References |
1. |
Aamand R,
Dalsgaard T,
Jensen FB,
Simonsen U,
Roepstorff A, and
Fago A.
Generation of nitric oxide from nitrite by carbonic anhydrase: A possible link between metabolic activity and vasodilation.
Am J Physiol Heart Circ Physiol
297:
H2068‐H2074,
2009.
|
2. |
Agre P.
Nobel Lecture: Aquaporin water channels.
Biosi Rep
24:
127‐163,
2004.
|
3. |
Aguirre E,
Rodriguez‐Juarez F,
Bellelli A,
Gnaiger E,
Cadenas S.
Kinetic model of the inhibition of respiration by endogenous nitric oxide in intact cells.
Biochim Biophys Acta
1797:
557‐565,
2010.
|
4. |
Ahmmed GU,
Xu Y,
Hong Dong P,
Zhang Z,
Eiserich J,
Chiamvimonvat N.
Nitric oxide modulates cardiac Na(+) channel via protein kinase A and protein kinase G.
Circ Res
89:
1005‐1013,
2001.
|
5. |
Akki A,
Zhang M,
Murdoch C,
Brewer A,
Shah AM.
NADPH oxidase signaling and cardiac myocyte function.
J Mol Cell Cardiol
47:
15‐22,
2009.
|
6. |
Alchera E,
Dal Ponte C,
Imarisio C,
Albano E,
Carini R.
Molecular mechanisms of liver preconditioning.
World J Gastroenterol
16:
6058‐6067,
2010.
|
7. |
Aldieri E,
Riganti C,
Polimeni M,
Gazzano E,
Lussiana C,
Campia I,
Ghigo D.
Classical inhibitors of NOX NAD(P)H oxidases are not specific.
Curr Drug Metab
9:
686‐696,
2008.
|
8. |
Althaus M,
Pichl A,
Clauss WG,
Seeger W,
Fronius M,
Morty RE.
Nitric oxide inhibits highly selective sodium channels and the Na+/K+‐ATPase in H441 cells.
Am J Respir Cell Mol Biol
44:
53‐65,
2011.
|
9. |
Amitabh VK,
Vat P,
Kishnani S,
Pramanik SN,
Singh SN,
Singh SB,
Banerjee PK.
Body composition & cardiovascular function in healthy males acclimatized to desert & high altitude.
Indian J Med Res
129:
138‐143,
2009.
|
10. |
Anderson EJ,
Neufer PD.
Type II skeletal myofibers possess unique properties that potentiate mitochondrial H2O2 generation.
Am J Physiol Cell Physiol
290:
844‐851,
2006.
|
11. |
Andreas M,
Schmid AI,
Keilani M,
Doberer D,
Bartko J,
Crevenna R,
Moser E,
Wolzt M.
Effect of ischemic preconditioning in skeletal muscle measured by functional magnetic resonance imaging and spectroscopy: A randomized crossover trial.
J Cardiovasc Magn Reson
13:
32,
2011.
|
12. |
Andrienko T,
Kuznetsov AV,
Kaambre T,
Usson Y,
Orosco A,
Appaix F,
Tiivel T,
Sikk P,
Vendelin M,
Margreiter R,
Saks VA.
Metabolic consequences of functional complexes of mitochondria, myofibrils and sarcoplasmic reticulum in muscle cells.
J Exp Biol
206:
2059‐2072,
2003.
|
13. |
Apell HJ,
Nelson MT,
Marcus MM,
Lauger P.
Effects of the ATP, ADP and inorganic phosphate on the transport rate of the Na+,K+‐pump.
Biochim Biophys Acta
857:
105‐115,
1986.
|
14. |
Arai AE,
Grauer SE,
Anselone CG,
Pantely GA,
Bristow JD.
Metabolic adaptation to a gradual reduction in myocardial blood flow.
Circulation
92:
244‐252,
1995.
|
15. |
Archer SL,
Will JA,
Weir EK.
Redox status in the control of pulmonary vascular tone.
Herz
11:
127‐141,
1986.
|
16. |
Arikan GM,
Scholz HS,
Petru E,
Haeusler MC,
Haas J,
Weiss PA.
Cord blood oxygen saturation in vigorous infants at birth: what is normal?
BJOG
107:
987‐994,
2000.
|
17. |
Arnold S,
Lee I,
Kim M,
Song E,
Linder D,
Lottspeich F,
Kadenbach B.
The subunit structure of cytochrome‐c oxidase from tuna heart and liver.
Eur J Biochem
248:
99‐103,
1997.
|
18. |
Arthur PG,
Giles JJ,
Wakeford CM.
Protein synthesis during oxygen conformance and severe hypoxia in the mouse muscle cell line C2C12.
Biochim Biophys Acta
1475:
83‐89,
2000.
|
19. |
Baker LC,
Wolk R,
Choi BR,
Watkins S,
Plan P,
Shah A,
Salama G.
Effects of mechanical uncouplers, diacetyl monoxime, and cytochalasin‐D on the electrophysiology of perfused rat hearts.
Am J Physiol Heart Circ Physiol
287:
H1771‐H1779,
2004.
|
20. |
Balaban RS.
Domestication of the cardiac mitochondrion for energy conversion.
J Mol Cell Cardiol
46:
832‐841,
2009.
|
21. |
Balaban RS.
The role of Ca(2+) signaling in the coordination of mitochondrial ATP production with cardiac work.
Biochim Biophys Acta
1787:
1334‐1341,
2009.
|
22. |
Balestrino M.
Pathophysiology of anoxic depolarization: New findings and a working hypothesis.
J Neurosci Methods
59:
99‐103,
1995.
|
23. |
Balla J,
Vercellotti GM,
Jeney V,
Yachie A,
Varga Z,
Jacob HS,
Eaton JW,
Balla G.
Heme, heme oxygenase, and ferritin: How the vascular endothelium survives (and dies) in an iron‐rich environment.
Antioxid Redox Signal
9:
2119‐2137,
2007.
|
24. |
Bangsbo J,
Krustrup P,
Gonzalez‐Alonso J,
Boushel R,
Saltin B.
Muscle oxygen kinetics at onset of intense dynamic exercise in humans.
Am J Physiol Regul Integr Comp Physiol
279:
R899‐R906,
2000.
|
25. |
Baranov VI,
Belichenko VM,
Shoshenko CA.
Oxygen diffusion coefficient in isolated chicken red and white skeletal muscle fibers in ontogenesis.
Microvasc Res
60:
168‐176,
2000.
|
26. |
Barnett JA.
A history of research on yeasts 5: The fermentation pathway.
Yeast
20:
509‐543,
2003.
|
27. |
Barnett JA,
Entian KD.
A history of research on yeasts 9: Regulation of sugar metabolism.
Yeast
22:
835‐894,
2005.
|
28. |
Barnett ME,
Madgwick DK,
Takemoto DJ.
Protein kinase C as a stress sensor.
Cell Signal
19:
1820‐1829,
2007.
|
29. |
Barski OA,
Tipparaju SM,
Bhatnagar A.
Kinetics of nucleotide binding to the beta‐subunit (AKR6A2) of the voltage‐gated potassium (Kv) channel.
Chem Biol Interact
178:
165‐170,
2009.
|
30. |
Bedard K,
Krause KH.
The NOX family of ROS‐generating NADPH oxidases: Physiology and pathophysiology.
Physiol Rev
87:
245‐313,
2007.
|
31. |
Bender E,
Kadenbach B.
The allosteric ATP‐inhibition of cytochrome c oxidase activity is reversibly switched on by cAMP‐dependent phosphorylation.
FEBS Lett
466:
130‐134,
2000.
|
32. |
Bentley TB,
Pittman RN.
Influence of temperature on oxygen diffusion in hamster retractor muscle.
Am J Physiol (Heart Circ Physiol)
272:
H921‐H924,
1997.
|
33. |
Berchner‐Pfannschmidt U,
Tug S,
Kirsch M,
Fandrey J.
Oxygen‐sensing under the influence of nitric oxide.
Cellular signalling
22:
349‐356,
2010.
|
34. |
Berchner‐Pfannschmidt U,
Tug S,
Trinidad B,
Oehme F,
Yamac H,
Wotzlaw C,
Flamme I,
Fandrey J.
Nuclear oxygen sensing: Induction of endogenous prolyl‐hydroxylase 2 activity by hypoxia and nitric oxide.
J Biol Chem
283:
31745‐31753,
2008.
|
35. |
Bhambhani YN.
Muscle oxygenation trends during dynamic exercise measured by near infrared spectroscopy.
Can J Appl Physiol
29:
504‐523,
2004.
|
36. |
Biggar KK,
Storey KB.
The emerging roles of microRNAs in the molecular responses of metabolic rate depression.
J Mol Cell Biol
3:
167‐175,
2011.
|
37. |
Blackstone E,
Morrison M,
Roth MB.
H2S induces a suspended animation‐like state in mice.
Science
308:
518,
2005.
|
38. |
Blais JD,
Filipenko V,
Bi M,
Harding HP,
Ron D,
Koumenis C,
Wouters BG,
Bell JC.
Activating transcription factor 4 is translationally regulated by hypoxic stress.
Mol Cell Biol
24:
7469‐7482,
2004.
|
39. |
Bolotina VM,
Najibi S,
Palacino JJ,
Pagano PJ,
Cohen RA.
Nitric oxide directly activates calcium‐dependent potassium channels in vascular smooth muscle.
Nature
368:
850‐853,
1994.
|
40. |
Bose S,
French S,
Evans FJ,
Joubert F,
Balaban RS.
Metabolic network control of oxidative phosphorylation: multiple roles of inorganic phosphate.
J Biol Chem
278:
39155‐39165,
2003.
|
41. |
Boveris A,
Cadenas E.
Mitochondrial production of hydrogen peroxide regulation by nitric oxide and the role of ubisemiquinone.
IUBMB Life
50:
245‐250,
2000.
|
42. |
Brooks GA.
Cell‐cell and intracellular lactate shuttles.
J Physiol
587:
5591‐5600,
2009.
|
43. |
Brooks GA.
Increased Glucose Dependency in Circulatory Compensated Hypoxia.
Burlington, VT:
Queen City,
1992.
|
44. |
Brooks GA,
Gladden LB.
Role of mitochondrial lactate dehydrogenase and lactate oxidation in the intracellular lactate shuttle. In:
Exercise Physiology: People and Ideas, edited by
Tipton CM.
New York:
Oxford University Press,
2003, pp.
322‐360.
|
45. |
Brown GC.
Regulation of mitochondrial respiration by nitric oxide inhibition of cytochrome c oxidase.
Biochim Biophys Acta
1504:
46‐57,
2001.
|
46. |
Brown GC,
Cooper CE.
Nanomolar concentrations of NO reversibly inhibit synaptosomal respiration by competing with oxygen at cytochrome oxidase.
FEBS Lett
356:
295‐298,
1994.
|
47. |
Bruick RK,
McKnight SL.
A conserved family of prolyl‐4‐hydroxylases that modify HIF.
Science
294:
1337‐1340,
2001.
|
48. |
Buck LT.
Adenosine as a signal for ion channel arrest in anoxia‐tolerant organisms.
Comp Biochem Physiol B Biochem Mol Biol
139:
401‐414,
2004.
|
49. |
Buck LT,
Hochachka PW.
Anoxic suppression of Na(+)‐K(+)‐ATPase and constant membrane potential in hepatocytes: Support for channel arrest.
Am J Physiol
265:
R1020‐R1025,
1993.
|
50. |
Buck LT,
Pamenter ME.
Adaptive responses of vertebrate neurons to anoxia–matching supply to demand.
Respir Physiol Neurobiol
154:
226‐240,
2006.
|
51. |
Buckler KJ.
A novel oxygen‐sensitive potassium current in rat carotid body type I cells.
J Physiol
498
(Pt 3):
649‐662,
1997.
|
52. |
Burmester T,
Hankeln T.
What is the function of neuroglobin?
J Exp Bio
212:
1423‐1426,
2009.
|
53. |
Burwell LS,
Nadtochiy SM,
Brookes PS.
Cardioprotection by metabolic shut‐down and gradual wake‐up.
J Mol Cell Cardiol
46:
804‐810,
2009.
|
54. |
Buttigieg J,
Brown ST,
Lowe M,
Zhang M,
Nurse CA.
Functional mitochondria are required for O2 but not CO2 sensing in immortalized adrenomedullary chromaffin cells.
Am J Physiol Cell Physiol
294:
C945‐C956,
2008.
|
55. |
Cain SM.
Oxygen delivery and uptake in dogs during anemic and hypoxic hypoxia.
J Appl Physiol
42:
228‐234,
1977.
|
56. |
Campbell DL,
Stamler JS,
Strauss HC.
Redox modulation of L‐type calcium channels in ferret ventricular myocytes. Dual mechanism regulation by nitric oxide and S‐nitrosothiols.
J Gen Physiol
108:
277‐293,
1996.
|
57. |
Cardenas‐Navia LI,
Yu D,
Braun RD,
Brizel DM,
Secomb TW,
Dewhirst MW.
Tumor‐dependent kinetics of partial pressure of oxygen fluctuations during air and oxygen breathing.
Cancer Res
64:
6010‐6017,
2004.
|
58. |
Carpenter TM.
A Comparison of Methods for Determining the Respiratory Exchange of Man, edited by
Washington CIo.
Washington, DC:
PRK8S of Gibson Brothers, Inc.,
1915.
|
59. |
Casaburi R,
Barstow TJ,
Robinson T,
Wasserman K.
Influence of work rate on ventilatory and gas exchange kinetics.
J Appl Physiol
67:
547‐555,
1989.
|
60. |
Chai Y,
Lin YF.
Dual regulation of the ATP‐sensitive potassium channel by activation of cGMP‐dependent protein kinase.
Pflugers Arch
456:
897‐915,
2008.
|
61. |
Chance B.
Cellular oxygen requirements.
Fed Proc
16:
671‐680,
1957.
|
62. |
Chance B,
Sies H,
Boveris A.
Hydroperoxide metabolism in mammalian organs.
PhysiolRev:
527‐605,
1979.
|
63. |
Chance B,
Williams GR.
Respiratory enzymes in oxidative phosphorylation. I. Kinetics of oxygen utilization.
J Biol Chem
217:
383‐393,
1955.
|
64. |
Chance B,
Williams GR.
The respiratory chain and oxidative phosphorylation.
Adv Enzymol Relat Subj Biochem
17:
65‐134,
1956.
|
65. |
Chandel N,
Budinger GR,
Kemp RA,
Schumacker PT.
Inhibition of cytochrome‐c oxidase activity during prolonged hypoxia.
Am J Physiol
268:
L918‐925,
1995.
|
66. |
Chandel NS,
McClintock DS,
Feliciano CE,
Wood TM,
Melendez JA,
Rodriguez AM,
Schumacker PT.
Reactive oxygen species generated at mitochondrial complex III stabilize hypoxia‐inducible factor‐1alpha during hypoxia: A mechanism of O2 sensing.
J Biol Chem
275:
25130‐25138,
2000.
|
67. |
Chen Y,
Cantrell AR,
Messing RO,
Scheuer T,
Catterall WA.
Specific modulation of Na+ channels in hippocampal neurons by protein kinase C epsilon.
J Neurosci
25:
507‐513,
2005.
|
68. |
Chen Y,
Gill PS,
Welch WJ.
Oxygen availability limits renal NADPH‐dependent superoxide formation.
Am J Physiol Renal Physiol
289:
749‐753,
2005.
|
69. |
Cherednichenko G,
Zima AV,
Zima V,
Feng W,
Schaefer S,
Blatter LA,
Pessah IN.
NADH oxidase activity in ratr cardiac sarcoplasmic reticulum regulates calcium‐induced calcium release.
Circ Res
94:
478‐486,
2004.
|
70. |
Chung Y,
Mole PA,
Sailasuta N,
Tran TK,
Hurd R,
Jue T.
Control of respiratrion and bioenergetics during muscle contraction.
Am J Physiol Cell Physiol
288:
C730‐C738,
2005.
|
71. |
Clanton TL.
Yet another oxygen paradox.
J Appl Physiol
99:
1246,
2005.
|
72. |
Clanton TL.
Hypoxia‐induced reactive oxygen species formation in skeletal muscle.
J Appl Physiol
102:
2379‐2388,
2007.
|
73. |
Clanton TL
Klawitter PF.
Adaptive responses of skeletal muscle to intermittent hypoxia: The known and the unknown.
JApplPhysiol
90:
2476‐2487,
2001.
|
74. |
Clark MG,
Rattigan S,
Barrett EJ,
Vincent MA.
Point: There is capillary recruitment in active skeletal muscle during exercise.
J Appl Physiol
104:
889‐891,
2008.
|
75. |
Cleeter MW,
Cooper JM,
Darley‐Usmar VM,
Moncada S,
Schapira AH.
Reversible inhibition of cytochrome c oxidase, the terminal enzyme of the mitochondrial respiratory chain, by nitric oxide. Implications for neurodegenerative diseases.
FEBS Lett
345:
50‐54,
1994.
|
76. |
Clementi E,
Brown GC,
Foxwell N,
Moncada S.
On the mechanism by which vascular endothelial cells regulate their oxygen consumption.
Proc Natl Acad Sci U S A
96:
1559‐1562,
1999.
|
77. |
Coburn RF,
Ploegmakers F,
Gondrie P,
Abboud R.
Myocardial myoglobin oxygen tension.
Amer J Physiol
224:
870‐876,
1973.
|
78. |
Cohen MV,
Philipp S,
Krieg T,
Cui L,
Kuno A,
Solodushko V,
Downey JM.
Preconditioning‐mimetics bradykinin and DADLE activate PI3‐kinase through divergent pathways.
J Mol Cell Cardiol
42:
842‐851,
2007.
|
79. |
Cole WC,
McPherson CD,
Sontag D.
ATP‐regulated K+ channels protect the myocardium against ischemia/reperfusion damage.
Circ Res
69:
571‐581,
1991.
|
80. |
Collman JP,
Ghosh S,
Dey A,
Decreau RA.
Using a functional enzyme model to understand the chemistry behind hydrogen sulfide induced hibernation.
Proc Natl Acad Sci U S A
106:
22090‐22095,
2009.
|
81. |
Connett RJ,
Honig CR,
Gayeski TEJ,
Brooks GA.
Defining hypoxia: A systems view of VO 2, glycolysis, energetics and intracellular PO 2
J Appl Physiol
68:
833‐842,
1990.
|
82. |
Connett RJ,
Sahlin K.
Control of glycolysis and glycogen metabolism.
Compr Physiol,
2011, supplement 29: Handbook of Physiology, Exercise: Regulation and integration of multiple systems:
870‐911. First published in print 1996. doi: 10.1002/cphy.cp120119
|
83. |
Cooke R,
Franks K,
Luciani GB,
Pate E.
The inhibition of rabbit skeletal muscle contraction by hydrogen ions and phosphate.
J Physiol
395:
77‐97,
1988.
|
84. |
Cooke R,
Pate E.
The effects of ADP and phosphate on the contraction of muscle fibers.
Biophys J
48:
789‐798,
1985.
|
85. |
Cooper CE,
Brown GC.
The inhibition of mitochondrial cytochrome oxidase by the gases carbon monoxide, nitric oxide, hydrogen cyanide and hydrogen sulfide: Chemical mechanism and physiological significance.
J Bioenerg Biomembr
40:
533‐539,
2008.
|
86. |
Cooper GJ,
Boron WF.
Effect of PCMBS on CO2 permeability of xenopus oocytes expressing aquaporin 1 or its C189S mutant.
Am J Physiol
275:
C1481‐C1486,
1998.
|
87. |
Cooper GJ,
Zhou Y,
Bouyer P,
Grichtchenko II,
Boron WF.
Transport of volatile solutes through AQP1.
J Physiol
542.1:
17‐29,
2002.
|
88. |
Costa AD,
Jakob R,
Costa CL,
Andrukhiv K,
West IC,
Garlid KD.
The mechanism by which the mitochondrial ATP‐sensitive K+ channel opening and H2O2 inhibit the mitochondrial permeability transition.
J Biol Chem
281:
20801‐20808,
2006.
|
89. |
Cross AR,
Henderson L,
Jones OT,
Delpiano MA,
Hentschel J,
Acker H.
Involvement of an NAD(P)H oxidase as a pO2 sensor protein in the rat carotid body.
Biochem J
272:
743‐747,
1990.
|
90. |
Cross AR,
Parkinson JF,
Jones OT.
The superoxide‐generating oxidase of leucocytes. NADPH‐dependent reduction of flavin and cytochrome b in solubilized preparations.
Biochem J
223:
337‐344,
1984.
|
91. |
Cross HR,
Murphy E,
Bolli R,
Ping P,
Steenbergen C.
Expression of activated PKC epsilon (PKC epsilon) protects the ischemic heart, without attenuating ischemic H(+) production.
J Mol Cell Cardiol
34:
361‐367,
2002.
|
92. |
Crow MT,
Kushmerick MJ.
Chemical energetics of slow‐ and fast‐twitch muscles of the mouse.
JGenPhysiol
79:
147‐166,
1982.
|
93. |
Cummins EP,
Berra E,
Comerford KM,
Ginouves A,
Fitzgerald KT,
Seeballuck F,
Godson C,
Nielsen JE,
Moynagh P,
Pouyssegur J,
Taylor CT.
Prolyl hydroxylase‐1 negatively regulates IkappaB kinase‐beta, giving insight into hypoxia‐induced NFkappaB activity.
Proc Natl Acad Sci U S A
103:
18154‐18159,
2006.
|
94. |
Dada LA,
Chandel NS,
Ridge KM,
Pedemonte C,
Bertorello AM,
Sznajder JI.
Hypoxia‐induced endocytosis of Na,K‐ATPase in alveolar epithelial cells is mediated by mitochondrial reactive oxygen species and PKC‐zeta.
J Clin Invest
111:
1057‐1064,
2003.
|
95. |
Dalsgaard T,
Simonsen U,
Fago A.
Nitrite‐dependent vasodilation is facilitated by hypoxia and is independent of known NO‐generating nitrite reductase activities.
Am J Physiol Heart Circ Physiol
292:
H3072‐H3078,
2007.
|
96. |
Dash RK,
Bassingthwaighte JB.
Simultaneous blood‐tissue exchange of oxygen, carbon dioxide, bicarbonate, and hydrogen ion.
Ann Biomed Eng
34:
1129‐1148,
2006.
|
97. |
Dave KR,
Anthony Defazio R,
Raval AP,
Dashkin O,
Saul I,
Iceman KE,
Perez‐Pinzon MA,
Drew KL.
Protein kinase C epsilon activation delays neuronal depolarization during cardiac arrest in the euthermic arctic ground squirrel.
J Neurochem
110:
1170‐1179,
2009.
|
98. |
Dawn B,
Xuan YT,
Guo Y,
Rezazadeh A,
Stein AB,
Hunt G,
Wu WJ,
Tan W,
Bolli R.
IL‐6 plays an obligatory role in late preconditioning via JAK‐STAT signaling and upregulation of iNOS and COX‐2.
Cardiovasc Res
64:
61‐71,
2004.
|
99. |
Dawson TL,
Gores GJ,
Nieminen AL,
Herman B,
Lemasters JJ.
Mitochondria as a source of reactive oxygen species during reductive stress in rat hepatocytes.
Am J Physiol
264:
C961‐C967,
1993.
|
100. |
Denker BM,
Smith BL,
Kuhajda FP,
Agre P.
Identification, purification, and partial characterization of a novel Mr 28,000 integral membrane protein from erythrocytes and renal tubules.
J Biol Chem
263:
15634‐15642,
1988.
|
101. |
Denton RM,
Randle PJ,
Martin BR.
Stimulation by calcium ions of pyruvate dehydrogenase phosphate phosphatase.
Biochem J
128:
161‐163,
1972.
|
102. |
Depre C,
Vatner SF.
Cardioprotection in stunned and hibernating myocardium.
Heart Fail Rev
12:
307‐317,
2007.
|
103. |
Di Maria CA,
Bogoyevitch MA,
McKitrick DJ,
Arnolda LF,
Hool LC,
Arthur PG.
Changes in oxygen tension affect cardiac mitochondrial respiration rate via changes in the rate of mitochondrial hydrogen peroxide production.
J Mol Cell Cardiol
47:
49‐56,
2009.
|
104. |
Dinger B,
He L,
Chen J,
Liu X,
Gonzalez C,
Obeso A,
Sanders K,
Hoidal J,
Stensaas L,
Fidone S.
The role of NADPH oxidase in carotid body arterial chemoreceptors.
Respir Physiol Neurobiol
157:
45‐54,
2007.
|
105. |
Dioum EM,
Chen R,
Alexander MS,
Zhang Q,
Hogg RT,
Gerard RD,
Garcia JA.
Regulation of hypoxia‐inducible factor 2alpha signaling by the stress‐responsive deacetylase sirtuin 1.
Science
324:
1289‐1293,
2009.
|
106. |
Dorn GW, II,
Souroujon MC,
Liron T,
Chen CH,
Gray MO,
Zhou HZ,
Csukai M,
Wu G,
Lorenz JN,
Mochly‐Rosen D.
Sustained in vivo cardiac protection by a rationally designed peptide that causes epsilon protein kinase C translocation.
Proc Natl Acad Sci U S A
96:
12798‐12803,
1999.
|
107. |
Doyle MP,
Hoekstra JW.
Oxidation of nitrogen oxides by bound dioxygen in hemoproteins.
J Inorg Biochem
14:
351‐358,
1981.
|
108. |
Drew JS,
Harwalkar VA,
Stein LA.
Product inhibition of the actomyosin subfragment‐1 ATPase in skeletal, cardiac, and smooth muscle.
Circ Res
71:
1067‐1077,
1992.
|
109. |
Dudley GA,
Tullson PC,
Terjung RL.
Influence of mitochondrial content on the sensitivity of respiratory control.
J Biol Chem
262:
9109‐9114,
1987.
|
110. |
Dumas K,
Latger V,
viriot ML,
Blndel W,
Stoltz JF.
Membrane‐fluidity and oxygen diffusion in cholesterol‐enriched endothelial cells.
Clin Hemorrheol Microcirc
43:
269‐271,
1999.
|
111. |
Duranteau J,
Chandel NS,
Kulisz A,
Shao Z,
Schumacker PT.
Intracellular signaling by reactive oxygen species during hypoxia in cardiomyocytes.
J Biol Chem
273:
11619‐11624,
1998.
|
112. |
Dutta A,
Popel AS.
A theoretical analysis of inracellular oxygen diffusion.
J Theor Biol
176:
433‐445,
1995.
|
113. |
Ebus JP,
Stienen GJ,
Elzinga G.
Influence of phosphate and pH on myofibrillar ATPase activity and force in skinned cardiac trabeculae from rat.
J Physiol
476:
501‐516,
1994.
|
114. |
Echevarria M,
Munoz‐Cabello AM,
Sanchez‐Silva R,
Toledo‐Aral JJ,
Lopez‐Barneo J.
Development of cytosolic hypoxia and hypoxia‐inducible factor stabilization are facilitated by aquaporin‐1 expression.
J Biol Chem
282:
30207‐30215,
2007.
|
115. |
Elayan IM,
Axley MJ,
Prasad PV,
Ahlers ST,
Auker CR.
Effect of hyperbaric oxygen treatment on nitric oxide and oxygen free radicals in rat brain.
J Neurophysiol
83:
2029,
2000.
|
116. |
Embden G,
Baldes K,
Schmitz E.
Uber den chemismus der milchsaurebildung aus traubenzucker im teirkorper.
Biochem Zeit
45:
108‐133,
1912.
|
117. |
Embden G,
Laquer F.
Uber die chemie des lactacidogens I. Isolierungsversuche.
Hoppe‐Seyler's Z Physiol
93:
94‐123,
1914.
|
118. |
Embden G,
Laquer F.
Uber die chemie des lactacidogens. II
Hoppe‐Seyler's Z Physiol
98:
18,
1917.
|
119. |
Endeward v,
Cartron JP,
Ripoche P,
Gros G.
Red cell membrane CO2 permeabiity in normal human blood and in blood deficient in various blood groups, and effect of DIDs.
Transfus Clin Biol
13:
123‐127,
2006.
|
120. |
Endeward v,
Gros G.
Low carbon dioxide permeability of the apical epithelial membrane of guinea‐pig colon.
J Physiol
567.1:
253‐265,
2007.
|
121. |
Endeward v,
Gross G.
Extra‐ and intracellular unstirred layer effects in measurements of CO2 diffusion across membranes‐a novel approach applied to the mass spectrometric 18O technique for red blood cells.
J Physiol
587.6:
1153‐1167,
2009.
|
122. |
Epstein AC,
Gleadle JM,
McNeill LA,
Hewitson KS,
O'Rourke J,
Mole DR,
Mukherji M,
Metzen E,
Wilson MI,
Dhanda A,
Tian YM,
Masson N,
Hamilton DL,
Jaakkola P,
Barstead R,
Hodgkin J,
Maxwell PH,
Pugh CW,
Schofield CJ,
Ratcliffe PJ.
C. elegans EGL‐9 and mammalian homologs define a family of dioxygenases that regulate HIF by prolyl hydroxylation.
Cell
107:
43‐54,
2001.
|
123. |
Erusalimsky JD,
Moncada S.
Nitric oxide and mitochondrial signaling: From physiology to pathophysiology.
Arterioscler Thromb Vasc Biol
27:
2524‐2531,
2007.
|
124. |
Esteban MA,
Maxwell PH.
HIF, a missing link between metabolism and cancer.
Nat Med
11:
1047‐1048,
2005.
|
125. |
Eu JP,
Hare JM,
Hess DT,
Skaf M,
Sun J,
Cardenas‐Navina I,
Sun QA,
Dewhirst M,
Meissner G,
Stamler JS.
Concerted regulation of skeletal muscle contractility by oxygen tension and endogenous nitric oxide.
Proc Natl Acad Sci U S A
100:
15229‐15234,
2003.
|
126. |
Eu JP,
Sun J,
Xu L,
Stamler JS,
Meissner G.
The skeletal muscle calcium release channel: Coupled O2 sensor and NO signaling functions.
Cell
102:
499‐509,
2000.
|
127. |
Fahling M.
Cellular oxygen sensing, signalling and how to survive translational arrest in hypoxia.
Acta Physiol (Oxf)
195:
205‐230,
2009.
|
128. |
Fang JK,
Prabu SK,
Sepuri NB,
Raza H,
Anandatheerthavarada HK,
Galati D,
Spear J,
Avadhani NG.
Site specific phosphorylation of cytochrome c oxidase subunits I, IVi1 and Vb in rabbit hearts subjected to ischemia/reperfusion.
FEBS Lett
581:
1302‐1310,
2007.
|
129. |
Feelisch M,
Fernandez BO,
Bryan NS,
Garcia‐Saura MF,
Bauer S,
Whitlock DR,
Ford PC,
Janero DR,
Rodriguez J,
Ashrafian H.
Tissue processing of nitrite in hypoxia: An intricate interplay of nitric oxide‐generating and ‐scavenging systems.
J Biol Chem
283:
33927‐33934,
2008.
|
130. |
Ferguson‐Miller S,
Brautigan DL,
Margoliash E.
Correlation of the kinetics of electron transfer activity of various eukaryotic cytochromes c with binding to mitochondrial cytochrome c oxidase.
J Biol Chem
251:
1104‐1115,
1976.
|
131. |
Ferguson SJ.
ATP synthase: From sequence to ring size to the P/O ratio.
Proc Natl Acad Sci U S A
107:
16755‐16756,
2010.
|
132. |
Fischkoff S,
Vanderkooi JM.
Oxygen diffusion in biological and artificial membranes determined by the fluorochrome pyrene.
J Gen Physiol
65:
663‐676,
1975.
|
133. |
Fitts RH.
The cross‐bridge cycle and skeletal muscle fatigue.
J Appl Physiol
104:
551‐558,
2008.
|
134. |
Flagg TP,
Enkvetchakul D,
Koster JC,
Nichols CG.
Muscle KATP channels: Recent insights to energy sensing and myoprotection.
Physiol Rev
90:
799‐829,
2010.
|
135. |
Fong GH,
Takeda K.
Role and regulation of prolyl hydroxylase domain proteins.
Cell Death Differ
15:
635‐641,
2008.
|
136. |
Forman HJ,
Azzi A.
On the virtual existence of superoxide anions in mitochondria: Thoughts regarding its role in pathophysiology.
FASEB J
11:
374‐375,
1997.
|
137. |
Fortney SM,
Nadel ER,
Wenger CB,
Bove JR.
Effect of blood volume on sweating rate and body fluids in exercising humans.
J Appl Physiol
51:
1594‐1600,
1981.
|
138. |
Franco‐Obregon A,
Urena J,
Lopez‐Barneo J.
Oxygen‐sensitive calcium channels in vascular smooth muscle and their possible role in hypoxic arterial relaxation.
Proc Natl Acad Sci U S A
92:
4715‐4719,
1995.
|
139. |
Frappell P,
Lanthier C,
Baudinette RV,
Mortola JP.
Metabolism and ventilation in acute hypoxia: A comparative analysis in small mammalian species.
Am J Physiol
262:
R1040‐R1046,
1992.
|
140. |
Freeman BA,
Crapo JD.
Hyperoxia increases oxygen radical production in rat lungs and lung mitochondria.
J Biol Chem
256:
10986‐10992,
1981.
|
141. |
Fried E,
Amorim P,
Chambers G,
Cottrell JE,
Kass IS.
The importance of sodium for anoxic transmission damage in rat hippocampal slices: Mechanisms of protection by lidocaine.
J Physiol
489
(Pt 2):
557‐565,
1995.
|
142. |
Frost RA,
Nystrom GJ,
Lang CH.
Multiple Toll‐like receptor ligands induce an IL‐6 transcriptional response in skeletal myotubes.
Am J Physiol Regul Integr Comp Physiol
290:
R773‐R784,
2006.
|
143. |
Gandra PG,
Nogueira L,
Hogan MC.
Mitochondrial activation at the onset of contractions in isolated myofibres during successive contractile periods.
J Physiol
590:
3597‐3609,
2012.
|
144. |
Ganfornina MD,
Lopez‐Barneo J.
Potassium channel types in arterial chemoreceptor cells and their selective modulation by oxygen.
J Gen Physiol
100:
401‐426,
1992.
|
145. |
Gardner PR.
Nitric oxide dioxygease function and mechanism of flavohemoglobin, hemoglobin, myoglobin and their associated reductases.
J Inorg Biochem
99:
247‐266,
2009.
|
146. |
Gardner PR,
Martin LA,
Hall D,
Gardner AM.
Dioxygen‐dependent metabolism of nitric oxide in mammalian cells.
Free Radic Biol Med
31:
191‐204,
2001.
|
147. |
Garry DJ,
Ordway GA,
Lorenz JN,
Radford NB,
Chin ER,
Grange RW,
Bassel‐Duby R,
Williams RS.
Mice without myoglobin.
Nature
395:
905‐908,
1998.
|
148. |
Gautier H.
Interactions among metabolic rate, hypoxia, and control of breathing.
J Appl Physiol
81:
521‐527,
1996.
|
149. |
Gayeski TE,
Honig CR.
Intracellular PO2 in individual cardiac myocytes in dogs, cats, rabbits, ferrets and rats.
Am J Physiol (Heat Circ Physiol)
260:
H5222‐H5531,
1991.
|
150. |
Gerbino A,
Ward SA,
Whipp BJ.
Effects of prior exercise on pulmonary gas‐exchange kinetics during high‐intensity exercise in humans.
J Appl Physiol
80:
99‐107,
1996.
|
151. |
Germack R,
Dickenson JM.
Characterization of ERK1/2 signalling pathways induced by adenosine receptor subtypes in newborn rat cardiomyocytes.
Br J Pharmacol
141:
329‐339,
2004.
|
152. |
Ghosh S,
George S,
Roy U,
Ramachandran D,
Kolthur‐Seetharam U.
NAD: A master regulator of transcription.
Biochim Biophys Acta 1799: 681‐693, 2010.
|
153. |
Gienert GP,
Moller ALB,
Kristiansen KA,
Achulz A,
Moller IA,
Schojoerring JK,
Jahn TP.
Specific aquaporins facilitate the diffusion of hydrogen peroxide across membranes.
J Biol Chem
282:
1183‐1192,
2006.
|
154. |
Gille L,
Nohl H.
The ubiquinol/bc1 redox couple regulates mitochondrial oxygen radical formation.
Arch Biochem Biophys
388:
34‐38,
2001.
|
155. |
Gladden LB.
Lactate transport and metabolism during exercise. In:
Exercise: Regulation and integration of multiple systems, edited by
Rowell LB,
Shepherd JT.
New York:
Oxford University Press,
1996, pp.
614‐648.
|
156. |
Gladden LB.
Lactate metabolism: A new paradigm for the third millennium.
J Physiol
558:
5‐30,
2004.
|
157. |
Gladden LB.
A lactatic perspective on metabolism.
Med Sci Sports Exerc
40:
477‐485,
2008.
|
158. |
Glancy B,
Balaban RS.
Role of mitochondrial Ca2+ in the regulation of cellular energetics.
Biochemistry
51:
2959‐2973,
2012.
|
159. |
Glockner JF,
Swartz HM,
Pals MA.
Oxygen gradients in CHO cells: Measurement and characterization by electron spin resonance.
J Cell Physiol
140:
505‐511,
1993.
|
160. |
Gnaiger E.
Bioenergetics at low oxygen: Dependence of respiration and phosphorylation on oxygen and adenosine diphosphate supply.
Respir Physiol
128:
277‐297,
2001.
|
161. |
Gnaiger E,
Kuznetsov AV.
Mitochondrial respiration at low levels of oxygen and cytochrome C.
Biochem Soc Trans
30:
252‐258,
2002.
|
162. |
Gnaiger E,
Lassnig B,
Kuznetsov A,
Rieger G,
Margreiter R.
Mitochondrial oxygen affinity, respiratory flux control and excess capacity of cytochrome c oxidase.
J Exp Biol
201:
1129‐1139,
1998.
|
163. |
Gnaiger E,
Lassnig B,
Kuznetsov AV,
Margreiter R.
Mitochondrial respiration in the low oxygen environment of the cell. Effect of ADP on oxygen kinetics.
Biochim Biophys Acta
1365:
249‐254,
1998.
|
164. |
Gnaiger E,
Mendez G,
Hand SC.
High phosphorylation efficiency and depression of uncoupled respiration in mitochondria under hypoxia.
Proc Natl Acad Sci U S A
97:
11080‐11085,
2000.
|
165. |
Gnaiger E,
Steinlechner‐Maran R,
Mendez G,
Eberl T,
Margreiter R.
Control of mitochondrial and cellular respiration by oxygen.
J Bioenerg Biomembr
27:
583‐596,
1995.
|
166. |
Godecke A,
Flogel U,
Zanger K,
Ding Z,
Hirchenhain J,
Decking UKM,
Schrader J.
Disruption of myoglobin in mice induces multiple compensatory mechanisms.
Proc Natl Acad Sci
96:
10495‐10500,
1999.
|
167. |
Goldstick TK,
Ciuryla VT,
Zuckerman L.
Diffusion of oxygen in plasma and blood.
Adv Exp Med Biol
75:
183‐190,
1975.
|
168. |
Gollnick PD,
Riedy M,
Quintinskie JJ,
Bertocci LA.
Differences in metabolic potential of skeletal muscle fibres and their significance for metabolic control.
J Exp Biol
115:
191‐199,
1985.
|
169. |
Golub AS,
Pittman RN.
Oxygen dependence of respiration in rat spinotrapezius muscle in situ.
Am J Physiol Heart Circ Physiol
303:
H47‐H56,
2012.
|
170. |
Gonzalez DR,
Treuer A,
Sun QA,
Stamler JS,
Hare JM.
S‐Nitrosylation of cardiac ion channels.
J Cardiovasc Pharmacol
54:
188‐195,
2009.
|
171. |
Grande M,
Suarez E,
Vicente R,
Canto C,
Coma M,
Tamkun MM,
Zorzano A,
Guma A,
Felipe A.
Voltage‐dependent K+ channel beta subunits in muscle: differential regulation during postnatal development and myogenesis.
J Cell Physiol
195:
187‐193,
2003.
|
172. |
Grange RW,
Meeson A,
Chin E,
Lau KS,
Stull JT,
Shelton JM,
Williams RS,
Garry DJ.
Functional and molecular adaptations in skeletal muscle of myoglobin‐mutant mice.
Am J Physiol Cell Physiol
281:
C1487‐C1494,
2001.
|
173. |
Grassi B.
Delayed metabolic activation of oxidative phosphorylation in skeletal muscle at exercise onset.
Med Sci Sports Exerc
37:
1567‐1573,
2005.
|
174. |
Grassi B,
Gladden LB,
Stary CM,
Wagner PD,
Hogan MC.
Peripheral O2 diffusion does not affect V(O2)on‐kinetics in isolated in situ canine muscle.
J Appl Physiol
85:
1404‐1412,
1998.
|
175. |
Grassi B,
Quaresima V,
Marconi C,
Ferrari M,
Cerretelli P.
Blood lactate accumulation and muscle deoxygenation during incremental exercise.
J Appl Physiol
87:
348‐355,
1999.
|
176. |
Grassi B,
Rossiter HB,
Hogan MC,
Howlett RA,
Harris JE,
Goodwin ML,
Dobson JL,
Gladden LB.
Faster O(2) uptake kinetics in canine skeletal muscle in situ after acute creatine kinase inhibition.
J Physiol
589:
221‐233,
2011.
|
177. |
Griffiths EJ,
Rutter GA.
Mitochondrial calcium as a key regulator of mitochondrial ATP production in mammalian cells.
Biochim Biophys Acta
1787:
1324‐1333,
2009.
|
178. |
Gros G,
Moll W.
The diffusion of carbon dioxide in ertythrocytes and hemoglobin solutions.
Pflugers Arch
324:
249‐266,
1971.
|
179. |
Gross GJ,
Fryer RM.
Sarcolemmal versus mitochondrial ATP‐sensitive K+ channels and myocardial preconditioning.
Circ Res
84:
973‐979,
1999.
|
180. |
Gunther MR,
Sampath V,
Caughey WS.
Potential roles of myoglobin autoxidation in myocardial ischemia‐reperfusion injury.
Free Rad BiolMed
26:
1388‐1395,
1999.
|
181. |
Gupta S,
McArthur C,
Grady C,
Ruderman NB.
Stimulation of vascular Na(+)‐K(+)‐ATPase activity by nitric oxide: A cGMP‐independent effect.
Am J Physiol
266:
H2146‐H2151,
1994.
|
182. |
Gupte SA,
Kaminski PM,
Floyd B,
Agarwal R,
Ali N,
Ahmad M,
Edwards J,
Wolin MS.
Cytosolic NADPH may regulate differences in basal Nox oxidase‐derived superoxide generation in bovine coronary and pulmonary arteries.
Am J Physiol Heart Circ Physiol
288:
H13‐21,
2005.
|
183. |
Gupte SA,
Okada T,
McMurtry IF,
Oka M.
Role of pentose phosphate pathway‐derived NADPH in hypoxic pulmonary vasoconstriction.
Pulm Pharmacol Ther
19:
303‐309,
2006.
|
184. |
Gupte SA,
Rupawalla T,
Phillibert D, Jr.,
Wolin MS.
NADPH and heme redox modulate pulmonary artery relaxation and guanylate cyclase activation by NO.
Am J Physiol
277:
L1124‐1132,
1999.
|
185. |
Gutknecht J,
Bisson MA,
Tosteson FC.
Effects of carbonic anhydrase, bicarbonate and unstirred layers.
J Gen Physiol
69:
779‐794,
1977.
|
186. |
Gutknecht J,
Bisson MS,
Tosteson FC.
Diffusion of carbon dioxide through lipid bilayer membranes‐effects of carbonic anhydrase, bicarbonate and unstirred layers.
J Gen Physiol
69:
794,
1977.
|
187. |
Guyton AC,
Carrier O, Jr.,
Walker JR.
Evidence for tissue oxygen demand as the major factor causing autoregulation.
Circ Res
15:
60‐69,
1964.
|
188. |
Guzy RD,
Hoyos B,
Robin E,
Chen H,
Liu L,
Mansfield KD,
Simon MC,
Hammerling U,
Schumacker PT.
Mitochondrial complex III is required for hypoxia‐induced ROS production and cellular oxygen sensing.
Cell Metab
1:
401‐408,
2005.
|
189. |
Guzy RD,
Schumacker PT.
Oxygen sensing by mitochondria at complex III: The paradox of increased reactive oxygen species during hypoxia.
Exp Physiol
91:
807‐819,
2006.
|
190. |
Hall CN,
Keynes RG,
Garthwaite J.
Cytochrome P450 oxidoreductase participates in nitric oxide consumption by rat brain.
Biochem J
419:
411‐418,
2009.
|
191. |
Hamaoka T,
McCully KK,
Quaresima V,
Yamamoto K,
Chance B.
Near‐infrared spectroscopy/imaging for monitoring muscle oxygenation and oxidative metabolism in healthy and diseased humans.
J Biomed Opt
12:
062105,
2007.
|
192. |
Hammarstrom AK,
Gage PW.
Nitric oxide increases persistent sodium current in rat hippocampal neurons.
J Physiol
520
(Pt 2):
451‐461,
1999.
|
193. |
Hammarstrom AK,
Gage PW.
Oxygen‐sensing persistent sodium channels in rat hippocampus.
J Physiol
529
(Pt 1):
107‐118,
2000.
|
194. |
Hammarstrom AK,
Gage PW.
Hypoxia and persistent sodium current.
Eur Biophys J
31:
323‐330,
2002.
|
195. |
Haouzi P,
Bell HJ,
Notet V,
Bihain B.
Comparison of the metabolic and ventilatory response to hypoxia and H2S in unsedated mice and rats.
Respir Physiol Neurobiol
167:
316‐322,
2009.
|
196. |
Haouzi P,
Notet V,
Chenuel B,
Chalon B,
Sponne I,
Ogier V,
Bihain B.
H2S induced hypometabolism in mice is missing in sedated sheep.
Respir Physiol Neurobiol
160:
109‐115,
2008.
|
197. |
Hardie DG,
Hawley SA,
Scott JW.
AMP‐activated protein kinase–development of the energy sensor concept.
J Physiol
574:
7‐15,
2006.
|
198. |
Hartness ME,
Lewis A,
Searle GJ,
O'Kelly I,
Peers C,
Kemp PJ.
Combined antisense and pharmacological approaches implicate hTASK as an airway O(2) sensing K(+) channel.
J Biol Chem
276:
26499‐26508,
2001.
|
199. |
Haseler LJ,
Richardson RS,
Videen JS,
Hogan MC.
Phosphocreatine hydrolysis during submaximal exercise: The effect of FIO2.
J Appl Physiol
85:
1457‐1463,
1998.
|
200. |
Hausenloy DJ,
Tsang A,
Mocanu MM,
Yellon DM.
Ischemic preconditioning protects by activating prosurvival kinases at reperfusion.
Am J Physiol Heart Circ Physiol
288:
H971‐976,
2005.
|
201. |
Hausenloy DJ,
Yellon DM.
New directions for protecting the heart against ischaemia‐reperfusion injury: Targeting the reperfusion injury salvage kinase (RISK)‐pathway.
Cardiovasc Res
61:
448‐460,
2004.
|
202. |
Hausenloy DJ,
Yellon DM.
Reperfusion injury salvage kinase signalling: Taking a RISK for cardioprotection.
Heart Fail Rev
12:
217‐234,
2007.
|
203. |
Hausenloy DJ,
Yellon DM.
Preconditioning and postconditioning: Underlying mechanisms and clinical application.
Atherosclerosis
204:
334‐341,
2009.
|
204. |
Hausenloy DJ,
Yellon DM.
Cell membrane repair as a mechanism for ischemic preconditioning?
Circulation
121:
2547‐2549,
2010.
|
205. |
Helling S,
Vogt S,
Rhiel A,
Ramzan R,
Wen L,
Marcus K,
Kadenbach B.
Phosphorylation and kinetics of mammalian cytochrome c oxidase.
Mol Cell Proteomics
7:
1714‐1724,
2008.
|
206. |
Hermes‐Lima M,
Zenteno‐Savín T.
Animal response to drastic changes in oxygen availability and physiological oxidative stress.
Comp Biochem Physiol Part C
133
537‐556,
2002.
|
207. |
Hernandez A,
McDonald JR,
Lai N,
Gladden LB.
A prior bout of contractions speeds VO2 and blood flow on‐kinetics and reduces the VO2 slow‐component amplitude in canine skeletal muscle contracting in situ.
J Appl Physiol
108:
1169‐1176,
2010.
|
208. |
Heusch G,
Schulz R.
Hibernating myocardium: A review.
J Mol Cell Cardiol
28:
2359‐2372,
1996.
|
209. |
Heusch G,
Schulz R,
Rahimtoola SH.
Myocardial hibernation: A delicate balance.
Am J Physiol Heart Circ Physiol
288:
H984‐999,
2005.
|
210. |
Higashimoto Y,
Sato H,
Sakamoto H,
Takahashi K,
Palmer G,
Noguchi M.
The reactions of heme‐ and verdoheme‐heme oxygenase‐1 complexes with FMN‐depleted NADPH‐cytochrome P450 reductase. Electrons required for verdoheme oxidation can be transferred through a pathway not involving FMN.
J Biol Chem
281:
31659‐31667,
2006.
|
211. |
Hilgemann DW,
Yaradanakul A,
Wang Y,
Fuster D.
Molecular control of cardiac sodium homeostasis in health and disease.
J Cardiovasc Electrophysiol
17
(Suppl 1):
S47‐S56,
2006.
|
212. |
Hill AV.
Muscular exercise, lactic acid and the supply and utilization of oxygen.
Quart J Med
16:
135‐171,
1923.
|
213. |
Hill DK.
Oxygen tension and the respiration of resting frog's muscle.
J Physiol
107:
479‐495,
1948.
|
214. |
Hill JR.
The oxygen consumption of new‐born and adult mammals. Its dependence on the oxygen tension in the inspired air and on the environmental temperature.
J Physiol
149:
346‐373,
1959.
|
215. |
Hiroyuki H,
Hamaoka T,
Sako T,
Nishio S,
Kime R,
Murakami M,
Katsumura T.
Oxygenation in vastus lateralis and lateral head of gastrocnemius during treadmill walking and running in humans.
Eur J Appl Physiol
87:
343‐349,
2002.
|
216. |
Hirsila M,
Koivunen P,
Gunzler V,
Kivirikko KI,
Myllyharju J.
Characterization of the human prolyl 4‐hydroxylases that modify the hypoxia‐inducible factor.
J Biol Chem
278:
30772‐30780,
2003.
|
217. |
Hochachka PW.
Defense strategies against hypoxia and hypothermia.
Science
231:
234‐241,
1986.
|
218. |
Hochachka PW,
Buck LT,
Doll CJ,
Land SC.
Unifying theory of hypoxia tolerance: Molecular/metabolic defense and rescue mechanisms for surviving oxygen lack.
Proc Natl Acad Sci U S A
93:
9493‐9498,
1996.
|
219. |
Hochachka PW,
Lutz PL.
Mechanism, origin, and evolution of anoxia tolerance in animals.
Comp Biochem Physiol B Biochem Mol Biol
130:
435‐459,
2001.
|
220. |
Hoffman DL,
Brookes PS.
Oxygen sensitivity of mitochondrial reactive oxygen species generation depends on metabolic conditions.
J Biol Chem
284:
16236‐16245,
2009.
|
221. |
Hoffman DL,
Salter JD,
Brookes PS.
Response of mitochondrial reactive oxygen species generation to steady‐state oxygen tension: Implications for hypoxic cell signaling.
Am J Physiol Heart Circ Physiol
292:
H101‐H108,
2007.
|
222. |
Hogan MC.
Fall in intracellular PO(2) at the onset of contractions in Xenopus single skeletal muscle fibers.
J Appl Physiol
90:
1871‐1876,
2001.
|
223. |
Hogan MC,
Arthur PG,
Bebout DE,
Hochachka PW,
Wagner PD.
Role of O2 in regulating tissue respiration in dog muscle working in situ.
J Appl Physiol
73:
728‐736,
1992.
|
224. |
Hogan MC,
Cox RH,
Welch HG.
Lactate accumulation during incremental exercise with varied inspired oxygen fractions.
J Appl Physiol
55:
1134‐1140,
1983.
|
225. |
Hogan MC,
Nioka S,
Brechue WF,
Chance B.
A 31 P‐NMR study of tissue respiration in working dog muscle during reduced O 2 delivery conditions.
J Appl Physiol
73:
1662‐1670,
1992.
|
226. |
Hogan MC,
Stary CM,
Balaban RS,
Combs CA.
NAD(P)H fluorescence imaging of mitochondrial metabolism in contracting Xenopus skeletal muscle fibers: Effect of oxygen availability.
J Appl Physiol
98:
1420‐1426,
2005.
|
227. |
Holloszy JO,
Coyle EF.
Adaptations of skeletal muscle to endurance exercise and their metabolic consequences.
J Appl Physiol
56:
831‐838,
1984.
|
228. |
Hom J,
Yu T,
Yoon Y,
Porter G,
Sheu SS.
Regulation of mitochondrial fission by intracellular Ca(2+) in rat ventricular myocytes.
Biochim Biophys Acta
1797:
913‐921,
2010.
|
229. |
Hope BT,
Michael GJ,
Knigge KM,
Vincent SR.
Neuronal NADPH diaphorase is a nitric oxide synthase.
Proc Natl Acad Sci U S A
88:
2811‐2814,
1991.
|
230. |
Hoppeler H,
Billeter R.
Conditions for oxygen and substrate transport in muscle in exercising mammals.
J Exp Biol
160:
263‐283,
1991.
|
231. |
Houk JC.
Control strategies in physiological systems.
FASEB J
2:
97‐107,
1988.
|
232. |
Howlett RA,
Kindig CA,
Hogan MC.
Intracellular PO2 kinetics at different contraction frequencies in Xenopus single skeletal muscle fibers.
J Appl Physiol
102
1456‐1461
2007.
|
233. |
Hub JS,
de Groot BL.
Does CO2 permeate through aquaporin‐1?
Biophys J
91:
842‐848,
2006.
|
234. |
Hub JS,
de Groot BL.
Mechanism of selectivity in aquaporins and aquaglyceroporins.
Proc Natl Acad Sci U S A
105:
1198‐1203,
2008.
|
235. |
Huckabee WE,
Judson WE.
The role of anaerobic metabolism in the performance of mild muscular work. I. Relationship to oxygen consumption and cardiac output, and the effect of congestive heart failure.
J Clin Invest
37:
1577‐1592,
1958.
|
236. |
Huttemann M,
Lee I,
Pecinova A,
Pecina P,
Przyklenk K,
Doan JW.
Regulation of oxidative phosphorylation, the mitochondrial membrane potential, and their role in human disease.
J Bioenerg Biomembr
40:
445‐456,
2008.
|
237. |
Huxley VH,
Kutchai H.
The effect of the red cell membrane and a diffusion boundary layer on the rate of oxygen uptake by human erythrocytes.
J Physiol London
316:
75‐83,
1981.
|
238. |
Hylland P,
Milton S,
Pek M,
Nilsson GE,
Lutz PL.
Brain Na+/K+‐ATPase activity in two anoxia tolerant vertebrates: Crucian carp and freshwater turtle.
Neuroscience letters
235:
89‐92,
1997.
|
239. |
Ido Y.
Pyridine nucleotide redox abnormalities in diabetes.
Antioxid Redox Signal
9:
931‐942,
2007.
|
240. |
Iesaki T,
Wolin MS.
Thiol oxidation activates a novel redox‐regulated coronary vasodilator mechanism involving inhibition of Ca2+ influx.
Arterioscler Thromb Vasc Biol
20:
2359‐2365,
2000.
|
241. |
Imai S,
Armstrong CM,
Kaeberlein M,
Guarente L.
Transcriptional silencing and longevity protein Sir2 is an NAD‐dependent histone deacetylase.
Nature
403:
795‐800,
2000.
|
242. |
Inagaki K,
Hahn HS,
Dorn GW, II,
Mochly‐Rosen D.
Additive protection of the ischemic heart ex vivo by combined treatment with delta‐protein kinase C inhibitor and epsilon‐protein kinase C activator.
Circulation
108:
869‐875,
2003.
|
243. |
Iniguez M,
Berasain C,
Martinez‐Anso E,
Bustos M,
Fortes P,
Pennica D,
Avila MA,
Prieto J.
Cardiotrophin‐1 defends the liver against ischemia‐reperfusion injury and mediates the protective effect of ischemic preconditioning.
J Exp Med
203:
2809‐2815,
2006.
|
244. |
Ivanov II,
Fedorov GE,
Gus'kova RA,
Ivanov K,
Rubin AB.
Permeability of lipid membranes to dioxygen.
Biochem Biophys Res Comm
322:
746‐750,
2004.
|
245. |
Ivanov II,
Loktyushkin AV,
Gus'kova RA,
Vasil'ev NS,
Federov GE.
Oxygen channels of erythrocyte membrane.
Doklady Biochem Biophys
414:
140,
2007.
|
246. |
Jonassen AK,
Sack MN,
Mjos OD,
Yellon DM.
Myocardial protection by insulin at reperfusion requires early administration and is mediated via Akt and p70s6 kinase cell‐survival signaling.
Circ Res
89:
1191‐1198,
2001.
|
247. |
Jones AM,
Krustrup P,
Wilkerson DP,
Berger NJ,
Calbet JA,
Bangsbo J.
Influence of exercise intensity on skeletal muscle blood flow, O2 extraction and O2 uptake on‐kinetics.
J Physiol
590:
4363‐4376,
2012.
|
248. |
Jones DP.
Effect of mitochondrial clustering on O2 supply in hepatocytes.
Am J Physiol Cell Physiol
247:
C88‐C99,
1984.
|
249. |
Jones DP.
Intracellular diffusion gradients of O 2 and ATP.
Am J Physiol
250:
C663‐C675,
1986.
|
250. |
Jones DP,
Mason HS.
Gradients of O2 concentration in hepatocytes.
J Biol Chem
253:
4874‐4880,
1978.
|
251. |
Jung JE,
Kim GS,
Chan PH.
Neuroprotection by interleukin‐6 is mediated by signal transducer and activator of transcription 3 and antioxidative signaling in ischemic stroke.
Stroke
42:
3574‐3579,
2011.
|
252. |
Jurgens KD,
Papadopoulos S,
Peters T,
Gros G.
Myoglobin: Just an oxygen store or also an oxygen transporter?
News Physiol Sci
15:
269‐274,
2000.
|
253. |
Kadenbach B.
Intrinsic and extrinsic uncoupling of oxidative phosphorylation.
Biochim Biophys Acta
1604:
77‐94,
2003.
|
254. |
Kadenbach B,
Arnold S.
A second mechanism of respiratory control.
FEBS Lett
447:
131‐134,
1999.
|
255. |
Kadenbach B,
Ramzan R,
Wen L,
Vogt S.
New extension of the Mitchell Theory for oxidative phosphorylation in mitochondria of living organisms.
Biochim Biophys Acta
1800:
205‐212,
2010.
|
256. |
Kaelin WG, Jr.,
Ratcliffe PJ.
Oxygen sensing by metazoans: The central role of the HIF hydroxylase pathway.
Mol Cell
30:
393‐402,
2008.
|
257. |
Kajimura M,
Fukuda R,
Bateman RM,
Yamamoto T,
Suematsu M.
Interactions of multiple gas‐transducing systems: Hallmarks and uncertainties of CO, NO, and H2S gas biology.
Antioxid Redox Signal
13:
157‐192,
2010.
|
258. |
Kane GC,
Liu XK,
Yamada S,
Olson TM,
Terzic A.
Cardiac KATP channels in health and disease.
J Mol Cell Cardiol
38:
937‐943,
2005.
|
259. |
Kapur S,
Bedard S,
Marcotte B,
Cote CH,
Marette A.
Expression of nitric oxide synthase in skeletal muscle: A novel role for nitric oxide as a modulator of insulin action.
Diabetes
46:
1691‐1700,
1997.
|
260. |
Katz, IR,
Wittenberg JB, and
Wittenberg BA.
Monoamine oxidase, an intracellular probe of oxygen pressure in isolated cardiac myocytes.
J Biol Chem
259:
7504‐7509,
1984.
|
261. |
Kawada N,
Kristensen DB,
Asahina K,
Nakatani K,
Minamiyama Y,
Seki S,
Yoshizato K.
Characterization of a stellate cell activation‐associated protein (STAP) with peroxidase activity found in rat hepatic stellate cells.
J Biol Chem
276:
25318‐24323,
2001.
|
262. |
Kawahara T,
Quinn MT,
Lambeth JD.
Molecular evolution of the reactive oxygen‐generating NADPH oxidase (Nox/Duox) family of enzymes.
BMC Evol Biol
7:
109,
2007.
|
263. |
Kemp PJ,
Telezhkin V,
Wilkinson WJ,
Mears R,
Hanmer SB,
Gadeberg HC,
Muller CT,
Riccardi D,
Brazier SP.
Enzyme‐linked oxygen sensing by potassium channels.
Ann N Y Acad Sci
1177:
112‐118,
2009.
|
264. |
Kerepesi T,
Rady P,
Balla G,
Dauda G.
Maturation of the fetal lung II. Effect of hyperoxia on phosphatidic acid phosphatase, pyruvate kinase and superoxide dismutase activity in the newborn rat lung.
Acta Paediatr Hung
25:
247‐254,
1984.
|
265. |
Kevin LG,
Camara AK,
Riess ML,
Novalija E,
Stowe DF.
Ischemic preconditioning alters real‐time measure of O2 radicals in intact hearts with ischemia and reperfusion.
Am J Physiol Heart Circ Physiol
284:
H566‐H574,
2003.
|
266. |
Khan N,
Shen J,
Chang TY,
Chang CC,
Fung PCW,
Grinberg O,
Demidenko E,
Swartz H.
Plasma membrane cholesterol: A possible barrier to intracellular oxygen in normal and mutant CHO cells defective in cholesterol metabolism.
Biochemistry
42:
29,
2003.
|
267. |
Kim JH,
Jang YH,
Chun KJ,
Kim J,
Park YH,
Kim JS,
Kim JM,
Lee MY.
Kappa‐opioid receptor activation during reperfusion limits myocardial infarction via ERK1/2 activation in isolated rat hearts.
Korean J Anesthesiol
60:
351‐356,
2011.
|
268. |
Kimura Y,
Dargusch R,
Schubert D,
Kimura H.
Hydrogen sulfide protects HT22 neuronal cells from oxidative stress.
Antioxid Redox Signal
8:
661‐670,
2006.
|
269. |
Kindig CA,
Howlett RA,
Hogan MC.
Effect of contractile duration on intracellular PO2 kinetics in Xenopus single skeletal myocytes.
J Appl Physiol
98:
1639‐1645,
2005.
|
270. |
Kindig CA,
Howlett RA,
Stary CM,
Walsh B,
Hogan MC.
Effects of acute creatine kinase inhibition on metabolism and tension development in isolated single myocytes.
J Appl Physiol
98:
541‐549,
2005.
|
271. |
Kindig CA,
Kelley KM,
Howlett RA,
Stary CM,
Hogan MC.
Assessment of O2 uptake dynamics in isolated single skeletal myocytes.
J Appl Physiol
94:
353‐357,
2003.
|
272. |
Kleinbongard P,
Schulz R,
Heusch G.
TNFalpha in myocardial ischemia/reperfusion, remodeling and heart failure.
Heart Fail Rev
16:
49‐69,
2011.
|
273. |
Kobzik L,
Reid MB,
Bredt DS,
Stamler JS.
Nitric oxide in skeletal muscle.
Nature
372:
546‐504,
1994.
|
274. |
Koechlin C,
Maltais F,
Saey D,
Michaurd A,
LeBlanc P,
Hayot M,
Prefaut C.
Hypoxaemia enhances peripheral muscle oxidative stress in chronic obsructive pulmonary disease.
Thorax
60:
834‐841,
2005.
|
275. |
Koenitzer JR,
Isbell TS,
Patel HD,
Benavides GA,
Dickinson DA,
Patel RP,
Darley‐Usmar VM,
Lancaster JR, Jr.,
Doeller JE,
Kraus DW.
Hydrogen sulfide mediates vasoactivity in an O2‐dependent manner.
Am J Physiol Heart Circ Physiol
292:
H1953‐H1960,
2007.
|
276. |
Kohin S,
Stary CM,
Howlett RA,
Hogan MC.
Preconditioning improves function and recovery of single muscle fibers during severe hypoxia and reoxygenation.
Am J Physiol Cell Physiol
281:
C142‐C146,
2001.
|
277. |
Kohzuki H,
Enoki Y,
Shimizu S,
Sakata S.
High blood O2 affinity and relationship of O2 uptake and delivery in resting muscle.
Respir Physiol
92:
197‐208,
1993.
|
278. |
Koritzinsky M,
Magagnin MG,
van den Beucken T,
Seigneuric R,
Savelkouls K,
Dostie J,
Pyronnet S,
Kaufman RJ,
Weppler SA,
Voncken JW,
Lambin P,
Koumenis C,
Sonenberg N,
Wouters BG.
Gene expression during acute and prolonged hypoxia is regulated by distinct mechanisms of translational control.
EMBO J
25:
1114‐1125,
2006.
|
279. |
Koritzinsky M,
Seigneuric R,
Magagnin MG,
van den Beucken T,
Lambin P,
Wouters BG.
The hypoxic proteome is influenced by gene‐specific changes in mRNA translation.
Radiother Oncol
76:
177‐186,
2005.
|
280. |
Koritzinsky M,
Wouters BG.
Hypoxia and regulation of messenger RNA translation.
Methods Enzymol
435:
247‐273,
2007.
|
281. |
Korvald C,
Elvenes OP,
Myrmel T.
Myocardial substrate metabolism influences left ventricular energetics in vivo.
Am J Physiol Heart Circ Physiol
278:
H1345‐H1351,
2000.
|
282. |
Koumenis C,
Naczki C,
Koritzinsky M,
Rastani S,
Diehl A,
Sonenberg N,
Koromilas A,
Wouters BG.
Regulation of protein synthesis by hypoxia via activation of the endoplasmic reticulum kinase PERK and phosphorylation of the translation initiation factor eIF2alpha.
Mol Cell Biol
22:
7405‐7416,
2002.
|
283. |
Kowalchuk JM,
Heigenhauser GJF,
Lindinger MI,
Sutton JR,
Jones NL.
Factors influencing hydrogen ion concentration in muscle after intense exercise.
J Appl Physiol
65:
2080‐2089,
1988.
|
284. |
Krustrup P,
Jones AM,
Wilkerson DP,
Calbet JA,
Bangsbo J.
Muscular and pulmonary O2 uptake kinetics during moderate‐ and high‐intensity sub‐maximal knee‐extensor exercise in humans.
J Physiol
587:
1843‐1856,
2009.
|
285. |
Kunz WS.
Control of oxidative phosphorylation in skeletal muscle.
Biochim Biophys Acta
1504:
12‐19,
2001.
|
286. |
Kuroda J,
Ago T,
Matsushima S,
Zhai P,
Schneider MD,
Sadoshima J.
NADPH oxidase 4 (Nox4) is a major source of oxidative stress in the failing heart.
Proc Natl Acad Sci U S A
107:
15565‐15570,
2010.
|
287. |
Kuroda J,
Nakagawa K,
Yamasaki T,
Nakamura K,
Takeya R,
Kuribayashi F,
Imajoh‐Ohmi S,
Igarashi K,
Shibata Y,
Sueishi K,
Sumimoto H.
The superoxide‐producing NAD(P)H oxidase Nox4 in the nucleus of human vascular endothelial cells.
Genes Cells
10:
1139‐1151,
2005.
|
288. |
Kurtz CC,
Lindell SL,
Mangino MJ,
Carey HV.
Hibernation confers resistance to intestinal ischemia‐reperfusion injury.
Am J Physiol Gastrointest Liver Physiol
291:
G895‐901,
2006.
|
289. |
Kutala VK,
Parinandi N,
Pandian RP,
Kuppusamy P.
Simultaneous measurement of oxygenation in intracellular and extracellular compartments of lung microvascular endothelial cells.
Antioxid Redox Signal
6:
597‐603,
2004.
|
290. |
Lacerda L,
Somers S,
Opie LH,
Lecour S.
Ischaemic postconditioning protects against reperfusion injury via the SAFE pathway.
Cardiovasc Res
84:
201‐208,
2009.
|
291. |
Lahiri S,
Roy A,
Baby SM,
Hoshi T,
Semenz GL,
Prabhakar NR.
Oxygen sensing in the body.
Prog Biophys Mol Biol
91:
249‐286,
2006.
|
292. |
Lai N,
Zhou H,
Saidel GM,
Wolf M,
McCully K,
Gladden LB,
Cabrera ME.
Modeling oxygenation in venous blood and skeletal muscle in response to exercise using near‐infrared spectroscopy.
J Appl Physiol
106:
1858‐1874,
2009.
|
293. |
Laplante A,
Vincent G,
Poirier M,
Des Rosiers C.
Effects and metabolism of fumarate in the perfused rat heart. A 13C mass isotopomer study.
Am J Physiol
272:
E74‐E82,
1997.
|
294. |
Lassegue B,
Clempus RE.
Vascular NAD(P)H oxidases: Specific features, expression and regulation.
Am J Physiol
285:
R277‐R297,
2003.
|
295. |
Lavista‐Llanos S,
Centanin L,
Irisarri M,
Russo DM,
Gleadle JM,
Bocca SN,
Muzzopappa M,
Ratcliffe PJ,
Wappner P.
Control of the hypoxic response in Drosophila melanogaster by the basic helix‐loop‐helix PAS protein similar.
Mol Cell Biol
22:
6842‐6853,
2002.
|
296. |
Lazarowski ER,
Boucher RC,
Harden TK.
Mechanisms of release of nucleotides and integration of their action as P2X‐ and P2Y‐receptor activating molecules.
Mol Pharmacol
64:
785‐795,
2003.
|
297. |
Lecour S.
Activation of the protective Survivor Activating Factor Enhancement (SAFE) pathway against reperfusion injury: Does it go beyond the RISK pathway?
J Mol Cell Cardiol
47:
32‐40,
2009.
|
298. |
Lecour S,
Suleman N,
Deuchar GA,
Somers S,
Lacerda L,
Huisamen B,
Opie LH.
Pharmacological preconditioning with tumor necrosis factor‐alpha activates signal transducer and activator of transcription‐3 at reperfusion without involving classic prosurvival kinases (Akt and extracellular signal‐regulated kinase).
Circulation
112:
3911‐3918,
2005.
|
299. |
Lederer WJ,
Nichols CG.
Nucleotide modulation of the activity of rat heart ATP‐sensitive K +channels in isolated membrane patches.
J Physiol
419:
193‐211,
1989.
|
300. |
Lee I,
Bender E,
Arnold S,
Kadenbach B.
New control of mitochondrial membrane potential and ROS formation–a hypothesis.
Biol Chem
382:
1629‐1636,
2001.
|
301. |
Lee I,
Bender E,
Kadenbach B.
Control of mitochondrial membrane potential and ROS formation by reversible phosphorylation of cytochrome c oxidase.
Mol Cell Biochem
234‐235:
63‐70,
2002.
|
302. |
Lesnefsky EJ,
Minkler P,
Hoppel CL.
Enhanced modification of cardiolipin during ischemia in the aged heart.
J Mol Cell Cardiol
46:
1008‐1015,
2009.
|
303. |
Leto TL,
Morand S,
Hurt D,
Ueyama T.
Targeting and regulation of reactive oxygen species generation by Nox family NADPH oxidases.
Antioxid Redox Signal
11:
2607‐2619,
2009.
|
304. |
Li J,
McCullough LD.
Effects of AMP‐activated protein kinase in cerebral ischemia.
J Cereb Blood Flow Metab
30:
480‐492,
2010.
|
305. |
Lim JH,
Lee YM,
Chun YS,
Chen J,
Kim JE,
Park JW.
Sirtuin 1 modulates cellular responses to hypoxia by deacetylating hypoxia‐inducible factor 1alpha.
Mol Cell
38:
864‐878,
2010.
|
306. |
Linari M,
Caremani M,
Lombardi V.
A kinetic model that explains the effect of inorganic phosphate on the mechanics and energetics of isometric contraction of fast skeletal muscle.
Proc Biol Sci
277:
19‐27,
2010.
|
307. |
Lindahl SG.
Oxygen and life on earth: an anesthesiologist's views on oxygen evolution, discovery, sensing, and utilization.
Anesthesiology
109:
7‐13,
2008.
|
308. |
Litvan J,
Briva A,
Wilson MS,
Budinger GR,
Sznajder JI,
Ridge KM.
Beta‐adrenergic receptor stimulation and adenoviral overexpression of superoxide dismutase prevent the hypoxia‐mediated decrease in Na,K‐ATPase and alveolar fluid reabsorption.
J Biol Chem
281:
19892‐19898,
2006.
|
309. |
Liu GS,
Thornton J,
Van Winkle DM,
Stanley AW,
Olsson RA,
Downey JM.
Protection against infarction afforded by preconditioning is mediated by A1 adenosine receptors in rabbit heart.
Circulation
84:
350‐356,
1991.
|
310. |
Liu M,
Sanyal S,
Gao G,
Gurung IS,
Zhu X,
Gaconnet G,
Kerchner LJ,
Shang LL,
Huang CL,
Grace A,
London B,
Dudley SC, Jr.
Cardiac Na+ current regulation by pyridine nucleotides.
Circ Res
105:
737‐745,
2009.
|
311. |
Liu X,
Miller MJS,
Joshi MS,
Thomas DD,
Lancaster JR.
Accelerated reaction of nitric oxide with O2 within the hydrophobic interior of biological membranes.
Proc Nat Acad Sci U S A
95:
2175‐2179,
1998.
|
312. |
Liu Y,
Ortiz de Montellano PR.
Reaction intermediates and single turnover rate constants for the oxidation of heme by human heme oxygenase‐1.
J Biol Chem
275:
5297‐5307,
2000.
|
313. |
Longmuir IS.
Channels of oxygen transport from blood to mitochondria.
Adv Physiol Sci
25:
19‐22,
1980.
|
314. |
Lopez‐Barneo J,
Lopez‐Lopez JR,
Urena J,
Gonzalez C.
Chemotransduction in the carotid body: K+ current modulated by PO2 in type I chemoreceptor cells.
Science
241:
580‐582,
1988.
|
315. |
Lopez‐Barneo J,
Pardal R,
Montoro RJ,
Smani T,
Garcia‐Hirschfeld J,
Urena J.
K+ and Ca2 +channel activity and cytosolic [Ca2+] in oxygen‐sensing tissues.
Respir Physiol
115:
215‐227,
1999.
|
316. |
Luby‐Phelps K.
Physical properties of cytoplasm.
Curr Opin Cell Bio
6:
3‐9,
1994.
|
317. |
Ludwig B,
Bender E,
Arnold S,
Huttemann M,
Lee I,
Kadenbach B.
Cytochrome C oxidase and the regulation of oxidative phosphorylation.
Chembiochem
2:
392‐403,
2001.
|
318. |
Lundby C,
Pilegaard H,
van Hall G,
Sander M,
Calbet J,
Loft S,
Moller P.
Oxidative DNA damage and repair in skeletal muscle of humans exposed to high‐altitude hypoxia.
Toxicology 192(2‐3): 229‐236,
2003.
|
319. |
Lundby C,
Van Hall G.
Substrate utilization in sea level residents during exercise in acute hypoxia and after 4 weeks of acclimatization to 4100 m.
Acta Physiol Scand
176:
195‐201,
2002.
|
320. |
Lundin G,
Strom G.
The concentration of blood lactic acid in man during muscular work in relation to the partial pressure of oxygen of the inspired air.
Acta Physiol Scand
13:
253‐266,
1947.
|
321. |
Lynge J,
Juel C,
Hellsten Y.
Extracellular formation and uptake of adenosine during skeletal muscle contraction in the rat: Role of adenosine transporters.
J Physiol
537:
597‐605,
2001.
|
322. |
Magalhaes J,
Ascensao A,
Soares JMC,
Ferreira R,
Neuparth MJ,
Marques F,
Duarte JA.
Acute and severe hypobaric hypoxia increases oxidative stress and impairs mitochondrial function in mouse skeletal muscle.
J Appl Physiol
99
1247‐1253,
2005.
|
323. |
Mahler M.
First‐order kinetics of muscle oxygen consumption, and an equivalent proportionality between QO2 and phosphorylcreatine level. Implications for the control of respiration.
J Gen Physiol
86:
135‐165,
1985.
|
324. |
Mailloux RJ,
Harper ME.
Glucose regulates enzymatic sources of mitochondrial NADPH in skeletal muscle cells; a novel role for glucose‐6‐phosphate dehydrogenase.
FASEB J
24:
2495‐2506,
2010.
|
325. |
Marcinek DJ,
Amara CE,
Matz K,
Conley KE,
Schenkman KA.
Wavelength shift analysis: A simple method to determine the contribution of hemoglobin and myoglobin to in vivo optical spectra.
Appl Spectrosc
61:
665‐669,
2007.
|
326. |
Marcinek DJ,
Ciesielski WA,
Conley KE,
Schenkman KA.
Oxygen regulation and limitation to cellular respiration in mouse skeletal muscle in vivo.
Am J Physiol Heart Circ Physiol
285:
H1900‐H1908,
2003.
|
327. |
Martinelli M,
Winterhalder R,
Cerretelli Pl,
Howald H,
Hoppeler H.
Muscle lipofuscin content and satellite cell volume is increased after high altitude exposure in humans.
Experientia
46:
672‐676,
1990.
|
328. |
Maxwell PH,
Pugh CW,
Ratcliffe PJ.
Inducible operation of the erythropoietin 3’ enhancer in multiple cell lines: Evidence for a widespread oxygen‐sensing mechanism.
Proc Natl Acad Sci U S A
90:
2423‐2427,
1993.
|
329. |
Mayevsky A,
Rogatsky G.
Mitochondrial function in vivo evaluated by NADH fluorescence: Animal models to human studies.
Am J Physiol Cell Physiol 2007: C615‐C640, 2006.
|
330. |
McCully KK,
Hamaoka T.
Near‐infrared spectroscopy: What can it tell us about oxygen saturation in skeletal muscle?
Exerc Sport Sci Rev
28:
123‐127,
2000.
|
331. |
McKenna MC,
Waagepetersen HS,
Schousboe A,
Sonnewald U.
Neuronal and astrocytic shuttle mechanisms for cytosolic‐mitochondrial transfer of reducing equivalents: Current evidence and pharmacological tools.
Biochem Pharmacol
71:
399‐407,
2006.
|
332. |
Means CK,
Xiao CY,
Li Z,
Zhang T,
Omens JH,
Ishii I,
Chun J,
Brown JH.
Sphingosine 1‐phosphate S1P2 and S1P3 receptor‐mediated Akt activation protects against in vivo myocardial ischemia‐reperfusion injury.
Am J Physiol Heart Circ Physiol
292:
H2944‐2951,
2007.
|
333. |
Meeson AP,
Radford N,
Shelton JM,
Mammen PPA,
DiMaio JM,
Hucheson K,
Kong Y,
elterman J,
Williams RS,
Garry DJ.
Adaptive mechanisms that preserve cardiac function in mice without myoglobin.
Circ Res
88:
713‐720,
2001.
|
334. |
Meissner G.
NADH, a new player in the cardiac ryanodine receptor?
Circulation
94:
418‐419,
2004.
|
335. |
Metzen E,
Ratcliffe PJ.
HIF hydroxylation and cellular oxygen sensing.
Biol Chem
385:
223‐230,
2004.
|
336. |
Metzen E,
Zhou J,
Jelkmann W,
Fandrey J,
Brune B.
Nitric oxide impairs normoxic degradation of HIF‐1alpha by inhibition of prolyl hydroxylases.
Mol Biol Cell
14:
3470‐3481,
2003.
|
337. |
Meyer HH.
Welche eigenschaft der anasthetica bedingt inre narkotische wirkung?
Arch Exp Pathol Pharmakol
42:
109‐118,
1899.
|
338. |
Meyer RA.
A linear model of muscle respiration explains monoexponential phosphocreatine changes.
Am J Physiol
254:
C548‐C553,
1988.
|
339. |
Meyer RA,
Terjung RL.
Differences in ammonia and adenylate metabolism in contracting fast and slow muscle.
Am J Physiol
237:
C111‐118,
1979.
|
340. |
Meyerhof O.
The chemistry of muscular contraction.
Lancet
219:
1415‐1422,
1930.
|
341. |
Meyerhof O.
Intermediate Carbohydrate Metabolism.
Madison, WI:
The University of Wisconsin Press,
1942.
|
342. |
Michelakis ED,
Hampl V,
Nsair A,
Wu X,
Harry G,
Haromy A,
Gurtu R,
Archer SL.
Diversity in mitochondrial function explains differences in vascular oxygen sensing.
CircRes
90:
1307‐1315,
2002.
|
343. |
Migita CT,
Matera KM,
Ikeda‐Saito M,
Olson JS,
Fujii H,
Yoshimura T,
Zhou H,
Yoshida T.
The oxygen and carbon monoxide reactions of heme oxygenase.
J Biol Chem
273:
945‐949,
1998.
|
344. |
Miller P,
Kemp PJ,
Lewis A,
Chapman CG,
Meadows HJ,
Peers C.
Acute hypoxia occludes hTREK‐1 modulation: re‐evaluation of the potential role of tandem P domain K+ channels in central neuroprotection.
J Physiol
548:
31‐37,
2003.
|
345. |
Milligan NS,
Edwards JC,
Monro JL,
Atwell JD.
Excision of giant haemangioma in the newborn using hypothermia and cardiopulmonary bypass.
Anaesthesia
40:
875‐878,
1985.
|
346. |
Mingone CJ,
Gupte SA,
Ali N,
Oeckler RA,
Wolin MS.
Thiol oxidation inhibits nitric oxide‐mediated pulmonary artery relaxation and guanylate cyclase stimulation.
Am J Physiol Lung Cell Mol Physiol
290:
L549‐557,
2006.
|
347. |
Missner A,
Kügler P,
Saparov SM,
Sommer K,
Matahi JC,
Zeidel ML.
Carbon dioxide transport through membranes.
J Biol Chem
283:
25340‐25347,
2008.
|
348. |
Missner A,
Pohl P.
110 years of the Meyer‐Overton rule: Predicting membrane permeability of gases and other small compounds.
ChemPhysChem
10:
1405‐1414,
2009.
|
349. |
Mitchell P.
Coupling of phosphorylation to electron and hydrogen transfer by a chemi‐osmotic type of mechanism.
Nature
191:
144‐148,
1961.
|
350. |
Mockridge JW,
Marber MS,
Heads RJ.
Activation of Akt during simulated ischemia/reperfusion in cardiac myocytes.
Biochem Biophys Res Commun
270:
947‐952,
2000.
|
351. |
Mofarrahi M,
Brandes RP,
Gorlach A,
Hanze J,
Terada LS,
Quinn MT,
Mayaki D,
Petrof B,
Hussain SN.
Regulation of proliferation of skeletal muscle precursor cells by NADPH oxidase.
Antioxid Redox Signal
10:
559‐574,
2008.
|
352. |
Mole PA,
Chung Y,
Tran TK,
Sailasuta N,
Hurd R,
Jue T.
Myoglobin desaturation with exercise intensity in human gastrocnemius muscle.
Am J Physiol
277:
R173‐R180,
1999.
|
353. |
Moller M,
Botti H,
Batthyany C,
Rubbos H,
Radi R,
Denicola A.
Direct measurement of nitric oxide and oxygen partitioning into liposomes and low density lipoprotein.
J Biol Chem
280:
8850‐8854,
2005.
|
354. |
Moller MN,
Li Q,
Lancaster JR, Jr.,
Denicola A. Acceleration of nitric oxide autoxidation and nitrosation by membranes.
IUBMB Life
59:
243‐248,
2007.
|
355. |
Moncada S,
Erusalimsky JD.
Does nitric oxide modulate mitochondrial energy generation and apoptosis?
Nat Rev Mol Cell Biol
3:
214‐220,
2002.
|
356. |
Morin C,
Zini R,
Tillement JP.
Anoxia‐reoxygenation‐induced cytochrome c and cardiolipin release from rat brain mitochondria.
Biochem Biophys Res Commun
307:
477‐482,
2003.
|
357. |
Mortola JP.
Implications of hypoxic hypometabolism during mammalian ontogenesis.
Respir Physiol Neurobiol
141:
345‐356,
2004.
|
358. |
Moudgil R,
Michelakis ED,
Archer SL.
The role of k+ channels in determining pulmonary vascular tone, oxygen sensing, cell proliferation, and apoptosis: Implications in hypoxic pulmonary vasoconstriction and pulmonary arterial hypertension.
Microcirculation
13:
615‐632,
2006.
|
359. |
Movafagh S,
Morad M.
L‐type calcium channel as a cardiac oxygen sensor.
Ann N Y Acad Sci
1188:
153‐158,
2010.
|
360. |
Munns SE,
Lui JK,
Arthur PG.
Mitochondrial hydrogen peroxide production alters oxygen consumption in an oxygen‐concentration‐dependent manner.
Free Radic Biol Med
38:
1594‐1603,
2005.
|
361. |
Murphy E,
Steenbergen C.
Mechanisms underlying acute protection from cardiac ischemia‐reperfusion injury.
Physiol Rev
88:
581‐609,
2008.
|
362. |
Murphy MP.
How mitochondria produce reactive oxygen species.
Biochem J
417:
1‐13,
2009.
|
363. |
Nagoshi T,
Yoshimura M,
Rosano GM,
Lopaschuk GD,
Mochizuki S.
Optimization of cardiac metabolism in heart failure.
Curr Pharm Des
17:
3846‐3853,
2011.
|
364. |
Napiwotzki J,
Kadenbach B.
Extramitochondrial ATP/ADP‐ratios regulate cytochrome c oxidase activity via binding to the cytosolic domain of subunit IV.
Biol Chem
379:
335‐339,
1998.
|
365. |
Napiwotzki J,
Shinzawa‐Itoh K,
Yoshikawa S,
Kadenbach B.
ATP and ADP bind to cytochrome c oxidase and regulate its activity.
Biol Chem
378:
1013‐1021,
1997.
|
366. |
Nemeth PM,
Lowry OH.
Myoglobin levels in individual human skeletal muscle fibers of different types.
J Histochem Cytochem
32:
1211‐1216,
1984.
|
367. |
Nisimoto Y,
Jackson HM,
Ogawa H,
Kawahara T,
Lambeth JD.
Constitutive NADPH‐dependent electron transferase activity of the Nox4 dehydrogenase domain.
Biochemistry
49:
2433‐2442,
2010.
|
368. |
Nohl H,
Gille L,
Staniek K.
The mystery of reactive oxygen species derived from cell respiration.
Acta Biochim Pol
51:
223‐229,
2004.
|
369. |
Nohl H,
Gille L,
Staniek K.
Intracellular generation of reactive oxygen species by mitochondria.
Biochem Pharmacol
69:
719‐723,
2005.
|
370. |
Noma A.
ATP‐regulated K+ channels in cardiac muscle.
Nature
305:
147‐148,
1983.
|
371. |
Noma A,
Shibasaki T.
Membrane current through adenosine‐triphosphate‐regulated potassium channels in guinea‐pig ventricular cells.
J Physiol
363:
463‐480,
1985.
|
372. |
Nowak G,
Bakajsova D,
Clifton GL.
Protein kinase C‐epsilon modulates mitochondrial function and active Na+ transport after oxidant injury in renal cells.
Am J Physiol Renal Physiol
286:
F307‐316,
2004.
|
373. |
Nyunoya R,
Monick MM,
Powers LS,
Yarovinsky TO,
Hunninghake GW.
Macrophages survive hyperoxia via prolonged ERK activation due to phosphatase down‐regulation.
J Biol Chem
280:
26295‐26302,
2005.
|
374. |
Ogbi M,
Chew CS,
Pohl J,
Stuchlik O,
Ogbi S,
Johnson JA.
Cytochrome c oxidase subunit IV as a marker of protein kinase Cepsilon function in neonatal cardiac myocytes: implications for cytochrome c oxidase activity.
Biochem J
382:
923‐932,
2004.
|
375. |
Ogbi M,
Johnson JA.
Protein kinase Cepsilon interacts with cytochrome c oxidase subunit IV and enhances cytochrome c oxidase activity in neonatal cardiac myocyte preconditioning.
Biochem J
393:
191‐199,
2006.
|
376. |
Olek RA,
Antosiewicz J,
Popinigis J,
Gabbianelli R,
Fedeli D,
Falcioni G.
Pyruvate but not lactate prevents NADH‐induced myoglobin oxidation.
Free Radic Biol Med
38:
1484‐1490,
2005.
|
377. |
Oliver KM,
Taylor CT,
Cummins EP.
Hypoxia. Regulation of NFkappaB signalling during inflammation: the role of hydroxylases.
Arthritis Res Ther
11:
215,
2009.
|
378. |
Olson KR.
Hydrogen sulfide and oxygen sensing: implications in cardiorespiratory control.
J Exp Biol
211:
2727‐2734,
2008.
|
379. |
Olson KR,
Healy MJ,
Qin Z,
Skovgaard N,
Vulesevic B,
Duff DW,
Whitfield NL,
Yang G,
Wang R,
Perry SF.
Hydrogen sulfide as an oxygen sensor in trout gill chemoreceptors.
Am J Physiol Regul Integr Comp Physiol
295:
R669‐680,
2008.
|
380. |
Olson KR,
Whitfield NL.
Hydrogen sulfide and oxygen sensing in the cardiovascular system.
Antioxid Redox Signal
12:
1219‐1234,
2010.
|
381. |
Olson KR,
Whitfield NL,
Bearden SE,
St Leger J,
Nilson E,
Gao Y,
Madden JA.
Hypoxic pulmonary vasodilation: A paradigm shift with a hydrogen sulfide mechanism.
Am J Physiol Regul Integr Comp Physiol
298:
R51‐R60,
2010.
|
382. |
Ordway GA,
Garry DJ.
Myoglobin: An essential hemoprotein in striated muscle.
J Exp Bio
207:
3441‐3446,
2004.
|
383. |
Oshino N,
Jamieson D,
Chance B.
The properties of hydrogen peroxide production under hyperoxic and hypoxic conditions of perfused rat liver.
Biochem J
146:
53‐65,
1975.
|
384. |
Oshino N,
Sugano T,
Oshino R,
Chance B.
Mitochondrial function under hypoxic conditions: The steady states of cytochrome alpha+alpha3 and their relation to mitochondrial energy states.
Biochim Biophys Acta
368:
298‐310,
1974.
|
385. |
Osipenko ON,
Tate RJ,
Gurney AM.
Potential role for KV3.1b channels as oxygen sensors.
CircRes
86:
534‐540,
2000.
|
386. |
Overton CE.
Studien über die narkose zugleich ein beitrag zur allgemeinen pharmakologie.
Gustav Fischer, Zena Switzerland,
1901.
|
387. |
Owen TG,
Hochachka PW.
Purification and properties of dolphin muscle aspartate and alanine transaminases and thier possible roles in the energy metabolism of diving mammals.
Biochem J
143:
541‐553,
1974.
|
388. |
Palacios‐Callender M,
Quintero M,
Hollis VS,
Springett RJ,
Moncada S.
Endogenous NO regulates superoxide production at low oxygen concentrations by modifying the redox state of cytochrome c oxidase.
Proc Natl Acad Sci U S A
101:
7630‐7635,
2004.
|
389. |
Pan TT,
Feng ZN,
Lee SW,
Moore PK,
Bian JS.
Endogenous hydrogen sulfide contributes to the cardioprotection by metabolic inhibition preconditioning in the rat ventricular myocytes.
J Mol Cell Cardiol
40:
119‐130,
2006.
|
390. |
Pandian RP,
Parinandi NL,
Ilangovan G,
Zweier JL,
Kuppusamy P.
Novel particulate spin probe for targeted determination of oxygen in cells and tissues.
Free Rad Biol Med
35:
1138‐1148,
2003.
|
391. |
Papdopoulos S,
Jürgens KD,
Gros G.
Diffusion of myoglobin in skeletal muscle cells‐dependence on fibre type, contraction and temperature.
Pflugers Arch
430:
519‐525,
1995.
|
392. |
Park SJ,
Chun YS,
Park KS,
Kim SJ,
Choi SO,
Kim HL,
Park JW.
Identification of subdomains in NADPH oxidase‐4 critical for the oxygen‐dependent regulation of TASK‐1 K+ channels.
Am J Physiol Cell Physiol
297:
C855‐C864,
2009.
|
393. |
Park Y,
Kanekal S,
Kehrer JP.
Oxidative changes in hypoxic heart tissue.
Am J Physiol
29:
H1395‐H1405,
1991.
|
394. |
Park Y,
Kehrer JP.
Oxidative changes in hypoxic‐reoxygenated rabbit heart: A consequence of hypoxia rather than reoxygenation.
Free Rad Res Commun
14:
179‐185,
1991.
|
395. |
Pastueur L.
Exp'eriences et vues nouvelles sur la nature des fermentations.
Comptes Rednus Hebdomadaires des S'eances de l'Acad'emie des Sciences
53:
1260‐1264,
1861.
|
396. |
Patel SP,
Campbell DL.
Transient outward potassium current, ‘Ito’, phenotypes in the mammalian left ventricle: underlying molecular, cellular and biophysical mechanisms.
J Physiol
569:
7‐39,
2005.
|
397. |
Peng YJ,
Nanduri J,
Raghuraman G,
Souvannakitti D,
Gadalla MM,
Kumar GK,
Snyder SH,
Prabhakar NR.
H2S mediates O2 sensing in the carotid body.
Proc Natl Acad Sci U S A
107:
10719‐10724,
2010.
|
398. |
Petrushanko IY,
Bogdanov NB,
Lapina N,
Boldyrev AA,
Gassmann M,
Bogdanova AY.
Oxygen‐induced regulation of Na/K ATPase in cerebellar granule cells.
J Gen Physiol
130:
389‐398,
2007.
|
399. |
Phillips D,
Aponte AM,
French SA,
Chess DJ,
Balaban RS.
Succinyl‐CoA synthetase is a phosphate target for the activation of mitochondrial metabolism.
Biochemistry
48:
7140‐7149,
2009.
|
400. |
Phillips D,
Covian R,
Aponte AM,
Glancy B,
Taylor JF,
Chess D,
Balaban RS.
Regulation of oxidative phosphorylation complex activity: Effects of tissue‐specific metabolic stress within an allometric series and acute changes in workload.
Am J Physiol Regul Integr Comp Physiol
302:
R1034‐R1048,
2012.
|
401. |
Plant LD,
Kemp PJ,
Peers C,
Henderson Z,
Pearson HA.
Hypoxic depolarization of cerebellar granule neurons by specific inhibition of TASK‐1.
Stroke
33:
2324‐2328,
2002.
|
402. |
Pollak N,
Dolle C,
Ziegler M.
The power to reduce: Pyridine nucleotides–small molecules with a multitude of functions.
Biochem J
402:
205‐218,
2007.
|
403. |
Poole D,
Brown M,
Hudlicka O.
Last word on Point:Counterpoint: There is/is not capillary recruitment in active skeletal muscle during exercise.
J Appl Physiol
104:
901,
2008.
|
404. |
Poole DC,
Barstow TJ,
McDonough P,
Jones AM.
Control of oxygen uptake during exercise.
Med Sci Sports Exerc
40:
462‐474,
2008.
|
405. |
Poole DC,
Brown MD,
Hudlicka O.
Counterpoint: There is not capillary recruitment in active skeletal muscle during exercise.
J Appl Physiol
104:
891‐893; discussion 893‐894, 2008.
|
406. |
Poole DC,
Jones AM.
Oxygen uptake kinetics.
Comp Physiol
2: 933‐996,
2012.
|
407. |
Power GS,
Stegall H.
Solubility of gases in human red blood cell ghosts.
J Appl Physiol
29:
145‐149,
1970.
|
408. |
Prabhakar NR,
Dinerman JL,
Agani FH,
Snyder SH.
Carbon monoxide: A role in carotid body chemoreception.
Proc Natl Acad Sci U S A
92:
1994‐1997,
1995.
|
409. |
Prabu SK,
Anandatheerthavarada HK,
Raza H,
Srinivasan S,
Spear JF,
Avadhani NG.
Protein kinase A‐mediated phosphorylation modulates cytochrome c oxidase function and augments hypoxia and myocardial ischemia‐related injury.
J Biol Chem
281:
2061‐2070,
2006.
|
410. |
Prasad SS,
Russell M,
Nowakowska M.
Neuroprotection induced in vitro by ischemic preconditioning and postconditioning: Modulation of apoptosis and PI3K‐Akt pathways.
J Mol Neurosci
43:
428‐442,
2011.
|
411. |
Przyklenk K,
Bauer B,
Ovize M,
Kloner RA,
Whittaker P.
Regional ischemic ‘preconditioning’ protects remote virgin myocardium from subsequent sustained coronary occlusion.
Circulation
87:
893‐899,
1993.
|
412. |
Punn A,
Mockridge JW,
Farooqui S,
Marber MS,
Heads RJ.
Sustained activation of p42/p44 mitogen‐activated protein kinase during recovery from simulated ischaemia mediates adaptive cytoprotection in cardiomyocytes.
Biochem J
350
(Pt 3):
891‐899,
2000.
|
413. |
Putman CT,
Jones NL,
Lands LC,
Bragg TM,
Hollidge‐Horvat MG,
Heigenhauser GJ.
Skeletal muscle pyruvate dehydrogenase activity during maximal exercise in humans.
Am J Physiol
269:
E458‐468,
1995.
|
414. |
Racker E.
History of the Pasteur effect and its pathobiology.
Mol Cell Biochem
5:
17‐23,
1974.
|
415. |
Rahimtoola SH.
Clinical aspects of hibernating myocardium.
J Mol Cell Cardiol
28:
2397‐2401,
1996.
|
416. |
Ramnanan CJ,
McMullen DC,
Groom AG,
Storey KB.
The regulation of AMPK signaling in a natural state of profound metabolic rate depression.
Mol Cell Biochem
335:
91‐105,
2010.
|
417. |
Ramzan R,
Staniek K,
Kadenbach B,
Vogt S.
Mitochondrial respiration and membrane potential are regulated by the allosteric ATP‐inhibition of cytochrome c oxidase.
Biochim Biophys Acta
1797:
1672‐1680,
2010.
|
418. |
Randle PJ,
Smith GH.
Regulation of glucose uptake by muscle. 1. The effects of insulin, anaerobiosis and cell poisons on the uptake of glucose and release of potassium by isolated rat diaphragm.
Biochem J
70:
490‐500,
1958a.
|
419. |
Randle PJ,
Smith GH.
Regulation of glucose uptake by muscle. 2. The effects of insulin, anaerobiosis and cell poisons on the penetration of isolated rat diaphragm by sugars.
Biochem J
70:
501‐508,
1958b.
|
420. |
Rathore R,
Zheng YM,
Niu CF,
Liu QH,
Korde A,
Ho YS,
Wang YX.
Hypoxia activates NADPH oxidase to increase [ROS]i and [Ca2+]i through the mitochondrial ROS‐PKCepsilon signaling axis in pulmonary artery smooth muscle cells.
Free Radic Biol Med
45:
1223‐1231,
2008.
|
421. |
Reid RC,
Sherwood TK.
Properties of Gases & Liquids.
New York, NY:
McGraw Hill,
1987.
|
422. |
Reil JC,
Gilles S,
Zahler S,
Brandl A,
Drexler H,
Hultner L,
Matrisian LM,
Welsch U,
Becker BF.
Insights from knock‐out models concerning postischemic release of TNFalpha from isolated mouse hearts.
J Mol Cell Cardiol
42:
133‐141,
2007.
|
423. |
Reiser G.
Nitric oxide formation caused by Ca2+ release from internal stores in neuronal cell line is enhanced by cyclic AMP.
Eur J Pharmacol
227:
89‐93,
1992.
|
424. |
Richardson RS,
Duteil S,
Wary C,
Wray DW,
Hoff J,
Carlier PG.
Human skeletal muscle intracellular oxygenation: The impact of ambient oxygen availability.
J Physiol
571.2:
415‐424,
2006.
|
425. |
Richardson RS,
Grassi B,
Gavin TP,
Haseler LJ,
Tagore K,
Roca J,
Wagner PD.
Evidence of O2 supply‐dependent VO2 max in the exercise‐trained human quadriceps.
J Appl Physiol
86:
1048‐1053,
1999.
|
426. |
Richardson RS,
Leigh JS,
Wagner PD,
Noyszewski EA.
Cellular PO2 as a determinant of maximal mitochondrial O(2) consumption in trained human skeletal muscle.
J Appl Physiol
87:
325‐331,
1999.
|
427. |
Richardson RS,
Newcomer SC,
Noyszewski EA.
Skeletal muscle intracellular PO2 assessed by myoglobin desaturation: Response to graded exercise
J Appl Physiol
91
2679‐2685,
2001.
|
428. |
Richardson RS,
Noyszewski EA,
Leigh JS,
Wagner PD.
Lactate efflux from exercising human skeletal muscle: Role of intracellular PO2.
J Appl Physiol
85:
627‐634,
1998.
|
429. |
Richardson RS,
Noyszewski EA,
Saltin B,
Gonzalez‐Alonso J.
Effect of mild carboxy‐hemoglobin on exercising skeletal muscle: Intravascular and intracellular evidence.
Am J Physiol Regul Integr Comp Physiol
283:
R1131‐R1139,
2002.
|
430. |
Rizzuto R,
Duchen MR,
Pozzan T.
Flirting in little space: The ER/mitochondria Ca2+ liaison.
Sci STKE
2004:
re1,
2004.
|
431. |
Roberts AC,
Butterfield GE,
Cymerman A,
Reeves JT,
Wolfel EE,
Brooks GA.
Acclimatization to 4,300‐m altitude decreases reliance on fat as a substrate.
J Appl Physiol
81:
1762‐1771,
1996.
|
432. |
Roberts CK,
Barnard RJ,
Jasman A,
Balon TW.
Acute exercise increases nitric oxide synthase activity in skeletal muscle.
Am J Physiol
277:
E390‐E394,
1999.
|
433. |
Robiolio M,
Rumsey WL,
Wilson DF.
Oxygen diffusion and mitochondrial respiration in neuroblastoma cells.
Am J Physiol
256:
C1207‐C1213,
1989.
|
434. |
Rodriguez‐Zavala JS,
Pardo JP,
Moreno‐Sanchez R.
Modulation of 2‐oxoglutarate dehydrogenase complex by inorganic phosphate, Mg(2+), and other effectors.
Arch Biochem Biophys
379:
78‐84,
2000.
|
435. |
Rolfe DF,
Brown GC.
Cellular energy utilization and molecular origin of standard metabolic rate in mammals.
Physiol Rev
77:
731‐758,
1997.
|
436. |
Ross J, Jr.
Myocardial perfusion‐contraction matching. Implications for coronary heart disease and hibernation.
Circulation
83:
1076‐1083,
1991.
|
437. |
Rossi F.
The O2‐ ‐forming NADPH oxidase of the phagocytes: Nature, mechanisms of activation and function.
Biochim Biophys Acta
853:
65‐89,
1986.
|
438. |
Rossiter HB.
Exercise: Kinetic considerations for gas exchange.
Comp Physiol 1: 203‐244,
2010.
|
439. |
Roy S,
Khanna S,
Wallace WA,
Lappalainen J,
Rink C,
Cardounel AJ,
Zweier JL,
Sen CK.
Characterization of perceived hyperoxia in isolated primary cardiac fibroblasts and in the reoxygenated heart.
J Biol Chem
278:
47129‐47135,
2003.
|
440. |
Rumsey WL,
Schlosser C,
Nuutinen EM,
Robiolio M,
Wilson DF.
Cellular energetics and the oxygen dependence of respiration in cardiac myocytes isolated from adult rat.
J Biol Chem
265:
15392‐15402,
1990.
|
441. |
Russell RR, III,
Li J,
Coven DL,
Pypaert M,
Zechner C,
Palmeri M,
Giordano FJ,
Mu J,
Birnbaum MJ,
Young LH.
AMP‐activated protein kinase mediates ischemic glucose uptake and prevents postischemic cardiac dysfunction, apoptosis, and injury.
J Clin Invest
114:
495‐503,
2004.
|
442. |
Ryter SW,
Alam J,
Choi AM.
Heme oxygenase‐1/carbon monoxide: From basic science to therapeutic applications.
Physiol Rev
86:
583‐650,
2006.
|
443. |
Sahlin K.
NADH in human skeletal muscle during short‐term intense exercise.
Pflugers Arch
403:
193‐196,
1985.
|
444. |
Sahlin K,
Harris RC.
The creatine kinase reaction: A simple reaction with functional complexity.
Amino Acids
40:
1363‐1367,
2011.
|
445. |
Saint DA.
The role of the persistent Na(+) current during cardiac ischemia and hypoxia.
J Cardiovasc Electrophysiol
17
(Suppl 1):
S96‐S103,
2006.
|
446. |
Salmeen A,
Andersen JN,
Myers MP,
Meng TC,
Hinks JA,
Tonks NK,
Barford D.
Redox regulation of protein tyrosine phosphatase 1B involves a sulphenyl‐amide intermediate.
Nature
423:
769‐773,
2003.
|
447. |
Salmeen A,
Barford D.
Functions and mechanisms of redox regulation of cysteine‐based phosphatases.
Antioxid Redox Signal
7:
560‐577,
2005.
|
448. |
Salway JG.
Metabolism At a Glance.
Osney Mead, Oxford; Malden, MA, USA:
Blackwell Science,
1999.
|
449. |
Sandiford SD,
Green HJ,
Duhamel TA,
Perco JG,
Schertzer JD,
Ouyang J.
Inactivation of human muscle Na+‐K+‐ATPase in vitro during prolonged exercise is increased with hypoxia.
J Appl Physiol
96:
1767‐1775,
2004.
|
450. |
Scandurra FM,
Gnaiger E.
Cell respiration under hypoxia: Facts and artefacts in mitochondrial oxygen kinetics.
Adv Exp Med Biol
662:
7‐25,
2010.
|
451. |
Schagger H,
Hagen T,
Roth B,
Brandt U,
Link TA,
von Jagow G.
Phospholipid specificity of bovine heart bc1 complex.
Eur J Biochem
190:
123‐130,
1990.
|
452. |
Scheibye‐Knudsen M,
Quistorff B.
Regulation of mitochondrial respiration by inorganic phosphate; comparing permeabilized muscle fibers and isolated mitochondria prepared from type‐1 and type‐2 rat skeletal muscle.
Eur J Appl Physiol
105:
279‐287,
2009.
|
453. |
Schlattner U,
Tokarska‐Schlattner M,
Wallimann T.
Mitochondrial creatine kinase in human health and disease.
Biochim Biophys Acta
1762:
164‐180,
2006.
|
454. |
Schlieper G,
Kim JH,
Molojavyi A,
Jacoby C,
Laussmann T,
Fl”gel U,
G”decke A,
Schrader J.
Adaptation of the myoglobin knockout mouse to hypoxic stress.
Am J Physiol Regul Integr Comp Physiol
286:
R786‐R792,
2004.
|
455. |
Schmeding M,
Neumann UP,
Boas‐Knoop S,
Spinelli A,
Neuhaus P.
Erythropoietin reduces ischemia‐reperfusion injury in the rat liver.
Eur Surg Res
39:
189‐197,
2007.
|
456. |
Schmidt‐Ott SC,
Bletz C,
Vahl C,
Saggau W,
Hagl S,
Ruegg JC.
Inorganic phosphate inhibits contractility and ATPase activity in skinned fibers from human myocardium.
Basic Res Cardiol
85:
358‐366,
1990.
|
457. |
Schroeder JL,
Luger‐Hamer M,
Pursley R,
Pohida T,
Chefd'hotel C,
Kellman P,
Balaban RS.
Short communication: Subcellular motion compensation for minimally invasive microscopy, in vivo: Evidence for oxygen gradients in resting muscle.
Circ Res
106:
1129‐1133,
2010.
|
458. |
Schulman D,
Latchman DS,
Yellon DM.
Urocortin protects the heart from reperfusion injury via upregulation of p42/p44 MAPK signaling pathway.
Am J Physiol Heart Circ Physiol
283:
H1481‐H1488,
2002.
|
459. |
Schultz JE,
Rose E,
Yao Z,
Gross GJ.
Evidence for involvement of opioid receptors in ischemic preconditioning in rat hearts.
Am J Physiol
268:
H2157‐H2161,
1995.
|
460. |
Schulz R,
Boengler K,
Totzeck A,
Luo Y,
Garcia‐Dorado D,
Heusch G.
Connexin 43 in ischemic pre‐ and postconditioning.
Heart Fail Rev
12:
261‐266,
2007.
|
461. |
Schulz R,
Cohen MV,
Behrends M,
Downey JM,
Heusch G.
Signal transduction of ischemic preconditioning.
Cardiovasc Res
52:
181‐198,
2001.
|
462. |
Schumacker PT,
Chandel N,
Agusti AG.
Oxygen conformance of cellular respiration in hepatocytes.
Am J Physiol
265:
L395‐L402,
1993.
|
463. |
Scragg JL,
Dallas ML,
Wilkinson JA,
Varadi G,
Peers C.
Carbon monoxide inhibits L‐type Ca2+ channels via redox modulation of key cysteine residues by mitochondrial reactive oxygen species.
J Biol Chem
283:
24412‐24419,
2008.
|
464. |
Selemidis S,
Sobey CG,
Wingler K,
Schmidt HH,
Drummond GR.
NADPH oxidases in the vasculature: molecular features, roles in disease and pharmacological inhibition.
Pharmacol Therap
120:
254‐291,
2008.
|
465. |
Seman M,
Adriouch S,
Scheuplein F,
Krebs C,
Freese D,
Glowacki G,
Deterre P,
Haag F,
Koch‐Nolte F.
NAD‐induced T cell death: ADP‐ribosylation of cell surface proteins by ART2 activates the cytolytic P2X7 purinoceptor.
Immunity
19:
571‐582,
2003.
|
466. |
Semenza GL.
Oxygen homeostasis.
Wiley Interdisciplinary Reviews: Systems Biology and Medicine
2: 336‐361,
2010.
|
467. |
Semenza GL.
Regulation of oxygen homeostasis by hypoxia‐inducible factor 1.
Physiology
24:
97‐106,
2008.
|
468. |
Semenza GL,
Nejfelt MK,
Chi SMASE.
Hypoxia‐inducible nuclear factors bind to an enhancer element located 3’ to the human erythropoietin gene.
Proc Natl Acad Sci U S A
88:
5685,
1991.
|
469. |
Serra‐Perez A,
Planas AM,
Nunez‐O'Mara A,
Berra E,
Garcia‐Villoria J,
Ribes A,
Santalucia T.
Extended ischemia prevents HIF1alpha degradation at reoxygenation by impairing prolyl‐hydroxylation: Role of Krebs cycle metabolites.
J Biol Chem
285:
18217‐18224,
2010.
|
470. |
Sharma S,
Yang B,
Xi X,
Grotta JC,
Aronowski J,
Savitz SI.
IL‐10 directly protects cortical neurons by activating PI‐3 kinase and STAT‐3 pathways.
Brain Res
1373:
189‐194,
2011.
|
471. |
Shen J,
Khan N,
Lewis L,
Armand R,
Grinberg O,
Demidenko E,
Swartz H.
Oxygen consumption rates and oxygen concentration in Molt‐4 cells and their mtDNA depleted (r o) mutants.
Biophys J
84:
1291‐1298,
2003.
|
472. |
Sheth MV,
Goodman BE,
Freiese JL,
Eyster KM.
Protein kinase and phosphatase activity in the lungs of normoxic versus hyperoxic rats.
Exp Lung Res
23:
475‐494,
1997.
|
473. |
Sidell Bd.
Intracellular oxygen diffusion: The roles of myoglobin and lipid at cold body temperature.
J Exp Biol
201:
1118‐1127,
1998.
|
474. |
Simon SA,
Gutknecht J.
Solubility of carbon dioxide in lipid bilayer membranes and organic solvents.
Biochim Biophys Acta
596:
352‐358,
1980.
|
475. |
Singh S,
Manda SM,
Sikder D,
Birrer MJ,
Rothermel BA,
Garry DJ,
Mammen PPA.
Calcineurin activates cytoglobin transcription in hypoxic myocytes.
J Biol Chem
284:
10409‐10421,
2009.
|
476. |
Siskind SJ,
Sonnenblick EH,
Forman R,
Scheuer J,
LeJemtel TH.
Acute substantial benefit of inotropic therapy with amrinone on exercise hemodynamics and metabolism in severe congestive heart failure.
Circulation
64:
966‐973,
1981.
|
477. |
Sitdikova GF,
Weiger TM,
Hermann A.
Hydrogen sulfide increases calcium‐activated potassium (BK) channel activity of rat pituitary tumor cells.
Pflugers Arch
459:
389‐397,
2010.
|
478. |
Sivarajah A,
McDonald MC,
Thiemermann C.
The production of hydrogen sulfide limits myocardial ischemia and reperfusion injury and contributes to the cardioprotective effects of preconditioning with endotoxin, but not ischemia in the rat.
Shock
26:
154‐161,
2006.
|
479. |
Smotkin ES,
Moy T,
Plachy WZ.
Dioxygen solubility in aqueous phosphatidylcholine dispersions.
Biochim Biophys Acta
1061:
33‐38,
1991.
|
480. |
Snedden W,
Ledez K,
Manson HJ.
A new method for the measurement of gas solubility.
J Appl Physiol
80:
1371‐1378,
1996.
|
481. |
Sola A,
De Oca J,
Gonzalez R,
Prats N,
Rosello‐Catafau J,
Gelpi E,
Jaurrieta E,
Hotter G.
Protective effect of ischemic preconditioning on cold preservation and reperfusion injury associated with rat intestinal transplantation.
Ann Surg
234:
98‐106,
2001.
|
482. |
Somers MJ,
Burchfield JS,
Harrison DG.
Evidence for a NADH/NADPH oxidase in human umbilical vein endothelial cells using electron spin resonance.
Antioxid Redox Signal
2:
779‐787,
2000.
|
483. |
Somers SJ,
Frias M,
Lacerda L,
Opie LH,
Lecour S.
Interplay between SAFE and RISK pathways in sphingosine‐1‐phosphate‐induced cardioprotection.
Cardiovasc Drugs Ther
26:
227‐237,
2012.
|
484. |
Spitzer KW,
Skolnick RL,
Peercy BE,
Keener JP,
Vaughan‐Jones RD.
Facilitation of intracellular H+ ion mobility by CO2/HCO3‐ in rabbit ventricular myocytes is regulated by carbonic anhydrase.
J Physiol
541.1:
159‐167,
2002.
|
485. |
Sridharan V,
Guichard J,
Li CY,
Muise‐Helmericks R,
Beeson CC,
Wright GL.
O(2)‐sensing signal cascade: clamping of O(2) respiration, reduced ATP utilization, and inducible fumarate respiration.
Am J Physiol Cell Physiol
295:
C29‐37,
2008.
|
486. |
St‐Pierre J,
Buckingham JA,
Roebuck SJ,
Brand MD.
Topology of superoxide production from different sites in the mitochondrial electron transport chain.
J Biol Chem
277:
44784‐44790,
2002.
|
487. |
Stanley WC,
Chandler MP.
Energy metabolism in the normal and failing heart: Potential for therapeutic interventions.
Heart Fail Rev
7:
115‐130,
2002.
|
488. |
Stanley WC,
Recchia FA,
Lopaschuk GD.
Myocardial substrate metabolism in the normal and failing heart.
Physiol Rev
85:
1093‐1129,
2005.
|
489. |
Steiner DRS,
Gonzalez NC,
Wood JG.
Interaction between reactive oxygen species and nitric oxide in the microvascular response to systemic hypoxia.
J Appl Physiol
93:
1411‐1418,
2002.
|
490. |
Stingele R,
Wagner B,
Kameneva MV,
Williams MA,
Wilson DA,
Thakor NV,
Traystman RJ,
Hanley DF.
Reduction of cytochrome‐c oxidase copper precedes failing cerebral O2 utilization in fluorocarbon‐perfused cats.
Am J Physiol
271:
H579‐H587,
1996.
|
491. |
Storey KB,
Storey JM.
Tribute to P. L. Lutz: Putting life on ‘pause’–molecular regulation of hypometabolism.
J Exp Biol
210:
1700‐1714,
2007.
|
492. |
Stuehr DJ,
Santolini J,
Wang ZQ,
Wei CC,
Adak S.
Update on mechanism and catalytic regulation in the NO synthases.
J Biol Chem
279:
36167‐36170,
2004.
|
493. |
Subczynski WK,
Hopwood LE,
Hyde JS.
Is the mammalian cell plasma membrane a barrier to oxygen transport?
J Gen Physiol
100:
69‐87,
1992.
|
494. |
Subudhi AW,
Dimmen AC,
Roach RC.
Effects of acute hypoxia on cerebral and muscle oxygenation during incremental exercise.
J Appl Physiol
103:
177‐183,
2007.
|
495. |
Sugano T,
Oshino N,
Chance B.
Mitochondrial functions under hypoxic conditions. The steady states of cytochrome c reduction and of energy metabolism.
Biochim Biophys Acta
347:
340‐358,
1974.
|
496. |
Sukhodub A,
Jovanovic S,
Du Q,
Budas G,
Clelland AK,
Shen M,
Sakamoto K,
Tian R,
Jovanovic A.
AMP‐activated protein kinase mediates preconditioning in cardiomyocytes by regulating activity and trafficking of sarcolemmal ATP‐sensitive K(+) channels.
J Cell Physiol
210:
224‐236,
2007.
|
497. |
Sun J,
Picht E,
Ginsburg KS,
Bers DM,
Steenbergen C,
Murphy E.
Hypercontractile female hearts exhibit increased S‐nitrosylation of the L‐type Ca2+ channel alpha1 subunit and reduced ischemia/reperfusion injury.
Circ Res
98:
403‐411,
2006.
|
498. |
Sun YG,
Cao YX,
Wang WW,
Ma SF,
Yao T,
Zhu YC.
Hydrogen sulphide is an inhibitor of L‐type calcium channels and mechanical contraction in rat cardiomyocytes.
Cardiovasc Res
79:
632‐641,
2008.
|
499. |
Swaminathan R,
Bicknese S,
Periasamy N,
Verkman AS.
Cytoplasmic viscosity near the cell plasma membrane: Translational diffusion of a small fluorescent solute measaured by total internal reflection‐fluorescence photobleaching.
Biophys J
71:
1140‐1151,
1996.
|
500. |
Takahashi E,
Sato K,
Endoh H,
Xu ZL,
Doi K.
Direct observation of radial intracellular PO2 gradients in single cardiomyocyte of the rat.
Am J Physiol (Heart Circ Physiol)
44:
H225‐H233,
1998.
|
501. |
Tamareille S,
Mateus V,
Ghaboura N,
Jeanneteau J,
Croue A,
Henrion D,
Furber A,
Prunier F.
RISK and SAFE signaling pathway interactions in remote limb ischemic perconditioning in combination with local ischemic postconditioning.
Basic Res Cardiol
106:
1329‐1339,
2011.
|
502. |
Tamimi A,
Rinker EB,
Sandall OC.
Diffusion coefficients for hydrogen sulfide, carbond dioxide and nitrous oxide in water over the temperature range of 293‐368 K.
J Chem Eng Data 39(2):
330‐332,
1994.
|
503. |
Tamura M,
Hazeki O,
Nioka S,
Chance B.
In vivo study of tissue oxygen metabolism using optical and nuclear magnetic resonance spectroscopies.
Annu Rev Physiol
51:
813‐834,
1989.
|
504. |
Tanaka A,
Chance B,
Quistorff B.
A possible role of inorganic phosphate as a regulator of oxidative phosphorylation in combined urea synthesis and gluconeogenesis in perfused rat liver. A phosphorus magnetic resonance spectroscopy study.
J Biol Chem
264:
10034‐10040,
1989.
|
505. |
Tang C,
Li X,
Du J.
Hydrogen sulfide as a new endogenous gaseous transmitter in the cardiovascular system.
Curr Vasc Pharmacol
4:
17‐22,
2006.
|
506. |
Tang G,
Wu L,
Liang W,
Wang R.
Direct stimulation of K(ATP) channels by exogenous and endogenous hydrogen sulfide in vascular smooth muscle cells.
Mol Pharmacol
68:
1757‐1764,
2005.
|
507. |
Tang J,
Faustman C,
Mancini RA,
Seyfert M,
Hunt MC.
Mitochondrial reduction of metmyoglobin: Dependence on the electron transport chain.
J Agric Food Chem
53:
5449‐5455,
2005.
|
508. |
Tattersall GJ,
Blank JL,
Wood SC.
Ventilatory and metabolic responses to hypoxia in the smallest simian primate, the pygmy marmoset.
J Appl Physiol
92:
202‐210,
2002.
|
509. |
Tay AS,
Hu LF,
Lu M,
Wong PT,
Bian JS.
Hydrogen sulfide protects neurons against hypoxic injury via stimulation of ATP‐sensitive potassium channel/protein kinase C/extracellular signal‐regulated kinase/heat shock protein 90 pathway.
Neuroscience
167:
277‐286,
2010.
|
510. |
Taylor CP,
Narasimhan LS.
Sodium channels and therapy of central nervous system diseases.
Adv Pharmacol
39:
47‐98,
1997.
|
511. |
Taylor CT,
Moncada S.
Nitric oxide, cytochrome C oxidase, and the cellular response to hypoxia.
Arterioscler Thromb Vasc Biol
30:
643‐647,
2010.
|
512. |
Teodoro RO,
O'Farrell PH.
Nitric oxide‐induced suspended animation promotes survival during hypoxia.
EMBO J
22:
580‐587,
2003.
|
513. |
Terjung RL,
Dudley GA,
Meyer RA.
Metabolic and circulatory limitations to muscular performance at the organ level.
J Exp Biol
115:
307‐318,
1985.
|
514. |
Territo PR,
French SA,
Dunleavy MC,
Evans FJ,
Balaban RS.
Calcium activation of heart mitochondrial oxidative phosphorylation: Rapid kinetics of mVO2, NADH, AND light scattering.
J Biol Chem
276:
2586‐2599,
2001.
|
515. |
Territo PR,
Mootha VK,
French SA,
Balaban RS.
Ca(2+) activation of heart mitochondrial oxidative phosphorylation: Role of the F(0)/F(1)‐ATPase.
Am J Physiol Cell Physiol
278:
C423‐C435,
2000.
|
516. |
Thomas DD,
Liu X,
Kantrow SP,
Lancaster JR.
The biological lifetime of nitric oxide: Implications for the perivascular dynamics of NO and O 2
Proc Natl Acad Sci U S A
98:
355‐360,
2001.
|
517. |
Tolosano E,
Fagoonee S,
Morello N,
Vinchi F,
Fiorito V.
Heme scavenging and the other facets of hemopexin.
Antioxid Redox Signal
12:
305‐320,
2010.
|
518. |
Tong H,
Chen W,
Steenbergen C,
Murphy E.
Ischemic preconditioning activates phosphatidylinositol‐3‐kinase upstream of protein kinase C.
Circ Res
87:
309‐315,
2000.
|
519. |
Tsang A,
Hausenloy DJ,
Mocanu MM,
Yellon DM.
Postconditioning: A form of “modified reperfusion” protects the myocardium by activating the phosphatidylinositol 3‐kinase‐Akt pathway.
Circ Res
95:
230‐232,
2004.
|
520. |
Tschakovsky ME,
Hughson RL.
Interaction of factors determining oxygen uptake at the onset of exercise.
J Appl Physiol
86:
1101‐1113,
1999.
|
521. |
Tsui AK,
Marsden PA,
Mazer CD,
Adamson SL,
Henkelman RM,
Ho JJ,
Wilson DF,
Heximer SP,
Connelly KA,
Bolz SS,
Lidington D,
El‐Beheiry MH,
Dattani ND,
Chen KM,
Hare GM.
Priming of hypoxia‐inducible factor by neuronal nitric oxide synthase is essential for adaptive responses to severe anemia.
Proc Natl Acad Sci U S A
108:
17544‐17549,
2011.
|
522. |
Turrens JF.
Mitochondrial formation of reactive oxygen species.
J Physiol
552:
335‐344,
2003.
|
523. |
Twentyman OP,
Disley A,
Gribbin HR,
Alberti KG,
Tattersfield AE.
Effect of beta‐adrenergic blockade on respiratory and metabolic responses to exercise.
J Appl Physiol
51:
788‐793,
1981.
|
524. |
Uchida K,
Matsuyama K,
Tanaka K,
Doi K.
Diffusion coefficient for O2 in plasma and mitochondrial membranes of rat cardiomyocytes.
Resp Physiol
90:
351‐362,
1992.
|
525. |
Vadula MS,
Kleinman JG,
Madden JA.
Effect of hypoxia and norepinephrine on cytoplasmic free Ca2+ in pulmonary and cerebral arterial myocytes.
Am J Physiol
265:
L591‐L597,
1993.
|
526. |
van den Beucken T,
Magagnin MG,
Jutten B,
Seigneuric R,
Lambin P,
Koritzinsky M,
Wouters BG.
Translational control is a major contributor to hypoxia induced gene expression.
Radiother Oncol
99:
379‐384,
2011.
|
527. |
van Faassen EE,
Bahrami S,
Feelisch M,
Hogg N,
Kelm M,
Kim‐Shapiro DB,
Kozlov AV,
Li H,
Lundberg JO,
Mason R,
Nohl H,
Rassaf T,
Samouilov A,
Slama‐Schwok A,
Shiva S,
Vanin AF,
Weitzberg E,
Zweier J,
Gladwin MT.
Nitrite as regulator of hypoxic signaling in mammalian physiology.
Med Res Rev
29:
683‐741,
2009.
|
528. |
van Wijck K,
Lenaerts K,
van Loon LJ,
Peters WH,
Buurman WA,
Dejong CH.
Exercise‐induced splanchnic hypoperfusion results in gut dysfunction in healthy men.
PLoS One
6:
e22366,
2011.
|
529. |
Vanden Hoek TL,
Becker LB,
Shao Z,
Li C,
Schumacker PT.
Reactive oxygen species released from mitochondria during brief hypoxia induce preconditioning in cardiomyocytes.
J Biol Chem
273:
18092‐18098,
1998.
|
530. |
Vanden Hoek TL,
Shao Z,
Li C,
Schumacker PT,
Becker LB.
Mitochondrial electron transport can become a significant source of oxidative injury in cardiomyocytes.
J Mol Cell Cardiol
29:
2441‐2450,
1997.
|
531. |
Vanderkooi JM,
Erecinska M,
Silver IA.
Oxygen in mammalian tissue: Methods of measurement and affinities of various reactions.
Am J Physiol Cell Physiol
260:
C1131‐C1150,
1991.
|
532. |
Vanderthommen M,
Duteil S,
Wary C,
Raynaud JS,
Leroy‐Willig A,
Crielaard JM,
Carlier PG.
A comparison of voluntary and electrically induced contractions by interleaved 1H‐ and 31P‐NMRS in humans.
J Appl Physiol
94:
1012‐1024,
2003.
|
533. |
Vaughan‐Jones RD,
Peercy BE,
Keener JP,
Spitzer KW.
Intrinsic H+ mobility in the rabbit ventricular myocyte.
J Physiol
541:
139‐158,
2002.
|
534. |
Verkhovsky MI,
Morgan JE,
Puustein A,
Wikstrom M.
Kinetic trapping of oxygen in cell respiration.
Nature
380:
268‐270,
1996.
|
535. |
Vogel JA,
Gleser MA.
Effect of carbon monoxide on oxygen transport during exercise.
J Appl Physiol
32:
234‐239,
1972.
|
536. |
Wagner K,
Georgieff M,
Asfar P,
Calzia E,
Knoferl MW,
Radermacher P.
Of mice and men (and sheep, swine etc.): The intriguing hemodynamic and metabolic effects of hydrogen sulfide (H2S).
Crit Care
15:
146,
2011.
|
537. |
Wall TM,
Sheehy R,
Hartman JC.
Role of bradykinin in myocardial preconditioning.
J Pharmacol Exp Ther
270:
681‐689,
1994.
|
538. |
Walsh B,
Tonkonogi M,
Soderlund K,
Hultman E,
Saks V,
Sahlin K.
The role of phosphorylcreatine and creatine in the regulation of mitochondrial respiration in human skeletal muscle.
J Physiol
537:
971‐978,
2001.
|
539. |
Wan B,
Doumen C,
Duszynski J,
Salama G,
Vary TC,
LaNoue KF.
Effects of cardiac work on electrical potential gradient across mitochondrial membrane in perfused rat hearts.
Am J Physiol
265:
H453‐H460,
1993.
|
540. |
Wang F,
Seta Y,
Baumgarten G,
Engel DJ,
Sivasubramanian N,
Mann DL.
Functional significance of hemodynamic overload‐induced expression of leukemia‐inhibitory factor in the adult mammalian heart.
Circulation
103:
1296‐1302,
2001.
|
541. |
Wang Y,
Cohen J,
Boron WF,
Schulten K,
Tajkhorshid E.
Exploring gas permeability of cellular membranes and membrane channels with molecular dynamics.
J Struct Biol
157:
534‐544,
2007.
|
542. |
Warburg OK, F.
Atmung bei sehr kleinen Sauerstroffdrucken.
Biochem Z
214:
5‐11,
1929.
|
543. |
Ward JP.
Point: Hypoxic pulmonary vasoconstriction is mediated by increased production of reactive oxygen species.
J Appl Physiol
101:
993‐995; discussion
999,
2006.
|
544. |
Ward JPT.
Oxygen sensors in context.
Biochim Biophys Acta
1777:
1‐14,
2008.
|
545. |
Warncke J,
David S,
Kumpers P,
Opherk JP,
Haller H,
Fliser D.
A hibernating kidney ‐ ischemic preconditioning in a renal transplant recipient with a proximal stenosis of the iliac artery.
Clin Nephrol
70:
168‐171,
2008.
|
546. |
Wasserman K.
The anaerobic threshold measurement to evaluate exercise performance.
Am Rev Resp Dis
129:
S35‐S40,
1984.
|
547. |
Wasserman K,
Koike A.
Is the anaerobic threshold truly anaerobic?
Chest
101:
211S‐218S,
1992.
|
548. |
Wasserman K,
Whipp BJ,
Koyl SN,
Beaver WL.
Anaerobic threshold and respiratory gas exchange during exercise.
J Appl Physiol
35:
236‐243,
1973.
|
549. |
Waypa GB,
Guzy R,
Mungai PT,
Mack MM,
Marks JD,
Roe MW,
Schumacker PT.
Increases in mitochondrial reactive oxygen species trigger hypoxia‐induced calcium responses in pulmonary artery smooth muscle cells.
Circ Res
99:
970‐978,
2006.
|
550. |
Waypa GB,
Marks JD,
Guzy R,
Mungai PT,
Schriewer J,
Dokic D,
Schumacker PT.
Hypoxia triggers subcellular compartmental redox signaling in vascular smooth muscle cells.
Circ Res
106:
526‐535,
2010.
|
551. |
Weibel ER.
The Pathway of Oxygen: Structure and Function in the Mammalian Respiratory System.
Cambridge, MA:
Harvard University Press,
1984.
|
552. |
Weir EK,
Archer SL.
Counterpoint: Hypoxic pulmonary vasoconstriction is not mediated by increased production of reactive oxygen species.
J Appl Physiol
101:
995‐998; discussion 998, 2006.
|
553. |
Weir EK,
Archer SL.
The role of redox changes in oxygen sensing.
Respir Physiol Neurobiol
174:
182‐191,
2010.
|
554. |
Weir EK,
Lopez‐Baneo J,
Bucker KJ,
Archer SL.
Acute oxygen‐sensing mechanisms.
N Engl J Med
353:
2042‐2055,
2005.
|
555. |
Weir EK,
Olschewski A.
Role of ion channels in acute and chronic responses of the pulmonary vasculature to hypoxia.
Cardiovasc Res
71:
630‐641,
2006.
|
556. |
Weissman G,
Claiborne R.
Cell Membranes: Biochemistry, Cell Biology and Pathology.
New York:
HP Publishing,
1975.
|
557. |
Weissmann N,
Tadic A,
Hanze J,
Rose F,
Winterhalder S,
Nollen M,
Schermuly RT,
Ghofrani HA,
Seeger W,
Grimminger F.
Hypoxic vasoconstriction in intact lungs: A role for NADPH oxidase‐derived H(2)O(2)?
Am J Physiol Lung Cell Mol Physiol
279:
L683‐L690,
2000.
|
558. |
Weissmann N,
Zeller S,
Schafer RU,
Turowski C,
Ay M,
Quanz K,
Ghofrani HA,
Schermuly RT,
Fink L,
Seeger W,
Grimminger F.
Impact of mitochondria and NADPH oxidases on acute and sustained hypoxic pulmonary vasoconstriction.
Am J Respir Cell Mol Biol
34:
505‐513,
2006.
|
559. |
Wheaton WW,
Chandel NS.
Hypoxia. 2. Hypoxia regulates cellular metabolism.
Am J Physiol Cell Physiol
300:
C385‐C393,
2011.
|
560. |
Wiesner RJ,
Rosen P,
Grieshaber MK.
Pathways of succinate formation and their contribution to improvement of cardiac function in the hypoxic rat heart.
Biochem Med Metab Biol
40:
19‐34,
1988.
|
561. |
Wilkinson WJ,
Kemp PJ.
The carbon monoxide donor, CORM‐2, is an antagonist of ATP‐gated, human P2X4 receptors.
Purinergic Signal
7:
57‐64,
2011.
|
562. |
Williams SE,
Wootton P,
Mason HS,
Bould J,
Iles DE,
Riccardi D,
Peers C,
Kemp PJ.
Hemoxygenase‐2 is an oxygen sensor for a calcium‐sensitive potassium channel.
Science
306:
2093‐2097,
2004.
|
563. |
Wilson DF,
Owen CS,
Erecinska M.
Quantitative dependence of mitochondrial oxidative phosphorylation on oxygen concentration: A mathematical model.
Arch Biochem Biophys
195:
494‐504,
1979.
|
564. |
Wilson DF,
Rumsey WL,
Green TJ,
Vaderkooi JM.
The oxygen dependence of mitochondrial oxidative phosphorylation measured by a new optical method for measuring oxygen concentration.
J Biol Chem
263:
2712‐2718,
1988.
|
565. |
Windrem DA,
Plachy WZ.
The diffusion‐solubility of oxygen in lipid bilayers.
Biochim Biophys Acta
600:
655‐665,
1980.
|
566. |
Wittenberg BA,
Wittenberg JB.
Transport of oxygen in muscle.
Ann Rev Physiol
51:
857‐878,
1989.
|
567. |
Wittenberg JB,
B. A.Wittenberg.
Myoglobin function reassessed.
J Exp Bio
206:
2011‐2020,
2003.
|
568. |
Wolin MS.
Reactive oxygen species and the control of vascular function.
Am J Physiol Heart Circ Physiol
296:
H539‐H549,
2009.
|
569. |
Wolin MS,
Ahmad M,
Gupte SA.
Oxidant and redox signaling in vascular oxygen sensing mechanisms: Basic concepts, current controversies, and potential importance of cytosolic NADPH.
Am J Physiol Lung Cell Mol Physiol
289:
L159‐L173,
2005.
|
570. |
Wolin MS,
Burke‐Wolin TM,
Mohazzab‐H KM.
Roles of NAD(P)H oxidases and reactive oxygen species in vascular oxygen sensing mechansims.
Resp Physiol
115:
229‐238,
1999.
|
571. |
Wolin MS,
Gupte SA,
Mingone CJ,
Neo BH,
Gao Q,
Ahmad M.
Redox regulation of responses to hypoxia and NO‐cGMP signaling in pulmonary vascular pathophysiology.
Ann N Y Acad Sci
1203:
126‐132,
2010.
|
572. |
Woodson RD,
Wills RE,
Lenfant C.
Effect of acute and established anemia on O2 transport at rest, submaximal and maximal work.
J Appl Physiol
44:
36‐43,
1978.
|
573. |
Wright VP,
Reiser PJ,
Clanton TL.
Redox regulation of global phosphatase activity and protein phosphorylation in intact skeletal muscle.
J Physiol 587(Pt. 23): 5767‐5781,
2009.
|
574. |
Wust RC,
Grassi B,
Hogan MC,
Howlett RA,
Gladden LB,
Rossiter HB.
Kinetic control of oxygen consumption during contractions in self‐perfused skeletal muscle.
J Physiol
589:
3995‐4009,
2011.
|
575. |
Wyatt CN,
Wright C,
Bee D,
Peers C.
O2‐sensitive K+ currents in carotid body chemoreceptor cells from normoxic and chronically hypoxic rats and their roles in hypoxic chemotransduction.
Proc Natl Acad Sci U S A
92:
295‐299,
1995.
|
576. |
Xia R,
Webb JA,
Gnall LL,
Cutler K,
Abramson JJ.
Skeletal muscle sarcoplasmic reticulum contains a NADH‐dependent oxidase that generates superoxide.
Am J Physiol Cell Physiol
285:
C215‐C221,
2003.
|
577. |
Xu D,
Rovira II,
Finkel T.
Oxidants painting the cysteine chapel: Redox regulation of PTPs.
Developmental Cell
2:
251‐259,
2002.
|
578. |
Yang X,
Cohen MV,
Downey JM.
Mechanism of cardioprotection by early ischemic preconditioning.
Cardiovasc Drugs Ther
24:
225‐234,
2010.
|
579. |
Yellon DM,
Baxter GF.
Reperfusion injury revisited: Is there a role for growth factor signaling in limiting lethal reperfusion injury?
Trends Cardiovasc Med
9:
245‐249,
1999.
|
580. |
Yellon DM,
Downey JM.
Preconditioning the myocardium: From cellular physiology to clinical cardiology.
Physiol Rev
83:
1113‐1151,
2003.
|
581. |
Yong QC,
Pan TT,
Hu LF,
Bian JS.
Negative regulation of beta‐adrenergic function by hydrogen sulphide in the rat hearts.
J Mol Cell Cardiol
44:
701‐710,
2008.
|
582. |
Ytrehus K,
Liu Y,
Downey JM.
Preconditioning protects ischemic rabbit heart by protein kinase C activation.
Am J Physiol
266:
H1145‐H1152,
1994.
|
583. |
Yu T,
Jhun BS,
Yoon Y.
High‐glucose stimulation increases reactive oxygen species production through the calcium and mitogen‐activated protein kinase‐mediated activation of mitochondrial fission.
Antioxid Redox Signal 14: 425‐437, 2010.
|
584. |
Yuan G,
Nanduri J,
Khan S,
Semenza GL,
Prabhakar NR.
Induction of HIF‐1alpha expression by intermittent hypoxia: Involvement of NADPH oxidase, Ca2+ signaling, prolyl hydroxylases, and mTOR.
J Cell Physiol
217:
674‐685,
2008.
|
585. |
Zhang H,
Huang HM,
Carson RC,
Mahmood J,
Thomas HM,
Gibson GE.
Assessment of membrane potentials of mitochondrial populations in living cells.
Anal Biochem
298:
170‐180,
2001.
|
586. |
Zhang J,
Baines CP,
Zong C,
Cardwell EM,
Wang G,
Vondriska TM,
Ping P.
Functional proteomic analysis of a three‐tier PKCepsilon‐Akt‐eNOS signaling module in cardiac protection.
Am J Physiol Heart Circ Physiol
288:
H954‐961,
2005.
|
587. |
Zhang M,
Brewer AC,
Schroder K,
Santos CX,
Grieve DJ,
Wang M,
Anilkumar N,
Yu B,
Dong X,
Walker SJ,
Brandes RP,
Shah AM.
NADPH oxidase‐4 mediates protection against chronic load‐induced stress in mouse hearts by enhancing angiogenesis.
Proc Natl Acad Sci U S A
107:
18121‐18126,
2010.
|
588. |
Zhang Q,
Piston DW,
Goodman RH.
Regulation of corepressor function by nuclear NADH.
Science
295:
1895‐1897,
2002.
|
589. |
Zhou G,
Dada LA,
Chandel NS,
Iwai K,
Lecuona E,
Ciechanover A,
Sznajder JI.
Hypoxia‐mediated Na‐K‐ATPase degradation requires von Hippel Lindau protein.
FASEB J
22:
1335‐1342,
2008.
|
590. |
Zhou L,
Yu X,
Cabrera ME,
Stanley WC.
Role of cellular compartmentation in the metabolic response to stress: Mechanistic insights from computational models.
Ann N Y Acad Sci
1080:
120‐139,
2006.
|
591. |
Zhu M,
Feng J,
Lucchinetti E,
Fischer G,
Xu L,
Pedrazzini T,
Schaub MC,
Zaugg M.
Ischemic postconditioning protects remodeled myocardium via the PI3K‐PKB/Akt reperfusion injury salvage kinase pathway.
Cardiovasc Res
72:
152‐162,
2006.
|
592. |
Zhu YZ,
Wang ZJ,
Ho P,
Loke YY,
Zhu YC,
Huang SH,
Tan CS,
Whiteman M,
Lu J,
Moore PK.
Hydrogen sulfide and its possible roles in myocardial ischemia in experimental rats.
J Appl Physiol
102:
261‐268,
2007.
|
593. |
Zuo L,
Christofi FL,
Wright VP,
Bao S,
Clanton TL.
Lipoxygenase‐dependent superoxide release in skeletal muscle.
J Appl Physiol
97:
661‐668,
2004.
|
594. |
Zuo L,
Clanton TL.
Reactive oxygen formation in the transition to hypoxia in skeletal muscle.
Am J Physiol Cell Physiol
289
C207‐C216,
2005.
|
595. |
Zuo L,
Clanton TL.
Reactive oxygen species formation in the transition to hypoxia in skeletal muscle.
Am J Physiol Cell Physiol
289:
C207‐C216,
2005.
|
596. |
Zuo L,
Pasniciuc S,
Wright VP,
Merola AJ,
Clanton TL.
Sources for superoxide release: Lessons from blockade of electron transport, NADPH oxidase and anion channels in diaphragm.
Antioxid Redox Signal
5:
667‐675,
2003.
|