Comprehensive Physiology Wiley Online Library

Molecular Biology of Freezing Tolerance

Full Article on Wiley Online Library



Abstract

Winter survival for many kinds of animals involves freeze tolerance, the ability to endure the conversion of about 65% of total body water into extracellular ice and the consequences that freezing imposes including interruption of vital processes (e.g., heartbeat and breathing), cell shrinkage, elevated osmolality, anoxia/ischemia, and potential physical damage from ice. Freeze‐tolerant animals include various terrestrially hibernating amphibians and reptiles, many species of insects, and numerous other invertebrates inhabiting both terrestrial and intertidal environments. Well‐known strategies of freezing survival include accumulation of low molecular mass carbohydrate cryoprotectants (e.g., glycerol), use of ice nucleating agents/proteins for controlled triggering of ice growth and of antifreeze proteins that inhibit ice recrystallization, and good tolerance of anoxia and dehydration. The present article focuses on more recent advances in our knowledge of the genes and proteins that support freeze tolerance and the metabolic regulatory mechanisms involved. Important roles have been identified for aquaporins and transmembrane channels that move cryoprotectants, heat shock proteins and other chaperones, antioxidant defenses, and metabolic rate depression. Genome and proteome screening has revealed many new potential targets that respond to freezing, in particular implicating cytoskeleton remodeling as a necessary facet of low temperature and/or cell volume adaptation. Key regulatory mechanisms include reversible phosphorylation control of metabolic enzymes and microRNA control of gene transcript expression. These help to remodel metabolism to preserve core functions while suppressing energy expensive metabolic activities such as the cell cycle. All of these advances are providing a much more complete picture of life in the frozen state. © 2013 American Physiological Society. Compr Physiol 3:1283‐1308, 2013.

Comprehensive Physiology offers downloadable PowerPoint presentations of figures for non-profit, educational use, provided the content is not modified and full credit is given to the author and publication.

Download a PowerPoint presentation of all images


Figure 1. Figure 1.

Cell responses to freezing: consequences and defenses. If undefended, ice nucleation in the extracellular space leads to a rapid growth of ice. Ice crystals exclude solutes and the osmolality of remaining extracellular fluid rises rapidly placing an osmotic stress on cells that causes massive water outflow and cells shrink. If a critical minimum cell volume is exceeded, permanent damage can result causing loss of integrity of the plasma membrane when thawed. Transmembrane nucleation can also occur so that intracellular ice forms. Freeze‐tolerant organisms protect against these forms of damage with a variety of defenses. Ice nucleating proteins (INPs) or agents trigger crystal growth close to the equilibrium FP of body fluids so that ice growth is slow and controlled. Antifreeze proteins (AFPs) provide inhibition of recrystallization so that ice crystal size stays small. Low molecular weight carbohydrates are proliferated such as glycerol (g) that limit cell volume reduction by colligative effects whereas sugars such as trehalose act as membrane protectants (MP) to stabilize bilayer structure. Membrane transporters (AQPs) including aquaporins, aquaglyceroporins, and transporters for other cryoprotectants ensure high flux movements of water and cryoprotectants across the membranes.

Figure 2. Figure 2.

Cryoprotectant acquisition by freeze‐tolerant animals. (A) Seasonal synthesis of glycerol and sorbitol by larvae of the goldenrod gall fly, Eurosta solidaginis, and corresponding consumption of larval glycogen reserves. (B) Freeze responsive accumulation of glucose by wood frogs, Rana sylvatica, frozen at −3°C. Ice nucleation on the skin triggers a nearly instant activation of glycogenolysis in liver and glucose is rapidly produced, exported into the blood and distributed to all other organs. Thawing reverses the process to restore glucose into liver glycogen but occurs over a longer time frame. (C) E. solidaginis larva within an opened gall and two galls on a goldenrod stem. (D) R. sylvatica, unfrozen and frozen. Photos, with permission, by J.M. Storey.

Figure 3. Figure 3.

Cryoprotectant acquisition by freeze‐tolerant animals. (A) Seasonal synthesis of glycerol and sorbitol by larvae of the goldenrod gall fly, Eurosta solidaginis, and corresponding consumption of larval glycogen reserves. (B) Freeze responsive accumulation of glucose by wood frogs, Rana sylvatica, frozen at −3°C. Ice nucleation on the skin triggers a nearly instant activation of glycogenolysis in liver and glucose is rapidly produced, exported into the blood and distributed to all other organs. Thawing reverses the process to restore glucose into liver glycogen but occurs over a longer time frame. (C) E. solidaginis larva within an opened gall and two galls on a goldenrod stem. (D) R. sylvatica, unfrozen and frozen. Photos, with permission, by J.M. Storey.

Figure 4. Figure 4.

Relative expression levels of heat shock proteins Hsp110, Hsp70, Hsp60, and Hsp40 from September to April in freeze‐tolerant Eurosta solidaginis larvae. Data are means ± SEM, n = 4. “a” shows values that are significantly different from the corresponding September value, P < 0.05. Modified, with permission, from Zhang et al. (239).

Figure 5. Figure 5.

Na+K+‐ATPase and sarco(endo)plasmic Ca2+‐ATPase (SERCA) in larvae of freeze‐tolerant Eurosta solidaginis. (A and C) Seasonal changes in Na+K+‐ATPase and SERCA activities in larvae sampled in the second week of each month. (B and D) Effect of in vitro incubations to stimulate endogenous protein kinases (PKA, PKG, or PKC) or the addition of exogenous calf‐intestinal alkaline phosphatase (CIAP) on ATPase activities in extracts from 15°C‐acclimated larvae. Data are means ± SEM, n = 3‐5. * shows values that are significantly different from corresponding Sep/Oct or control values, P < 0.05; ** shows values that are different from all other months. Modified, with permission, from McMullen and Storey (132,134).

Figure 6. Figure 6.

(A) Synthesis of microRNA. Primary transcripts are transcribed by RNA polymerase II and processed by riboendonucleases (Drosha, Dicer) into single‐stranded mature microRNAs. These then join a microRNA‐induced silencing complex (miRISC) and bind to mRNA transcripts at their 3′‐UTR to repress translation. (B) The freeze‐tolerant marine intertidal snail, Littorina littorea. (C) Relative expression levels of six miRNA species and Dicer protein levels in foot muscle showing effects of freezing (24 h at −6°C) or anoxia (24 h under a N2 gas atmosphere at 10°C), as compared with 10°C controls. Expression levels of miRNAs are normalized against 5S rRNA expression from the same samples. Data are mean ± SEM, n = 3‐4. “a” shows values that are significantly different from the corresponding control (P < 0.05); “b” shows values that are significantly different from corresponding freezing group. Modified, with permission, from Biggar et al. (17). Photo by JM Storey.

Figure 7. Figure 7.

(A) Synthesis of microRNA. Primary transcripts are transcribed by RNA polymerase II and processed by riboendonucleases (Drosha, Dicer) into single‐stranded mature microRNAs. These then join a microRNA‐induced silencing complex (miRISC) and bind to mRNA transcripts at their 3′‐UTR to repress translation. (B) The freeze‐tolerant marine intertidal snail, Littorina littorea. (C) Relative expression levels of six miRNA species and Dicer protein levels in foot muscle showing effects of freezing (24 h at −6°C) or anoxia (24 h under a N2 gas atmosphere at 10°C), as compared with 10°C controls. Expression levels of miRNAs are normalized against 5S rRNA expression from the same samples. Data are mean ± SEM, n = 3‐4. “a” shows values that are significantly different from the corresponding control (P < 0.05); “b” shows values that are significantly different from corresponding freezing group. Modified, with permission, from Biggar et al. (17). Photo by JM Storey.

Figure 8. Figure 8.

The four stages of the cell cycle showing the Cdk and cyclin pairs that regulate each stage. The kinase activity of the cyclin:Cdk complex activates substrates that regulate the progression and completion of each phase.



Figure 1.

Cell responses to freezing: consequences and defenses. If undefended, ice nucleation in the extracellular space leads to a rapid growth of ice. Ice crystals exclude solutes and the osmolality of remaining extracellular fluid rises rapidly placing an osmotic stress on cells that causes massive water outflow and cells shrink. If a critical minimum cell volume is exceeded, permanent damage can result causing loss of integrity of the plasma membrane when thawed. Transmembrane nucleation can also occur so that intracellular ice forms. Freeze‐tolerant organisms protect against these forms of damage with a variety of defenses. Ice nucleating proteins (INPs) or agents trigger crystal growth close to the equilibrium FP of body fluids so that ice growth is slow and controlled. Antifreeze proteins (AFPs) provide inhibition of recrystallization so that ice crystal size stays small. Low molecular weight carbohydrates are proliferated such as glycerol (g) that limit cell volume reduction by colligative effects whereas sugars such as trehalose act as membrane protectants (MP) to stabilize bilayer structure. Membrane transporters (AQPs) including aquaporins, aquaglyceroporins, and transporters for other cryoprotectants ensure high flux movements of water and cryoprotectants across the membranes.



Figure 2.

Cryoprotectant acquisition by freeze‐tolerant animals. (A) Seasonal synthesis of glycerol and sorbitol by larvae of the goldenrod gall fly, Eurosta solidaginis, and corresponding consumption of larval glycogen reserves. (B) Freeze responsive accumulation of glucose by wood frogs, Rana sylvatica, frozen at −3°C. Ice nucleation on the skin triggers a nearly instant activation of glycogenolysis in liver and glucose is rapidly produced, exported into the blood and distributed to all other organs. Thawing reverses the process to restore glucose into liver glycogen but occurs over a longer time frame. (C) E. solidaginis larva within an opened gall and two galls on a goldenrod stem. (D) R. sylvatica, unfrozen and frozen. Photos, with permission, by J.M. Storey.



Figure 3.

Cryoprotectant acquisition by freeze‐tolerant animals. (A) Seasonal synthesis of glycerol and sorbitol by larvae of the goldenrod gall fly, Eurosta solidaginis, and corresponding consumption of larval glycogen reserves. (B) Freeze responsive accumulation of glucose by wood frogs, Rana sylvatica, frozen at −3°C. Ice nucleation on the skin triggers a nearly instant activation of glycogenolysis in liver and glucose is rapidly produced, exported into the blood and distributed to all other organs. Thawing reverses the process to restore glucose into liver glycogen but occurs over a longer time frame. (C) E. solidaginis larva within an opened gall and two galls on a goldenrod stem. (D) R. sylvatica, unfrozen and frozen. Photos, with permission, by J.M. Storey.



Figure 4.

Relative expression levels of heat shock proteins Hsp110, Hsp70, Hsp60, and Hsp40 from September to April in freeze‐tolerant Eurosta solidaginis larvae. Data are means ± SEM, n = 4. “a” shows values that are significantly different from the corresponding September value, P < 0.05. Modified, with permission, from Zhang et al. (239).



Figure 5.

Na+K+‐ATPase and sarco(endo)plasmic Ca2+‐ATPase (SERCA) in larvae of freeze‐tolerant Eurosta solidaginis. (A and C) Seasonal changes in Na+K+‐ATPase and SERCA activities in larvae sampled in the second week of each month. (B and D) Effect of in vitro incubations to stimulate endogenous protein kinases (PKA, PKG, or PKC) or the addition of exogenous calf‐intestinal alkaline phosphatase (CIAP) on ATPase activities in extracts from 15°C‐acclimated larvae. Data are means ± SEM, n = 3‐5. * shows values that are significantly different from corresponding Sep/Oct or control values, P < 0.05; ** shows values that are different from all other months. Modified, with permission, from McMullen and Storey (132,134).



Figure 6.

(A) Synthesis of microRNA. Primary transcripts are transcribed by RNA polymerase II and processed by riboendonucleases (Drosha, Dicer) into single‐stranded mature microRNAs. These then join a microRNA‐induced silencing complex (miRISC) and bind to mRNA transcripts at their 3′‐UTR to repress translation. (B) The freeze‐tolerant marine intertidal snail, Littorina littorea. (C) Relative expression levels of six miRNA species and Dicer protein levels in foot muscle showing effects of freezing (24 h at −6°C) or anoxia (24 h under a N2 gas atmosphere at 10°C), as compared with 10°C controls. Expression levels of miRNAs are normalized against 5S rRNA expression from the same samples. Data are mean ± SEM, n = 3‐4. “a” shows values that are significantly different from the corresponding control (P < 0.05); “b” shows values that are significantly different from corresponding freezing group. Modified, with permission, from Biggar et al. (17). Photo by JM Storey.



Figure 7.

(A) Synthesis of microRNA. Primary transcripts are transcribed by RNA polymerase II and processed by riboendonucleases (Drosha, Dicer) into single‐stranded mature microRNAs. These then join a microRNA‐induced silencing complex (miRISC) and bind to mRNA transcripts at their 3′‐UTR to repress translation. (B) The freeze‐tolerant marine intertidal snail, Littorina littorea. (C) Relative expression levels of six miRNA species and Dicer protein levels in foot muscle showing effects of freezing (24 h at −6°C) or anoxia (24 h under a N2 gas atmosphere at 10°C), as compared with 10°C controls. Expression levels of miRNAs are normalized against 5S rRNA expression from the same samples. Data are mean ± SEM, n = 3‐4. “a” shows values that are significantly different from the corresponding control (P < 0.05); “b” shows values that are significantly different from corresponding freezing group. Modified, with permission, from Biggar et al. (17). Photo by JM Storey.



Figure 8.

The four stages of the cell cycle showing the Cdk and cyclin pairs that regulate each stage. The kinase activity of the cyclin:Cdk complex activates substrates that regulate the progression and completion of each phase.

References
 1. Adachi T, Ohmaki K, Furusawa T. Induction of cryoprotectants and lower supercooling points in the eggs of the silkworm, Bombyx mori, by a synthetic diapause hormone. J Sericult Sci Japan 68: 93‐101, 1999.
 2. Adhikari BN, Wall DH, Adams BJ. Desiccation survival in an Antarctic nematode: Molecular analysis using expressed sequenced tags. BMC Genomics 10: 69, 2009.
 3. Adhikari BN, Wall DH, Adams BJ. Effect of slow desiccation and freezing on gene transcription and stress survival of an Antarctic nematode. J Exp Biol 213: 1803‐1812, 2010.
 4. Akabane G, Ogushi Y, Hasegawa T, Suzuki M, Tanaka S. Gene cloning and expression of an aquaporin (AQP‐h3BL) in the basolateral membrane of water‐permeable epithelial cells in osmoregulatory organs of the tree frog. Am J Physiol 292: R2340‐R2351, 2007.
 5. Anchordoguy TJ, Rudolph AS, Carpenter JF, Crowe JH. Modes of interaction of cryoprotectants with membrane phospholipids during freezing. Cryobiology 24: 324‐331, 1987.
 6. Ansart A, Vernon P. Cold hardiness in molluscs. Acta Oecolog 24: 95‐102, 2003.
 7. Aunaas T. Nucleating agents in the haemolymph of an intertidal mollusc tolerant to freezing. Experientia Basel 38: 1456‐1457, 1982.
 8. Azad P, Ryu J, Haddad GG. Distinct role of Hsp70 in Drosophila hemocytes during severe hypoxia. Free Radic Biol Med 51: 530‐538, 2011.
 9. Bale JS. Insects and low temperatures: From molecular biology to distributions and abundance. Phil Trans R Soc Lond B 357: 849‐862, 2002.
 10. Barakat A, Sriram A, Park J, Zhebentyayeva T, Main D, Abbott A. Genome wide identification of chilling responsive microRNAs in Prunus persica. BMC Genom 13:48, 2012.
 11. Bartel DP. MicroRNAs: Target recognition and regulatory functions. Cell 136: 215‐233, 2009.
 12. Bienvenu F, Jirawatnotai S, Elias JE, Meyer CA, Mizeracka K, Marson A, Frampton GM, Cole MF, Odom DT, Odajima J, Geng Y, Zagozdzon A, Jecrois M, Young RA, Liu XS, Cepko CL, Gygi SP, Sicinski P. Transcriptional role of cyclin D1 in development revealed by a genetic‐proteomic screen. Nature 463: 374‐378, 2010.
 13. Biggar KK, Storey KB. Perspectives in cell cycle regulation: Lessons from an anoxic vertebrate. Curr Genom 10: 573‐584, 2009.
 14. Biggar KK, Storey KB. The emerging roles of microRNAs in the molecular responses of metabolic rate depression. J Mol Cell Biol 3: 167‐175, 2011.
 15. Biggar K, Dubuc A, Storey KB. MicroRNA regulation below zero: Differential expression of miRNA‐21 and miRNA‐16 during freezing in wood frogs. Cryobiology 59: 317‐321, 2009.
 16. Biggar KK, Kornfeld S, Storey KB. Amplification and sequencing of mature microRNAs in uncharacterized animal models using stem‐loop RT‐PCR. Anal Biochem 416, 231‐233, 2011.
 17. Biggar KK, Kornfeld SF, Maistrovski Y, Storey KB. MicroRNA regulation in extreme environments: Differential expression of microRNAs in the intertidal snail Littorina littorea during extended periods of freezing and anoxia. Genom Proteom Bioinform 10: 302‐309, 2012.
 18. Block W. Water or ice? The challenge for invertebrate cold survival. Sci Prog 86: 77‐101, 2003.
 19. Brooks SPJ, Storey KB. Glycolytic controls in estivation and anoxia: A comparison of metabolic arrest in land and marine molluscs. Comp Biochem Physiol A 118: 1103‐1114, 1997.
 20. Cai Q, Storey KB. Freezing‐induced genes in wood frog (Rana sylvatica): fibrinogen upregulation by freezing and dehydration. Am J Physiol 272: R1480‐R1492, 1997.
 21. Cai Q, Storey KB. Upregulation of a novel gene by freezing exposure in the freeze‐tolerant wood frog (Rana sylvatica). Gene 198: 305‐312, 1997.
 22. Cai Q, Greenway SC, Storey KB. Differential regulation of the mitochondrial ADP/ATP translocase gene in wood frogs under freezing stress. Biochim Biophys Acta 1353: 69‐78, 1997.
 23. Campbell EM, Ball A, Hoppler S, Bowman AS. Invertebrate aquaporins: A review. J Comp Physiol B 178: 935‐955, 2008.
 24. Carrasco MA, Buechler SA, Arnold RJ, Sformo T, Barnes BM, Duman JG. Elucidating the biochemical overwintering adaptations of larval Cucujus clavipes puniceus, a nonmodel organism, via high throughput proteomics. J Proteome Res 10: 4634‐4646, 2011.
 25. Carrasco MA, Buechler SA, Arnold RJ, Sformo T, Barnes BM, Duman JG. Investigating the deep supercooling ability of an Alaskan beetle, Cucujus clavipes puniceus, via high throughput proteomics. J Proteomics 75: 1220‐1234, 2012.
 26. Carrasco MA, Tan JC, Duman JG. A cross‐species compendium of proteins/gene products related to cold stress identified by bioinformatic approaches. J Insect Physiol 57: 1127‐1135, 2011.
 27. Chen B, Kayukawa T, Monteiro A, Ishikawa Y. Cloning and characterization of the HSP70 gene, and its expression in response to diapause and thermal stress in the onion maggot, Delia antiqua. J Biochem Mol Biol 39: 749‐758, 2006.
 28. Chen L, Zhang Y, Ren Y, Xu J, Zhang Z, Wang Y. Genome‐wide identification of cold‐responsive and new microRNAs in Populus tomentosa by high‐throughput sequencing. Biochem Biophys Res Commun 417: 892‐896, 2012.
 29. Cheng CH. Evolution of the diverse antifreeze proteins. Curr Opin Genet Dev 8: 715‐720, 1998.
 30. Cheng CH, Detrich HW III. Molecular ecophysiology of Antarctic notothenioid fishes. Philos Trans R Soc Lond B Biol Sci 362: 2215‐2232, 2007.
 31. Cherayil BJ. The role of iron in the immune response to bacterial infection. Immunol Res 50: 1‐9, 2011.
 32. Churchill TA, Storey KB. Freezing survival of the garter snake Thamnophis sirtalis. Can J Zool 70: 99‐105, 1992.
 33. Churchill TA, Storey KB. Dehydration tolerance in wood frogs: A new perspective on the development of amphibian freeze tolerance. Am J Physiol 265: R1324‐R1332, 1993.
 34. Clark MS, Thorne MA, Purać J, Burns G, Hillyard G, Popović ZD, Grubor‐Lajsić G, Worland, MR. Surviving the cold: Molecular analyses of insect cryoprotective dehydration in the Arctic springtail Megaphorura arctica (Tullberg). BMC Genomics 10: 328, 2009.
 35. Clark MS, Thorne MAS, Purać J, Grubor‐Lajšić G, Kube M, Reinhardt R, Worland MR. Surviving extreme polar winters by desiccation: Clues from Arctic springtail (Onychiurus arcticus) EST libraries. BMC Genomics 8: 475, 2007.
 36. Clark MS, Worland MR. How insects survive the cold: Molecular mechanisms – a review. J Comp Physiol B 178: 917‐933, 2008.
 37. Colinet H, Nguyen TT, Cloutier C, Michaud D, Hance T. Proteomic profiling of a parasitic wasp exposed to constant and fluctuating cold exposure. Insect Biochem Mol Biol 37: 1177‐1188, 2007.
 38. Colinet H, Siaussat D, Bozzolan F, Bowler K. Rapid decline of cold tolerance at young age is associated with expression of stress genes in Drosophila melanogaster. J Exp Biol 216: 253‐259. 2013.
 39. Cornette R, Kanamori Y, Watanabe M, Nakahara Y, Gusev O, Mitsumasu K, Kadono‐Okuda K, Shimomura M, Mita K, Kikawada T, Okuda T. Identification of anhydrobiosis‐related genes from an expressed sequence tag database in the cryptobiotic midge Polypedilum vanderplanki (Diptera; Chironomidae). J Biol Chem 285: 35889‐35899, 2010.
 40. Cornette R, Kikawada T. The induction of anhydrobiosis in the sleeping chironomid: Current status of our knowledge. IUBMB Life 63: 419‐429, 2011.
 41. Cossins AR, Murray PA, Gracey AY, Logue J, Polley S, Caddick M, Brooks S, Postle T, Maclean N. The role of desaturases in cold‐induced lipid restructuring. Biochem Soc Trans 30: 1082‐1086, 2002.
 42. Costanzo JP, Lee RE Jr. Cryoprotection by urea in a terrestrially hibernating frog. J Exp Biol 208: 4079‐4089, 2005.
 43. Costanzo JP, Lee RE Jr. Urea loading enhances freezing survival and postfreeze recovery in a terrestrially hibernating frog. J Exp Biol 211: 2969‐2975, 2008.
 44. Costanzo JP, Baker PJ, Dinkelacker SA, Lee RE Jr. Endogenous and exogenous ice‐nucleating agents constrain supercooling in the hatchling painted turtle. J Exp Biol 206: 477‐485, 2003.
 45. Costanzo JP, Lee RE, Ultsch GR. Physiological ecology of overwintering in hatchling turtles. J Exp Zool A 309: 297‐379, 2008.
 46. Costanzo JP, Marjanovic M, Fincel EA, Lee RE Jr. Urea loading enhances postfreeze performance of frog skeletal muscle. J Comp Physiol B 178: 413‐420, 2008.
 47. Courteau L, Storey KB, Morin P Jr. Differential expression of microRNA species in a freeze tolerant insect, Eurosta solidaginis. Cryobiology 65: 210‐214, 2012.
 48. Craft JA, Gilbert JA, Temperton B, Dempsey KE, Ashelford K, Tiwari B, Hutchinson TH, Chipman JK. Pyrosequencing of Mytilus galloprovincialis cDNAs: Tissue‐specific expression patterns. PLoS ONE 5: e8875, 2010.
 49. Crowe JH, Crowe LM, Oliver AE, Tsvetkova N, Wolkers W, Tablin F. The trehalose myth revisited: Introduction to a symposium on stabilization of cells in the dry state. Cryobiology 43: 89‐105, 2001.
 50. Dark J. Annual lipid cycles in hibernators: Integration of physiology and behaviour. Annu Rev Nutr 25: 469‐497, 2005.
 51. Davies PL, Baardsnes J, Kuiper MJ, Walker VK. Structure and function of antifreeze proteins. Philos Trans R Soc Lond B Biol Sci 357: 927‐935, 2002.
 52. De Croos JNA, McNally JD, Palmieri F, Storey KB. Up‐regulation of the mitochondrial phosphate carrier during freezing in the wood frog Rana sylvatica: Potential roles of transporters in freeze tolerance. J Bioenerg Biomemb 36: 229‐239, 2004.
 53. Denlinger DL, Lee RE. Low Temperature Biology of Insects. Cambridge University Press, Cambridge, 2010.
 54. Dieni CA, Bouffard MC, Storey KB. Glycogen synthase kinase‐3: Cryoprotection and glycogen metabolism in the freeze‐tolerant wood frog. J Exp Biol 215: 543‐551, 2012.
 55. Dieni CA, Storey KB. Regulation of glucose‐6‐phosphate dehydrogenase by reversible phosphorylation in liver of a freeze tolerant frog. J Comp Physiol B 18: 1133‐1142, 2010.
 56. Dieni CA, Storey KB. Regulation of hexokinase by reversible phosphorylation in skeletal muscle of a freeze‐tolerant frog. Comp Biochem Physiol B 159: 236‐243, 2011.
 57. Dinkelacker SA, Costanzo JP, Lee RE. Anoxia tolerance and freeze tolerance in hatchling turtles. J Comp Physiol B 175: 209‐217, 2005.
 58. Doucet D, Walker VK, Qin W. The bugs that came in from the cold: Molecular adaptations to low temperatures in insects. Cell Mol Life Sci 66: 1404‐1418, 2009.
 59. Douglas RM, Haddad GG. Genetic models in applied physiology: Invited review: Effect of oxygen deprivation on cell cycle activity: A profile of delay and arrest. J Appl Physiol 94: 2068‐2083, 2003.
 60. Dragovic Z, Broadley SA, Shomura Y, Bracher A, Hartl FU. Molecular chaperones of the Hsp110 family act as nucleotide exchange factors of Hsp70s. EMBO J 25: 2519‐2528, 2006.
 61. Duman JG. Antifreeze and ice nucleator proteins in terrestrial arthropods. Annu Rev Physiol 63: 327‐357, 2001.
 62. Duman JG, Bennett V, Sformo T, Hochstrasser R, Barnes BM. Antifreeze proteins in Alaskan insects and spiders. J Insect Physiol 50: 259‐266, 2004.
 63. Duman JG, Li N, Verleye D, Goetz FW, Wu DW, Andorfer CA, Benjamin T, Parmelee DC. Molecular characterization and sequencing of antifreeze proteins from larvae of the beetle Denbroides canadensis. J Comp Physiol B 168: 225‐232, 1998.
 64. Duman JG, Morris JP, Castellino FJ. Purification and composition of an ice nucleating protein from queens of the hornet, Vespula maculata. J Comp Physiol 154: 79‐83, 1984.
 65. Duman JG, Neven LG, Beals JM, Olson KR, Castellino FJ. Freeze tolerance adaptations, including haemolymph protein and lipoprotein nucleators, in the larvae of the cranefly, Tipula trivittata. J Insect Physiol 31: 1‐8, 1985.
 66. Duman JG, Wu DW, Wolber PI, Mueller GM, Neven LG. Further characterization of the lipoprotein ice nucleators from freeze tolerant larvae of the cranefly Tipula trivittata. Comp Biochem Physiol B 99: 599‐607, 1991.
 67. Ebert MS, Sharp PA. Roles for microRNAs in conferring robustness to biological processes. Cell 149: 515‐524, 2012.
 68. English TE, Storey KB. Freezing and anoxia stresses induce expression of metallothionein in the foot muscle and hepatopancreas of the marine gastropod, Littorina littorea. J Exp Biol 206: 2517‐2524, 2003.
 69. Feder ME, Hofmann GE. Heat‐shock proteins, molecular chaperones, and the stress response: Evolutionary and ecological physiology. Annu Rev Physiol 6: 243‐282, 1999.
 70. Fletcher GL, Hew CL, Davies PL. Antifreeze proteins of teleost fishes. Annu Rev Physiol 63:359‐390, 2001.
 71. Freire CA, Welker AF, Storey JM, Storey KB, Hermes‐Lima M. Oxidative stress in estuarine and intertidal environments (temperate and tropical). In: Abele D, Vázquez‐Medina JP, Zenteno‐Savin T, editors. Oxidative Stress in Aquatic Ecosystems. New York: Wiley, 2011, p. 41‐57.
 72. Galindo J, Grahame JW, Butlin RK. An EST‐based genome scan using 454 sequencing in the marine snail Littorina saxatilis. J Evol Biol 23: 2004‐2016, 2010.
 73. Gething MJ, Sambrook J. Protein folding in the cell. Nature 355: 33‐45, 1992.
 74. Gettins PGW. Serpin structure, mechanism and function. Chem Rev 102: 4751‐4803, 2002.
 75. Goldstein DL, Frisbie J, Diller A, Pandey RN, Krane CM. Glycerol uptake by erythrocytes from warm‐ and cold‐acclimated Cope's gray treefrogs. J Comp Physiol B 180: 1257‐1265, 2010.
 76. Goto SG, Philip BN, Teets NM, Kawarasaki Y, Lee RE, Denlinger DL. Functional characterization of an aquaporin in the Antarctic midge Belgica antarctica. J Insect Physiol 57: 1106‐1114, 2011.
 77. Graham LA, Liou YC, Walker VK, Davies PL. Hyperactive antifreeze protein from beetles. Nature 388: 727‐728, 1997.
 78. Graham LA, Qin W, Lougheed SC, Davies PL, Walker VK. Evolution of hyperactive, repetitive antifreeze proteins in beetles. J Mol Evol 64: 387‐398, 2007.
 79. Griffith M, Yaish MW. Antifreeze proteins in overwintering plants: A tale of two activities. Trends Plant Sci 9: 399‐405, 2004.
 80. Guleria P, Mahajan M, Bhardwaj J, Yadav SK. Plant small RNAs: Biogenesis, mode of action and their roles in abiotic stresses. Genom Proteom Bioinform 9: 183‐199, 2011.
 81. Hahn DA, Ragland GJ, Shoemaker DD, Denlinger DL. Gene discovery using massively parallel pyrosequencing to develop ESTs for the flesh fly Sarcophaga crassipalpis. BMC Genom 10: 234, 2009.
 82. Harper JV, Brooks G. The mammalian cell cycle: An overview. Methods Mol Biol 296: 113‐153, 2005.
 83. Hermes‐Lima M. Oxygen in biology and biochemistry: Role of free radicals. In: Storey KB, editor. Functional Metabolism: Regulation and Adaptation. Hoboken: Wiley‐Liss, 2004, p. 319‐368.
 84. Hermes‐Lima M, Zenteno‐Savín T. Animal response to drastic changes in oxygen availability and physiological oxidative stress. Comp Biochem Physiol C 133: 537‐556, 2002.
 85. Higgins SA, Swanson DL. Urea is not a universal cryoprotectant among hibernating anurans: Evidence from the freeze‐tolerant boreal chorus frog (Pseudacris maculata). Comp Biochem Physiol A 164: 344‐350, 2013.
 86. Hinds TD Jr, Sánchez ER. Protein phosphatase 5. Int J Biochem Cell Biol 40: 2358‐2362, 2008.
 87. Hochachka PW. Defense strategies against hypoxia and hypothermia. Science 231: 234‐241, 1986.
 88. Holden HA, Storey KB. Reversible phosphorylation regulation of NADPH‐linked polyol dehydrogenase in the freeze‐avoiding gall moth, Epiblema scudderiana: Role in glycerol metabolism. Arch Insect Biochem Physiol 77: 32‐44, 2011.
 89. Izumi Y, Sonoda S, Tsumuki H. Effects of diapause and cold‐acclimation on the avoidance of freezing injury in fat body tissue of the rice stem borer, Chilo suppressalis Walker. J Insect Physiol 53: 685‐690, 2007.
 90. Izumi Y, Sonoda S, Yoshida H, Danks HV, Tsumuki H. Role of membrane transport of water and glycerol in the freeze tolerance of the rice stem borer, Chilo suppressalis Walker (Lepidoptera: Pyralidae). J Insect Physiol 52: 215‐220, 2006.
 91. Joanisse DR, Storey KB. Mitochondrial enzymes during overwintering in two species of cold hardy gall insects. Insect Biochem Mol Biol 24: 145‐150, 1994.
 92. Joanisse DR, Storey KB. Oxidative damage and antioxidants in Rana sylvatica, the freeze tolerant wood frog. Am J Physiol 271: R545‐R553, 1996.
 93. Joanisse DR, Storey KB. Oxidative stress and antioxidants in overwintering larvae of cold‐hardy goldenrod gall insects. J Exp Biol 199: 1483‐1491, 1996.
 94. Joanisse DR, Storey KB. Fatty acid content and enzymes of fatty acid metabolism in overwintering cold‐hardy gall insects. Physiol Zool 69: 1079‐1095, 1996.
 95. Kampinga HH, Hageman J, Vos MJ, Kubota H, Tanguay RM, Bruford EA, Cheetham ME, Chen B, Hightower LE. Guidelines for the nomenclature of the human heat shock proteins. Cell Stress Chaperones 14: 105‐111, 2009.
 96. Kanamori Y, Saito A, Hagiwara‐Komoda Y, Tanaka D, Mitsumasu K, Kikuta S, Watanabe M, Cornette R, Kikawada T, Okuda T. The trehalose transporter 1 gene sequence is conserved in insects and encodes proteins with different kinetic properties involved in trehalose import into peripheral tissues. Insect Biochem Mol Biol 40: 30‐37, 2010.
 97. Kankare M, Salminen T, Laiho A, Vesala L, Hoikkala A. Changes in gene expression linked with adult reproductive diapause in a northern malt fly species: A candidate gene microarray study. BMC Ecol 10: 3, 2010.
 98. Kataoka N, Miyake S, Azuma M. Aquaporin and aquaglyceroporin in silkworms, differently expressed in the hindgut and midgut of Bombyx mori. Insect Mol Biol 18: 303‐314, 2009.
 99. Kayukawa T, Chen B, Hoshizaki S, Ishikawa Y. Upregulation of a desaturase is associated with the enhancement of cold hardiness in the onion maggot, Delia antiqua. Insect Biochem Mol Biol 37: 1160‐1167, 2007.
 100. Kayukawa T, Chen B, Miyazaki S, Itoyama K, Shinoda T, Ishikawa Y. Expression of the mRNA for the t‐complex polypeptide‐1, a subunit of chaperonin CCT, is upregulated in association with increased cold hardiness in Delia antiqua. Cell Stress Chaperones 10: 204‐210, 2005.
 101. Kayukawa T, Ishikawa Y. Chaperonin contributes to cold hardiness of the onion maggot Delia antiqua through repression of depolymerization of actin at low temperatures. PLoS One 4(12): e8277, 2009.
 102. Kihara F, Itoh K, Iwasaka M, Niimi T, Yamashita O, Yaginuma T. Glycerol kinase activity and glycerol kinase‐3 gene are up‐regulated by acclimation to 5°C in diapause eggs of the silkworm, Bombyx mori. Insect Biochem Mol Biol 39: 763‐769, 2009.
 103. Kikawada T, Saito A, Kanamori Y, Nakahara Y, Iwata K, Tanaka D, Watanabe M, Okuda T. Trehalose transporter 1, a facilitated and high‐capacity trehalose transporter, allows exogenous trehalose uptake into cells. Proc Natl Acad Sci U S A 104: 11585‐11590, 2007.
 104. Kikuta S, Hagiwara‐Komoda Y, Noda H, Kikawada T. A novel member of the trehalose transporter family functions as an H+‐dependent trehalose transporter in the reabsorption of trehalose in Malpighian tubules. Front Physiol 3: 290, 2012.
 105. Kimura MT, Yoshida KM, Goto SG. Accumulation of Hsp70 mRNA under environmental stresses in diapausing and nondiapausing adults of Drosophila triauraria. J Insect Physiol 44: 1009‐1015, 1998.
 106. King PA, Rosholt MN, Storey KB. Adaptations of plasma membrane glucose transport facilitate cryoprotectant distribution in freeze tolerant frogs. Am J Physiol 265: R1036‐R1042, 1993.
 107. King PA, Rosholt MN, Storey KB. Seasonal changes in plasma membrane glucose transport in freeze tolerant wood frogs. Can J Zool 73: 1‐9, 1995.
 108. Kiss AJ, Muir TJ, Lee RE Jr, Costanzo JP. Seasonal variation in the hepatoproteome of the dehydration and freeze‐tolerant wood frog, Rana sylvatica. Int J Mol Sci 12: 8406‐8414, 2011.
 109. Knight CA, Duman JG. Inhibition of recrystallization of ice by insect thermal hysteresis proteins: A possible cryoprotective role. Cryobiology 23: 256‐262, 1986.
 110. Kostál V, Simůnková P, Kobelková A, Shimada K. Cell cycle arrest as a hallmark of insect diapause: Changes in gene transcription during diapause induction in the drosophilid fly, Chymomyza costata. Insect Biochem Mol Biol 39: 875‐883, 2009.
 111. Krane CM, Goldstein DL. Comparative functional analysis of aquaporins/glyceroporins in mammals and anurans. Mamm Genome 18: 452‐462, 2007.
 112. Krivoruchko A, Storey KB. Activation of antioxidant defenses in response to freezing in freeze tolerant painted turtle hatchlings. Biochim Biophys Acta 1800: 662‐668, 2010.
 113. Kültz D. Molecular and evolutionary basis of the cellular stress response. Annu Rev Physiol 67: 225‐257, 2005.
 114. Lang F. Mechanisms and significance of cell volume regulation. J Am Coll Nutr 26(5 Suppl): 613S‐623S, 2007.
 115. Larade K, Storey KB. Accumulation and translation of ferritin heavy chain transcripts following anoxia exposure in a marine invertebrate. J Exp Biol 207: 1353‐1360, 2004.
 116. Larade K, Storey KB. Living without oxygen: Anoxia‐responsive gene expression and regulation. Curr Genom 10: 76‐85, 2009.
 117. Lee KS, Kim BY, Kim HJ, Seo SJ, Yoon HJ, Choi YS, Kim I, Han YS, Je YH, Lee SM, Kim DH, Sohn HD, Jin BR. Transferrin inhibits stress‐induced apoptosis in a beetle. Free Rad Biol Med 41: 1151‐1161, 2006.
 118. Lee MR, Lee RE, Strong‐Gunderson JM, Minges SR. Isolation of ice‐nucleating active bacteria from the freeze‐tolerant frog, Rana sylvatica. Cryobiology 32: 358‐365, 1995.
 119. Lee RE, Denlinger D. Insects at Low Temperature. Chapman and Hall, New York, 1991.
 120. Levin DB, Danks HV, Barber SA. Variations in mitochondrial DNA and gene transcription in freezing‐tolerant larvae of Eurosta solidaginis (Diptera: Tephritidae) and Gynaephora groenlandica (Lepidoptera: Lymantriidae). Insect Mol Biol 12: 281‐289, 2003.
 121. Levine R. i5k ‐ the 5000 insect genome project. Am Entomol 57: 110‐113, 2011.
 122. Li A, Denlinger DL. Rapid cold hardening elicits changes in brain protein profiles of the flesh fly, Sarcophaga crassipalpis. Insect Mol Biol 17(5): 565‐572 (2008).
 123. Litchfield DW. Protein kinase CK2: Structure, regulation and role in cellular decisions of life and death. Biochem J 369: 1‐15: 2003.
 124. Loomis S. Freezing tolerance of marine invertebrates. Oceanogr Mar Biol 33: 337‐350, 1995.
 125. Loomis SH, Zinser M. Isolation and identification of an ice‐nucleating bacterium from the gills of the intertidal bivalve mollusc Geukensia demissa. J Exp Mar Biol Ecol 261: 225‐235, 2001.
 126. Lopez‐Martinez G, Elnitsky MA, Benoit JB, Lee RE, Denlinger DL. High resistance to oxidative damage in the Antarctic midge Belgica antarctica, and developmentally linked expression of genes encoding superoxide dismutase, catalase and heat shock proteins. Insect Biochem Mol Biol 38: 796‐804, 2008.
 127. Lyons PJ. Poitras JJ, Courteau LA, Storey KB, Morin P Jr. Identification of differentially regulated microRNAs in cold‐hardy insects. Cryo‐Lett. 34: 83‐89, 2013.
 128. Madison DL, Scrofano MM, Ireland RC, Loomis SH. Purification and partial characterization of an ice nucleator protein from the intertidal gastropod Melampus bidentatus. Cryobiology 28: 483‐490, 1991.
 129. Margaritis A, Bassi AS. Principles and biotechnological applications of bacterial ice 126. nucleation. Crit Rev Biotechnol 11: 277‐295, 1991.
 130. Maziere P, Enright AJ. Prediction of microRNA targets. Drug Discov Today 12: 452‐458, 2007.
 131. McCord JM. Superoxide dismutase, lipid peroxidation, and bell‐shaped dose response curves. Dose Response 6: 223‐238, 2008.
 132. McMullen DC, Ramnanan CJ, Storey KB. 2010. In cold‐hardy insects, seasonal, temperature, and reversible phosphorylation controls regulate sarco/endoplasmic reticulum Ca2+‐ATPase (SERCA). Physiol Biochem Zool 8: 677‐686, 2010.
 133. McMullen DC, Storey KB. Mitochondria of cold hardy insects: Responses to cold and hypoxia assessed at enzymatic, mRNA and DNA levels. Insect Biochem Mol Biol 38: 367‐373, 2008.
 134. McMullen DC, Storey KB. Suppression of Na+K+‐ATPase activity by reversible phosphorylation over the winter in a freeze‐tolerant insect. J Insect Physiol 54: 1023‐1027, 2008.
 135. McNally JD, Sturgeon CM, Storey KB. Freeze induced expression of a novel gene, fr47, in the liver of the freeze tolerant wood frog, Rana sylvatica. Biochim Biophys Acta 1625: 183‐191, 2003.
 136. McNally JD, Wu S, Sturgeon CM, Storey KB. Identification and characterization of a novel freezing inducible gene, li16, in the wood frog, Rana sylvatica. FASEB J 16: 902‐904, 2002.
 137. Meister K, Ebbinghaus S, Xu Y, Duman JG, DeVries A, Gruebele M, Leitner DM, Havenith M. Long‐range protein‐water dynamics in hyperactive insect antifreeze proteins. Proc Natl Acad Sci USA 110: 1617‐1622, 2013.
 138. Mercer TR, Dinger ME, Mattick JS. Long non‐coding RNAs: Insight into functions. Nat Rev Genetics 10: 155‐159, 2009.
 139. Mita K, Kasahara M, Sasaki S, Nagayasu Y, Yamada T, Kanamori H, Namiki N, Kitagawa M, Yamashita H, Yasukochi Y, Kadono‐Okuda K, Yamamoto K, Ajimura M, Ravikumar G, Shimomura M, Nagamura Y, Shin T, Abe H, Shimada T, Morishita S, Sasaki T. The genome sequence of silkworm, Bombyx mori. DNA Res 11: 27‐35, 2004.
 140. Moribe Y, Oka K, Niimi T, Yamashita O, Yaginuma T. Expression of heat shock protein 70a mRNA in Bombyx mori diapause eggs. J Insect Physiol 56: 1246‐1252, 2010.
 141. Muise AM, Storey KB. Reversible phosphorylation of fructose‐1,6‐bisphosphatase mediates enzyme role in glycerol metabolism in the freeze avoiding gall moth Epiblema scudderiana. Insect Biochem Mol Biol 27: 617‐623, 1997.
 142. Muise AM, Storey KB. Regulation of glycogen synthase in a freeze‐avoiding insect: Role in cryoprotectant glycerol metabolism. Cryo‐Lett 20: 223‐228, 1999.
 143. Murphy DJ. Freezing resistance in intertidal invertebrates. Annu Rev Physiol 45, 289‐299, 1983.
 144. Mutyam V, Puccetti MV, Frisbie J, Goldstein DL, Krane CM. Dynamic regulation of aquaglyceroporin expression in erythrocyte cultures from cold‐ and warm‐acclimated Cope's gray treefrog, Hyla chrysoscelis. J Exp Zool A 315: 424‐437, 2011.
 145. Naicker MC, Seul Jo I, Im H. Identification of chaperones in freeze tolerance in Saccharomyces cerevisiae. J Microbiol 50: 882‐887, 2012.
 146. Nielsen MM, Overgaard J, Sørensen JG, Holmstrup M, Justesen J, Loeschcke V. Role of HSF activation for resistance to heat, cold and high‐temperature knock‐down. J Insect Physiol 51: 1320‐1329, 2005.
 147. Obaya A, Sedivy J. Regulation of cyclin‐cdk activity in mammalian cells. Cell Mol Life Sci 59: 126‐142, 2002.
 148. Padilla PA, Ladage ML.Suspended animation, diapause and quiescence: Arresting the cell cycle in C. elegans. Cell Cycle 11: 1672‐1679, 2012.
 149. Pajvani UV, Shawber AL, Samuel VT, Birkenfeld AL, Shulman GI, Kitajewski J, Accili D. Inhibition of Notch signaling ameliorates insulin resistance in a FoxO1‐dependent manner. Nat Med 17:961‐ 967, 2011.
 150. Pandey RN, Yaganti S, Coffey S, Frisbie J, Alnajjar K, Goldstein D. Expression and immunolocalization of aquaporins HC‐1, ‐2, and ‐3 in Cope's gray treefrog, Hyla chrysoscelis. Comp Biochem Physiol A 157: 86‐94, 2010.
 151. Pannunzio TM, Storey KB. Antioxidant defenses and lipid peroxidation during anoxia stress and aerobic recovery in the marine gastropod, Littorina littorea. J Exp Mar Biol Ecol 221: 277‐292, 1998.
 152. Pessin JE, Bell GI. Mammalian facilitative glucose transporter family: Structure and molecular regulation. Annu Rev Physiol 54: 91l‐930, 1992.
 153. Philip BN, Lee RE. Changes in abundance of aquaporin‐like proteins occurs concomitantly with seasonal acquisition of freeze tolerance in the goldenrod gall fly, Eurosta solidaginis. J Insect Physiol 56: 679‐685, 2010.
 154. Philip BN, Yi SX, Elnitsky MA, Lee RE. Aquaporins play a role in desiccation and freeze tolerance in larvae of the goldenrod gall fly, Eurosta solidaginis. J Exp Biol 211: 1114‐1119, 2008.
 155. Podrabsky JE, Culpepper KM. Cell cycle regulation during development and dormancy in embryos of the annual killifish Austrofundulus limnaeus. Cell Cycle 11: 1697‐1704, 2012.
 156. Qin W, Neal SJ, Robertson RM, Westwood JT, Walker VK. Cold hardening and transcriptional change in Drosophila melanogaster. Insect Mol Biol 14: 607‐613, 2005.
 157. Qureshi IA, Mehler MF. Emerging roles of non‐coding RNAs in brain evolution, development, plasticity and disease. Nat Rev Neurosci 13: 528‐541, 2012.
 158. Ragland GJ, Denlinger DL, Hahn DA. Mechanisms of suspended animation are revealed by transcript profiling of diapause in the flesh fly. Proc Natl Acad Sci USA 107: 14909‐14914, 2010.
 159. Ragland GJ, Egan SP, Feder JL, Berlocher SH, Hahn DA. Developmental trajectories of gene expression reveal candidates for diapause termination: A key life‐history transition in the apple maggot fly Rhagoletis pomonella. J Exp Biol 214: 3948‐3960, 2011.
 160. Ramlov H, Westh P. Ice formation in the freeze‐tolerant alpine weta Hemideina maori Hutton (Orthoptera, Stenopelmatidae). Cryo‐Lett 14: 169‐176, 1993.
 161. Rexer‐Huber KM, Bishop PJ, Wharton DA. Skin ice nucleators and glycerol in the freezing‐tolerant frog Litoria ewingii. J Comp Physiol B 181: 781‐792, 2011.
 162. Rinehart JP, Hayward SA, Elnitsky MA, Sandro LH, Lee RE, Denlinger DL. Continuous up‐regulation of heat shock proteins in larvae, but not adults, of a polar insect. Proc Natl Acad Sci U S A 103: 14223‐14227, 2006.
 163. Rinehart JP, Li A, Yocum GD, Robich RM, Hayward SA, Denlinger DL. Up‐regulation of heat shock proteins is essential for cold survival during insect diapause. Proc Natl Acad Sci U S A 104: 11130‐11137, 2007.
 164. Rinehart JP, Robich RM, Denlinger DL. Isolation of diapause‐regulated genes from the flesh fly, Sarcophaga crassipalpis by suppressive subtractive hybridization. J Insect Physiol 56: 603‐609, 2010.
 165. Robich RM, Rinehart JP, Kitchen LJ, Denlinger DL. Diapause‐specific gene expression in the northern house mosquito, Culex pipiens L., identified by suppressive subtractive hybridization. J Insect Physiol 53: 235‐245, 2007.
 166. Rosendale AJ, Costanzo JP, Lee RE Jr. Seasonal variation and response to osmotic challenge in urea transporter expression in the dehydration‐ and freeze‐tolerant wood frog, Rana sylvatica. J Exp Zool A 317: 401‐409, 2012.
 167. Roufayel R, Biggar K, Storey KB. Regulation of cell cycle components during exposure to anoxic and dehydration stress in the wood frog, Rana sylvatica. J Exp Zool A 315: 487‐494, 2011.
 168. Rubio RO, Suzuki A, Mitsumasu K, Homma T, Niimi T, Yamashita O, Yaginuma T. Cloning of cDNAs encoding sorbitol dehydrogenase‐2a and b, enzymatic characterization, and up‐regulated expression of the genes in Bombyx mori diapause eggs exposed to 5°C. Insect Biochem Mol Biol 41: 378‐87, 2011.
 169. Russell EL, Storey KB. Anoxia and freezing exposures stimulate covalent modification of enzymes of carbohydrate metabolism in Littorina littorea. J Comp Physiol B 165: 132‐142, 1995.
 170. Russell EL, Storey KB. Glycogen synthase and the control of cryoprotectant clearance after thawing in the freeze tolerant wood frog. Cryo‐Lett 16: 263‐266, 1995.
 171. Salt RW. Principles of insect cold hardiness. Annu Rev Entomol 6: 55‐74. 1961.
 172. Schüttert JB, Fiedler GM, Grupp C, Blaschke S, Grunewald RW. Sorbitol transport in rat renal inner medullary interstitial cells. Kidney Int 61: 1407‐1415, 2002.
 173. Schwartz TS, Tae H, Yang Y, Mockaitis K, Van Hemert JL, Proulx SR, Choi J‐H, Bronikowski AM. A garter snake transcriptome: Pyrosequencing, de novo assembly, and sex‐specific differences. BMC Genom 11: 694, 2010.
 174. Schwarz D, Robertson HM, Feder JL, Varala K, Hudson ME, Ragland GJ, Hahn DA, Berlocher SH. Sympatric ecological speciation meets pyrosequencing: Sampling the transcriptome of the apple maggot Rhagoletis pomonella. BMC Genom 10: 633, 2009.
 175. Sformo T, Walters K, Jeannet K, Wowk B, Fahy GM, Barnes BM, Duman JG. Deep supercooling, vitrification and limited survival to −100°C in the Alaskan beetle Cucujus clavipes puniceus (Coleoptera: Cucujidae) larvae. J Exp Biol 213: 502‐509, 2010.
 176. Shaffer HB, Minx P, Warren DE, Shedlock AM, Thomson RC, Valenzuela N, Abramyan J, Badenhorst D, Biggar KK, Borchert GM, Botka CW, Bowden RM, Braun EL, Bronikowski AM, Bruneau BG, Buck LT, Capel B, Castoe TA, Czerwinski M, Delehaunty KD, Edwards SW, Fronick CC, Fujita MK, Fulton L, Graves TA, Green RE, Haerty W, Hariharan R, Hillier LW, Holloway AK, Janes D, Janzen FJ, Kandoth C, Kong L, de Koning APJ, Li Y, Literman R, McGaugh SE, Mork L, O'Laughlin M, Paitz RT, Pollock DD, Ponting CP, Radhakrishnan S, Raney BJ, Richman JM, St John J, Schwartz T, Sethuraman A, Spinks PQ, Storey KB, Thane N, Vinar T, Zimmerman LM, Warren WC, Mardis ER, Wilson RK. The painted turtle genome: The evolution of extreme physiological adaptations in a slowly evolving lineage. Genome Biol 14(3): R28, 2013.
 177. Sinclair BJ, Addo‐Bediako A, Chown SL. Climatic variability and the evolution of insect freeze tolerance. Biol Rev Camb Philos Soc 78: 181‐195, 2003.
 178. Sinclair BJ, Gibbs AG, Roberts SP. Gene transcription during exposure to, and recovery from, cold and desiccation stress in Drosophila melanogaster. Insect Mol Biol 16: 435‐443, 2007.
 179. Sinclair BJ, Renault D. Intracellular ice formation in insects: Unresolved after 50 years? Comp Biochem Physiol A 155: 14‐18, 2006.
 180. Sonoda S, Fukumoto K, Izumi Y, Yoshida H, Tsumuki H. Cloning of heat shock protein genes (hsp90 and hsc70) and their expression during larval diapause and cold tolerance acquisition in the rice stem borer, Chilo suppressalis Walker. Arch Insect Biochem Physiol 63: 36‐47, 2006.
 181. Sørensen JG, Holmstrup M. Cryoprotective dehydration is widespread in Arctic springtails. J Insect Physiol 57: 1147‐1153, 2011.
 182. Sørensen JG, Nielsen MM, Loeschcke V. Gene expression profile analysis of Drosophila melanogaster selected for resistance to environmental stressors. J Evol Biol 20: 1624‐1636, 2007.
 183. Stickle WB, Lindeberg M, Rice SD. Seasonal freezing adaptations of the mid‐intertidal gastropod Nucella lima from southeast Alaska. J Exp Marine Biol Ecol 395: 106‐111, 2010.
 184. Storey JM, Storey KB. β‐Adrenergic, hormonal and nervous influences on cryoprotectant. Synthesis by liver of the freeze‐tolerant wood frog Rana sylvatica. Cryobiology 33: 186‐195, 1996.
 185. Storey KB. Organic solutes in freezing tolerance. Comp Biochem Physiol A 117: 319‐326, 1997.
 186. Storey KB. Vertebrate freeze tolerance: Role of freeze‐responsive gene expression. In: Barnes BM, Carey HV, editors. Life in the Cold: Evolution, Mechanisms, Adaptation, and Application. Fairbanks: Biological Papers of the University of Alaska #27, 2004, p. 299‐306.
 187. Storey KB. Strategies for exploration of freeze responsive gene expression: Advances in vertebrate freeze tolerance. Cryobiology 48: 134‐145, 2004.
 188. Storey KB. Reptile freeze tolerance: Metabolism and gene expression. Cryobiology 52: 1‐16, 2006.
 189. Storey KB, Storey JM. Freeze tolerance in animals. Physiol Rev 68: 27‐84, 1988.
 190. Storey KB, Storey JM. Biochemistry of cryoprotectants. In: Denlinger D, Lee RE, editors. Insects at Low Temperature. New York: Chapman and Hall, 1991, p. 64‐93.
 191. Storey KB, Storey JM. Natural freeze tolerance in ectothermic vertebrates. Annu Rev Physiol 54: 619‐637, 1992.
 192. Storey KB, Storey JM. Physiology, biochemistry and molecular biology of vertebrate freeze tolerance: The wood frog. In: Benson E, Fuller B, Lane N, editors. Life in the Frozen State. Boca Raton: CRC Press, 2004a, p. 243‐274.
 193. Storey KB, Storey JM. Metabolic rate depression in animals: Transcriptional and translational controls. Biol Rev Camb Philos Soc 79: 207‐233, 2004b.
 194. Storey KB, Storey JM. Tribute to P.L. Lutz: Putting life on ‘pause’ – molecular regulation of hypometabolism. J Exp Biol 210: 1700‐1714, 2007.
 195. Storey KB, Storey JM. Metabolic rate depression: The biochemistry of mammalian hibernation. Adv Clin Chem 52: 77‐108, 2010a.
 196. Storey KB, Storey JM. Oxygen: Stress and adaptation in cold hardy insects. In: Denlinger DL, Lee RE, editors. Low Temperature Biology of Insects. Cambridge: Cambridge University Press, 2010b, p. 141‐165.
 197. Storey KB, Storey JM. Heat shock proteins and hypometabolism: Adaptive strategy for proteome preservation. Res Rep Biol 2, 57‐68, 2011.
 198. Storey KB, Storey JM. Insect cold hardiness: Recent advances in metabolic, gene and protein adaptation. Can J Zool 90: 456‐475, 2012.
 199. Storey KB, Baust JG, Wolanczyk JP. Biochemical modification of the plasma ice nucleating activity in a freeze tolerant frog. Cryobiology 29: 374‐384, 1992.
 200. Storey KB, Lant B, Anozie OO, Storey JM. Metabolic mechanisms for anoxia tolerance and freezing survival in the intertidal gastropod, Littorina littorea. Comp Biochem Physiol A (In press), 2013.
 201. Strathdee AT, Bale JS. Life on the edge: Insect ecology in Arctic environments. Annu Rev Entomol 43: 85‐106, 1998.
 202. Sullivan KJ, Storey KB. Environmental stress responsive expression of the gene li16 in Rana sylvatica, the freeze tolerant wood frog. Cryobiology 64: 192‐200, 2012.
 203. Suzuki M, Tanaka S. 2009. Molecular and cellular regulation of water homeostasis in anuran amphibians by aquaporins. Comp Biochem Physiol A 153: 231‐241, 2009.
 204. Tanguy A, Bierne N, Saavedra C, Pina B, Bachère E, Kube M, Bazin E, Bonhomme F, Boudry P, Boulo V, Boutet I, Cancela L, Dossat C, Favrel P, Huvet A, Jarque S, Jollivet D, Klages S, Lapègue S, Leite R, Moal J, Moraga D, Reinhardt R, Samain JF, Zouros E, Canario A. Increasing genomic information in bivalves through new EST collections in four species: Development of new genetic markers for environmental studies and genome evolution. Gene 408: 27‐36, 2008.
 205. Teets NM, Peyton JT, Ragland GJ, Colinet H, Renault D, Hahn DA, Denlinger DL. Combined transcriptomic and metabolomic approach uncovers molecular mechanisms of cold tolerance in a temperate flesh fly. Physiol Genomics 44: 764‐777, 2012.
 206. Teets NM, Denlinger DL. Autophagy in Antarctica: Combating dehydration stress in the world's southernmost insect. Autophagy 9: 629‐631, 2013.
 207. Telonis‐Scott M, Hallas R, McKechnie SW, Wee CW, Hoffmann AA. Selection for cold resistance alters gene transcript levels in Drosophila melanogaster. Insect Physiol 55: 549‐555, 2009.
 208. Thorne MA, Worland MR, Feret R, Deery MJ, Lilley KS, Clark MS. Proteomics of cryoprotective dehydration in Megaphorura arctica Tullberg 1876 (Onychiuridae: Collembola). Insect Mol Biol 20: 303‐310, 2011.
 209. Trautsch J, Rosseland BO, Pedersen SA, Kristiansen E, Zachariassen KE. Do ice nucleating lipoproteins protect frozen insects against toxic chemical agents? J Insect Physiol 57: 1123‐1126, 2011.
 210. Trevors JT, Bej AK, Mojib N, van Elsas JD, Van Overbeek L. Bacterial gene expression at low temperatures. Extremophiles 16: 167‐176, 2012.
 211. Tyshenko MG, Doucet D, Davies PL, Walker VK. The antifreeze potential of the spruce budworm thermal hysteresis protein. Nat Biotechnol 15: 887‐890, 1997.
 212. Udaka H, Ueda C, Goto SG. Survival rate and expression of heat‐shock protein 70 and Frost genes after temperature stress in Drosophila melanogaster lines that are selected for recovery time from temperature coma. J Insect Physiol 56: 1889‐1894, 2010.
 213. Venier P, De Pittà C, Bernante F, Varotto L, De Nardi B, Bovo G, Roch P, Novoa B, Figueras A, Pallavicini A, Lanfranchi G. MytiBase: A knowledge base of mussel (M. galloprovincialis) transcribed sequences. BMC Genom 10: 72, 2009.
 214. Viarengo A, Burlando B, Cavaletto M, Marchi B, Ponzano E, Blasco J. Role of metallothionein against oxidative stress in the mussel Mytilus galloprovincialis. Am J Physiol 277: R1612‐R1619, 1999.
 215. Voituron Y, Barré H, Ramløv H, Douady CJ. Freeze tolerance evolution among anurans: Frequency and timing of appearance. Cryobiology 58: 241‐247, 2009.
 216. Voituron Y, Mouquet N, de Mazancourt C, Clobert J. To freeze or not to freeze? An evolutionary perspective on the cold‐hardiness strategies of overwintering ectotherms. Am Nat 160: 255‐270, 2002.
 217. Waller CL, Worland MR, Convey P, Barnes DKA. Ecophysiological strategies of Antarctic intertidal invertebrates faced with freezing stress. Polar Biol 29: 1077‐1083, 2006.
 218. Walters KR Jr, Serianni AS, Voituron Y, Sformo T, Barnes BM, Duman JG. A thermal hysteresis‐producing xylomannan glycolipid antifreeze associated with cold tolerance is found in diverse taxa. J Comp Physiol B 181: 631‐640, 2011.
 219. Wharton DA. The environmental physiology of Antarctic terrestrial nematodes: A review. J Comp Physiol B 173: 621‐628, 2003.
 220. Wharton DA. Cold tolerance of New Zealand alpine insects. J Insect Physiol 57: 1090‐1095, 2011.
 221. Wharton DA, Ferns DJ. Survival of intracellular freezing by the antarctic nematode Panagrolaimus davida. J Exp Biol 198: 1381‐1387, 1995.
 222. Williams JB, Lee RE Jr. Effect of freezing and dehydration on ion and cryoprotectant distribution and hemolymph volume in the goldenrod gall fly, Eurosta solidaginis. J Insect Physiol 57: 1163‐1169, 2011.
 223. Wolanczyk JP, Storey KB, Baust JG. Ice nucleating activity in the blood of the freeze tolerant frog, Rana sylvatica. Cryobiology 27: 328‐335, 1990.
 224. Wolanczyk JP, Baust JG, Storey KB. Seasonal ice nucleating activity in the freeze tolerant frog, Rana sylvatica. Cryo Lett 11: 143‐150, 1990.
 225. Wu C‐W, Storey KB. Pattern of cellular quiescence over the hibernation cycle in liver of thirteen‐lined ground squirrels. Cell Cycle 11: 1714‐1726, 2012.
 226. Wu S, Storey KB. Up‐regulation of acidic ribosomal phosphoprotein P0 in response to freezing or anoxia in the freeze tolerant wood frog, Rana sylvatica. Cryobiology 50: 71‐82, 2005.
 227. Wu S, De Croos JNA, Storey KB. Cold acclimation‐induced up‐regulation of the ribosomal protein L7 gene in the freeze tolerant wood frog, Rana sylvatica. Gene 424: 48‐55, 2008.
 228. Wu S, Storey JM, Storey KB. Phosphoglycerate kinase 1 expression responds to freezing, anoxia and dehydration stresses in the freeze tolerant wood frog, Rana sylvatica. J Exp Zool A 311: 57‐67, 2009.
 229. Xia Q, Zhou Z, Lu C, Cheng D, Dai F, Li B, Zhao P, Zha X, Cheng T, Chai C, Pan G, Xu J, Liu C, Lin Y, Qian J, Hou Y, Wu Z, Li G, Pan M, Li C, Shen Y, Lan X, Yuan L, Li T, Xu H, Yang G, Wan Y, Zhu Y, Yu M, Shen W, Wu D, Xiang Z, Yu J, Wang J, Li R, Shi J, Li H, Li G, Su J, Wang X, Li G, Zhang Z, Wu Q, Li J, Zhang Q, Wei N, Xu J, Sun H, Dong L, Liu D, Zhao S, Zhao X, Meng Q, Lan F, Huang X, Li Y, Fang L, Li C, Li D, Sun Y, Zhang Z, Yang Z, Huang Y, Xi Y, Qi Q, He D, Huang H, Zhang X, Wang Z, Li W, Cao Y, Yu Y, Yu H, Li J, Ye J, Chen H, Zhou Y, Liu B, Wang J, Ye J, Ji H, Li S, Ni P, Zhang J, Zhang Y, Zheng H, Mao B, Wang W, Ye C, Li S, Wang J, Wong GK, Yang H. A draft sequence for the genome of the domesticated silkworm (Bombyx mori). Science (Washington, D.C.) 306: 1937‐1940, 2004.
 230. Yi SX, Benoit JB, Elnitsky MA, Kaufmann N, Brodsky JL, Zeidel ML, Denlinger DL, Lee RE Jr. Function and immuno‐localization of aquaporins in the Antarctic midge Belgica antarctica. J Insect Physiol 57: 1096‐1105, 2011.
 231. Yiangou M, Tsapogas P, Nikolaidis N, Scouras ZG. Heat shock gene expression during recovery after transient cold shock in Drosophila auraria (Diptera: Drosophilidae). Cytobios 92: 91‐98, 1997.
 232. Yu SO, Brown A, Middleton AJ, Tomczak MM, Walker VK, Davies PL. Ice restructuring inhibition activities in antifreeze proteins with distinct differences in thermal hysteresis. Cryobiology 61: 327‐334, 2010.
 233. Zachariassen KE. Nucleating agents in cold‐hardy insects. Comp Biochem Physiol A 73: 557‐562, 1982.
 234. Zachariassen KE. Physiology of cold tolerance in insects. Physiol Rev 65: 799‐832, 1985.
 235. Zachariassen KE, Kristiansen E. Ice nucleation and antinucleation in nature. Cryobiology 41: 257‐279, 2000.
 236. Zachariassen KE, Kristiansen E, Pedersen SA. Inorganic ions in cold‐hardiness. Cryobiology 48: 126‐133, 2004.
 237. Zeidel ML. Water homeostasis: Evolutionary medicine. Trans Am Clin Climatol Assoc 123: 93‐106. 2012.
 238. Zhang G, Fang X, Guo X, Li L, Luo R, Xu F, Yang P, Zhang L, Wang X, Qi H, Xiong Z, Que H, Xie Y, Holland PW, Paps J, Zhu Y, Wu F, Chen Y, Wang J, Peng C, Meng J, Yang L, Liu J, Wen B, Zhang N, Huang Z, Zhu Q, Feng Y, Mount A, Hedgecock D, Xu Z, Liu Y, Domazet‐Lošo T, Du Y, Sun X, Zhang S, Liu B, Cheng P, Jiang X, Li J, Fan D, Wang W, Fu W, Wang T, Wang B, Zhang J, Peng Z, Li Y, Li N, Wang J, Chen M, He Y, Tan F, Song X, Zheng Q, Huang R, Yang H, Du X, Chen L, Yang M, Gaffney PM, Wang S, Luo L, She Z, Ming Y, Huang W, Zhang S, Huang B, Zhang Y, Qu T, Ni P, Miao G, Wang J, Wang Q, Steinberg CE, Wang H, Li N, Qian L, Zhang G, Li Y, Yang H, Liu X, Wang J, Yin Y, Wang J. The oyster genome reveals stress adaptation and complexity of shell formation. Nature 490: 49‐54, 2012.
 239. Zhang G, Storey JM, Storey KB. Chaperone proteins and winter survival by a freeze tolerant insect. J Insect Physiol 57: 1115‐1122, 2011.
 240. Zhang J, Storey KB. Cell cycle regulation in the freeze tolerant wood frog, Rana sylvatica. Cell Cycle 11: 1727‐1742, 2012.
 241. Zhang J, Marshall KE, Westwood JT, Clark MS, Sinclair BJ. Divergent transcriptomic responses to repeated and single cold exposures in Drosophila melanogaster. J Exp Biol 214: 4021‐4029, 2011.
 242. Zimmerman SL, Frisbie J, Goldstein DL, West J, Rivera K, Krane CM. Excretion and conservation of glycerol, and expression of aquaporins and glyceroporins, during cold acclimation in Cope's gray tree frog Hyla chrysoscelis. Am J Physiol 292: R544‐R555, 2007.
 243. Zou Z, Sun Z, Li J, Zhang G. Molecular cloning and characterization of two heat shock proteins in Thitarodes pui (Lepidoptera: Hepialidae). Cryo‐Lett 32: 225‐239, 2011.

Related Articles:

Adaptations to Variations in Oxygen Tension by Vertebrates and Invertebrates
Anhydrobiosis: Cellular Adaptation to Extreme Dehydration
Coping with Thermal Challenges: Physiological Adaptations to Environmental Temperatures
Daily and Seasonal Rhythms
Torpor and Hibernation in Mammals: Metabolic, Physiological, and Biochemical Adaptations

Contact Editor

Submit a note to the editor about this article by filling in the form below.

* Required Field

How to Cite

Kenneth B. Storey, Janet M. Storey. Molecular Biology of Freezing Tolerance. Compr Physiol 2013, 3: 1283-1308. doi: 10.1002/cphy.c130007