. In: Hughes GM, editor. Respiration of Amphibious Vertebrates. London: Academic Press, 1976, pp. 213‐232.
 341. Hutchison VH, Dowling HG, Vinegar A. Thermoregulation in a brooding female Indian python, Python molurus bivittatus. Science 151: 694‐696, 1966.
 342. Hwang UW, Friedrich M, Tautz D, Park CJ, Kim W. Mitochondrial protein phylogeny joins myriapods with chelicerates. Nature 413: 154‐157, 2001.
 343. Hyde DM, Tyler NK, Putney LF, Singh P, Gundersen HJ. Total number and mean size of alveoli in mammalian lung estimated using fractionator sampling and unbiased estimates of the Euler characteristic of alveolar openings. Anat Rec A Discov Mol Cell Evol Biol 277: 216‐226, 2004.
 344. Innes AJ, Taylor EW. The evolution of air‐breathing in crustaceans: a functional analysis of branchial, cutanous and pulmonary gas exchange. Comp Biochem Physiol 85A: 621‐637, 1986.
 345. Ishimatsu A, Iwama GK, Heisler N. In vivo analysis of partitioning of cardiac output between systemic and central venous sinus circuits in rainbow trout: A new approach using chronic cannulation of the branchial vein. J Exp Biol 137: 75‐88, 1988.
 346. Isozaki Y. Permo‐triassic boundary superanoxia and stratified superocean: Records from lost deep sea. Science 276: 235‐238, 1997.
 347. Jackson DC, Prange HD. Ventilation and gas exchange during rest and exercise in adult green sea turtles. J Comp Physiol 134: 315‐319, 1979.
 348. Jaenicke E, Decker H, Gebauer WA, Markl J, Burmester T. Identification, structure, and properties of hemocyanins from diplopod myriapoda. J Biol Chem 274: 29071‐29074, 1999.
 349. Janvier P. Early Vertebrates. Oxford: Oxford University Press, 1996.
 350. Jarecki J, Johnson E, Krasnow MA. Oxygen regulation of airway branching in Drosophila is mediated by branchless FGF. Cell 99: 211‐220, 1999.
 351. Jenney FE, Jr, Verhagen MF, Cui X, Adams MW. Anaerobic microbes: Oxygen detoxification without superoxide dismutase. Science 286: 306‐309, 1999.
 352. Jensen GC, Armstrong DA. Intertidal zonation among congeners ‐ factors regulating distribution of porcelain crabs Petrolisthes‐spp (Anomura, Porcellanidae). Marine Ecol Prog Ser 73: 47‐60, 1991.
 353. Jeram AJ. Book‐lungs in a lower Carboniferous scorpion. Nature 343: 360‐361, 1990.
 354. Jeram AJ, Selden PA, Edwards D. Land animals in The Silurian ‐ arachnids and myriapods from Shropshire, England. Science 250: 658‐661, 1990.
 355. Jones JD. Aspects of respiration in Planorbus corneus L. and Lymnaea stagnalis L.(Gastropoda: Pulmonata). Comp Biochem Physiol 4: 1‐29, 1961.
 356. Jones JH. Pulmonary blood flow distribution in panting ostriches. J Appl Physiol 53: 1411‐1417, 1982.
 357. Jones JH, Effmann EL, Schmidt‐Nielsen K. Lung volume changes during respiration in ducks. Respir Physiol 59: 15‐25, 1985.
 358. Jonz MG, Fearon IM, Nurse CA. Neuroepithelial oxygen chemoreceptors of the zebrafish gill. J Physiol 560: 737‐752, 2004.
 359. Joos B, Lighton JRB, Harrison JF, Suarez RK, Roberts S.P. Effects of ambient oxygen tension on flight performance, metabolism, and water loos in the honeybee. Physiol Zool 70: 167‐174, 1997.
 360. Jung A, Allen L, Nyengaard JR, Gundersen HJ, Richter J, Hawgood S, Ochs M. Design‐based stereological analysis of the lung parenchymal architecture and alveolar type II cells in surfactant protein A and D double deficient mice. Anat Rec A Discov Mol Cell Evol Biol 286: 885‐890, 2005.
 361. Kaestner A. Lehrbuch der speziellen Zoologie. Band I Wirbellose Tiere. 4. Teil Arthropoda. Jena, Stuttgart, New York: Gustav Fischer Verlag, 1993.
 362. Kamenz C, Dunlop JA, Scholtz G. Characters in the book lungs of Scorpiones (Chelicerata, Arachnida) revealed by scanning electron microscopy. Zoomorphology 124: 101‐109, 2005.
 363. Kamenz C, Dunlop JA, Scholtz G, Kerp H, Hass H. Microanatomy of early devonian book lungs. Biol Lett 4: 212‐215, 2008.
 364. Kardong KV. Vertebrates ‐ Comparative Anatomy, Function, Evolution. Boston: McGraw Hill, 2009.
 365. Kästner A. Bau und Funktion der Fächertracheen einiger Spinnen. Z Morphol Oekol Tiere 13: 463‐558, 1929.
 366. Kästner A. Verdauungs‐ und Atemorgane der Weberknechte Opilio parietinus de Geer und Phalangium opilio L. Z Morphol Oekol Tiere 27(4): 587‐623, 1933.
 367. Keith A. The nature of the mammalian diaphragm and pleural cavities. J Anat Physiol 39: 243‐284, 1905.
 368. Kempton RT. Morphological features of functional significance in the gills of the spiny dogfish, Squalus acanthias. Biol Bull 136: 226‐240, 1969.
 369. Kent GC, Carr RK. Comparative Anatomy of the Vertebrates (9th ed). New York: McGraw Hill, 2001.
 370. Kestler P. Respiration and respiratory water loss. In: Hoffmann K, editor. Environmental Physiology and Biochemistry of Insects. New York: Spinger‐Verlag, 1985, pp. 137‐184.
 371. Kestler P. Cyclic CO2 release as a physiological stress indicator in insects. Comp Biochem Physiol 100C: 207‐211, 1991.
 372. Kiama SG, Cochand L, Karlsson L, Nicod LP, Gehr P. Evaluation of phagocytic activity in human monocyte‐derived dendritic cells. J Aerosol Med 14: 289‐299, 2001.
 373. Kilburn H. A hypothesis for pulmonary clearance and its implications. Am Rev Respir Dis 98: 449‐463, 1968.
 374. King AS. Structural and functional aspects of the avian lung and its air sacs. Intern Rev Gen Exp Zool 2: 171‐267, 1966.
 375. King AS, Molony V. The anatomy of respiration. In: Bell DF, Freeman BM, editors. Physiology and Biochemistry of the Domestic Fowl. London, New York: Academic Press, 1971, pp. 347‐384.
 376. Kirkton SD, Niska JA, Harrison JE. Ontogenetic effects on aerobic and anaerobic metabolism during jumping in the American locust, Schistocerca americana. J Exp Biol 208: 3003‐3012, 2005.
 377. Kirschfeld U. Eine Bauplananalyse der Waranlunge. Zool Beitr (Neue Folge) 16: 401‐440, 1970.
 378. Kjellesvig‐Waering EN. A restudy of the fossil Scorpionida of the world. Paleont Am 55: 1‐287, 1986.
 379. Klaver JJC. Lung‐morphology in the Chamaelionidae (Sauria) and its bearing upon phylogeny, systematics and zoogeography. Z Zool Syst Evolutionsforsch 19: 36‐58, 1980.
 380. Klein W, Abe A, Perry SF. Static lung compliance and body pressures in Tupinambis merianae with and without post‐hepatic septum. Respir Physiol Neurobiol 135: 73‐86, 2003.
 381. Klein W, Abe AS, Andrade DV, Perry SF. Structure of the posthepatic septum and its influence on visceral topology in the tegu lizard, Tupinambis merianae (Teiidae:Reptilia). J Morphol 258: 151‐157, 2003.
 382. Klein W, Böhme W, Perry SF. The mesopneumonia and the post‐hepatic septum of the Teiioidea (Reptilia: Squamata). Acta Zool (Stockh) 81: 109‐119, 2000.
 383. Klein W, Owerkowicz T. Function of intracoelomic septa in lung ventilation of amniotes: Lessons from lizards. Physiol Biochem Zool 79: 1019‐1032, 2006.
 384. Klein W, Reuter C, Böhme W, Perry SF. Lungs and mesopneumonia of scincomorph lizards (Reptilia: Squamata). Org Divers Evol 5: 47‐57, 2005.
 385. Klika E, Scheuermann DW, De Groodt‐Lasseel MH, Bazantova I, Switka A. Anchoring and support system of pulmonary gas‐exchange tissue in four bird species. Acta Anat (Basel) 159: 30‐41, 1997.
 386. Klok CJ, Harrison JF. Atmospheric hypoxia limits selection for large body size in insects. PLoS ONE 4: e3876, 2009.
 387. Klok CJ, Hubb AJ, Harrison JF. Single and multigenerational responses of body mass to atmospheric oxygen concentrations in Drosophila melanogaster: Evidence for roles of plasticity and evolution. J Evol Biol 22: 2496‐2504, 2009.
 388. Klok CJ, Mercer RD, Chown SL. Discontonous gas‐exchange in centipedes and its convergent evolution in tracheated arthropods. J Exp Biol 205: 1019‐1029, 2002.
 389. Knoll AH, Barnbach RK, Payne JL, Pruss S, Fischer WW. Paleophysiology and end‐Permian mass extinction. Earth Planet Sc Lett 256: 295‐313, 2007.
 390. Knust J, Ochs M, Gundersen HJ, Nyengaard JR. Stereological estimates of alveolar number and size and capillary length and surface area in mice lungs. Anat Rec (Hoboken) 292: 113‐122, 2009.
 391. Koetzler R, Saifeddine M, Yu Z, Schurch FS, Hollenberg MD, Green FH. Surfactant as an airway smooth muscle relaxant. Am J Respir Cell Mol Biol 34: 609‐615, 2006.
 392. Kovac H, Stabentheiner A, Hetz SK, Petz M, Crailsheim K. Respiration of resting honeybees. J Insect Physiol 53: 1250‐1261, 2007.
 393. Krogh A. Studien über Tracheenrespiration III. Die Kombination von mechanischer Ventilation mit Gasdiffusion nach Versuchen an Dytiscus‐Larven. Pflügers Arch 179: 113‐120, 1920.
 394. Krogh A. Studien über Tracheenerespiration II. Über Gasdiffusion in den Tracheen. Pflügers Arch 179: 95‐112, 1920.
 395. Krogh A. The Comparative Physiology of Respiratory Mechanisms. New York: Dover Publications. Inc., 1941.
 396. Krolikowski K, Harrison JF. Haemolymph acis‐base status, tracheal gas levels and the control of post‐exercise ventilation rate in grasshoppers. J Exp Biol 199: 391‐399, 1996.
 397. Kusche K, Burmester T. Diplopod hemocyanin sequence and the phylogenetic position of the Myriapoda. Mol Biol Evol 18: 1566‐1573, 2001.
 398. Kusche K, Hembach A, Hagner‐Holler S, Gebauer W, Burmester T. Complete subunit sequences, structure and evolution of the 6×6‐mer hemocyanin from the common house centipede, Scutigera coleoptrata. Eur J Biochem 270: 2860‐2868, 2003.
 399. Labandeira CC, Sepkoski JJ, Jr. Insect diversity in the fossil record. Science 261: 310‐315, 1993.
 400. LaBarbera M. Principles of design of fluid transport systems in zoology. Science 249: 992‐1000, 1990.
 401. Lake JA. Evidence for an early prokaryotic endosymbiosis. Nature 460: 967‐971, 2009.
 402. Lambertz M, Böhme W, Perry SF. The anatomy of the respiratory system in Platysternon megacephalum Gray, 1831 (Testudines: Cryptodira) and related species, and its phylogenetic implications. Comp Biochem Physiol A 156: 330‐336, 2010.
 403. Lambertz M, Perry SF. David Paul von Hansemann and the musculus pulmonalis in turtle lungs ‐ Who? What? In: Perry SF, Morris S, Breuer T, Pajor N, Lambertz M, editors. 2nd International Congress of Respiratory Science 2009 ‐ Abstracts and Scientific Program. Hildesheim: Tharax, 2009, pp. 223‐224.
 404. Lamy E. Les trachées des araignées. Ann Sci Natur Zool 15(8): 149‐280, 1902.
 405. Landberg T, Mailhot JD, Brainerd EL. Lung ventilation during treadmill locomotion in a terrestrial turtle, Terrapene carolina. J Exp Biol 206: 3391‐3404, 2003.
 406. Landberg T, Mailhot JD, Brainerd EL. Lung ventilation during treadmill locomotion in a semi‐aquatic turtle, Trachemys scripta. J Exp Zool A 311: 551‐562, 2009.
 407. Lane N. Oxygen: The Molecule that Made the World. New York: Oxford University Press, 2002.
 408. Lane N, Allen JF, Martin W. How did LUCA make a living? Chemiosmosis in the origin of life. Bioessays 32: 271‐280, 2010.
 409. Lasiewski RC. The energetics of migrating hummingbirds. Condor 64: 324, 1962.
 410. Lasiewski RC, Dawson WR. A re‐examination of the relation between standard metabolic rate and body weight in birds. Condor 69: 13‐23, 1967.
 411. Laybourne RC. Collision between a vulture and an aircraft at an altitude of 37,000 ft. Wilson Bull 86: 461‐462, 1974.
 412. Lease HM, Wolf BO, Harrison JF. Intraspecific variation in tracheal volume in the American locust, Schistocerca americana, measured by a new inert gas method. J Exp Biol 209: 3476‐3483, 2006.
 413. Lehmann FO. Matching spiracle opening to metabolic need during flight in Drosophila. Science 294: 1926‐1929, 2001.
 414. Levi HW. Adaptations of respiratory systems of spiders. Evolution 21: 571‐583, 1967.
 415. Levi HW. On the evolution of tracheae in Arachnids. Bull Br Arachnol Soc 3: 187‐188, 1976.
 416. Levine JS. The photochemistry of the paleoatmosphere. J Mol Evol 18: 161‐172, 1982.
 417. Levine JS, Augustsson TR. The photochemistry of biogenic gases in the early and present atmosphere. Orig Life Evol Biosph 15: 299‐318, 1985.
 418. Levine JS, Augustsson TR, Natarajan M. The prebiological paleoatmosphere: Stability and composition. Orig Life 12: 245‐259, 1982.
 419. Levine JS, Boughner RE, Smith KA. Ozone, ultraviolet flux and temperature of the paleoatmosphere. Orig Life 10: 199‐213, 1980.
 420. Lewis SV. Respiration in Lampreys. Can J Fish Aquat Sci 37: 1711‐1722, 1980.
 421. Lewis SV, Potter IC. Gill Morphometrics of the Lampreys Lampetra fluviatilis (L.) and Lampetra planeri (Bloch). Acta Zool (Stockh) 57: 103‐112, 1976.
 422. Lewis SV, Potter IC. A light and electron microscope study of the gills of larval lampreys (Geotria australis) with particular reference to the water‐blood pathway. J Zool Lond 198: 157‐176, 1982.
 423. Liem KF. Functional design of the air ventilation apparatus and overland excursions by teleosts. Fieldiana Zool 37: 1‐29, 1987.
 424. Liem KF. Form and function of lungs: The evolution of air breathing mechanisms. Am Zool 28: 739‐759, 1988.
 425. Lighton JRB. Minimum cost of transport and ventilatory patterns in three African beetles. Physiol Zool 58(4): 390‐399, 1985.
 426. Lighton JRB. Discontinous CO2 emission in a small insect, the formicine ant Camponotus vicinus. J exp Biol 134: 363‐376, 1988.
 427. Lighton JRB. Discontinous gas exchange in insects. Annu Rev Entomol 41: 309‐324, 1996.
 428. Lighton JRB. Notes from underground: towards ultimate hypotheses of cyclic, discontinous gas‐exchange in tracheate arthropods. Amer Zool 38: 483‐491, 1998.
 429. Lighton JRB. Lack of discontinous gas exchange in a tracheate arthropod, Leiobunum townsendi (Arachnida, Opiliones). Physiol Entomol 27: 170‐174, 2002.
 430. Lighton JRB. Respiratory biology: Why insects evolved discontinuous gas exchange. Current Biology 17: R645‐R647, 2007.
 431. Lighton JRB, Bartholomew GA, Feener DH. Energetics of locomotion and load carriage and a model of the energy cost of foraging in the leaf‐cutting ant Atta colombica Guer. Physiol Zool 60(5): 524‐537, 1987.
 432. Lighton JRB, Berrigan D. Questioning paradigms: Casre‐specific ventilation in harvester ants, Messor pergandei and M. julianus (Hymenoptera: Formicidae). J Exp Biol 198: 521‐530, 1995.
 433. Lighton JRB, Duncan FD. Standard and exercise metabolism and the dynamics of gas exchange in the giant red velvet mite, Dinothrombium magnificum. J Insect Physiol 41: 877‐884, 1995.
 434. Lighton JRB, Fielden LJ. Gas exchange in wind spiders (Arachnida, Solphugidae): Independent evolution of convergent control strategies in solphugids and insects. J Insect Physiol 42: 347‐357, 1996.
 435. Lighton JRB, Fielden LJ, Rechav Y. Discontinous ventilation in a non‐insect, the tick Amblyomma marmoreum (Acari, Ixodidae): Characterization and metabolic modulation. J Exp Biol 180: 229‐245, 1993.
 436. Lighton JRB, Garrigan D. Ant breathing: testing regulation and mechanism hypotheses with hypoxia. J Exp Biol 198: 1613‐1620, 1995.
 437. Lighton JRB, Joos B. Discontinuous gas exchange in the pseudoscorpion Garypus californicus is regulated by hypoxia, not hypercapnia. Physiol Biochem Zool 75: 345‐349, 2002.
 438. Lighton JRB, Lovegrove BG. A temperature‐induced switch from diffusive to convective ventilation in the honeybee. J exp Biol 154: 509‐516, 1990.
 439. Lighton JRB, Turner RJ. The hygric hypothesis does not hold water: Abolition of discontinuous gas exchange cycles does not affect water loss in the ant Camponotus vicinus. J Exp Biol 211: 563‐567, 2008.
 440. Lighton JRB, Wehner R. Ventilation and respiratory metabolism in the thermophilic desert ant, Cataglyphis bicolor (Hymenoptera, Formicidae). J Comp Physiol B 163: 11‐17, 1993.
 441. Lighton JRB, Weier JA, Feener DHJ. The energetics of locomotion and load carriage in the desert harvester ant Pogonomyrmex rugosus. J Exp Biol 181: 49‐61, 1993.
 442. Lillywhite HB. Temperature, energetics, and physiological ecology. In: Seigel RE, Novak SS, Collins JT, editors. Snakes: Ecology and Evolutionary Biology. New York: Macmillan, 1987, pp. 422‐477.
 443. Linzen B, Gallowitz P. Enzyme activity patterns in muscles of the lycosid spider, Cupiennius salei. J comp Physiol 96: 101‐109, 1975.
 444. Lippmann M, Schlesinger RB. Interspecies comparisons of particle deposition and mucociliary clearance in tracheobronchial airways. J Toxicol Environ Health 13: 441‐469, 1984.
 445. Locke M. The co‐ordination of growth in the tracheal system of insects. Quart J Microsc Sci 99(3): 373‐391, 1958a.
 446. Locke M. The formation of tracheae and tracheoles in Rhodnius prolixus. Quart J Microsc Sci 99: 29‐46, 1958b.
 447. Locke M. Caterpillars have evolved lungs for hemocyte gas exchange. J Insect Physiol 44(1): 1‐20, 1998.
 448. Locy WA, Larsell O. The embryology of the bird's lung based on obswervations of the bronchial tree. Am J Anat 19: 447‐504, 1916.
 449. Loer SA, Scheeren TW, Tarnow J. How much oxygen does the human lung consume? Anesthesiology 86: 532‐537, 1997.
 450. Lopez J. Anatomy and histology of the lung and air sacs of birds. In: Pastor LM, editor. Histology, Ultrastructure, and Immunohistochemistry of the Respiratory Organs in Nonmammalian Vertebrates. Spain: Publicaciones de la Universitatd de University of Murcia (Murcia), 1995, pp. 179‐233.
 451. Lopez J, Gomez E, Sesma P. Anatomical study of the bronchial system and major blood vessels of the chicken lung (Gallus gallus) by means of a three‐dimensional scale model. Anat Rec 234: 240‐248, 1992.
 452. Loudon C. Tracheal hypertrophy in mealworms: design and plasticity in oxygen supply systems. J Exp Biol 147: 217‐235, 1989.
 453. Lukowiak K, Ringseis E, Spencer G, Wildering W, Syed N. Operant conditioning of aerial respiratory behaviour in Lymnaea stagnalis. J Exp Biol 199: 683‐691, 1996.
 454. Lumholt JP. Breathing in the aestivating African lungfish, Protopterus amphibius. In: Sing BR, editor. Advances in Fish Research ‐ Vol 1. Delhi: Narendra Publishing House, 1993, pp. 17‐34.
 455. Lumholt JP, Johansen K, Maloiy GMO. Is the aestivating lungfish the first vertebrate with sectional breathing? Nature 275: 787‐788, 1975.
 456. Lyons TW, Reinhard CT. An early productive ocean unfit for aerobics. Proc Natl Acad Sci U S A 106: 18045‐18046, 2009.
 457. Ma T, Grayson WL, Frohlich M, Vunjak‐Novakovic G. Hypoxia and stem cell‐based engineering of mesenchymal tissues. Biotechnol Prog 25: 32‐42, 2009.
 458. Maarek JM, Chang HK. Pulsatile pulmonary microvascular pressure measured with vascular occlusion techniques. J Appl Physiol 70: 998‐1005, 1991.
 459. Mackenzie JA, Jackson DC. The effect of temperature on cutaneous CO2 loss and conductance in the bullfrog. Resp Physiol 32: 313‐323, 1978.
 460. Macklem PT, Bouverot P, Scheid P. Measurement of the distensibility of the parabronchi in duck lungs. Respir Physiol 38: 23‐35, 1979.
 461. Maeda Y, Dave V, Whitsett JA. Transcriptional control of lung morphogenesis. Physiol Rev 87: 219‐244, 2007.
 462. Magnussen H, Willmer H, Scheid P. Gas exchange in air sacs: Contribution to respiratory gas exchange in ducks. Respir Physiol 26: 129‐146, 1976.
 463. Maina J. The morphology of the lung of the african lungfish, Protopterus aethiopicus: A scanning electron‐microscopic study. Cell Tissue Res 250: 191‐196, 1987.
 464. Maina J, Maloiy GMO. The morphology of the respiratory organs of the African air‐breathing catfish (Clarias mossambicus): A light, electron and scanning electron microscopic study, with morphometric observations. J Zool Lond 209: 421‐445, 1986.
 465. Maina JN. Comparative respiratory morphology and morphometry: The functional design of the respiratory systems. In: Gilles R, Advances in Comparative and Environmental Physiology. Berlin: Springer‐Verlag, 1994, pp. 111‐232.
 466. Maina JN. Bioengineering Aspects in the Design of Gas Exchangers. Berlin, Germany: Springer‐Verlag, 2011.
 467. Maina JN. A scanning electron microscopic study of the air and blood capillaries of the lung of the domestic fowl (Gallus domesticus). Experientia 38: 614‐616, 1982.
 468. Maina JN. Morphometrics of the avian lung. 3. The structural design of the passerine lung. Respir Physiol 55: 291‐307, 1984.
 469. Maina JN. A scanning and transmission electron microscopic study of the bat lung. J Zool 205B: 19‐27, 1985.
 470. Maina JN. The structual design of the bat lung. Myotis 23‐24: 71‐77, 1986.
 471. Maina JN. Scanning electron microscope study of the spatial organization of the air and blood conducting components of the avian lung (Gallus gallus variant domesticus). Anat Rec 222: 145‐153, 1988.
 472. Maina JN. The morphometry of the avian lung. In: King AS, McLelland J, editors. Form and Function in Birds, Vol. 4. London: Academic Press, 1989, pp. 307‐368.
 473. Maina JN. Stereology: Quantitative methods and their applications in biophysical researches. Sci News 2: 109‐112, 1991.
 474. Maina JN. What it takes to fly: The structural and functional respiratory refinements in birds and bats. J Exp Biol 203: 3045‐3064, 2000.
 475. Maina JN. Functional Morphology of the Vertebrate Respiratory Organs. Lebanon: Oxford and IBH Publishing Company, 2002.
 476. Maina JN. Some recent advances on the study and understanding of the functional design of the avian lung: morphological and morphometric perspectives. Biol Rev Camb Philos Soc 77: 97‐152, 2002.
 477. Maina JN. Developmental dynamics of the bronchial (airway) and air sac systems of the avian respiratory system from day 3 to day 26 of life: A scanning electron microscopic study of the domestic fowl, Gallus gallus variant domesticus. Anat Embryol (Berl) 207: 119‐134, 2003.
 478. Maina JN. A systematic study of the development of the airway (bronchial) system of the avian lung from days 3 to 26 of embryogenesis: A transmission electron microscopic study on the domestic fowl, Gallus gallus variant domesticus. Tissue Cell 35: 375‐391, 2003.
 479. Maina JN. Morphogenesis of the laminated, tripartite cytoarchitectural design of the blood‐gas barrier of the avian lung: a systematic electron microscopic study on the domestic fowl, Gallus gallus variant domesticus. Tissue Cell 36: 129‐139, 2004.
 480. Maina JN. Systematic analysis of hematopoietic, vasculogenetic, and angiogenetic phases in the developing embryonic avian lung, Gallus gallus variant domesticus. Tissue Cell 36: 307‐322, 2004.
 481. Maina JN. The Lung Air‐Sac System of Birds: Development, Structure, and Function. Berlin: Springer‐Verlag, 2005.
 482. Maina JN. Development, structure, and function of a novel respiratory organ, the lung‐air sac system of birds: to go where no other vertebrate has gone. Biol Rev Camb Philos Soc 81: 545‐579, 2006.
 483. Maina JN. Minutialization at its extreme best! The underpinnings of the remarkable strengths of the air and the blood capillaries of the avian lung: a conundrum. Respir Physiol Neurobiol 159: 141‐145; author reply 146, 2007.
 484. Maina JN. Spectacularly robust! Tensegrity principle explains the mechanical strength of the avian lung. Respir Physiol Neurobiol 155: 1‐10, 2007.
 485. Maina JN. Functional morphology of the avian respiratory system, the lung‐air sac system: efficiency built on complexity. Ostrich 79: 117‐132, 2008.
 486. Maina JN, Abdalla MA, King AS. Light microscopic morphometry of the lung of 19 avian species. Acta Anat (Basel) 112: 264‐270, 1982.
 487. Maina JN, Howard CV, Scales L. Length densities and maximum diameter distribution of the air capillaries of the paleopulmo and neopulmo region of the avian lung. Acta Stereol 2: 101‐107, 1983.
 488. Maina JN, King AS. The thickness of avian blood‐gas barrier: Qualitative and quantitative observations. J Anat 134: 553‐562, 1982.
 489. Maina JN, King AS. Correlations between structure and function in the design of the bat lung: A morphometric study. J Exp Biol 111: 43‐61, 1984.
 490. Maina JN, King AS. A morphometric study of the lung of a Humboldt penguin (Sphenicus humboldti). Anat Histol Embryol 16: 293‐297, 1987.
 491. Maina JN, King AS. The lung of the emu, Dromaius novaehollandiae: A microscopic and morphometric study. J Anat 163: 67‐73, 1989.
 492. Maina JN, King AS, King DZ. A morphometric analysis of the lung of a species of bat. Respir Physiol 50: 1‐11, 1982.
 493. Maina JN, King AS, Settle G. An allometric study of pulmonary morphometric parameters in birds, with mammalian comparisons. Philos Trans R Soc Lond B Biol Sci 326: 1‐57, 1989.
 494. Maina JN, Madan AK, Alison B. Expression of fibroblast growth factor‐2 (FGF‐2) in early stages (days 3‐11) of the development of the avian lung, Gallus gallus variant domesticus: an immunocytochemical study. J Anat 203: 505‐512, 2003.
 495. Maina JN, Nathaniel C. A qualitative and quantitative study of the lung of an ostrich, Struthio camelus. J Exp Biol 204: 2313‐2330, 2001.
 496. Maina JN, Thomas SP, Hyde DM. A morphometric study of the lungs of different sized bats: correlations between structure and function of the chiropteran lung. Philos Trans R Soc Lond B Biol Sci 333: 31‐50, 1991.
 497. Maina JN, van Gils P. Morphometric characterization of the airway and vascular systems of the lung of the domestic pig, Sus scrofa: Comparison of the airway, arterial and venous systems. Comp Biochem Physiol A Mol Integr Physiol 130: 781‐798, 2001.
 498. Maina JN, West JB. Thin and strong! The bioengineering dilemma in the structural and functional design of the blood‐gas barrier. Physiol Rev 85: 811‐844, 2005.
 499. Maina JN, Woodward JD. Three‐dimensional serial section computer reconstruction of the arrangement of the structural components of the parabronchus of the Ostrich, Struthio camelus lung. Anat Rec (Hoboken) 292: 1685‐1698, 2009.
 500. Maitland DP. Crabs that breathe air with their legs ‐ Scopimera and Dotilla. Nature 319: 493‐495, 1986.
 501. Makanya AN, Djonov V. Development and spatial organization of the air conduits in the lung of the domestic fowl, Gallus gallus variant domesticus. Microsc Res Tech 71: 689‐702, 2008.
 502. Makanya AN, Djonov V. Parabronchial angioarchitecture in developing and adult chickens. J Appl Physiol 106: 1959‐1969, 2009.
 503. Makanya AN, Hlushchuk R, Baum O, Velinov N, Ochs M, Djonov V. Microvascular endowment in the developing chicken embryo lung. Am J Physiol Lung Cell Mol Physiol 292: L1136‐L1146, 2007.
 504. Makanya AN, Hlushchuk R, Duncker HR, Draeger A, Djonov V. Epithelial transformations in the establishment of the blood‐gas barrier in the developing chick embryo lung. Dev Dyn 235: 68‐81, 2006.
 505. Makuschok M. Über genetische Beziehungen zwischen Schwimmblase und Lungen. Anat Anz 44: 33‐55, 1913.
 506. Mallatt J. The suspension feeding mechanism of the larval lamprey Petromyzon marinus. J Zool Lond 194: 103‐142, 1981.
 507. Mallatt J, Paulsen C. Gill Ultrastructure of the Pacific hagfish eptatretus stouti. Am J Anat 177: 243‐269, 1986.
 508. Mallatt, J. Early vertebrate evolution: Pharyngeal structure and the origin of gnathostomes. J Zool Lond 204: 169‐183, 1984.
 509. Mandelbrot BB. The Fractal Geometry of Nature. New York: Freeman, 1983.
 510. Mangum CP. Invertebrate blood oxygen carriers. Comp Physiol 1097‐1135, 2011.
 511. Manning PL, Dunlop JA. The respiratory organs of Eurypterids. Palaeontology 38: 287‐297, 1995.
 512. Marais E, Klok CJ, Terblanche JS, Chown SL. Insect gas exchange patterns: A phylogenetic perspective. J Exp Biol 208: 4495‐4507, 2005.
 513. Marcus H. Lungenstudien. Gegenb Morphol Jahrb 58: 100‐121, 1927.
 514. Marcus H. Lungen. In: Bolk L, Göppert E, Kallius E, Lubosch W, editors. Handbuch der vergleichenden Anatomie der Wirbeltiere ‐ Dritter Band. Berlin & Wien: Urban & Schwarzenberg, 1937, pp. 909‐988.
 515. Margulies L, Sagan D. Microcosmos, Four Billion Years of Microbial Evolution. New York: Summit Books, 1986.
 516. Marinelli W, Strenger A. Vergleichende Anatomie und Morphologie der Wirbeltiere ‐ 1. Lfg, Lampetra fluviatilis. Wien: Deuticke, 1954.
 517. Marinelli W, Strenger A. Vergleichende Anatomie und Morphologie der Wirbeltiere ‐ 2. Lfg, Myxine glutinosa. Wien: Deuticke, 1956.
 518. Marinelli W, Strenger A. Vergleichende Anatomie und Morphologie der Wirbeltiere ‐ 3. Lfg, Squalus acanthias. Wien: Deuticke, 1959.
 519. Marinelli W, Strenger A. Vergleichende Anatomie und Morphologie der Wirbeltiere ‐ 4. Lfg, Acipenser ruthenus. Wien: Deuticke, 1973.
 520. Marshall CR, Jacobs DK. Paleontology. Flourishing after the end‐Permian mass extinction. Science 325: 1079‐1080, 2009.
 521. Marshall PT, Hughes GM. Physiology of Mammals and other Vertebrates (2nd ed). Cambridge and New York: Cambridge University Press, 1980.
 522. Martin WF, Mentel M. The origin of mitochondria. Nature Education 3: 58, 2010.
 523. Mat WK, Xue H, Wong JT. The genomics of LUCA. Front Biosci 13: 5605‐5613, 2008.
 524. Maurer F. Die ventrale Rumpfmuskulatur einiger Reptilien ‐ Eine vergleichend‐anatomische Untersuchung. In: Anonymous, editor. Festschrift zum siebenzigsten Geburtstage von Carl Gegenbauer am 21 August 1896 ‐ Erster Band. Leipzig: Engelmann, 1896, pp. 181‐256.
 525. McCutcheon FH. Organ systems in adaptation: the respiratory system. In: Dill DB, Adolph EF, Wilber CG, editors. Handbook of Physiology, Adaptation to the Environment. Washington D.C.: American Physiological Society, 1964, pp. 167‐191.
 526. McLelland J. Anatomy of the lungs and air sacs. In: King AS, McLelland J, editors. Form and Function in Birds, Vol. 4. London: Academic Press, 1989, pp. 221‐279.
 527. McMahon BR. A functional analysis of the aquatic and aerial respiratory movements of an African lungfish, Protopterus aethiopicus, with reference to the evolution of the lung‐ventilation mechanism in vertebrates. J Exp Biol 51: 407‐430, 1969.
 528. McMahon BR, Burggren WW. Respiration and adaptation to the terrestrial habitat in the land hermit crab Coenobita clypeatus. J Exp Biol 79: 265‐281, 1979.
 529. McNally JG, Mazza D. Fractal geometry in the nucleus. EMBO J 29: 2‐3, 2010.
 530. McQueen DJ. Active respiration rates for the burrowing wolf spider Geolycosa domifex (Hancock). Can J Zool 58: 1066‐1074, 1980.
 531. Mendes EG, Sawaya P. The oxygen consumption of “Onychophora” and its relation to size, temperature and oxygen tension. Rev Brasil Biol 18(2): 129‐142, 1958.
 532. Mentel M, Martin W. Anaerobic animals from an ancient, anoxic ecological niche. BMC Biol 8: 32, 2010.
 533. Mercer RR, Crapo JD. Spatial distribution of collagen and elastin fibers in the lungs. J Appl Physiol 69: 756‐765, 1990.
 534. Mercer RR, Russell ML, Crapo JD. Alveolar septal structure in different species. J Appl Physiol 77: 1060‐1066, 1994.
 535. Metzger RJ, Klein OD, Martin GR, Krasnow MA. The branching programme of mouse lung development. Nature 453: 745‐750, 2008.
 536. Metzger RJ, Krasnow MA. Genetic control of branching morphogenesis. Science 284: 1635‐1639, 1999.
 537. Mickoleit G. Phylogenetische Systematik der Wirbeltiere. München: Dr. Friedrich Pfeil, 2004.
 538. Milani A. Beiträge zur Kenntnis der Reptilienlunge I ‐ Lacertilia. Zool Jahrb Abt Anat Ontog Tiere 7: 545‐592, 1894.
 539. Mill PJ. Structure and physiology of the respiratory system. In: Kerkut GA, Gilbert LI, editors. Comprehensive Insect Physiology, Biochemistry And Pharmacology, Integument, Respiration and Circulation. Oxford: Pergamon Press, vol. 3, pp. 517‐593, 1985.
 540. Millar DA. Effect of stretch on the respiratory pattern of a chicken. In: Piiper J, editor. Respiratory Function in Birds, Adult, and Embryonic Berlin: Springer‐Verlag, 1978, pp. 188‐195.
 541. Millidge AF. A revision of the tracheal structures of the Linyphiidae (Araneae). Bull Br arachnol Soc 7: 57‐61, 1986.
 542. Millot J. Ordre des aranéides (Araneae), systeme respiratoire. In: Grassé PP, editor. Traité de Zoologie. Smithsonian Institution Libraries, vol. VI, pp. 637‐646, 1949.
 543. Millot J, Anthony J, Robineau D. Anatomie de Latimeria Chalumnae. Tome III. Appareil Digestif, Appareil Respiratoire, Appareil Urogénital, Glandes Endocrines, Appareil Circulatoire, Téguments, Ecailles, Conclusions Générales. Paris: CNRS, 1978.
 544. Milnor WR. Hemodynamics. Baltimore: Williams and Williams, 1982.
 545. Milsom WL, Reid SG, Rantin FT, Sundin L. Extrabranchial chemoreceptors involved in respiratory reflexes in the neotropical fish Colossoma macropomum (the tambaqui). J Exp Biol 205: 1765‐1774, 2002.
 546. Minning DM, Gow AJ, Bonaventura J, Braun R, Dewhirst M, Goldberg DE, Stamler JS. Ascaris haemoglobin is a nitric oxide‐activated ‘deoxygenase’. Nature 401: 497‐502, 1999.
 547. Mirwald M, Perry SF. Wie atmen Schildkröten wirklich? ‐ Ein leider nicht nur historischer Rückblick. Tier und Museum 1: 64‐66, 1989.
 548. Miura T, Hartmann D, Kinboshi M, Komada M, Ishibashi M, Shiota K. The cyst‐branch difference in developing chick lung results from a different morphogen diffusion coefficient. Mech Dev 126: 160‐172, 2009.
 549. Mojzsis SJ, Arrhenius G, McKeegan KD, Harrison TM, Nutman AP, Friend CR. Evidence for life on Earth before 3,800 million years ago. Nature 384: 55‐59, 1996.
 550. Monteiro SM, Oliveira E, Fontaínhas‐Fernandes A, Sousa M. Fine structure of the branchial epithelium in the teleost Oreochromis niloticus. J Morphol 271: 621‐633, 2010.
 551. Moore SJ. Some spider organs as seen by the scanning electron microscope, with special reference to the book‐lung. Bull Br Arachnol Soc 3(7): 177‐187, 1976.
 552. Morberly WR. The metabolic responses of the common iguana, Iguana iguana, to activity under restraint. Comp Biochem Physiol 27: 1968.
 553. Morony V. Classification of vagal afferents firing in phase with breathing in Gallus domesticus. Respir Physiol 22: 57‐76, 1974.
 554. Morris S. Respiratory gas exchange and transport in crustaceans: Ecological determinants. Mem Queensland Mus 31: 241‐261, 1991.
 555. Morris S. The ecophysiology of air‐breathing in crabs with special reference to Gecarcoidea natalis. Comp Biochem Physiol B Biochem Mol Biol 131: 559‐570, 2002.
 556. Morris S, Greenaway P, and McMahon BR. Adaptations to a terrestrial existence by the robber crab Birgus latro I. An in vitro investigation of blood gas transport. J exp Biol 140: 477‐491, 1988.
 557. Moser F. Beiträge zur vergleichenden Entwicklungsgeschichte der Schwimmblase. Arch Mikroskop Anat Entwicklungsgesch 63: 532‐574, 1904.
 558. Moussa TA. Morphology of the accessory air‐breathing organs of the teleost, Clarias lazera (C. and V.). J Morphol 98: 125‐160, 1956.
 559. Munshi JS. The accessory respiratory organs of Clarias batrachus (Linn.). J Morphol 109: 115‐139, 1961.
 560. Muraoka RS, Bushdid PB, Brantley DM, Yull FE, Kerr LD. Mesenchymal expression of nuclear factor‐kappaB inhibits epithelial growth and branching in the embryonic chick lung. Dev Biol 225: 322‐338, 2000.
 561. Murray CD. The physiological principle of minimum work applied to the angle of branching of arteries. J Gen Physiol 9: 835‐841, 1926a.
 562. Murray CD. The physiological principle of minimum work: I. The vascular system and the cost of blood volume. Proc Natl Acad Sci U S A 12: 207‐214, 1926b.
 563. Mushegian A. Gene content of LUCA, the last universal common ancestor. Front Biosci 13: 4657‐4666, 2008.
 564. Mustafa AK, Gadalla MM, Snyder SH. Signaling by gasotransmitters. Sci Signal 2: re2, 2009.
 565. Nagy KA, Odell DK, Seymour RS. Temperature regulation by the inflorescence of philodendron. Science 178: 1195‐1197, 1972.
 566. Nasu T. Scanning electron microscopic study on the microarchitecture of the vascular system in the pigeon lung. J Vet Med Sci 67: 1071‐1074, 2005.
 567. Nelson TR, West BJ, Goldberger AL. The fractal lung: Universal and species‐related scaling patterns. Experientia 46: 251‐254, 1990.
 568. Nentwig W. The species referred to as Eurypelma californicum (Theraphosidae) in more than 100 publications is likely to be Aphonopelma hentzi. J Arachnology 40: 128‐130, 2012.
 569. Nespolo RF, Artacho P, Castaneda LE. Cyclic gas‐exchange in the Chilean red cricket: inter‐individual variation and thermal dependence. J Exp Biol 210: 668‐675, 2007.
 570. Neumayer L. Die Entwicklung des Darms von Acipenser. Acta Zool (Stockh) 11: 39‐150, 1930.
 571. Nguyen BY, Peterson PK, Verbrugh HA, Quie PG, Hoidal JR. Differences in phagocytosis and killing by alveolar macrophages from humans, rabbits, rats, and hamsters. Infect Immun 36: 504‐509, 1982.
 572. Nicod L. Lung defences: An overview. Europ Respir Rev 95: 45‐50, 2005.
 573. Nikam TB, Khole VV. Insect Spiracular Systems. Chichester: Ellis Horwood, 1989.
 574. Nikinmaa M, Rees BB. Oxygen‐dependent gene expression in fishes. Am J Physiol Regul Integr Comp Physiol 288: R1079‐R1090, 2005.
 575. Nogge G. Ventilationsbewegungen bei Solifugen. Zool Anz 196: 145‐149, 1976.
 576. Noirot C, Noirot‐Timothée C. The structure and development of the tracheal system. In: King, A, editor. Insect Ultrastructure, Vol. 1. New York: Plenum Press, p. 351‐381, 1982.
 577. Nonnenmacher TF, Losa GA, Weibel ER. Fractals in Biology and Medicine. Basel: Birkhauser, 1994.
 578. Nudds RL, Bryant DM. The energetic cost of short flights in birds. J Exp Biol 203: 1561‐1572, 2000.
 579. Nunn JF. Evolution of the atmosphere. Proc Geol Assoc 109: 1‐13, 1998.
 580. O'Connor PM, Claessens LP. Basic avian pulmonary design and flow‐through ventilation in non‐avian theropod dinosaurs. Nature 436: 253‐256, 2005.
 581. Ochs M, Nyengaard JR, Jung A, Knudsen L, Voigt M, Wahlers T, Richter J, Gundersen HJ. The number of alveoli in the human lung. Am J Respir Crit Care Med 169: 120‐124, 2004.
 582. Ochs M, Nyengaard JR, Waizy H, Wahlers T, Gundersen JG, Richter J. Alveolar type II cells and the intracellular surfactant pool in the human lung‐a stereological approach. Am J Respir Crit Care Med 163: A731, 2001.
 583. Opell BD. Revision of the genera and tropical american species of the spider family Uloboridae. Bull Mus Comp Zool 148(10): 443‐549, 1979.
 584. Opell BD. The influence of web monitoring tactics on the tracheal systems of spiders in the family Uloboridae (Arachnida, Araneida). Zoomorphology 107: 255‐259, 1987.
 585. Opell BD. Centers of mass and weight distribution in spiders of the family Uloboridae. J Morphol 202: 351‐359, 1989.
 586. Opell BD. The relationships of book lung and tracheal systems in the spider family Uloboridae. J Morphol 206: 211‐216, 1990.
 587. Opell BD. The respiratory complementary of spider book lung and tracheal systems. J Morphol 236: 57‐64, 1998.
 588. Opell BD, Konur DC. Influence of web‐monitoring tactics on the density of mitochondria in leg muscles of the spider family Uloboridae. J Morphol 213: 341‐347, 1992.
 589. Orgeig S, Daniels CB. Environmental selection pressures shaping the pulmonary surfactant system of adult and developing lungs. In: Glass ML, Wood SC, editors. Cardio‐Respiratory in Vertebrates. Berlin: Springer‐Verlag, 2009, pp. 205‐239.
 590. Oro J, Mills T, Lazcano A. The cometary contribution to prebiotic chemistry. Adv Space Res 12: 33‐41, 1992.
 591. Pace NR. Time for a change. Nature 441: 289, 2006.
 592. Paoli P, Ferrara F, Taiti S. Morphology and evolution of the respiratory apparatus in the family Eubelidae (Crustacea, Isopoda, Oniscidea). J Morphol 253: 272‐289, 2002.
 593. Parry K, Yates MS. Observations on the avian pulmonary and bronchial circulation using labelled microspheres. Respir Physiol 38: 131‐140, 1979.
 594. Pastor LM. The histology of the reptilian lung. In: Pastor LM, editor. Histology, Ultrastructure and Immunohistochemistry of the Respiratory Organs in Non‐mammalian Vertebrates. Murcia: Servicio de Publicaciones de la Universidad de Murcia, 1995, pp. 131‐152.
 595. Patan S. Vasculogenesis and angiogenesis. Cancer Treat Res 117: 3‐32, 2004.
 596. Paul R. Gas exchange and gas transport in the tarantula Eurypelma californicum ‐ an overview. In: B Linzen Invertebrate Oxygen Carriers. Springer: Berlin, 321‐326, 1986.
 597. Paul R, Fincke T. Book lung function in arachnids II. Carbon dioxide and its relations to respiratory surface, water loss and heart frequency. J Comp Physiol 159: 419‐432, 1989.
 598. Paul R, Fincke T, Linzen B. Book lung function in arachnids. I. Oxygen uptake and erspiratory quotient during rest, activity and recovery ‐ relations to gas transport in the haemolymph. J Comp Physiol B 159: 409‐418, 1989.
 599. Paul R, Fincke T, Linzen B. Respiration in the tarantula Eurypelma californicum: Evidence for diffusion lungs. J Comp Physiol B 157: 209‐217, 1987.
 600. Paul R, Tiling K, Focke P, Linzen B. Heart and circulatory functions in a spider (Eurypelma californicum): the effects of hydraulic force generation. J Comp Physiol B 158: 673‐687, 1989.
 601. Paul RJ. Oxygen transport from book lungs to tissues ‐ environmental physiology and metabolism in arachnids. Verh Dt Zool Ges 84: 9‐14, 1991.
 602. Paul RJ. Gas exchange, circulation, and energy metabolism in arachnids. In: Weber RE, Hargens AR, Millard RW, editors. Physiological Adaptations in Vertebrates. New York: Marcel Dekker, 1992, pp. 169‐197.
 603. Paul RJ, Bihlmayer S. Circulatory physiology of a tarantula (Eurypelma californicum). Zool Anal Complex Systems 98: 69‐81, 1995.
 604. Payne JL, Boyer AG, Brown JH, Finnegan S, Kowalewski M, Krause RA, Jr., Lyons SK, McClain CR, McShea DW, Novack‐Gottshall PM, Smith FA, Stempien JA, Wang SC. Two‐phase increase in the maximum size of life over 3.5 billion years reflects biological innovation and environmental opportunity. Proc Natl Acad Sci U S A 106: 24‐27, 2009.
 605. Peck LS, Chapelle G. Reduced oxygen at high altitude limits maximum size. Proc Biol Sci 270(Suppl 2): S166‐S167, 2003.
 606. Pennycuick CJ. Newtonian Rules in Biology. New York: Oxford University Press, 1992.
 607. Perry SF. Quantitative anatomy of the lungs of the red‐eared turtle, Pseudemys scripa elegans. Respir Physiol 35: 245‐262, 1978.
 608. Perry SF. Reptilian lungs ‐ functional anatomy and evolution. Adv Anat Embryol Cell Biol 79: 1‐81, 1983.
 609. Perry SF. Evolution of the mammalian chest wall. In: Roussos C, Macklem PT, editors. The Thorax ‐ Part A, Lung Biology in Health and Disease Vol 29. New York: Marcel Dekker, 1985, p. 187‐198.
 610. Perry SF. Functional morphology of the lungs of the Nile crocodile, Crcocodylus niloticus: non‐respiratory parameters. J Exp Biol 134: 99‐117, 1988.
 611. Perry SF. Mainstreams in the evolution of vertebrate respiratory structures. In: King AS, McLelland J, editors. Form and Function in Birds, Vol. 4. London: Academic Press, 1989, pp. 1‐67.
 612. Perry SF. Gas exchange strategies in reptiles and the origin of the avian lung. In: Wood SC, Weber RE, Hargens AR, Millard RW, editors. Physiological Adaptations in Vertebrates: Respiration, Circulation, and Metabolism. New York: Marcel Dekker Inc., 1992, pp. 149‐167.
 613. Perry SF. Lungs: Comparative anatomy, functional morphology, and evolution. In: Gans C, Gaunt AS, editors. Biology of the Reptilia Vol 19: Morphology G. Ithaca (NY): Society for the Study of Amphibians and Reptiles, 1998, pp. 1‐92.
 614. Perry SF. Swimbladder‐lung homolgy in basal osteichtgyes revisited. In: Fernandes MN, Rantin FT, Glass ML, Kapoor BG, editors. Fish Respiration and Environment. Enfield etc: Science Publishers, 2007, pp. 41‐54.
 615. Perry SF. Atmungsorgane. In: Westheide W, Rieger R, editors. Spezielle Zoologie ‐ Teil 2: Wirbel‐ oder Schädeltiere (2nd ed). Heidelberg and Berlin: Spektrum Akademischer Verlag, 2010, pp. 127‐141.
 616. Perry SF. Herz und Blutgefäßsystem. In: Westheide W, Rieger R, editors. Spezielle Zoologie ‐ Teil 2: Wirbel‐ oder Schädeltiere (2nd ed). Heidelberg and Berlin: Spektrum Akademischer Verlag, 2010, pp. 103‐119.
 617. Perry SF, Bauer AM, Russell AP, Alston JT, Maloney JE. Lungs of the Gecko Rhacodactylus leachianus (Reptilia: Gekkonidae): A Correlative Gross Anatomical and Light and Electron Microscopic Study. J Morphol 199: 23‐40, 1989.
 618. Perry SF, Duncker HR. Interrelationship of static mechanical factors and anatomical structure in lung evolution. J Comp Physiol 138: 321‐334, 1980.
 619. Perry SF, Klein W, Codd JR. Trade‐offs in the evolution of the respiratory apparatus of chordates. In: Glass ML, Wood SC, editors. Cardio‐Respiratory Control in Vertebrates. Berlin & Heidelberg: Springer, 2009, pp. 193‐204.
 620. Perry SF, Sander M. Reconstructing the respiratory apparatus in tetrapods. Respir Physiol Neurobiol 144: 125‐139, 2004.
 621. Perry SF, Similowski T, Klein W, Codd JR. The evolutionary origin of the mammalian diaphragm. Respir Physiol Neurobiol 171: 1‐16, 2010.
 622. Perry SF, Spinelli Oliveira E. Respiration in a changing environment. Respir Physiol Neurobiol 173 Suppl: S20‐S25, 2010.
 623. Peters HM. On the mechanism of air ventilation in anabantoids (Pisces: Teleostei). Zoomorphologie 89: 93‐123, 1978.
 624. Peters RH. The Ecological Implications of Body Size. Cambridge: Cambridge University Press, 1983.
 625. Phillips CG, Kaye SR, Schroter RC. A diameter‐based reconstruction of the branching pattern of the human bronchial tree. Part I. Description and application. Respir Physiol 98: 193‐217, 1994.
 626. Pickard WF. Transition regime diffusion and the structure of the insect tracheolar system. J Insect Physiol 20: 947‐956, 1974.
 627. Pickering M, Jones JF. The diaphragm: two physiological muscles in one. J Anat 201: 305‐312, 2002.
 628. Piiper J. Origin of carbon dioxide in caudal air sacs of birds. In: Piiper J, editor. Respiratory Function in Birds, Adult and Embryonic. Berlin: Springer‐Verlag, 1978, pp. 221‐248.
 629. Piiper J, Scheid P. Gas exchange in the avian lung: Model and experimental evidence. In: Bolis L, Schmidt‐Nielsen K, and Maddrell SHP, editors. Comparative Physiology. Amsterdam: Elsevier, 1973, pp. 161‐185.
 630. Pinkerton KE, Joad JP. The mammalian respiratory system and critical windows of exposure for children's health. Environ Health Perspect 108(Suppl 3): 457‐462, 2000.
 631. Piruat JI, Lopez‐Barneo J. Oxygen tension regulates mitochondrial DNA‐encoded complex I gene expression. J Biol Chem 280: 42676‐42684, 2005.
 632. Pisani D, Cotton JA, McInerney JO. Supertrees disentangle the chimerical origin of eukaryotic genomes. Mol Biol Evol 24: 1752‐1760, 2007.
 633. Plasencia I, Rivas L, Casals C, Keough KM, Perez‐Gil J. Intrinsic structural differences in the N‐terminal segment of pulmonary surfactant protein SP‐C from different species. Comp Biochem Physiol A Mol Integr Physiol 129: 129‐139, 2001.
 634. Pontzer H, Allen V, Hutchinson JR. Biomechanics of running indicates endothermy in bipedal dinosaurs. PLoS One 4: e7783, 2009.
 635. Powell FL, Hastings RH, Mazzone RW. Pulmonary vascular resistance during unilateral pulmonary arterial occlusion in ducks. Am J Physiol 249: R39‐R43, 1985.
 636. Powell FL, Scheid P. Physiology of gas exchange in the avian respiratory system. In: King AS, McLelland J, editors. Form and Function in Birds. London: Academic Press, 1989, pp. 393‐437.
 637. Power JH, Doyle IR, Davidson K, Nicholas TE. Ultrastructural and protein analysis of surfactant in the Australian lungfish Neoceratodus forsteri: Evidence for conservation of composition for 300 million years. J Exp Biol 202: 2543‐2550, 1999.
 638. Powers CM, Bottjer DJ. Bryozoan paleoecology indicates mid‐Phanerozoic extinctions were the product of long‐term environmental stress. Geology 35: 995‐998, 2007.
 639. Prestwich KN. Anaerobic metabolism in spiders. Physiol Zool 56(1): 112‐121, 1983.
 640. Prestwich KN. The roles of aerobic and anaerobic metabolism in active spiders. Physiol Zool 56(1): 122‐132, 1983.
 641. Prestwich KN. The constraints on maximal activity in spiders. I. Evidence against the fluid insufficiency hypothesis. J Comp Physiol 158: 437‐447, 1988.
 642. Prestwich KN. Anaerobic metabolism and maximal running in the scorpion Centruroides hentzi (Banks) (Scorpiones, Buthidae). J Arachnol 34: 351‐356, 2006.
 643. Punt A. The respiration of insects. Physiol Comp Oecol 2: 59‐74, 1950.
 644. Purcell F. Note on the development of the lungs, entapophyses, tracheae and genital ducts in spiders. Zoolog Anzeiger 486: 1‐5, 1895.
 645. Purcell WF. Development and origin of the respiratory organs in Araneae. Quart J Microsc Science 54(1): 1‐110, 1909.
 646. Purcell WF. The phylogeny of tracheae in Araneae. Quart J Microsc Sci 54(4): 519‐563, 1910.
 647. Qin Z, Lewis JE, Perry SF. Zebrafish (Danio rerio) gill neuroepithelial cells are sensitive chemoreceptors for environmental CO2. J Physiol 588: 861‐872, 2010.
 648. Quinlan MC, Gibbs AG. Discontinous gas exchange in insects. Resp Physiol Neurobiol 154: 18‐29, 2006.
 649. Quinlan MC, Hadley NF. Gas exchange, ventilatory patterns, and water loss in two lubber grasshoppers: quantifying cuticular and respiratory transpiration. Physiol Zool 66(4): 628‐642, 1993.
 650. Quinlan MC, Lighton JRB. Respiratory physiology and water relations of three species of Pogonomyrmex harvester ants (Hymenoptera: Formicidae). Physiol Entomol 24: 293‐302, 1999.
 651. Ramirez MJ. Respiratory system morphology and the phylogeny of Haplogyne spiders (Araneae, Araneomorphae). J Arachnol 28: 149‐157, 2000.
 652. Ratcliffe PJ, O'Rourke JF, Maxwell PH, Pugh CW. Oxygen sensing, hypoxia‐inducible factor‐1 and the regulation of mammalian gene expression. J Exp Biol 201: 1153‐1162, 1998.
 653. Rauther M. Kiemen der Anamnier ‐ Kiemendarmderivate der Cyclostomen und Fische. In: Bolk L, Göppert E, Kallius E, Lubosch W, editors. Handbuch der Vergleichenden Anatomie der Wirbeltiere ‐ Dritter Band. Berlin & Wien: Urban & Schwarzenberg, 1937, pp. 211‐278.
 654. Rawal UM. Nerves in the avian air sacs. Pavo 14: 57‐60, 1976.
 655. Reese S, Dalamani G, Kaspers B. The avian lung‐associated immune system: A review. Vet Res 37: 311‐324, 2006.
 656. Regier JC, Shultz JW. Molecular phylogeny of the major arthropod groups indicates polyphyly of Crustaceans and a new hypothesis for the origin of hexapods. Mol Biol Evol 14: 902‐913, 1997.
 657. Reid SG, Perry SF. Peripheral O2 chemoreceptors mediate humoral catecholamine secretion from fish chromaffin cells. Am J Physiol Regul Integr Comp Physiol 284: R990‐R999, 2003.
 658. Reisinger PWM, Focke P, Linzen B. Lung morphology of the tarantula, Eurypelma californicum, Ausserer, 1871 (Araneae: Theraphosidae). Bull Br arachnol Soc 8: 165‐170, 1990.
 659. Reisinger PWM, Tutter I, Welsch U. Fine structure of the gills of the horseshoe crabs Limulus polyphemus and Tachypleus tridentatus and of the book lungs of the spider Eurypelma californicum. Zool Jb Anat 121: 331‐357, 1991.
 660. Renger G, Kuhn P. Reaction pattern and mechanism of light induced oxidative water splitting in photosynthesis. Biochim Biophys Acta 1767: 458‐471, 2007.
 661. Riedesel ML, Williams BA. Continuous 24‐hour oxygen consumption studies of Myotis velifer. Comp Biochem Physiol A Comp Physiol 54: 95‐99, 1976.
 662. Riedl R. Die Ordnung des Lebendigen ‐ Systembedingungen der Evolution. Hamburg & Berlin: Paul Parey, 1975.
 663. Riisgård HU, Svane I. Filter feeding in lancelets (amphioxus), Branchiostoma lanceolatum. Invert Biol 118: 423‐432, 1999.
 664. Risau W. Mechanisms of angiogenesis. Nature 386: 671‐674, 1997.
 665. Romanoff AL. The Avian Embryo. New York: Macmillan, 1960.
 666. Romer AS. Skin breathing ‐ primary or secondary? Respir Physiol 14: 183‐192, 1972.
 667. Roux E. Origine évolution de l'appareil respiratore aérien des vertébrés. Rev Mal Respir 19: 601‐615, 2002.
 668. Rovainen CM. Feeding and breathing in lampreys. Brain Behav Evol 48: 297‐305, 1996.
 669. Roy PK, Munshi JSD. Morphometrics of the respiratory system of air‐breathing fishes of India. In: Munshi JSD, Dutta HM, editors. Fish Morphology ‐ Horizon of new research. Rotterdam: A.A. Balkema, 1996, pp. 203‐234.
 670. Ruben JA, Jones TD, Geist NR, Hillenius WJ. Lung structure and ventilation in theropod dinosaurs and early birds. Science 278: 1267‐1270, 1997.
 671. Sagemehl M. Beiträge zur vergleichenden Anatomie der Fische ‐ III. Das Cranium der Characiniden nebst allgemeinen Bemerkungen über die mit dem Weber'schen Apparat versehenen Physostomenfamilien. Morphol Jahrb 10: 1‐119, 1885.
 672. Sagone AL, Jr. Effect of hyperoxia on the carbohydrate metabolism of human lymphocytes. Am J Hematol 18: 269‐274, 1985.
 673. Sakiyama J, Yamagishi A, Kuroiwa A. Tbx4‐Fgf10 system controls lung bud formation during chicken embryonic development. Development 130: 1225‐1234, 2003.
 674. Sakiyama J, Yokouchi Y, Kuroiwa A. Coordinated expression of Hoxb genes and signaling molecules during development of the chick respiratory tract. Dev Biol 227: 12‐27, 2000.
 675. Salomonsen F. Migratory movements of the Arctic tern (Sterna paradisea Pontoppidan) in the Southern Ocean. Det Kgl Danske Vid Selsk Biol Med 24: 1‐37, 1967.
 676. Sarnat HB, Netsky MG. Evolution of the Nervous System (2nd ed). Oxford: Oxford University Press, 1981.
 677. Schachner ER, Lyson TR, Dodson P. Evolution of the respiratory system in nonavian theropods: Evidence from rib and vertebral morphology. Anat Rec (Hoboken) 292: 1501‐1513, 2009.
 678. Scheid P. Analysis of gas exchange between air capillaries and blood capillaries in avian lungs. Respir Physiol 32: 27‐49, 1978.
 679. Scheid P. Mechanisms of gas exchange in bird lungs. Rev Physiol Biochem Pharmacol 86: 137‐186, 1979.
 680. Scheid P, Hook C, Bridges CR. Diffusion in gas exchange of insects. Fed Proc 41: 2143‐2145, 1982.
 681. Scheid P, Slama H, Piiper J. Mechanisms of unidirectional flow in parabronchi of avian lungs: Measurements in duck lung preparations. Respir Physiol 14: 83‐95, 1972.
 682. Scheuermann DW. Morphology and cytochemistry of the endocrine epithelial system in the lung. Int Rev Cytol 106: 35‐88, 1987.
 683. Scheuermann DW, Klika E, De Groodt‐Lasseel MH, Bazantova I, Switka A. An electron microscopic study of the parabronchial epithelium in the mature lung of four bird species. Anat Rec 249: 213‐225, 1997.
 684. Scheuermann DW, Klika E, de Groodt‐Lasseel MH, Bazantova I, Switka A. The development and differentiation of the parabronchial unit in quail (Coturnix coturnix). Eur J Morphol 36: 201‐215, 1998.
 685. Scheuermann DW, Klika E, De Groodt‐Lasseel MH, Bazantova I, Switka A. Lamellar inclusions and trilaminar substance in the parabronchial epithelium of the quail (Coturnix coturnix). Ann Anat 182: 221‐233, 2000.
 686. Schittny J, Burri PH. Morphogenesis of the mammalian lung: Aspects of structure and extracellular matrix. In: Massaro DJ, Massaro GC, Chambon P, editors. Lung Development and Regeneration. New York: Marcel Dekker Inc., 2004, pp. 275‐316.
 687. Schmidt C, Wägele JW. Morphology and evolution of respiratory structures in the pleopod exopodites of terrestrial Isopoda (Crustacea, Isopoda, Oniscidea). Acta Zoologica 82: 315‐330, 2001.
 688. Schmidt‐Rhaesa A. The Evolution of Organ Systems. Oxford: Oxford University Press, 2007.
 689. Schmitz A. Metabolic rates during rest and activity in differently tracheated spiders (Arachnida, Araneae): Pardosa lugubris (Lycosidae) and Marpissa muscosa (Salticidae). J Comp Physiol B 2004.
 690. Schmitz A. Metabolic rates in harvestmen (Arachnida, Opiliones): The influence of running activity. Physiol Entomol 30: 75‐81, 2005.
 691. Schmitz A. Spiders on a treadmill: Influence of running activity on metabolic rates in Pardosa lugubris (Araneae, Lycosidae) and Marpissa muscosa (Araneae, Salticidae). J Exp Biol 208: 1401‐1411, 2005.
 692. Schmitz A, Gemmel M, Perry SF. Morphometric partitioning of respiratory surfaces in amphioxus (Branchiostoma lanceolatum Pallas). J Exp Biol 203: 3381‐3390, 2000.
 693. Schmitz A, Paul RJ. Probing of hemocyanin function in araneomorph spiders. XIIIth Int Conf Inv Diox Bind Prot Mainz 96, 2003.
 694. Schmitz A, Perry SF. Stereological determination of tracheal volume and diffusing capacity of the tracheal walls in the stick insect Carausius morosus. Physiol Biochem Zool 72: 205‐218, 1999.
 695. Schmitz A, Perry SF. Respiratory system of arachnids I: morphology of the respiratory system of Salticus scenicus and Euophrys lanigera (Arachnida, Araneae, Salticidae). Arthropod Struct Dev 29: 3‐12, 2000.
 696. Schmitz A, Perry SF. Bimodal breathing in jumping spiders: Morphometric partitioning of lungs and tracheae in Salticus scenicus (Arachnida, Araneae, Salticidae). J Exp Biol 204: 4321‐4334, 2001.
 697. Schmitz A, Perry SF. Morphometric analysis of the tracheal walls of the harvestmen Nemastoma lugubre (Arachnida, Opiliones, Nemastomatidae). Arthropod Struct Dev 30: 229‐241, 2002a.
 698. Schmitz A, Perry SF. Respiratory organs in wolf spiders: Morphometric analysis of lungs and tracheae in Pardosa lugubris (L.) (Arachnida, Araneae, Lycosidae). Arthropod Struct Dev 31: 217‐230, 2002b.
 699. Schmitz A, Wasserthal LT. Comparative morphology of the spiracles of the Papilionidae, Sphingidae, and Saturniidae (Insecta: Lepidoptera). Int J Insect Morphol Embryol 28: 13‐26, 1999.
 700. Schneiderman HA, Williams CM. An experimental analysis of the discontinuous respiration of the Cecropia silkworm. Biol Bull 109: 123‐143, 1955.
 701. Scholtz G, Kamenz C. The book lungs of Scorpiones and Tetrapulmonata (Chelicerata, Arachnida): Evidence for homology and a single terrestrialisation event of a common arachnid ancestor. Zoology 109: 2‐13, 2006.
 702. Schroter RC, Leeming A, Denny E, Bharath A, Marlin DJ. Modelling impact‐initiated wave transmission through lung parenchyma in relation to the aetiology of exercise‐induced pulmonary haemorrhage. Equine Vet J Suppl 30: 34‐38., 1999.
 703. Schroter RC, Marlin DJ, Denny E. Exercise‐induced pulmonary haemorrhage (EIPH) in horses results from locomotory impact induced trauma–a novel, unifying concept. Equine Vet J 30: 186‐192, 1998.
 704. Schultz HP. Dipnoi, Lungenfische. In: Westheide W, Rieger R, editors. Spezielle Zoologie ‐ Teil 2: Wirbel‐ oder Schädeltiere. Heidelberg, Germany: Spektrum Akademischer Verlag, 2010, pp. 309‐314.
 705. Scott AC, Glasspool IJ. The diversification of Paleozoic fire systems and fluctuations in atmospheric oxygen concentration. Proc Natl Acad Sci U S A 103: 10861‐10865, 2006.
 706. Seebacher F. Dinosaur body temperatures: the occurrence of endothermy and ectothermy. Paleobiol 29: 105‐122, 2003.
 707. Selden PA. Terrestrialization (Invertebrates). In: Briggs DE, Crowther PP, editors. Palaeobiology: A Synthesis. Oxford: Blackwell Scientific Pulications, 1990, pp. 64‐68.
 708. Selden PA. Fossil mesothele spiders. Science 379: 498‐499, 1996.
 709. Semenza GL. O2‐regulated gene expression: transcriptional control of cardiorespiratory physiology by HIF‐1. J Appl Physiol 96: 1173‐1177; discussion 1170‐1172, 2004.
 710. Semenza GL. Involvement of hypoxia‐inducible factor 1 in pulmonary pathophysiology. Chest 128: 592S‐594S, 2005.
 711. Shah SV. A comparative study of the respiratory muscles in Chelonia. Breviora 161: 1‐16, 1962.
 712. Shaheen R, Abramian A, Horn J, Dominguez G, Sullivan R, Thiemens MH. Detection of oxygen isotopic anomaly in terrestrial atmospheric carbonates and its implications to Mars. Proc Natl Acad Sci U S A 107: 20213‐20218, 2010.
 713. Shear WA, Gensel PG, Jeram AJ. Fossils of large terrestrial arthropods from the Lower Devonian of Canada. Nature 384: 555‐557, 1996.
 714. Shear WA, Selden PA. Rustling in the undergrowth: animals in early terrestrial ecosystems. In: Gensel PG, Edwards D, editors. Plants Invade the Land: Evolutionary and Environmental Perspectives. New York: Columbia University Press, 2001.
 715. Sheldon ND, Retallack GJ. Low oxygen levels in earliest Triassic soils. Geology 30: 919‐922, 2001.
 716. Shelton TG, Appel AG. Cyclic CO2 release and water loss in the western drywood termite (Isoptera : kalotermitidae). Ann Entomol Soc Am 93: 1300‐1307, 2000.
 717. Shelton TG, Appel AG. Cyclic CO2 release in Cryptotermes cavifrons Banks, Incisitermes tabogae (Snyder) and I. minor (Hagen (Isoptera: Kalotermitidae). Comp Biochem Physiol Part A 129: 681‐693, 2001.
 718. Shi W, Xu J, Warburton D. Development, repair and fibrosis: What is common and why it matters. Respirology 14: 656‐665, 2009.
 719. Sibul I, Kuusik A, Voolma K. Patterns in abdominal pumping, miniature inspirations and heartbeats simultaneously recorded during cyclical gas exchange in adult Hylobius abietis (Coleoptera : Curculionidae) using a respirometer and IR actographs. Eur J Entomol 101: 219‐225, 2004.
 720. Sidorov AV. Effect of acute temperature change on lung respiration of the mollusc Lymnaea stagnalis. J Therm Biol 30: 163‐171, 2005.
 721. Skerret SJ. Host defenses against respiratory infection. Med Clin North Am 78: 941‐966, 1994.
 722. Skulachev VP. Cytochrome c in the apoptotic and antioxidant cascades. FEBS Lett 423: 275‐280, 1998.
 723. Slama K. A new look at insect respiration. Biol Bull 175: 289‐300, 1988.
 724. Slama K. Respiratory cycles of Chelifer cancroides (Pseudscorpiones) and Galeodes sp. (Solifugae). Eur J Entomol 92: 543‐552, 1995.
 725. Snelling EP, Seymour RS, Runciman S. Moulting of insect tracheae captured by light and electron‐microscopy in the metathoracic femur of a third instar locust Locusta migratoria. J Insect Physiol 57: 1312‐1316, 2011.
 726. Soivio A, Tuurala H. Structural and circulatory responses to hypoxia in the secondary lamellae of Salmo gairdneri gills at two temperatures. J Comp Physiol B 145: 37‐43, 1981.
 727. Sollid J, Nilsson GE. Plasticity of respiratory structures–adaptive remodeling of fish gills induced by ambient oxygen and temperature. Respir Physiol Neurobiol 154: 241‐251, 2006.
 728. Stabellini G, Locci P, Calvitti M, Evangelisti R, Marinucci L, Bodo M, Caruso A, Canaider S, Carinci P. Epithelial‐mesenchymal interactions and lung branching morphogenesis. Role of polyamines and transforming growth factor beta1. Eur J Histochem 45: 151‐162, 2001.
 729. Stach T. Coelomic cavities may function as a vascular system in amphioxus larvae. Biol Bull 195: 260‐263, 1998.
 730. Stach T. Chordate phylogeny and evolution: A not so simple three‐taxon problem. J Zool 276: 117‐141, 2008.
 731. Stach T, Eisler K. Ontogeny of the nephridial system of the larval amphioxus (Branchiostoma lanceolatum). Acta Zool (Stockh) 79: 113‐118, 1998.
 732. Stal LJ. Cyanobacterial mats and stromatolites. In: Whitton BA, Potts M, editors. The Ecology of Cyanobacteria: Their Diversity in Time and Space. Norwell, MA: Kluwer Academic Publishers, 2000, pp. 61‐120.
 733. Stanislaus M. Untersuchungen an der Kolibrilunge. Zeits Morphol Tiere 33: 261‐289, 1937.
 734. Steiner G. Zoomorphologie in Umrissen. Stuttgart: Gustav Fischer, 1977.
 735. Steinman RM, Cohn ZA. Identification of a novel cell type in peripheral lymphoid organs of mice. II. Functional properties in vitro. J Exp Med 139: 380‐397, 1974.
 736. Stewart TC, Woodring JP. Anatomical and physiological studies of water balance in the millipedes Pachydesmus crassicutis (Polydesmida) and Orthoporus texicolens (Spirobolida). Comp Biochem Physiol 44A: 735‐750, 1973.
 737. Strahan R. The velum and the respiratory current of Myxine. Acta Zool (Stockh) 39: 227‐240, 1958.
 738. Stuhr LE, Raa A, Oyan AM, Kalland KH, Sakariassen PO, Petersen K, Bjerkvig R, Reed RK. Hyperoxia retards growth and induces apoptosis, changes in vascular density and gene expression in transplanted gliomas in nude rats. J Neurooncol 85: 191‐202, 2007.
 739. Suarez RK. Energy metabolism during insect flight: Biochemical design and physiological performance. Physiol Biochem Zool 73: 765‐771, 2000.
 740. Suarez RK, Lighton JRB, Joos B, Roberts SP, harrison JF. Energy metabolism, enzymatic flux capacitiesn and metabolic flux rates in flying honeybees. Proc Natl Acad Sci USA 93: 12616‐12620, 1996.
 741. Sundin LI, Reid SG, Kalinin AL, Rantin FT, Milsom WK. Cardiovascular and respiratory reflexes: The tropical fish, traira (Hoplias malabaricus) O2 chemoresponses. Respir Physiol 116: 181‐199, 1999.
 742. Sutherland D, Samakovlis C, Krasnow MA. branchless encodes a Drosophila FGF homolog that controls tracheal cell migration and the pattern of branching. Cell 87: 1091‐1101, 1996.
 743. Swan LW. The ecology of the high Himalayas. Sci Amer 205: 67‐78, 1961.
 744. Taylor C. Structural and functional limits to oxidative metabolism: Insights from scaling. Ann Rev Physiol 49: 135‐146, 1987.
 745. Ten Have‐Opbroek AA. Lung development in the mouse embryo. Exp Lung Res 17: 111‐130, 1991.
 746. Tenney SM, Remmers JE. Comparative quantitative morphology of the mammalian lung: Diffusing area. Nature 197: 54‐56, 1963.
 747. Thomas SP. The physiology of bat flight. In: Fenton MB, Racey P, Rayner JMV, editors. Recent Advances in the Study of Bats. Cambridge: Cambridge University Press, 1987, pp. 75‐99.
 748. Thomas SP, Thomas DP, Thomas GS. Ventilation and oxygen extraction in the bat Pteropus poliocephalus acutely exposed to simulated altitudes from 0 to 11 km. Fed Proc 44: 1349, 1985.
 749. Tice MM, Lowe DR. Photosynthetic microbial mats in the 3,416‐Myr‐old ocean. Nature 431: 549‐552, 2004.
 750. Tickle PG, Ennos AR, Lennox LE, Perry SF, Codd JR. Functional significance of the uncinate processes in birds. J Exp Biol 210: 3955‐3961, 2007.
 751. Tille JC, Wood J, Mandriota SJ, Schnell C, Ferrari S, Mestan J, Zhu Z, Witte L, Pepper MS. Vascular endothelial growth factor (VEGF) receptor‐2 antagonists inhibit VEGF‐ and basic fibroblast growth factor‐induced angiogenesis in vivo and in vitro. J Pharmacol Exp Ther 299: 1073‐1085, 2001.
 752. Toffoli S, Roegiers A, Feron O, Van Steenbrugge M, Ninane N, Raes M, Michiels C. Intermittent hypoxia is an angiogenic inducer for endothelial cells: Role of HIF‐1. Angiogenesis 12: 47‐67, 2009.
 753. Toshima M, Ohtani Y, Ohtani O. Three‐dimensional architecture of elastin and collagen fiber networks in the human and rat lung. Arch Histol Cytol 67: 31‐40, 2004.
 754. Trampel DW, Fletcher OJ. Ring‐stabilization technique for collection of avian air sacs. Am J Vet Res 41: 1730‐1734, 1980.
 755. Tsuda A, Filipovic N, Haberthur D, Dickie R, Matsui Y, Stampanoni M, Schittny JC. Finite element 3D reconstruction of the pulmonary acinus imaged by synchrotron X‐ray tomography. J Appl Physiol 105: 964‐976, 2008.
 756. Tsukimoto K, Mathieu‐Costello O, Prediletto R, Elliott AR, West JB. Ultrastructural appearances of pulmonary capillaries at high transmural pressures. J Appl Physiol 71: 573‐582, 1991.
 757. Tucker VA. Gliding flight: Speed and acceleration of ideal falcons during diving and pull out. J Exp Biol 201: 403‐414, 1998.
 758. Tung HC, Bramall NE, Price PB. Microbial origin of excess methane in glacial ice and implications for life on Mars. Proc Natl Acad Sci U S A 102: 18292‐18296, 2005.
 759. Uriona TJ, Farmer CG. Recruitment of the diaphragmaticus, ischiopubis and other respiratory muscles to control pitch and roll in the American alligator (Alligator mississippiensis). J Exp Biol 211: 1141‐1147, 2008.
 760. Veness‐Meehan KA, Pierce RA, Moats‐Staats BM, Stiles AD. Retinoic acid attenuates O2‐induced inhibition of lung septation. Am J Physiol Lung Cell Mol Physiol 283: L971‐L980, 2002.
 761. Vitali SD, Richardson KC. Evaluation of pulmonary volumetric morphometry at the light and electron microscopy level in several species of passerine birds. J Anat 193(Pt 4): 573‐580, 1998.
 762. Vogel WOP. Struktur und Organisationsprinzip im Gefäßsystem der Knochenfische. Gegenb Morphol Jahrb 127: 772‐784, 1981.
 763. Vogel WOP, Hughes GM, Mattheus U. Non‐respiratory blood vessels in Latimeria gill filaments. Phil Trans R Soc Lond 353: 465‐475, 1998.
 764. von Hansemann D. Die Lungenatmung der Schildkröten. Sitzungsbericht der königlich preussischen Akademie der Wissenschaften zu Berlin 1915: 661‐672, 1915.
 765. Wagner PD, Gillespie JR, Landgren GL, Fedde MR, Jones BW, DeBowes RM, Pieschl RL, Erickson HH. Mechanism of exercise‐induced hypoxemia in horses. J Appl Physiol 66: 1227‐1233, 1989.
 766. Waldron KJ, Robinson NJ. How do bacterial cells ensure that metalloproteins get the correct metal? Nat Rev Microbiol 7: 25‐35, 2009.
 767. Waldron KJ, Rutherford JC, Ford D, Robinson NJ. Metalloproteins and metal sensing. Nature 460: 823‐830, 2009.
 768. Wallach V. The lungs of snakes. In: Gans C, Gaunt AS, editors. Biology of the Reptilia: Morphology G. Ithaca (NY): Society for the Study of Amphibians and Reptiles, 1998, vol. 19, pp. 93‐295.
 769. Wallau BR, Schmitz A, Perry SF. Lung morphology in rodents (mammalia, rodentia) and its implications for systematics. J Morphol 246: 228‐248, 2000.
 770. Walsh C, McLelland J. The ultrastructure of the avian extrapulmonary respiratory epithelium. Acta Anat (Basel) 89: 412‐422, 1974.
 771. Walter E, Dreher D, Kok M, Thiele L, Kiama SG, Gehr P, Merkle HP. Hydrophilic poly(DL‐lactide‐co‐glycolide) microspheres for the delivery of DNA to human‐derived macrophages and dendritic cells. J Control Release 76: 149‐168, 2001.
 772. Warburton D. Developmental biology: Order in the lung. Nature 453: 733‐735, 2008.
 773. Warburton D, Bellusci S, De Langhe S, Del Moral PM, Fleury V, Mailleux A, Tefft D, Unbekandt M, Wang K, Shi W. Molecular mechanisms of early lung specification and branching morphogenesis. Pediatr Res 57: 26R‐37R, 2005.
 774. Ward P, Labandeira C, Laurin M, Berner RA. Confirmation of Romer's gap as low oxygen interval constraining the timing of initial arthropod and vertebrate terrestrialization. Proc Natl Acad Sci U S A 103: 16818‐16822, 2006.
 775. Ward PD. Out of Thin Air: Dinosaurs, Birds, and Earth's Ancient Atmosphere. Washington, D.C.: Joseph Henry Press, 2006, p. 282.
 776. Warner BB, Stuart LA, Papes RA, Wispe JR. Functional and pathological effects of prolonged hyperoxia in neonatal mice. Am J Physiol 275: L110‐L117, 1998.
 777. Waser W, Schmitz A, Perry SF, Wobschal A. Stereological analysis of blood space and tissue types in the pseudobranch of the rainbow trout (Oncorhynchus mykiss). Fish Physiol Biochem 31: 73‐82, 2005.
 778. Wasserthal LT. Interaction of circulation and tracheal ventilation in holometabolous insects. Adv Insect Physiol 26: 297‐351, 1996.
 779. Wassnetzov W. Über die Morphologie der Schwimmblase. Zool Jahrb Abt Anat Ontog Tiere 56: 1‐36, 1932.
 780. Wassnezow W. Zur Frage über die Morphologie der Schwimmblase ‐ Vorläufige Mitteilung. Anat Anz 66: 161‐166, 1928.
 781. Watson RR, Fu Z, West JB. Minimal distensibility of pulmonary capillaries in avian lungs compared with mammalian lungs. Respir Physiol Neurobiol 160: 208‐214, 2008.
 782. Waypa GB, Schumacker PT. Hypoxic pulmonary vasoconstriction: Redox events in oxygen sensing. J Appl Physiol 98: 404‐414, 2005.
 783. Weber RE, Vinogradov SN. Nonvertebrate hemoglobins: Functions and molecular adaptations. Physiol Rev 81: 569‐628, 2001.
 784. Wegener G. Flying insects: Model systems in exercise physiology. Experientia 52: 404‐412, 1996.
 785. Wegner NC, Sepulveda CA, Bull KB, Graham JB. Morphometrics in relation to gas transfer and Ram ventilation in high‐energy demand teleosts: Scombrids and billfishes. J Morphol 271: 36‐49, 2010.
 786. Wegner NC, Sepulveda CA, Graham JB. Gill specializations in highperformance pelagic teleosts, with reference to striped marlin (Tetrapturus audax) and wahoo (Acanthocybium solandri). Bull Mar Sci 79: 747‐759, 2006.
 787. Wegner NC, Sepulveda CA, Lai LC, Graham JB. Does the more primitive shark gill design limit aerobic performance? A study of the shortfin mako, Isurus oxyrinchus. In: Perry SF, Morris S, Breuer T, Pajor N, Lambertz M, editors. Proceedings of the 2nd International Congress of Respiratory Science 2009 ‐ Abstracts and Scientific Program. Hildesheim: Tharax Verlag, 2009, p. 74.
 788. Weibel ER. Morphometry of the Human Lung. Berlin: Springer‐Verlag, 1963.
 789. Weibel ER. Morphological basis of alveolar‐capillary gas exchange. Physiol Rev 53: 419‐495, 1973.
 790. Weibel ER. The Pathway for Oxygen: Structure and Function in the Mammalian Respiratory System. Cambridge (MA): Harvard University Press, 1984.
 791. Weibel ER. Lung morphometry and models in respiratory physiology. In: Chang HK, Paiva M, editors. Respiratory Physiology: An Analytical Approach. New York, Basel: Marcel Dekker Inc., 1989, pp. 1‐55.
 792. Weibel ER. Design of biological organisms and fractal geometry. In: Nonnenmacher TF, Losa GA, Weibel ER, editors. Fractals in Biology and Medicine. Basel: Birkhauser, 1994, pp. 68‐85.
 793. Weibel ER. Design of airways and between the organism blood vessels considered as confluent tree. In: Crystal RD, West JB, Weibel ER, Barnes PJ, editors. The Lung: Scientific Foundations. New York: Lippincott‐Raven, 1997, pp. 1061‐1071.
 794. Weibel ER. Symmorphosis: on Form and Function in Shaping Life. Cambridge (MA): Harvard University Press, 2000.
 795. Weibel ER. How to make an alveolus. Eur Respir J 31: 483‐485, 2008a.
 796. Weibel ER. Modelling structure‐function interdependence of pulmonary gas exchange. In: Poulin MJ, wilson RJA, editors. Integration in Respiratory Control: From Genes to Systems. Berlin: Springer, 2008b, pp. 195‐200.
 797. Weibel ER. What makes a good lung? Swiss Med Wkly 139: 375‐386, 2009.
 798. Weibel ER, Bachofen H. The fibre scaffold of lung parenchyma. In: Crystal RG, West LB, Weibel ER, Barnes PJ, editors. The Lung: Scientific Foundations. Philadelphia: Lippincott‐Raven, 1997, pp. 1139‐1146.
 799. Weibel ER, Gomez DM. Architecture of the human lung. Use of quantitative methods establishes fundamental relations between size and number of lung structures. Science 137: 577‐585, 1962.
 800. Weibel ER, Knight BW. A morphometric study on the thickness of the pulmonary air‐blood barrier. J Cell Biol 21: 367‐396, 1964.
 801. Weibel ER, Sapoval B, Filoche M. Design of peripheral airways for efficient gas exchange. Respir Physiol Neurobiol 148: 3‐21, 2005.
 802. Weinberg S. A Fish Caught in Time: The Search for the Coelacanth. New York: HarperCollins, 2001.
 803. Weis‐Fogh T. Diffusion in insect wing musle. The most active tissue known. J exp Biol 41: 229‐256, 1964.
 804. Weis‐Fogh T. Functional design of the tracheal system of flying insects as compared with the avian lung. J Exp Biol 41: 207‐228, 1964.
 805. Weitz CA, Garruto RM, Chin CT, Liu JC, Liu RL, He X. Lung function of Han Chinese born and raised near sea level and at high altitude in Western China. Am J Human Biol 14: 494‐510, 2002.
 806. Wells DJ, Ellington CP. Beyond the vertebrates: Achieving maximum power during flight in insects and hummingbirds. Adv Vet Sci Comp Med 38B: 219‐232, 1994.
 807. Welsch U, Aschauer B. Ultrastructural observations on the lung of the emperor penguin (Apternodytes forsteri). Cell Tissue Res 243: 137‐144, 1986.
 808. West BJ. An Essay on the Importance of being Nonlinear‐Lecture Notes in Biomaterials, 62. Berlin: Springer‐Verlag, 1985.
 809. West BJ. Fractals, intermittency and morphogenesis. In: Degn H, Holden AV, Olsen LF, editors. Chaos in Biological Systems. New York: Plenum Press, 1987, pp. 305‐314.
 810. West BJ, Bhargava V, Goldberger AL. Beyond the principle of similitude: Renormalization in the bronchial tree. J Appl Physiol 60: 1089‐1097, 1986.
 811. West JB. Climbing Mt. Everest without oxygen: an analysis of maximal exercise during extreme hypoxia. Respir Physiol 52: 265‐279, 1983.
 812. West JB, Matthews FL. Stresses, strains, and surface pressures in the lung caused by its weight. J Appl Physiol 32: 332‐345, 1972.
 813. West JB, Watson RR, Fu Z. The honeycomb‐like structure of the bird lung allows a uniquely thin blood‐gas barrier. Respir Physiol Neurobiol 152: 115‐118, 2006.
 814. West JB, Watson RR, Fu Z. Major differences in the pulmonary circulation between birds and mammals. Respir Physiol Neurobiol 157: 382‐390, 2007.
 815. West NH, Bamford OS, Jones DR. A scanning electron microscope study of the microvasculature of the avian lung. Cell Tissue Res 176: 553‐564, 1977.
 816. West NH, Jones DR. Breathing movements in the frog Rana pipiens. I. The mechanical events associated with lung and buccal ventilation. Can J Zool 53: 332‐344, 1975.
 817. Westheide W, Rieger R. Spezielle Zoologie, Part 1. Stuttgart: Gustav Fischer Verlag, 1996.
 818. Westneat MW, Betz O, Blob RW, Fezzaa K, Cooper WJ, Lee WK. Tracheal respiration in insects visualized with synchrotron x‐ray imaging. Science 299: 558‐560, 2003.
 819. Weygoldt P. Evolution and systematics of the Chelicerata. Exp Appl Acarol 22: 63‐79, 1998.
 820. Weygoldt P, Paulus HF. Untersuchungen zur Morphologie, Taxonomie und Phylogenie der Chelicerata II. Cladogramme und die Entfaltung der Chelicerata. Z zool Syst Evolut‐forsch 17: 177‐200, 1979.
 821. Wharton DA. Life at the Limits: Organisms in Exreme Environment. Cambridge: Cambridge University Press, 2002.
 822. White CR, Blackburn TM, Terblanche JS, Marais E, Gibernau M, Chown SL. Evolutionary responses of discontinuous gas exchange in insects. Proc Natl Acad Sci U S A 104: 8357‐8361, 2007.
 823. White RJ. A “radical” idea comes of age: Mitochondrial oxidant signaling in health and disease. J Mol Cell Cardiol 37: 1115‐1117, 2004.
 824. Wienner F. Wave propagation in the pulmonary circulation. Circ Res 19: 834‐850, 1966.
 825. Wigglesworth VB. Surface forces in the tracheal system of insects. Quart J Microsc Sci 94(4): 507‐522, 1953.
 826. Wigglesworth VB. Growth and regeneration in the tracheal system of an insect, Rhodnius prolixus (Hemiptera). Quart J Microsc Science 95: 115‐137, 1954.
 827. Wigglesworth VB. The Principles of Insect Physiology (7th ed). London: Chapman and Hall, 1972.
 828. Wigglesworth VB. The physiology of insect tracheoles. Adv Insect Physiol 17: 85‐148, 1983.
 829. Wijsman TCM, van der Lugt HC, Hoogland HP. Anaearobic metabolism in the freshwater snail Lymnaea stagnalis: haemolymph as a reservoir of D‐Lactate and succinate. Comp Biochem Physiol 81B: 1985, pp. 889‐895.
 830. Wilson DF, Rumsey WL, Green TJ, Vanderkooi JM. The oxygen dependence of mitochondrial oxidative phosphorylation measured by a new optical method for measuring oxygen concentration. J Biol Chem 263: 2712‐2718, 1988.
 831. Wilson TA. Design of the bronchial tree. Nature 213: 668‐669, 1967.
 832. Wilson TA, de Troyer A. The two mechanisms of intercostal muscle action on the lung. J Appl Physiol 96: 483‐488, 2004.
 833. Withers PC. The effects of ambient air pressure on oxygen consumption of resting and hovering honeybees. J Comp Physiol 141: 433‐437, 1981.
 834. Wittenberg BA, Wittenberg JB. Transport of oxygen in muscle. Annu Rev Physiol 51: 857‐878, 1989.
 835. Wittenberg JB, Wittenberg BA. Myoglobin function reassessed. J Exp Biol 206: 2011‐2020, 2003.
 836. Woese CR, Kandler O, Wheelis ML. Towards a natural system of organisms: Proposal for the domains Archaea, Bacteria, and Eucarya. Proc Natl Acad Sci U S A 87: 4576‐4579, 1990.
 837. Wolf S. Zur Kenntnis von Bau und Funktion der Reptilienlunge. Zool Jahrb Abt Anat Ontog Tiere 57: 139‐190, 1933.
 838. Wood CM, Randall DJ. Oxygen and carbon dioxide exchange during exercise in the land crab (Cardisoma carnifex). J Exp Zool 218: 7‐22, 1981.
 839. Woodman JD, Cooper PD, Haritos VS. Cyclic gas exchange in the giant burrowing cockroach, Macropanesthia rhinoceros: Effect of oxygen tension and temperature. J Insect Physiol 53: 497‐504, 2007.
 840. Woodman JD, Cooper PD, Haritos VS. Effects of temperature and oxygen availability on water loss and carbon dioxide release in two sympatric saproxylic invertebrates. Comp Biochem Physiol A 147: 514‐520, 2007.
 841. Woodward JD, Maina JN. A 3D digital reconstruction of the components of the gas exchange tissue of the lung of the muscovy duck, Cairina moschata. J Anat 206: 477‐492, 2005.
 842. Woodward JD, Maina JN. Study of the structure of the air and blood capillaries of the gas exchange tissue of the avian lung by serial section three‐dimensional reconstruction. J Microsc 230: 84‐93, 2008.
 843. Wright JC, Machin J. Water vapour absorption in terrestrial isopods. J Exp Biol 154: 13‐30, 1990.
 844. Wright JC, Machin J. Atmospheric water absorption and the water budget of terrestrial isopods (Crustacea, Isopoda, Oniscidea). Biol Bulletin 184: 243‐253, 1993.
 845. Wright JR. Host defense functions of surfactant. In: Rooney SA, Austin SA, editors. Lung Surfactant: Cellular and Molecular Processing. Austin: Landes Company, 1998, pp. 191‐214.
 846. Yalden DW, Morris PA. The Lives of Bats. New York: The New York Times Book Co., 1975.
 847. Yilmaz C, Dane DM, Hsia CC. Alveolar diffusion‐perfusion interactions during high‐altitude residence in guinea pigs. J Appl Physiol 102: 2179‐2185, 2007.
 848. Zaccone G, Fasulo S, Ainis L. Gross anatomy, histology and immunohistochemistry of respiratory organs of air‐breathing and teleost fishes with particular reference to the neuroendocrine cells and their relationship to the lung and the gill as endocrine organs. In: Pastor LM, editor. Histology, Ultrastructure and Immunohistochemistry of the Respiratory Organs in Non‐Mammalian Vertebrates. Murcia: Servicio de Publicaciones de la Universidad de Murcia, 1995, pp. 13‐52.
 849. Zeuthen E. Oxygen uptake as related to body size in organisms. Q Rev Biol 28: 1‐12, 1953.
 850. Zhao F, Sellgren K, Ma T. Low‐oxygen pretreatment enhances endothelial cell growth and retention under shear stress. Tissue Eng Part C Methods 15: 135‐146, 2009.
 851. Zimmer K. Beiträge zur Mechanik der Atmung bei den Vögeln in Stand und Flug ‐ Auf Grund anatomisch‐physiologischer und experimenteller Studien. Zoologica 88: 1‐69, 1935.

Contact Editor

Submit a note to the editor about this article by filling in the form below.

* Required Field

How to Cite

Connie C. W. Hsia, Anke Schmitz, Markus Lambertz, Steven F. Perry, John N. Maina. Evolution of Air Breathing: Oxygen Homeostasis and the Transitions from Water to Land and Sky. Compr Physiol 2013, 3: 849-915. doi: 10.1002/cphy.c120003