Comprehensive Physiology Wiley Online Library

Broad Spectrum of Hepatocyte Inclusions in Humans, Animals, and Experimental Models

Full Article on Wiley Online Library



Abstract

We focus on hepatic inclusions, which are defined as intracellular aggregates of stainable substances. They represent established hallmarks of their respective human disorders, but unlike aggregates found in neurodegenerative disorders are often not well studied. Hepatic inclusions can be subdivided into primary liver aggregates and aggregates found in multiple tissues. The former ones consist of inclusions found in endoplasmic reticulum storage diseases such as α 1‐antitrypsin aggregates or ground‐glass hepatocytes, p62‐containing (Mallory‐Denk bodies and intracellular hyaline bodies) and porphyrin‐containing inclusions. p62‐containing aggregates are not restricted to the liver but are found in multiple other disorders such as Parkinson or Alzheimer disease. Inclusions such as pale bodies or intracellular hyaline bodies are typical for malignant disorders while others (ground‐glass hepatocytes and α1‐antitrypsin aggregates) are predominantly seen in non‐neoplastic tissues. The inclusions, which are not restricted to the liver, are often due to a systemic viral infection, but also due to disruption of glycogen metabolism or systemic inclusion‐forming diseases such as polyglutamine disorders or sarcoidosis. Despite their heterogeneity, inclusions share several pathogenic principles such as an imbalance between protein damage/misfolding on one side and repair/degradation on the other side. This is why hepatic aggregates represent a valuable tool to study the aggregation process in general and to improve our understanding of inclusions found in multiple human disorders. © 2013 American Physiological Society. Compr Physiol 3:1393‐1436, 2013.

Comprehensive Physiology offers downloadable PowerPoint presentations of figures for non-profit, educational use, provided the content is not modified and full credit is given to the author and publication.

Download a PowerPoint presentation of all images


Figure 1. Figure 1. Overview of hepatic inclusions. Aggregates found predominantly/exclusively in the liver are termed as primary liver inclusions. IB, Inclusion body.
Figure 2. Figure 2. Inclusions found in ER‐storage disorders share common pathogenic mechanisms with p62‐containing cytoplasmic aggregates. Aggregates seen in ER‐storage disorders and p62‐containing cytoplasmic aggregates represent the major subtypes of primary hepatocellular inclusions. The former ones form as a consequence of disturbed processing of secreted proteins with a retention in the endoplasmic reticulum (ER) and include ground‐glass hepatocytes (GGHs) and aggregates consisting of mutant α1‐antitrypsin (AAT) as prime examples. The latter ones are made from nonsecreted proteins, which aggregate in the cytoplasm as it happens in the case of Mallory‐Denk bodies (MDBs). During MDB formation, keratin network becomes disrupted to form large perinuclear aggregates consisting of cross‐linked, hyperphosphorylated (P) and ubiquitinated (Ub) keratins 8/18. (K8/K18). Heat‐shock proteins (hsp) and p62 constitute additional established MDB components. Although both aggregate subtypes are clearly distinct, they share common pathogenic mechanisms such as accumulation of misfolded proteins which is not sufficiently counteracted by protein degradation. Last but not least, an imbalance in protein stoichiometry (i.e., between K8/K18 in MDBs and isoforms of hepatitis B antigen in GGHs) promotes the formation of both aggregate subtypes.
Figure 3. Figure 3. α1‐antitrypsin aggregates in a patient carrying a PiZZ mutation. Liver sections were stained with hematoxylin and eosin (H&E) (A) or with periodic acid Schiff after diastase digestion (PAS‐D) (C). The arrows point to the aggregates, which are difficult to be demonstrated in H&E where they are faintly eosinophilic, but are clearly distinguished as brilliant red structures in PAS‐D. In electron microscopy, PiZZ subject display dilated ER (arrows in C) which is seen before the large inclusions form (I in D). N, nucleus. Pictures by courtesy of Dr. Jeffrey Teckman, Saint Louis University School of Medicine, St Louis, MO.
Figure 4. Figure 4. α1‐antichymotrypsin aggregates in a patient with serum α1‐antichymotrypsin deficiency. Hematoxylin and eosin (H&E)‐stained liver sections (A) revealed chronic active hepatitis in a cirrhotic stage without any apparent aggregates, while immunohistochemical staining (B) with antibody against α1‐antichymotrypsin showed granular inclusions predominantly in the periportal area adjacent to fibrous bands. Transmission electron microscopy uncovered fluffy material located in a dilated ER. Pictures are reprinted (in a modified version), with permission, from Lindmark et al., Histopathology 1990 (255) (permission to reprint published figures has been granted by the publisher).
Figure 5. Figure 5. Ground‐glass hepatocytes in patients with chronic hepatitis B. Liver sections were stained with hematoxylin and eosin (H&E) (A) or immunohistochemically with an antibody against hepatitis B surface antigen (HBs) (B and C). In H&E staining, GGHs are defined as finely granular, eosinophilic and uniformly dull appearing cytoplasm, sometimes with a halo at the cell periphery (arrows in A). GGHs can be further subdivided into type I inclusions, which are disseminated and display excentric nuclei (B) and type II aggregates, which are present in clusters and located rather in cell periphery (C).
Figure 6. Figure 6. Fibrinogen aggregates in a patient with familial hypofibrinogenemia. Liver sections incubated without (A) and with (B and D) an antibody against fibrinogen. Massive fibrinogen accumulation and formation of aggregates in subjects carrying fibrinogen mutation is shown. On the other hand, no obvious aggregates are seen in hematoxylin and eosin (H&E) staining (C). Electron microscopy (E) shows the inclusions composed of densely packed tubular structures, arranged in curved bundles. Immunogold labeling (F) confirms the abundant presence of fibrinogen within the aggregates. Pictures by courtesy of Drs. Peter Schirmacher (University of Heidelberg Medical School, Germany) and Stephan O. Brennan (Canterbury Health Laboratories, Christchurch, New Zealand).
Figure 7. Figure 7. Pale bodies in hepatocellular carcinoma. Hematoxylin and eosin (H&E)‐stained liver sections (A) revealed a large number of hepatocytes with pale or eosinophilic cytoplasm (arrows in A). Immunohistochemically, the inclusions were strongly positive for fibrinogen (B) and in electron microscopy, they appeared as nonmembrane‐bound, amorphous, fine granular, or fibrillar aggregates located within the dilated rough ER (C). Pictures are reprinted (in a modified version), with permission, from (306) Moon et al., J Korean Med Sci 2000 (permission to reprint published figures has been granted by the publisher).
Figure 8. Figure 8. Mallory‐Denk bodies (MDBs) in patients with alcoholic steatohepatitis. Formaldehyde‐fixed, paraffin‐embedded liver sections were stained with hematoxylin and eosin (H&E, A) or immunohistochemically labeled using antibodies against keratin 8/18 (K8/18) (B), ubiquitin (C), or p62 (D). MDBs are highlighted by arrows and appear as irregular eosinophilic inclusions in H&E, while they are bright red in immunohistochemistry. Note the insert in (A) which contains a cell with a prominent MDB surrounded by polymorphonuclear leucocytes—a phenomenon termed satellitosis.
Figure 9. Figure 9. Mallory‐Denk bodies (MDBs) formation is associated with profound keratin 8/18 redistribution. Double immunofluorescence staining depicts the distribution of keratins 8 and 18 (red) as well as p62 (green). Control (A) and DDC‐fed mouse livers (B‐D) are shown, the latter ones representing an established animal MDB model (B‐D). In untreated livers (A), keratins form a fine cytoplasmic meshwork (A), which undergoes a variety of changes after DDC administration (B‐D). These include a partial disruption of keratin filament network with formation of small keratin/p62‐positive aggregates alongside the residual keratin filaments (B), formation of large keratin/p62‐positive perinuclear inclusions (C) or an almost complete loss of keratin 8/18 fluorescence (D).
Figure 10. Figure 10. Intracellular hyaline bodies in hepatocellular carcinoma. Hematoxylin and eosin (H&E)‐stained hepatocellular cancer sections (A) depict a large number of eosinophilic structures surrounded by a clear halo which correspond to intracellular hyaline bodies (IHBs, arrows in A). Insert in (A) shows this aggregate in a large magnification. These deposits appear red in chromotrope aniline blue‐stained sections (arrows in B) and display an indistinct fibrillar/granular structure in electron microscopy (asterisk in C). In immunofluorescence, IHBs are p62 positive (arrows in D), but keratin 8/18 negative (E). Micrograph (F) shows the merged signal from double‐fluorescence staining and thereby discriminates between IHBs (red) and Mallory‐Denk bodies, which are yellow due to presence of both keratins and p62.
Figure 11. Figure 11. Needle‐like inclusions in patients with porphyria cutanea tarda. Liver sections were stained with Nuclear Fast Red alone (A) or in combination with Ferric ferricyanine reduction reaction (B). Alternatively, Needle‐like inclusions were visualized in polarized light (C) or by using transmission electron microscopy (D) Pictures by courtesy of Dr. Alena Chlumska, Charles University School of Medicine, Pilsen, Czech Republic.
Figure 12. Figure 12. Viral inclusions. Representative hematoxylin and eosin (H&E)‐stained liver sections from subjects with cytomegalovirus (CMV, A), herpes simplex (HSV, B), or Ebola virus (C) infection. Hepatocellular CMV affection leads to formation of large CMV intranuclear as well as small cytoplasmic inclusion bodies, the latter ones being termed dense bodies (arrows in A). Systemic HSV‐infection causes glassy, amphophilic, intranuclear herpetic inclusions (arrows in B) while Ebola virus forms typical cytoplasmic eosinophilic and filamentous inclusions (arrows in C). The picture (A) is by courtesy of Dr. Michael Mihalov, LUMEN—Loyola University Medical Education Network, USA. Pictures (B and C) are reprinted, with permission, from 6th edition of Mac Sween's Pathology of the Liver (permission to reprint published figures has been granted by the publisher) (265).
Figure 13. Figure 13. Polyglucosan inclusions. Liver histology in polyglucosan body disease. (A) Liver biopsy in polyglucosan body disease with mild chronic hepatitis. Polyglucosan bodies (PGBs) are present in periportal hepatocytes (long arrow). The portal tract is expanded by a mild lymphocytic infiltrate with interface hepatitis, pale polyglucosan‐laden macrophages, fibrosis, and ductular reaction (short arrows). (H&E stain, original magnification 100×.) (B) The trichrome connective tissue stain highlights mild periportal fibrosis (collagen fibers in blue). Numerous pale eosinophilic PGBs are evident. (Trichrome stain; original magnification 100×.) (C) Periportal hepatocytes predominantly demonstrate PGBs in adult polyglucosan body disease. The inclusions resemble the ground‐glass inclusions of chronic hepatitis B. (C) One of many portal tracts (PT) showing variable mild chronic inflammation and the adjacent round‐to‐oval pale eosinophilic PGBs in hepatocytes. (D) PGBs are sharply demarcated within hepatocytes and often displace the hepatocyte nucleus to the cell periphery. (C and D) H&E, original magnifications ×200, ×400. (E) PGBs are strongly positive with periodic acid Schiff (PAS) stain, with the most inclusions being located near portal tracts (PT). Inset: several dense oval inclusions are evident in periportal hepatocytes. (F) The hepatocellular inclusions display retention of moderate staining with diastase‐treated PAS (arrows). (G) Colloidal iron stain shows numerous periportal PGBs with blue‐green staining. (Original magnifications E: ×100; inset: ×400; F: ×400; G: ×200). [Modified and reprinted with permission by the publisher from (166).]


Figure 1. Overview of hepatic inclusions. Aggregates found predominantly/exclusively in the liver are termed as primary liver inclusions. IB, Inclusion body.


Figure 2. Inclusions found in ER‐storage disorders share common pathogenic mechanisms with p62‐containing cytoplasmic aggregates. Aggregates seen in ER‐storage disorders and p62‐containing cytoplasmic aggregates represent the major subtypes of primary hepatocellular inclusions. The former ones form as a consequence of disturbed processing of secreted proteins with a retention in the endoplasmic reticulum (ER) and include ground‐glass hepatocytes (GGHs) and aggregates consisting of mutant α1‐antitrypsin (AAT) as prime examples. The latter ones are made from nonsecreted proteins, which aggregate in the cytoplasm as it happens in the case of Mallory‐Denk bodies (MDBs). During MDB formation, keratin network becomes disrupted to form large perinuclear aggregates consisting of cross‐linked, hyperphosphorylated (P) and ubiquitinated (Ub) keratins 8/18. (K8/K18). Heat‐shock proteins (hsp) and p62 constitute additional established MDB components. Although both aggregate subtypes are clearly distinct, they share common pathogenic mechanisms such as accumulation of misfolded proteins which is not sufficiently counteracted by protein degradation. Last but not least, an imbalance in protein stoichiometry (i.e., between K8/K18 in MDBs and isoforms of hepatitis B antigen in GGHs) promotes the formation of both aggregate subtypes.


Figure 3. α1‐antitrypsin aggregates in a patient carrying a PiZZ mutation. Liver sections were stained with hematoxylin and eosin (H&E) (A) or with periodic acid Schiff after diastase digestion (PAS‐D) (C). The arrows point to the aggregates, which are difficult to be demonstrated in H&E where they are faintly eosinophilic, but are clearly distinguished as brilliant red structures in PAS‐D. In electron microscopy, PiZZ subject display dilated ER (arrows in C) which is seen before the large inclusions form (I in D). N, nucleus. Pictures by courtesy of Dr. Jeffrey Teckman, Saint Louis University School of Medicine, St Louis, MO.


Figure 4. α1‐antichymotrypsin aggregates in a patient with serum α1‐antichymotrypsin deficiency. Hematoxylin and eosin (H&E)‐stained liver sections (A) revealed chronic active hepatitis in a cirrhotic stage without any apparent aggregates, while immunohistochemical staining (B) with antibody against α1‐antichymotrypsin showed granular inclusions predominantly in the periportal area adjacent to fibrous bands. Transmission electron microscopy uncovered fluffy material located in a dilated ER. Pictures are reprinted (in a modified version), with permission, from Lindmark et al., Histopathology 1990 (255) (permission to reprint published figures has been granted by the publisher).


Figure 5. Ground‐glass hepatocytes in patients with chronic hepatitis B. Liver sections were stained with hematoxylin and eosin (H&E) (A) or immunohistochemically with an antibody against hepatitis B surface antigen (HBs) (B and C). In H&E staining, GGHs are defined as finely granular, eosinophilic and uniformly dull appearing cytoplasm, sometimes with a halo at the cell periphery (arrows in A). GGHs can be further subdivided into type I inclusions, which are disseminated and display excentric nuclei (B) and type II aggregates, which are present in clusters and located rather in cell periphery (C).


Figure 6. Fibrinogen aggregates in a patient with familial hypofibrinogenemia. Liver sections incubated without (A) and with (B and D) an antibody against fibrinogen. Massive fibrinogen accumulation and formation of aggregates in subjects carrying fibrinogen mutation is shown. On the other hand, no obvious aggregates are seen in hematoxylin and eosin (H&E) staining (C). Electron microscopy (E) shows the inclusions composed of densely packed tubular structures, arranged in curved bundles. Immunogold labeling (F) confirms the abundant presence of fibrinogen within the aggregates. Pictures by courtesy of Drs. Peter Schirmacher (University of Heidelberg Medical School, Germany) and Stephan O. Brennan (Canterbury Health Laboratories, Christchurch, New Zealand).


Figure 7. Pale bodies in hepatocellular carcinoma. Hematoxylin and eosin (H&E)‐stained liver sections (A) revealed a large number of hepatocytes with pale or eosinophilic cytoplasm (arrows in A). Immunohistochemically, the inclusions were strongly positive for fibrinogen (B) and in electron microscopy, they appeared as nonmembrane‐bound, amorphous, fine granular, or fibrillar aggregates located within the dilated rough ER (C). Pictures are reprinted (in a modified version), with permission, from (306) Moon et al., J Korean Med Sci 2000 (permission to reprint published figures has been granted by the publisher).


Figure 8. Mallory‐Denk bodies (MDBs) in patients with alcoholic steatohepatitis. Formaldehyde‐fixed, paraffin‐embedded liver sections were stained with hematoxylin and eosin (H&E, A) or immunohistochemically labeled using antibodies against keratin 8/18 (K8/18) (B), ubiquitin (C), or p62 (D). MDBs are highlighted by arrows and appear as irregular eosinophilic inclusions in H&E, while they are bright red in immunohistochemistry. Note the insert in (A) which contains a cell with a prominent MDB surrounded by polymorphonuclear leucocytes—a phenomenon termed satellitosis.


Figure 9. Mallory‐Denk bodies (MDBs) formation is associated with profound keratin 8/18 redistribution. Double immunofluorescence staining depicts the distribution of keratins 8 and 18 (red) as well as p62 (green). Control (A) and DDC‐fed mouse livers (B‐D) are shown, the latter ones representing an established animal MDB model (B‐D). In untreated livers (A), keratins form a fine cytoplasmic meshwork (A), which undergoes a variety of changes after DDC administration (B‐D). These include a partial disruption of keratin filament network with formation of small keratin/p62‐positive aggregates alongside the residual keratin filaments (B), formation of large keratin/p62‐positive perinuclear inclusions (C) or an almost complete loss of keratin 8/18 fluorescence (D).


Figure 10. Intracellular hyaline bodies in hepatocellular carcinoma. Hematoxylin and eosin (H&E)‐stained hepatocellular cancer sections (A) depict a large number of eosinophilic structures surrounded by a clear halo which correspond to intracellular hyaline bodies (IHBs, arrows in A). Insert in (A) shows this aggregate in a large magnification. These deposits appear red in chromotrope aniline blue‐stained sections (arrows in B) and display an indistinct fibrillar/granular structure in electron microscopy (asterisk in C). In immunofluorescence, IHBs are p62 positive (arrows in D), but keratin 8/18 negative (E). Micrograph (F) shows the merged signal from double‐fluorescence staining and thereby discriminates between IHBs (red) and Mallory‐Denk bodies, which are yellow due to presence of both keratins and p62.


Figure 11. Needle‐like inclusions in patients with porphyria cutanea tarda. Liver sections were stained with Nuclear Fast Red alone (A) or in combination with Ferric ferricyanine reduction reaction (B). Alternatively, Needle‐like inclusions were visualized in polarized light (C) or by using transmission electron microscopy (D) Pictures by courtesy of Dr. Alena Chlumska, Charles University School of Medicine, Pilsen, Czech Republic.


Figure 12. Viral inclusions. Representative hematoxylin and eosin (H&E)‐stained liver sections from subjects with cytomegalovirus (CMV, A), herpes simplex (HSV, B), or Ebola virus (C) infection. Hepatocellular CMV affection leads to formation of large CMV intranuclear as well as small cytoplasmic inclusion bodies, the latter ones being termed dense bodies (arrows in A). Systemic HSV‐infection causes glassy, amphophilic, intranuclear herpetic inclusions (arrows in B) while Ebola virus forms typical cytoplasmic eosinophilic and filamentous inclusions (arrows in C). The picture (A) is by courtesy of Dr. Michael Mihalov, LUMEN—Loyola University Medical Education Network, USA. Pictures (B and C) are reprinted, with permission, from 6th edition of Mac Sween's Pathology of the Liver (permission to reprint published figures has been granted by the publisher) (265).


Figure 13. Polyglucosan inclusions. Liver histology in polyglucosan body disease. (A) Liver biopsy in polyglucosan body disease with mild chronic hepatitis. Polyglucosan bodies (PGBs) are present in periportal hepatocytes (long arrow). The portal tract is expanded by a mild lymphocytic infiltrate with interface hepatitis, pale polyglucosan‐laden macrophages, fibrosis, and ductular reaction (short arrows). (H&E stain, original magnification 100×.) (B) The trichrome connective tissue stain highlights mild periportal fibrosis (collagen fibers in blue). Numerous pale eosinophilic PGBs are evident. (Trichrome stain; original magnification 100×.) (C) Periportal hepatocytes predominantly demonstrate PGBs in adult polyglucosan body disease. The inclusions resemble the ground‐glass inclusions of chronic hepatitis B. (C) One of many portal tracts (PT) showing variable mild chronic inflammation and the adjacent round‐to‐oval pale eosinophilic PGBs in hepatocytes. (D) PGBs are sharply demarcated within hepatocytes and often displace the hepatocyte nucleus to the cell periphery. (C and D) H&E, original magnifications ×200, ×400. (E) PGBs are strongly positive with periodic acid Schiff (PAS) stain, with the most inclusions being located near portal tracts (PT). Inset: several dense oval inclusions are evident in periportal hepatocytes. (F) The hepatocellular inclusions display retention of moderate staining with diastase‐treated PAS (arrows). (G) Colloidal iron stain shows numerous periportal PGBs with blue‐green staining. (Original magnifications E: ×100; inset: ×400; F: ×400; G: ×200). [Modified and reprinted with permission by the publisher from (166).]
References
 1.Alpha 1‐antitrypsin deficiency: Memorandum from a WHO meeting. Bull World Health Organ 75: 397‐415, 1997.
 2.Abe K, Thung SN, Wu HC, Tran TT, Le Hoang P, Truong KD, Inui A, Jang JJ, Su IJ. Pre‐S2 deletion mutants of hepatitis B virus could have an important role in hepatocarcinogenesis in Asian children. Cancer Sci 100: 2249‐2254, 2009.
 3.Abukawa D, Tazawa Y, Noro T, Nakagawa M, Iinuma K, Sugiyama K, Knisely AS. Cytoplasmic inclusion bodies and minimal hepatitis: Fibrinogen storage without hypofibrinogenemia. Pediatr Dev Pathol 4: 304‐309, 2001.
 4.Aishima S, Fujita N, Mano Y, Iguchi T, Taketomi A, Maehara Y, Oda Y, Tsuneyoshi M. p62+ Hyaline inclusions in intrahepatic cholangiocarcinoma associated with viral hepatitis or alcoholic liver disease. Am J Clin Pathol 134: 457‐465.
 5.Aithal G, Thomas JA, Kaye PV, Lawson A, Ryder SD, Spendlove I, Austin AS, Freeman JG, Morgan L, Webber J. Randomized, placebo‐controlled trial of pioglitazone in nondiabetic subjects with nonalcoholic steatohepatitis. Gastroenterology 135: 1176‐1184, 2008.
 6.Akeda S, Fujita K, Kosaka Y, French SW. Mallory body formation and amyloid deposition in the liver of aged mice fed a vitamin A deficient diet for a prolonged period. Lab Invest 54: 228‐233, 1986.
 7.Al Otaibi SF, Minassian BA, Ackerley CA, Logan WJ, Weiss S. Unusual presentation of Lafora's disease. J Child Neurol 18: 499‐501, 2003.
 8.Ala A, Schilsky M. Genetic modifiers of liver injury in hereditary liver disease. Semin Liver Dis 31: 208‐214, 2011.
 9.Alam S, Wang J, Janciauskiene S, Mahadeva R. Preventing and reversing the cellular consequences of Z alpha‐1 antitrypsin accumulation by targeting s4A. J Hepatol 57: 116‐124, 2012.
 10.An international group. Alcoholic liver disease: Morphological manifestations. Lancet 1: 707‐711, 1981.
 11.An JK, Blomenkamp K, Lindblad D, Teckman JH. Quantitative isolation of alphalAT mutant Z protein polymers from human and mouse livers and the effect of heat. Hepatology 41: 160‐167, 2005.
 12.Andersen DH. Familial cirrhosis of the liver with storage of abnormal glycogen. Lab Invest 5: 11‐20, 1956.
 13.Baker C, Belbin O, Kalsheker N, Morgan K. SERPINA3 (aka alpha‐1‐antichymotrypsin). Front Biosci 12: 2821‐2835, 2007.
 14.Bardag‐Gorce F, Francis T, Nan L, Li J, He Lue Y, French BA, French SW. Modifications in P62 occur due to proteasome inhibition in alcoholic liver disease. Life Sci 77: 2594‐2602, 2005.
 15.Bardag‐Gorce F, French BA, Nan L, Song H, Nguyen SK, Yong H, Dede J, French SW. CYP2E1 induced by ethanol causes oxidative stress, proteasome inhibition and cytokeratin aggresome (Mallory body‐like) formation. Exp Mol Pathol 81: 191‐201, 2006.
 16.Bardag‐Gorce F, Oliva J, Villegas J, Fraley S, Amidi F, Li J, Dedes J, French B, French SW. Epigenetic mechanisms regulate Mallory Denk body formation in the livers of drug‐primed mice. Exp Mol Pathol 84: 113‐121, 2008.
 17.Bardag‐Gorce F, van Leeuwen FW, Nguyen V, French BA, Li J, Riley N, McPhaul LW, Lue YH, French SW. The role of the ubiquitin‐proteasome pathway in the formation of mallory bodies. Exp Mol Pathol 73: 75‐83, 2002.
 18.Bartok I, Remenar E, Toth J. Demonstration of hepatitis B surface antigen by orcein staining in paraffin sections of cirrhotic liver. Virchows Arch A Pathol Anat Histol 369: 239‐248, 1976.
 19.Basaranoglu M, Turhan N, Sonsuz A, Basaranoglu G. Mallory‐Denk Bodies in chronic hepatitis. World J Gastroenterol 17: 2172‐2177, 2011.
 20.Baumann H, Richards C, Gauldie J. Interaction among hepatocyte‐stimulating factors, interleukin 1, and glucocorticoids for regulation of acute phase plasma proteins in human hepatoma (HepG2) cells. J Immunol 139: 4122‐4128, 1987.
 21.Baumann RJ, Kocoshis SA, Wilson D. Lafora disease: Liver histopathology in presymptomatic children. Ann Neurol 14: 86‐89, 1983.
 22.Becher MW, Kotzuk JA, Sharp AH, Davies SW, Bates GP, Price DL, Ross CA. Intranuclear neuronal inclusions in Huntington's disease and dentatorubral and pallidoluysian atrophy: Correlation between the density of inclusions and IT15 CAG triplet repeat length. Neurobiol Dis 4: 387‐397, 1998.
 23.Bejarano PA, Garcia MT, Rodriguez MM, Ruiz P, Tzakis AG. Liver glycogen bodies: Ground‐glass hepatocytes in transplanted patients. Virchows Arch 449: 539‐545, 2006.
 24.Bennett EJ, Shaler TA, Woodman B, Ryu KY, Zaitseva TS, Becker CH, Bates GP, Schulman H, Kopito RR. Global changes to the ubiquitin system in Huntington's disease. Nature 448: 704‐708, 2007.
 25.Berg NO, Eriksson S. Liver disease in adults with alpha‐1‐antitrypsin deficiency. N Engl J Med 287: 1264‐1267, 1972.
 26.Bock CT, Tillmann HL, Manns MP, Trautwein C. The pre‐S region determines the intracellular localization and appearance of hepatitis B virus. Hepatology 30: 517‐525, 1999.
 27.Bolmer S, Kleinerman J. Isolation and characterization of alpha 1‐antitrypsin in PAS‐positive hepatic granules from rats with experimental alpha 1‐antitrypsin deficiency. Am J Pathol 1232: 377‐389, 1986.
 28.Borchard F, Gussmann V. Detection of HBsAg containing cells in liver biopsies by different stains and classification of positively reacting ground‐glass hepatocytes. Virchows Arch A Pathol Anat Histol 384: 245‐261, 1979.
 29.Breckenridge DG, Stojanovic M, Marcellus RC, Shore GC. Caspase cleavage product of BAP31 induces mitochondrial fission through endoplasmic reticulum calcium signals, enhancing cytochrome c release to the cytosol. J Cell Biol 160: 1115‐1127, 2003.
 30.Brennan S, Davis RL, Conard K, Savo A, Furuya KN. Novel fibrinogen mutation γ314Thr‐>Pro (fibrinogen AI duPont) associatedwith hepaticfibrinogen storage disease and hypofibrinogenaemia. Liver International 30: 1541‐1547, 2010.
 31.Brennan S, Maghzal G, Shneider BL, Gordon R, Magid MS, George PM. Novel fibrinogen gamma375 Arg–>Trp mutation (fibrinogen aguadilla) causes hepatic endoplasmic reticulum storage and hypofibrinogenemia. Hepatology 36: 652‐658, 2002.
 32.Brennan S, Wyatt DM, Callea F, George PM. Fibrinogen brescia: Hepatic endoplasmic reticulum an hypofibrinogenemia because of a y284 Gly‐>Arg mutation. Am J Pathol 157: 189‐196, 2000.
 33.Brodsky JL, Scott CM. Tipping the delicate balance: Defining how proteasome maturation affects the degradation of a substrate for autophagy and endoplasmic reticulum associated degradation (ERAD). Autophagy 3: 623‐625, 2007.
 34.Browne RJ, Mannino DM, Khoury MJ. Alpha 1‐antitrypsin deficiency deaths in the United States from 1979‐1991. An analysis using multiple‐cause mortality data. Chest 110: 78‐83, 1996.
 35.Browne SE, Beal MF. Oxidative damage in Huntington's disease pathogenesis. Antioxid Redox Signal 8: 2061‐2073, 2006.
 36.Bruss V. Envelopment of the hepatitis B virus nucleocapsid. Virus Res 106(2): 199‐201, 2004.
 37.Bruzzi C, Bader A, Luban NL, Przygodzki R, Ahmed AA. Pathology teach and tell: Fibrinogen storage disease in a child with hypofibrinogenemia and decreased ceruloplasmin. Fetal Pediatr Pathol 26: 101‐105, 2007.
 38.Butterworth R. Metal toxicity, liver disease and neurodegeneration. Neurotox Res 18: 100‐105, 2010.
 39.Cabral CM, Liu Y, Moremen KW, Sifers RN. Organizational diversity among distinct glycoprotein endoplasmic reticulum‐associated degradation programs. Mol Biol Cell 13: 2639‐2650, 2002.
 40.Cadrin M, French SW, Wong PT. Alteration in molecular structure of cytoskeleton proteins in griseofulvin‐treated mouse liver: A pressure tuning infrared spectroscopy study. Exp Mol Pathol 55: 170‐179, 1991.
 41.Cadrin M, Hovington H, Marceau N, McFarlane‐Anderson N. Early perturbations in keratin and actin gene expression and fibrillar organisation in griseofulvin‐fed mouse liver. J Hepatol 33: 199‐207, 2000.
 42.Cain H, Kraus B. Asteroid bodies: Derivatives of the cytosphere. An electron microscopic contribution to the pathology of the cytocentre. Virchows Arch B Cell Pathol 26: 119‐132, 1977.
 43.Caldwell S, Ikura Y, Dias D, Isomoto K, Yabu A, Moskaluk C, Pramoonjago P, Simmons W, Scruggs H, Rosenbaum N, Wilkinson T, Toms P, Argo CK, Al‐Osaimi AM, Redick JA. Hepatocellular ballooning in NASH. J Hepatol 53: 719‐723, 2010.
 44.Caldwell S, Patrie JT, Brunt EM, Redick JA, Davis CA, Park SH, Neuschwander‐Tetri BA. The effects of 48 weeks of rosiglitazone on hepatocyte mitochondria in human nonalcoholic steatohepatitis. Hepatology 46: 1101‐1107, 2007.
 45.Callea F, Brisigotti M, Faa G, Lucini L, Eriksson S. Identification of PiZ gene products in liver tissue by a monoclonal antibody specific for the Z mutant of alpha 1‐antitrypsin. J Hepatol 12: 372‐376, 1991.
 46.Callea F, de Vos R, Togni R, Tardanico R, Vanstapel MJ, Desmet VJ. Fibrinogen inclusions in liver cells: A new type of ground‐glass hepatocyte. Immune light and electron microscopic characterization. Histopathology 10: 65‐73, 1986.
 47.Callea F, Ray MB, Desmet VJ. Alpha‐I‐antitrypsin and copper in the liver. Histopathology 5: 415‐424, 1981.
 48.Callea F, Stuyck JM, Massi G, Huyghe JD, Van Gijsegem DF, Jadoul DH, Desmet VJ. Alpha‐1‐antitrypsin (AAT) deposits in gall bladder adenocarcinoma and liver in partial AAT deficiency (Pi SZ phenotype). Am J Clin Pathol 78: 878‐883, 1982.
 49.Campo E, Bruguera M, Rodés J. Are there diagnostic histologic features of porphyria cutanea tarda in liver biopsy specimens? Liver 10: 185‐190, 1990.
 50.Carlson J, Rogers BB, Sifers RN, Finegold MJ, Clift SM, DeMayo FJ, Bullock DW, Woo SL. Accumulation of PiZ alpha 1‐antitrypsin causes liver damage in transgenic mice. J Clin Invest 83: 1183‐1190, 1989
 51.Carrell RW, Lomas DA. Alpha1‐antitrypsin deficiency–a model for conformational diseases. N Engl J Med 346: 45‐53, 2002.
 52.Cavallo T, Graves K, Cole NL, Albrecht T. Cytomegalovirus: An ultrastructural study of the morphogenesis of nuclear inclusions in human cell culture. J Gen Virol 56: 97‐104, 1981.
 53.Cavanagh JB. Corpora‐amylacea and the family of polyglucosan diseases. Brain Res Brain Res Rev 29: 265‐295, 1999.
 54.Chalasani N, Wilson L, Kleiner DE, Cummings OW, Brunt EM, Unalp A. Relationship of steatosis grade and zonal location to histological features of steatohepatitis in adult patients with non‐alcoholic fatty liver disease. J Hepatol 48: 829‐834, 2008.
 55.Chan EM, Ackerley CA, Lohi H, Ianzano L, Cortez MA, Shannon P, Scherer SW, Minassian BA. Laforin preferentially binds the neurotoxic starch‐like polyglucosans, which form in its absence in progressive myoclonus epilepsy. Hum Mol Genet 13: 1117‐1129, 2004.
 56.Chan EM, Bulman DE, Paterson AD, Turnbull J, Andermann E, Andermann F, Rouleau GA, Delgado‐Escueta AV, Scherer SW, Minassian BA. Genetic mapping of a new Lafora progressive myoclonus epilepsy locus (EPM2B) on 6p22. J Med Genet 40: 671‐675, 2003.
 57.Chan EM, Young EJ, Ianzano L, Munteanu I, Zhao X, Christopoulos CC, Avanzini G, Elia M, Ackerley CA, Jovic NJ, Bohlega S, Andermann E, Rouleau GA, Delgado‐Escueta AV, Minassian BA, Scherer SW. Mutations in NHLRC1 cause progressive myoclonus epilepsy. Nat Genet 35: 125‐127, 2003.
 58.Chang L, Jacobson E. Inclusion body disease, a worldwide infectious disease of boid snakes: A review. J Exot Pet Med 19: 210‐225, 2010.
 59.Chappell S, Hadzic N, Stockley R, Guetta‐Baranes T, Morgan K, Kalsheker N. A polymorphism of the alpha1‐antitrypsin gene represents a risk factor for liver disease. Hepatology 47: 127‐132, 2008.
 60.Cheah PL, Looi LM, Nazarina AR, Goh KL, Rosmawati M, Vijeyasingam R. Histopathological landmarks of hepatocellular carcinoma in Malaysians. Malays J Pathol 25: 37‐43, 2003.
 61.Chedid A, Mendenhall CL, Gartside P, French SW, Chen T, Rabin L. Prognostic factors in alcoholic liver disease. Am J Gastroenterol 86: 210‐216, 1991.
 62.Chemin I, Zoulim F. Hepatitis B virus induced hepatocellular carcinoma. Cancer Lett 286: 52‐59, 2009.
 63.Chen BF, Liu CJ, Jow GM, Chen PJ, Kao JH, Chen DS. High prevalence and mapping of pre‐S deletion in hepatitis B virus carriers with progressive liver diseases. Gastroenterology 130: 1153‐1168, 2006.
 64.Chen CH, Changchien CS, Lee CM, Hung CH, Hu TH, Wang JH, Wang JC, Lu SN. Combined mutations in pre‐s/surface and core promoter/precore regions of hepatitis B virus increase the risk of hepatocellular carcinoma: A case‐control study. J Infect Dis 198: 1634‐1642, 2008.
 65.Chen CH, Hung CH, Lee CM, Hu TH, Wang JH, Wang JC, Lu SN, Changchien CS. Pre‐S deletion and complex mutations of hepatitis B virus related to advanced liver disease in HBeAg‐negative patients. Gastroenterology 133: 1466‐1474, 2007.
 66.Cheng A, Zhang M, Gentry MS, Worby CA, Dixon JE, Saltiel AR. A role for AGL ubiquitination in the glycogen storage disorders of Lafora and Cori's disease. Genes Dev 21: 2399‐2409, 2007.
 67.Chisari F. Hepatitis B virus transgenic mice: Insights into the virus and the disease. Hepatology 22: 1316‐1325, 1995.
 68.Chisari FV, Filippi P, McLachlan A, Milich DR, Riggs M, Lee S, Palmiter RD, Pinkert CA, Brinster RL. Expression of hepatitis B virus large envelope polypeptide inhibits hepatitis B surface antigen secretion in transgenic mice. J Virol 60: 880‐887, 1986.
 69.Cho DY, Yang GH, Ryu CJ, Hong HJ. Molecular chaperone GRP78/BiP interacts with the large surface protein of hepatitis B virus in vitro and in vivo. J Virol 77: 2784‐2788, 2003.
 70.Christoffersen P. The incidence and frequency of Mallory bodies in 1,100 consecutive liver biopsies. Acta Pathol Microbiol Scand A 78: 395‐400, 1970.
 71.Christoffersen P, Eghöje K, Juhl E. Mallory bodies in liver biopsies from chronic alcoholics. A comparative morphological, biochemical, and clinical study of two groups of chronic alcoholics with and without Mallory bodies. Scand J Gastroenterol 8: 341‐346, 1973.
 72.Christoffersen P, Nielsen K. The frequency of Mallory bodies in liver biopsies from chronic alcoholics. Acta Pathol Microbiol Scand A 71: 274‐278, 1971.
 73.Clausen PP. Immunohistochemical demonstration of alpha‐1‐antitrypsin in liver tissue. A methodological investigation. Acta Pathol Microbiol Scand A 88: 299‐306, 1980.
 74.Coe J, Ishak KG, Ross MJ. Diethylstilbestrol‐induced jaundice in the Chinese and Armenian hamster. Hepatology 3: 489‐496, 1983.
 75.Cohen C. Intracytoplasmic hyaline globules in hepatocellular carconomas. Cancer 37: 1754‐1758, 1976.
 76.Combs C, Brunt EM, Solomon H, Bacon BR, Brantly M, Di Bisceglie AM. Rapid development of hepatic alpha1‐antitrypsin globules after liver transplantation for chronic hepatitis C. Gastroenterology 112: 1372‐1375, 1997.
 77.Cooper DM, Hoeppner V, Cox D, Zamel N, Bryan AC, Levison H. Lung function in alpha1‐antitrypsin heterozygotes (Pi type MZ). Am Rev Respir Dis 110: 708‐715, 1974.
 78.Cornianu M, Dema A, Taban S, Lazar D, Lazar E, Vernic C. Evaluation and quantification of morphological characteristics associated to hepatitis C virus ifection: Comparative study with hepatitis B. Rom J of Morph and Embr 47: 29‐36, 2006.
 79.Cortés J, Oliva H, Paradinas FJ, Hernandez‐Guío C. The pathology of the liver in porphyria cutanea tarda. Histopathology 4: 471‐485, 1980.
 80.Craig J, Peters RL, Edmondson HA, Omata M. Fibrolamellar carcinoma of the liver: A tumor of adolescents and young adults with distinctive clinico‐pathologic features. Cancer 46: 372‐379, 1980.
 81.Craighead JE, Kanich RE, Almeida JD. Nonviral microbodies with viral antigenicity produced in cytomegalovirus‐infected cells. J Virol 10: 766‐775, 1972.
 82.Cripps D, Scheuer PJ. Hepatobiliary changes in erythropoietic protoporphyria. Arch Pathol 80: 500‐508, 1965.
 83.Cui L, Jeong H, Borovecki F, Parkhurst CN, Tanese N, Krainc D. Transcriptional repression of PGC‐1alpha by mutant huntingtin leads to mitochondrial dysfunction and neurodegeneration. Cell 127: 59‐69, 2006.
 84.Cummings CJ, Mancini MA, Antalffy B, DeFranco DB, Orr HT, Zoghbi HY. Chaperone suppression of aggregation and altered subcellular proteasome localization imply protein misfolding in SCA1. Nat Genet 19: 148‐154, 1998.
 85.Dar A, Gomis S, Shirley I, Mutwiri G, Brownlie R, Potter A, Gerdts V, Tikoo SK. Pathotypic and molecular characterization of a fowl adenovirus associated with inclusion body hepatitis in Saskatchewan chickens. Avian Dis 56: 73‐81, 2012.
 86.De Cramer D, Pipeleers‐Marichal M, Vandenplas Y, Van Den Branden C. Peroxisome proliferation associated with fibrinogen storage in the liver. Histopathology 29: 171‐173, 1996.
 87.De Lima V, Oliveira CP, Alves VA, Chammas MC, Oliveira EP, Stefano JT, de Mello ES, Cerri GG, Carrilho FJ, Caldwell SH. A rodent model of NASH with cirrhosis, oval cell proliferation and hepatocellular carcinoma. J Hepatol 49: 1055‐1061, 2008.
 88.de Serres FJ. Worldwide racial and ethnic distribution of alpha1‐antitrypsin deficiency: Summary of an analysis of published genetic epidemiologic surveys. Chest 122: 1818‐1829, 2002.
 89.Dekker A, Krause JR. Hyaline globules in human neoplasms. A report of three autopsy cases. Arch Pathol 95: 178‐181, 1973.
 90.del Rosario AD, Bui HX, Singh J, Ginsburg R, Ross JS. Intracytoplasmic eosinophilic hyaline globules in cartilaginous neoplasms: A surgical, pathological, ultrastructural, and electron probe x‐ray microanalytic study. Hum Pathol 25: 1283‐1289, 1994.
 91.DeLellis RA, Balogh K, Merk FB, Chirife AM. Distinctive hepatic cell globules in adult alpha‐1‐antitrypsin deficiency. A histochemical, immunohistochemical, and ultrastructural study. Arch Pathol 94: 308‐316, 1972.
 92.Denk H, Eckerstorfer R. Colchicine‐induced Mallory body formation in the mouse. Lab Invest 36: 563‐565, 1977.
 93.Denk H, Franke WW, Eckerstorfer R, Schmid E, Kerjaschki D. Formation and involution of Mallory bodies (“alcoholic hyalin”) in murine and human liver revealed by immunofluorescence microscopy with antibodies to prekeratin. Proc Natl Acad Sci USA 76: 4112‐4116, 1979.
 94.Denk H, Franke WW, Kerjaschki D, Eckerstorfer R. Mallory bodies in experimental animals and man. Int Rev Exp Pathol 20: 77‐121, 1979.
 95.Denk H, Krepler R, Lackinger E, Artlieb U, Franke WW. Immunological and biochemical characterization of the keratin‐related component of Mallory bodies: A pathological pattern of hepatocytic cytokeratins. Liver 2: 165‐175, 1982.
 96.Denk H, Stumptner C, Fuchsbichler A, Müller W, Terracciano L, Zatloukal K. Are the Mallory bodies and intracellular hyaline bodies in neoplastic and non‐neoplastic hepatocytes related? J Hepatol 208: 653‐661, 2006.
 97.Denk H, Stumptner C, Zatloukal K. Mallory bodies revisited. J Hepatol 32: 689‐702, 2000.
 98.Deodhar KP, Tapp E, Scheuer PJ. Orcein staining of hepatitis B antigen in paraffin sections of liver biopsies. J Clin Pathol 28: 66‐70, 1975.
 99.DePaoli‐Roach AA, Tagliabracci VS, Segvich DM, Meyer CM, Irimia JM, Roach PJ. Genetic depletion of the malin E3 ubiquitin ligase in mice leads to lafora bodies and the accumulation of insoluble laforin. J Biol Chem 285: 25372‐25381, 2010.
 100.Dervan PA. Alpha‐1‐antitrypsin hematoxylin and eosin fluorescence: A rapid, useful screening technic. Am J Clin Pathol 82: 188‐190, 1984.
 101.Deutsch J, Becker H, Aubock L. Histopathological features of liver disease in alpha 1‐antitrypsin deficiency. Acta Paediatr Suppl 393: 8‐12, 1994.
 102.Dib N, Quelin F, Ternisien C, Hanss M, Michalak S, Mazancourt P, Rousselet MC, Cale P. Fibrinogen angers with a new deletion (y GVYYQ 346‐350) causes hypofibrinogenemia with hepatic storage. J Thromb Haemost 5: 1999–2005, 2007.
 103.Dickens JA, Lomas DA. Why has it been so difficult to prove the efficacy of alpha‐1‐antitrypsin replacement therapy? Insights from the study of disease pathogenesis. Drug Des Devel Ther 5: 391‐405, 2011.
 104.DiFiglia M, Sapp E, Chase KO, Davies SW, Bates GP, Vonsattel JP, Aronin N. Aggregation of huntingtin in neuronal intranuclear inclusions and dystrophic neurites in brain. Science 277: 1990‐1993, 1997.
 105.Ding J, Yannam GR, Roy‐Chowdhury N, Hidvegi T, Basma H, Rennard SI, Wong RJ, Avsar Y, Guha C, Perlmutter DH, Fox IJ, Roy‐Chowdhury J. Spontaneous hepatic repopulation in transgenic mice expressing mutant human alpha1‐antitrypsin by wild‐type donor hepatocytes. J Clin Invest 121: 1930‐1934, 2011.
 106.Doo EC, Ghany MG. Hepatitis B virology for clinicians. Clin Liver Dis 14: 397‐408, 2010.
 107.Drebber U, Hardt A, Dienes HP, Odenthal M. Cytomegalovirus. Pathological‐anatomical manifestations and detection methods. Der Pathologe 32: 418‐427, 2011.
 108.Duan YY, Wu J, Zhu JL, Liu SL, Ozaki I, Strayer DS, Zern MA. Gene therapy for human alpha1‐antitrypsin deficiency in an animal model using SV40‐derived vectors. Gastroenterology 127: 1222‐1232, 2004.
 109.Duga S, Braidotti P, Asselta R, Maggioni M, Santagostino E, Pellegrini C, Coggi G, Malcovati M, Tenchini ML. Liver histology of an afibrinogenemic patient with the beta‐L353R mutation showing no evidence of hepatic endoplasmic reticulum storage disease (ERSD); comparative study in COS‐1 cells of the intracellular processing of the Bbeta‐L353R fibrinogen vs. the ERSD‐associated gamma‐G284R mutant. J Thromb Haemost 3: 724‐732, 2005.
 110.Dycaico M, Grant SG, Felts K, Nichols WS, Geller SA, Hager JH, Pollard AJ, Kohler SW, Short HP, Jirik FR. Neonatal hepatitis induced by alpha 1‐antitrypsin: A transgenic mouse model. Science 242: 1409‐1412, 1988.
 111.Elder G. Porphyria cutanea tarda. Semin Liver Dis 18: 67‐75, 1998.
 112.Elzouki AN, Verbaan H, Lindgren S, Widell A, Carlson J, Eriksson S. Serine protease inhibitors in patients with chronic viral hepatitis. J Hepatol 27: 42‐48, 1997.
 113.Eriksson S, Carlson J, Velez R. Risk of cirrhosis and primary liver cancer in alpha 1‐antitrypsin deficiency. N Engl J Med 314: 736‐739, 1986.
 114.Eriksson S, Larsson C. Purification and partial characterization of pas‐positive inclusion bodies from the liver in alpha 1‐antitrypsin deficiency. N Engl J Med 292: 176‐180, 1975.
 115.Eriksson S, Lindmark B, Lilja H. Familial alpha 1‐antichymotrypsin deficiency. Acta Med Scand 220: 447‐453, 1986.
 116.Espy MJ, Paya CV, Holley KE, Ludwig J, Hermans PF, Wiesner RH, Krom RA, Smith TF. Diagnosis of cytomegalovirus hepatitis by histopathology and in situ hybridization in liver transplantation. Diagn Micr Infec Dis 14: 293‐296, 1991.
 117.Everhart J, Lok AS, Kim HY, Morgan TR, Lindsay KL, Chung RT, Bonkovsky HL, Ghany MG. Weight‐related effects on disease progression in the hepatitis C antiviral long‐term treatment against cirrhosis trial. Gastroenterology 137: 549‐557, 2009.
 118.Faber JP, Poller W, Olek K, Baumann U, Carlson J, Lindmark B, Eriksson S. The molecular basis of alpha 1‐antichymotrypsin deficiency in a heterozygote with liver and lung disease. J Hepatol 18: 313‐321, 1993.
 119.Fairbanks KD, Tavill AS. Liver disease in alpha 1‐antitrypsin deficiency: A review. Am J Gastroenterol 103: 2136‐2141; quiz 2142, 2008.
 120.Fakan F, Chlumská A. Demonstration of needle‐shaped hepatic inclusions in porphyria cutanea tarda using the ferric ferricyanide reduction test. Virchows Arch A Pathol Anat Histopathol 411: 365‐368, 1987.
 121.Fakan F, Chlumská A, Krijt J, Kocová L. Cytoplasmic liver cell inclusions–a typical feature of porphyria cutanea tarda–are absent in porphyria‐related hepatic neoplasias. Neoplasma 45: 102‐106, 1998.
 122.Fakan F, Chlumská A, Krijt J, Safanda J, Michal M. Liver cell cytoplasmic inclusions in experimental porphyrias: Their demonstration with the ferric ferricyanide reduction reaction. Exp Toxicol Pathol 49: 289‐293, 1997.
 123.Fan YF, Lu CC, Chang YC, Chang TT, Lin PW, Lei HY, Su IJ. Identification of a pre‐S2 mutant in hepatocytes expressing a novel marginal pattern of surface antigen in advanced diseases of chronic hepatitis B virus infection. J Gastroenterol Hepatol 15: 519‐528, 2000.
 124.Fan YF, Lu CC, Chen WC, Yao WJ, Wang HC, Chang TT, Lei HY, Shiau AL, Su IJ. Prevalence and significance of hepatitis B virus (HBV) pre‐S mutants in serum and liver at different replicative stages of chronic HBV infection. Hepatology 33: 277‐286, 2001.
 125.Feldmann G, Bignon J, Chahinian P, Degott C, Benhamou JP. Hepatocyte ultrastructural changes in alpha1‐antitrypsin deficiency. Gastroenterology 67: 1214‐1224, 1974.
 126.Fernholz D, Galle PR, Stemler M, Brunetto M, Bonino F, Will H. Infectious hepatitis B virus variant defective in pre‐S2 protein expression in a chronic carrier. Virology 194: 137‐148, 1993.
 127.Fickert P, Trauner M, Fuchsbichler A, Stumptner C, Zatloukal K, Denk H. Mallory body formation in primary biliary cirrhosis is associated with increased amounts and abnormal phosphorylation and ubiquitination of cytokeratins. J Hepatol 38: 387‐394, 2003.
 128.Filipponi F, Soubrane O, Labrousse F, Devictor D, Bernard O, Valayer J, Houssin D. Liver transplantation for end‐stage liver disease associated with alpha‐1‐antitrypsin deficiency in children: Pretransplant natural history, timing and results of transplantation. J Hepatol 20: 72‐78, 1994.
 129.Flewett TH, Parker RG, Philip WM. Acute hepatitis due to Herpes simplex virus in an adult. J Clin Pathol 22: 60‐66, 1969.
 130.Francalanci P, Santorelli FM, Talini I, Boldrini R, Devito R, Camassei FD, Maggiore G, Callea F. Severe liver disease in early childhood due to fibrinogen storage and de novo gamma375Arg–>Trp gene mutation. J Pediatr 148: 396‐398, 2006
 131.Frank J, Poblete‐Gutiérrez P. Porphyria cutanea tarda–when skin meets liver. Best Pract Res Clin Gastroenterol 24: 735‐745, 2010.
 132.Fregonese L, Stolk J. Hereditary alpha‐1‐antitrypsin deficiency and its clinical consequences. Orphanet J Rare Dis 3: 16, 2008.
 133.French S. Mallory bodies revisited. Arch Pathol Lab Med 103: 204, 1979.
 134.French S, Bardag‐Gorce F, Li J, French BA, Oliva J. Mallory‐Denk body pathogenesis revisited. World J Hepatol 2: 295‐301, 2010.
 135.Gailbreath K, Oaks J. Herpesviral inclusion body disease in owls and falcons is caused by the pigeon herpesvirus (columbid herpesvirus 1). J Wildl Dis 44: 427‐433, 2008.
 136.Gallegos‐Orozco JF, Rakela‐Brodner J. Hepatitis viruses: Not always what it seems to be. Rev Med Chile 138: 1302‐1311, 2010.
 137.Gambetti P, Di Mauro S, Hirt L, Blume RP. Myoclonic epilepsy with lafora bodies. Some ultrastructural, histochemical, and biochemical aspects. Arch Neurol 25: 483‐493, 1971.
 138.Gambino R, Musso G, Cassader M. Redox balance in the pathogenesis of nonalcoholic fatty liver disease: Mechanisms and therapeutic opportunities. Antioxid Redox Signal 15: 1325‐1365, 2011.
 139.Ganesh S, Agarwala KL, Amano K, Suzuki T, Delgado‐Escueta AV, Yamakawa K. Regional and developmental expression of Epm2a gene and its evolutionary conservation. Biochem Biophys Res Commun 283: 1046‐1053, 2001.
 140.Ganesh S, Puri R, Singh S, Mittal S, Dubey D. Recent advances in the molecular basis of Lafora's progressive myoclonus epilepsy. J Hum Genet 51: 1‐8, 2006.
 141.Gao B, Bataller R. Alcoholic liver disease: Pathogenesis and new therapeutic targets. Gastroenterology 141: 1572‐1585, 2011.
 142.Geller SA, Nichols WS, Kim S, Tolmachoff T, Lee S, Dycaico MJ, Felts K, Sorge JA. Hepatocarcinogenesis is the sequel to hepatitis in Z#2 alpha 1‐antitrypsin transgenic mice: Histopathological and DNA ploidy studies. Hepatology 19: 389‐397, 1994.
 143.Gentry MS, Worby CA, Dixon JE. Insights into Lafora disease: Malin is an E3 ubiquitin ligase that ubiquitinates and promotes the degradation of laforin. Proc Natl Acad Sci USA 102: 8501‐8506, 2005.
 144.Gerber MA, Hadziyannis S, Vernace S, Vissoulis C. Incidence and nature of cytoplasmic hepatitis B antigen in hepatocytes. Lab Invest 32: 251‐256, 1975.
 145.Gerber MA, Hadziyannis S, Vissoulis C, Schaffner F, Paronetto F, Popper H. Electron microscopy and immunoelectronmicroscopy of cytoplasmic hepatitis B antigen in hepatocytes. Am J Pathol 75: 489‐502, 1974.
 146.Gilles PN, Guerrette DL, Ulevitch RJ, Schreiber RD, Chisari FV. HBsAg retention sensitizes the hepatocyte to injury by physiological concentrations of interferon‐gamma. Hepatology 16: 655‐663, 1992.
 147.Goebel HH, Shin YS, Gullotta F, Yokota T, Alroy J, Voit T, Haller P, Schulz A. Adult polyglucosan body myopathy. J Neuropathol Exp Neurol 51: 24‐35, 1992.
 148.Goldfischer S, Popper H, Sternlieb I. The significance of variations in the distribution of copper in liver disease. Am J Pathol 99: 715‐730, 1980.
 149.Gomez‐Abad C, Gomez‐Garre P, Gutierrez‐Delicado E, Saygi S, Michelucci R, Tassinari CA, Rodriguez de Cordoba S, Serratosa JM. Lafora disease due to EPM2B mutations: A clinical and genetic study. Neurology 64: 982‐986, 2005.
 150.Gómez‐Garre P, Gutiérrez‐Delicado E, Gómez‐Abad C, Morales‐Corraliza J, Villanueva VE, Rodríguez de Córdoba S, Larrauri J, Gutiérrez M, Berciano J, Serratosa JM. Hepatic disease as the first manifestation of progressive myoclonus epilepsy of Lafora. Neurology 68: 1369‐1373, 2007.
 151.Gooptu B, Lomas DA. Conformational pathology of the serpins: Themes, variations, and therapeutic strategies. Annu Rev Biochem 78: 147‐176, 2009.
 152.Gorman N, Trask HW, Bement WJ, Szakacs JG, Elder GH, Balestra D, Jacobs NJ, Jacobs JM, Sinclair JF, Gerhard GS, Sinclair PR. Genetic factors influence ethanol‐induced uroporphyria in Hfe(−/−) mice. Hepatology 40: 942‐950, 2004.
 153.Graham KS, Le A, Sifers RN. Accumulation of the insoluble PiZ variant of human alpha 1‐antitrypsin within the hepatic endoplasmic reticulum does not elevate the steady‐state level of grp78/BiP. J Biol Chem 265: 20463‐20468, 1990.
 154.Gralnick H, Givelber H, Abrams E. Dysfibrinogenemia associated with hepatoma. Increased carbohydrate content of the fibrinogen molecule. N Engl J Med 299: 221‐226, 1978
 155.Gramlich T, Kleiner DE, McCullough AJ, Matteoni CA, Boparai N, Younossi ZM. Pathologic features associated with fibrosis in nonalcoholic fatty liver disease. Hum Pathol 35: 196‐199, 2004.
 156.Graziadei IW, Joseph JJ, Wiesner RH, Therneau TM, Batts KP, Porayko MK. Increased risk of chronic liver failure in adults with heterozygous alpha1‐antitrypsin deficiency. Hepatology 28: 1058‐1063, 1998.
 157.Greenblatt EJ, Olzmann JA, Kopito RR. Derlin‐1 is a rhomboid pseudoprotease required for the dislocation of mutant alpha‐1 antitrypsin from the endoplasmic reticulum. Nat Struct Mol Biol 18: 1147‐1152, 2011.
 158.Griffith ME, Lovegrove JU, Gaskin G, Whitehouse DB, Pusey CD. C‐antineutrophil cytoplasmic antibody positivity in vasculitis patients is associated with the Z allele of alpha‐1‐antitrypsin, and P‐antineutrophil cytoplasmic antibody positivity with the S allele. Nephrol Dial Transplant 11: 438‐443, 1996.
 159.Grünewald S, De Vos R, Jaeken J. Abnormal lysosomal inclusions in liver hepatocytes but not in fibroblasts in congenital disorders of glycosylation (CDG). J Inherit Metab Dis 26: 49‐54, 2003.
 160.Gschnait F, Konrad K, Hönigsmann H, Denk H, Wolff K. Mouse model for protoporphyria. I. The liver and hepatic protoporphyrin crystals. J Invest Dermatol 65: 290‐299, 1975.
 161.Guillen F, Vazquez JJ. Cyanamide‐induced liver cell injury. Experimental study in the rat. Lab Invest 50: 385‐393, 1984.
 162.Haberland C. Clinical neuropathology: Text and color atlas. In: Percy C, editor. Nervous System Diseases‐Pathology‐Atlases (1st ed). North Chicago, Illinois: Demos Medical Publishing, 2007.
 163.Hadziyannis S, Gerber MA, Vissoulis C, Popper H. Cytoplasmic hepatitis B antigen in “ground‐glass” hepatocytes of carriers. Arch Pathol 96: 327‐330, 1973.
 164.Hadziyannis S, Raimondo G, Papaioannou C, Anastassakos C, Wong D, Sninsky J, Shafritz D. Expression of pre‐S gene‐encoded proteins in liver and serum during chronic hepatitis B virus infection in comparison to other markers of active virus replication. J Hepatol 5: 253‐259, 1987.
 165.Hagen TM, Huang S, Curnutte J, Fowler P, Martinez V, Wehr CM, Ames BN, Chisari FV. Extensive oxidative DNA damage in hepatocytes of transgenic mice with chronic active hepatitis destined to develop hepatocellular carcinoma. Proc Natl Acad Sci U S A 91: 12808‐12812, 1994.
 166.Hajdu CH, Lefkowitch JH. Adult polyglucosan body disease: A rare presentation with chronic liver disease and ground‐glass hepatocellular inclusions. Semin Liver Dis 31: 223‐229, 2011.
 167.Hanada S, Harada M, Abe M, Akiba J, Sakata M, Kwan R, Taniguchi E, Kawaguchi T, Koga H, Nagata E, Ueno T, Sata M. Aging modulates susceptibility to mouse liver Mallory‐Denk body formation. J Histochem Cytochem 60: 475‐483, 2012
 168.Hanada S, Harada M, Kumemura H, Bishr Omary M, Koga H, Kawaguchi T, Taniguchi E, Yoshida T, Hisamoto T, Yanagimoto C, Maeyama M, Ueno T, Sata M. Oxidative stress induces the endoplasmic reticulum stress and facilitates inclusion formation in cultured cells. J Hepatol 47: 93‐102, 2007.
 169.Hanada S, Snider NT, Brunt EM, Hollenberg PF, Omary MB. Gender dimorphic formation of mouse Mallory‐Denk bodies and the role of xenobiotic metabolism and oxidative stress. Gastroenterology 138: 1607‐1617, 2010.
 170.Hanada S, Strnad P, Brunt EM, MB. O. The genetic background modulates susceptibility to mouse liver Mallory‐Denk body formation and liver injury. Hepatology 48: 943‐952, 2008.
 171.Harada M, Hanada S, Toivola DM, Ghori N, Omary MB. Autophagy activation by rapamycin eliminates mouse Mallory‐Denk bodies and blocks their proteasome inhibitor‐mediated formation. Hepatology 47: 2026‐2035, 2008.
 172.Harada M, Strnad P, Resurreccion EZ, Ku NO, Omary MB. Keratin 18 overexpression but not phosphorylation or filament organization blocks mouse Mallory body formation. Hepatology 45: 88‐96, 2007.
 173.Harris H, Rubinsztein DC. Control of autophagy as a therapy for neurodegenerative disease. Nat Rev Neurol 8: 108‐117, 2012.
 174.Hashimoto K, Hoshii Y, Takahashi M, Mitsuno S, Hanai N, Watanabe Y, Ishihara T. Use of a monoclonal antibody against Lafora bodies for the immunocytochemical study of ground‐glass inclusions in hepatocytes due to cyanamide. Histopathology 39: 60‐65, 2001.
 175.Helman R, Temko MH, Nye SW, Fallon HJ. Alcoholic hepatitis. Natural history and evaluation of prednisolone therapy. . Ann Intern Med 74: 311‐321, 1971.
 176.Helmboldt C, Frazier MN. Avian hepatic inclusion bodies of unknown significance. Avian Dis 7: 446‐450, 1963.
 177.Hercz A, Katona E, Cutz E, Wilson JR, Barton M. alpha1‐Antitrypsin: The presence of excess mannose in the Z variant isolated from liver. Science 201: 1229‐1232, 1978.
 178.Hidvegi T, Ewing M, Hale P, Dippold C, Beckett C, Kemp C, Maurice N, Mukherjee A, Goldbach C, Watkins S, Michalopoulos G, Perlmutter DH. An autophagy‐enhancing drug promotes degradation of mutant alpha1‐antitrypsin Z and reduces hepatic fibrosis. Science 329: 229‐232, 2010.
 179.Hidvegi T, Mirnics K, Hale P, Ewing M, Beckett C, Perlmutter DH. Regulator of G Signaling 16 is a marker for the distinct endoplasmic reticulum stress state associated with aggregated mutant alpha1‐antitrypsin Z in the classical form of alpha1‐antitrypsin deficiency. J Biol Chem 282: 27769‐27780, 2007.
 180.Hidvegi T, Schmidt BZ, Hale P, Perlmutter DH. Accumulation of mutant alpha1‐antitrypsin Z in the endoplasmic reticulum activates caspases‐4 and ‐12, NFkappaB, and BAP31 but not the unfolded protein response. J Biol Chem 280: 39002‐39015, 2005.
 181.Hildt E, Munz B, Saher G, Reifenberg K, Hofschneider PH. The PreS2 activator MHBs(t) of hepatitis B virus activates c‐raf‐1/Erk2 signaling in transgenic mice. EMBO J 21: 525‐535, 2002.
 182.Hodges JR, Millward‐Sadler GH, Barbatis C, Wright R. Heterozygous MZ alpha 1‐antitrypsin deficiency in adults with chronic active hepatitis and cryptogenic cirrhosis. N Engl J Med 304: 557‐560, 1981.
 183.Holmberg M, Duyckaerts C, Durr A, Cancel G, Gourfinkel‐An I, Damier P, Faucheux B, Trottier Y, Hirsch EC, Agid Y, Brice A. Spinocerebellar ataxia type 7 (SCA7): a neurodegenerative disorder with neuronal intranuclear inclusions. Hum Mol Genet 7: 913‐918, 1998.
 184.Hood JM, Koep LJ, Peters RL, Schroter GP, Weil R, 3rd, Redeker AG, Starzl TE. Liver transplantation for advanced liver disease with alpha‐1‐antitrypsin deficiency. N Engl J Med 302: 272‐275, 1980.
 185.Hoofnagle JH, Shafritz DA, Popper H. Chronic type B hepatitis and the “healthy” HBsAg carrier state. Hepatology 7: 758‐763, 1987.
 186.Hoso M, Nakanuma Y. Clinicopathological characteristics of hepatocellular carcinoma bearing Mallory bodies: An autopsy study. Liver 10: 264‐268, 1990.
 187.Hosokawa N, Wada I, Hasegawa K, Yorihuzi T, Tremblay LO, Herscovics A, Nagata K. A novel ER alpha‐mannosidase‐like protein accelerates ER‐associated degradation. EMBO Rep 2: 415‐422, 2001.
 188.Hosokawa N, Wada I, Natsuka Y, Nagata K. EDEM accelerates ERAD by preventing aberrant dimer formation of misfolded alpha1‐antitrypsin. Genes Cells 11: 465‐476, 2006.
 189.Hossain N, Afendy A, Stepanova M, Nader F, Srishord M, Rafiq N, Goodman Z, Younossi Z. Independent predictors of fibrosis in patients with nonalcoholic fatty liver disease. Clin Gastroenterol Hepatol 7: 1224‐1229, 2009.
 190.Howard CR, Ellis DS, Simpson DI. Exotic viruses and the liver. Semin Liver Dis 4: 361‐374, 1984.
 191.Howell J, MacDonald DW, Christian RG. Inclusion body hepatitis in chickens. Can Vet J 11: 99‐101, 1970.
 192.Hsieh YH, Su IJ, Wang HC, Chang WW, Lei HY, Lai MD, Chang WT, Huang W. Pre‐S mutant surface antigens in chronic hepatitis B virus infection induce oxidative stress and DNA damage. Carcinogenesis 25: 2023‐2032, 2004.
 193.Hsieh YH, Su IJ, Wang HC, Tsai JH, Huang YJ, Chang WW, Lai MD, Lei HY, Huang W. Hepatitis B virus pre‐S2 mutant surface antigen induces degradation of cyclin‐dependent kinase inhibitor p27Kip1 through c‐Jun activation domain‐binding protein 1. Mol Cancer Res 5: 1063‐1072, 2007.
 194.Huang CC, Faber PW, Persichetti F, Mittal V, Vonsattel JP, MacDonald ME, Gusella JF. Amyloid formation by mutant huntingtin: Threshold, progressivity and recruitment of normal polyglutamine proteins. Somat Cell Mol Genet 24: 217‐233, 1998.
 195.Hughes RE, Olson JM. Therapeutic opportunities in polyglutamine disease. Nat Med 7: 419‐423, 2001.
 196.Hung JH, Su IJ, Lei HY, Wang HC, Lin WC, Chang WT, Huang W, Chang WC, Chang YS, Chen CC, Lai MD. Endoplasmic reticulum stress stimulates the expression of cyclooxygenase‐2 through activation of NF‐kappaB and pp38 mitogen‐activated protein kinase. J Biol Chem 279: 46384‐46392, 2004.
 197.Huntington JA. Serpin structure, function and dysfunction. J Thromb Haemost 9(Suppl 1): 26‐34, 2011.
 198.Huntington JA, Yamasaki M. Serpin polymerization in vitro. Methods Enzymol 501: 379‐420, 2011.
 199.Huy TT, Ushijima H, Quang VX, Win KM, Luengrojanakul P, Kikuchi K, Sata T, Abe K. Genotype C of hepatitis B virus can be classified into at least two subgroups. J Gen Virol 85: 283‐292, 2004.
 200.Idoate M, Vázquez J. Regression mechanism of cyanamide‐induced inclusion bodies in the rat: A useful experimental pattern to study the beta‐glycogen metabolization of hepatocytes. Int J Exp Pathol 73: 699‐708, 1992.
 201.Iglesias B, de la Torre C, Cruces MJ. Cytoplasmic birefringent needle‐like inclusions in hepatocytes in a patient with hepatoerythropoietic porphyria. Histopathology 44: 629‐630, 2004.
 202.Ilan Y, Rappaport I, Feigin R, Ben‐Chetrit E. Primary sclerosing cholangitis in sarcoidosis. J Clin Gastroenterol 16: 326‐328, 1993.
 203.Imarisio S, Carmichael J, Korolchuk V, Chen CW, Saiki S, Rose C, Krishna G, Davies JE, Ttofi E, Underwood BR, DC. R. Huntington's disease: From pathology and genetics to potential therapies. Biochem J 412: 191‐209, 2008.
 204.Inami Y, Waguri S, Sakamoto A, Kouno T, Nakada K, Hino O, Watanabe S, Ando J, Iwadate M, Yamamoto M, Lee MS, Tanaka K, Komatsu M. Persistent activation of Nrf2 through p62 in hepatocellular carcinoma cells. J Cell Biol 193: 275‐284, 2011.
 205.Ishak KG, Walker DH, Coetzer JA, Gardner JJ, Gorelkin L. Viral hemorrhagic fevers with hepatic involvement: Pathologic aspects with clinical correlations. Prog Liver Dis 7: 495‐515, 1982.
 206.Ishihara T, Yokota T, Yamashita Y, Takahashi M, Kawano H, Uchino F, Kamei T, Matsumoto N, Kusunose Y, Yamada M. Comparative study of the intracytoplasmic inclusions in Lafora disease and type IV glycogenosis by electron microscopy. Acta Pathol Jpn 37: 1591‐1601, 1987.
 207.Issidorides M, Panayotacopoulou MT, Tiniacos G. Similarities between neuronal Lewy bodies in parkinsonism and hepatic Mallory bodies in alcoholism. Pathol Res Pract 186: 473‐478, 1990.
 208.Itakura C, Matsushita S, Goto M. Fine structure of inclusion bodies in hepatic cells of chickens naturally affected with inclusion body hepatitis. Avian Pathol 6: 19‐32, 1977.
 209.Jaeken J, Hennet T, Matthijs G, HH. F. CDG nomenclature: Time for a change! Biochim Biophys Acta 1792: 825‐826, 2009.
 210.Jagirdar J, Irie T, French SW, Patil J, Schwarz R, Paronetto F. Globular Mallory‐like bodies in renal cell carcinoma: Report of a case and review of cytoplasmic eosinophilic globules. Hum Pathol 16: 949‐952, 1985.
 211.James K, Cortés JM, Paradinas FJ. Demonstration of intracytoplasmic needle‐like inclusions in hepatocytes of patients with porphyria cutanea tarda. J Clin Pathol 33: 899‐900, 1980.
 212.Janciauskiene S, Eriksson S, Callea F, Mallya M, Zhou A, Seyama K, Hata S, Lomas DA. Differential detection of PAS‐positive inclusions formed by the Z, Siiyama, and Mmalton variants of alpha1‐antitrypsin. Hepatology 40: 1203‐1210, 2004.
 213.Jensen K, Gluud C. The Mallory body: Morphological, clinical and experimental studies (Part 1 of a literature survey). Hepatology 4 1061‐1077, 1994.
 214.Jeong H, Then F, Melia TJ, Jr., Mazzulli JR, Cui L, Savas JN, Voisine C, Paganetti P, Tanese N, Hart AC, Yamamoto A, Krainc D. Acetylation targets mutant huntingtin to autophagosomes for degradation. Cell 137: 60‐72, 2009.
 215.Jeppsson JO, Larsson C, Eriksson S. Characterization of alpha1‐antitrypsin in the inclusion bodies from the liver in alpha 1‐antitrypsin deficiency. N Engl J Med 293: 576‐579, 1975.
 216.Jorns JM, Knoepp SM. Asteroid bodies in lymph node cytology: Infrequently seen and still mysterious. Diagn Cytopathol 39: 35‐36.
 217.Kaushal S, Annamali M, Blomenkamp K, Rudnick D, Halloran D, Brunt EM, Teckman JH. Rapamycin reduces intrahepatic alpha‐1‐antitrypsin mutant Z protein polymers and liver injury in a mouse model. Exp Biol Med (Maywood) 235: 700‐709, 2010.
 218.Kharbanda K. Alcoholic liver disease and methionine metabolism. Semin Liver Dis 29: 155‐165, 2009.
 219.Kirkin V, Lamark T, Johansen T, I. D. NBR1 cooperates with p62 in selective autophagy of ubiquitinated targets. Autophagy 5: 732‐733, 2009.
 220.Kirkpatrick CJ, Curry A, Bisset DL. Light‐ and electron‐microscopic studies on multinucleated giant cells in sarcoid granuloma: New aspects of asteroid and Schaumann bodies. Ultrastruct Pathol 12: 581‐597, 1988.
 221.Klaassen C, Reisman SA. Nrf2 the rescue: Effects of the antioxidative/electrophilic response on the liver. Toxicol Appl Pharmacol 244: 57‐65, 2010.
 222.Klatskin G, Yesner R. Hepatic manifestations of sarcoidosis and other granulomatous diseases; a study based on histological examination of tissue obtained by needle biopsy of the liver. Yale J Biol Med 23: 207‐248, 1950.
 223.Klein CJ. Adult polyglucosan body disease. In: Pagon RA, Bird TD, Dolan CR, Stephens K, Adam MP, editors. GeneReviewsTM [Internet]. Seattle (WA): University of Washington, Seattle; 1993‐2009 Apr 02 [updated 2009 Jul 23].
 224.Klein CJ, Boes CJ, Chapin JE, Lynch CD, Campeau NG, Dyck PJ. Adult polyglucosan body disease: Case description of an expanding genetic and clinical syndrome. Muscle Nerve 29: 323‐328, 2004.
 225.Klinge O, Bannasch, P. Zur Vermehrung des glatten endoplasmatischen Retikulums in Hepatozyten menschlicher Leberpunktate. Verh Dtsch Ges Path 52: 568‐573, 1968.
 226.Knaevelsrud H, Simonsen A. Fighting disease by selective autophagy of aggregate‐prone proteins. EBS Lett 584: 2635‐2645, 2010.
 227.Knaupp AS, Levina V, Robertson AL, Pearce MC, Bottomley SP. Kinetic instability of the serpin Z alpha1‐antitrypsin promotes aggregation. J Mol Biol 396: 375‐383, 2010.
 228.Kojima K. Alcoholic hyalin‐like bodies found in the pancreatic acinar cells and nerve cells of the brain. Acta Pathol Jpn 25: 281‐293, 1975.
 229.Komatsu M, Waguri S, Koike M, Sou YS, Ueno T, Hara T, Mizushima N, Iwata J, Ezaki J, Murata S, Hamazaki J, Nishito Y, Iemura S, Natsume T, Yanagawa T, Uwayama J, Warabi E, Yoshida H, Ishii T, Kobayashi A, Yamamoto M, Yue Z, Uchiyama Y, Kominami E, K. T. Homeostatic levels of p62 control cytoplasmic inclusion body formation in autophagy‐deficient mice. Cell 131: 1149‐1163, 2007.
 230.Komatsu M, Ichimura Y. Physiological significance of selective degradation of p62 by autophagy. FEBS Lett 584: 1374‐1378, 2010.
 231.Komatsu M, Kageyama S, Ichimura Y. p62/SQSTM1/A170: physiology and pathology. Pharmacol Res 66: 457‐462, 2012.
 232.Kopito RR. Aggresomes, inclusion bodies and protein aggregation. Trends Cell Biol 10: 524‐530, 2000.
 233.Kruse K, Dear A, Kaltenbrun ER, Crum BE, George PM, Brennan SO, McCracken AA. Mutant fibrinogen cleared from the endoplasmic reticulum via endoplasmic reticulum‐associated protein degradation and autophagy an explanation for liver disease. Am J Pathol 168: 1299–1308, 2006
 234.Kruse KB, Brodsky JL, McCracken AA. Characterization of an ERAD gene as VPS30/ATG6 reveals two alternative and functionally distinct protein quality control pathways: One for soluble Z variant of human alpha‐1 proteinase inhibitor (A1PiZ) and another for aggregates of A1PiZ. Mol Biol Cell 17: 203‐212, 2006.
 235.Ku N, Azhar S, Omary MB. Keratin 8 phosphorylation by p38 kinase regulates cellular keratin filament reorganization: Modulation by a keratin 1‐like disease causing mutation. J Biol Chem 277: 10775‐10782, 2002.
 236.Ku N, Omary M. Keratins turn over by ubiquitination in a phosphorylation‐modulated fashion. J Cell Biol 149: 547‐552, 2000.
 237.Ku N, Strnad P, Zhong BH, Tao GZ, Omary MB. Keratins let liver live: Mutations predispose to liver disease and crosslinking generates Mallory‐Denk bodies. Hepatology 46: 1639‐1649, 2007.
 238.Kuusisto E, Suuronen T, Salminen A. Ubiquitin‐binding protein p62 expression is induced during apoptosis and proteasomal inhibition in neuronal cells. Biochem Biophys Res Commun 280: 223‐228, 2001.
 239.Kwan R, Hanada S, Harada M, Strnad P, Li DH, Omary MB. Keratin 8 phosphorylation regulates its transamidation and hepatocyte Mallory‐Denk body formation. FASEB J 26: 2318‐2326, 2012.
 240.Labbadia J, Cunliffe H, Weiss A, Katsyuba E, Sathasivam K, Seredenina T, Woodman B, Moussaoui S, Frentzel S, Luthi‐Carter R, Paganetti P, Bates GP. Altered chromatin architecture underlies progressive impairment of the heat shock response in mouse models of Huntington disease. J Clin Invest 121: 3306‐3319, 2011.
 241.Lackner C, Gogg‐Kamerer M, Zatloukal K, Stumptner C, Brunt EM, Denk H. Ballooned hepatocytes in steatohepatitis: The value of keratin immunohistochemistry for diagnosis. . J Hepatol 48: 821‐828, 2008.
 242.Lafora G, Gleuck B. Beitrag zur Histopathologie der myoklonischen Epilepsie. Zeitschrift fur die gesamte Neurologie und Psychiatrie 6: 1‐14, 1911.
 243.Lambert C, Prange R. Chaperone action in the posttranslational topological reorientation of the hepatitis B virus large envelope protein: Implications for translocational regulation. Proc Natl Acad Sci U S A 100: 5199‐5204, 2003.
 244.Laurell CB ES. The electrophoretic a,glohulin pattern or serum in alpha‐I‐antitripsin deficiency. Scand J Clin Lab Invest: 132‐140, 1963.
 245.Lawless MW, Greene CM, Mulgrew A, Taggart CC, O'Neill SJ, McElvaney NG. Activation of endoplasmic reticulum‐specific stress responses associated with the conformational disease Z alpha 1‐antitrypsin deficiency. J Immunol 172: 5722‐5726, 2004.
 246.Le Seyec J, Chouteau P, Cannie I, Guguen‐Guillouzo C, Gripon P. Role of the pre‐S2 domain of the large envelope protein in hepatitis B virus assembly and infectivity. J Virol 72: 5573‐5578, 1998.
 247.Lefkowitch J, Lobritto SJ, Brown RS Jr., Emond JC, Schilsky ML, Rosenthal LA, George DM, Cairo MS. Ground‐glass, polyglucosan‐like hepatocellular inclusions: A “new” diagnostic entity. Gastroenterology 131: 713‐718, 2006.
 248.Lefkowitch J, Schiff ER, Davis GL, Perillo RP, Lidsay K, Bodenheimer HC Jr., Balart LA, Ortego TJ, Payne J, Diestag JL. Pathological diagnosis of chronic hepatitis C: A multicenter comparative study with chronic hepatitis B. The Hepatitis Inventional Therapy Group. Gastroenterology 104: 595‐603, 1993.
 249.Li C, Xiao P, Gray SJ, Weinberg MS, Samulski RJ. Combination therapy utilizing shRNA knockdown and an optimized resistant transgene for rescue of diseases caused by misfolded proteins. Proc Natl Acad Sci U S A 108: 14258‐14263, 2011.
 250.Li J, Bardag‐Gorce F, Dedes J, French BA, Amidi F, Oliva J, SW. F. S‐adenosylmethionine prevents Mallory Denk body formation in drug‐primed mice by inhibiting the epigenetic memory. Hepatology 47: 613‐624, 2008.
 251.Lindblad D, Blomenkamp K, Teckman J. Alpha‐1‐antitrypsin mutant Z protein content in individual hepatocytes correlates with cell death in a mouse model. Hepatology 46: 1228‐1235, 2007.
 252.Lindmark B, Eriksson S. Partial deficiency of alpha 1‐antichymotrypsin is associated with chronic cryptogenic liver disease. Scand J Gastroenterol 26: 508‐512, 1991.
 253.Lindmark B, Kamiguchi H, Tsuda M, Yamamura M. The isoelectric focusing pattern of desialylated alpha 1‐antichymotrypsin of heterozygous alpha 1‐antichymotrypsin deficiency and of acute phase plasma. Tokai J Exp Clin Med 15: 347‐351, 1990.
 254.Lindmark B, Lilja H, Alm R, Eriksson S. The microheterogeneity of desialylated alpha 1‐antichymotrypsin: The occurrence of two amino‐terminal isoforms, one lacking a His‐Pro dipeptide. Biochim Biophys Acta 997: 90‐95, 1989.
 255.Lindmark B, Millward‐Sadler H, Callea F, Eriksson S. Hepatocyte inclusions of alpha 1‐antichymotrypsin in a patient with partial deficiency of alpha 1‐antichymotrypsin and chronic liver disease. Histopathology 16: 221‐225, 1990.
 256.Lindmark BE, Arborelius M, Jr., Eriksson SG. Pulmonary function in middle‐aged women with heterozygous deficiency of the serine protease inhibitor alpha 1‐antichymotrypsin. Am Rev Respir Dis 141: 884‐888, 1990.
 257.Lindmark BE, Eriksson SG. Plasma alpha 1‐antichymotrypsin in liver disease. Clin Chim Acta 152: 261‐269, 1985.
 258.Linnoila RI, Keiser HR, Steinberg SM, Lack EE. Histopathology of benign versus malignant sympathoadrenal paragangliomas: Clinicopathologic study of 120 cases including unusual histologic features. Hum Pathol 21: 1168‐1180, 1990.
 259.Lohi H, Ianzano L, Zhao XC, Chan EM, Turnbull J, Scherer SW, Ackerley CA, Minassian BA. Novel glycogen synthase kinase 3 and ubiquitination pathways in progressive myoclonus epilepsy. Hum Mol Genet 14: 2727‐2736, 2005.
 260.Lomas DA. Loop‐sheet polymerization: The structural basis of Z alpha 1‐antitrypsin accumulation in the liver. Clin Sci (Lond) 86: 489‐495, 1994.
 261.Lomas DA, Evans DL, Finch JT, Carrell RW. The mechanism of Z alpha 1‐antitrypsin accumulation in the liver. Nature 357: 605‐607, 1992.
 262.Lossos A, Klein CJ, McEvoy KM, BM. K. A 63‐year‐old woman with urinary incontinence and progressive gait disorder. Neurology 72: 1607‐1613, 2009.
 263.Lowe J, Blanchard A, Morrell K, Lennox G, Reynolds L, Billett M, Landon M, Mayer RJ. Ubiquitin is a common factor in intermediate filament inclusion bodies of diverse type in man, including those of Parkinson's disease, Pick's disease, and Alzheimer's disease, as well as Rosenthal fibres in cerebellar astrocytomas, cytoplasmic bodies in muscle, and mallory bodies in alcoholic liver disease. J Pathol 155: 9‐15, 1988.
 264.Lu M, Nakamura RM, Dent ED, Zhang JY, Nielsen FC, Christiansen J, Chan EK, Tan EM. Aberrant expression of fetal RNA‐binding protein p62 in liver cancer and liver cirrhosis. Am J Pathol 159: 945‐953, 2001.
 265.Lucas SB, Zaki SR, Portman BC. Other viral and infectious diseases and HIV‐related liver disease. In: Burt A, Portman BC, Ferrell L, editors. MacSween's Pathology of the Liver. Edinburgh: Churchill Livingstone, 2012, pp. 403‐466.
 266.Ludwig J, McDonald GS, Dickson ER, Elveback LR, McCall JT. Copper stains and the syndrome of primary biliary cirrhosis. Evaluation of staining methods and their usefulness for diagnosis and trials of penicillamine treatment. Arch Pathol Lab Med 103: 467‐470, 1979.
 267.MacDonald K, Bedard YC. Cytologic, ultrastructural and immunologic features of intracytoplasmic hyaline bodies in fine needle aspirates of hepatocellular carcinoma. Acta Cytol 34: 197‐200, 1990.
 268.Mackiewicz A, Ganapathi MK, Schultz D, Brabenec A, Weinstein J, Kelley MF, Kushner I. Transforming growth factor beta 1 regulates production of acute‐phase proteins. Proc Natl Acad Sci U S A 87: 1491‐1495, 1990.
 269.Magaudda A, Ferlazzo E, Nguyen VH, Genton P. Unverricht‐Lundborg disease, a condition with self‐limited progression: Long‐term follow‐up of 20 patients. Epilepsia 47: 860‐866, 2006.
 270.Maggiore G, Nastasio S, Sciveres M. Long‐term outcome of liver disease‐related fibrinogen aguadilla storage disease in a child. J Pediatr Gastroenterol Nutr 53(6): 699, 2011.
 271.Magin T, Schröder R, Leitgeb S, Wanninger F, Zatloukal K, Grund C, Melton DW. Lessons from keratin 18 knockout mice: Formation of novel keratin filaments, secondary loss of keratin 7 and accumulation of liver‐specific keratin 8‐positive aggregates. J Cell Biol 140: 1441‐1451, 1998.
 272.Mahadeva R, Dafforn TR, Carrell RW, Lomas DA. 6‐mer peptide selectively anneals to a pathogenic serpin conformation and blocks polymerization. Implications for the prevention of Z alpha(1)‐antitrypsin‐related cirrhosis. J Biol Chem 277: 6771‐6774, 2002.
 273.Mahajan V, Klingstedt T, Simon R, Nilsson KP, Thueringer A, Kashofer K, Haybaeck J, Denk H, Abuja PM, Zatloukal K. Cross β‐sheet conformation of keratin 8 is a specific feature of Mallory‐Denk bodies compared with other hepatocyte inclusions. Gastroenterology 141: 1080‐1090, 2011.
 274.Mallory F. Cirrhosis of the liver. Five different types of lesions from which it may arise. Bul Johns Hopkins Hosp 22: 69–75, 1911.
 275.Mallya M, Phillips RL, Saldanha SA, Gooptu B, Brown SC, Termine DJ, Shirvani AM, Wu Y, Sifers RN, Abagyan R, Lomas DA. Small molecules block the polymerization of Z alpha1‐antitrypsin and increase the clearance of intracellular aggregates. J Med Chem 50: 5357‐5363, 2007.
 276.Manetto V, Abdul‐Karim FW, Perry G, Tabaton M, Autilio‐Gambetti L, Gambetti P. Selective presence of ubiquitin in intracellular inclusions. Am J Pathol 134: 505‐513, 1989.
 277.Marcus NY, Perlmutter DH. Glucosidase and mannosidase inhibitors mediate increased secretion of mutant alpha1 antitrypsin Z. J Biol Chem 275: 1987‐1992, 2000.
 278.Martinez J, Palascak JE, D. K. Abnormal sialic acid content of the dysfibrinogenemia associated with liver disease. J Clin Invest 61: 535‐538, 1978.
 279.Marucci G, Morandi L, Macchia S, Betts CM, Tardio ML, Dal Monte PR, Pession A, Foschini MP. Fibrinogen storage disease without hypofibrinogenaemia associated with acute infection. Histopathology 42: 22‐25, 2003.
 280.Marx J. Neurodegeneration. Huntington's research points to possible new therapies. Science 310: 43‐45, 2005.
 281.Mathew R, Karp CM, Beaudoin B, Vuong N, Chen G, Chen HY, Bray K, Reddy A, Bhanot G, Gelinas C, Dipaola RS, Karantza‐Wadsworth V, White E. Autophagy suppresses tumorigenesis through elimination of p62. Cell 137: 1062‐1075, 2009.
 282.Mayor JC, Cabrera J, Garcia J, Romero T. Chronic intrahepatic cholestasis and Sicca syndrome of sarcoidosis. J Hepatol 18: 379‐380, 1993.
 283.Mazaheri A, Prusas C, Voss M, Hess M. Some strains of serotype 4 fowl adenoviruses cause inclusion body hepatitis and hydropericardium syndrome in chickens. Avian Pathol 27: 269‐276, 1998.
 284.McPhaul L, Wang J, Hol EM, Sonnemans MA, Riley N, Nguyen V, Yuan QX, Lue YH, Van Leeuwen FW, French SW. Molecular misreading of the ubiquitin B gene and hepatic mallory body formation. Gastroenterology 122: 1878‐1885, 2002.
 285.Medicina D, Fabretti G, Brennan SO, George PM, Kudryk B, Callea F. Genetic and immunological characterization of fibrinogen inclusion bodies in patients with hepatic fibrinogen storage and liver disease. Ann N Y Acad Sci 936 522–525, 2001.
 286.Mehrotra R, Nath P, Wahai V, Tandon P, Pandey RK. Copper induced Mallory body formation in albino mice. Indian J Pathol Microbiol 28: 341‐347, 1985.
 287.Mehrotra R, Pandey RK, P N. Hepatic copper in Indian childhood cirrhosis. Histopathology 5: 659‐665, 1981.
 288.Meierhenry E, Ruebner BH, Gershwin ME, Hsieh LS, French SW. Mallory body formation in hepatic nodules of mice ingesting dieldrin. Lab Invest 44: 392‐396, 1981.
 289.Melegari M, Scaglioni PP, Wands JR. The small envelope protein is required for secretion of a naturally occurring hepatitis B virus mutant with pre‐S1 deleted. J Virol 71: 5449‐5454, 1997.
 290.Mendler M, Kanel G, Govindarajan S. Proposal for a histological scoring and grading system for non‐alcoholic fatty liver disease. Liver Int 25: 294‐304, 2005.
 291.Michalik A, Van Broeckhoven C. Pathogenesis of polyglutamine disorders: Aggregation revisited. Hum Mol Genet 12(Spec No. 2): R173‐R186, 2003.
 292.Michel RP, Limacher JJ, Kimoff RJ. Mallory bodies in scar adenocarcinoma of the lung. Hum Pathol 13: 81‐85, 1982.
 293.Miller SD, Greene CM, McLean C, Lawless MW, Taggart CC, O'Neill SJ, McElvaney NG. Tauroursodeoxycholic acid inhibits apoptosis induced by Z alpha‐1 antitrypsin via inhibition of Bad. Hepatology 46: 496‐503, 2007.
 294.Minassian BA. Lafora's disease: Towards a clinical, pathologic, and molecular synthesis. Pediatr Neurol 25: 21‐29, 2001.
 295.Minassian BA. Progressive myoclonus epilepsy with polyglucosan bodies: Lafora disease. Adv Neurol 89: 199‐210, 2002.
 296.Minassian BA, Ianzano L, Delgado‐Escueta AV, Scherer SW. Identification of new and common mutations in the EPM2A gene in Lafora disease. Neurology 54: 488‐490, 2000.
 297.Miranda E, Perez J, Ekeowa UI, Hadzic N, Kalsheker N, Gooptu B, Portmann B, Belorgey D, Hill M, Chambers S, Teckman J, Alexander GJ, Marciniak SJ, Lomas DA. A novel monoclonal antibody to characterize pathogenic polymers in liver disease associated with alpha1‐antitrypsin deficiency. Hepatology 52: 1078‐1088, 2010.
 298.Mitomi Y, Nomura T, Kurosawa M, Nukina N, Furukawa Y. Post‐aggregation oxidation of mutant huntingtin controls the interactions between aggregates. J Biol Chem, 2012.
 299.Mitsui K, Doi H, N. N. Proteomics of polyglutamine aggregates. Methods Enzymol 412: 63‐76, 2006.
 300.Moffitt H, McPhail GD, Woodman B, Hobbs C, Bates GP. Formation of polyglutamine inclusions in a wide range of non‐CNS tissues in the HdhQ150 knock‐in mouse model of Huntington's disease. PLoS One 4: e8025, 2009.
 301.Mohanty S, Troy TN, Huo D, O'Brien BL, Jensen DM, Hart J. Influence of ethnicity on histological differences in non‐alcoholic fatty liver disease. Hepatology 50: 797‐804, 2009.
 302.Moini M, Mistry P, Schilsky ML. Liver transplantation for inherited metabolic disorders of the liver. Curr Opin Organ Transplant 15: 269‐276.
 303.Molinari M. N‐glycan structure dictates extension of protein folding or onset of disposal. Nat Chem Biol 3: 313‐320, 2007.
 304.Molnar A, Haybaeck J, Lackner C, Strnad P. The cytoskeleton in nonalcoholic steatohepatitis: 100 years old but still youthful. Expert Rev Gastroenterol Hepatol 5: 167‐177, 2011.
 305.Monaghan TS, Delanty N. Lafora disease: Epidemiology, pathophysiology and management. CNS Drugs 24: 549‐561.
 306.Moon W, Yu HC, Chung MJ, Kang MJ, Lee DG. Pale bodies in hepatocellular carcinoma. J Korean Med Sci 15: 516‐520, 2000.
 307.Morgan K, Marsters P, Morley S, van Gent D, Hejazi A, Backx M, Thorpe ER, Kalsheker N. Oncostatin M induced alpha1‐antitrypsin (AAT) gene expression in Hep G2 cells is mediated by a 3' enhancer. Biochem J 365: 555‐560, 2002.
 308.Morimoto R. Proteotoxic stress and inducible chaperone networks in neurodegenerative disease and aging. Genes Dev 22: 1427‐1438, 2008.
 309.Moses S, Parvari P. The variable presentations of glycogen storage disease type IV: A review of clinical, enzymatic and molecular studies. Curr Mol Med 2: 177‐188, 2002.
 310.Mueller C, Tang Q, Gruntman A, Blomenkamp K, Teckman J, Song L, Zamore PD, Flotte TR. Sustained miRNA‐mediated knockdown of mutant AAT with simultaneous augmentation of wild‐type AAT has minimal effect on global liver miRNA profiles. Mol Ther 20: 590‐600, 2012.
 311.Murphy FA, Simpson DI, Whitfield SG, Zlotnik I, Carter GB. Marburg virus infection in monkeys. Ultrastructural studies. Lab Invest 24: 279‐291, 1971.
 312.Murphy JR, Sjogren MH, Kikendall JW, Peura DA, Goodman Z. Small bile duct abnormalities in sarcoidosis. J Clin Gastroenterol 12: 555‐561, 1990.
 313.Murphy RM. Peptide aggregation in neurodegenerative disease. Annu Rev Biomed Eng 4: 155‐174, 2002.
 314.Müller T, Langner C, Fuchsbichler A, Heinz‐Erian P, Ellemunter H, Schlenck B, Bavdekar AR, Pradhan AM, Pandit A, Müller‐Höcker J, Melter M, Kobayashi K, Nagasaka H, Kikuta H, Müller W, Tanner MS, Sternlieb I, Zatloukal K, Denk H. Immunohistochemical analysis of Mallory bodies in Wilsonian and non‐Wilsonian hepatic copper toxicosis. Hepatology 39: 963‐969, 2004.
 315.Nagashima Y, Kowa H, Tsuji S, Iwata A. FAT10 protein binds to polyglutamine proteins and modulates their solubility. J Biol Chem 286: 29594‐29600, 2011.
 316.Nakamichi I, Toivola DM, Strnad P, Michie SA, Oshima RG, Baribault H, MB. O. Keratin 8 overexpression promotes mouse Mallory body formation. J Cell Biol 171: 931‐937, 2005.
 317.Nakamura K, Mase M, Yamamoto Y, Takizawa K, Kabeya M, Wakuda T, Matsuda M, Chikuba T, Yamamoto Y, Ohyama T, Takahashi K, Sato N, Akiyama N, Honma H, Imai K. Inclusion body hepatitis caused by fowl adenovirus in broiler chickens in Japan, 2009‐2010. Avian Dis 55: 719‐723, 2011.
 318.Nakanuma Y, Ohta G. Is mallory body formation a preneoplastic change? A study of 181 cases of liver bearing hepatocellular carcinoma and 82 cases of cirrhosis. Cancer 55: 2400‐2404, 1985.
 319.Nakanuma Y, Ohta G. Expression of Mallory bodies in hepatocellular carcinoma in man and its significance. Cancer 57: 81‐86, 1986.
 320.Nakashima O, Sugihara S, Eguchi A, Taguchi J, Watanabe J, Kojiro M. Pathomorphologic study of pale bodies in hepatocellular carcinoma. Acta Pathol Jpn 42: 414‐418, 1992.
 321.Nan L, Dedes J, French BA, Bardag‐Gorce F, Li J, Wu Y, French SW. Mallory body (cytokeratin aggresomes) formation is prevented in vitro by p38 inhibitor. Exp Mol Pathol 80: 228‐240, 2006.
 322.Nan L, Wu Y, Bardag‐Gorce F, Li J, French BA, Fu AN, Francis T, Vu J, French SW. p62 is involved in the mechanism of Mallory body formation. Exp Mol Pathol 77: 168‐175, 2004.
 323.Nan L, Wu Y, Bardag‐Gorce F, Li J, French BA, Wilson LT, Khanh Nguyen S, French SW. RNA interference of VCP/p97 increases Mallory body formation. Exp Mol Pathol 78: 1‐9, 2005.
 324.Nanduri AS, Kaushal N, Clusmann H, Binder DK. The maestro don Gonzalo Rodriguez‐Lafora. Epilepsia 49: 943‐947, 2008.
 325.Nayak N, Sagreiya K, Ramalingaswami V. Indian childhood cirrhosis. The nature and significance of cytoplasmic hyaline of hepatocytes. Arch Pathol 88: 631‐637, 1969.
 326.Neerman‐Arbez M, Moerloose P. Mutations in the fibrinogen gene cluster accounting for congenital afibrinogenemia: An update and report of 10 novel mutations. Hum Mutat 28: 540‐553, 2007.
 327.Neumann F, Meirom R, Rattner D, Trainin Z. Animal model of human disease. Alpha‐antitrypsin deficiecy. Animal model: Round heart disease of turkeys. Am J Pathol 84: 427‐430, 1976.
 328.Neuschwander‐Tetri B, Clark JM, Bass NM, Van Natta ML, Unalp‐Arida A., Tonascia J. Clinical, laboratory and histological associations in adults with nonalcoholic fatty liver disease. Hepatology 52: 913‐924, 2010.
 329.Newman LS, Rose CS, Maier LA. Sarcoidosis. N Engl J Med 336: 1224‐1234, 1997.
 330.Newton GA, Sanchez RL, Swedo J, Smith EB. Lafora's disease. The role of skin biopsy. Arch Dermatol 123: 1667‐1669, 1987.
 331.Ng I, Ng M, Lai EC, Wu PC. Endoplasmic storage disease of liver: Characterization of intracytoplasmic hyaline inclusions. Histopathology 15: 473‐481, 1989.
 332.Ng I, Sturgess RP, Williams R, B. P. Ground‐glass hepatocytes with Lafora body like inclusions‐histochemical, immunohistochemical and electronmicroscopic characterization. . Histopathology 17: 109‐115, 1990.
 333.Novoradovskaya N, Lee J, Yu ZX, Ferrans VJ, Brantly M. Inhibition of intracellular degradation increases secretion of a mutant form of alpha1‐antitrypsin associated with profound deficiency. J Clin Invest 101: 2693‐2701, 1998.
 334.Oda Y, Hosokawa N, Wada I, Nagata K. EDEM as an acceptor of terminally misfolded glycoproteins released from calnexin. Science 299: 1394‐1397, 2003.
 335.Oddoux C, Grieninger G. Fibrinogen assembly: Insights from chicken hepatocytes. Hepatology 19: 688‐693, 1994.
 336.Ogasawara M, Hirose A, Ono M, Aritake K, Nozaki Y, Takahashi M, Okamoto N, Sakamoto S, Iwasaki S, Asanuma T, Taniguchi T, Urade Y, Onishi S, Saibara T, Oben JA. A novel and comprehensive mouse model of human non‐alcoholic steatohepatitis with the full range of dysmetabolic and histological abnormalities induced by gold thioglucose and a high‐fat diet. Liver Int 31: 542‐551, 2011.
 337.Ohta M, Marceau N, Perry G, Manetto V, Gambetti P, Autilio‐Gambetti L, Metuzals J, Kawahara H, Cadrin M, French SW. Ubiquitin is present on the cytokeratin intermediate filaments and Mallory bodies of hepatocytes. Lab Invest 59: 848‐856, 1988.
 338.Okamoto K, Hirai S, Yoshida T, Iizuka T, Tanaka S. Asteroid bodies in silicone‐induced granuloma are ubiquitinated. Acta Pathol Jpn 42: 688‐689, 1992.
 339.Oliva J, Bardag‐Gorce F, French BA, Li J, French SW. The regulation of non‐coding RNA expression in the liver of mice fed DDC. Exp Mol Pathol 87: 12‐19, 2009.
 340.Omary M, Ku NO, Strnad P, Hanada S. Toward unraveling the complexity of simple epithelial keratins in human disease. J Clin Invest 119: 1794‐1805, 2009.
 341.Ordóñez A, Snapp EL, Tan L, Miranda E, Marciniak SJ, Lomas DA. Endoplasmic reticulum polymers impair luminal protein mobility and sensitize to cellular stress in α1‐antitrypsin deficiency. Hepatology 57: 2049‐2060, 2013.
 342.Ortega L, Balboa F, Gonzalez L. alpha(1)‐antichymotrypsin deficiency associated with liver cirrhosis. Pediatr Int 52: 147‐149, 2010.
 343.Osmand AP, Berthelier V, Wetzel R. Imaging polyglutamine deposits in brain tissue. Methods Enzymol 412: 106‐122, 2006.
 344.Ozen H. Glycogen storage diseases: New perspectives. World J Gastroenterol 13: 2541‐2553, 2007.
 345.Pahl HL, Sester M, Burgert HG, Baeuerle PA. Activation of transcription factor NF‐kappaB by the adenovirus E3/19K protein requires its ER retention. J Cell Biol 132: 511‐522, 1996.
 346.Pan S, Huang L, McPherson J, Muzny D, Rouhani F, Brantly M, Gibbs R, Sifers RN. Single nucleotide polymorphism‐mediated translational suppression of endoplasmic reticulum mannosidase I modifies the onset of end‐stage liver disease in alpha1‐antitrypsin deficiency. Hepatology 50: 275‐281, 2009.
 347.Papadimitriou JM, Shellam GR. A cytophotometric measurement of DNA in murine hepatocytic nuclei during cytomegalovirus infection. Histochemistry 72: 481‐487, 1981.
 348.Pariente EA, Degott C, Martin JP, Feldmann G, Potet F, Benhamou JP. Hepatocytic PAS‐positive diastase‐resistance inclusions in the absence of alpha‐1‐antitrypsin deficiency–high prevalence in alcoholic cirrhosis. Am J Clin Pathol 76: 299‐302, 1981.
 349.Paulson HL, Perez MK, Trottier Y, Trojanowski JQ, Subramony SH, Das SS, Vig P, Mandel JL, Fischbeck KH, Pittman RN. Intranuclear inclusions of expanded polyglutamine protein in spinocerebellar ataxia type 3. Neuron 19: 333‐344, 1997.
 350.Pei R, Danbara N, Tsujita‐Kyutoku M, Yuri T, Tsubura A. Immunohistochemical profiles of Mallory body by a panel of anti‐cytokeratin antibodies. Med Electron Microsc 37: 114‐118, 2004.
 351.Peres LC, Saggioro FP, Dias LB, Jr., Alves VA, Brasil RA, Luiz VE, Neder L, Rosman FC, Fleury RN, Ura S, Orsi AT, Talhari C, Ferreira LC, Ramos SG, Rey LC, Martinez‐Espinosa FE, Sim F, Filho OE, Duarte MI, Lambertucci JR, Chimelli LM, Rosa PS, Belone Ade F. Infectious diseases in paediatric pathology: Experience from a developing country. Pathology 40: 161‐175, 2008.
 352.Perlmutter DH. Autophagic disposal of the aggregation‐prone protein that causes liver inflammation and carcinogenesis in alpha‐1‐antitrypsin deficiency. Cell Death Differ 16: 39‐45, 2009.
 353.Perlmutter DH. Alpha‐1‐antitrypsin deficiency: Importance of proteasomal and autophagic degradative pathways in disposal of liver disease‐associated protein aggregates. Annu Rev Med 62: 333‐345, 2011.
 354.Perlmutter DH, Brodsky JL, Balistreri WF, Trapnell BC. Molecular pathogenesis of alpha‐1‐antitrypsin deficiency‐associated liver disease: A meeting review. Hepatology 45: 1313‐1323, 2007.
 355.Perlmutter DH, May LT, Sehgal PB. Interferon beta 2/interleukin 6 modulates synthesis of alpha 1‐antitrypsin in human mononuclear phagocytes and in human hepatoma cells. J Clin Invest 84: 138‐144, 1989.
 356.Perutz MF, Johnson T, Suzuki M, Finch JT. Glutamine repeats as polar zippers: Their possible role in inherited neurodegenerative diseases. Proc Natl Acad Sci U S A 91: 5355‐5358, 1994.
 357.Pessayre D, Bichara M, Feldmann G, Degott C, Potet F, Benhamou J‐P. Perhexiline maleate‐induced cirrhosis. Gastroenterology: 170‐177, 1979.
 358.Pfeifer U, Klinge O. Intracisternal hyalin in hepatocytes of human liver biopsies. Virchows Arch (Cell Pathol) 16: 141‐155, 1974.
 359.Pfeifer U, Ormanns W, Klinge O. Hepatocellular fibrinogen storage in familial hypofibrinogenemia. Virchows Arch (Cell Pathol) 36: 247‐255, 1981.
 360.Phillips J, Bergonia HA, Reilly CA, Franklin MR, Kushner JP. A porphomethene inhibitor of uroporphyrinogen decarboxylase causes porphyria cutanea tarda. Proc Natl Acad 104: 5079‐5084, 2007.
 361.Pinkerton M, Wellehan JF Jr., Johnson AJ, Childress AL, Fitzgerald SD, Kinsel MJ. Columbid herpesvirus‐1 in two Cooper's hawks (Accipiter cooperii) with fatal inclusion body disease. J Wildl Dis 44: 622‐628, 2008.
 362.Pircher H, Moskophidis D, Rohrer U, Burki K, Hengartner H, Zinkernagel RM. Viral escape by selection of cytotoxic T cell‐resistant virus variants in vivo. Nature 346: 629‐633, 1990.
 363.Poller W, Faber JP, Scholz S, Weidinger S, Bartholome K, Olek K, Eriksson S. Mis‐sense mutation of alpha 1‐antichymotrypsin gene associated with chronic lung disease. Lancet 339: 1538, 1992.
 364.Porter F, Lowe B. Congenital erythropoietic protoporphyria. I. case reports, clinical studies and porphyrin analyses in two brothers. Blood 22: 521‐531, 1963.
 365.Portmann B, Galbraith RM, Eddleston AL, Zuckerman AJ, Williams R. Detection of HBSAG in fixed liver tissue ‐ use of a modified immunofluorescent technique and comparison with histochemical methods. Gut 17: 1‐9, 1976.
 366.Propst T, Propst A, Dietze O, Judmaier G, Braunsteiner H, Vogel W. High prevalence of viral infection in adults with homozygous and heterozygous alpha 1‐antitrypsin deficiency and chronic liver disease. Ann Intern Med 117: 641‐645, 1992.
 367.Puri R, Suzuki T, Yamakawa K, S. G. Dysfunctions in endosomal‐lysosomal and autophagy pathways underlie neuropathology in a mouse model for Lafora disease. Hum Mol Genet 21: 175‐184, 2012.
 368.Puy H, Gouya L, Deybach JC. Porphyrias. Lancet 375: 924‐937, 2010.
 369.Qian HL, Peng XX, Chen SH, Ye HM, Qiu JH. p62 Expression in primary carcinomas of the digestive system. World J Gastroenterol 11: 1788‐1792, 2005.
 370.Qizilbash A, Young‐Pong O. Alpha 1 antitrypsin liver disease differential diagnosis of PAS‐positive, diastase‐resistant globules in liver cells. Am J Clin Pathol 79: 697‐702, 1983.
 371.Qu D, Teckman JH, Omura S, Perlmutter DH. Degradation of a mutant secretory protein, alpha1‐antitrypsin Z, in the endoplasmic reticulum requires proteasome activity. J Biol Chem 271: 22791‐22795, 1996.
 372.Quaresma JA, Barros VL, Fernandes ER, Pagliari C, Takakura C, da Costa Vasconcelos PF, de Andrade HF, Jr., Duarte MI. Reconsideration of histopathology and ultrastructural aspects of the human liver in yellow fever. Acta tropica 94: 116‐127, 2005.
 373.Rakoski M, Brown MB, Fontana RJ, Bonkovsky HL, Brunt EM, Goodman ZD, Lok AS, Omary MB. Mallory‐Denk bodies are associated with outcomes and histologic features in patients with chronic hepatitis C. Clin Gastroenterol Hepatol 9: 902‐909, 2011.
 374.Rao SN, Maity R, Sharma J, Dey P, Shankar SK, Satishchandra P, Jana NR. Sequestration of chaperones and proteasome into Lafora bodies and proteasomal dysfunction induced by Lafora disease‐associated mutations of malin. Hum Mol Genet 19: 4726‐4734.
 375.Ratziu V, Charlotte F, Heurtier A, Gombert S, Giral P, Bruckert E, Grimaldi A, Capron F, Poynard T. Sampling variability of liver biopsy in nonalcoholic fatty liver disease. Gastroenterology 128: 1898‐1906, 2005.
 376.Raymond J, Garner MM, Nordhausen RW, Jacobson ER. A disease resembling inclusion body disease of boid snakes in captive palm vipers (Bothriechis marchi). J Vet Diagn Invest 13: 82‐86, 2001
 377.Reintoft I. Periodic acid Schiff‐positive non‐glycogenic globules in hepatocytes. Differential diagnostic aspects in screening for alpha‐1‐antitrypsin globules in an autopsy material. Acta Pathol Microbiol Scand A 86: 325‐329, 1978.
 378.Richards CD, Brown TJ, Shoyab M, Baumann H, Gauldie J. Recombinant oncostatin M stimulates the production of acute phase proteins in HepG2 cells and rat primary hepatocytes in vitro. J Immunol 148: 1731‐1736, 1992.
 379.Riley N, Bardag‐Gorce F, Montgomery RO, Li J, Lungo W, Lue YH, French SW. Microtubules are required for cytokeratin aggresome (Mallory body) formation in hepatocytes: An in vitro study. Exp Mol Pathol 74: 173‐179, 2003.
 380.Robertson AL, Bottomley SP. Towards the treatment of polyglutamine diseases: The modulatory role of protein context. Curr Med Chem 17: 3058‐3068, 2010.
 381.Robitaille Y, Carpenter S, Karpati G, DiMauro SD. A distinct form of adult polyglucosan body disease with massive involvement of central and peripheral neuronal processes and astrocytes: A report of four cases and a review of the occurrence of polyglucosan bodies in other conditions such as Lafora's disease and normal ageing. Brain 103: 315‐336, 1980.
 382.Roingeard P, Sureau C. Ultrastructural analysis of hepatitis B virus in HepG2‐transfected cells with special emphasis on subviral filament morphogenesis. Hepatology 28: 1128‐1133, 1998.
 383.Rolland P, Madjd Z, Durrant L, Ellis IO, Layfield R, Spendlove I. The ubiquitin‐binding protein p62 is expressed in breast cancers showing features of aggressive disease. Endocr Relat Cancer 14: 73‐80, 2007.
 384.Roque A. Chromotrope aniline blue method of staining Mallory bodies of Laennec's cirrhosis. Lab Invest 2: 15‐21, 1953.
 385.Roselle G, Mendenhall CL, Muhleman AF, Chedid A. The ferret: A new model of oral ethanol injury involving the liver, bone marrow, and peripheral blood lymphocytes. Alcohol Clin Exp Res 10: 279‐284, 1986.
 386.Rosen Y, Vuletin JC, Pertschuk LP, Silverstein E. Sarcoidosis: From the pathologist's vantage point. Pathol Annu 14 Pt 1: 405‐439, 1979.
 387.Ross CA, Poirier MA. Protein aggregation and neurodegenerative disease. Nat Med 10 Suppl: S10‐S17, 2004.
 388.Roussel BD, Irving JA, Ekeowa UI, Belorgey D, Haq I, Ordonez A, Kruppa AJ, Duvoix A, Rashid ST, Crowther DC, Marciniak SJ, Lomas DA. Unravelling the twists and turns of the serpinopathies. FEBS J 278: 3859‐3867, 2011.
 389.Rubbia‐Brandt L, Neerman‐Arbez M, Rougemont AL, Malé PJ, Spahr L. Fibrinogen gamma375 arg–>trp mutation (fibrinogen aguadilla) causes hereditary hypofibrinogenemia, hepatic endoplasmic reticulum storage disease and cirrhosis. Am J Surg Pathol 30: 906‐911, 2006.
 390.Rubinsztein DC. Lessons from animal models of Huntington's disease. Trends Genet 18: 202‐209, 2002.
 391.Rubinsztein DC. The roles of intracellular protein‐degradation pathways in neurodegeneration. Nature 443: 780‐786, 2006.
 392.Rubinsztein DC, Wyttenbach A, Rankin J. Intracellular inclusions, pathological markers in diseases caused by expanded polyglutamine tracts? J Med Genet 36: 265‐270, 1999.
 393.Rudnick DA, Liao Y, An JK, Muglia LJ, Perlmutter DH, Teckman JH. Analyses of hepatocellular proliferation in a mouse model of alpha‐1‐antitrypsin deficiency. Hepatology 39: 1048‐1055, 2004.
 394.Rudnick DA, Perlmutter DH. Alpha‐1‐antitrypsin deficiency: A new paradigm for hepatocellular carcinoma in genetic liver disease. Hepatology 42: 514‐521, 2005.
 395.Rudnick DA, Shikapwashya O, Blomenkamp K, Teckman JH. Indomethacin increases liver damage in a murine model of liver injury from alpha‐1‐antitrypsin deficiency. Hepatology 44: 976‐982, 2006.
 396.Rudzki C, Ishak KG, Zimmerman HJ. Chronic intrahepatic cholestasis of sarcoidosis. Am J Med 59: 373‐387, 1975.
 397.Saifuddin M, Wilks C. Pathogenesis of an acute viral hepatitis: Inclusion body hepatitis in the chicken. Arch Virol 116(1‐4): 33‐43, 1991.
 398.Sakai M, Austin J, Witmer F, Trueb L. Studies in myoclonus epilepsy (Lafora body form). II. Polyglucosans in the systemic deposits of myoclonus epilepsy and in corpora amylacea. Neurology 20: 160‐176, 1970.
 399.Salmhofer H, Rainer I, Zatloukal K, H. D. Posttranslational events involved in griseofulvin‐induced keratin cytoskeleton alterations. Hepatology 20: 731‐740, 1994.
 400.Salomao M, Yu WM, Brown RS Jr, Emond JC, Lefkowitch JH. Steatohepatitic hepatocellular carcinoma (SH‐HCC): a distinctive histological variant of HCC in hepatitis C virus‐related cirrhosis with associated NAFLD/NASH. Am J Surg Pathol 34: 1630‐1636, 2010.
 401.Sarkar S, Han J, Sinsimer KS, Liao B, Foster RL, Brewer G, Pestka S. RNA‐binding protein AUF1 regulates lipopolysaccharide‐induced IL10 expression by activating IkappaB kinase complex in monocytes. Mol Cell Biol 31: 602‐615, 2011.
 402.Sathasivam K, Hobbs C, Turmaine M, Mangiarini L, Mahal A, Bertaux F, Wanker EE, Doherty P, Davies SW, Bates GP. Formation of polyglutamine inclusions in non‐CNS tissue. Hum Mol Genet 8: 813‐822, 1999.
 403.Savige JA, Chang L, Cook L, Burdon J, Daskalakis M, Doery J. Alpha 1‐antitrypsin deficiency and anti‐proteinase 3 antibodies in anti‐neutrophil cytoplasmic antibody (ANCA)‐associated systemic vasculitis. Clin Exp Immunol 100: 194‐197, 1995.
 404.Scherzinger E, Lurz R, Turmaine M, Mangiarini L, Hollenbach B, Hasenbank R, Bates GP, Davies SW, Lehrach H, Wanker EE. Huntingtin‐encoded polyglutamine expansions form amyloid‐like protein aggregates in vitro and in vivo. Cell 90: 549‐558, 1997.
 405.Scherzinger E, Sittler A, Schweiger K, Heiser V, Lurz R, Hasenbank R, Bates GP, Lehrach H, Wanker EE. Self‐assembly of polyglutamine‐containing huntingtin fragments into amyloid‐like fibrils: Implications for Huntington's disease pathology. Proc Natl Acad Sci U S A 96: 4604‐4609, 1999.
 406.Schirmacher P, Dienes HP, Moll R. De novo expression of nonhepatocellular cytokeratins in Mallory body formation. Virchows Arch 432: 143‐152, 1998.
 407.Schirmacher P, Schauss D, Dienes HP. Intracellular accumulation of incompletely processed transforming growth factor‐alpha polypeptides in ground glass hepatocytes of chronic hepatitis B virus infection. J Hepatol 24: 547‐554, 1996.
 408.Schmid M, Flury R, Bühler H, Havelka J, Grob PJ, Heitz PU. Chronic viral hepatitis B and C: An argument against the conventional classification of chronic hepatitis. Virchows Arch 425: 221‐228, 1994.
 409.Schmidt BZ, Perlmutter DH. Grp78, Grp94, and Grp170 interact with alpha1‐antitrypsin mutants that are retained in the endoplasmic reticulum. Am J Physiol Gastrointest Liver Physiol 289: G444‐G455, 2005.
 410.Schoeman T, Williams J, van Wilpe E. Polyglucosan storage disease in a dog resembling Lafora's disease. J Vet Intern Med 16: 201‐207, 2002.
 411.Schumacher J, Jacobson E, Homer BL, Gaskin JM. Inclusion body disease in boid snakes. J Zoo Wildl Med 25: 511‐524, 1994.
 412.Schwartz A, Ciechanover A. Targeting proteins for destruction by the ubiquitin system: Implications for human pathobiology. Annu Rev Pharmacol Toxicol 49: 73‐96, 2009.
 413.Scott CM, Kruse KB, Schmidt BZ, Perlmutter DH, McCracken AA, Brodsky JL. ADD66, a gene involved in the endoplasmic reticulum‐associated degradation of alpha‐1‐antitrypsin‐Z in yeast, facilitates proteasome activity and assembly. Mol Biol Cell 18: 3776‐3787, 2007.
 414.Seibenhener M, Babu JR, Geetha T, Wong HC, Krishna NR, Wooten MW. Sequestosome 1/p62 is a polyubiquitin chain binding protein involved in ubiquitin proteasome degradation. Mol Cell Biol 24: 8055‐8068, 2004.
 415.Sengupta S, Badhwar I, Upadhyay M, Singh S, Ganesh S. Malin and laforin are essential components of a protein complex that protects cells from thermal stress. J Cell Sci 124: 2277‐2286, 2011.
 416.Serfaty L, Chazouilleres O, Poujol‐Robert A, Morand‐Joubert L, Dubois C, Chretien Y, Poupon RE, Petit JC, Poupon R. Risk factors for cirrhosis in patients with chronic hepatitis C virus infection: Results of a case‐control study. Hepatology 26: 776‐779, 1997.
 417.Serratosa JM, Delgado‐Escueta AV, Posada I, Shih S, Drury I, Berciano J, Zabala JA, Antunez MC, Sparkes RS. The gene for progressive myoclonus epilepsy of the Lafora type maps to chromosome 6q. Hum Mol Genet 4: 1657‐1663, 1995.
 418.Severi B, Landini MP, Cenacchi G, Zini N, Maraldi NM. Human cytomegalovirus nuclear and cytoplasmic dense bodies. Arch Virol 123: 193‐207, 1992.
 419.Sharma S, Mosunjac M. Herpes simplex hepatitis in adults: A search for muco‐cutaneous clues. J Clin Gastroenterol 38: 697‐704, 2004.
 420.Sharp H. Alpha‐I‐antitrypsin deficiency. Hosp Prac: 83‐96, 1971.
 421.Sharp LK, Mallya M, Kinghorn KJ, Wang Z, Crowther DC, Huntington JA, Belorgey D, Lomas DA. Sugar and alcohol molecules provide a therapeutic strategy for the serpinopathies that cause dementia and cirrhosis. FEBS J 273: 2540‐2552, 2006.
 422.Shen Y, Ballar P, Fang S. Ubiquitin ligase gp78 increases solubility and facilitates degradation of the Z variant of alpha‐1‐antitrypsin. Biochem Biophys Res Commun 349: 1285‐1293, 2006.
 423.Shieh WJ, Paddock CD, Lederman E, Rao CY, Gould LH, Mohamed M, Mosha F, Mghamba J, Bloland P, Njenga MK, Mutonga D, Samuel AA, Guarner J, Breiman RF, Zaki SR. Pathologic studies on suspect animal and human cases of Rift Valley fever from an outbreak in Eastern Africa, 2006‐2007. Am J Trop Med Hyg 83: 38‐42, 2010.
 424.Siersema P, van Helvoirt RP, Cleton‐Soeteman MI, de Bruijn WC, Wilson JH, van Eijk HG. The role of iron in experimental porphyria and porphyria cutanea tarda. Biol Trace Elem Res 35: 65‐72, 1992.
 425.Sifers RN. Intracellular processing of alpha1‐antitrypsin. Proc Am Thorac Soc 7: 376‐380, 2010.
 426.Silverman EK, Sandhaus RA. Clinical practice. Alpha1‐antitrypsin deficiency. N Engl J Med 360: 2749‐2757, 2009.
 427.Simsek Z, Ekinci O, Cindoruk M, Karakan T, Degertekin B, Akyol G, Unal S. Fibrinogen storage disease without hypofibrinogenemia associated with estrogen therapy. BMC Gastroenterol 2005: 1‐5, 2005.
 428.Sindern E, Ziemssen F, Ziemssen T, Podskarbi T, Shin Y, Brasch F, Müller KM, Schröder JM, Malin JP, Vorgerd M. Adult polyglucosan body disease: A postmortem correlation study. Neurology 61: 263‐265, 2003.
 429.Singh S, Ganesh S. Lafora progressive myoclonus epilepsy: A meta‐analysis of reported mutations in the first decade following the discovery of the EPM2A and NHLRC1 genes. Hum Mutat 30: 715‐723, 2009.
 430.Singh S, Sethi I, Francheschetti S, Riggio C, Avanzini G, Yamakawa K, Delgado‐Escueta AV, Ganesh S. Novel NHLRC1 mutations and genotype‐phenotype correlations in patients with Lafora's progressive myoclonic epilepsy. J Med Genet 43: e48, 2006.
 431.Singla A, Moons DS, Snider NT, Wagenmaker ER, Jayasundera VB, Omary MB. Oxidative stress, Nrf2 and keratin up‐regulation associate with Mallory‐Denk body formation in mouse erythropoietic protoporphyria. Hepatology 56: 322‐331, 2012.
 432.Sinha S, Satishchandra P, Gayathri N, Yasha TC, Shankar SK. Progressive myoclonic epilepsy: A clinical, electrophysiological and pathological study from South India. J Neurol Sci 252: 16‐23, 2007.
 433.Skinner PJ, Koshy BT, Cummings CJ, Klement IA, Helin K, Servadio A, Zoghbi HY, Orr HT. Ataxin‐1 with an expanded glutamine tract alters nuclear matrix‐associated structures. Nature 389: 971‐974, 1997.
 434.Smith A, Elder G. Complex gene‐chemical interactions: Hepatic uroporphyria as a paradigm. Chem Res Toxicol 23: 712‐723, 2010.
 435.Smith SE, Granell S, Salcedo‐Sicilia L, Baldini G, Egea G, Teckman JH. Activating transcription factor 6 limits intracellular accumulation of mutant alpha(1)‐antitrypsin Z and mitochondrial damage in hepatoma cells. J Biol Chem 286: 41563‐41577, 2011.
 436.Snider N, Weerasinghe SV, Singla A, Leonard JM, Hanada S, Andrews PC, Lok AS, Omary MB. Energy determinants GAPDH and NDPK act as genetic modifiers for hepatocyte inclusion formation. J Cell Biol 195: 217‐229, 2011.
 437.Song W, Chen J, Petrilli A, Liot G, Klinglmayr E, Zhou Y, Poquiz P, Tjong J, Pouladi MA, Hayden MR, Masliah E, Ellisman M, Rouiller I, Schwarzenbacher R, Bossy B, Perkins G, Bossy‐Wetzel E. Mutant huntingtin binds the mitochondrial fission GTPase dynamin‐related protein‐1 and increases its enzymatic activity. Nat Med 17: 377‐382, 2011.
 438.Starzl TE, Porter KA, Francavilla A, Iwatsuki S. Reversal of hepatic alpha‐1‐antitrypsin deposition after portacaval shunt. Lancet 2: 424‐426, 1983.
 439.Steer P, O'Rourke D, Ghorashi SA, Noormohammadi AH. Application of high‐resolution melting curve analysis for typing of fowl adenoviruses in field cases of inclusion body hepatitis. Aust Vet J 89: 184‐192, 2011.
 440.Steffan JS, Agrawal N, Pallos J, Rockabrand E, Trotman LC, Slepko N, Illes K, Lukacsovich T, Zhu YZ, Cattaneo E, Pandolfi PP, Thompson LM, Marsh JL. SUMO modification of Huntingtin and Huntington's disease pathology. Science 304: 100‐104, 2004.
 441.Still W, Boult E. Electron microscopic appearance of fibrin in thin sections. Nature 179: 868‐869, 1957.
 442.Stoller JK, Aboussouan LS. A review of alpha1‐antitrypsin deficiency. Am J Respir Crit Care Med 185: 246‐259, 2012.
 443.Stoller JK, Tomashefski J, Jr., Crystal RG, Arroliga A, Strange C, Killian DN, Schluchter MD, Wiedemann HP. Mortality in individuals with severe deficiency of alpha1‐antitrypsin: Findings from the National Heart, Lung, and Blood Institute Registry. Chest 127: 1196‐1204, 2005.
 444.Strnad P, Harada M, Siegel M, Terkeltaub RA, Graham RM, Khosla C, Omary MB. Transglutaminase 2 regulates mallory body inclusion formation and injury‐associated liver enlargement. Gastroenterology 132: 1515‐1526, 2007.
 445.Strnad P, Stumptner C, Zatloukal K, Denk H. Intermediate filament cytoskeleton of the liver in health and disease. Histochem Cell Biol 129: 735‐749, 2008.
 446.Strnad P, Tao GZ, So P, Lau K, Schilling J, Wei Y, Liao J, Omary MB. “Toxic memory” via chaperone modification is a potential mechanism for rapid Mallory‐Denk body reinduction. Hepatology 48: 931‐942, 2008.
 447.Strnad P, Zatloukal K, Stumptner C, Kulaksiz H, Denk H. Mallory‐Denk‐bodies: Lessons from keratin‐containing hepatic inclusion bodies. Biochim Biophys Acta 1782: 764‐774, 2008.
 448.Stromeyer FW, Ishak KG, Gerber MA, Mathew T. Ground‐glass cells in hepatocellular carcinoma. Am J Clin Pathol 74: 254‐258, 1980.
 449.Stumptner C, Fuchsbichler A, Lehner M, Zatloukal K, Denk H. Sequence of events in the assembly of Mallory body components in mouse liver: Clues to the pathogenesis and significance of Mallory body formation. J Hepatol 34: 665‐675, 2001.
 450.Stumptner C, Fuchsbichler A, Zatloukal K, Denk H. In vitro production of Mallory bodies and intracellular hyaline bodies: The central role of sequestosome 1/p62. Hepatology 46: 851‐860, 2007.
 451.Stumptner C, Heid H, Fuchsbichler A, Hauser H, Mischinger HJ, Zatloukal K, Denk H. Analysis of intracytoplasmic hyaline bodies in a hepatocellular carcinoma. Demonstration of p62 as major constituent. Am J Pathol 154: 1701‐1710, 1999.
 452.Stumptner C, Heid H, Zatloukal K, Fuchsbichler A, Hauser H, Denk H. Identification of p62, a phosphotyrosine independent ligand of p56lck kinase, as a major component of intracytoplasmic hyaline bodies in hepatocellular carcinoma. Verh Dtsch Ges Pathol 83: 254‐259, 1999.
 453.Stumptner C, Omary MB, Fickert P, Denk H, Zatloukal K. Hepatocyte cytokeratins are hyperphosphorylated at multiple sites in human alcoholic hepatitis and in a mallory body mouse model. Am J Pathol 156: 77‐90, 2000.
 454.Su IJ, Wang HC, Wu HC, Huang WY. Ground glass hepatocytes contain pre‐S mutants and represent preneoplastic lesions in chronic hepatitis B virus infection. J Gastroenterol Hepatol 23: 1169‐1174, 2008.
 455.Su Y, Qian H, Zhang J, Wang S, Shi P, Peng X. The diversity expression of p62 in digestive system cancers. Clin Immunol 116: 118‐123, 2005.
 456.Sueyoshi M, Amahashi K, Maeda M, Yuasa N. Sarcoid granuloma‐like lesions in the lungs of broiler chicks. Avian Dis 36: 1107‐1109, 1992.
 457.Sugars KL, Rubinsztein DC. Transcriptional abnormalities in Huntington disease. Trends Genet 19: 233‐238, 2003.
 458.Sumithran E. Methods for detection of hepatitis B surface antigen in paraffin sections of liver: A guideline for their use. J Clin Pathol 30: 460‐463, 1977.
 459.Sunami Y, Leithauser F, Gul S, Fiedler K, Guldiken N, Espenlaub S, Holzmann KH, Hipp N, Sindrilaru A, Luedde T, Baumann B, Wissel S, Kreppel F, Schneider M, Scharffetter‐Kochanek K, Kochanek S, Strnad P, Wirth T. Hepatic activation of IKK/NFkappaB signaling induces liver fibrosis via macrophage‐mediated chronic inflammation. Hepatology 56: 1117‐1128, 2012.
 460.Suzuki K, David E, Kutschman B. Presenile dementia with “Lafora‐like” intraneuronal inclusions. Arch Neurol 25: 69‐80, 1971.
 461.Sveger T. Liver disease in alpha1‐antitrypsin deficiency detected by screening of 200,000 infants. N Engl J Med 294: 1316‐1321, 1976.
 462.Sveger T, Eriksson S. The liver in adolescents with alpha 1‐antitrypsin deficiency. Hepatology 22: 514‐517, 1995.
 463.Tagliabracci VS, Girard JM, Segvich D, Meyer C, Turnbull J, Zhao X, Minassian BA, Depaoli‐Roach AA, Roach PJ. Abnormal metabolism of glycogen phosphate as a cause for Lafora disease. J Biol Chem 283: 33816‐33825, 2008.
 464.Tagliabracci VS, Turnbull J, Wang W, Girard JM, Zhao X, Skurat AV, Delgado‐Escueta AV, Minassian BA, Depaoli‐Roach AA, Roach PJ. Laforin is a glycogen phosphatase, deficiency of which leads to elevated phosphorylation of glycogen in vivo. Proc Natl Acad Sci U S A 104: 19262‐19266, 2007.
 465.Takada A, Kawaoka Y. Pathogenesis of Ebola virus infection: Recent insights. Trends Microbiol 6: 258‐259, 1998.
 466.Takamura A, Komatsu M, Hara T, Sakamoto A, Kishi C, Waguri S, Eishi Y, Hino O, Tanaka K, Mizushima N. Autophagy‐deficient mice develop multiple liver tumors. Genes Dev 25: 795‐800, 2011.
 467.Talamo RC, Langley CE, Reed CE, Makino S. 1‐antitrypsin deficiency: A variant with no detectable 1 ‐antitrypsin. Science 181: 70‐71, 1973.
 468.Tanaka K, Mori W, Suwa K. Victoria blue‐nuclear fast red stain for HBs antigen detection in paraffin section. Acta Pathol Jpn 31: 93‐98, 1981.
 469.Tanaka M, Machida Y, N. N. A novel therapeutic strategy for polyglutamine diseases by stabilizing aggregation‐prone proteins with small molecules. J Mol Med (Berl) 83: 343‐352, 2005.
 470.Tandon BN, Acharya SK. Viral diseases involving the liver. Baillieres Clin Gastroenterol 1: 211‐230, 1987.
 471.Tandra S, Yeh MM, Brunt EM, Vuppalanchi R, Cummings OW, Unalp‐Arida A, Wilson LA, Chalasani N. Presence and significance of microvesicular steatosis in nonalcoholic fatty liver disease. J Hepatol 55: 654‐659, 2011.
 472.Teckman JH. Alpha1‐antitrypsin deficiency in childhood. Semin Liver Dis 27: 274‐281, 2007.
 473.Teckman JH, An JK, Blomenkamp K, Schmidt B, Perlmutter D. Mitochondrial autophagy and injury in the liver in alpha 1‐antitrypsin deficiency. Am J Physiol Gastrointest Liver Physiol 286: G851‐G862, 2004.
 474.Teckman JH, An JK, Loethen S, Perlmutter DH. Fasting in alpha1‐antitrypsin deficient liver: Constitutive [correction of consultative] activation of autophagy. Am J Physiol Gastrointest Liver Physiol 283: G1156‐G1165, 2002.
 475.Teckman JH, Burrows J, Hidvegi T, Schmidt B, Hale PD, Perlmutter DH. The proteasome participates in degradation of mutant alpha 1‐antitrypsin Z in the endoplasmic reticulum of hepatoma‐derived hepatocytes. J Biol Chem 276: 44865‐44872, 2001.
 476.Teckman JH, Qu D, Perlmutter DH. Molecular pathogenesis of liver disease in alpha1‐antitrypsin deficiency. Hepatology 24: 1504‐1516, 1996.
 477.Teng CF, Wu HC, Tsai HW, Shiah HS, Huang W, Su IJ. Novel feedback inhibition of surface antigen synthesis by mammalian target of rapamycin (mTOR) signal and its implication for hepatitis B virus tumorigenesis and therapy. Hepatology 54: 1199‐1207, 2011.
 478.Tennent G, Brennan SO, Stangou AJ, O'Grady J, Hawkins PN, Pepys MB. Human plasma fibrinogen is synthesized in the liver. Blood 109: 1971‐1974, 2007.
 479.Termine DJ, Moremen KW, Sifers RN. The mammalian UPR boosts glycoprotein ERAD by suppressing the proteolytic downregulation of ER mannosidase I. J Cell Sci 122: 976‐984, 2009.
 480.Thomas E, Micci D. Chronic intrahepatic cholestasis with granulomas and biliary cirrhosis. Enigmatic disease and therapeutic dilemma. JAMA 238: 337‐338, 1977.
 481.Thomas RM, Schiano TD, Kueppers F, Black M. Alpha1‐antichymotrypsin globules within hepatocytes in patients with chronic hepatitis C and cirrhosis. Hum Pathol 31: 575‐577, 2000.
 482.Tiberia E, Turnbull J, Wang T, Ruggieri A, Zhao XC, Pencea N, Israelian J, Wang Y, Ackerley CA, Wang P, Liu Y, Minassian BA. Increased laforin and laforin binding to glycogen underlie Lafora body formation in malin‐deficient Lafora disease. J Biol Chem 287: 25650‐25659, 2012.
 483.Timme A. The ultrastructure of the liver in human symptomatic porphyria. A preliminary communication. S Afr Med J 25: 58‐62, 1971.
 484.Tinberg H, Geier EA, Beirne J, Burbige E, French SW. Mallory bodies. Horseradish peroxidase: Specific cytochemical and biochemical marker for alcoholic hyalin. Lab Invest 41: 13‐21, 1979.
 485.Tinberg H, Regan RJ, Geier EA, Peterson GE, French SW. Mallory bodies: Isolation of hepatocellular hyalin and electrophoretic resolution of polypeptide components. Lab Invest 39: 483‐490, 1978.
 486.Tock E. A rapid phloxine B method for demonstratin Mallory bodies in liver sections. Am J Med Technol 35: 302‐305, 1969.
 487.Toivola D, Strnad P, Habtezion A, Omary MB. Intermediate filaments take the heat as stress proteins. Trends Cell Biol 20: 79‐91, 2010.
 488.Topal AN, Canda MS, Gunel O. Schaumann bodies in bronchial and bronchioalveolar lavage fluid in a case of sarcoidosis. Acta Cytol 47: 320‐321, 2003.
 489.Toshkov I, Chisari FV, Bannasch P. Hepatic preneoplasia in hepatitis B virus transgenic mice. Hepatology 20: 1162‐1172, 1994.
 490.Trottier Y, Lutz Y, Stevanin G, Imbert G, Devys D, Cancel G, Saudou F, Weber C, David G, Tora L, Agid Y, Brice A, Mandel J‐L. Polyglutamine expansion as a pathological epitope in Huntington's disease and four dominant cerebellar ataxias. Nature 378: 403‐406, 1995.
 491.Tsai HW, Lin YJ, Lin PW, Wu HC, Hsu KH, Yen CJ, Chan SH, Huang W, Su IJ. A clustered ground‐glass hepatocyte pattern represents a new prognostic marker for the recurrence of hepatocellular carcinoma after surgery. Cancer 117: 2951‐2960, 2011.
 492.Turnbull J, Wang P, Girard JM, Ruggieri A, Wang TJ, Draginov AG, Kameka AP, Pencea N, Zhao X, Ackerley CA, Minassian BA. Glycogen hyperphosphorylation underlies lafora body formation. Ann Neurol 68: 925‐933.
 493.Uehlinger E. The sarcoid tissue reaction. The origin and significance of inclusion bodies. Differential diagnosis with particular delineation from tuberculosis. Acta Med Scand Suppl 425: 7‐13, 1964.
 494.Valérdiz S, Vázquez JJ. Cyanamide and its calcium form: Do they differ with respect to their action on the liver cell? Experimental study in the rat. Appl Pathol 7: 344‐349, 1989.
 495.Valla D, Pessegueiro‐Miranda H, Degott C, Lebrec D, Rueff B, Benhamou JP. Hepatic sarcoidosis with portal hypertension. A report of seven cases with a review of the literature. Q J Med 63: 531‐544, 1987.
 496.Van Leeuwen F, Hol EM, Fischer DF. Frameshift proteins in Alzheimer's disease and in other conformational disorders: Time for the ubiquitin‐proteasome system. J Alzheimers Dis 9: 39‐25, 2006.
 497.Vazquez JJ. Ground‐glass hepatocytes: Light and electron microscopy. Characterization of the different types. Histol Histopathol 5: 379‐386, 1990.
 498.Venkatraman P, Wetzel R, Tanaka M, Nukina N, Goldberg AL. Eukaryotic proteasomes cannot digest polyglutamine sequences and release them during degradation of polyglutamine‐containing proteins. Mol Cell 14: 95‐104, 2004.
 499.Verbaan H, Widell A, Bondeson L, Andersson K, Eriksson S. Factors associated with cirrhosis development in chronic hepatitis C patients from an area of low prevalence. J Viral Hepat 5: 43‐51, 1998.
 500.Verbanac KM, Heath EC. Biosynthesis, processing, and secretion of M and Z variant human alpha 1‐antitrypsin. J Biol Chem 261: 9979‐9989, 1986.
 501.Verhoef LG, Lindsten K, Masucci MG, Dantuma NP. Aggregate formation inhibits proteasomal degradation of polyglutamine proteins. Hum Mol Genet 11: 2689‐2700, 2002.
 502.Vic P, Sablier G, François C, Michel H, Sentein P, Boucard M. Comparative hepatic toxicity of perhexiline maleate and griseofulvin in mice. Toxicol Eur Res 3: 17‐22, 1981.
 503.Vieira WT, Gayotto LC, de Lima CP, de Brito T. Histopathology of the human liver in yellow fever with special emphasis on the diagnostic role of the Councilman body. Histopathology 7: 195‐208, 1983.
 504.Vilchez D, Ros S, Cifuentes D, Pujadas L, Valles J, Garcia‐Fojeda B, Criado‐Garcia O, Fernandez‐Sanchez E, Medrano‐Fernandez I, Dominguez J, Garcia‐Rocha M, Soriano E, Rodriguez de Cordoba S, Guinovart JJ. Mechanism suppressing glycogen synthesis in neurons and its demise in progressive myoclonus epilepsy. Nat Neurosci 10: 1407‐1413, 2007.
 505.Waldo E, Tobias H. Needle‐like cytoplasmic inclusions in the liver in prophyria cutanea tarda. Arch Pathol 96: 368‐371, 1973
 506.Wang HC, Chang WT, Chang WW, Wu HC, Huang W, Lei HY, Lai MD, Fausto N, Su IJ. Hepatitis B virus pre‐S2 mutant upregulates cyclin A expression and induces nodular proliferation of hepatocytes. Hepatology 41: 761‐770, 2005.
 507.Wang HC, Huang W, Lai MD, Su IJ. Hepatitis B virus pre‐S mutants, endoplasmic reticulum stress and hepatocarcinogenesis. Cancer Sci 97: 683‐688, 2006.
 508.Wang HC, Wu HC, Chen CF, Fausto N, Lei HY, Su IJ. Different types of ground glass hepatocytes in chronic hepatitis B virus infection contain specific pre‐S mutants that may induce endoplasmic reticulum stress. Am J Pathol 163: 2441‐2449, 2003.
 509.Wang Y, Ripperger J, Fey GH, Samols D, Kordula T, Wetzler M, Van Etten RA, Baumann H. Modulation of hepatic acute phase gene expression by epidermal growth factor and Src protein tyrosine kinases in murine and human hepatic cells. Hepatology 30: 682‐697, 1999.
 510.Waters JA, Kennedy M, Voet P, Hauser P, Petre J, Carman W, Thomas HC. Loss of the common “A” determinant of hepatitis B surface antigen by a vaccine‐induced escape mutant. J Clin Invest 90: 2543‐2547, 1992.
 511.Wehinger H, Klinge O, Alexandrakis E, Schürmann J, Witt J, HH. S. Hereditary hypofibrinogenemia with fibrinogen storage in the liver. Eur J Pediatr 141: 109‐112, 1983
 512.Wenger RH, Rolfs A, Marti HH, Bauer C, Gassmann M. Hypoxia, a novel inducer of acute phase gene expression in a human hepatoma cell line. J Biol Chem 270: 27865‐27870, 1995.
 513.Wessely Z, Shapiro SH, Klavins JV, Tinberg HM. Identification of Mallory bodies with rhodamine B fluorescence and other stains for keratin. Stain Technol 56: 169‐176, 1981.
 514.Whitley RJ, Roizman B. Herpes simplex virus infections. Lancet 357: 1513‐1518, 2001.
 515.Wierzba‐Bobrowicz T, Lewandowska E, Stepień T, J. M. Immunohistochemical and ultrastructural changes in the brain in probable adult glycogenosis type IV: Adult polyglucosan body disease. Folia Neuropathol 46: 165‐175, 2008.
 516.Wileman T. Aggresomes and pericentriolar sites of virus assembly: Cellular defense or viral design? Ann Rev Microbiol 61: 149‐167, 2007.
 517.Williams A, Sarkar S, Cuddon P, Ttofi EK, Saiki S, Siddiqi FH, Jahreiss L, Fleming A, Pask D, Goldsmith P, O'Kane CJ, Floto RA, Rubinsztein DC. Novel targets for Huntington's disease in an mTOR‐independent autophagy pathway. Nat Chem Biol 4: 295‐305, 2008.
 518.Williams AJ, Paulson HL. Polyglutamine neurodegeneration: Protein misfolding revisited. Trends Neurosci 31: 521‐528, 2008.
 519.Williams WJ, Wallach ER. Laser microprobe mass spectrometry (LAMMS) analysis of beryllium, sarcoidosis and other granulomatous diseases. Sarcoidosis 6: 111‐117, 1989.
 520.Wills EJ. Ground glasslike hepatocytes produced by glycogen‐membrane complexes (“glycogen bodies”). Ultrastruct Pathol 16: 491‐503, 1992.
 521.Wisell J, Boitnott J, Haas M, Anders RA, Hart J, Lewis JT, Abraham SC, M. T. Glycogen pseudoground glass change in hepatocytes. Am J Surg Pathol 30: 1085‐1090, 2006.
 522.Wolbach SB. A new type of cell inclusion, not parasitic, associated with disseminated granulomatous lesions. J Med Res 24: 243‐258, 1911.
 523.Wolff K. Liver inclusions in erythropoietic protoporphyria. Eur J Clin Invest 5(1): 21‐26, 1975.
 524.Wong E, Tan JM, Soong WE, Hussein K, Nukina N, Dawson VL, Dawson TM, Cuervo AM, Lim KL. Autophagy‐mediated clearance of aggresomes is not a universal phenomenon. Hum Mol Genet 17: 2570‐2582, 2008.
 525.Woods A, Woods CW, Snow TM. Congenital disorders of glycosylation. Adv Neonatal Care 12: 90‐95, 2012.
 526.Worby CA, Gentry MS, Dixon JE. Malin decreases glycogen accumulation by promoting the degradation of protein targeting to glycogen (PTG). J Biol Chem 283: 4069‐4076, 2008.
 527.Wozniak E, McBride J, DeNardo D, Tarara R, Wong V, Osburn B. Isolation and characterization of an antigenically distinct 68‐kd protein from nonviral intracytoplasmic inclusions in Boa constrictors chronically infected with the inclusion body disease virus (IBDV: Retroviridae). Vet Pathol 37: 449‐459, 2000.
 528.Wu SS, de Chadarevian JP, McPhaul L, Riley NE, van Leeuwen FW, French SW. Coexpression and accumulation of ubiquitin +1 and ZZ proteins in livers of children with alpha(1)‐antitrypsin deficiency. Pediatr Dev Pathol 5: 293‐298, 2002.
 529.Wu Y, Swulius MT, Moremen KW, Sifers RN. Elucidation of the molecular logic by which misfolded alpha 1‐antitrypsin is preferentially selected for degradation. Proc Natl Acad Sci U S A 100: 8229‐8234, 2003.
 530.Wu Y, Whitman I, Molmenti E, Moore K, Hippenmeyer P, Perlmutter DH. A lag in intracellular degradation of mutant alpha 1‐antitrypsin correlates with the liver disease phenotype in homozygous PiZZ alpha 1‐antitrypsin deficiency. Proc Natl Acad Sci U S A 91: 9014‐9018, 1994.
 531.Xerri L, Nosny Y, Minko D, Benkoel L, Nouhou H, Kohler JL, Chamlian A. Association of sarcoidosis and primary biliary cirrhosis. Clinical and anatomopathologic study of a case followed for over 10 years. Gastroenterol Clin Biol 13: 513‐516, 1989.
 532.Xu K, Zhang Y, Tang B, Laskin J, Roach PJ, Chen H. Study of highly selective and efficient thiol derivatization using selenium reagents by mass spectrometry. Anal Chem 82: 6926‐6932.
 533.Xu Z, Jensen G, Yen TS. Activation of hepatitis B virus S promoter by the viral large surface protein via induction of stress in the endoplasmic reticulum. J Virol 71: 7387‐7392, 1997.
 534.Xu Z, Yen TS. Intracellular retention of surface protein by a hepatitis B virus mutant that releases virion particles. J Virol 70: 133‐140, 1996.
 535.Yamada M, Nakamura K, Nakajima Y, Yamamoto M, Komae H, Okuda K, Tsuji M, Arai M. Ground‐glass hepatocytes in fibrinogen storage disease in Japanese Black calves. J Comp Pathol 126: 95‐99, 2002
 536.Yamasaki M, Li W, Johnson DJ, Huntington JA. Crystal structure of a stable dimer reveals the molecular basis of serpin polymerization. Nature 455: 1255‐1258, 2008.
 537.Yang JC, Teng CF, Wu HC, Tsai HW, Chuang HC, Tsai TF, Hsu YH, Huang W, Wu LW, Su IJ. Enhanced expression of vascular endothelial growth factor‐A in ground glass hepatocytes and its implication in hepatitis B virus hepatocarcinogenesis. Hepatology 49: 1962‐1971, 2009.
 538.Yeung P, Wong DK, Lai CL, Fung J, Seto WK, Yuen MF. Association of hepatitis B virus pre‐S deletions with the development of hepatocellular carcinoma in chronic hepatitis B. J Infect Dis 203: 646‐654, 2011.
 539.Yokoi S, Austin J, Witmer F, Sakai M. Studies in myoclonus epilepsy (Lafora body form). I. Isolation and preliminary characterization of Lafora bodies in two cases. Arch Neurol 19: 15‐33, 1968.
 540.Yokoo H, Harwood TR, Racker D, Arak S. Experimental production of Mallory bodies in mice by diet containing 3,5‐diethoxycarbonyl‐1,4‐dihydrocollidine. Gastroenterology 83: 109‐113, 1982.
 541.Yokota T, Ishihara T, Kawano H, Yamashita Y, Takahashi M, Uchino F, Kamei T, Kusunose Y, Yamada M, Matsumoto N. Immunological homogeneity of Lafora body, corpora amylacea, basophilic degeneration in heart, and intracytoplasmic inclusions of liver and heart in type IV glycogenosis. Acta Pathol Jpn 37: 941‐946, 1987.
 542.Yokota T, Ishihara T, Yoshida H, Takahashi M, Uchino F, Hamanaka S. Monoclonal antibody against polyglucosan isolated from the myocardium of a patient with Lafora disease. J Neuropathol Exp Neurol 47: 572‐577, 1988.
 543.Yoshioka K, Kakumu S, Tahara H, Arao M, Fuji A, Hirofuji H, Hayashi T, Kano H. Occurrence of immunohistochemically detected small Mallory bodies in liver disease. Am J Gastroenterol 84: 535‐539, 1989.
 544.Yu MH, Lee KN, Kim J. The Z type variation of human alpha 1‐antitrypsin causes a protein folding defect. Nat Struct Biol 2: 363‐367, 1995.
 545.Yu S, Sher B, Kudryk B, Redman CM. Fibrinogen precursors. Order of assembly of fibrinogen chains. J Biol Chem 259: 10574‐10581, 1984.
 546.Yuan Q, Marceau N, French BA, Fu P, French SW. Heat shock in vivo induces Mallory body formation in drug primed mouse liver. Exp Mol Pathol 63: 63‐76, 1995.
 547.Zatloukal K, Böck G, Rainer I, Denk H, Weber K. High molecular weight components are main constituents of Mallory bodies isolated with a fluorescence activated cell sorter. Lab Invest 64: 200‐206, 1991.
 548.Zatloukal K, French SW, Stumptner C, Strnad P, Harada M, Toivola DM, Cadrin M, Omary MB. From Mallory to Mallory‐Denk bodies: What, how and why? Exp Cell Res 313: 2033‐2049, 2007
 549.Zatloukal K, Stumptner C, Fuchsbichler A, Heid H, Schnoelzer M, Kenner L, Kleinert R, Prinz M, Aguzzi A, Denk H. p62 Is a common component of cytoplasmic inclusions in protein aggregation diseases. Am J Pathol 160: 255‐263, 2002.
 550.Zatloukal K, Stumptner C, Fuchsbichler A, Janig E, Denk H. Intermediate filament protein inclusions. Methods Cell Biol. 78: 205‐228, 2004.
 551.Zatloukal K, Stumptner C, Lehner M, Denk H, Baribault H, Eshkind LG, Franke WW. Cytokeratin 8 protects from hepatotoxicity, and its ratio to cytokeratin 18 determines the ability of hepatocytes to form Mallory bodies. Am J Pathol 154: 1263‐1274, 2000.
 552.Zheng Y, Chen WL, Louie SG, Yen TS, Ou JH. Hepatitis B virus promotes hepatocarcinogenesis in transgenic mice. Hepatology 45: 16‐21, 2007.
 553.Zhong B, Zhou Q, Toivola DM, Tao GZ, Resurreccion EZ, Omary MB. Organ‐specific stress induces mouse pancreatic keratin overexpression in association with NF‐kappaB activation. J Cell Sci 117: 1709‐1719, 2004.
 554.Zhou H, Ortiz‐Pallardo ME, Ko Y, Fischer HP. Is heterozygous alpha‐1‐antitrypsin deficiency type PIZ a risk factor for primary liver carcinoma? Cancer 88: 2668‐2676, 2000.

Related Articles:

Porphyrin and Heme Metabolism and the Porphyrias

Contact Editor

Submit a note to the editor about this article by filling in the form below.

* Required Field

How to Cite

Pavel Strnad, Renwar Nuraldeen, Nurdan Guldiken, Daniel Hartmann, Vineet Mahajan, Helmut Denk, Johannes Haybaeck. Broad Spectrum of Hepatocyte Inclusions in Humans, Animals, and Experimental Models. Compr Physiol 2013, 3: 1393-1436. doi: 10.1002/cphy.c120032