Comprehensive Physiology Wiley Online Library

Bile Formation and Secretion

Full Article on Wiley Online Library



Abstract

Bile is a unique and vital aqueous secretion of the liver that is formed by the hepatocyte and modified down stream by absorptive and secretory properties of the bile duct epithelium. Approximately 5% of bile consists of organic and inorganic solutes of considerable complexity. The bile‐secretory unit consists of a canalicular network which is formed by the apical membrane of adjacent hepatocytes and sealed by tight junctions. The bile canaliculi (∼1 μm in diameter) conduct the flow of bile countercurrent to the direction of portal blood flow and connect with the canal of Hering and bile ducts which progressively increase in diameter and complexity prior to the entry of bile into the gallbladder, common bile duct, and intestine. Canalicular bile secretion is determined by both bile salt‐dependent and independent transport systems which are localized at the apical membrane of the hepatocyte and largely consist of a series of adenosine triphosphate‐binding cassette transport proteins that function as export pumps for bile salts and other organic solutes. These transporters create osmotic gradients within the bile canalicular lumen that provide the driving force for movement of fluid into the lumen via aquaporins. Species vary with respect to the relative amounts of bile salt‐dependent and independent canalicular flow and cholangiocyte secretion which is highly regulated by hormones, second messengers, and signal transduction pathways. Most determinants of bile secretion are now characterized at the molecular level in animal models and in man. Genetic mutations serve to illuminate many of their functions. © 2013 American Physiological Society. Compr Physiol 3:1035‐1078, 2013.

Comprehensive Physiology offers downloadable PowerPoint presentations of figures for non-profit, educational use, provided the content is not modified and full credit is given to the author and publication.

Download a PowerPoint presentation of all images


Figure 1. Figure 1.

(A) Three‐dimensional projection of arrangement of hexagonal hepatocytes in liver plates illustrating the position of bile canaliculi which form a “chicken wire” mesh of interconnecting conduits of the primary secretion of bile. (B) Adjoining hepatocytes illustrating the location of the bile canaliculus (b.c.), intercellular space (i.c.), Disse's space (d.s.), and fenestrated endothelial lining cells and Kupffer cells (k.c.). Tight junctions seal the lumen of the bile canaliculus (t.j.) whose luminal membrane is surrounded by microfilaments (m.f.) and other cytoskeletal elements that provide a contractile mechanism for canalicular peristalsis. Golgi apparatus (g.a.) and rough endoplasmic reticulum (r.e.r) are also illustrated. Reprinted, with permission, from Ref. (72).

Figure 2. Figure 2.

The hepatocyte tight junction complex. (A) Electron micrograph of the bile canaliculus formed between two adjacent hepatocytes and whose lumen is filled with microvilli and sealed by the tight junctions (arrows). (B) Schematic of the tight junction complex showing that occludins and claudins are transmembrane proteins forming the junction seal, whereas zonula occluden proteins 1 and 2 (Z01 and Z02) are cytoplasmic proteins that may serve as anchors for occludins. The latter protein forms the interconnecting strands illustrated in the freeze fracture in Figure 3. See Ref. (385) for more details of tight junction anatomy. Reprinted, with permission, from Ref. (77).

Figure 3. Figure 3.

Freeze fracture replica of the bile canaliculus (BC). The tight junction elements represent the only anatomical barrier between bile and the intercellular space lined by the lateral membrane (LM) of the hepatocyte. Magnifcation X 39,186. Reprinted, with permission, from Ref. (73).

Figure 4. Figure 4.

Graphic representation of determinants of bile flow. Top: canalicular bile flow consists of a bile salt‐dependent (BSDF) and a bile salt‐independent (BSIF) fraction. The BSDF increases linearly as a function of bile salt excretion. Both canalicular bile flow and secretion from the bile ducts contribute to total bile flow. Bottom: choleretic potential varies among bile salts. Bile flow is linearly related to bile salt excretion, but hypercholeretic bile salts increase bile flow more rapidly than do bile salts with normal choleretic potential. Reprinted, with permission, from Ref. (77).

Figure 5. Figure 5.

Relationship between bile salt concentration and bile flow in various animal species. Note that extrapolation to zero bile salt excretion yields a positive intercept for BSIF that is greater in rats and rabbits than in the three other species. Reprinted, with permission, from Ref. (74)

Figure 6. Figure 6.

Membrane transporters that determine the uptake and excretion of bile salts and other organic solutes in hepatocytes. (Na+, sodium; BA, bile salts; OA, organic anions; OC+, organic cations; GSH, glutathione; HC03, bicarbonate; OA‐S, sulfated organic anions; Chol,cholesterol; H+, proton; PL, phospholipid; PS, phosphatidyl serine; BA‐S,sulfated bile salts; Bil‐G, bilirubin glucuronide). Also see Table 4 for full terminology and function for these and other transporter determinants of bile secretion. Reprinted, with permission, from Ref. (80).

Figure 7. Figure 7.

The hepatic clearance of bile salts and other organic solutes is determined by four steps or phases; Phase 0, hepatic uptake; Phase I, hydroxylation by cytochrome 3A and other CYP450s; Phase II, conjugation reactions with glucuronides, glutathione, sulfates, or acetates; and Phase III, export from the liver by adenosine triphosphate‐dependent ATP‐binding cassette (ABC) transporters. The figure also shows the coordinated ligand‐activated regulation of gene expression that determines the hepatic clearance of bile salts, bilirubin, and xenobiotics. Some of the major nuclear receptors that regulate the expression of these key genes are shown. Unless otherwise indicated by ↓ or − symbols, these ligands stimulate gene expression. Normally, many of these nuclear receptors form heterodimeric complexes with the retinoid X receptor (RXR). This complex then binds to specific response elements in the gene promoter. Other nuclear receptors such as short heterodimeric protein‐1, fetal transcription factor (FTF), and hepatocyte nuclear factor 1 (HNF‐1) do not form heterodimers with RXR and do not have specific ligands. Reprinted, with permission, from Ref. (79).

Figure 8. Figure 8.

Two alternative mechanisms for the mechanism of phosphatidylcholine (PC) excretion into bile. (A) Bile salts are transported into the canalicular lumen by the canalicular bile salt transporter (cBST) (now termed BSEP), and PC accumulates on the luminal side of the canalicular membrane by the action of MDR3. Luminal bile salts then extract the phospholipid from the membrane into micelles. (B) MDR3 flops PC to the external domains of the canalicular membrane bilayer which extrude into the bile lumen and are destabilized by bile salts which pinch off the membrane. Reprinted, with permission, from Ref. (77) as modified from Oude Elferink RPJ, Tytgat GNJ, Groen AK. Faseb J, 11: 19, 1997(428).

Figure 9. Figure 9.

The figure illustrates the heterogeneity of the structure and function of the biliary tree and bile duct epithelial cells. Canalicular bile secreted by hepatocytes enters the biliary tree by joining upstream with the canals of Hering. As branches of the biliary tree join, the luminal diameter increases (values in parentheses) and the bile duct epithelial cells become larger. The range of receptors and transporters on medium and large bile duct cells is similar although secretin receptor expression and Cl/HCO3 exchange activity is greater in the median and large size bile duct cells. Reprinted, with permission, from Ref. (77).

Figure 10. Figure 10.

Hormonal regulation of cholangiocyte HCO3 excretion based on studies in rodents. Secretin induces ductular bicarbonate‐rich choleresis by activation of apical Cl/HCO3 exchanger via a cyclic adenosine monophosphate (cAMP) and PKA‐dependent pathway; acetylcholine, by activation of calcineurin, induces a “sensitization “ of adenylcyclase to secretin leading to a maximal stimulation of the Cl/HCO3 exchanger. Vasoactive intestinal peptide (VIP) and bombesin stimulate cholangiocyte bicarbonate secretion via a cAMP and cyclic guanosine monophosphate (cGMP)‐independent pathway. Somatostatin, gastrin, and insulin inhibit both basal and hormonal induced bicarbonate cholangiocyte secretion via a PKC‐α‐dependent pathway. Ach, acetylcholine; M3, muscarinic receptor 3; SR, secretin receptor; CM, calmodulin; AC, adenyl cyclase; PKA, protein kinase A; PKCα, protein kinase c alpha; AE‐2, Cl/HCO3 exchanger; CFTR, cystic fibrosis transmembrane conductance regulator; NHE‐3, sodium hydrogen exchanger isoform 3; AQP1, aquaporin 1; IR, insulin receptor. Reprinted, with permission, from Ref. (184).

Figure 11. Figure 11.

The role of extracellular adenosine triphosphate (ATP) in bile formation. Proposed model of P2 signaling. Bile formation begins via transport of bile salts, phospholipids, and ATP from the hepatocyte canalicular membrane. Hepatocyte ATP release is positively regulated by phosphatidylinositol 3‐kinase (PI3K) and protein kinase C. Secretin stimulates increases in cholangiocyte cyclic adenosine monophosphate (cAMP) levels via stimulation of basolateral receptors resulting in Cl efflux through CFTR and an increase in Cl/HCO3 exchange. Increases in cAMP, as well as exposure to the bile salt ursodeoxycholate (UDCA), may also increase ATP release through a CFTR‐dependent mechanism. BA, bile acids; PL, phospholipids; SK2, Ca2+‐activated K+ channel; CFTR, cystic fibrosis transmembrane conductance regulator. Reprinted, with permission, from Ref. (160).



Figure 1.

(A) Three‐dimensional projection of arrangement of hexagonal hepatocytes in liver plates illustrating the position of bile canaliculi which form a “chicken wire” mesh of interconnecting conduits of the primary secretion of bile. (B) Adjoining hepatocytes illustrating the location of the bile canaliculus (b.c.), intercellular space (i.c.), Disse's space (d.s.), and fenestrated endothelial lining cells and Kupffer cells (k.c.). Tight junctions seal the lumen of the bile canaliculus (t.j.) whose luminal membrane is surrounded by microfilaments (m.f.) and other cytoskeletal elements that provide a contractile mechanism for canalicular peristalsis. Golgi apparatus (g.a.) and rough endoplasmic reticulum (r.e.r) are also illustrated. Reprinted, with permission, from Ref. (72).



Figure 2.

The hepatocyte tight junction complex. (A) Electron micrograph of the bile canaliculus formed between two adjacent hepatocytes and whose lumen is filled with microvilli and sealed by the tight junctions (arrows). (B) Schematic of the tight junction complex showing that occludins and claudins are transmembrane proteins forming the junction seal, whereas zonula occluden proteins 1 and 2 (Z01 and Z02) are cytoplasmic proteins that may serve as anchors for occludins. The latter protein forms the interconnecting strands illustrated in the freeze fracture in Figure 3. See Ref. (385) for more details of tight junction anatomy. Reprinted, with permission, from Ref. (77).



Figure 3.

Freeze fracture replica of the bile canaliculus (BC). The tight junction elements represent the only anatomical barrier between bile and the intercellular space lined by the lateral membrane (LM) of the hepatocyte. Magnifcation X 39,186. Reprinted, with permission, from Ref. (73).



Figure 4.

Graphic representation of determinants of bile flow. Top: canalicular bile flow consists of a bile salt‐dependent (BSDF) and a bile salt‐independent (BSIF) fraction. The BSDF increases linearly as a function of bile salt excretion. Both canalicular bile flow and secretion from the bile ducts contribute to total bile flow. Bottom: choleretic potential varies among bile salts. Bile flow is linearly related to bile salt excretion, but hypercholeretic bile salts increase bile flow more rapidly than do bile salts with normal choleretic potential. Reprinted, with permission, from Ref. (77).



Figure 5.

Relationship between bile salt concentration and bile flow in various animal species. Note that extrapolation to zero bile salt excretion yields a positive intercept for BSIF that is greater in rats and rabbits than in the three other species. Reprinted, with permission, from Ref. (74)



Figure 6.

Membrane transporters that determine the uptake and excretion of bile salts and other organic solutes in hepatocytes. (Na+, sodium; BA, bile salts; OA, organic anions; OC+, organic cations; GSH, glutathione; HC03, bicarbonate; OA‐S, sulfated organic anions; Chol,cholesterol; H+, proton; PL, phospholipid; PS, phosphatidyl serine; BA‐S,sulfated bile salts; Bil‐G, bilirubin glucuronide). Also see Table 4 for full terminology and function for these and other transporter determinants of bile secretion. Reprinted, with permission, from Ref. (80).



Figure 7.

The hepatic clearance of bile salts and other organic solutes is determined by four steps or phases; Phase 0, hepatic uptake; Phase I, hydroxylation by cytochrome 3A and other CYP450s; Phase II, conjugation reactions with glucuronides, glutathione, sulfates, or acetates; and Phase III, export from the liver by adenosine triphosphate‐dependent ATP‐binding cassette (ABC) transporters. The figure also shows the coordinated ligand‐activated regulation of gene expression that determines the hepatic clearance of bile salts, bilirubin, and xenobiotics. Some of the major nuclear receptors that regulate the expression of these key genes are shown. Unless otherwise indicated by ↓ or − symbols, these ligands stimulate gene expression. Normally, many of these nuclear receptors form heterodimeric complexes with the retinoid X receptor (RXR). This complex then binds to specific response elements in the gene promoter. Other nuclear receptors such as short heterodimeric protein‐1, fetal transcription factor (FTF), and hepatocyte nuclear factor 1 (HNF‐1) do not form heterodimers with RXR and do not have specific ligands. Reprinted, with permission, from Ref. (79).



Figure 8.

Two alternative mechanisms for the mechanism of phosphatidylcholine (PC) excretion into bile. (A) Bile salts are transported into the canalicular lumen by the canalicular bile salt transporter (cBST) (now termed BSEP), and PC accumulates on the luminal side of the canalicular membrane by the action of MDR3. Luminal bile salts then extract the phospholipid from the membrane into micelles. (B) MDR3 flops PC to the external domains of the canalicular membrane bilayer which extrude into the bile lumen and are destabilized by bile salts which pinch off the membrane. Reprinted, with permission, from Ref. (77) as modified from Oude Elferink RPJ, Tytgat GNJ, Groen AK. Faseb J, 11: 19, 1997(428).



Figure 9.

The figure illustrates the heterogeneity of the structure and function of the biliary tree and bile duct epithelial cells. Canalicular bile secreted by hepatocytes enters the biliary tree by joining upstream with the canals of Hering. As branches of the biliary tree join, the luminal diameter increases (values in parentheses) and the bile duct epithelial cells become larger. The range of receptors and transporters on medium and large bile duct cells is similar although secretin receptor expression and Cl/HCO3 exchange activity is greater in the median and large size bile duct cells. Reprinted, with permission, from Ref. (77).



Figure 10.

Hormonal regulation of cholangiocyte HCO3 excretion based on studies in rodents. Secretin induces ductular bicarbonate‐rich choleresis by activation of apical Cl/HCO3 exchanger via a cyclic adenosine monophosphate (cAMP) and PKA‐dependent pathway; acetylcholine, by activation of calcineurin, induces a “sensitization “ of adenylcyclase to secretin leading to a maximal stimulation of the Cl/HCO3 exchanger. Vasoactive intestinal peptide (VIP) and bombesin stimulate cholangiocyte bicarbonate secretion via a cAMP and cyclic guanosine monophosphate (cGMP)‐independent pathway. Somatostatin, gastrin, and insulin inhibit both basal and hormonal induced bicarbonate cholangiocyte secretion via a PKC‐α‐dependent pathway. Ach, acetylcholine; M3, muscarinic receptor 3; SR, secretin receptor; CM, calmodulin; AC, adenyl cyclase; PKA, protein kinase A; PKCα, protein kinase c alpha; AE‐2, Cl/HCO3 exchanger; CFTR, cystic fibrosis transmembrane conductance regulator; NHE‐3, sodium hydrogen exchanger isoform 3; AQP1, aquaporin 1; IR, insulin receptor. Reprinted, with permission, from Ref. (184).



Figure 11.

The role of extracellular adenosine triphosphate (ATP) in bile formation. Proposed model of P2 signaling. Bile formation begins via transport of bile salts, phospholipids, and ATP from the hepatocyte canalicular membrane. Hepatocyte ATP release is positively regulated by phosphatidylinositol 3‐kinase (PI3K) and protein kinase C. Secretin stimulates increases in cholangiocyte cyclic adenosine monophosphate (cAMP) levels via stimulation of basolateral receptors resulting in Cl efflux through CFTR and an increase in Cl/HCO3 exchange. Increases in cAMP, as well as exposure to the bile salt ursodeoxycholate (UDCA), may also increase ATP release through a CFTR‐dependent mechanism. BA, bile acids; PL, phospholipids; SK2, Ca2+‐activated K+ channel; CFTR, cystic fibrosis transmembrane conductance regulator. Reprinted, with permission, from Ref. (160).

Reference
 1. Abu‐Hayyeh S, Martinez‐Becerra P, Sheikh Abdul Kadir SH, Selden C, Romero MR, Rees M, Marschall HU, Marin JJ, Williamson C. Inhibition of Na+‐taurocholate Co‐transporting polypeptide‐mediated bile acid transport by cholestatic sulfated progesterone metabolites. J Biol Chem 285: 16504‐16512, 2010.
 2. Accatino L, Pizarro M, Solís N, Koenig CS, Vollrath V, Chianale J. Modulation of hepatic content and biliary excretion of P‐glycoproteins in hepatocellular and obstructive cholestasis in the rat. J Hepatol 25: 349‐361, 1996.
 3. Adachi Y, Kobuyashi H, Kurumi Y. ATP‐dependent taurocholate transport by rat liver canalicular membrane vesicles. Hepatology 14: 655‐659, 1991.
 4. Agre P, Bonhivers M, Borgnia MJ. The aquaporins, blueprints for cellular plumbing systems. J Biol Chem 273: 14659‐14662, 1998.
 5. Akita H, Suzuki H, Hirohashi T, Takikawa H, Sugiyama Y. Transport activity of human MRP3 expressed in Sf9 cells: Comparative studies with rat MRP3. Pharm Res 19: 34‐41, 2002.
 6. Alexander RT, Grinstein S. Tethering, recycling and activation of the epithelial sodium‐proton exchanger, NHE3. J Exp Biol 212: 1630‐1637, 2009.
 7. Alpini G, Garrick RA, Jones MJT, Nunes R, Tavoloni N. Water and nonelectrolyte permeability of isolated rat hepatocytes. Am J Physiol 251: C872‐C882, 1986.
 8. Alpini G, Glaser S, Robertson W, Rodgers RED, Phinizy JL, Lasater J, LeSage GD. Large but not small intrahepatic bile ducts are involved in secretin‐regulated ductal bile secretion. Am J Physiol 35: G1064‐G1074, 1997.
 9. Alpini G, Glaser SS, Robertson WE. Bile acids stimulate proliferative and secretory events in large but not small scholangiocytes. Am J Physiol Gastrointest Liver Physiol 273: G518‐G529, 1997.
 10. Alpini G, Glaser SS, Rodgers R, Phinizy JL, Robertson WE, Lasater J, LeSage GD. Functional expression of the apical Na+‐dependent bile acid transporter in large but not small rat cholangiocytes. Gastroenterology 113: 1734‐1740, 1997.
 11. Alpini G, Lenzi R, Sarkozi L, Tavoloni N. Biliary physiology in rats with bile ductular cell hyperplasia Evidence for a secretory function of proliferated bile ductules. J Clin Invest 81: 569‐578, 1988.
 12. Alpini G, Roberts S, Kuntz SM, Uneno Y, Gubba S, Podila PV, LeSage G, LaRusso NF. Morphological, molecular, and functional heterogeneity of cholangiocytes from normal rat liver. Gastroenterology 110: 1636‐1643, 1996.
 13. Alrefai WA, Gill RK. Bile Acid transporters: Structure, function, regulation and pathophysiological implications 1. Pharm Res 24: 1803‐1823, 2007.
 14. Altmann SW, Davis HR, Jr., Zhu LJ, Yao X, Hoos LM, Tetzloff G, Iyer SP, Maguire M, Golovko A, Zeng M, Wang L, Murgolo N, Graziano MP. Niemann‐Pick C1 Like 1 protein is critical for intestinal cholesterol absorption. Science 303: 1201‐1204, 2004.
 15. Alvaro D, Alpini G, Jezequel AM, Bassotti C, Francia C, Fraioli F, Romeo R, Marucci L, Le Sage G, Glaser SS, Benedetti A. Role and mechanisms of action of acetylcholine in the regulation of rat cholangiocyte secretory functions. J Clin Invest 100: 1349‐1362, 1997.
 16. Alvaro D, Cho WK, Mennone A, Boyer JL. Effect of secretin on intracellular pH regulation in isolated rat bile duct epithelial cells. J Clin Invest 92: 1314‐1325, 1993.
 17. Alvaro D, Della Guardia P, Bini A, Gigliozzi A, Furfaro S, LaRosa T, Piat C, Capocaccia L. Effect of glucagon on intracellular pH regulation in isolated rat hepatocyte couplets. J Clin Invest 96: 664‐675, 1995.
 18. Alvaro D, Gigliozzi A, Marucci L, Alpini G, Barbaro B, Monterubbianesi R, Minetola L, Mancino MG, Medina JF, Attili AF, Benedetti A. Corticosteroids modulate the secretory processes of the rat intrahepatic biliary epithelium. Gastro 122: 1058‐1069, 2002.
 19. Alvaro D, Mennone A, Boyer JL. Role of kinases and phosphatases in the regulation of fluid secretion and C1−/HCO3− exchange in cholangiocytes. Am J Physiol 273: G303‐G313, 1997.
 20. Ambudkar SV, Dey S, Hrycyna CA, Ramachandra M, Pastan I, Gottesman MM. Biochemical, cellular, and pharmacological aspects of the multidrug transporter. Ann Rev Pharmacol Toxicol 39: 361‐398, 1999.
 21. Amigo L, Zanlungo S, Miguel JF, Glick JM, Hyogo H, Cohen DE, Rigotti A, Nervi F. Hepatic overexpression of sterol carrier protein‐2 inhibits VLDL production and reciprocally enhances biliary lipid secretion. J Lipid Res 44: 399‐407, 2003.
 22. Ananthanarayanan M, Balasubramanian N, Makishima M, Mangelsdorf DJ, Suchy FJ. Human bile salt export pump promoter is transactivated by the farnesoid X receptor/bile acid receptor. J Biol Chem 276: 28857‐28865, 2001.
 23. Ananthanarayanan M, Li S, Balasubramaniyan N, Suchy FJ, Walsh MJ. Ligand‐dependent activation of the farnesoid X‐receptor directs arginine methylation of histone H3 by CARM1. J Biol Chem 279: 54348‐54357, 2004.
 24. Ananthanarayanan M, Li Y, Surapureddi S, Balasubramaniyan N, Ahn J, Goldstein JA, Suchy FJ. Histone H3K4 trimethylation by MLL3 as part of ASCOM complex is critical for NR activation of bile acid transporter genes and is downregulated in cholestasis. Am J Physiol Gastrointest Liver Physiol 300: G771‐G781, 2011.
 25. Andersen S, Okkels H, Krarup H, Laurberg P. Geographical clustering and maintained health in individuals harbouring the mutation for Greenland familial cholestasis: A population‐based study. Scand J Gastroenterol 41: 445‐450, 2006.
 26. Anderson JM, VanItallie CM. Tight junctions and the molecular basis for regulation of paracellular permeability. Am J Physiol 38: G467‐G475, 1996.
 27. Anwer MS. Cellular regulation of hepatic bile acid transport in health and cholestasis. Hepatology 39: 581‐590, 2004.
 28. Anwer MS, Gillin H, Mukhopadhyay S, Balasubramaniyan N, Suchy FJ, Ananthanarayanan M. Dephosphorylation of Ser‐226 facilitates plasma membrane retention of Ntcp. J Biol Chem 280: 33687‐33692, 2005.
 29. Anwer MS, Hegner D. Effect of Na on bile acid uptake by isolated rat hepatocytes. Evidence for a heterogeneous system. Hoppe‐Seyler's Z Physiol Chem 359: 181‐192, 1978.
 30. Aoyama N, Tokamo H, Ohya T, Chandler K, Holzbach RT. A novel transcellular transport pathway for non‐bile salt cholephilic organic anions. Am J Physiol 261: G305‐G311, 1991.
 31. Arias IM, Che MX, Gatmaitan Z, Leveille C, Nishida T, St. Pierre M. The biology of the bile canaliculus, 1993. Hepatology 17: 318‐329, 1993.
 32. Aromataris EC, Roberts ML, Barritt GJ, Rychkov GY. Glucagon activates Ca2+ and Cl− channels in rat hepatocytes. J Physiol 573: 611‐625, 2006.
 33. Arrese M, Trauner M, Ananthananarayanan M, Pizarro M, Solis N, Accatino L, Soroka C, Boyer JL, Karpen SJ, Miquel JF, Suchy FJ. Down‐regulation of the Na+/taurocholate cotransporting polypeptide during pregnancy in the rat. J Hepatology 38: 148‐155, 2003.
 34. Assaraf YG. The role of multidrug resistance efflux transporters in antifolate resistance and folate homeostasis. Drug Resist Update 9: 227‐246, 2006.
 35. Badagnani I, Castro RA, Taylor TR, Brett CM, Huang CC, Stryke D, Kawamoto M, Johns SJ, Ferrin TE, Carlson EJ, Burchard EG, Giacomini KM. Interaction of methotrexate with organic‐anion transporting polypeptide 1A2 and its genetic variants. J Pharmacol Exp Ther 318: 521‐529, 2006.
 36. Baker AL, Wood RAB, Moossa AR, Boyer JL. Sodium taurocholate modifies the bile acid‐independent fraction of canalicular bile flow in the rhesus monkey. J Clin Invest 64: 312‐320, 1979.
 37. Balasubramaniyan N, Ananthanarayanan M, Suchy FJ. Direct methylation of FXR by Set7/9, a lysine methyltransferase, regulates the expression of FXR target genes. Am J Physiol Gastrointest Liver Physiol 302: G937‐G947, 2012.
 38. Ballatori N, Aremy DA and Madejczyik MS. Essential and toxic metal transport in the liver. In: Rudolfs K, Zalups D, James Koropatnick, editors. Cellular and Molecular Biology of Metals, CRC Press, 2010, pp. 79‐112.
 39. Ballatori N, Christian WV, Lee JY, Dawson Pa, Soroka CJ, Boyer, JL, Madejczyk MS, Li N. OSTα‐OSTβ: A major basolateral bile acid and steroid transporter in human intestinal, renal, and biliary epithelia. Hepatology 42: 1270‐1279, 2005.
 40. Ballatori N, Dutczak WJ. Identification and characterization of high and low affinity transport systems for reduced glutathione in liver cell canalicular membranes. J Biol Chem 269: 19731‐7, 1994.
 41. Ballatori N, Fang F, Christian WV, Li N, Hammond CL. Ost{alpha}‐Ost{beta} is required for bile acid and conjugated steroid disposition in the intestine, kidney, and liver. Am J Physiol Gastrointest Liver Physiol 295: G179‐G186, 2008.
 42. Ballatori N, Gatmaitan Z, Truong AT. Impaired biliary excretion and whole body elimination of methylmercury in rats with congenital defect in biliary glutathione excretion. Hepatology 22: 1469‐1473, 1995.
 43. Ballatori N, Jacob R, Boyer JL. Intrabiliary glutathione hydrolysis. J Biol Chem 261: 7860‐7865, 1986.
 44. Ballatori N, Jacob R, Boyer JL. Biliary catabolism of glutathione and differential reabsorption of its amino acid constituents. Am J Physiol 254: G1‐G7, 1988.
 45. Ballatori N, Li N, Fang F, Boyer JL, Christian WV, Hammond CL. OST alpha‐OST beta: A key membrane transporter of bile acids and conjugated steroids. Front Biosci 14: 2829‐2844, 2009.
 46. Ballatori N, Moseley RH, Boyer JL. Sodium gradient‐dependent L‐glutamate transport is localized to the canalicular domain of liver plasma membranes. J Biol Chem 261: 6216‐6221, 1986.
 47. Ballatori N, Truong AT. Relation between biliary glutathione excretion and bile acid‐independent bile flow. Am J Physiol 256: G22‐G30, 1989.
 48. Ballatori N, Truong AT. Glutathione as a primary osmotic driving force in hepatic bile formation. Am J Physiol 263: G617‐G624, 1992.
 49. Ballatori N, Truong AT, Ma AK, Boyer JL. Determinants of glutathione efflux and biliary GSH/GSSG Ratio in perfused rat liver. Am J Physiol 256: G482‐G490, 1989.
 50. Barbhuiya MA, Sahasrabuddhe NA, Pinto SM, Muthusamy B, Singh TD, Nanjappa V, Keerthikumar S, Delanghe B, Harsha HC, Chaerkady R, Jalaj V, Gupta S, Shrivastav BR, Tiwari PK, Pandey A. Comprehensive proteomic analysis of human bile. Proteomics 11: 4443‐4453, 2011.
 51. Barr VA, Hubbard AL. Newly synthesized hepatocyte plasma membrane proteins are transported in transcytotic vesicles in the bile duct‐ligated rat. Gastroenterology 105: 554‐571, 1993.
 52. Beckh K, Kneip S, Arnold R. Direct regulation of bile secretion by prostaglandins in perfused rat liver. Hepatology 19: 1208‐1213, 1994.
 53. Belinsky MG, Dawson Pa, Shchaveleva I, Bain LJ, Wang R, Ling V, Chen ZS, Grinberg A, Westphal H, Klein‐Szanto A, Lerro A, Kruh GD. Analysis of the in vivo functions of Mrp3. Mol Pharmacol 68: 160‐168, 2005.
 54. Benedetti A, Bassotti C, Rapino K, Marucci L, Jezequel AM. A morphometric study of the epithelium lining the rat intrahepatic biliary tree. J Hepatology 24: 335‐342, 1996.
 55. Benedetti A, Strazzabosco M, Corasanti JG, Haddad P, Graf J, Boyer JL. Cl− HCO3 exchanger in isolated rat hepatocytes: Role in regulation of intracellular pH. Am J Physiol 261: G512‐G522, 1991.
 56. Benedetti A, Strazzabosco M, Ng OC, Boyer JL. Regulation of activity and apical targeting of the Cl−/. Proc Natl Acad Sci U S A 91: 792‐796, 1994.
 57. Benedetti A, Strazzabosco M, Ng OC, Boyer JL. Regulation of activity and apical targeting of the Cl−/HCO3− exchanger in rat hepatocytes. Proc Natl Acad Sci U S A 91: 792‐796, 1994.
 58. Benoki S, Yoshinari K, Chikada T, Imai J, Yamazoe Y. Transactivation of ABCG2 through a novel cis‐element in the distal promoter by constitutive androstane receptor but not pregnane X receptor in human hepatocytes. Arch Biochem Biophys 517: 123‐130, 2012.
 59. Berge KE, Tian H, Graf GA, Yu L, Grishin NV, Schultz J, Kwiterovich P, Shan B, Barnes R, Hobbs HH. Accumulation of dietary cholesterol in sitosterolemia caused by mutations in adjacent ABC transporters. Science 290: 1771‐1775, 2000.
 60. Beuers U, Boyer JL. Bile: A historical review of studies on its form and function. In: Kirsner JB, editor. The Growth of Gastroenterologic Knowledge During the Twentieth Century, Philadelphia: Lea & Febiger, 1994, pp. 267‐288.
 61. Beuers U, Bilzer M, Chittattu A, Kullak‐Ublick GA, Keppler D, Paumgartner G, Dombrowski F. Tauroursodeoxycholic acid inserts the apical conjugate export pump, Mrp2, into canalicular membranes and stimulates organic anion secretion by protein kinase C‐dependent mechanisms in cholestatic rat liver. Hepatology 33: 1206‐1216, 2001.
 62. Beuers U, Nathanson MH, Boyer JL. Effects of tauroursodeoxycholic acid on cytosolic Ca2+ signals in isolated rat hepatocytes. Gastroenterology 104: 604‐612, 1993.
 63. Beuers U, Nathanson MH, Isales CM, Boyer JL. Tauroursodeoxycholic acid stimulates hepatocellular exocytosis and mobilizes extracellular Ca++ mechanisms defective in cholestasis. J Clin Invest 92: 2984‐2993, 1993.
 64. Beuers U, Throckmorton DC, Anderson MS, Isales CM, Thasler W, Kullak‐Ublick G‐A, Sauter G, Koebe HG, Paumgartner G, Boyer JL. Tauroursodeoxycholic acid activates protein kinase C in isolated rat hepatocytes. Gastroenterology 110: 1553‐1563, 1996.
 65. Bizard G. Enzyme inhibitors and biliary secretion. In: Taylor W, editor. The Biliary System, Oxford: Blackwell, 1965, pp. 315‐324.
 66. Blitzer BL, Boyer JL. Cytochemical localization of Na+,K+‐ATPase in the rat hepatocyte. J Clin Invest 62: 1104‐1108, 1978.
 67. Bloomer J, Enriquez R. Evidence that hepatic crystalline deposits in a patient with protoporphyria are composed of protoporphyrin. Gastroenterology 82: 569‐572, 1982.
 68. Bohan A, Chen WS, Denson LA, Held MA, Boyer JL. Tumor necrosis factor alpha‐dependent up‐regulation of Lrh‐1 and Mrp3(Abcc3) reduces liver injury in obstructive cholestasis. J Biol Chem 278: 36688‐36698, 2003.
 69. Borst P, Evers R, Kool M, Wijnholds J. The multidrug resistance protein family. Biochim Biophys Acta 1461: 347‐357, 1999.
 70. Boyer JL. Canalicular bile formation in the isolated perfused rat liver. Am J Physiol 221: 1156‐1163, 1971.
 71. Boyer JL. New concepts of mechanisms of hepatocyte bile formation. Physiol Rev 60: 303‐326, 1980.
 72. Boyer JL. Tight junctions in normal and cholestatic liver: Does the paracellular pathway have functional significance? Hepatology 3: 614‐617, 1983.
 73. Boyer JL. Mechanisms of bile secretion and hepatic transport. In: Andreoli TE, Hoffman JF, Fanestil DD, Schultz SG, editors. Physiology of Membrane Disorders, Plenum Publishing Corp., New York, N.Y. 1986, pp. 609‐636.
 74. Boyer JL. Bile duct epithelium: Frontiers in transport physiology. Am J Physiol 270: G1‐G5, 1996.
 75. Boyer JL. Effects of bile acids on bile secretion. In: Paumgartner G, Stiehl A, Gerok W, editors. Bile Acids in Hepatobiliary Diseases: Basic Research and Clinical Application, Dordrecht: Kluwer Academic Publishers, 1997, pp. 205‐212.
 76. Boyer JL. Bile Formation and Cholestasis. In: Schiff ER, Sorrell MF, Maddrey WC, editor. Schiff's Diseases of the Liver, Philadelphia: Lippincott, Williams & Wilkins, 2002, pp. 135‐165.
 77. Boyer JL. Milestones in liver disease ‐ a commentary. J Hepatology 36: 4‐7, 2002.
 78. Boyer JL. Nuclear receptor ligands: Rational and effective therapy for chronic cholestatic liver disease? Gastroenterology 129: 735‐740, 2005.
 79. Boyer JL. Adaptive regulation of hepatocyte traransporters in cholestasis. In: Arias IM, Alter HJ, Boyer JL, Cohen DE, Fausto N, Shafritz DA, and Wolkoff AW. editors. The Liver Biology and Pathobiology, Chichester: John Wiley & Sons, 2009, pp. 681‐702.
 80. Boyer JL, Bloomer JR. Canalicular bile secretion in man: Studies utilizing the biliary clearance of (14C) mannitol. J Clin Invest 54: 773‐781, 1974.
 81. Boyer JL, Klatskin G. Canalicular bile flow and bile secretory pressure: Evidence for a non‐bile salt dependent fraction in the isolated perfused rat liver. Gastro 59: 853‐859, 1970.
 82. Boyer JL, Meier PJ. Characterizing mechanisms of hepatic bile acid transport utilizing isolated membrane vesicles. In: Fleischer S, Fleischer B, editors. Methods in Enzymology, New York: Academic Press, Inc., 1990, pp. 517‐533.
 83. Boyer JL, Ng OC, Ananthanarayanan M, Hofmann AF, Schteingart CD, Hagenbuch B, Stieger B, Meier PJ. Expression and characterization of a functional rat liver Na+ bile acid cotransport system in COS‐7 cells. Am J Physiol 266: G382‐G387, 1994.
 84. Boyer JL, Schwarz J, Smith N. Biliary secretion in elasmobranchs. II. Hepatic uptake and biliary excretion of organic anions. Am J Physiol 230: 974‐981, 1976.
 85. Boyer JL, Schwarz J, Smith N. Biliary secretion in elasmobranchs. I. Bile collection and composition. Am J Physiol 230: 970‐973, 1976.
 86. Boyer, JL. Mechanisms of bile secretion and hepatic transport. In: Andreoli TE HJFDaSS. editors. Physiology of Membrane Disorders, New York, NY: Plenum Publishing Corporation, 1986, pp. 609‐636.
 87. Boyer JL, Soroka CJ. Vesicle targeting to the apical domain regulates bile excretory function in isolated rat hepatocyte couplets. Gastroenterology 109: 1600‐1611, 1995.
 88. Boyer JL, Trauner M, Mennone A, Soroka CJ, Cai SY, Moustafa T, Zollner G, Lee JY, Ballatori N. Upregulation of a basolateral FXR‐dependent bile acid efflux transporter, OSTalpha‐OSTbeta in cholestasis in humans and rodents. Am J Physiol Gastrointest Liver Physiol 290: G1124‐1130, 2006.
 89. Bradley SE, Herz R. Permselectivity of biliary canalicular membrane in rats: Clearance probe analysis. Am J Physiol 235: E570‐E576, 1978.
 90. Brauer RW, Leong GF, Holloway RJ. Mechanics of bile secretion: Effect of perfusion pressure and temperature on bile flow and secretion pressure. Am J Physiol 177: 103‐112, 1954.
 91. Bruck R, Benedetti A, Strazzabosco M, Boyer JL. Intracellular alkalinization stimulates bile flow and vesicular‐mediated exocytosis in IPRL. Am J Physiol 265: G347‐G353, 1993.
 92. Bruck R, Haddad P, Graf J, Boyer JL. Regulatory volume decrease stimulates bile flow, bile acid excretion, and exocytosis in isolated perfused rat liver. Am J Physiol 262: G806‐G812, 1992.
 93. Bruck R, Nathanson MH, Ward SA, Boyer JL. Exocytosis of horseradish peroxidase (HRP) is stimulated by protein kinase C (PKC) and inhibited by increased [Ca++]i in the isolated perfused rat liver (IPRL). Hepatology 14: 148A, 1991.
 94. Buanes T, Grotmol T, Landsverk T, Raeder MG. Secretin empties bile duct cell cytoplasm of vesicles when it initiates ductular HCO3− secretion in the pig. Gastroenterology 95: 417‐424, 1988.
 95. Buechler M, Koenig J, Brom M, Kartenbeck J, Spring H, Horie T, Keppler D. cDNA cloning of the hepatocyte canalicular isoform of the multidrug resistance protein, cMrp, reveals a novel conjugate export pump deficient in hyperbilirubinemic mutant rats. J Biol Chem 271: 15091‐15098, 1996.
 96. Bull LN, Carlton VEH, Stricker NL, Baharloo S, DeYoung JA, Freimer NB, Magid MS, Kahn E, Markowitz J, DiCarlo FJ, McLoughlin L, Boyle JT, Dahms BB, Faught PR, Fitzgerald JF, Piccoli DA, Witzleben CL, O'Connell NC, Setchell KDR, Agostini RM, Jr., Kocoshis SA, Reyes J, Knisely AS. Genetic and morphological findings in progressive familial intrahepatic cholestasis (Byler disease [PFIC‐1] and Byler syndrome): Evidence for heterogeneity. Hepatology 26: 155‐164, 1997.
 97. Bull LN, van Eijk MJ, Pawlikowska L, DeYoung JA, Juijn JA, Liao M, Klomp LW, Lomri N, Berger R, Scharschmidt BF, Knisely AS, Houwen RH, Freimer NB. A gene encoding a P‐type ATPase mutated in two forms of hereditary cholestasis. Nat Genet 18: 219‐224, 1998.
 98. Bull PC, Thomas GR, Rommens JM, Forbes JR, Cox DW. The Wilson disease gene is a putative copper transporting P‐type ATPase similar to the Menkes gene. Nat Genet 5: 327‐337, 1993.
 99. Burgstahler AD, Nathanson MH. NO modulates the apicolateral cytoskeleton of isolated hepatocytes by a PKC‐dependent, cGMP‐independent mechanism. Am J Physiol 269: G789‐G799, 1995.
 100. Busch AE, Quester S, Ulzheimer JC, Waldegger S, Gorboulev V, Arndt P, Lang F, Koepsell H. Electrogenic properties and substrate specificity of the polyspecific rat cation transporter rOCT1. J Biol Chem 271: 32599‐32604, 1996.
 101. Buscher HP, Schramm U, Macnelly S, Kurz G, Gerok W. The acinar location of the sodium‐independent and the sodium‐dependent component of taurocholate uptake ‐ a histoautoradiographic study of rat liver. JH 13: 169, 1991.
 102. Byrne JA. The human bile salt export pump: Characterization of substrate specificity and identification of inhibitors. Gastro 123: 1649‐1658, 2002.
 103. Byrne JA, Strautnieks SS, Ihrke G, Pagani F, Knisely AS, Linton KJ, Mieli‐Vergani G, Thompson RJ. Missense mutations and single nucleotide polymorphisms in ABCB11 impair bile salt export pump processing and function or disrupt pre‐messenger RNA splicing. Hepatology 49: 553‐567, 2009.
 104. Cai S‐Y, Wang L, Ballatori N, Boyer JL. Bile salt export pump is highly conserved during vertebrate evolution and its expression is inhibited by PFIC type II mutations. Am J Physiol 281: G316‐G322, 2001.
 105. Cai SY, Gautam S, Nguyen T, Soroka CJ, Rahner C, Boyer JL. ATP8B1 deficiency disrupts the bile canalicular membrane bilayer structure in hepatocytes, but FXR expression and activity are maintained. Gastroenterology 136: 1060‐1069, 2009.
 106. Chai J, He Y, Cai SY, Jiang Z, Wang H, Li Q, Chen L, Peng Z, He X, Wu X, Xiao T, Wang R, Boyer JL, Chen W. Elevated hepatic MRP3/ABCC3 expression in human obstructive cholestasis is mediated through TNFalpha and JNK/SAPK signaling pathway. Hepatology 55: 1485‐1494, 2011.
 107. Chai J, Luo D, Wu X, Wang H, He Y, Li Q, Zhang Y, Chen L, Peng ZH, Xiao T, Wang R, Chen W. Changes of organic anion transporter MRP4 and related nuclear receptors in human obstructive cholestasis. J Gastrointest Surg 15: 996‐1004, 2011.
 108. Chandra P, Zhang P, Brouwer KL. Short‐term regulation of multidrug resistance‐associated protein 3 (Mrp3/MRP3) in rat and human hepatocytes. Am J Physiol Gastrointest Liver Physiol 288: G1252‐G1258, 2005.
 109. Chari RS, Schutz SM, Haebig JE, Shimokura GH, Cotton PB, Fitz JG, Meyers WC. Adenosine nucleotides in bile. Am J Physiol 270: G246‐G252, 1996.
 110. Chen HL, Chen HL, Liu YJ, Feng CH, Wu CY, Shyu MK, Yuan RH, Chang MH. Developmental expression of canalicular transporter genes in human liver. JH 43: 472‐477, 2005.
 111. Chen W, Cai SY, Xu S, Denson LA, Soroka CJ, Boyer JL. Nuclear receptors RXRalpha:RARalpha are repressors for human MRP3 expression. Am J Physiol Gastrointest Liver Physiol 292: G1221‐G1227, 2007.
 112. Cheng JB, Levine MA, Bell NH, Mangelsdorf DJ, Russell DW. Genetic evidence that the human CYP2R1 enzyme is a key vitamin D 25‐hydroxylase. Proc Natl Acad Sci U S A 101: 7711‐7715, 2004.
 113. Cheng JB, Motola DL, Mangelsdorf DJ, Russell DW. De‐orphanization of cytochrome P450 2R1: A microsomal vitamin D 25‐hydroxilase. J Biol Chem 278: 38084‐38093, 2003.
 114. Cheng K, Ashby D, Smyth R. Ursodeoxycholic acid for cystic fibrosis‐related liver disease. Cochrane Database Syst Rev 10: CD000222, 2000.
 115. Childs S, Yeh RL, Georges E, Ling V. Identification of a sister gene to p‐glycoprotein. Cancer Res 55: 2029‐2034, 1995.
 116. Cho WK, Boyer JL. Vasoactive intestinal polypeptide is a potent regulator of bile secretion from rat cholangiocytes. Gastroenterology 117: 420‐428, 1999.
 117. Cho WK, Mennone A, Boyer, J L. Effect of bombesin on secretion in isolated polarized intrahepatic bile ductular units (IBDU). Gastroenterology 108: A1049, 1995.
 118. Cho WK, Mennone A, Rydberg SA, Boyer JL. Bombesin stimulates bicarbonate secretion from rat cholangiocytes: Implications for neural regulation of bile secretion. Gastroenterology 113: 311‐321, 1997.
 119. Chu X, Strauss JR, Mariano MA, Li J, Newton DJ, Cai X, Wang RW, Yabut J, Hartley DP, Evans DC, Evers R. Characterization of mice lacking the multidrug resistance protein Mrp2 (Abcc2). J Pharmacol Exp Ther 317: 579‐589, 2006.
 120. Clayton RJ, Iber FL, Ruebner BH, McKusick VA. Byler Disease: Fatal familial intrahepatic cholestasis in an Amish Kindred. Am J Dis Child 117: 112‐124, 1969.
 121. Cohn JA, Strong TV, Picciotto MR, Nairn AC, Collins FS, Fitz JG. Localization of the cystic fibrosis transmembrane conductance regulator in human bile duct epithelial cells. Gastroenterology 105: 1857‐1864, 1993.
 122. Corasanti JG, Smith ND, Gordon ER, Boyer JL. Protein kinase C agonists inhibit bile secretion independently of effects on the microcirculation in the isolated perfused rat liver. Hepatology 10: 8‐13, 1989.
 123. Cousins RJ. Absorption, transport, and hepatic metabolism of copper and zinc: Special reference to metallothionein and ceruloplasmin. Physiol Rev 65: 238‐309, 1985.
 124. Craddock AL, Love MW, Daniel RW, Kirby LC, Walters HC, Wong MH, Dawson PA. Expression and transport properties of the human ileal and renal sodium‐dependent bile acid transporter. Am J Physiol 37: 157‐169, 1998.
 125. Crawford AR, Smith AJ, Hatch VC, Oude ER, Borst P, Crawford JM. Hepatic secretion of phospholipid vesicles in the mouse critically depends on mdr2 or MDR3 P‐glycoprotein expression. Visualization by electron microscopy. J Clin Invest 100: 2562‐2567, 1997.
 126. Crawford JM. Role of vesicle‐mediated transport pathways in hepatocellular bile secretion. Semin Liver Dis 16: 169‐189, 1996.
 127. Crawford JM, Strahs DCJ, Crawford AR, Barnes S. Role of bile salt hydrophobicity in hepatic microtubule‐dependent bile salt secretion. J Lipid Res 35: 1738‐1748, 1994.
 128. Davit‐Spraul A, Fabre M, Branchereau S, Baussan C, Gonzales E, Stieger B, Bernard O, Jacquemin E. ATP8B1 and ABCB11 analysis in 62 children with normal gamma‐glutamyl transferase progressive familial intrahepatic cholestasis (PFIC): Phenotypic differences between PFIC1 and PFIC2 and natural history. Hepatology 51: 1645‐1655, 2010.
 129. Davit‐Spraul A, Gonzales E, Baussan C, Jacquemin E. The spectrum of liver diseases related to ABCB4 gene mutations: Pathophysiology and clinical aspects. Semin Liver Dis 30: 134‐146, 2010.
 130. Dawson PA, Hubbert M, Haywood J, Craddock AL, Zerangue N, Christian WV, Ballatori N. The heteromeric organic solute transporter alpha‐beta, Ostα‐Ostβ, is an ileal basolateral bile acid transporter. J Biol Chem 280: 6960‐6968, 2005.
 131. De Vree JM, Jacquemin E, Sturm E, Cresteil D, Bosma PJ, Aten J, Deleuze JF, Desrochers M, Burdelski M, Bernard O, Elferink RPO, Hadchouel M. Mutations in the MDR3 gene cause progressive familial intrahepatic cholestasis. Proc Natl Acad Sci U S A 95: 282‐287, 1998.
 132. Debray D, Rainteau D, Barbu V, Rouahi M, El Mourabit H, Lerondel S, Rey C, Humbert L, Wendum D, Cottart CH, Dawson P, Chignard N, Housset C. Defects in gallbladder emptying and bile acid homeostasis in mice with cystic fibrosis transmembrane conductance regulator deficiencies. Gastroenterology 142: 1581‐1591, 2012.
 133. Delaunay JL, Durand‐Schneider AM, Delautier D, Rada A, Gautherot J, Jacquemin E, Ait‐Slimane T, Maurice M. A missense mutation in ABCB4 gene involved in progressive familial intrahepatic cholestasis type 3 leads to a folding defect that can be rescued by low temperature. Hepatology 49: 1218‐1227, 2009.
 134. Deleuze JF, Jacquemin E, Dubuisson C, Crestell D, Dumont M, Erlinger S, Bernard O, Hadchouel M. Defect on multidrug‐resistance 3 gene expression in a subtype of progressive familial intrahepatic cholestasis. Hepatology 23: 904‐908, 1996.
 135. Denk GU, Soroka CJ, Mennone A, Koepsell H, Beuers U, Boyer JL. Down‐regulation of the organic cation transporter 1 of rat liver in obstructive cholestasis. Hepatology 39: 1382‐1389, 2004.
 136. Denson LA, Auld KL, Schiek DS, McClure MH, Mangelsdorf DJ, Karpen SJ. Interleukin‐1β suppresses retinoid transactivation of two hepatic transporter genes involved in bile formation. J Biol Chem 275: 8835‐8843, 2000.
 137. Denson LA, Sturm E, Echevarria W, Zimmerman TL, Makishima M, Mangelsdorf DJ, Karpen SJ. The orphan nuclear receptor, shp, mediates bile acid‐induced inhibition of the rat bile acid transporter, ntcp. Gastroenterology 121: 140‐147, 2001.
 138. Dijkstra M, Havinga R, Vonk RJ, Kuipers F. Bile secretion of cadmium, silver, zinc and copper in the rat. Involvement of various transport systems. Life Sciences 59: 1237‐1246, 1996.
 139. Dijkstra M, IntVeld G, vandenBerg GJ, Muller M, Kuipers F, Vonk RJ. Adenosine triphosphate‐dependent copper transport in isolated rat liver plasma membranes. J Clin Invest 95: 412‐416, 1995.
 140. Dikkers A, Tietge UJ. Biliary cholesterol secretion: More than a simple ABC. World J Gastroenterol 16: 5936‐5945, 2010.
 141. Dixon PH, van Mil SW, Chambers J, Strautnieks S, Thompson RJ, Lammert F, Kubitz R, Keitel V, Glantz A, Mattsson LA, Marschall HU, Molokhia M, Moore GE, Linton KJ, Williamson C. Contribution of variant alleles of ABCB11 to susceptibility to intrahepatic cholestasis of pregnancy. Gut 58: 537‐544, 2009.
 142. Dixon PH, Weerasekera N, Linton KJ, Donaldson O, Chambers J, Egginton E, Weaver J, Nelson‐Piercy C, de Swiet M, Warnes G, Elias E, Higgins CF, Johnston DG, McCarthy MI, Williamson C. Heterozygous MDR3 missense mutation associated with intrahepatic cholestasis of pregnancy: Evidence for a defect in protein trafficking. Hum Mol Genet 9: 1209‐1217, 2000.
 143. Dombrowski F, Kubitz R, Chittattu A, Wettstein M, Saha N, Haussinger D. Electron‐microscopic demonstration of multidrug resistance protein 2 (Mrp2) retrieval from the canalicular membrane in response to hyperosmolarity and lipopolysaccharide. Biochem J 348: 183‐188, 2000.
 144. Donner MG, Keppler D. Up‐regulation of basolateral multidrug resistance protein 3 (Mrp3) in cholestatic rat liver. Hepatology 34: 351‐359, 2001.
 145. Dowling RH, Mack E, Picott J, Berger J, Small DM. Experimental model for the study of the enterohepatic circulation of bile in rhesus monkeys. J Lab Clin Med 72: 169‐176, 1968.
 146. Dranoff JA, Masyuk AI, Kruglov EA, LaRusso NF, Nathanson MH. Polarized expression and function of P2Y ATP receptors in rat bile duct epithelia. Am J Physiol Gastrointest Liver Physiol 281: G1059‐G1067, 2001.
 147. Dufour J‐FJ, Turner TJ, Arias IM. Nitric oxide blocks bile canalicular contraction by inhibiting inositol trisphosphate‐dependent calcium mobilization. Gastroenterology 108: 841‐849, 1995.
 148. Dumont M, Erlinger S, Uchman S. Hypercholeresis induced by ursodeoxycholic acid and 7‐ketolithocholic acid in the rat: Possible role of bicarbonate transport. Gastroenterology 79: 82‐89, 1980.
 149. Ekataksin W, Wake K. New concepts in biliary and vascular anatomy of the liver. In: Boyer JL, Ockner RK, editors. Progress in Liver Diseases, Philadelphia: W. B. Saunders, 1997, pp. 1‐30.
 150. Elferink RPJO, Ottenhoff R, van Wijland M, Smit JJM, Schinkel AH, Groen AK. Regulation of biliary lipid secretion by mdr2 P‐glycoprotein in the mouse. J Clin Invest 95: 31‐38, 1995.
 151. Erlinger S. Bile flow. In: Arias IM, Boyer JL, Fausto N, Jakoby WB, Schachter DA, Shafritz DA, editors. The Liver:Biology and Pathobiology, New York: Raven Press, 1994, pp. 769‐786.
 152. Esteller A. Physiology of bile secretion. World J Gastroenterol 14: 5641‐5649, 2008.
 153. Fang F, Christian WV, Gorman SG, Cui M, Huang J, Tieu K, Ballatori N. Neurosteroid transport by the organic solute transporter OSTalpha‐OSTbeta. J Neurochem 115: 220‐233, 2010.
 154. Farina A, Dumonceau JM, Lescuyer P. Proteomic analysis of human bile and potential applications for cancer diagnosis. Expert Rev Proteomics 6: 285‐301, 2009.
 155. Fattinger K, Funk C, Pantze M, Weber C, Reichen J, Stieger B, Meier PJ. The endothelin antagonist bosentan inhibits the canalicular bile salt export pump: A potential mechanism for hepatic adverse reactions. Clin Pharmacol Ther 69: 223‐231, 2001.
 156. Fausther M, Lecka J, Soliman E, Kauffenstein G, Pelletier J, Sheung N, Dranoff JA, Sevigny J. Coexpression of ecto‐5′‐nucleotidase/CD73 with specific NTPDases differentially regulates adenosine formation in the rat liver. Am J Physiol Gastrointest Liver Physiol 302: G447‐G459, 2012.
 157. Fausther M, Sevigny J. Extracellular nucleosides and nucleotides regulate liver functions via a complex system of membrane proteins. C R Biol 334: 100‐117, 2011.
 158. Feranchak AP, Fitz JG. Adenosine triphosphate release and purinergic regulation of cholangiocyte transport. Sem Liv Dis 22: 251‐262, 2002.
 159. Feranchak AP, Fitz JG. Thinking outside the cell: The role of extracellular adenosine triphosphate in bile formation. Gastroenterology 133: 1726‐1728, 2007.
 160. Ferdinandusse S, Denis S, Faust PL, Wanders RJ. Bile acids: The role of peroxisomes. J Lipid Res 50: 2139‐2147, 2009.
 161. Fickert P, Fuchsbichler A, Wagner M, Zollner G, Kaser A, Tilg H, Krause R, Lammert F, Langner C, Zatloukal K, Marschall HU, Denk H, Trauner M. Regurgitation of bile acids from leaky bile ducts causes sclerosing cholangitis in Mdr2 (Abcb4) knockout mice. Gastroenterology 127: 261‐274, 2004.
 162. Fiorucci S, Antonelli E, Mencarelli A, Orlandi S, Renga B, Rizzo G, Distrutti E, Shah V, Morelli A. The third gas: H2S regulates perfusion pressure in both the isolated and perfused normal rat liver and in cirrhosis. Hepatology 42: 539‐548, 2005.
 163. Fitz JG, Basavappa S, McGill J, Melhus O, Cohn JA. Regulation of membrane chloride currents in rat bile duct epithelial cells. J Clin Invest 91: 319‐328, 1993.
 164. Folmer DE, van der Mark VA, Ho‐Mok KS, Oude Elferink RP, Paulusma CC. Differential effects of progressive familial intrahepatic cholestasis type 1 and benign recurrent intrahepatic cholestasis type 1 mutations on canalicular localization of ATP8B1. Hepatology 50: 1597‐1605, 2009.
 165. Folsch UR, Wormsley KG. The amino acid composition of rat bile. Experientia 33: 1055‐1056, 1977.
 166. Fouassier L, Duan C, Feranchak AP, Yun CH, Sutherland E, Simon F, Fitz JG, Doctor RB. Ezrin‐radixin‐moesin‐binding phosphoprotein 50 is expressed at the apical membrane of rat liver epithelia. Hepatology 33: 166‐176, 2001.
 167. Francis H, Glaser S, Ueno Y, LeSagE G, Marucci L, Benedetti A, Taffetani S, Marzioni M, Alvaro D, Venter J, Reichenbach R, Fava G, Phinizy JL, Alpini G. cAMP stimulates the secretory and proliferative capacity of the rat intrahepatic biliary epithelium through changes in the PKA/Src/MEK/ERK1/2 pathway. J Hepatol 41: 528‐537, 2004.
 168. Fu D Wakabayashi Y, Ido Y, Lippincott‐Schwartz J, Arias IM. Regulation of bile canalicular network formation and maintenance by AMP‐activated protein kinase and LKB1. J Cell Sci 123: 3294‐3302, 2010.
 169. Fu D, Wakabayashi Y, Lippincott‐Schwartz J, Arias IM. Bile acid stimulates hepatocyte polarization through a cAMP‐Epac‐MEK‐LKB1‐AMPK pathway. Proc Natl Acad Sci U S A 108: 1403‐1408, 2011.
 170. Fuchs M, Lammert F, Wang DWH, Paigen B, Carey MC, Cohen DE. Sterol carrier protein 2 participates in hypersecretion of biliary cholesterol during gallstone formation in genetically gallstone‐susceptible mice. Biochem J 336: 33‐37, 1998.
 171. Fujii K, Sakuragawa T, Kashiba M, Sugiura Y, Kondo M, Maruyama K, Goda N, Nimura Y, Suematsu M. Hydrogen sulfide as an endogenous modulator of biliary bicarbonate excretion in the rat liver. Antioxid Redox Signal 7: 788‐794, 2005.
 172. Ganguly TC, Liu Y, Hyde JF, Hagenbuch B, Meier PJ, Vore M. Prolactin increases hepatic Na+/taurocholate co‐transport activity and messenger RNA post partum. Biochem J 303: 33‐36, 1994.
 173. Ganguly TC, O'Brien ML, Karpen SJ, Hyde JF, Suchy FJ, Vore M. Regulation of the rat liver sodium‐dependent bile acid cotransporter gene by prolactin. J Clin Invest 99: 2906‐2914, 1997.
 174. Garcia F, Kierbel A, Larocca MC, Gradilone SA, Splinter P, LaRusso NF, Marinelli RA. The water channel aquaporin‐8 is mainly intracellular in rat hepatocytes, and its plasma membrane insertion is stimulated by cyclic AMP. J Biol Chem 276: 12147‐12152, 2001.
 175. Gartung C, Ananthanarayanan M, Rahman MA, Schuele S, Nundy S, Soroka CJ, Stolz A, Suchy FJ, Boyer JL. Down‐regulation of expression and function of the rat liver Na+/bile acid cotransporter in extrahepatic cholestasis. Gastroenterology 110: 199‐209, 1996.
 176. Gatof D, Kilic G, Fitz JG. Vesicular exocytosis contributes to volume‐sensitive ATP release in biliary cells. Am J Physiol Gastrointest Liver Physiol 286: G538‐G546, 2004.
 177. Gautam A, Ng O‐C, Boyer JL. Isolated rat hepatocyte couplets in short‐term culture: Structural characteristics and plasma membrane reorganization. Hepatology 7: 216‐223, 1987.
 178. Gautam A, Scaramuzza D, Boyer, JL. Quantitative assessment of primary canalicular secretion in isolated rat hepatocyte couplets (IRHC) by optical planimetry. Gastroenterology 90: 1727, 1986.
 179. Geier A, Dietrich CG, Voigt S, Ananthanarayanan M, Lammert F, Schmitz A, Trauner M, Wasmuth HE, Boraschi D, Balasubramaniyan N, Suchy FJ, Matern S, Gartung C. Cytokine‐dependent regulation of hepatic organic anion transporter gene transactivators in mouse liver. Am J Physiol Gastrointest Liver Physiol 289: G831‐G841, 2005.
 180. Geier A, Fickert P, Trauner M. Mechanisms of disease: Mechanisms and clinical implications of cholestasis in sepsis. Nat Clin Pract Gastroenterol Hepatology 3: 574‐585, 2006.
 181. Gerloff T, Stieger B, Hagenbuch B, Madon J, Landmann L, Roth J, Hofmann AF, Meier PJ. The sister P‐glycoprotein represents the canalicular bile salt export pump of mammalian liver. J Biol Chem 273: 10046‐10050, 1998.
 182. Giaquinto PC, Hara TJ. Discrimination of bile acids by the rainbow trout olfactory system: Evidence as potential pheromone. Biol Res 41: 33‐42, 2008.
 183. Gigliozzi A, Fraioli F and Boyer JL. Hormonal regulation of cholangiocyte secretion. In: Alpini G, Alvaro D, Marzioni M, LeSage G and LaRusso N., editors. The Pathophysiology of Biliary Epithelia. Georgetown, Texas, USA: Landes Bioscience, 2004, pp. 89‐95.
 184. Gigliozzi A, Fraioli F, Sundaram P, Lee J, Mennone A, Alvaro D, Boyer JL. Molecular identification and functional characterization of mdr1a in rat cholangiocytes. Gastroenterology 119: 1113‐1122, 2000.
 185. Glaser SS, Gaudio E, Rao A, Pierce LM, Onori P, Franchitto A, Francis HL, Dostal DE, Venter JK, DeMorrow S, Mancinelli R, Carpino G, Alvaro D, Kopriva SE, Savage JM, Alpini GD. Morphological and functional heterogeneity of the mouse intrahepatic biliary epithelium. Lab Invest 89: 456‐469, 2009.
 186. Glaser SS, Rodgers RED, Phinizy JL, Robertson WE, Lasater J, Caligiuri A, Tretjak Z, LeSage GD, Alpini G. Gastrin inhibits secretin‐induced ductal secretion by interaction with specific receptors on rat cholangiocytes. Am J Physiol 36: G1061‐G1070, 1997.
 187. Godfrey PP, Warner MJ, Coleman R. Enzymes and proteins in bile. Variations in output in rat cannula bile during and after depletion of the bile‐salt pool. Biochem J 196: 11‐16, 1981.
 188. Gonzales E, Grosse B, Cassio D, Davit‐Spraul A, Fabre M, Jacquemin E. Successful mutation‐specific chaperone therapy with 4‐phenylbutyrate in a child with progressive familial intrahepatic cholestasis type 2. J Hepatol 57: 695‐698, 2012.
 189. Gottesman MM, Pastan I. Biochemistry of multidrug resistance mediated by the multidrug transporter. Ann Rev Biochem 62: 385‐427, 1993.
 190. Govindarajan R, Bakken AH, Hudkins KL, Lai Y, Casado FJ, Pastor‐Anglada M, Tse CM, Hayashi J, Unadkat JD. In situ hybridization and immunolocalization of concentrative and equilibrative nucleoside transporters in the human intestine, liver, kidneys, and placenta. Am J Physiol Regul Integr Comp Physiol 293: R1809‐R1822, 2007.
 191. Govindarajan R, Endres CJ, Whittington D, Lecluyse E, Pastor‐Anglada M, Tse CM, Unadkat JD. Expression and hepatobiliary transport characteristics of the concentrative and equilibrative nucleoside transporters in sandwich‐cultured human hepatocytes. Am J Physiol Gastrointest Liver Physiol 295: G570‐G580, 2008.
 192. Gradhand U, Lang T, Schaeffeler E, Glaeser H, Tegude H, Klein K, Fritz P, Jedlitschky G, Kroemer HK, Bachmakov I, Anwald B, Kerb R, Zanger UM, Eichelbaum M, Schwab M, Fromm MF. Variability in human hepatic MRP4 expression: Influence of cholestasis and genotype 1. Pharmacogenomics J 8: 42‐52, 2007.
 193. Gradilone SA, Garcia F, Huebert RC, Tietz PS, Larocca MC, Kierbel A, Carreras FI, LaRusso NF, Marinelli RA. Glucagon induces the plasma membrane insertion of functional aquaporin‐8 water channels in isolated rat hepatocytes. Hepatology 37: 1435‐1441, 2003.
 194. Graf GA, Li WP, Gerard RD, Gelissen I, White A, Cohen JC, Hobbs HH. Coexpression of ATP‐binding cassette proteins ABCG5 and ABCG8 permits their transport to the apical surface. J Clin Invest 110: 659‐669, 2002.
 195. Graf GA, Yu L, Li WP, Gerard R, Tuma PL, Cohen JC, Hobbs HH. ABCG5 and ABCG8 are obligate heterodimers for protein trafficking and biliary cholesterol excretion. J Biol Chem 278: 48275‐48282, 2003.
 196. Graf J, Gautam A, Boyer JL. Isolated rat hepatocyte couplets: A primary secretory unit for electrophysiologic studies of bile secretory function. Proc Natl Acad Sci U S A 81: 6516‐6520, 1984.
 197. Graf J, Henderson RM, Krumpholz B, Boyer JL. Cell membrane and transepithelial voltages and resistances in isolated rat hepatocyte couplets. J Membrane Biol 95: 241‐254, 1987.
 198. Grasbeck R, Nyberg W, Reizenstein P. Biliary and fecal vitamin B12 excretion in man: An isotope study. Proc Soc Exp Biol Med 97: 780‐784, 1958.
 199. Green R, Jacobsen DW, van Tonder SV, Kew MC, Metz J. Enterohepatic circulation of cobalamin in the nonhuman primate. Gastroenterology 81: 773‐776, 1981.
 200. Green RM, Beier D, Gollan JL. Regulation of hepatocyte bile salt transporters by endotoxin and inflammatory cytokines in rodents. Gastroenterology 111: 193‐198, 1996.
 201. Groen A, Romero MR, Kunne C, Hoosdally SJ, Dixon PH, Wooding C, Williamson C, Seppen J, Van den OK, Mok KS, Paulusma CC, Linton KJ, Oude Elferink RP. Complementary functions of the flippase ATP8B1 and the floppase ABCB4 in maintaining canalicular membrane integrity. Gastroenterology 141: 1927‐1937, 2011.
 202. Grundemann D, Gorboulev V, Gambaryan S, Veyhl M, Koepsell H. Drug excretion mediated by a new prototype of polyspecific transporter. Nature (Lond) 372: 549‐552, 1994.
 203. Grune S, Engelking LR, Anwer MS. Role of intracellular calcium and protein kinases in the activation of hepatic Na+/taurocholate cotransport by cyclic AMP. J Biol Chem 268: 17734‐17741, 1993.
 204. Gurantz D, Hofmann AF. Influence of bile acid structure on bile flow and biliary lipid secretion in the hamster. Am J Physiol 247: G736‐G748, 1984.
 205. Guzelian P, Boyer JL. Glucose reabsorption from bile: Evidence for a biliohepatic circulation. J Clin Invest 53: 526‐535, 1974.
 206. Hagenbuch B, Gui C. Xenobiotic transporters of the human organic anion transporting polypeptides (OATP) family. Xenobiotica 38: 778‐801, 2008.
 207. Hagenbuch B, Meier PJ. Molecular cloning, chromosomal localization, and functional characterization of a human liver Na+/bile acid cotransporter. J Clin Invest 93: 1326‐1331, 1994.
 208. Hagenbuch B, Meier PJ. Sinusoidal (basolateral) bile salt uptake systems of hepatocytes. Sem Liv Dis 16: 129‐136, 1996.
 209. Hagenbuch B, Meier PJ. The superfamily of organic anion transporting polypeptides. Biochim Biophys Acta 1609: 1‐18, 2003.
 210. Hagenbuch B, Meier PJ. Organic anion transporting polypeptides of the OATP/ SLC21 family: Phylogenetic classification as OATP/ SLCO superfamily, new nomenclature and molecular/functional properties. Pflugers Arch 447: 653‐665, 2004.
 211. Hagenbuch B, Scharschmidt BF, Meier PJ. Effect of antisense oligonucleotides on the expression of hepatocellular bile acid and organic anion uptake systems in Xenopus laevis oocytes. Biochem J 216: 901‐904, 1996.
 212. Hagenbuch B, Stieger B, Foguet M, Lubbert H, Meier PJ. Functional expression cloning and characterization of the hepatocyte Na+/bile acid cotransport system. Proc Natl Acad Sci U S A 88: 10629‐10633, 1991.
 213. Hagey LR, Moller PR, Hofmann AF, Krasowski MD. Diversity of bile salts in fish and amphibians: Evolution of a complex biochemical pathway. Physiol Biochem Zool 83: 308‐321, 2010.
 214. Hagey LR, Vidal N, Hofmann AF, Krasowski MD. Complex evolution of bile salts in birds. Auk 127: 820‐831, 2010.
 215. Hagey LR, Vidal N, Hofmann AF, Krasowski MD. Evolutionary diversity of bile salts in reptiles and mammals, including analysis of ancient human and extinct giant ground sloth coprolites. BMC Evol Biol 10: 133, 2010.
 216. Haimeur A, Conseil G, Deeley RG, Cole SP. The MRP‐related and BCRP/ABCG2 multidrug resistance proteins: Biology, substrate specificity and regulation 1. Curr Drug Metab 5: 21‐53, 2004.
 217. Harada M, Sakisaka S, Terada K, Kimura R, Kawaguchi T, Koga H, Kim M, Taniguchi E, Hanada S, Suganuma T, Furuta K, Sugiyama T, Sata M. A mutation of the wilson disease protein, atp7b, is degraded in the proteasomes and forms protein aggregates. Gastroenterology 120: 967‐974, 2001.
 218. Haussinger D, Schmitt M, Weiergraber O, Kubitz R. Short‐term regulation of canalicular transport. Semin Liver Dis 20: 307‐321, 2000.
 219. Hayakawa T, Bruck R, Ng OC, Boyer JL. DBcAMP stimulates vesicle transport and HRP excretion in isolated perfused rat liver. Am J Physiol 259: G727‐G735, 1990.
 220. Hayakawa T, Corasanti JG, Phillips KA, Boyer JL. The protein kinase C agonist, 12,13 phorbol dibutyrate (PDB) counteracts cAMP‐stimulated horseradish peroxidase (HRP) excretion in the isolated perfused rat liver (IPRL). Hepatology 10: 598, 1989.
 221. Hayakawa T, Ng OC, Ma A, Boyer JL. Taurocholate stimulates transcytotic vesicular pathways labelled by horseradish peroxidase in the isolated perfused rat liver. Gastroenterology 99: 216‐228, 1990.
 222. Hayashi H, Inamura K, Aida K, Naoi S, Horikawa R, Nagasaka H, Takatani T, Fukushima T, Hattori A, Yabuki T, Horii I, Sugiyama Y. AP2 mediates BSEP internalization and modulates its hepatocanalicular expression and transport function. Hepatology 55: 1889‐1900, 2012.
 223. Hayashi H, Sugiyama Y. 4‐phenylbutyrate enhances the cell surface expression and the transport capacity of wild‐type and mutated bile salt export pumps 1. Hepatology 45: 1506‐1516, 2007.
 224. Hayashi H, Sugiyama Y. Short‐chain ubiquitination is associated with the degradation rate of a cell‐surface‐resident bile salt export pump (BSEP/ABCB11). Mol Pharmacol 75: 143‐150, 2009.
 225. Hayes JH, Soroka CJ, Rios‐Velez L, Boyer JL. Hepatic sequestration and modulation of the canalicular transport of the organic cation, daunorubicin, in the rat. Hepatology 29: 483‐493, 1999.
 226. Hayhurst GP, Lee YH, Lambert G, Ward JM, Gonzalez FJ. Hepatocyte nuclear factor 4alpha (nuclear receptor 2A1) is essential for maintenance of hepatic gene expression and lipid homeostasis. Mol Cell Biol 21: 1393‐1403, 2001.
 227. Hazard SE, Patel SB. Sterolins ABCG5 and ABCG8: Regulators of whole body dietary sterols. Pflugers Arch 453: 745‐752, 2007.
 228. Helvoort A, Smith AJ, Sprong H, Fritzsche I, Schinkel AH, Borst P, van Meer G. MDR1 P‐glycoprotein is a lipid translocase of broad specificity, while MDR3 P‐glycoprotein specifically translocates phosphatidylcholine. Cell 87: 507‐517, 1996.
 229. Hernandez S, Tsuchiya Y, Garcia‐Ruiz JP, Lalioti V, Nielsen S, Cassio D, Sandoval IV. ATP7B copper‐regulated traffic and association with the tight junctions: Copper excretion into the bile. Gastroenterology 134: 1215‐1223, 2008.
 230. Hirano M, Maeda K, Hayashi H, Kusuhara H, Sugiyama Y. Bile salt export pump (BSEP/ABCB11) can transport a nonbile acid substrate, pravastatin. J Pharmacol Exp Ther 314: 876‐882, 2005.
 231. Hirohashi T, Suzuki H, Takikawa H, Sugiyama Y. ATP‐dependent transport of bile salts by rat multidrug resistance‐associated protein 3 (Mrp3). J Biol Chem 275: 2905‐2910, 2000.
 232. Ho RH, Leake BF, Kilkenny DM, Meyer Zu Schwabedissen HE, Glaeser H, Kroetz DL, Kim RB. Polymorphic variants in the human bile salt export pump (BSEP; ABCB11): Functional characterization and interindividual variability. Pharmacogenet Genomics 20: 45‐57, 2010.
 233. Hofmann AF, Hagey LR. Bile acids: Chemistry, pathochemistry, biology, pathobiology, and therapeutics. Cell Mol Life Sci 65: 2461‐2483, 2008.
 234. Hofmann AF, Hagey LR, Krasowski MD. Bile salts of vertebrates: Structural variation and possible evolutionary significance. J Lipid Res 51: 226‐246, 2010.
 235. Honjo Y, Sasaki S, Kobayashi Y, Misawa H, Nakamura H. 1,25‐dihydroxyvitamin D3 and its receptor inhibit the chenodeoxycholic acid‐dependent transactivation by farnesoid X receptor. J Endocrinol 188: 635‐643, 2006.
 236. Hoppe CA, Connolly TP, Hubbard AL. Transcellular transport of polymeric IgA in the rat hepatocyte: Biochemical and morphological characterization of the transport pathway. J Cell Biol 101: 2113‐2123, 1985.
 237. Hosokawa S, Tagaya O, Mikami T, Nozaki Y, Kawaguchi A, Yamatsu K, Shamoto M. A new rat mutant with chronic conjugated hyperbilirubinemia and renal glomerular lesions. Lab Anim Sci 42: 27‐34, 1992.
 238. Huang L, Zhao A, Lew JL, Zhang T, Hrywna Y, Thompson JR, de Pedro N, Royo I, Blevins RA, Pelaez F, Wright SD, Cui J. Farnesoid X receptor activates transcription of the phospholipid pump MDR3. J Biol Chem 278: 51085‐51090, 2003.
 239. Hubacek JA, Berge KE, Cohen JC, Hobbs HH. Mutations in ATP‐cassette binding proteins G5 (ABCG5) and G8 (ABCG8) causing sitosterolemia. Hum Mutat 18: 359‐360, 2001.
 240. Hubbard AL, Stieger B, Bartles JR. Biogenesis of endogenous plasma membrane proteins in epithelial cells. Ann Rev Physiol 51: 755‐770, 1989.
 241. Hung IH, Suzuki M, Yamaguchi Y, Yuan DS, Klausner RD, Gitlin JD. Biochemical characterization of the Wilson disease protein and functional expression in the yeast Saccharomyces cerevisiae. J Biol Chem 272: 21461‐21466, 1997.
 242. Ieiri I, Suzuki H, Kimura M, Takane H, Nishizato Y, Irie S, Urae A, Kawabata K, Higuchi S, Otsubo K, Sugiyama Y. Influence of common variants in the pharmacokinetic genes (OATP‐C, UGT1A1, and MRP2) on serum bilirubin levels in healthy subjects. Hepatol Res 30: 91‐95, 2004.
 243. Ihrke G, Hubbard AL. Control of vesicle traffic in hepatocytes. In: Boyer JL, Ockner RK, editors. Progress in Liver Diseases, Philadelphia: W.B. Saunders Company, 1995, pp. 63‐99.
 244. Ismair MG, Hausler S, Stuermer CA, Guyot C, Meier PJ, Roth J, Stieger B. ABC‐transporters are localized in caveolin‐1‐positive and reggie‐1‐negative and reggie‐2‐negative microdomains of the canalicular membrane in rat hepatocytes. Hepatology 49: 1673‐1682, 2009.
 245. Iwayanagi Y, Takada T, Suzuki H. HNF4alpha is a crucial modulator of the cholesterol‐dependent regulation of NPC1L1. Pharm Res 25: 1134‐1141, 2008.
 246. Jacob G, Said O, Finberg J, Bomzon A. Peripheral vascular neuroeffector mechanisms in experimental cholestasis. Am J Physiol 28: G579‐G586, 1993.
 247. Jacquemin E, De Vree JM, Cresteil D, Sokal EM, Sturm E, Dumont M, Scheffer GL, Paul M, Burdelski M, Bosma PJ, Bernard O, Hadchouel M, Oude Elferink RPJ. The wide spectrum of multidrug resistance 3 deficiency: From neonatal cholestasis to cirrhosis of adulthood. Gastroenterology 120: 1448‐1458, 2001.
 248. Jansen P, Hooiveld G, Jacquemin E, Sokal E, Van Goor H, Koning J, Kuipers F, Stellaard F, Hadchouel M, Muller M. The canalicular bile salt exporting protein BSEP is not expressed in patients with progressive familial intrahepatic cholestasis type 2. Hepatology 28 (4), 498A. 1998.
 249. Jansen PL, Strautnieks SS, Jacquemin E, Hadchouel M, Sokal EM, Hooiveld GJ, Koning JH, De Jager‐Krikken A, Kuipers F, Stellaard F, Bijleveld CM, Gouw A, Van GH, Thompson RJ, Muller M. Hepatocanalicular bile salt export pump deficiency in patients with progressive familial intrahepatic cholestasis. Gastroenterology 117: 1370‐1379, 1999.
 250. Jansen PLM, Peters WH, Lamers WH. Hereditary chronic conjugated hyperbilirubinemia in mutant rats caused by defective hepatic anion transport. Hepatology 5: 573‐579, 1985.
 251. Jara P, Hierro L, Martinez‐Fernandez P, Alvarez‐Doforno R, Yanez F, Diaz MC, Camarena C, De la Vega A, Frauca E, Munoz‐Bartolo G, Lopez‐Santamaria M, Larrauri J, Alvarez L. Recurrence of bile salt export pump deficiency after liver transplantation. N Engl J Med 361: 1359‐1367, 2009.
 252. Jessner W, Zsembery A, Graf J. Transcellular water transport in hepatobiliary secretion and role of aquaporins in liver. Wien Med Wochenschr 158: 565‐569, 2008.
 253. Juliano RL, Ling V. A surface glycoprotein modulating drug permeability in Chinese hamster ovary cell mutants. Biochim Biophys Acta 455: 152‐162, 1976.
 254. Jung D, Hagenbuch B, Gresh L, Pontoglio M, Meier PJ, Kullak‐Ublick GA. Characterization of the human OATP‐C (SLC21A6) gene promoter and regulation of liver‐specific OATP genes by hepatocyte nuclear factor 1 alpha. J Biol Chem 276: 37206‐37214, 2001.
 255. Jung D, Kullak‐Ublick G‐A. Hepatocyte nuclear factor 1a: A key mediator of the effect of bile acids on gene expression. Hepatology 37: 622‐631, 2003.
 256. Jung D, Podvinec M, Meyer UA, Mangelsdorf DJ, Fried M, Meier PJ, Kullak‐Ublick GA. Human organic anion transporting polypeptide 8 promoter is transactivated by the farnesoid X receptor/bile acid receptor. Gastroenterology 122: 1954‐1966, 2002.
 257. Jung N, Lehmann C, Rubbert A, Knispel M, Hartmann P, van Lunzen J, Stellbrink HJ, Faetkenheuer G, Taubert D. Relevance of the organic cation transporters 1 and 2 for antiretroviral drug therapy in human immunodeficiency virus infection. Drug Metab Dispos 36: 1616‐1623, 2008.
 258. Jusko WJ, Levy G. Absorption, metabolism, and excretion of riboflavin‐5′‐phosphate in man. J Pharm Sci 56: 58‐62, 1967.
 259. Kagawa T, Watanabe N, Mochizuki K, Numari A, Ikeno Y, Itoh J, Tanaka H, Arias IM, Mine T. Phenotypic differences in PFIC2 and BRIC2 correlate with protein stability of mutant Bsep and impaired taurocholate secretion in MDCK II cells. Am J Physiol Gastrointest Liver Physiol 294: G58‐G67, 2008.
 260. Kaminski DL, Ruwart M, Willman VL. The effect of prostaglandin A1 and E1 on canine hepatic bile flow. Surg Res 18: 391‐397, 1975.
 261. Kanno N, LeSagE G, Glaser S, Alpini G. Regulation of cholangiocyte bicarbonate secretion. Am J Physiol Gastrointest Liver Physiol 281: G612‐G625, 2001.
 262. Kanno N, LeSagE G, Glaser S, Alvaro D, Alpini G. Functional heterogeneity of the intrahepatic biliary epithelium. Hepatology 31: 555‐561, 2000.
 263. Kaplan MM, Schmid C, Provenzale D, Sharma A, Dickstein G, McKusick A. A prospective trial of colchicine and methotrexate in the treatment of primary biliary cirrhosis. Gastroenterology 117: 1173‐1180, 1999.
 264. Karpen SJ, Sun A, Kudish B, Hagenbuch B, Meier PJ, Ananthanarayanan M, Suchy FJ. Multiple factors regulate the rat liver basolateral sodium‐dependent bile acid cotransporter gene promoter. J Biol Chem 271: 15211‐15221, 1996.
 265. Kartenbeck J, Leuschner U, Mayer R, Keppler D. Absence of the canalicular isoform of the MRP gene‐encoded conjugate export pump from the hepatocytes in Dubin‐Johnson syndrome. Hepatology 23: 1061‐1066, 1996.
 266. Keitel V, Burdelski M, Vojnisek Z, Schmitt L, Haussinger D, Kubitz R. De novo bile salt transporter antibodies as a possible cause of recurrent graft failure after liver transplantation: A novel mechanism of cholestasis. Hepatology 50: 510‐517, 2009.
 267. Keitel V, Burdelski M, Waqrskulat U, Kuhlkamp T, Keppler D, Haussinger D, Kubitz R. Expression and localization of hepatobiliary transport proteins in progressive familial intrahepatic cholestasis. Hepatology 41: 1160‐1172, 2005.
 268. Keitel V, Haussinger D. TGR5 in the biliary tree. Dig Dis 29: 45‐47, 2011.
 269. Keitel V, Kartenbeck J, Nies AT, Spring H, Brom M, Keppler D. Impaired protein maturation of the conjugate export pump multidrug resistance protein 2 as a consequence of a deletion mutation in dubin‐johnson syndrome. Hepatology 32: 1317‐1328, 2000.
 270. Keitel V, Reinehr R, Gatsios P, Rupprecht C, Gorg B, Selbach O, Haussinger D, Kubitz R. The G‐protein coupled bile salt receptor TGR5 is expressed in liver sinusoidal endothelial cells. Hepatology 45: 695‐704, 2007.
 271. Keitel V, Ullmer C, Haussinger D. The membrane‐bound bile acid receptor TGR5 (Gpbar‐1) is localized in the primary cilium of cholangiocytes. Biol Chem 391: 785‐789, 2010.
 272. Keitel V, Vogt C, Haussinger D, Kubitz R. Combined mutations of canalicular transporter proteins cause severe intrahepatic cholestasis of pregnancy. Gastroenterology 131: 624‐629, 2006.
 273. Keppler D. Multidrug resistance proteins (MRPs, ABCCs): Importance for pathophysiology and drug therapy. Handb Exp Pharmacol 299‐323, 2011.
 274. Keppler D, Konig J. Hepatic secretion of conjugated drugs and endogenous substances. Sem Liv Dis 20: 265‐272, 2000.
 275. Keppler D, Konig J, Buchler M. The canalicular multidrug resistance protein, cMRP/MRP2, a novel conjugate export pump expressed in the apical membrane of hepatocytes. Adv Enzyme Regul 37: 321‐333, 1997.
 276. Kikuchi S, Hata M, Fukumoto K, Yamane Y, Matsui T, Tamura A, Yonemura S, Yamagishi H, Keppler D, Tsukita S, Tsukita S. Radixin deficiency causes conjugated hyperbilirubinemia with loss of Mrp2 from bile canalicular membranes. Nat Genet 31: 320‐325, 2002.
 277. Kim MS, Lee KY, Chey WY. Plasma secretin concentrations in fasting and postprandial states in dog. Am J Physiol Endocrinol Metab 236: E539‐E544, 1979.
 278. Kipp H, Arias IM. Intracellular trafficking and regulation of canalicular ATP‐binding cassette transporters. Semin Liver Dis 20: 339‐351, 2000.
 279. Kipp H, Arias IM. Trafficking of canalicular ABC transporters in hepatocytes. Annu Rev Physiol 64: 595‐608, 2002.
 280. Kipp H, Pichetshote N, Arias IM. Transporters on demand: Intrahepatic pools of canalicular ATP‐binding cassette transporters in rat liver. J Biol Chem 276: 7218‐7224, 2001.
 281. Kitamura T, Jansen P, Hardenbrook C, Kamimoto Y, Gatmaitan Z, Arias IM. Defective ATP‐dependent bile canalicular transport of organic anions in mutant (TR‐) rats with conjugated hyperbilirubinemia. Proc Natl Acad Sci U S A 87: 3557‐3561, 1990.
 282. Kitani K, Kanai S. Effect of ursodeoxycholate on the bile flow in the rat. Life Sci 31: 1973‐1985, 1982.
 283. Klaassen CD. Biliary excretion of metals. Drug Metab Rev 5: 165‐196, 1976.
 284. Klaassen CD, Aleksunes LM. Xenobiotic, bile acid, and cholesterol transporters: Function and regulation. Pharmacol Rev 62: 1‐96, 2010.
 285. Klaassen CD, Watkins JBI. Mechanisms of bile formation, hepatic uptake, and biliary excretion. Pharm Reviews 36: 1‐67, 1984.
 286. Klomp LW, Vargas JC, van Mil SW, Pawlikowska L, Strautnieks SS, van Eijk MJ, Juijn JA, Pabon‐Pena C, Smith LB, DeYoung JA, Byrne JA, Gombert J, van der BG, Berger R, Jankowska I, Pawlowska J, Villa E, Knisely AS, Thompson RJ, Freimer NB, Houwen RH, Bull LN. Characterization of mutations in ATP8B1 associated with hereditary cholestasis. Hepatology 40: 27‐38, 2004.
 287. Knutter I, Rubio‐Aliaga I, Boll M, Hause G, Daniel H, Neubert K, Brandsch M. H+‐peptide cotransport in the human bile duct epithelium cell line SK‐ChA‐1. Am J Physiol Gastrointest Liver Physiol 283: G222‐G229, 2002.
 288. Koepsell H, Lips K, Volk C. Polyspecific organic cation transporters: Structure, function, physiological roles, and biopharmaceutical implications. Pharm Res 24: 1227‐1251, 2007.
 289. Konig J, Nies AT, Cui Y, Leier I, Keppler D. Conjugate export pumps of the multidrug resistance protein (MRP) family: Localization, substrate specificity, and MRP2‐mediated drug resistance. Biochim Biophys Acta 1461: 377‐394, 1999.
 290. Kool M, van der Linden M, deHaas M, Scheffer GL, de Vree JML, Smith AJ, Jansen G, Peters GJ, Ponne N, Scheper RJ, Oude Elferink RPJ, Baas F, Borst P. MRP3, an organic anion transporter able to transport anti‐cancer drugs. Proc Natl Acad Sci U S A 96 (12): 6914‐6919, 1999.
 291. Korner M, Hayes GM, Rehmann R, Zimmermann A, Scholz A, Wiedenmann B, Miller LJ, Reubi JC. Secretin receptors in the human liver: Expression in biliary tract and cholangiocarcinoma, but not in hepatocytes or hepatocellular carcinoma. J Hepatol 45: 825‐835, 2006.
 292. Koukoui O, Boucherie S, Sezan A, Prigent S, Combettes L. Effects of the prostaglandins PGF2alpha and PGE2 on calcium signaling in rat hepatocyte doublets. Am J Physiol Gastrointest Liver Physiol 290: G66‐G73, 2006.
 293. Kozarsky KF, Donahee MH, Rigotti A, Iqbal SN, Edelman ER, Krieger M. Overexpression of the HDL receptor SR‐BI alters plasma HDL and bile cholesterol levels. Nature 387: 414‐417, 1997.
 294. Krishnamurthy P, Schuetz JD. Role of abcg2/bcrp in biology and medicine 1. Annu Rev Pharmacol Toxicol 46: 381‐410, 2006.
 295. Kristiansen TZ, Bunkenborg J, Gronborg M, Molina H, Thuluvath PJ, Argani P, Goggins MG, Maitra A, Pandey A. A proteomic analysis of human bile. Mol Cell Proteomics 3: 715‐728, 2004.
 296. Kruglov EA, Gautam S, Guerra MT, Nathanson MH. Type 2 inositol 1,4,5‐trisphosphate receptor modulates bile salt export pump activity in rat hepatocytes. Hepatology 54: 1790‐1799, 2011.
 297. Kruh GD, Belinsky MG, Gallo JM, Lee K. Physiological and pharmacological functions of Mrp2, Mrp3 and Mrp4 as determined from recent studies on gene‐disrupted mice 1. Cancer Metastasis Rev 26: 5‐14, 2007.
 298. Kubitz R, Sutfels G, Kuhlkamp T, Kolling R, Haussinger D. Trafficking of the bile salt export pump from the Golgi to the canalicular membrane is regulated by the p38 MAP kinase. Gastroenterology 126: 541‐553, 2004.
 299. Kubitz R, Wettstein M, Warskulat U, Haussinger D. Regulation of the multidrug resistance protein 2 in the rat liver by lipopolysaccharide and dexamethasone. Gastroenterology 116: 401‐410, 1999.
 300. Kullak‐Ublick GA, Ismair MG, Stieger B, Landmann L, Huber R, Pizzagalli F, Fattinger K, Meier PJ, Hagenbuch B. Organic anion‐transporting polypeptide B (OATP‐B) and its functional comparison with three other OATPs of human liver. Gastroenterology 120: 525‐533, 2001.
 301. Kumar R, Nagubandi S, Mattox VR, Londowski JM. Enterohepatic physiology of 1,25‐dihydroxyvitamin D3. J Clin Invest 65: 277‐284, 1980.
 302. Kurashima K, Szabos EZ, Lukacs G, Orlowski J, Grinstein S. Endosomal recycling of the Na+/H+ exchanger NHE3 isoform is regulated by the phosphatidylinositol 3‐kinase pathway. J Biol Chem 273: 20828‐20836, 1998.
 303. Kurz AK, Block C, Graf D, Dahl SV, Schliess F, Haussinger D. Phosphoinositide 3‐kinase‐dependent ras activation by tauroursodesoxycholate in rat liver. Biochem J 350: 207‐213, 2000.
 304. Kurz AK, Graf D, Schmitt M, vom DS, Haussinger D. Tauroursodesoxycholate‐induced choleresis involves p38(MAPK) activation and translocation of the bile salt export pump in rats. Gastroenterology 121: 407‐419, 2001.
 305. Kusuhara H, Sugiyama Y. In vitro‐in vivo extrapolation of transporter‐mediated clearance in the liver and kidney. Drug Metab Pharmacokinet 24: 37‐52, 2009.
 306. Lam CW, Cheung KM, Tsui MS, Yan MS, Lee CY, Tong SF. A patient with novel ABCB11 gene mutations with phenotypic transition between BRIC2 and PFIC2 1. J Hepatol 44: 240‐242, 2006.
 307. Lam P, Pearson CL, Soroka C, Xu S, Mennone A, Boyer JL. The level of plasma membrane expression in progressive and benign mutations of the bile salt export pump (Bsep/Abcb11) correlate with severity of cholestatic diseases. Am J Physiol Cell Physiol 293: C1709‐C1716, 2007.
 308. Lam P, Soroka CJ, Boyer JL. The bile salt export pump: Clinical and experimental aspects of genetic and acquired cholestatic liver disease. Semin Liver Dis 30: 125‐133, 2010.
 309. Lam P, Wang R, Ling V. Bile acid transport in sister of P‐glycoprotein (ABCB11) knockout mice. Biochem 44: 12598‐12605, 2005.
 310. Lam P, Xu S, Soroka CJ, Boyer JL. A c‐terminal tyrosine‐based motif in the bile salt export pump directs clathrin‐dependent endocytosis. Hepatology 2011.
 311. Landrier JF, Eloranta JJ, Vavricka SR, Kullak‐Ublick GA. The nuclear receptor for bile acids, FXR, transactivates the human organic solute transporter‐alpha and ‐beta genes. Am J Physiol Gastrointest Liver Physiol 290: G476‐G485, 2005.
 312. Lang C, Meier Y, Stieger B, Beuers U, Lang T, Kerb R, Kullak‐Ublick GA, Meier PJ, Pauli‐Magnus C. Mutations and polymorphisms in the bile salt export pump and the multidrug resistance protein 3 associated with drug‐induced liver injury 1. Pharmacogenet Genomics 17: 47‐60, 2007.
 313. Lang T, Haberl M, Jung D, Drescher A, Schlagenhaufer R, Keil A, Mornhinweg E, Stieger B, Kullak‐Ublick GA, Kerb R. Genetic variability, haplotype structures, and ethnic diversity of hepatic transporters MDR3 (ABCB4) and bile salt export pump (ABCB11). Drug Metab Dispos 34: 1582‐1599, 2006.
 314. Larkin JM, Coleman H, Espinosa A, Levenson A, Park MS, Woo B, Zervoudakis A, Tinh V. Intracellular accumulation of pIgA‐R and regulators of transcytotic trafficking in cholestatic rat hepatocytes. Hepatology 38: 1199‐1209, 2003.
 315. Larkin JM, Woo B, Balan V, Marks DL, Oswald BJ, LaRusso NF, McNiven MA. Rab3D, a small GTP‐binding protein implicated in regulated secretion, is associated with the transcytotic pathway in rat hepatocytes. Hepatology 32: 348‐356, 2000.
 316. LaRusso N. Proteins in bile: How they get there and what they do. Am J Physiol 247: G199‐G205, 1984.
 317. LaRusso NF, Masyuk TV. The role of cilia in the regulation of bile flow. Dig Dis 29: 6‐12, 2011.
 318. Latham PS, Kashgarian M. The ultrastructural localization of transport ATPase in the rat liver at nonbile canalicular plasma membranes. Gastroenterology 76: 988‐996, 1979.
 319. Lauterburg B, Paumgartner G, Preisig R. Prostaglandin‐induced choleresis in the rat. Experientia 31: 1191‐1193, 1975.
 320. Layden TJ, Boyer JL. Influence of bile acids on bile canalicular membrane morphology and the lobular gradient in canalicular size. Lab Invest 39: 110‐119, 1978.
 321. Lazaridis KN, Pham L, Tietz P, Marinelli RA, deGroen PC, Levine S, Dawson PA, LaRusso NF. Rat cholangiocytes absorb bile acids at their apical domain via the ileal sodium‐dependent bile acid transporter. J Clin Invest 100: 2714‐2721, 1997.
 322. Lazaridis KN, Pham L, Vroman B, DeGroen PC, LaRusso NF. Kinetic and molecular identification of sodium‐dependent glucose transporter in normal rat cholangiocytes. Am J Physiol 35: G1168‐G1174, 1997.
 323. Ledger JE, Watson GJ, Compston JE. Biliary excretion of radioactivity after intravenous administration of [3H]25‐hydroxyvitamin D3 in man. Dig Dis Sci 31: 361‐368, 1986.
 324. Lee J, Azzaroli F, Wang L, Soroka CJ, Gigliozzi A, Setchell KD, Kramer W, Boyer JL. Adaptive regulation of bile salt transporters in kidney and liver in obstructive cholestasis in the rat. Gastroenterology 121: 1473‐1484, 2001.
 325. Lee J, Boyer JL. Molecular alterations in hepatocyte transport mechanisms in acquired cholestatic liver disorders. Semin Liv Dis 20: 373‐384, 2000.
 326. Lee W, Glaeser H, Smith LH, Roberts RL, Moeckel GW, Gervasini G, Leake BF, Kim RB. Polymorphisms in human organic anion‐transporting polypeptide 1A2 (OATP1A2): Implications for altered drug disposition and central nervous system drug entry. J Biol Chem 280: 9610‐9617, 2005.
 327. Lehmann GL, Larocca MC, Soria LR, Marinelli RA. Aquaporins: Their role in cholestatic liver disease. World J Gastroenterol 14: 7059‐7067, 2008.
 328. Leitch S, Feng M, Muend S, Braiterman LT, Hubbard AL, Rao R. Vesicular distribution of Secretory Pathway Ca(2)+‐ATPase isoform 1 and a role in manganese detoxification in liver‐derived polarized cells. Biometals 24: 159‐170, 2011.
 329. Lenzen R, Alpini G, Tavoloni N. Secretin stimulates bile ductular secretory activity through the cAMP system. Am J Physiol 263: G527‐G532, 1992.
 330. Lenzen R, Hruby VJ, Tavoloni N. Mechanisms of glucagon choleresis in the guinea pig. Am J Physiol 259: G736‐G744, 1990.
 331. LeSage GD, Marucci L, Alvaro D, Glaser SS, Benedetti A, Marzioni M, Patel T, Francis H, Phinizy JL, Alpini G. Insulin inhibits secretin‐induced ductal secretion by activation of PKC alpha and inhibition of PKA activity. Hepatology 36: 641‐651, 2002.
 332. Lewarchik CM, Peters KW, Qi J, Frizzell RA. Regulation of CFTR trafficking by its R domain. J Biol Chem 283: 28401‐28412, 2008.
 333. Li L, Lee TK, Meier PJ, Ballatori N. Identification of glutathione as a driving force and leukotriene C4 as a substrate for oatp1, the hepatic sinusoidal organic solute transporter. J Biol Chem 273: 16184‐16191, 1998.
 334. Li L, Meier PJ, Ballatori N. Oatp2 mediates bidirectional organic solute transport: A role for intracellular glutathione. Mol Pharmacol 58: 335‐340, 2000.
 335. Li M, Wang W, Soroka CJ, Mennone A, Harry K, Weinman EJ, Boyer JL. NHERF‐1 binds to Mrp2 and regulates hepatic Mrp2 expression and function. J Biol Chem 285: 19299‐19307, 2010.
 336. Li W, Scott AP, Siefkes MJ, Yan H, Liu Q, Yun S‐S, Gage DA. Bile acid secreted by male sea lamprey that acts as a sex pheromone. Science 296: 138‐141, 2002.
 337. Li X, Weinman SA. Mrp2 modulates the acticity of chloride channels in isolated hepatocytes. Hepatology 36: 65‐71, 2002.
 338. Liddle RA. Regulation of cholecystokinin secretion by intraluminal releasing factors. Am J Physiol 269: G319‐G327, 1995.
 339. Lidofsky SD, Roman RM. Alanine uptake activates hepatocellular chloride channels. Am J Physiol 36: G849‐G853, 1997.
 340. Logan GM, Weimer MK, Ellefson M, Pierach CA, Bloomer JR. Bile porphyrin analysis in the evaluation of variegate porphyria. N Engl J Med 324: 1408‐1411, 1991.
 341. Lorenzini I, Sakisaka S, Meier PJ, Boyer JL. Demonstration of a transcellular vesicle pathway for biliary excretion of inulin in rat liver. Gastroenterology 91: 1278‐1288, 1986.
 342. Lucena JF, Herrero JI, Quiroga J, Sangro B, Garcia‐Foncillas J, abalegui N, Sola S, Herraiz M, Medina J, Prieto J. A multidrug resistance 3 gene mutation causing cholelithiasis, cholestasis of pregnancy, and adulthood biliary cirrhosis. Gastroenterology 124: 1037‐1042, 2003.
 343. Ludwig J, Ritman EL, LaRusso N, Sheedy PF, Zumpe G. Anatomy of the human biliary system studied by quantitative computer‐aided three‐dimensional imaging techniques. Hepatology 27: 893‐899, 1998.
 344. Lui A, Lumeng L, Li TK. Biliary excretion of 14C‐labeled vitamin B‐6 in rats. J Nutr 113: 893‐898, 1983.
 345. Luoma LM, Deeb TM, Macintyre G, Cox DW. Functional analysis of mutations in the ATP loop of the Wilson disease copper transporter, ATP7B. Hum Mutat 31: 569‐577, 2010.
 346. Lykavieris P, van Mil S, Cresteil D, Fabre M, Hadchouel M, Klomp L, Bernard O, Jacquemin E. Progressive familial intrahepatic cholestasis type 1 and extrahepatic features: No catch‐up of stature growth, exacerbation of diarrhea, and appearance of liver steatosis after liver transplantation. J Hepatol 39: 447‐452, 2003.
 347. Maeda K, Sugiyama Y. Impact of genetic polymorphisms of transporters on the pharmacokinetic, pharmacodynamic and toxicological properties of anionic drugs. Drug Metab Pharmacokinet 23: 223‐235, 2008.
 348. Maher JM, Dieter MZ, Aleksunes LM, Slitt AL, Guo G, Tanaka Y, Scheffer GL, Chan JY, Manautou JE, Chen Y, Dalton TP, Yamamoto M, Klaassen CD. Oxidative and electrophilic stress induces multidrug resistance‐associated protein transporters via the nuclear factor‐E2‐related factor‐2 transcriptional pathway. Hepatology 46: 1597‐1610, 2007.
 349. Marbet P, Rahner C, Stieger B, Landmann L. Quantitative microscopy reveals 3D organization and kinetics of endocytosis in rat hepatocytes. Microsc Res Tech 69: 693‐707, 2006.
 350. Marinelli RA., LaRusso NF. Solute and water transport pathways in cholangiocytes. Semin Liv Dis 16: 221‐229, 1996.
 351. Marinelli RA, Lehmann GL, Soria LR, Marchissio MJ. Hepatocyte aquaporins in bile formation and cholestasis. Front Biosci 17: 2642‐2652, 2012.
 352. Marinelli RA, Pham L, Agre P, LaRusso NF. Secretin promotes osmotic water transport in rat cholangiocytes by increasing aquaporin‐1 water channels in plasma membrane. J Biol Chem 272: 12984‐12988, 1997.
 353. Marinelli RA, Pham LD, Tietz PS, LaRusso NF. Expression of aquaporin‐4 water channels in rat cholangiocytes. Hepatology 31: 1313‐1317, 2000.
 354. Marinelli RA, Tietz P, Pham LD, Rueckert L, Agre P, LaRusso NF. Secretin induces the apical insertion of aquaporin‐1 water channels in rat cholangiocytes. Am J Physiol 276: G280‐G286, 1999.
 355. Marinelli RA, Tietz PS, Caride AJ, Huang BQ, LaRusso NF. Water transporting properties of hepatocyte basolateral and canalicular plasma membrane domains. J Biol Chem 278: 43157‐43162, 2003.
 356. Marino CM, Matovcik LM, Gorelick FS, Cohn JA. Localization of the cystic fibrosis transmembrane conductance regulator in pancreas. J Clin Invest 88: 712‐716, 1991.
 357. Marks DL, LaRusso NF, McNiven MA. Isolation of the microtubule‐vesicle motor kinesin from rat liver: Selective inhibition by cholestatic bile acids. Gastroenterology 108: 824‐833, 1995.
 358. Martin GG, Atshaves BP, McIntosh AL, Mackie JT, Kier AB, Schroeder F. Liver fatty‐acid‐binding protein (L‐FABP) gene ablation alters liver bile acid metabolism in male mice. Biochem J 391: 549‐560, 2005.
 359. Martinez‐Anso E, Castillo JE, Diez J, Medina JF, Prieto J. Immunohistochemical detection of chloride/bicarbonate anion exchangers in human liver. Hepatology 19: 1400‐1406, 1994.
 360. Masyuk AI, Masyuk TV, LaRusso NF. Cholangiocyte primary cilia in liver health and disease. Dev Dyn 237: 2007‐2012, 2008.
 361. Mauad TH, van Nieuwkerk CMJ, Dingemans KP, Smit JJM, Schinkel AH, Notenboom RGE, vanden Bergh Weerman MA, Verkruisen RP, Groen AK, OudeElferink RPJ, vander Valk MA, Borst P, Offerhaus GJA. Mice with homozygous disruption of the mdr2 p‐glycoprotein gene. A novel animal model for studies of nonsuppurative inflammatory cholangitis and hepatocarcinogenesis. Am J Pathol 145: 1237‐1245, 1994.
 362. Mayer R, Kartenbeck J, Buchler M, Jedlitschky G, Leier I, Keppler D. Expression of the MRP gene‐encoded conjugate export pump in liver and its selective absence from the canalicular membrane in transport‐deficient mutant hepatocytes. J Cell Biol 131: 137‐150, 1995.
 363. McCarthy KM, Skare IB, Stankewich, MD. Occludin is a functional component of the tight junction. J Cell Sci 109: 2287‐2298, 1996.
 364. McCormick DB, Munroe HN. Liver in relation to water solubale vitamins. In: Arias IM, Boyer JL, Fausto N, Jakoby WB, Schachter DA, Shafritz DA, editors. The Liver: Biology and Pathobiology, New York: Raven Press, 1994, pp. 563‐583.
 365. Meier PJ., Boyer JL. Preparation of basolateral (sinusoidal) and canalicular plasma membrane vesicles for the study of hepatic transport processes. Methods Enymol 192: 534‐545, 1990.
 366. Meier PJ, Knickelbein RG, Moseley RH, Dobbins JW, Boyer JL. Evidence for carrier‐mediated chloride/bicarbonate exchange in canalicular rat liver plasma membrane vesicles. J Clin Invest 75: 1256‐1263, 1985.
 367. Meier PJ, Meier‐Abt AS, Barrett C, Boyer JL. Mechanisms of taurocholate transport in canalicular and basolateral rat liver plasma membrane vesicles. J Biol Chem 259: 10614‐10622, 1984.
 368. Meier PJ, Stieger B. Bile salt transporters. Ann Rev Physiol 64: 635‐661, 2002.
 369. Meier PJ, Sztul ES, Reuben A, Boyer JL. Structural and functional polarity of canalicular and basolateral plasma membrane vesicles isolated in high yield from rat liver. J Cell Biol 98: 991‐1000, 1984.
 370. Meier Y, Zodan T, Lang C, Zimmermann R, Kullak‐Ublick GA, Meier PJ, Stieger B, Pauli‐Magnus C. Increased susceptibility for intrahepatic cholestasis of pregnancy and contraceptive‐induced cholestasis in carriers of the 1331T>C polymorphism in the bile salt export pump. World J Gastroenterol 14: 38‐45, 2008.
 371. Meijer DKF, Smit JW, Muller M. Hepatobiliary elimination of cationic drugs: The role of P‐glycoproteins and other ATP‐dependent transporters. Adv Drug Deliv Rev 25: 159‐200, 1997.
 372. Mennone A, Alvaro D, Cho W, Boyer JL. Isolation of small polarized bile duct units. Proc Natl Acad Sci U S A 92: 6527‐6531, 1995.
 373. Mennone A, Biemersderfer D, Negoianu D, Yang C‐L, Abbiati T, Schultheis PJ, Shull GE, Aronson PS, Boyer JL. Role of sodium/hydrogen exchanger isoform NHE3 in fluid secretion and absorption in mouse and rat cholangiocytes. Am J Physiol Gastrointest Liver Physiol 280: G247‐G254, 2001.
 374. Mennone A, Soroka CJ, Cai SY, Harry K, Adachi M, Hagey L, Schuetz JD, Boyer JL. Mrp4‐/‐ mice have an impaired cytoprotective response in obstructive cholestasis. Hepatology 43: 1013‐1021, 2006.
 375. Mennone A, Soroka CJ, Harry KM, Boyer JL. Role of breast cancer resistance protein in the adaptive response to cholestasis. Drug Metab Dispos 38: 1673‐1678, 2010.
 376. Merino G, Jonker JW, Wagenaar E, van Herwaarden AE, Schinkel AH. The breast cancer resistance protein (BCRP/ABCG2) affects pharmacokinetics, hepatobiliary excretion, and milk secretion of the antibiotic nitrofurantoin. Mol Pharmacol 67: 1758‐1764, 2005.
 377. Meyer Zu Schwabedissen HE, Kim RB. Hepatic OATP1B transporters and nuclear receptors PXR and CAR: Interplay, regulation of drug disposition genes, and single nucleotide polymorphisms. Mol Pharm 6: 1644‐1661, 2009.
 378. Miao J, Fang S, Lee J, Comstock C, Knudsen KE, Kemper JK. Functional specificities of Brm and Brg‐1 Swi/Snf ATPases in the feedback regulation of hepatic bile acid biosynthesis. Mol Cell Biol 29: 6170‐6181, 2009.
 379. Milkiewicz P, Roma MG, Elias E, Coleman R. Hepatoprotection with tauroursodeoxycholate and [beta] muricholate against taurolithocholate induced cholestasis: Involvement of signal transduction pathways. Gut 51: 113‐119, 2002.
 380. Minagawa N, Nagata J, Shibao K, Masyuk AI, Gomes DA, Rodrigues MA, LeSagE G, Akiba Y, Kaunitz JD, Ehrlich BE, LaRusso NF, Nathanson MH. Cyclic AMP regulates bicarbonate secretion in cholangiocytes through release of ATP into bile. Gastroenterology 133: 1592‐1602, 2007.
 381. Minuesa G, Volk C, Molina‐Arcas M, Gorboulev V, Erkizia I, Arndt P, Clotet B, Pastor‐Anglada M, Koepsell H, Martinez‐Picado J. Transport of lamivudine [(‐)‐beta‐L‐2′,3′‐dideoxy‐3′‐thiacytidine] and high‐affinity interaction of nucleoside reverse transcriptase inhibitors with human organic cation transporters 1, 2, and 3. J Pharmacol Exp Ther 329: 252‐261, 2009.
 382. Misra S, Ujhazy P, Gatmaitan Z, Varticovski L, Arias IM. The role of phosphoinositide 3‐kinase in taurocholate‐induced trafficking of ATP‐dependent canalicular transporters in rat liver. J Biol Chem 273: 26638‐26644, 1998.
 383. Misra S, Varticovski L, Arias IM. Mechanisms by which cAMP increases bile acid secretion in rat liver and canalicular membrane vesicles. Am J Physiol Gastrointest Liver Physiol 285: G316‐G324, 2003.
 384. Mitic LL., Anderson JM. Moleclar architecture of tight junctions. Ann Rev Physiol 60: 121‐142, 1998.
 385. Moreno M, Molina H, Amigo L, Zanlungo S, Arrese M, Rigotti A, Miquel JF. Hepatic overexpression of caveolins increases bile salt secretion in mice 1. Hepatology 38: 1477‐1488, 2003.
 386. Morita KFMFKaTS. Claudin multigene family enocdoing four‐transmembrane domain protein componenets of tight junction strands. Proc Natl Acad Sci U S A 96: 511‐516, 1999.
 387. Moriyama Y, Hiasa M, Matsumoto T, Omote H. Multidrug and toxic compound extrusion (MATE)‐type proteins as anchor transporters for the excretion of metabolic waste products and xenobiotics. Xenobiotica 38: 1107‐1118, 2008.
 388. Moseley RH, Ballatori N, Murphy SM. Na+‐glycine co‐transport in canalicular liver plasma membrane vesicles. Am J Physiol 255: G253‐G259, 1988.
 389. Moseley RH, Wang W, Takeda H, Lown K, Shick L, Ananthanarayanan M, Suchy FJ. Effect of endotoxin on bile acid transport in rat liver: A potential model for sepsis‐associated cholestasis. Am J Physiol 271: G137‐G146, 1996.
 390. Mottino AD, Cao J, Veggi LM, Crocenzi F, Roma MG, Vore M. Altered localization and activity of canalicular Mrp2 in estradiol‐17beta‐D‐glucuronide‐induced cholestasis. Hepatology 35: 1409‐1419, 2002.
 391. Mottino AD, Crocenzi FA, Pozzi EJ, Veggi LM, Roma MG, Vore M. Role of microtubules in estradiol‐17beta‐D‐glucuronide‐induced alteration of canalicular Mrp2 localization and activity. Am J Physiol Gastrointest Liver Physiol 288: G327‐G336, 2005.
 392. Mukhopadhayay S, Ananthanarayanan M, Stieger B, Meier PJ, Suchy FJ, Anwer MS. cAMP increases liver Na+‐taurocholate cotransport by translocating transporter to plasma membranes. Am J Physiol 273: G842‐G848, 1997.
 393. Muller M, Ishikawa T, Berger U, Klunemann C, Lucka L, Schreyer A, Kannich C, Reutter W, Kurz G, Keppler D. ATP‐dependent transport of taurocholate across the hepatocyte canalicular membrane mediated by a 110‐kDa glycoprotein binding ATP and bile salt. J Biol Chem 266: 18920‐18926, 1991.
 394. Muller M, Mayer R, Hero U, Keppler D. ATP‐dependent transport of amphiphilic cations across the hepatocyte canalicular membrane mediated by mdr1 P‐glycoprotein. FEBS Lett 343: 168‐172, 1994.
 395. Mustacich DJ, Bruno RS, Traber MG. Vitamin E. Vitam Horm 76: 1‐21, 2007.
 396. Mustacich DJ, Shields J, Horton RA, Brown MK, Reed DJ. Biliary secretion of alpha‐tocopherol and the role of the mdr2 P‐glycoprotein in rats and mice. Arch Biochem Biophys 350: 183‐192, 1998.
 397. Myers NC, Grune S, Jameson HL, Anwer MS. cGMP stimulates bile acid‐independent bile formation and biliary bicarbonate excretion. Am J Physiol 270: G418‐G424, 1996.
 398. Nakano A, Marks DL, Tietz PS, deGroen PC, LaRusso NF. Quantitative importance of biliary excretion to the turnover of hepatic lysosomal enzymes. Hepatology 22: 262‐266, 1995.
 399. Nathanson MH. Cellular and subcellular calcium signaling in gastrointestinal epithelium. Gastroenterology 106: 1349‐1364, 1994.
 400. Nathanson MH, Boyer JL. Mechanisms and regulation of bile secretion. Hepatology 14: 551‐566, 1991.
 401. Nathanson MH, Boyer JL. Vesicular Trafficking in the Hepatocyte. In: Arias IM, Boyer JL, Fausto N, Jakoby WB, Schachter DA, Shafritz DA, editors. The Liver: Biology and Pathobiology, New York: Raven Press, Ltd., 1994, pp. 655‐664.
 402. Nathanson MH, Burgstahler AD, Masyuk A, LaRusso NF. Stimulation of ATP secretion in the liver by therapeutic bile acids. Biochem J 358: 1‐5, 2001.
 403. Nathanson MH, Burgstahler AD, Mennone A, Fallon MB, Gonzalez CB, Saez JC. Ca2+ waves are organized among hepatocytes in the intact organ. Am J Physiol 269: G167‐G171, 1995.
 404. Nathanson MH, Gautam A, Bruck R, Isales CM, Boyer JL. Effects of Ca‐2+ Agonists on Cytosolic Ca‐2 +in Isolated Hepatocytes and on Bile Secretion in the Isolated Perfused Rat Liver. Hepatology 15: 107‐116, 1992.
 405. Nathanson MH, Gautam A, Ng OC, Bruck R, Boyer JL. Hormonal regulation of paracellular permeability in isolated rat hepatocyte couplets. Am J Physiol 262: G1079‐G1086, 1992.
 406. Nathanson MH, Rios‐Velez L, Burgstahler A, Mennone A. Communication via gap junctions modulates bile secretion in the isolated perfused rat liver. Gastroenterology 116: 1176‐1183, 1999.
 407. Nicolaou M, Andress EJ, Zolnerciks JK, Dixon PH, Williamson C, Linton KJ. Canalicular ABC transporters and liver disease. J Pathol 226: 300‐315, 2012.
 408. Nies AT, Keppler D. The apical conjugate efflux pump ABCC2 (MRP2). Pflugers Arch 453: 643‐659, 2007.
 409. Nies AT, Koepsell H, Damme K, Schwab M. Organic cation transporters (OCTs, MATEs), in vitro and in vivo evidence for the importance in drug therapy. Handb Exp Pharmacol 201: 105‐167, 2011.
 410. Nies AT, Koepsell H, Winter S, Burk O, Klein K, Kerb R, Zanger UM, Keppler D, Schwab M, Schaeffeler E. Expression of organic cation transporters OCT1 (SLC22A1) and OCT3 (SLC22A3) is affected by genetic factors and cholestasis in human liver. Hepatology 50: 1227‐1240, 2009.
 411. Nishida T, Gatmaitan Z, Che MX, Arias IM. Rat liver canalicular membrane vesicles containing an ATP‐dependent bile acid transport system. Proc Natl Acad Sci U S A 88: 6590‐6594, 1991.
 412. Noe J, Steiger B, Meier P. Functional expression of the canalicular bile salt export pump (BSEP) of human liver. Gastroenterology 123: 1659‐1666, 2002.
 413. Excretion of vitamin A metabolites in the bile. Nutr Rev 43: 250‐252, 1985.
 414. Norimizu S, Kudo A, Kajimura M, Ishikawa K, Taniai H, Yamaguchi T, Fujii K, Arii S, Nimura Y, Suematsu M. Carbon monoxide stimulates mrp2‐dependent excretion of bilirubin‐IXalpha into bile in the perfused rat liver. Antioxid Redox Signal 5: 449‐456, 2003.
 415. Nozawa T, Minami H, Sugiura S, Tsuji A, Tamai I. Role of organic anion transporter OATP1B1 (OATP‐C) in hepatic uptake of irinotecan and its active metabolite, 7‐ethyl‐10‐hydroxycamptothecin: In vitro evidence and effect of single nucleotide polymorphisms. Drug Metab Dispos 33: 434‐439, 2005.
 416. O'Maille ER, Kozmary SV, Hofmann AF, Gurantz D. Differing effects of norcholate and cholate on bile flow and biliary lipid secretion in the rat. Am J Physiol 246: G67‐G71, 1984.
 417. O'Mallie ERL, Richards TG. The secretory characteristics of dehydrocholate in the dog: Comparison with the natural bile salts. J Physiol 261: 337‐357, 1976.
 418. Obaidat A, Roth M, Hagenbuch B. The expression and function of organic anion transporting polypeptides in normal tissues and in cancer. Annu Rev Pharmacol Toxicol 52: 135‐151, 2012.
 419. Okada K, Shoda J, Taguchi K, Maher JM, Ishizaki K, Inoue Y, Ohtsuki M, Goto N, Sugimoto H, Utsunomiya H, Oda K, Warabi E, Ishii T, Yamamoto M. Nrf2 counteracts cholestatic liver injury via stimulation of hepatic defense systems. Biochem Biophys Res Commun 389: 431‐436, 2009.
 420. Olson JA. Some aspects of vitamin A metabolism. Vitam Horm 26: 1‐63, 1969.
 421. Olson JR, Fujimoto JM. Demonstration of a D‐glucose transport system in the biliary tract of the rat by use of the segmented retrograde intrabiliary injection technique. Biochem Pharmacol 24: 263‐219, 1980.
 422. Ortiz DF, Moseley J, Calderon G, Swift AL, Li S, Arias IM. Identification of HAX‐1 as a protein that binds bile salt export protein and regulates its abundance in the apical membrane of Madin‐Darby canine kidney cells. J Biol Chem 279: 32761‐32770, 2004.
 423. Oshio C, Phillips MJ. Contractility of bile canaliculi, implications of liver functions. Science 212: 1041‐1042, 1981.
 424. Oswald M, Kullak‐Ublick GA, Paumgartner G, Beuers U. Expression of hepatic transporters OATP‐C and MRP2 in primary sclerosing cholangitis. Liver 21: 247‐253, 2001.
 425. Oude Elferink RP, Ottenhoff R, van Wijland M, Smit JJ, Schinkel AH, Groen AK. Regulation of biliary lipid secretion by mdr2 P‐glycoprotein in the mouse. J Clin Invest 95: 31‐38, 1995.
 426. Oude Elferink RP, Paulusma CC. Function and pathophysiological importance of ABCB4 (MDR3 P‐glycoprotein). Pflugers Arch 453: 601‐610, 2007.
 427. Oude Elferink RPJ, Tytgat GNJ, Groen AK. The role of mdr2 P‐glycoprotein in hepatobiliary lipid transport. FASEB J 11: 19‐28, 1997.
 428. Padda MS, Sanchez M, Akhtar AJ, Boyer JL. Drug‐induced cholestasis. Hepatology 53: 1377‐1387, 2011.
 429. Pappenheimer JR. Passage of molecules through capillary walls. Physiol Rev 33: 387‐423, 1953.
 430. Pauli‐Magnus C, Kerb R, Fattinger K, Lang T, Anwald B, Kullak‐Ublick GA, Beuers U, Meier PJ. BSEP and MDR3 haplotype structure in healthy Caucasians, primary biliary cirrhosis and primary sclerosing cholangitis. Hepatology 39: 779‐791, 2004.
 431. Paulusma C, Kothe MJC, Bakker CTM, Bosma PJ, van Bokhoven I, Van Marle J, Bolder U, Tytgat GNJ, Oude Elferink RPJ. Zonal down‐regulation and redistribution of the multidrug resistance protein 2 during bile duct ligation in rat liver. Hepatology 31: 684‐693, 2000.
 432. Paulusma C, van Geer M, Evers R, Heijn M, Ottenhoff R, Borst P, Oude Elferink RPJ. Canalicular multispecific organic anion transporter/multidrug resistance protein 2 mediates low‐affinity transport of reduced glutathione. Biochem J 338: 393‐401, 1999.
 433. Paulusma CC, de Waart DR, Kunne C, Mok KS, Elferink RP. Activity of the bile salt export pump (ABCB11) is critically dependent on canalicular membrane cholesterol content. J Biol Chem 284: 9947‐9954, 2009.
 434. Paulusma CC, Folmer DE, Ho‐Mok KS, de Waart DR, Hilarius PM, Verhoeven AJ, Oude Elferink RP. ATP8B1 requires an accessory protein for endoplasmic reticulum exit and plasma membrane lipid flippase activity. Hepatology 47: 268‐278, 2008.
 435. Paulusma CC, Groen A, Kunne C, Ho‐Mok KS, Spijkerboer AL, Rudi dW, Hoek FJ, Vreeling H, Hoeben KA, Van Marle J, Pawlikowska L, Bull LN, Hofmann AF, Knisely AS, Oude Elferink RP. Atp8b1 deficiency in mice reduces resistance of the canalicular membrane to hydrophobic bile salts and impairs bile salt transport. Hepatology 44: 195‐204, 2006.
 436. Paulusma CC, Kool M, Bosma PJ, Scheffer GL, terBorg F, Scheper RJ, Tytgat GNJ, Borst P, Baas F, OudeElferink RPJ. A mutation in the human canalicular multispecific organic anion transporter gene causes the Dubin‐Johnson syndrome. Hepatology 25: 1539‐1542, 1997.
 437. Paulusma CC, Oude Elferink RP. The type 4 subfamily of P‐type ATPases, putative aminophospholipid translocases with a role in human disease. Biochim Biophys Acta 1741: 11‐24, 2005.
 438. Paumgartner G, Herz R, Sauter K, Schwarz HP. Taurocholate excretion and bile formation in the isolated perfused rat liver: An in vitro‐in vivo comparison. Arch Pharmacol 285: 165‐174, 1974.
 439. Pawlikowska L, Strautnieks S, Jankowska I, Czubkowski P, Emerick K, Antoniou A, Wanty C, Fischler B, Jacquemin E, Wali S, Blanchard S, Nielsen IM, Bourke B, McQuaid S, Lacaille F, Byrne JA, van Eerde AM, Kolho KL, Klomp L, Houwen R, Bacchetti P, Lobritto S, Hupertz V, McClean P, Mieli‐Vergani G, Shneider B, Nemeth A, Sokal E, Freimer NB, Knisely AS, Rosenthal P, Whitington PF, Pawlowska J, Thompson RJ, Bull LN. Differences in presentation and progression between severe FIC1 and BSEP deficiencies. J Hepatol 53: 170‐178, 2010.
 440. Phillips MJ. What is actin doing in the liver cell? Hepatology 3: 433‐436, 1983.
 441. Phillips MJ, Oshio C, Miyairi M, Katz H, Smith CR. A study of bile canalicular contractions in isolated hepatocytes: Methods and time series analysis. Hepatology 2: 777, 1982.
 442. Phillips MJ, Poucell S, Oda M. Biology of disease mechanisms of cholestasis. Lab Invest 54: 593‐608, 1986.
 443. Plass JR, Mol O, Heegsma J, Geuken M, de Bruin J, Elling G, Muller M, Faber KN, Jansen PL. A progressive familial intrahepatic cholestasis type 2 mutation causes an unstable, temperature‐sensitive bile salt export pump. J Hepatol 40: 24‐30, 2004.
 444. Polgar O, Robey RW, Bates SE. ABCG2: Structure, function and role in drug response. Expert Opin Drug Metab Toxicol 4: 1‐15, 2008.
 445. Popowski K, Eloranta JJ, Saborowski M, Fried M, Meier PJ, Kullak‐Ublick GA. The human organic anion transporter 2 gene is transactivated by hepatocyte nuclear factor‐4 alpha and suppressed by bile acids. Mol Pharmacol 67: 1629‐1638, 2005.
 446. Potter KN, Thomson RK, Hamblin A, Richards SD, Lindsay JG, Stevenson FK. Immunogenetic analysis reveals that epitope shifting occurs during B‐cell affinity maturation in primary biliary cirrhosis. J Mol Biol 306: 37‐46, 2001.
 447. Prandi D. Canalicular bile production in man. Eur J Clin Invest 5: 1‐6, 1975.
 448. Pusl T, Nathanson MH. The role of inositol 1,4,5‐trisphosphate receptors in the regulation of bile secretion in health and disease. Biochem Biophys Res Commun 322: 1318‐1325, 2004.
 449. Reid G, Wielinga P, Zelcer N, Van Der Heijden I, Kuil A, De Haas M, Wijnholds J, Borst P. The human multidrug resistance protein MRP4 functions as a prostaglandin efflux transporter and is inhibited by nonsteroidal antiinflammatory drugs. Proc Natl Acad Sci U S A 100: 9244‐9249, 2003.
 450. Rembacz KP, Woudenberg J, Hoekstra M, Jonkers EZ, van den Heuvel FA, Buist‐Homan M, Woudenberg‐Vrenken TE, Rohacova J, Marin ML, Miranda MA, Moshage H, Stellaard F, Faber KN. Unconjugated bile salts shuttle through hepatocyte peroxisomes for taurine conjugation. Hepatology 52: 2167‐2176, 2010.
 451. Reuben A. Biliary proteins. Hepatology 4: 46S‐50S, 1984.
 452. Rhainds D, Brissette L. The role of scavenger receptor class B type I (SR‐BI) in lipid trafficking. defining the rules for lipid traders. Int J Biochem Cell Biol 36: 39‐77, 2004.
 453. Richter L, Hesselbarth N, Eitner K, Schubert K, Bosseckert H, Krell H. Increased biliary secretion of cysteinyl‐leukotrienes in human bile duct obstruction. J Hepatol 25: 725‐732, 1996.
 454. Rius M, Hummel‐Eisenbeiss J, Hofmann AF, Keppler D. Substrate specificity of human ABCC4 (MRP4)‐mediated cotransport of bile acids and reduced glutathione. Am J Physiol Gastrointest Liver Physiol 290: G640‐G649, 2005.
 455. Rius M, Nies AT, Hummel‐Eisenbeiss J, Jedlitschky G, Keppler D. Cotransport of reduced glutathione with bile salts by MRP4 (ABCC4) localized to the basolateral hepatocyte membrane. Hepatology 38: 374‐384, 2003.
 456. Rizzo G, Passeri D, De Franco F, Ciaccioli G, Donadio L, Rizzo G, Orlandi S, Sadeghpour B, Wang XX, Jiang T, Levi M, Pruzanski M, Adorini L. Functional characterization of the semisynthetic bile acid derivative INT‐767, a dual farnesoid X receptor and TGR5 agonist. Mol Pharmacol 78: 617‐630, 2010.
 457. Rizzo G, Renga B, Antonelli E, Passeri D, Pellicciari R, Fiorucci S. The methyl transferase PRMT1 functions as co‐activator of farnesoid X receptor (FXR)/9‐cis retinoid X receptor and regulates transcription of FXR responsive genes. Mol Pharmacol 68: 551‐558, 2005.
 458. Roda A, Grigolo B, Minutello A, Pellicciari R, Natalini B. Physicochemical and biological properties of natural and synthetic C‐22 and C‐23 hydroxylated bile acids. J Lipid Res 31: 289‐298, 1990.
 459. Rodriguez‐Ortigosa CM, Banales JM, Olivas I, Uriarte I, Marin JJ, Corrales FJ, Medina JF, Prieto J. Biliary secretion of S‐nitrosoglutathione is involved in the hypercholeresis induced by ursodeoxycholic acid in the normal rat. Hepatology 52: 667‐677, 2010.
 460. Roelofsen H, Ottenhoff R, Elferink RPJO, Jansen PLM. Hepatocanalicular organic‐anion transport is regulated by Protein kinase‐C. Biochem J 278: 637‐641, 1991.
 461. Roelofsen H, Soroka C, Dietrich K, Boyer JL. Cyclic AMP stimulates sorting of the canalicular organic anion transporter (Mrp2/cMoat) to the apical domain in hepatocyte couplets. J Cell Sci 111: 1137‐1145, 1998.
 462. Roma MG, Crocenzi FA, Mottino AD. Dynamic localization of hepatocellular transporters in health and disease. World J Gastroenterol 14: 6786‐6801, 2008.
 463. Roma MG, Milkiewicz P, Elias E, Coleman R. Control by signaling modulators of the sorting of canalicular transporters in rat hepatocyte couplets: Role of the cytoskeleton. Hepatology 32: 1342‐1356, 2000.
 464. Rosen HR, Winkle PJ, Kendall BJ, Diehl DL. Biliary interleukin‐6 and tumor necrosis factor‐alpha in patients undergoing endoscopic retrograde cholangiopancreatography. Dig Dis Sci 42: 1290‐1294, 1997.
 465. Rosencrantz R, Schilsky M. Wilson disease: Pathogenesis and clinical considerations in diagnosis and treatment. Semin Liver Dis 31: 245‐259, 2011.
 466. Roskams TA, Theise ND, Balabaud C, Bhagat G, Bhathal PS, Bioulac‐Sage P, Brunt EM, Crawford JM, Crosby HA, Desmet V, Finegold MJ, Geller SA, Gouw AS, Hytiroglou P, Knisely AS, Kojiro M, Lefkowitch JH, Nakanuma Y, Olynyk JK, Park YN, Portmann B, Saxena R, Scheuer PJ, Strain AJ, Thung SN, Wanless IR, West AB. Nomenclature of the finer branches of the biliary tree: Canals, ductules, and ductular reactions in human livers. Hepatology 39: 1739‐1745, 2004.
 467. Rosmorduc O, Hermelin B, Poupon R. Mdr3 gene defect in adults with symptomatic intrahepatic and gallbladder cholesterol cholelithiasis. Gastroenterology 120: 1459‐1467, 2001.
 468. Rossi SS, Converse JL, Hofmann AF. High pressure liquid chromatographic analysis of conjugated bile acids in human bile: Simultaneous resolution of sulfated and unsulfated lithocholyl amidates and the common conjugated bile acids. J Lipid Res 28: 589‐595, 1987.
 469. Roth M, Obaidat A, Hagenbuch B. OATPs, OATs and OCTs: The organic anion and cation transporters of the SLCO and SLC22A gene superfamilies. Br J Pharmacol 165: 1260‐1287, 2011.
 470. Rothman JE, Wieland FT. Protein sorting by transport vesicles. Science 272: 227‐234, 1996.
 471. Ruetz S, Gros P. Phosphatidylcholine translocase: A physiological role for the mdr2 gene. Cell 77: 1071‐1081, 1994.
 472. Russel FG, Koenderink JB, Masereeuw R. Multidrug resistance protein 4 (MRP4/ABCC4): A versatile efflux transporter for drugs and signalling molecules. Trends Pharmacol Sci 29: 200‐207, 2008.
 473. Russell DW. The enzymes, regulation, and genetics of bile acid synthesis. Ann Rev Biochem 72: 137‐134, 2003.
 474. Rutishauser SC, Stone SL. Aspects of bile secretion in the rabbit. J Physiol 245: 567‐582, 1975.
 475. Ryder SD, Beckingham IJ. ABC of diseases of liver, pancreas, and biliary system. Other causes of parenchymal liver disease. BMJ 322: 290‐292, 2001.
 476. Saborowski M, Kullak‐Ublick GA, Eloranta JJ. The human organic cation transporter‐1 gene is transactivated by hepatocyte nuclear factor‐4alpha. J Pharmacol Exp Ther 317: 778‐785, 2006.
 477. Sakisaka S, Ng OC, Boyer JL. Tubulovesicular transcytotic pathway in isolated rat hepatocyte couplets in culture. Gastroenterology 95: 793‐804, 1988.
 478. Sano T, Shiomi M, Wakabayashi Y, Shinoda Y, Goda N, Yamaguchi T, Nimura Y, Ishimura Y, Suematsu M. Endogenous carbon monoxide suppression stimulates bile acid‐dependent biliary transport in perfused rat liver. Am J Physiol 35: G1268‐G1275, 1997.
 479. Satlin LM, Amin V, Wolkoff AW. Organic anion transporting polypeptide mediates organic anion/HCO3− Exchange. J Biol Chem 272: 26340‐26345, 1997.
 480. Scheimann AO, Strautnieks SS, Knisely AS, Byrne JA, Thompson RJ, Finegold MJ. Mutations in bile salt export pump (ABCB11) in two children with progressive familial intrahepatic cholestasis and cholangiocarcinoma. J Pediatr 150: 556‐559, 2007.
 481. Schell MJ, Maurice M, Stieger B, Hubbard AL. 5′ nucleotidase is sorted to the apical domain of hepatocytes via an indirect route. J Cell Biol 119: 1173‐1182, 1992.
 482. Schinkel AH. The physiological function of drug‐transporting P‐glycoproteins. Semin Cancer Biol 8: 161‐170, 1997.
 483. Schinkel AH, Mayer U, Wagenaar E, Mol CAAM, van Deemter L, Smit JJ, van der Valk MA. Normal viability and altered pharmacokinetics in mice lacking mdr1‐type (drug‐transporting) P‐glycoproteins. Proc Natl Acad Sci U S A 94: 4028‐4033, 1997.
 484. Schinkel AH, Smit JJM, van Tellingen mO, Beijnen JH, Wagenaar E, van Deemter L, Mol CAAM, vanderValk MA, Robanus‐Maandag EC, teRiele HPJ, Berns AJM, Borst P. Disruption of the mouse mdr1a P‐glycoprotein gene leads to a deficiency in the blood‐brain barrier and to increased sensitivity to drugs. Cell 77: 491‐502, 1994.
 485. Schlosser S, Burgstahler A, Nathanson MH. Isolated rat hepatocytes can signal to other hepatocytes and bile duct cells by release of nucleotides. Proc Natl Acad Sci U S A 93: 9948‐9953, 1996.
 486. Schonhoff CM, Ramasamy U, Anwer MS. Nitric oxide‐mediated inhibition of taurocholate uptake involves S‐nitrosylation of NTCP. Am J Physiol Gastrointest Liver Physiol 300: G364‐G370, 2011.
 487. Schonhoff CM, Thankey K, Webster CR, Wakabayashi Y, Wolkoff AW, Anwer MS. Rab4 facilitates cyclic adenosine monophosphate‐stimulated bile acid uptake and Na+‐taurocholate cotransporting polypeptide translocation. Hepatology 48: 1665‐1670, 2008.
 488. Schonhoff CM, Webster CR, Anwer MS. Cyclic AMP stimulates Mrp2 translocation by activating p38{alpha} MAPK in hepatic cells. Am J Physiol Gastrointest Liver Physiol 298: G667‐G674, 2010.
 489. Schrenk D, Gant TW, Preisegger K‐H, Silverman JA, Marino PA, Thorgeirsson SS. Induction of multidrug resistance gene expression during cholestasis in rats and nonhuman primates. Hepatology 17: 854‐860, 1993.
 490. Schuetz JD, Connelly MC, Sun D, Paibir SG, Flynn PM, Srinivas RV, Kumar A, Fridland A. MRP4: A previously unidentified factor in resistance to nucleoside‐based antiviral drugs. Nat Med 5: 1048‐1051, 1999.
 491. Sellinger M, Weinman SA, Henderson RM, Zweifach A, Boyer JL, Graf J. Anion channels in rat liver canalicular plasma membranes reconstituted into planar lipid bilayers. Am J Physiol 262: G1027‐G1032, 1992.
 492. Sewell RB, Hoffman NE, Smallwood RA, Cockbain S. Bile acid structure and bile formation: A comparison of hydroxy and keto bile acids. Am J Physiol 238: G10‐G17, 1980.
 493. Shih DQ, Bussen M, Sehayek E, Ananthanarayanan M, Shneider BL, Suchy FJ, Shefer S, Bollileni JS, Gonzalez FJ, Breslow JL, Stoffel M. Hepatocyte nuclear factor‐1alpha is an essential regulator of bile acid and plasma cholesterol metabolism. Nat Genet 27: 375‐382, 2001.
 494. Shimada K, Li X, Xu G, Nowak DE, Showalter LA, Weinman SA. Expression and canalicular localization of two isoforms of the ClC‐3 chloride channel from rat hepatocytes. Am J Physiol Gastrointest Liver Physiol 279: G268‐G276, 2000.
 495. Shin HJ, Anzai N, Enomoto A, He X, Kim do K, Endou H, Kanai Y. Novel liver‐specific organic anion transporter OAT7 that operates the exchange of sulfate conjugates for short chain fatty acid butyrate. Hepatology 45: 1046‐1055, 2007.
 496. Shinoda Y, Suematsu M, Wakabayashi Y, Suzuki T, Goda N, Saito S, Yamaguchi T, Ishimura Y. Carbon monoxide as a regulator of bile canalicular contractility in cultured rat hepatocytes. Hepatology 28: 286‐295, 1998.
 497. Shintani T, Iwabuchi T, Soga T, Kato Y, Yamamoto T, Takano N, Hishiki T, Ueno Y, Ikeda S, Sakuragawa T, Ishikawa K, Goda N, Kitagawa Y, Kajimura M, Matsumoto K, Suematsu M. Cystathionine beta‐synthase as a carbon monoxide‐sensitive regulator of bile excretion. Hepatology 49: 141‐150, 2009.
 498. Shu Y, Sheardown SA, Brown C, Owen RP, Zhang S, Castro RA, Ianculescu AG, Yue L, Lo JC, Burchard EG, Brett CM, Giacomini KM. Effect of genetic variation in the organic cation transporter 1 (OCT1) on metformin action. J Clin Invest 117: 1422‐1431, 2007.
 499. Simon FR, Fortune J, Iwahashi M, Gartung C, Wolkoff A, Sutherland E. Ethinyl estradiol cholestasis involves alterations in expression of liver sinusoidal transporters. Am J Physiol 271: G1043‐G1052, 1996.
 500. Sinal CJ, Tohkin M, Miyata M, Ward JM, Lambert G, Gonzalez FJ. Targeted disruption of the nuclear receptor FXR/BAR impairs bile acid and lipid homeostasis. Cell 102: 731‐744, 2000.
 501. Singh SK, Mennone A, Gigliozzi A, Fraioli F, Boyer JL. Cl(‐)‐dependent secretory mechanisms in isolated rat bile duct epithelial units. Am J Physiol Gastrointest Liver Physiol 281: G438‐G446, 2001.
 502. Sirica AE, Cihla HP. Isolation and partial characterization of oval and hyperplastic bile ductular cell‐enriched populations from the livers of carcinogen and noncarcinogen‐treated rats. Cancer Res 44: 3454‐3466, 1984.
 503. Slitt AL, Cherrington NJ, Dieter MZ, Aleksunes LM, Scheffer GL, Huang W, Moore DD, Klaassen CD. trans‐Stilbene oxide induces expression of genes involved in metabolism and transport in mouse liver via CAR and Nrf2 transcription factors. Mol Pharmacol 69: 1554‐1563, 2006.
 504. Small DM. Role of ABC transporters in secretion of cholesterol from liver into bile. Proc Natl Acad Sci U S A 100: 4‐6, 2002.
 505. Smit JJ, Schinkel AH, Oude Elferink RP, Groen AK, Wagenaar E, van Deemter L, Mol CA, Ottenhoff R, van der Lugt NM, van Roon MA. Homozygous disruption of the murine mdr2 P‐glycoprotein gene leads to a complete absence of phospholipid from bile and to liver disease. Cell 75: 451‐462, 1993.
 506. Smith AJ, van Helvoort A, van Meer G, Szabo K, Welker E, Szakacs G, Varadi A, Sarkadi B, Borst P. MDR3 P‐glycoprotein, a phosphatidylcholine translocase, transports several cytotoxic drugs and directly interacts with drugs as judged by interference with nucleotide trapping. J Biol Chem 275: 23530‐23539, 2000.
 507. Smith Z, Ryerson D, Kemper JK. Epigenomic regulation of bile acid metabolism: Emerging role of transcriptional cofactors. Mol Cell Endocrinol 2012 May 9. [Epub ahead of print].
 508. Sobotka H. Physiological Chemistry of the Bile. Baltimore: Williams & Wilkins, 1937.
 509. Solari R, Schaerer E, Tallichet C, Braiterman LT, Hubbard AL, Kraehenbuhl J‐P. Cellular localization of the cleavage event of the polymeric immunoglobin receptor and fate of its anchoring domain in the rat hepatocyte. Biochem J 257: 759‐768, 1989.
 510. Song X, Kaimal R, Yan B, Deng R. Liver receptor homolog 1 transcriptionally regulates human bile salt export pump expression. J Lipid Res 49: 973‐984, 2008.
 511. Soroka CJ, Lee JM, Azzaroli F, Boyer JL. Cellular localization and up‐regulation of multidrug resistance‐associated protein 3 in hepatocytes and cholangiocytes during obstructive cholestasis in rat liver. Hepatology 33: 783‐791, 2001.
 512. Soroka CJ, Pate MK, Boyer JL. Canalicular export pumps traffic with polymeric immunoglobulin A receptor on the same microtubule‐associated vesicle in rat liver. J Biol Chem 274: 26416‐26424, 1999.
 513. Sperber I. Secretion of organic anions in the formation of urine and bile. Pharmacol Rev 11: 109‐134, 1959.
 514. Sperber I. Biliary secretion of organic anions and its influence on bile flow. In: Taylor W, editor. The Biliary System, Oxford: Blackwell, 1965, pp. 457‐467.
 515. Spirli C, Fabris L, Duner E, Fiorotto R, Ballardini G, Roskams T, LaRusso NF, Sonzog A, Okolicsanyi L, Strazzabosco M. Cytokine‐stimulated nitric oxide production inhibits adenylyl cyclase and cAMP‐dependent secretion in cholangiocytes. Gastroenterology 124: 737‐753, 2003.
 516. Spirli C, Nathanson MH, Fiorotto R, Duner E, Denson LA, Sanz JM, Di Virgilio F, Okolicsanyi L, Casagrande F, Strazzabosco M. Proinflammatory cytokines inhibit secretion in rat bile duct epithelium. Gastroenterology 121: 156‐169, 2001.
 517. Stamler JS, Jaraki O, Osborne J, Simon DI, Keaney J, Vita J, Singel D, Valeri CR, Loscalzo J. Nitric oxide circulates in mammalian plasma primarily as an S‐nitroso adduct of serum albumin. Proc Natl Acad Sci U S A 89: 7674‐7677, 1992.
 518. Stapelbroek JM, Peters TA, van Beurden DH, Curfs JH, Joosten A, Beynon AJ, van Leeuwen BM, van der Velden LM, Bull L, Oude Elferink RP, van Zanten BA, Klomp LW, Houwen RH. ATP8B1 is essential for maintaining normal hearing. Proc Natl Acad Sci U S A 106: 9709‐9714, 2009.
 519. Staudinger J, Liu Y, Madan A, Habeebu S, Klaassen CD. Coordinate regulation of xenobiotic and bile acid homeostasis by pregnane X receptor. Drug Metab Dispos 29: 1467‐1472, 2001.
 520. Steinberg SE, Campbell CL, Hillman RS. Kinetics of the normal folate enterohepatic cycle. J Clin Invest 64: 83‐88, 1979.
 521. Stieger B. The role of the sodium‐taurocholate cotransporting polypeptide (NTCP) and of the bile salt export pump (BSEP) in physiology and pathophysiology of bile formation. Handb Exp Pharmacol 201: 205‐259, 2011.
 522. Stieger B, Fattinger K, Madon J, Kullak‐Ublick G‐A, Meier PJ. Drug‐ and estrogen‐induced cholestasis through inhibition of the hepatocellular bile salt export pump (Bsep) of rat liver. Gastroenterology 118: 422‐430, 2000.
 523. Stieger B, Meier Y, Meier PJ. The bile salt export pump. Pflugers Arch 453: 611‐620, 2007.
 524. Stieger B, O'Neill B, Meier PJ. ATP‐dependent bile‐salt transport in canalicular rat liver plasma‐membrane vesicles. Biochem J 284: 67‐74, 1992.
 525. Stolz A, Hammond L, Lou H, Takikawa H, Ronk M, Shively JE. cDNA cloning and expression of the human hepatic bile acid‐binding protein ‐ a member of the monomeric reductase gene family. J Biol Chem 268: 10448‐10457, 1993.
 526. Stolz A, Takikawa H, Ookhtens M, Kaplowitz N. The role of cytoplasmic proteins in hepatic bile acid transport. Annu Rev Physiol 51: 161‐176, 1989.
 527. Strasberg SM, Ilson RG, Paloheimo JE. Bile salt–associated electrolyte secretion and the effect of sodium taurocholate on bile flow. J Lab Clin Med 101: 317‐326, 1983.
 528. Strautnieks SS, Bull L, Knisely AS, Kocoshis SA, Dahl N, Arnell H, Sokal E, Dahan K, Childs S, Ling V, Tanner MS, Kagalwalla AF. A gene encoding a liver‐specific ABC transporter is mutated in progressive familial intrahepatic cholestasis. Nat Genet 20: 233‐238, 1998.
 529. Strautnieks SS, Byrne JA, Pawlikowska L, Cebecauerova D, Rayner A, Dutton L, Meier Y, Antoniou A, Stieger B, Arnell H, Ozcay F, Al Hussaini HF, Bassas AF, Verkade HJ, Fischler B, Nemeth A, Kotalova R, Shneider BL, Cielecka‐Kuszyk J, McClean P, Whitington PF, Sokal E, Jirsa M, Wali SH, Jankowska I, Pawlowska J, Mieli‐Vergani G, Knisely AS, Bull LN, Thompson RJ. Severe bile salt export pump deficiency: 82 different ABCB11 mutations in 109 families. Gastroenterology 134: 1203‐1214, 2008.
 530. Strazzabosco M, Boyer JL. Regulation of intracellular pH in the hepatocyte: Mechanisms and physiological implications. J Hepatol 24: 631‐644, 1996.
 531. Strazzabosco M, Joplin R, Zsembery A, Wallace L, Spirli C, Fabris L, Granato A, Rossanese A, Poci C, Neuberger JM, Okolicsanyi L, Crepaldi G. Na+‐dependent and ‐independent C1−/HCO−3 exchange mediate cellular HCO−3 transport in cultured human intrahepatic bile duct cells. Hepatology 25: 976‐985, 1997.
 532. Strazzabosco M, Joplin R, Zsembery A, Wallace L, Spirli C, Fabris L, Granato A, Rossanese A, Poci C, Neuberger JM, Okolicsanyi L, Crepaldi G. Na+‐dependent and ‐independent C1−/HCO3− exchange mediate cellular HCO3− transport in cultured human intrahepatic bile duct cells. Hepatology 25: 976‐985, 1997.
 533. Strazzabosco M, Mennone A, Boyer JL. Intracellular pH regulation in isolated rat bile duct epithelial cells. J Clin Invest 87: 1503‐1512, 1991.
 534. Strazzabosco M, Sakisaka S, Hayakawa T, Boyer JL. Effect of UDCA on intracellular and biliary pH in isolated rat hepatocyte couplets and perfused livers. Am J Physiol 260: G58‐G69, 1991.
 535. Strazzabosco M, Spirli C, Okolicsanyi L. Pathophysiology of the intrahepatic biliary epithelium. J Gastroenterol Hepatol 15: 244‐253, 2000.
 536. Suchy FJ, Balistreri WF, Heubi JE, Searcy JE, Levin RS. Physiologic cholestasis: Elevation of the primary serum bile acid concentrations in normal infants. Gastroenterology 80: 1037‐1041, 1981.
 537. Sudhof TC, Rothman JE. Membrane fusion: Grappling with SNARE and SM proteins. Science 323: 474‐477, 2009.
 538. Sugawara N, Lai Y, Yuasa M, Dhar SK, Arizono K. Biliary excretion of copper, manganese, and horseradish peroxidase in Eisai hyperbilirubinemic mutant rats (EHBRs) with defective biliary excretion of glutathione. Biol Trace Elem Res 55: 181‐189, 1996.
 539. Sugiyama Y, Yamada T, Kaplowitz N. Newly identified bile acid binders in rat liver cytosol Purification and comparison with glutathione S‐transferases. J Biol Chem 258: 3602‐3607, 1983.
 540. Svoboda M, Riha J, Wlcek K, Jaeger W, Thalhammer T. Organic anion transporting polypeptides (OATPs): Regulation of expression and function. Curr Drug Metab 12: 139‐153, 2011.
 541. Sztul ES, Biemersderfer D, Caplan MJ, Kashgarian M, Boyer JL. Localization of Na+,K+‐ATPase a‐subunit to the sinusoidal and lateral but not canalicular membranes of rat hepatocytes. J Cell Biol 104: 1239‐1248, 1987.
 542. Takada T, Suzuki H, Sugiyama Y. Characterization of 5′‐flanking region of human MRP3. Biochem Biophys Res Comm 270: 728‐732, 2000.
 543. Takahashi I, Nakane PK, Brown WR. Ultrastructure events in the translocation of polymeric IgA by rat hepatocytes. J Immunol 128: 1181‐1187, 1982.
 544. Tanzi RE, Petrukhin K, Chernov I, Pellequer JL, Wasco W, Ross B, Romano DM, Parano E, Pavone L, Brzustowicz LM. The Wilson disease gene is a copper transporting ATPase with homology to the Menkes disease gene. Nat Genet 5: 344‐350, 1993.
 545. Tavoloni N. The intrahepatic biliary epithelium: An area of growing interest in hepatology. Sem Liv Dis 7: 280‐292, 1987.
 546. Temel RE, Tang W, Ma Y, Rudel LL, Willingham MC, Ioannou YA, Davies JP, Nilsson LM, Yu L. Hepatic Niemann‐Pick C1‐like 1 regulates biliary cholesterol concentration and is a target of ezetimibe. J Clin Invest 117: 1968‐1978, 2007.
 547. Thiebaut F, Tsuruo T, Hamada H, Gottesman MM, Pastan I, Willingham MC. Cellular localization of the multidrug‐resistance gene product P‐glycoprotein in normal human tissues. Proc Natl Acad Sci U S A 84: 7735‐7738, 1987.
 548. Tietz PS, Alpini G, Pham LD, LaRusso NF. Somatostatin inhibits secretin‐induced ductal hypercholeresis and exocytosis by cholangiocytes. Am J Physiol 32: G110‐G118, 1995.
 549. Tirona RG. Molecular mechanisms of drug transporter regulation. Handb Exp Pharmacol 373‐402, 2011.
 550. Toyama K, Yonezawa A, Masuda S, Osawa R, Hosokawa M, Fujimoto S, Inagaki N, Inui K, Katsura T. Loss of multidrug and toxin extrusion 1 (MATE1) is associated with metformin‐induced lactic acidosis. Br J Pharmacol 166: 1183‐1191, 2012.
 551. Trauner M, Arrese M, Lee HR., Boyer JL, Karpen SJ. Endotoxin‐induced down‐regulation of the rat liver Na+/taurocholate cotransporter (ntcp) gene is mediated by decreased activity of hepatocyte nuclear factor 1 (HNF 1). Hepatology 26: 262A, 1997.
 552. Trauner M, Arrese M, Soroka C, Ananthanarayanan M, Koeppel TA, Schlosser SF, Suchy FJ, Keppler D, Boyer JL. The rat canalicular conjugate export pump (mrp 2) is down‐regulated in intrahepatic and obstructive cholestasis. Gastroenterology 113: 255‐264, 1997.
 553. Trauner M, Boyer JL. Bile salt transporters: Molecular characterization, function and regulation. Physiol Rev 83: 633‐671, 2003.
 554. Trauner M, Meier PJ, Boyer JL. Molecular pathogenesis of cholestasis. N Eng J Med 339: 1217‐1227, 1998.
 555. Trauner M, Nathanson MH, Rydberg SA, Koeppel TA, Gartung C, Sessa WC, Boyer JL. Endotoxin impairs biliary glutathione and HCO3− excretion and blocks the choleretic effect of nitric oxide in rat liver. Hepatology 25: 1184‐1191, 1997.
 556. Trauner M, Nathason MH, Mennone A, Rydberg SA, Boyer JL. Nitric oxide donors stimulate bile flow and glutathione disulfide excretion independent of cyclic guanosine 3′,5′‐cyclic monophosphate in the isolated perfused rat liver. Hepatology 25: 263‐269, 1997.
 557. Tucker TG, Milne AM, Fournel‐Gigleux S, Fenner KS, Coughtrie MW. Absolute immunoquantification of the expression of ABC transporters P‐glycoprotein, breast cancer resistance protein and multidrug resistance‐associated protein 2 in human liver and duodenum. Biochem Pharmacol 83: 279‐285, 2012.
 558. Tuma PL, Finnegan CM, Yi JH, Hubbard AL. Evidence for apical endocytosis in polarized hepatic cells: Phosphoinositide 3‐kinase inhibitors lead to the lysosomal accumulation of resident apical plasma membrane proteins. J Cell Biol 145: 1089‐1102, 1999.
 559. Tuma PL, Hubbard AL. The Hepatocyte Surface: Dynamic Polarity. In: Arias IM, Boyer JL, Chisari FV, Fausto N, Schachter D, editors. The Liver Biology and Pathbiology, Lippincott Williams & Wilkins, Philadelphia, PA, 2001, pp. 96‐117.
 560. Tygstrup N, Steig BA, Juijn JA, Bull LN, Houwen RHJ. Recurrent familial intrahepatic cholestasis in the Faeroe Islands phenotypic heterogeneity but genetic homogeneity. Hepatology 29: 506‐508, 1999.
 561. Tzeng SJ, Chang WC, Huang JD. Transcriptional regulation of the rat Mrp3 gene promoter by the specificity protein (Sp) family members and CCAAT/enhancer binding proteins. J Biomed Sci 12: 741‐761, 2005.
 562. Uppal H, Toma D, Saini SP, Ren S, Jones TJ, Xie W. Combined loss of orphan receptors PXR and CAR heightens sensitivity to toxic bile acids in mice. Hepatology 41: 168‐176, 2005.
 563. Van Aubel RA, Smeets PH, van den Heuvel JJ, Russel FG. Human organic anion transporter MRP4 (ABCC4) is an efflux pump for the purine end metabolite urate with multiple allosteric substrate binding sites. Am J Physiol Renal Physiol 288: F327‐F333, 2005.
 564. Van de Steeg E, Stranecky V, Hartmannova H, Noskova L, Hrebicek M, Wagenaar E, van Esch A, de Waart DR, Oude Elferink RP, Kenworthy KE, Sticova E, Al Edreesi M, Knisely AS, Kmoch S, Jirsa M, Schinkel AH. Complete OATP1B1 and OATP1B3 deficiency causes human Rotor syndrome by interrupting conjugated bilirubin reuptake into the liver. J Clin Invest 122: 519‐528, 2012.
 565. Van de Steeg E, Wagenaar E, van der Kruijssen CM, Burggraaff JE, de Waart DR, Elferink RP, Kenworthy KE, Schinkel AH. Organic anion transporting polypeptide 1a/1b‐knockout mice provide insights into hepatic handling of bilirubin, bile acids, and drugs. J Clin Invest 120: 2942‐2952, 2010.
 566. van der Velden LM, Stapelbroek JM, Krieger E, van den Berghe PV, Berger R, Verhulst PM, Holthuis JC, Houwen RH, Klomp LW, van de Graaf SF. Folding defects in P‐type ATP 8B1 associated with hereditary cholestasis are ameliorated by 4‐phenylbutyrate. Hepatology 51: 286‐296, 2010.
 567. Van Dyke RW, Stephens JE, Scharschmidt BF. Effect of ion substitution on bile acid‐dependent and bile acid‐independent bile formation by the isolated perfused rat liver. J Clin Invest 70: 505‐517, 1982.
 568. van Mil SW, van der Woerd WL, van der BG, Sturm E, Jansen PL, Bull LN, van den Berg IE, Berger R, Houwen RH, Klomp LW. Benign recurrent intrahepatic cholestasis type 2 is caused by mutations in ABCB11. Gastroenterology 127: 379‐384, 2004.
 569. Vavricka SR, Jung D, Fried M, Grutzner U, Meier PJ, Kullak‐Ublick GA. The human organic anion transporting polypeptide 8 (SLCO1B3) gene is transcriptionally repressed by hepatocyte nuclear factor 3beta in hepatocellular carcinoma. J Hepatol 40: 212‐218, 2004.
 570. VonDippe P, Amoui M, Alves C, Levy D. Na+‐dependent bile acid transport by hepatocytes is mediated by a protein similar to microsomal epoxide hydrolase. Am J Physiol 264: G528‐G534, 1993.
 571. Vrins C, Vink E, Vandenberghe KE, Frijters R, Seppen J, Groen AK. The sterol transporting heterodimer ABCG5/ABCG8 requires bile salts to mediate cholesterol efflux. FEBS 581: 4616‐4620, 2007.
 572. Wakabayashi Y, Dutt P, Lippincott‐Schwartz J, Arias IM. Rab11a and myosin Vb are required for bile canalicular formation in WIF‐B9 cells. Proc Natl Acad Sci U S A 102: 15087‐15092, 2005.
 573. Wakabayashi Y, Kipp H, Arias IM. Transporters on demand: Intracellular reservoirs and cycling of bile canalicular ABC transporters. J Biol Chem 281: 27669‐27673, 2006.
 574. Wakabayashi Y, Lippincott‐Schwartz J, Arias IM. Intracellular trafficking of bile salt export pump (ABCB11) in polarized hepatic cells: Constitutive cycling between the canalicular membrane and rab11‐positive endosomes. Mol Biol Cell 15: 3485‐3496, 2004.
 575. Wang L, Dong H, Soroka CJ, Wei N, Boyer JL, Hochstrasser M. Degradation of the bile salt export pump at endoplasmic reticulum in progressive familial intrahepatic cholestasis type II. Hepatology 48: 1558‐1569, 2008.
 576. Wang L, Soroka CJ, Boyer JL. The role of bile salt export pump mutations in progressive familial intahepatic cholestasis type II. J Clin Invest 110: 965‐972, 2002.
 577. Wang R, Salem M, Yousef IM, Tuchweber B, Lam P, Childs SJ, Helgason CD, Ackerley C, Phillips MJ, Ling V. Targeted inactivation of sister of P‐glycoprotein gene (spgp) in mice results in non‐progressive but persistent intrahepatic cholestasis. Proc Natl Acad Sci U S A 98: 2011‐2016, 2001.
 578. Wang W, Soroka CJ, Mennone A, Rahner C, Harry K, Pypaert M, Boyer JL. Radixin is required to maintain apical canalicular membrane structure and function in rat hepatocytes. Gastroenterology 131: 878‐884, 2006.
 579. Watanabe N, Tsukada N, Smith C. Motility of bile canaliculi in the living animal: Implications for bile flow. J Cell Biol 113: 1069‐1080, 1991.
 580. Watanabe S, Smith CR, Phillips MJ. Coordination of the contractile activity of bile canaliculi evidence from calcium microinjection of triplet hepatocytes. Lab Invest 53: 275‐279, 1985.
 581. Webster CR, Anwer MS. Role of the PI3K/PKB signaling pathway in cAMP‐mediated translocation of rat liver Ntcp. Am J Physiol 277: G1165‐G1172, 1999.
 582. Weerachayaphorn J, Cai SY, Soroka CJ, Boyer JL. Nuclear factor erythroid 2‐related factor 2 is a positive regulator of human bile salt export pump expression. Hepatology 50: 1588‐1596, 2009.
 583. Weinman SA, Graf J, Boyer JL. Voltage‐driven, taurocholate‐dependent secretion in isolated hepatocyte couplets. Am J Physiol 256: G826‐G832, 1989.
 584. Wheeler EL, Ramos OL. Role of bile ducts during secretin choleresis in dogs. Am J Physiol 210: 1153‐1159, 1966.
 585. Wheeler HO. Canalicular bile production in dogs. Am J Physiol 214: 866‐874, 1968.
 586. Wheeler HO. Secretion of bile acids by the liver and their role in the formation of hepatic bile. Arch Intern Med 130: 533‐541, 1972.
 587. Whiting JF, Green RM, Rosenbluth AB, Gollan JL. Tumor necrosis factor‐alpha decreases hepatocyte bile salt uptake and mediates endotoxin‐induced cholestasis. Hepatology 22: 1273‐1278, 1995.
 588. Wielinga PR, van der Heijden I, Reid G, Beijnen JH, Wijnholds J, Borst P. Characterization of the MRP4‐ and MRP3‐medated transport of cyclic nucleotides from intact cells. J Biol Chem 278: 17664‐17671, 2003.
 589. Wong MH, Oelkers P, Craddock AL, Dawson PA. Expression cloning and characterization of the hamster ileal sodium‐dependent bile acid transporter. J Biol Chem 269: 1340‐1347, 1994.
 590. Xia X, Francis H, Glaser S, Alpini G, LeSage G. Bile acid interactions with cholangiocytes. World J Gastroenterol 12: 3553‐3563, 2006.
 591. Xu S, Weerachayaphorn J, Cai SY, Soroka CJ, Boyer JL. Aryl hydrocarbon receptor and NF‐E2‐related factor 2 are key regulators of human MRP4 expression. Am J Physiol Gastrointest Liver Physiol 299: G126‐G135, 2010.
 592. Yamanashi Y, Takada T, Shoda J, Suzuki H. Novel function of Niemann‐Pick C1‐like 1 as a negative regulator of Niemann‐Pick C2 protein. Hepatology 55: 953‐964, 2012.
 593. Yamanashi Y, Takada T, Suzuki H. Niemann‐Pick C1‐like 1 overexpression facilitates ezetimibe‐sensitive cholesterol and beta‐sitosterol uptake in CaCo‐2 cells. J Pharmacol Exp Ther 320: 559‐564, 2007.
 594. Yamanashi Y, Takada T, Yoshikado T, Shoda J, Suzuki H. NPC2 regulates biliary cholesterol secretion via stimulation of ABCG5/G8‐mediated cholesterol transport. Gastroenterology 140: 1664‐1674, 2011.
 595. Yang B, Song Y, Zhao D, Verkman AS. Phenotype analysis of aquaporin‐8 null mice. Am J Physiol Cell Physiol 288: C1161‐C1170, 2005.
 596. Yang Q, Onuki R, Nakai C, Sugiyama Y. Ezrin and radixin both regulate the apical membrane localization of ABCC2 (MRP2) in human intestinal epithelial Caco‐2 cells. Exp Cell Res 313: 3517‐3525, 2007.
 597. Yegutkin GG. Nucleotide‐ and nucleoside‐converting ectoenzymes: Important modulators of purinergic signalling cascade. Biochim Biophys Acta 1783: 673‐694, 2008.
 598. Yonezawa A, Inui K. Importance of the multidrug and toxin extrusion MATE/SLC47A family to pharmacokinetics, pharmacodynamics/toxicodynamics and pharmacogenomics. Br J Pharmacol 164: 1817‐1825, 2011.
 599. Yoon YB, Hagey LR, Hofmann AF, Gurantz D, Michelotti EL, Steinbach JH. Effect of side‐chain shortening on the physiologic properties of bile acids: Hepatic transport and effect on biliary secretion of 23‐nor‐ursodeoxycholate in rodents. Gastroenterology 90: 837‐852, 1986.
 600. Yoshikado T, Takada T, Yamamoto T, Yamaji H, Ito K, Santa T, Yokota H, Yatomi Y, Yoshida H, Goto J, Tsuji S, Suzuki H. Itraconazole‐induced cholestasis: Involvement of the inhibition of bile canalicular phospholipid translocator MDR3/ABCB4. Mol Pharmacol 79: 241‐250, 2011.
 601. Yu L, Gupta S, Xu F, Liverman AD, Moschetta A, Mangelsdorf DJ, Repa JJ, Hobbs HH, Cohen JC. Expression of ABCG5 and ABCG8 is required for regulation of biliary cholesterol secretion. J Biol Chem 280: 8742‐8747, 2005.
 602. Yu L, Hammer RE, Li‐Hawkins J, von Bergmann K, Lutjohann D, Cohen JC, Hobbs HH. Disruption of Abcg5 and Abcg8 in mice reveals their crucial role in biliary cholesterol secretion. Proc Natl Acad Sci U S A 99: 16237‐16242, 2002.
 603. Zamek‐Gliszczynski MJ, Nezasa K, Tian X, Bridges AS, Lee K, Belinsky MG, Kruh GD, Brouwer KL. Evaluation of the role of multidrug resistance‐associated protein (Mrp) 3 and Mrp4 in hepatic basolateral excretion of sulfate and glucuronide metabolites of acetaminophen, 4‐methylumbelliferone, and harmol in Abcc3‐/‐ and Abcc4‐/‐ mice. J Pharmacol Exp Ther 319: 1485‐1491, 2006.
 604. Zegers MMP, Hoekstra D. Sphingolipid transport to the apical plasma membrane domain in human hepatoma cells is controlled by PKC and PKA activity: A correlation with cell polarity in HepG2 cells. J Cell Biol 138: 307‐321, 1997.
 605. Zeiller K, Loeser R, Parcher G, Hannig K. Free flow electrophoresis II: Analysis of the method with respect to preparative cell separation. Hoppe‐Seyler's Z Physiol Chem 356: 1225‐1244, 1975.
 606. Zelcer N, Reid G, Wielinga P, Kuil A, Van Der Heijden I, Schuetz JD, Borst P. Steriod‐and bile acid‐conjugates are substrates of human MRP4 (ABCC4). Biochem J 371: 361‐367, 2003.
 607. Zelcer N, van de WK, de Waart R, Scheffer GL, Marschall HU, Wielinga PR, Kuil A, Kunne C, Smith A, van d, V, Wijnholds J, Elferink RO, Borst P. Mice lacking Mrp3 (Abcc3) have normal bile salt transport, but altered hepatic transport of endogenous glucuronides. J Hepatol 44: 768‐775, 2006.
 608. Zhou G, Kuo MT. NF‐kappaB‐mediated induction of mdr1b expression by insulin in rat hepatoma cells. J Biol Chem 272: 15174‐15183, 1997.
 609. Zollner G, Fickert P, Silbert D, Fuchsbichler A, Marschall H‐U, Zatloukal K, Denk H, Trauner M. Adaptive changes in hepatobiliary transporter expression in primary biliary cirrhosis. J Hepatol 38: 717‐727, 2003.
 610. Zollner G, Wagner M, Fickert P, Silbert D, Gumhold J, Zatloukal K, Denk H, Trauner M. Expression of bile acid synthesis and detoxification enzymes and the alternative bile acid efflux pump MRP4 in patients with primary biliary cirrhosis. Liver Int 27: 920‐929, 2007.
 611. Zucker SD, Goessling W, Gollan JL. Kinetics of bilirubin transfer between serum albumin and membrane vesicles ‐ insight into the mechanism of organic anion delivery to the hepatocyte plasma membrane. J Biol Chem 270: 1074‐1081, 1995.
 612. Zucker SD, Goessling W, Hoppin AG. Unconjugated bilirubin exhibits spontaneous diffusion through model lipid bilayers and native hepatocyte membranes. J Biol Chem 274 (16): 10852‐10862, 1999.
 613. Zweers SJ, Booij KA, Komuta M, Roskams T, Gouma DJ, Jansen PL, Schaap FG. The human gallbladder secretes fibroblast growth factor 19 into bile: Towards defining the role of fibroblast growth factor 19 in the enterobiliary tract. Hepatology 55: 575‐583, 2012.

Related Articles:

Top cited articles of 2018

Contact Editor

Submit a note to the editor about this article by filling in the form below.

* Required Field

How to Cite

James L. Boyer. Bile Formation and Secretion. Compr Physiol 2013, 3: 1035-1078. doi: 10.1002/cphy.c120027