Comprehensive Physiology Wiley Online Library

Microgravity Stress: Bone and Connective Tissue

Full Article on Wiley Online Library



ABSTRACT

The major alterations in bone and the dense connective tissues in humans and animals exposed to microgravity illustrate the dependency of these tissues' function on normal gravitational loading. Whether these alterations depend solely on the reduced mechanical loading of zero g or are compounded by fluid shifts, altered tissue blood flow, radiation exposure, and altered nutritional status is not yet well defined. Changes in the dense connective tissues and intervertebral disks are generally smaller in magnitude but occur more rapidly than those in mineralized bone with transitions to 0 g and during recovery once back to the loading provided by 1 g conditions. However, joint injuries are projected to occur much more often than the more catastrophic bone fracture during exploration class missions, so protecting the integrity of both tissues is important. This review focuses on the research performed over the last 20 years in humans and animals exposed to actual spaceflight, as well as on knowledge gained from pertinent ground‐based models such as bed rest in humans and hindlimb unloading in rodents. Significant progress has been made in our understanding of the mechanisms for alterations in bone and connective tissues with exposure to microgravity, but intriguing questions remain to be solved, particularly with reference to biomedical risks associated with prolonged exploration missions. © 2016 American Physiological Society. Compr Physiol 6:**‐**, 2016.

Comprehensive Physiology offers downloadable PowerPoint presentations of figures for non-profit, educational use, provided the content is not modified and full credit is given to the author and publication.

Download a PowerPoint presentation of all images


Figure 1. Figure 1. A typical long bone: anatomical regions, envelopes, compartments and bone cells. Epiphyses are distal and proximal to growth plates while they are still open, but fuse with metaphyseal compartments once the growth plates close. The major bone “envelopes” or surfaces are the periosteum, endosteum (any bone surface bordering bone marrow in the medullary canal; also called “endocortical” if referring to inner border of cortical shaft), and intracortical Haversian canals, within which are housed blood vessels and nerves. The insert at top right is an enlargement of cancellous bone just below the growth plate. In the primary spongiosa adjacent to the growth plate, cartilage spicules are gradually mineralized (black); secondary spongiosa refers to the lattice‐work of cancellous rods and plates that are fully mineralized. The cross‐section of the cortical mid‐diaphysis illustrates multiple Haversian systems (osteons) and multiple osteocytes in lacunae, connected by canaliculi. Bone cells illustrated at lower right are (from left) flat, inactive lining cells, active osteoblasts (bone‐forming cells), osteocytes embedded in the mineralized matrix, and an active osteoclast, residing in the Howship's lacuna it has created by its resorptive action. Figure from Morey‐Holton et al., 1996 (187), used with permission.
Figure 2. Figure 2. BFR, as measured by fluorochrome label administration, decreases dramatically in rodents subjected to hindlimb unloading, simulating the disuse of microgravity. Calcein, injected 2 and 9 days before the end of the experiment, binds to circulating calcium and effectively labels those bone surfaces that are actively mineralizing in the 36 to 48 h postinjection. Measuring the average distance between labels yields mineral apposition rate (MAR); quantitating surfaces with single and double labels yields % mineralizing surface (%MS/BS). The product of these two measures is BFR. Skeletally mature rats exhibit 80% to 90% declines in BFR within 2 weeks of hindlimb unloading.
Figure 3. Figure 3. Fluid shear stress on osteocytes and/or their dendritic processes is the key mechanical signal that is transduced to a biochemical response, resulting in the stimulation of osteoblast activity and new bone formation. Only slight bone deformation is required to generate areas of tension and compression, which creates movement of interstitial fluid within the millions of canalicula connecting lacunae housing osteocytes, thought to be the key mechanosensors inside bone. Figure from Duncan & Turner, 1995 (69), used with permission.
Figure 4. Figure 4. Proximal femur strength deteriorates over 4.5 to 6 months in low earth orbit. Panel A illustrates sample finite element model (FEM) of one crew member's proximal femur derived from QCT data illustrating loading in (a) single‐leg standing and (b) a fall to the side impacting the greater trochanter. In panel B, individual data for 13 ISS crew members (40‐55 years, 12 males, 1 female) are detailed for pre‐ and postflight FEM‐computed proximal femur strength normalized to body weight (FFE/BW) for both stance (a) and fall (b) loading. The dotted lines represent median values for femoral neck strength assessed by the same patient‐specific FEM procedure in populations of healthy premenopausal (36‐45 years; top line) and elderly (62‐81 years; bottom line) Caucasian women. Figure from Keyak et al., 2009 (132), used with permission.
Figure 5. Figure 5. Foot forces aboard ISS are much reduced compared to 1 g. In‐shoe peak force magnitudes recorded during activities of daily living on Earth and aboard ISS. Both magnitude and frequency of the GRFs observed in 1 g are reduced onboard ISS. No GRF's > 2 × BW were recorded in microgravity (as seen in 1 g), with the vast majority of peak forces during running in 0 g at 1.6 × BW or less. Figure from Cavanagh et al., 2010 (48), used with permission.
Figure 6. Figure 6. Recovery of proximal femur (trochanter) BMD in Shuttle crew members takes many‐fold longer than short duration of mission (<23 days). Dotted lines represent 95% confidence limits for the BMD data. Immediate postflight BMD deficits were ∼8% of preflight levels; 50% recovery time (dashed vertical line) was estimated to be ∼8.5 months. Repeat fliers' data are denoted by “+” signs. Figure from Sibonga et al., 2007 (253), used with permission.
Figure 7. Figure 7. Partial weight‐bearing (A) and hindlimb suspension (B) rodent models. Partial weight‐bearing ranging from 16% to 70% of total body weight can be achieved by daily adjustment of tension on the spring above the triangular harness support. In the traditional hindlimb (tail) suspension model, hindlimbs are elevated to disallow weight bearing without immobilization; the head‐down posture also induces a cephalic fluid shift. Figure from Ellman et al., 2013 (73), used with permission.
Figure 8. Figure 8. Graded reductions in weight bearing produce graded reductions in bone volume. Micro computed tomography results obtained at (A) distal femur metaphysis and (B) femur mid‐diaphysis. HLU = hindlimb unloading; PWB = partial weight bearing at indicated %BW; CON = control; * = different from CON (P < 0.05); # = HLU different from PWB100 (P < 0.05); brackets = pairwise differences between PWB groups. Figure adapted from Ellman et al., 2013 (73), used with permission.
Figure 9. Figure 9. Radiation produces dramatic reductions in cancellous bone volume and altered microarchitecture. Micro‐CT images of the proximal tibia in young mice that were (A) SHAM exposed, (B) exposed to 2 Gy gamma radiation, or (C) exposed to 2 Gy proton radiation. Both gamma and proton exposure led to decreased trabecular volume fraction (−29 and −35%, respectively) and increased trabecular spacing (+19% and +21%, respectively). Figure adapted from Hamilton et al., 2006 (99), used with permission.
Figure 10. Figure 10. Proposed radiation‐induced inflammatory cascade leading to increased fracture risk following crew member exposure to radiation. Rapidly dividing marrow cells in exposed bone are damaged and die, in part from damage from ROS (OH, O2 ); phagocytes are then recruited to remove dead cells. These phagocytes also release proinflammatory cytokines like TNF‐α and IL‐1, which in turn stimulate osteoclasts directly or indirectly by stimulating receptor activator of NF‐κβ ligand (RANKL) release from nearby osteoblasts. Accelerated loss of bone by osteoclastic resorption contributes to impaired bone structural integrity, elevating fracture risk for the affected individual. Figure from Willey et al., 2011 (325), used with permission.
Figure 11. Figure 11. Sclerostin regulation of canonical Wnt signaling. Binding of Wnt to the frizzled receptor complexed with low‐density lipoprotein 5 or 6 (Lrp5/Lrp6) receptor complex initiates a signaling cascade resulting in B‐catenin translocating to the nucleus, where it activates transcription factors regulating Wnt target genes. Wnt pathway activation promotes osteoblast proliferation, maturation and differentiated activity and, via mature osteoblast production of osteoprotogerin, decreasing osteoclast differentiation and activation (24). With reduced mechanical loading, osteocyte production of sclerostin increases, blocking Wnt binding and resulting ultimately in reduced osteoblast and increased osteoclast activity.


Figure 1. A typical long bone: anatomical regions, envelopes, compartments and bone cells. Epiphyses are distal and proximal to growth plates while they are still open, but fuse with metaphyseal compartments once the growth plates close. The major bone “envelopes” or surfaces are the periosteum, endosteum (any bone surface bordering bone marrow in the medullary canal; also called “endocortical” if referring to inner border of cortical shaft), and intracortical Haversian canals, within which are housed blood vessels and nerves. The insert at top right is an enlargement of cancellous bone just below the growth plate. In the primary spongiosa adjacent to the growth plate, cartilage spicules are gradually mineralized (black); secondary spongiosa refers to the lattice‐work of cancellous rods and plates that are fully mineralized. The cross‐section of the cortical mid‐diaphysis illustrates multiple Haversian systems (osteons) and multiple osteocytes in lacunae, connected by canaliculi. Bone cells illustrated at lower right are (from left) flat, inactive lining cells, active osteoblasts (bone‐forming cells), osteocytes embedded in the mineralized matrix, and an active osteoclast, residing in the Howship's lacuna it has created by its resorptive action. Figure from Morey‐Holton et al., 1996 (187), used with permission.


Figure 2. BFR, as measured by fluorochrome label administration, decreases dramatically in rodents subjected to hindlimb unloading, simulating the disuse of microgravity. Calcein, injected 2 and 9 days before the end of the experiment, binds to circulating calcium and effectively labels those bone surfaces that are actively mineralizing in the 36 to 48 h postinjection. Measuring the average distance between labels yields mineral apposition rate (MAR); quantitating surfaces with single and double labels yields % mineralizing surface (%MS/BS). The product of these two measures is BFR. Skeletally mature rats exhibit 80% to 90% declines in BFR within 2 weeks of hindlimb unloading.


Figure 3. Fluid shear stress on osteocytes and/or their dendritic processes is the key mechanical signal that is transduced to a biochemical response, resulting in the stimulation of osteoblast activity and new bone formation. Only slight bone deformation is required to generate areas of tension and compression, which creates movement of interstitial fluid within the millions of canalicula connecting lacunae housing osteocytes, thought to be the key mechanosensors inside bone. Figure from Duncan & Turner, 1995 (69), used with permission.


Figure 4. Proximal femur strength deteriorates over 4.5 to 6 months in low earth orbit. Panel A illustrates sample finite element model (FEM) of one crew member's proximal femur derived from QCT data illustrating loading in (a) single‐leg standing and (b) a fall to the side impacting the greater trochanter. In panel B, individual data for 13 ISS crew members (40‐55 years, 12 males, 1 female) are detailed for pre‐ and postflight FEM‐computed proximal femur strength normalized to body weight (FFE/BW) for both stance (a) and fall (b) loading. The dotted lines represent median values for femoral neck strength assessed by the same patient‐specific FEM procedure in populations of healthy premenopausal (36‐45 years; top line) and elderly (62‐81 years; bottom line) Caucasian women. Figure from Keyak et al., 2009 (132), used with permission.


Figure 5. Foot forces aboard ISS are much reduced compared to 1 g. In‐shoe peak force magnitudes recorded during activities of daily living on Earth and aboard ISS. Both magnitude and frequency of the GRFs observed in 1 g are reduced onboard ISS. No GRF's > 2 × BW were recorded in microgravity (as seen in 1 g), with the vast majority of peak forces during running in 0 g at 1.6 × BW or less. Figure from Cavanagh et al., 2010 (48), used with permission.


Figure 6. Recovery of proximal femur (trochanter) BMD in Shuttle crew members takes many‐fold longer than short duration of mission (<23 days). Dotted lines represent 95% confidence limits for the BMD data. Immediate postflight BMD deficits were ∼8% of preflight levels; 50% recovery time (dashed vertical line) was estimated to be ∼8.5 months. Repeat fliers' data are denoted by “+” signs. Figure from Sibonga et al., 2007 (253), used with permission.


Figure 7. Partial weight‐bearing (A) and hindlimb suspension (B) rodent models. Partial weight‐bearing ranging from 16% to 70% of total body weight can be achieved by daily adjustment of tension on the spring above the triangular harness support. In the traditional hindlimb (tail) suspension model, hindlimbs are elevated to disallow weight bearing without immobilization; the head‐down posture also induces a cephalic fluid shift. Figure from Ellman et al., 2013 (73), used with permission.


Figure 8. Graded reductions in weight bearing produce graded reductions in bone volume. Micro computed tomography results obtained at (A) distal femur metaphysis and (B) femur mid‐diaphysis. HLU = hindlimb unloading; PWB = partial weight bearing at indicated %BW; CON = control; * = different from CON (P < 0.05); # = HLU different from PWB100 (P < 0.05); brackets = pairwise differences between PWB groups. Figure adapted from Ellman et al., 2013 (73), used with permission.


Figure 9. Radiation produces dramatic reductions in cancellous bone volume and altered microarchitecture. Micro‐CT images of the proximal tibia in young mice that were (A) SHAM exposed, (B) exposed to 2 Gy gamma radiation, or (C) exposed to 2 Gy proton radiation. Both gamma and proton exposure led to decreased trabecular volume fraction (−29 and −35%, respectively) and increased trabecular spacing (+19% and +21%, respectively). Figure adapted from Hamilton et al., 2006 (99), used with permission.


Figure 10. Proposed radiation‐induced inflammatory cascade leading to increased fracture risk following crew member exposure to radiation. Rapidly dividing marrow cells in exposed bone are damaged and die, in part from damage from ROS (OH, O2 ); phagocytes are then recruited to remove dead cells. These phagocytes also release proinflammatory cytokines like TNF‐α and IL‐1, which in turn stimulate osteoclasts directly or indirectly by stimulating receptor activator of NF‐κβ ligand (RANKL) release from nearby osteoblasts. Accelerated loss of bone by osteoclastic resorption contributes to impaired bone structural integrity, elevating fracture risk for the affected individual. Figure from Willey et al., 2011 (325), used with permission.


Figure 11. Sclerostin regulation of canonical Wnt signaling. Binding of Wnt to the frizzled receptor complexed with low‐density lipoprotein 5 or 6 (Lrp5/Lrp6) receptor complex initiates a signaling cascade resulting in B‐catenin translocating to the nucleus, where it activates transcription factors regulating Wnt target genes. Wnt pathway activation promotes osteoblast proliferation, maturation and differentiated activity and, via mature osteoblast production of osteoprotogerin, decreasing osteoclast differentiation and activation (24). With reduced mechanical loading, osteocyte production of sclerostin increases, blocking Wnt binding and resulting ultimately in reduced osteoblast and increased osteoclast activity.
References
 1. Aliprantis AO , Stolina M , Kostenuik PJ , Poliachik SL , Warner SE , Bain SD , Gross TS . Transient muscle paralysis degrades bone via rapid osteoclastogenesis. FASEB J 26: 1110‐1118, 2012.
 2. Allen MR , Bloomfield SA . Hindlimb unloading has a greater effect on cortical compared with cancellous bone in mature female rats. J Appl Physiol 94: 642‐650, 2003.
 3. Allen MR , Hogan HA , Bloomfield SA . Differential bone and muscle recovery following hindlimb unloading in skeletally mature male rats. J Musculoskelet Neuronal Interact 6: 217‐225, 2006.
 4. Almeida M , Han L , Martin‐Millan M , Plotkin L , Stewart S , Roberson P , Kousteni S , O'BRien C , Bellido T , Parfitt A , Weinstein R , Jilka R , Manolagas S . Skeletal involution by age‐associated oxidative stress and its acceleration by loss of sex steroids. J Biol Chem 282: 27285‐27297, 2007.
 5. Almeida‐Silveira MI , Lambertz D , Perot C , and Goubel F . Changes in stiffness induced by hindlimb suspension in rat Achilles tendon. Eur J Appl Physiol 81: 252‐257, 2000.
 6. Alwood JS , Yumoto K , Mojarrab R , Limoli CL , Almeida EA , Searby ND , Globus RK . Heavy ion irradiation and unloading effects on mouse lumbar vertebral microarchitecture, mechanical properties and tissue stresses. Bone 47: 248‐255, 2010.
 7.Andriacchi T, Sabiston P, DeHaven K, Dahners L, Woo S, Frank C, Oakes B, Brand RA, Lewis J. Ligament: Injury and repair. In: Woo SL‐Y, Buckwalter JA, editor. Injury and Repair of the Musculoskeletal Soft Tissues. Park Ridge, Ill: American Academy of Orthopaedic Surgeons, 1988, pp. 103‐128.
 8. Androjna C , McCabe N , Cavanagh P , Midura R . Effects of spaceflight and skeletal unloading on bone fracture healing. Clinic Rev Bone Miner Metab 10: 61‐70, 2012.
 9. Armbrecht G , Belavy D , Backstrom M , Beller G , Alexandre C , Rizzoli R , Felsenberg D . Trabecular and cortical bone density and architecture in women after 60 days of bed rest using high‐resolution pQCT: WISE 2005. J Bone Miner Res 26: 2399‐2410, 2011.
 10. Arnaud S , Sherrard D , Maloney N , Whalen R , Fung P . Effects of a 1‐week head‐down tilt bed rest on bone formation and the calcium endocrine system. Aviat Space Environ Med 63: 14‐20, 1992.
 11. Aubin J. Mesenchymal stem cells and osteoblast differentiation. In: Bilezikian J , editor. Principles of Bone Biology, 3rd edition. Boston: Academic Press, 2008, pp. 85‐107.
 12. Ausk BJ , Huber P , Poliachik SL , Bain SD , Srinivasan S , Gross TS . Cortical bone resorption following muscle paralysis is spatially heterogeneous. Bone 50: 14‐22, 2012.
 13. Backup P , Westerlind K , Harris S , Spelsberg T , Kline B , Turner R . Spaceflight results in reduced mRNA levels for tissue‐specific proteins in the musculoskeletal system. Am J Physiol 266: E567‐E573, 1994.
 14. Baecker N , Frings‐Meuthen P , Heer M , Mester J , Liphardt A . Effects of vibration training on bone metabolism: Results from a short‐term bed rest study. Eur J Appl Physiol 112: 1741‐1750, 2012.
 15. Baecker N , Tomic A , Mika C , Gotzmann A , Platen P , Gerzer R , Heer M . Bone resorption is induced on the second day of bed rest: Results of a controlled crossover trial. J Appl Physiol 95: 977‐982, 2003.
 16. Baek K , Barlow A , Allen M , Bloomfield S . Food restriction and simulated microgravity: Effects on bone and serum leptin. J Appl Physiol 104: 1086‐1093, 2008.
 17. Baek K , Bloomfield SA . Beta‐adrenergic blockade and leptin replacement effectively mitigate disuse bone loss. J Bone Miner Res 24: 792‐799, 2009.
 18. Bailey JF , Hargens AR , Cheng KK , Lotz JC . Post‐spaceflight recovery of biomechanical properties of murine intervertebral discs. Gravit Space Biol 26: 38‐47, 2012.
 19. Balemans W , Ebeling M , Patel N , Van Hul E , Olson P , Dioszegi M , Lacza C , Wuyts W , Van Den Ende J , Willems P , Paes‐Alves AF , Hill S , Bueno M , Ramos FJ , Tacconi P , Dikkers FG , Stratakis C , Lindpaintner K , Vickery B , Foernzler D , Van Hul W. Increased bone density in sclerosteosis is due to the deficiency of a novel secreted protein (SOST). Hum Mol Genet 10: 537‐543, 2001.
 20. Balemans W , Patel N , Ebeling M , Van Hul E , Wuyts W , Lacza C , Dioszegi M , Dikkers FG , Hildering P , Willems PJ , Verheij JBGM , Lindpaintner K , Vickery B , Foernzler D , Van Hul W . Identification of a 52 kb deletion downstream of the SOST gene in patients with van Buchem disease. J Med Genet 39: 91‐97, 2002.
 21. Ball J , Evans Jr C . Safe Passage: Astronaut Care for Exploration Missions. Washington, DC: National Academies Press, 2001.
 22. Bandstra ER , Pecaut MJ , Anderson ER , Willey JS , De Carlo F , Stock SR , Gridley DS , Nelson GA , Levine HG , Bateman TA . Long‐term dose response of trabecular bone in mice to proton radiation. Radiat Res 169: 607‐614, 2008.
 23. Banes AJ , Tsuzaki M , Hu P , Brigman B , Brown T , Almekinders L , Lawrence WT , Fischer T . PDGF‐BB, IGF‐I and mechanical load stimulate DNA synthesis in avian tendon fibroblasts in vitro. J Biomech 28: 1505‐1513, 1995.
 24. Baron R , Rawadi G . Minireview: Targeting the Wnt/B‐catenin pathway to regulate bone formation in the adult skeleton. Endocrinology 148: 2635‐2643, 2007.
 25. Basso N , Heersche JN . Effects of hind limb unloading and reloading on nitric oxide synthase expression and apoptosis of osteocytes and chondrocytes. Bone 39: 807‐814, 2006.
 26. Benton E , Benton E . Space radiation dosimetry in low‐Earth orbit and beyond. Nucl Instrum Methods Phys Res B 184: 255‐294, 2001.
 27. Bergmann P , Body J‐J , Boonen S , Boutsen Y , Devogelaer J‐P , Goemaere S , Reginster J‐Y , Gangji V , Markers MotABoB . Evidence‐based guidelines for the use of biochemical markers of bone turnover in the selection and monitoring of bisphosphonate treatment in osteoporosis: A consensus document of the Belgian Bone Club. Int J Clin Pract 63: 19‐26, 2008.
 28. Bergula A , Haidekker M , Huang W , Stevens H , Frangos J . Venous ligation‐mediated bone adaptation is NOS 3 dependent. Bone 34: 562‐569, 2004.
 29. Bijl M , Reefman E , Limburg P , Kallenberg C . Inflammatory clearance of apoptotic cells after UVB challenge. Autoimmunity 40: 244‐248, 2007.
 30. Bikle DD , Harris J , Halloran BP , Morey‐Holton E . Altered skeletal pattern of gene expression in response to spaceflight and hindlimb elevation. Am J Physiol 267: E822‐827, 1994.
 31. Bikle DD , Sakata T , Halloran BP . The impact of skeletal unloading on bone formation. Gravit Space Biol Bull 16: 45‐54, 2003.
 32. Bilezikian J , Raisz L , Martin T . Principles of Bone Biology: Elsevier, 2008.
 33. Blaber E , Dvorochkin N , Lee C , JS A , Yousuf R , Pianetta P , Globus R , Burns B , Almeida E . Microgravity induces pelvic bone loss through osteoclastic activity, osteocytic osteolysis, and osteoblastic cell cycle inhibition by CDKN1a/p21. PLoS One 8: e61372, 2013.
 34. Blakely E . Biological effects of cosmic radiation: Deterministic and stochastic. Health Phys 79: 495‐506, 2000.
 35. Bloomfield S , Allen M , Hogan H , Delp M . Site‐ and compartment‐specific changes in bone with hindlimb unloading in mature adult rats. Bone 31: 149‐157, 2002.
 36. Bloomfield S , Girten B , Weisbrode S . Effects of vigorous exercise training and β‐agonist administration on bone response to hindlimb suspension. J Appl Physiol 83: 172‐178, 1997.
 37. Bloomfield SA . The risks to bone health during missions to the moon and mars. In: Cavanagh PR , Rice AJ , editors. Bone Loss During Spaceflight: Etiology, Countermeasures, and Implications for Bone Health on Earth. Cleveland: Cleveland Clinic Press, 2007, pp. 229‐237.
 38. Bonewald L and Johnson M . Osteocytes, mechanosensing and Wnt signaling. Bone 42: 606‐615, 2008.
 39. Booth F. The many flavors of IGF‐I. J Appl Physiol 100: 1755‐1756, 2006.
 40. Boudignon BM , Bikle DD , Kurimoto P , Elalieh H , Nishida S , Wang Y , Burghardt A , Majumdar S , Orwoll BE , Rosen C , Halloran BP . Insulin‐like growth factor‐I stimulates recovery of bone lost after a period of skeletal unloading. J Appl Physiol 103: 125‐131, 2007.
 41. Bouvard B , Mabilleau G , Legrand E , Audran M , Chappard D . Micro and macroarchitectural changes at the tibia after botulinum toxin injection in the growing rat. Bone 50: 858‐864, 2012.
 42. Caetano‐Lopes J . Osteoimmunology—The hidden immune regulation of bone. Autoimmun Rev 8: 250‐255, 2009.
 43. Caillot‐Augusseau A , Vico L , Heer M , Voroviev D , Souberbielle J‐C , Zitterman A , Alexandre C , Lafage‐Proust M‐H . Space flight is associated with rapid decreases of undercarboxylated osteocalcin and increases of markers of bone resorption without changes in their circadian variation: Observations in two cosmonauts. Clin Chem 46: 1136‐1143, 2000.
 44. Cao X , Wu X , Frassica D , Yu B , Pang L , Xian L , Wan M , Lei W , Armour M , Tryggestad E , Wong J , Wen C , Lu W , Frassica F . Irradiation induces bone injury by damaging bone marrow microenvironment for stem cells. Proc Natl Acad Sci U S A 108: 1609‐1614, 2011.
 45. Carnino A , Roffino S , Chopard A , Marini JF . Effects of a 14‐day spaceflight on soleus myotendinous junction ultrastructure in the rhesus monkey. J Gravit Physiol 7: S65‐S68, 2000.
 46. Carpenter RD , LeBlanc AD , Evans H , Sibonga JD , Lang TF . Long‐term changes in the density and structure of the human hip and spine after long‐duration spaceflight. Acta Astronaut 67: 71‐81, 2010.
 47. Cavanagh P , Licata A , Rice A . Exercise and pharmacological countermeasures for bone loss during long‐duration space flight. Gravit Space Biol 18: 39‐58, 2005.
 48. Cavanagh PR , Genc KO , Gopalakrishnan R , Kuklis MM , Maender CC , Rice AJ . Foot forces during typical days on the International Space Station. J Biomech 43: 2182‐2188, 2010.
 49. Cavolina JM , Evans GL , Harris SA , Zhang M , Westerlind KC , Turner RT . The effects of orbital spaceflight on bone histomorphometry and messenger ribonucleic acid levels for bone matrix proteins and skeletal signaling peptides in ovariectomized growing rats. Endocrinology 138: 1567‐1576, 1997.
 50. Centrella M , McCarthy T , Canalis E . Tumor necrosis factor‐alpha inhibits collagen synthesis and alkaline phosphatase activity independently of its effect on deoxyribonucleic acid synthesis in osteoblast‐enriched bone cell cultures. Endocrinology 123: 1442‐1448, 1988.
 51. Chang M‐K , Kramer I , Huber T , Kinzel B , Guth‐Gundel S , Leupin O , Kneissel M . Disruption of Lrp4 function by genetic deletion or pharmacological blockade increases bone mass and serum sclerostin levels. Proc Natl Acad Sci U S A E5187‐E5195, 2014.
 52. Cheema U , Brown R , Mudera V , Yang SY , McGrouther G , Goldspink G . Mechanical signals and IGF‐I gene splicing in vitro in relation to development of skeletal muscle. J Cell Physiol 202: 67‐75, 2005.
 53. Cody DD , Gross GJ , Hou FJ , Spencer HJ , Goldstein SA , Fyhrie DP . Femoral strength is better predicted by finite element models than QCT and DXA. J Biomech 32: 1013‐1020, 1999.
 54. Colleran P , Wilkerson M , Bloomfield S , Suva L , Turner R , Delp M . Alterations in skeletal perfusion with simulated microgravity: A possible mechanism for bone remodeling. J Appl Physiol 89: 1046‐1054, 2000.
 55. Collet P , Uebelhart D , Vico L , Moro L , Hartmann D , Roth M , Alexandre C . Effects of 1‐ and 6‐month spaceflight on bone mass and biochemistry in two humans. Bone 20: 547‐551, 1997.
 56. Curwin SL , Vailas AC , Wood J . Immature tendon adaptation to strenuous exercise. J Appl Physiol 65: 2297‐2301, 1988.
 57. Da Silva M , Zimmerman P , Meguid M , Nandi J , Ohinata K , Xu Y , Chen C , Tada T , Inui A . Anorexia in space and possible etiologies: An overview. Nutrition 18: 805‐813, 2002.
 58. Dallas SL , Prideaux M , Bonewald LF . The osteocyte: An endocrine cell and more. Endocr Rev 34: 658‐690, 2013.
 59. De Souza M , West S , Jamal S , Hawker G , Gundberg C , Williams N . The presence of both an energy deficiency and estrogen deficiency exacerbated alterations of bone metabolism in exercising women. Bone 43: 140‐148, 2008.
 60. Dempster DW , Compston JE , Drezner MK , Glorieux FH , Kanis JA , Malluche H , Meunier PJ , Ott SM , Recker RR , Parfitt AM . Standardized nomenclature, symbols, and units for bone histomorphometry: A 2012 update of the report of the ASBMR Histomorphometry Nomenclature Committee. J Bone Miner Res 28: 2‐17, 2013.
 61. Doty SB , Morey‐Holton ER , Durnova GN , Kaplansky AS . Morphological studies of bone and tendon. J Appl Physiol 73: 10S‐13S, 1992.
 62. Ducy P , Amling M , Takeda S , Priemel M , Schilling A , Bell F , Shen J , Vinson C , Rueger J , Karsenty G . Leptin inhibits bone formation through a hypothalamic relay: A central control of bone mass. Cell 100: 197‐207, 2000.
 63. Dudziak M , Saadeh P , Mehrara B , Steinbrech D , Greenwald J , Gittes G , Longaker M . The effects of ionizing radiation on osteoblast‐like cells in vitro. Plast Reconstr Surg 106: 1049‐1061, 2000.
 64. Dufour C , Holy X , Marie PJ . Skeletal unloading induces osteoblast apoptosis and targets alpha5beta1‐PI3K‐Bcl‐2 signaling in rat bone. Exp Cell Res 313: 394‐403, 2007.
 65. Duke J , Janer L , Campbell M , Morrow J . Microprobe analyses of epiphyseal plates from Spacelab 3 rats. Physiologist 28: S217‐218, 1985.
 66. Duke PJ , Durnova G , Montufar‐Solis D . Histomorphometric and electron microscopic analyses of tibial epiphyseal plates from Cosmos 1887 rats. FASEB J 4: 41‐46, 1990.
 67. Duke PJ , Montufar‐Solis D . Exposure to altered gravity affects all stages of endochondral cartilage differentiation. Adv Space Res 24: 821‐827, 1999.
 68. Duncan R , Turner C . Mechanotransduction and the functional response of bone to mechanical strain. Calcif Tissue Int 57: 344‐358, 1995.
 69. Durnova G , Kaplanskii A , Morey‐Holton E , Vorobeva V . Investigation of tibial bones of the rats exposed on board “Spacelab‐2”: Histomorphometric analysis. Aviakosm Ekolog Med 30: 21‐26, 1996.
 70. Elefteriou F , Ahn J , Takeda S , Starbuck M , Yang X , Liu X , Kondo H , Richards W , Bannon T , Noda N , Clement K , Vaisse C , Karsenty G . Leptin regulation of bone resorption by the sympathetic nervous system and CART. Nature 434: 514‐520, 2005.
 71. Eliasson P , Fahlgren A , Pasternak B , Aspenberg P . Unloaded rat Achilles tendons continue to grow, but lose viscoelasticity. J Appl Physiol 103: 459‐463, 2007.
 72. Ellman R , Spatz J , Cloutier A , Palme R , Christiansen B , Bouxsein M . Partial reductions in mechanical loading yield proportional changes in bone density, bone architecture, and muscle mass. J Bone Miner Res 28: 875‐885, 2013.
 73. Ertl A , Diedrich A , Biaggioni I , Levine B , Robertson R , Cox J , Zuckerman J , Pawelczyk J , Ray C , Buckey J , Lane L , Shiavi R , Gaffney F , Costa F , Holt C , Blomqvist C , Eckberg D , Baisch F , Robertson D . Human muscle sympathetic nerve activity and plasma noradrenaline kinetics in space. J Physiol 538: 321‐329, 2002.
 74. Evans GL , Morey‐Holton E , Turner RT . Spaceflight has compartment‐ and gene‐specific effects on mRNA levels for bone matrix proteins in rat femur. J Appl Physiol 84: 2132‐2137, 1998.
 75. Fettman M . Dietary instead of pharmacological management to counter the adverse effects of physiological adaptions to space flight. Pflugers Arch 441: 15‐20, 2000.
 76. Fielder PJ , Morey ER , Roberts WE . Osteoblast histogenesis in periodontal ligament and tibial metaphysis during simulated weightlessness. Aviat Space Environ Med 57: 1125‐1130, 1986.
 77. Francini G , Gonnelli S , Petrioli R , Bruni S , Marsili S , Aquino A , Camporeale A . Procollagen type I carboxy‐terminal propeptide as a marker of osteoblastic bone metastases. Cancer Epidemiol Biomarkers Prev 2: 125‐129, 1993.
 78. Frank CB . Ligament structure, physiology and function. J Musculoskelet Neuronal Interact 4: 199‐201, 2004.
 79. Frenette J , Tidball JG . Mechanical loading regulates expression of talin and its mRNA, which are concentrated at myotendinous junctions. Am J Physiol 275: C818‐C825, 1998.
 80. Frings‐Meuthen P , Baecker N , Heer M . Low‐grade metabolic acidosis may be the cause of sodium chloride induced exaggerated bone resorption. J Bone Miner Res 23: 517‐524, 2008.
 81. Gal T , Munoz‐Antonia T , Muro‐Cacho C , Klotch D . Radiation effects on osteoblasts in vitro: A potential role in osteoradionecrosis. Arch Otolaryngol Head Neck Surg 126: 1124‐1128, 2000.
 82. Garetto LP , Gonsalves MR , Morey ER , Durnova G , Roberts WE . Preosteoblast production 55 hours after a 12.5‐day spaceflight on Cosmos 1887. FASEB J 4: 24‐28, 1990.
 83. Garetto LP , Morey ER , Durnova GN , Kaplansky AS , Roberts WE . Preosteoblast production in COSMOS 2044 rats: Short‐term recovery of osteogenic potential. J Appl Physiol 73: 14S‐18S, 1992.
 84. Gaudio A , Pennisi P , Bratengeier C , Torrisi V , Lindner B , Mangiafico R , Pulvirenti I , Hawa G , Tringali G , Fiore C . Increased serum sclerostin levels associated with bone formation and resorption markers in patients with immobilization‐induced bone loss. J Clin Endocrinol Metab 95: 2248‐2253, 2010.
 85. Giangregorio L , McCartney N . Bone loss and muscle atrophy in spinal cord injury: Epidemiology, fracture prediction, and rehabilitation strategies. J Spinal Cord Med 29: 489‐500, 2006.
 86. Gilbert L , He X , Farmer P , Boden SD , Kozlowski M , Rubin J , Nanes M . Inhibition of osteoblast differentiation by tumor necrosis factor‐alpha. Endocrinology 141: 3956‐3964, 2000.
 87. Gillery P , Leperre A , Maquart FX , Borel JP . Insulin‐like growth factor‐I (IGF‐I) stimulates protein synthesis and collagen gene expression in monolayer and lattice cultures of fibroblasts. J Cell Physiol 152: 389‐396, 1992.
 88. Gillette PD , Fell RD . Passive tension in rat hindlimb during suspension unloading and recovery: Muscle/joint contributions. J Appl Physiol 81: 724‐730, 1996.
 89. Giustina A , Mazziotti G , Canalis E . Growth hormone, insulin‐like growth factors, and the skeleton. Endocr Rev 29: 535‐559, 2008.
 90. Grimston SK , Goldberg DB , Watkins M , Brodt MD , Silva MJ , Civitelli R . Connexin43 deficiency reduces the sensitivity of cortical bone to the effects of muscle paralysis. J Bone Miner Res 26: 2151‐2160, 2011.
 91. Grimston SK , Silva MJ , Civitelli R . Bone loss after temporarily induced muscle paralysis by Botox is not fully recovered after 12 weeks. Ann N Y Acad Sci 1116: 444‐460, 2007.
 92. Grindeland R . Overview of the COSMOS 2044 BION Mission. J Appl Physiol 73: S1‐S3, 1992.
 93. Gundberg C . Matrix proteins. Osteoporos Int 14: S37‐S42, 2003.
 94. Hall E , Giaccia A . Time, dose, and fractionation in radiotherapy. Radiobiology for the Radiologist. Philadelphia, USA: Lippincott, Williams & Wilkins, 2006.
 95. Halloran B , Bikle D , Harris J , Autry C , Currier P , Tanner S , Patterson‐Buckendahl P , Morey‐Holton E . Skeletal unloading induces selective resistance to the anabolic actions of growth hormone on bone. J Bone Miner Res 10: 1168‐1176, 1995.
 96. Halloran BP , Bikle DD , Cone CM , Morey‐Holton E . Glucocorticoids and inhibition of bone formation induced by skeletal unloading. Am J Physiol 255: E875‐E879, 1988.
 97. Hameed M , Orrell RW , Cobbold M , Goldspink G , Harridge SD . Expression of IGF‐I splice variants in young and old human skeletal muscle after high resistance exercise. J Physiol 547: 247‐254, 2003.
 98. Hamilton SA , Pecaut MJ , Gridley DS , Travis ND , Bandstra ER , Willey JS , Nelson GA , Bateman TA . A murine model for bone loss from therapeutic and space‐relevant sources of radiation. J Appl Physiol 101: 789‐793, 2006.
 99. Hamrick MW , Shi X , Zhang W , Pennington C , Thakore H , Haque M , Kang B , Isales CM , Fulzele S , Wenger KH . Loss of myostatin (GDF8) function increases osteogenic differentiation of bone marrow‐derived mesenchymal stem cells but the osteogenic effect is ablated with unloading. Bone 40: 1544‐1553, 2007.
 100. Hardiman DA , O'Brien FJ , Prendergast PJ , Croke DT , Staines A , Lee TC . Tracking the changes in unloaded bone: Morphology and gene expression. Eur J Morphol 42: 208‐216, 2005.
 101. Heer M . Nutritional interventions related to bone turnover in European space missions and simulation models. Nutrition 18: 853‐856, 2002.
 102. Heer M , Boerger A , Kamps N , Biener C , Korr C , Drummer C . Nutrient supply during recent European missons. Pfluger Arch 441: R8‐R14, 2000.
 103. Hefferan TE , Evans GL , Lotinun S , Zhang M , Morey‐Holton E , Turner RT . Effect of gender on bone turnover in adult rats during simulated weightlessness. J Appl Physiol 95: 1775‐1780, 2003.
 104. Heinemeier K , Langberg H , Olesen JL , Kjaer M . Role of TGF‐beta1 in relation to exercise‐induced type I collagen synthesis in human tendinous tissue. J Appl Physiol 95: 2390‐2397, 2003.
 105. Heinemeier KM , Olesen JL , Haddad F , Schjerling P , Baldwin KM , Kjaer M . Effect of unloading followed by reloading on expression of collagen and related growth factors in rat tendon and muscle. J Appl Physiol 106: 178‐186, 2009.
 106. Hill M , Wernig A , Goldspink G . Muscle satellite (stem) cell activation during local tissue injury and repair. J Anat 203: 89‐99, 2003.
 107. Hino K , Nakamoto T , Nifuji A , Morinobu M , Yamamoto H , Ezura Y , Noda M . Deficiency of CIZ, a nucleocytoplasmic shuttling protein, prevents unloading‐induced bone loss through the enhancement of osteoblastic bone formation in vivo. Bone 40: 852‐860, 2006.
 108. Horowitz M , Lorenzo J . Local regulators of bone: IL‐1, TNF, lymphotoxin, interferon‐gamma, the LIF/IL‐6 family, and additional cytokines. In: Bilezikian J , Raisz L , Martin T , editors. Principles of Bone Biology (3rd ed.). San Diego, CA: Academic Press, 2008, pp. 1209‐1234.
 109. Huang, Robert P , Rubin CT , McLeod KJ . Changes in postural muscle dynamics as a function of age. J Gerontol A Biol Sci Med Sci 54: B352‐B357, 1999.
 110. Hutton WC , Malko JA , Fajman WA . Lumbar disc volume measured by MRI: Effects of bed rest, horizontal exercise, and vertical loading. Aviat Space Environ Med 74: 73‐78, 2003.
 111. Hutton WC , Yoon ST , Elmer WA , Li J , Murakami H , Minamide A , Akamaru T . Effect of tail suspension (or simulated weightlessness) on the lumbar intervertebral disc: Study of proteoglycans and collagen. Spine 27: 1286‐1290, 2002.
 112. Ihle R , Loucks A . Dose‐response relationship between energy availability and bone turnover in young exercising women. J Bone Miner Res 19: 1231‐1240, 2004.
 113. Ishijima M , Ezura Y , Tsuji K , Rittling SR , Kurosawa H , Denhardt DT , Emi M , Nifuji A , Noda M . Osteopontin is associated with nuclear factor kappaB gene expression during tail‐suspension‐induced bone loss. Exp Cell Res 312: 3075‐3083, 2006.
 114. Ishijima M , Rittling S , Yamashita T , Tsuji K , Kurosawa H , Nifuji A , Denhardt D , Noda M . Enhancement of osteoclastic bone resorption and suppression of osteoblastic bone formation in response to reduced mechanical stress do not occur in the absence of osteopontin. J Exp Med 193: 399‐404, 2001.
 115. Ishijima M , Tsuji K , Rittling S , Yamashita T , Kurosawa H , Denhardt D , Nifuji A , Noda M . Resistance to unloading‐induced three‐dimensional bone loss in osteopontin‐deficient mice. J Bone Miner Res 17: 661‐667, 2002.
 116. Iwaniec U , Wronski T , Amblard D , Nishimura Y , van der Meulen M , Wade C , Bourgeois M , Damsky C , Globus R . Effects of disrupted beta1‐integrin function on the skeletal response to short‐term hindlimb unloading in mice. J Appl Physiol 98: 690‐696, 1985.
 117. Jarvinen TA , Jozsa L , Kannus P , Jarvinen TL , Hurme T , Kvist M , Pelto‐Huikko M , Kalimo H , Jarvinen M . Mechanical loading regulates the expression of tenascin‐C in the myotendinous junction and tendon but does not induce de novo synthesis in the skeletal muscle. J Cell Sci 116: 857‐866, 2003.
 118. Jee WS , Wronski TJ , Morey ER , Kimmel DB . Effects of spaceflight on trabecular bone in rats. Am J Physiol 244: R310‐R314, 1983.
 119. Jee WSS . Integrated bone tissue physiology: Anatomy and physiology. In: Cowin SC , edited. Bone Mechanics Handbook (2nd ed.). Boca Raton, FL: CRC Press, 2001, pp. I1‐I68.
 120. Jin L , Feng G , Reames DL , Shimer AL , Shen FH , Li X . The effects of simulated microgravity on intervertebral disc degeneration. Spine J 13: 235‐242, 2013.
 121. Johnson RB . The bearable lightness of being: Bones, muscles, and spaceflight. Anat Rec 253: 24‐27, 1998.
 122. Johnson RB , Tsao AK , St John KR , Betcher RA , Tucci MA , Benghuzzi HA . Effects of spaceflight on the attachment of tendons to bone in the hindlimb of the pregnant rat. Anat Rec 282: 147‐156, 2005.
 123. Johnston SL , Campbell MR , Scheuring R , Feiveson AH . Risk of herniated nucleus pulposus among U.S. astronauts. Aviat Space Environ Med 81: 566‐574, 2010.
 124. Ju YI , Sone T , Ohnaru K , Choi HJ , Choi KA , Fukunaga M . Jump exercise during hindlimb unloading protect against the deterioration of trabecular bone microarchitecture in growing young rats. SpringerPlus 2: 35, 2013.
 125. Ju YI , Sone T , Ohnaru K , Choi HJ , Fukunaga M . Differential effects of jump versus running exercise on trabecular architecture during remobilization after suspension‐induced osteopenia in growing rats. J Appl Physiol 112: 766‐772, 2012.
 126. Kalu D . Animal models of the aging skeleton. In: Rosen C , Glowacki J , Bilezikian J , editors. The Aging Skeleton, . San Diego: Academic Press, Inc, 1999, pp. 37‐50.
 127. Kannus P , Sievanen H , Jarvinen TL , Jarvinen M , Kvist M , Oja P , Vuori I , Jozsa L . Effects of free mobilization and low‐ to high‐intensity treadmill running on the immobilization‐induced bone loss in rats. J Bone Miner Res 9: 1613‐1619, 1994.
 128. Karsenty G , Elefteriou F . Neuronal regulation of bone remodeling. In: Rosen C , editor. Primer on the Metabolic Bone Diseases and Disorders of Mineral Metabolism (7th ed.). Washington, DC: American Society of Bone and Mineral Research, 2008, pp. 56‐60.
 129. Kershner D , Binhammer R . Intrathecal ligaments and nerve root tension: Possible sources of lumbar pain during spaceflight. Aviat Space Environ Med 75: 354‐358, 2004.
 130. Keyak JH , Kaneko TS , Tehranzadeh J , Skinner HB . Predicting proximal femoral strength using structural engineering models. Clin Orthop Relat Res 437: 219‐228, 2005.
 131. Keyak JH , Koyama AK , LeBlanc A , Lu Y , Lang TF . Reduction in proximal femoral strength due to long‐duration spaceflight. Bone 44: 449‐453, 2009.
 132. Keyak JH , Sigurdsson S , Karlsdottir G , Oskarsdottir D , Sigmarsdottir A , Zhao S , Kornak J , Harris TB , Sigurdsson G , Jonsson BY , Siggeirsdottir K , Eiriksdottir G , Gudnason V , Lang TF . Male‐female differences in the association between incident hip fracture and proximal femoral strength: A finite element analysis study. Bone 48: 1239‐1245, 2011.
 133. Khatod M , Akeson WH , Ameil D . Ligament injury and repair. In: Pedowitz RA , O'Connor JJ , Akeson WH , editors. Daniel's knee Injuries: Ligament and Cartilage Structure, Function, Injury, and Repair (2nd ed.). Philadelphia: Lippincott Williams & Wilkins, 2003, pp. 185‐201.
 134. Kjaer M . Matrix loaded and unloaded: Can tendons grow when exercised? (editorial). J Appl Physiol 102: 515, 2007.
 135. Kjaer M , Magnusson P , Krogsgaard M , Boysen Moller J , Olesen J , Heinemeier K , Hansen M , Haraldsson B , Koskinen S , Esmarck B , Langberg H . Extracellular matrix adaptation of tendon and skeletal muscle to exercise. J Anat 208: 445‐450, 2006.
 136. Knapen MHJ , Jie K‐SG , Hamulyak K , Vermeer C . Vitamin K‐induced changes in markers for osteoblast activity and urinary calcium loss. Calcif Tissue lnt 53: 81‐85, 1993.
 137. Kohrt WM , Bloomfield SA , Little KD , Nelson ME , Yingling VR . Physical activity and bone health. Med Sci Exerc Sports 36: 1985‐1996, 2004.
 138. Kondo H , Ezura Y , Nakamoto T , Hayata T , Notomi T , Sorimachi H , Takeda S , Noda M . MURF1 deficiency suppresses unloading‐induced effects on osteoblasts and osteoclasts to lead to bone loss. J Cell Biochem 112: 3525‐3530, 2011.
 139. Kondo H , Nifuji A , Takeda S , Ezura Y , Rittling S , Denhardt D , Nakashima K , Karsenty G , Noda M . Unloading induces osteoblastic cell suppression and osteoclastic cell activation to lead to bone loss via sympathetic nervous system. J Biol Chem 280: 30192‐30200, 2005.
 140. Kondo H , Searby ND , Mojarrab R , Phillips J , Alwood JS , Yumoto K , Almeida EA , Limoli CL , Globus RK . Total‐body irradiation of postpubertal mice with (137)Cs acutely compromises the microarchitecture of cancellous bone and increases osteoclasts. Radiat Res 171: 283‐289, 2009.
 141. Kondo H , Yumoto K , Alwood JS , Mojarrab R , Wang D , Almeida EA , Searby ND , Limoli CL , Globus RK . Oxidative stress and gamma radiation‐induced cancellous bone loss with musculoskeletal disuse. J Appl Physiol 108: 152‐161, 2010.
 142. Kramer I , Halleux C , Keller H , Pegurri M , Gooi J , Weber P , Feng J , Bonewald L , Kneissel M . Osteocyte Wnt/B‐catenin signaling is required for normal bone homeostasis. Mol Cell Biol 30: 3071‐3085, 2010.
 143. Kwon R , Meays D , Meilan A , Jones J , Miramontes R , Kardos N , Yeh J , Frangos J . Skeletal adaptation to intramedullary pressure‐induced interstitial fluid flow is enhanced in mice subjected to targeted osteocyte ablation. PLoS One 7: e33336, 2012.
 144. Kwon R , Meays D , Tang W , Frangos J . Microfluidic enhancement of intramedullary pressure increases interstitial fluid flow and inhibits bone loss in hindlimb suspended mice. J Bone Miner Res 25: 1798‐1807, 2010.
 145. Lafage‐Proust MH , Collet P , Dubost JM , Laroche N , Alexandre C , Vico L . Space‐related bone mineral redistribution and lack of bone mass recovery after reambulation in young rats. Am J Physiol Regul Integr Comp Physiol 274: R324‐R334, 1998.
 146. Lang T , LeBlanc A , Evans H , Lu Y , Genant H , Yu A . Cortical and trabecular bone mineral loss from the spine and hip in long‐duration spaceflight. J Bone Miner Res 19: 1006‐1012, 2004.
 147. Lang TF , Leblanc AD , Evans HJ , Lu Y . Adaptation of the proximal femur to skeletal reloading after long‐duration spaceflight. J Bone Miner Res 21: 1224‐1230, 2006.
 148. LeBlanc A , Matsumoto T , Jones J , Shapiro J , Lang T , Shackelford L , Smith S , Evans H , Spector E , Ploutz‐Snyder R , Sibonga J , Keyak J , Nakamura T , Kohri K , Ohshima H . Bisphosphonates as a supplement to exercise to protect bone during long‐duration spaceflight. Osteoporos Int 24: 2105‐2114, 2013.
 149. LeBlanc A , Schneider V , Krebs J , Evans H , Jhingran S , Johnson P . Bone mineral loss and recovery after 17 weeks of bed rest. J Bone Miner Res 5: 843‐850, 1990.
 150. LeBlanc A , Schneider V , Shackelford L , West S , Oganov V , Bakulin A , Voronin L . Bone mineral and lean tissue loss after long duration space flight. J Musculoskel Neuron Interact 1: 157‐160, 2000.
 151. Lecka‐Czernik B , Rosen C , Kawai M . Skeletal aging and the adipocyte program: New insights from an “old” molecule. Cell Cycle 9: 3648‐3654, 2010.
 152. Lee S , Kim T , Choi Y , Lorenzo J . Osteoimmunology: Cytokines and the skeletal system. BMB Rep 41: 495‐510, 2008.
 153. Legerlotz K , Schjerling P , Langberg H , Bruggemann GP , Niehoff A . The effect of running, strength, and vibration strength training on the mechanical, morphological, and biochemical properties of the Achilles tendon in rats. J Appl Physiol 102: 564‐572, 2007.
 154. Li CY , Price C , Delisser K , Nasser P , Laudier D , Clement M , Jepsen KJ , Schaffler MB . Long‐term disuse osteoporosis seems less sensitive to bisphosphonate treatment than other osteoporosis. J Bone Miner Res 20: 117‐124, 2005.
 155. Li J , Sarosi I , Yan XQ , Morony S , Capparelli C , Tan HL , McCabe S , Elliott R , Scully S , Van G , Kaufman S , Juan SC , Sun Y , Tarpley J , Martin L , Christensen K , McCabe J , Kostenuik P , Hsu H , Fletcher F , Dunstan CR , Lacey DL , Boyle WJ . RANK is the intrinsic hematopoietic cell surface receptor that controls osteoclastogenesis and regulation of bone mass and calcium metabolism. Proc Natl Acad Sci U S A 97: 1566‐1571, 2000.
 156. Li X , Jee W . Adaptation of diaphyseal structure to aging and decreased mechanical loading in the adult rat: A densitometric and histomorphometric study. Anat Rec 229: 291‐297, 1990.
 157. Li X , Jee W , Chow S‐Y , Woodbury D . Adaptation of cancellous bone to aging and immobilization in the rat: A single photon absorptiometry and histomorphometry study. Anat Rec 227: 12‐24, 1990.
 158. Li Z , Tan C , Wu Y , Ding Y , Wang H , Chen W , Zhu Y , Ma H , Yang H , Liang W , Jiang S , Wang D , Wang L , Tang G , Wang J . Whole‐body vibration and resistance exercise prevent long‐term hindlimb unloading‐induced bone loss: Independent and interactive effects. Eur J Appl Physiol 112: 3743‐3753, 2012.
 159. Lin C , Jiang X , Dai Z , Guo X , Weng T , Wang J , Li Y , Feng G , Gao X , He L . Sclerostin mediates bone response to mechanical unloading through antagonizing wnt/b‐catenin signaling. J Bone Miner Res 24: 1651‐1661, 2009.
 160. Little R , Carulli J , Del Mastro R , Dupuis J , Osborne M , Folz C , Manning S , Swain P , Zhao S‐C , Eustace B , Lappe M , Spitzer L , Zweier S , Braunschweiger K , Benchekroun Y , Hu X , Adair R , Chee L , FitzGerald M , Tulig C , Caruso A , Tzellas N , Bawa A , Franklin B , McGuire S , Nogues X , Gong G , Allen K , Anisowicz A , Morales A , Lomedico P , Recker S , Van Eerdewegh P , Recker R , Johnson M . A mutation in the LDL receptor‐related protein 5 gene results in the autosomal dominant high‐bone‐mass trait. Am J Hum Genet 70: 11‐19, 2002.
 161. Lloyd SA , Bandstra ER , Willey JS , Riffle SE , Tirado‐Lee L , Nelson GA , Pecaut MJ , Bateman TA . Effect of proton irradiation followed by hindlimb unloading on bone in mature mice: A model of long‐duration spaceflight. Bone 51: 756‐764, 2012.
 162. Lloyd SA , Lewis GS , Zhang Y , Paul EM , Donahue HJ . Connexin 43 deficiency attenuates loss of trabecular bone and prevents suppression of cortical bone formation during unloading. J Bone Miner Res 27: 2359‐2372, 2012.
 163. Macias B , Agholme F , Aspenberg P . Paradoxical Sost gene expression response to mechanical loading in metaphyseal bone. Bone 53: 515‐519, 2013.
 164. Macias BR , Swift JM , Nilsson MI , Hogan HA , Bouse SD , Bloomfield SA . Simulated resistance training, but not alendronate, increases cortical bone formation and suppresses sclerostin during disuse. J Appl Physiol 112: 918‐925, 2012.
 165. Magnusson SP , Hansen P , Kjaer M . Tendon properties in relation to muscular activity and physical training. Scand J Med Sci Sports 13: 211‐223, 2003.
 166.Majeska RJ. Cell biology of bone. In: Cowin SC, editor. Bone Mechanics Handbook, 2nd ed. Boca Raton, FL: CRC Press, pp. 2‐21 to 2‐24 2001.
 167. Manske SL , Boyd SK , Zernicke RF . Muscle changes can account for bone loss after botulinum toxin injection. Calcif Tissue Int 87: 541‐549, 2010.
 168. Manske SL , Boyd SK , Zernicke RF . Vertical ground reaction forces diminish in mice after botulinum toxin injection. J Biomech 44: 637‐643, 2011.
 169. Manzey D , Lorenz B , Polyakov V . Mental performance in extreme environments: Results from a performance monitoring study during a 438‐day spaceflight. Ergonomics 41: 537‐559, 1998.
 170. Marotti G . The structure of bone tissues and the cellular control of their deposition. Ital J Anat Embryol 101: 25‐31, 1996.
 171. Martin R . Toward a unifying theory of bone remodeling. Bone 26: 1‐7, 2000.
 172.Martinez DA, Ball SE, Gutierrez L. A gene therapy application for ligament wound healing: In vitro scAAV‐IGF‐1 delivery to rodent medial collateral ligament fibroblasts [abstract]. Trans Orthop Res Soc 97: 235, 2011.
 173. Martinez DA , Vailas AC , Vanderby R, Jr , Grindeland RE . Temporal extracellular matrix adaptations in ligament during wound healing and hindlimb unloading. Am J Physiol Regul Integr Comp Physiol 293: R1552‐R1560, 2007.
 174. Matthews JL . Mineralization in the long bones. In: Heinrich MR , Souza KA , editors. In: Final Reports of US Rat Experiments Flown on the Soviet Satellite Cosmos 1129. Moffett Field, CA: NASA TM‐81289, 1981, pp. 199‐228.
 175. Maynard JA . The effects of space flight on the composition of the intervertebral disc. Iowa Orthop J 14: 125‐133, 1994.
 176. McKoy G , Ashley W , Mander J , Yang SY , Williams N , Russell B , Goldspink G . Expression of insulin growth factor‐1 splice variants and structural genes in rabbit skeletal muscle induced by stretch and stimulation. J Physiol 516(Pt 2): 583‐592, 1999.
 177. Mechanic GL , Arnaud SB , Boyde A , Bromage TG , Buckendahl P , Elliott JC , Katz EP , Durnova GN . Regional distribution of mineral and matrix in the femurs of rats flown on Cosmos 1887 biosatellite. FASEB J 4: 34‐40, 1990.
 178. Miller BF , Hansen M , Olesen JL , Schwarz P , Babraj JA , Smith K , Rennie MJ , Kjaer M . Tendon collagen synthesis at rest and after exercise in women. J Appl Physiol 102: 541‐546, 2007.
 179. Miller BF , Olesen JL , Hansen M , Dossing S , Crameri RM , Welling RJ , Langberg H , Flyvbjerg A , Kjaer M , Babraj JA , Smith K , Rennie MJ . Coordinated collagen and muscle protein synthesis in human patella tendon and quadriceps muscle after exercise. J Physiol 567: 1021‐1033, 2005.
 180. Miller TA , Lesniewski LA , Muller‐Delp JM , Majors AK , Scalise D , Delp MD . Hindlimb unloading induces a collagen isoform shift in the soleus muscle of the rat. Am J Physiol Regul Integr Comp Physiol 281: R1710‐R1717, 2001.
 181. Montufar‐Solis D , Duke PJ . Gravitational changes affect tibial growth plates according to Hert's curve. Aviat Space Environ Med 70: 245‐249, 1999.
 182. Montufar‐Solis D , Duke PJ , D'Aunno D . In vivo and in vitro studies of cartilage differentiation in altered gravities. Adv Space Res 17: 193‐199, 1996.
 183. Montufar‐Solis D , Duke PJ , Durnova G . Spaceflight and age affect tibial epiphyseal growth plate histomorphometry. J Appl Physiol 73: 19S‐25S, 1992.
 184. Montufar‐Solis D , Duke PJ , Morey‐Holton E . The Spacelab 3 simulation: Basis for a model of growth plate response in microgravity in the rat. J Gravit Physiol 8: 67‐76, 2001.
 185. Morey ER , Baylink DJ . Inhibition of bone formation during space flight. Science 201: 1138‐1141, 1978.
 186. Morey‐Holton E , Globus RK , Kaplansky A , Durnova G . The hindlimb unloading rat model: Literature overview, technique update and comparison with space flight data. Adv Space Biol Med 10: 7‐40, 2005.
 187.Morey‐Holton ER, Whalen RT, Arnaud SB, van der Meulen MC. The Skeleton and its Adaptation to Gravity. In Compr Physiol 2011, Supplement 14: Handbook of Physiology, Environmental Physiology. First published in print 1996. doi: 10.1002/cphy.cp040131.
 188. Morey‐Holton ER , Globus RK . Hindlimb unloading of growing rats: A model for predicting skeletal changes during space flight. Bone 22: 83S‐88S, 1998.
 189. Morey‐Holton ER , Globus RK . Hindlimb unloading rodent model: Technical aspects. J Appl Physiol 92: 1367‐1377, 2002.
 190. Morgan E , Bouxsein M . Biomechanics of bone and age‐related fractures. In: Bilezikian J , Raisz L , Martin T , editors. Principles of Bone Biology (3rd ed.). San Diego, CA: Academic Press, 2008, pp. 29‐51.
 191. Morgan J , Zwart S , Heer M , Ploutz‐Snyder R , Ericson K , Smith S . Bone metabolism and nutritional status during 30‐day head‐down‐tilt bed rest. J Appl Physiol 113: 1519‐1529, 2012.
 192. Morse A , McDonald M , Kelly N , Melville K , Schindeler A , Kramer I , Kneissel M , Van der Meulen M , Little D . Mechanical load increases in bone formation via a sclerostin‐independent pathway. J Bone Miner Res 29: 2456‐2467, 2014.
 193. Moustafa A , Sugiyama T , Prasad J , Zaman G , Gross T , Lanyon L , Price J . Mechanical loading‐related changes in osteocyte sclerostin expression in mice are more closely associated with the subsequent osteogenic response than the peak strains engendered. Osteoporos Int 23: 1225‐1234, 2012.
 194. Nagaraja MP , Risin D . The current state of bone loss research: Data from spaceflight and microgravity simulators. J Cell Biochem 114: 1001‐1008, 2013.
 195. Nakagawa Y , Totsuka M , Sato T , Fukuda Y , Hirota K . Effect of disuse on the ultrastructure of the Achilles tendon in rats. Eur J Appl Physiol Occup Physiol 59: 239‐242, 1989.
 196. Nakai K , Tanaka S , Sakai A , Nagashima M , Tanaka M , Otomo H , Nakamura T . Cyclooxygenase‐2 selective inhibition suppresses restoration of tibial trabecular bone formation in association with restriction of osteoblast maturation in skeletal reloading after hindlimb elevation of mice. Bone 39: 83‐92, 2006.
 197.NCRP. National Council of Radiation Protection and Measurements. Radiation Protection Guidance for Activities in Low‐Earth Orbit, NCRP Report No. 132 (National Council on Radiation Protection and measurements, Bethesda, Maryland).
 198. Oganov V. The Skeletal System, Weightlessness, and Osteoporosis. Moscow: Firm Slovo, 2005.
 199. Oganov VS , Rakhmanov AS , Novikov VE , Zatsepin ST , Rodionova SS , Cann C . The state of human bone tissue during space flight. Acta Astronaut 23: 129‐133, 1991.
 200. Olesen JL , Heinemeier KM , Gemmer C , Kjaer M , Flyvbjerg A , Langberg H . Exercise‐dependent IGF‐I, IGFBPs, and type I collagen changes in human peritendinous connective tissue determined by microdialysis. J Appl Physiol 102: 214‐220, 2007.
 201. Olesen JL , Heinemeier KM , Haddad F , Langberg H , Flyvbjerg A , Kjaer M , Baldwin KM . Expression of insulin‐like growth factor I, insulin‐like growth factor binding proteins, and collagen mRNA in mechanically loaded plantaris tendon. J Appl Physiol 101: 183‐188, 2006.
 202. Orwoll E , Adler R , Amin S , Binkley N , Lewiecki E , Petak S , Shapses S , Sinaki M , Watts N , Sibonga J . Skeletal health in long‐duration astronauts: Nature, assessment, and management recommendations from the NASA Bone Summit. J Bone Miner Res 28: 1243‐1255, 2013.
 203. Owino V , Yang SY , Goldspink G . Age‐related loss of skeletal muscle function and the inability to express the autocrine form of insulin‐like growth factor‐1 (MGF) in response to mechanical overload. FEBS Lett 505: 259‐263, 2001.
 204. Ozcivici E , Luu Y , Rubin C , Judex S . Low‐level vibrations retain bone marrow's osteogenic potential and augment recovery of trabecular bone during reambulation. PLoS One 5: e11178, 2010.
 205. Palle S , Vico L , Bourrin S , Alexandre C . Bone tissue response to four‐month antiorthostatic bedrest: A bone histomorphometric study. Calcif Tissue Int 51: 189‐194, 1992.
 206. Parfitt AM , Simon LS , Villanueva AR , Krance SM . Procollagen type I carboxy‐terminal extension peptide in serum as a marker of collagen biosynthesis in bone. Correlation with iliac bone formation rates and comparison with total alkaline phosphatase. J Bone Miner Res 2: 427‐436, 1987.
 207. Patterson‐Buckendahl P , Arnaud SB , Mechanic GL , Martin RB , Grindeland RE , Cann CE . Fragility and composition of growing rat bone after one week in spaceflight. Am J Physiol 252: R240‐R246, 1987.
 208. Patterson‐Buckendahl PE , Grindeland RE , Martin RB , Cann CE , Arnaud SB . Osteocalcin as an indicator of bone metabolism during spaceflight. Physiologist 28: S227‐S228, 1985.
 209. Pavy‐Le Traon A , Heer M , Narici MV , Rittweger J , Vernikos J . From space to Earth: Advances in human physiology from 20 years of bed rest studies (1986‐2006). Eur J Appl Physiol 101: 143‐194, 2007.
 210. Pead M , Skerry T , Lanyon L . Direct transformation from quiescence to bone formation in the adult periosteum following a single brief period of bone loading. J Bone Miner Res 3: 647‐656, 1988.
 211. Pedrini‐Mille A , Maynard JA , Durnova GN , Kaplansky AS , Pedrini VA , Chung CB , Fedler‐Troester J . Effects of microgravity on the composition of the intervertebral disk. J Appl Physiol 73: 26S‐32S, 1992.
 212. Perrien DS , Akel NS , Dupont‐Versteegden EE , Skinner RA , Siegel ER , Suva LJ , Gaddy D . Aging alters the skeletal response to disuse in the rat. Am J Physiol Regul Integr Comp Physiol 292: R988‐R996, 2007.
 213. Pierroz D , Bonnet N , Bianchi E , Bouxsein M , Baldock P , Rizzoli R , Ferrari S . Deletion of β‐adrenergic receptor 1, 2, or both leads to different bone phenotypes and response to mechanical stimulation. J Bone Miner Res 27: 1252‐1262, 2012.
 214. Pietrzyk R , Jones J , Sams C , Whitson P . Renal stone formation among astronauts. Aviat Space Environ Med 78: A9‐A13, 2007.
 215. Prisby R , Dominguez JI , Muller‐Delp J , Allen M , Delp M . Aging and estrogen status: A possible endothelium‐dependent vascular coupling mechanism in bone remodeling. PLoS One 7: e48564, 2012.
 216. Provenzano P , Alejandro‐Osorio A , Grorud K , Martinez D , Vailas A , Grindeland R , Vanderby R, Jr . Systemic administration of IGF‐1 enhances healing in collagenous extracellular matrices: Evaluation of loaded and unloaded ligaments. BMC Physiol 7: 2, 2007.
 217. Provenzano PP , Martinez DA , Grindeland RE , Dwyer KW , Turner J , Vailas AC , Vanderby R, Jr . Hindlimb unloading alters ligament healing. J Appl Physiol 94: 314‐324, 2003.
 218. Qin Y‐X , Kaplan T , Saldanha A , Rubin C . Fluid pressure gradients, arising from oscillations in intramedullary pressure, is correlated with the formation of bone and inhibition of intracortical porosity. J Biomech 36: 1427‐1437, 2003.
 219. Qwarnstrom EE , MacFarlane SA , Page RC , Dower SK . Interleukin 1 beta induces rapid phosphorylation and redistribution of talin: A possible mechanism for modulation of fibroblast focal adhesion. Proc Natl Acad Sci U S A 88: 1232‐1236, 1991.
 220. Rabelo G , Beletti M , Dechichi P . Histological analysis of the alterations on cortical bone channels network after radiotherapy: A rabbit study. Microsc Res Tech 73: 1015‐1018, 2010.
 221. Rambaut P , Goode A . Skeletal changes during space flight. Lancet 2: 1050‐1052, 1985.
 222. Rho J , Takami M , Choi Y . Osteoimmunology: Interactions of the immune and skeletal systems. Mol Cells 17: 1‐9, 2004.
 223. Riggs B , Melton III L , Robb R , Camp J , Atkinson E , Peterson J , Rouleau P , McCollough C , Bouxsein M , Khosla S . Population‐based study of age and sex differences in bone volumetric density, size, geometry and structure of different skeletal sites. J Bone Miner Res 19: 1945‐1954, 2004.
 224. Rittweger J , Beller G , Armbrecht G , Mulder E , Buehring B , Gast U , Dimeo F , Schubert H , de Haan A , Stegeman D , Schiessl H . Prevention of bone loss during 56 days of strict bed rest by side‐alternating resistive vibration exercise. Bone 46: 137‐147, 2010.
 225. Rittweger J , Frost H , Schiessl H , Ohshima H , Alkner B , Tesch P , Felsenberg D . Muscle atrophy and bone loss after 90 days' bed rest and the effects of flywheel resistive exercise and pamidronate: Results from the LTBR study. Bone 36: 1019‐1029, 2005.
 226. Roberts WE , Fielder PJ , Rosenoer LM , Maese AC , Gonsalves MR , Morey ER . Nuclear morphometric analysis of osteoblast precursor cells in periodontal ligament, SL‐3 rats. Am J Physiol 252: R247‐R251, 1987.
 227. Robling A , Niziolek P , Baldridge L , Condon K , Allen M , Alam I , Mantila S , Gluhak‐Heinrich J , Bellido T , Harris S , Turner C . Mechanical stimulation of bone in vivo reduces osteocyte expression of SOST/sclerostin. J Biol Chem 283: 5866‐5875, 2008.
 228. Roer R , Dillaman R . Decreased femoral arterial flow during simulated microgravity in the rat. J Appl Physiol 76: 2125‐2129, 1994.
 229. Roffino S , Carnino A , Charpiot P , Marini JF . Increase in rat soleus myotendinous interface after a 14‐d spaceflight. C R Acad Sci III 321: 557‐564, 1998.
 230. Rohrer M , Kim Y , Fayos J . The effect of cobalt‐60 irradiation on monkey mandibles. Oral Surg Oral Med Oral Pathol 48: 424‐440, 1979.
 231. Rosen C. Primer on the Metabolic Bone Diseases and Disorders of Mineral Metabolism. Washington, D.C.: American Society of Bone and Mineral Research, 2008.
 232. Rosen C , Niu T . Insulin‐like growth factors and the IGF binding proteins: Implications for bone biology. In: Bilezikian J , Raisz L , Martin T , editors. Principles of Bone Biology. San Diego, CA: Academic Press, 2008, pp. 1069‐1094.
 233. Ross P . Osteoclast biology and bone resorption. In: Rosen C , editor. Primer on the Metabolic Bone Diseases and Disorders of Mineral Metabolism (7th ed.). Washington, DC: American Society of Bone and Mineral Research, 2008, pp. 16‐22.
 234. Rothman RH , Slogoff S . The effect of immobilization on the vascular bed of tendon. Surg Gynecol Obstet 124: 1064‐1066, 1967.
 235. Rubin C , Lanyon L . Regulation of bone mass by mechanical strain magnitude. Calcif Tissue Int 37: 411‐417, 1985.
 236. Rubin C , Lanyon L . Osteoregulatory nature of mechanical stimuli: Function as a determinant for adaptive remodeling in bone. J Orthop Res 5: 300‐310, 1987.
 237. Rubin C , Recker R , Cullen D , Ryaby J , McCabe J , McLeod K . Prevention of postmenopausal bone loss by a low‐magnitude, high‐frequency mechanical stimuli: A clinical trial assessing compliance, efficacy, and safety. J Bone Miner Res 19: 343‐351, 2004.
 238. Rubin C , Turner AS , Mallinckrodt C , Jerome C , McLeod K , Bain S . Mechanical strain, induced noninvasively in the high‐frequency domain, is anabolic to cancellous bone, but not cortical bone. Bone 30: 445‐452, 2002.
 239. Rubin C , Turner S , Bain S , Mallinckrodt C , McLeod K . Low mechanical signals strengthen long bones. Nature (London) 412: 603‐604, 2001.
 240. Sakai A , Sakata T , Tanaka S , Okazaki R , Kunugita N , Norimura T , Nakamura T . Disruption of the p53 gene results in preserved trabecular bone mass and bone formation after mechanical loading. J Bone Miner Res 17: 119‐127, 2002.
 241. Sakata T , Halloran BP , Elalieh HZ , Munson SJ , Rudner L , Venton L , Ginzinger D , Rosen CJ , Bikle DD . Skeletal unloading induces resistance to insulin‐like growth factor I on bone formation. Bone 32: 669‐680, 2003.
 242. Sakata T , Wang Y , Halloran BP , Elalieh HZ , Cao J , Bikle DD . Skeletal unloading induces resistance to insulin‐like growth factor‐I (IGF‐I) by inhibiting activation of the IGF‐I signaling pathways. J Bone Miner Res 19: 436‐446, 2004.
 243. Sakurai T , Sawada Y , Yoshimoto M , Kawai M , Miyakoshi J . Radiation‐induced reduction of osteoblast differentiation in C2C12 cells. J Radiat Res 48: 515‐521, 2007.
 244. Sayson JV , Hargens AR . Pathophysiology of low back pain during exposure to microgravity. Aviat Space Environ Med 79: 365‐373, 2008.
 245. Schneider V , Oganov V , LeBlanc A , Rakmonov A , Taggad L , Bakulin A , Huntoon C , Grigoriev A , Varonin L . Bone and body mass changes during space flight. Acta Astronaut 36: 463‐466, 1995.
 246. Scott J , Warburton D , Williams D , Whelan S , Krassioukov A . Challenges, concerns and common problems: Physiological consequences of spinal cord injury and microgravity. Spinal Cord 49: 4‐16, 2011.
 247. Seeman E . Modeling and remodeling: The cellular machinery responsible for the gain and loss of bone's material and structural strength. In: Bilezikian J , Raisz L , Martin T , editors. Principles of Bone Biology, 3rd edition (3rd ed.). Boston: Academic Press, 2008, pp. 3‐28.
 248. Shackelford L , LeBlanc A , Driscoll T , Evans H , Rianon N , Smith S , Spector E , Feeback D , Lai D . Resistance exercise as a countermeasure to disuse‐induced bone loss. J Appl Physiol 97: 119‐129, 2004.
 249. Shaw SR , Vailas AC , Grindeland RE , Zernicke RF . Effects of a 1‐wk spaceflight on morphological and mechanical properties of growing bone. Am J Physiol Regul Integr Comp Physiol 254: R78‐R83, 1988.
 250. Shen WW , Zhao JH . Pulsed electromagnetic fields stimulation affects BMD and local factor production of rats with disuse osteoporosis. Bioelectromagnetics 31: 113‐119, 2010.
 251. Shimano MM , Volpon JB . Biomechanics and structural adaptations of the rat femur after hindlimb suspension and treadmill running. Braz J Med Biol Res 42: 330‐338, 2009.
 252. Shirazi‐Fard Y , Kupke JS , Bloomfield SA , Hogan HA . Discordant recovery of bone mass and mechanical properties during prolonged recovery from disuse. Bone 52: 433‐443, 2013.
 253. Sibonga JD , Evans HJ , Sung HG , Spector ER , Lang TF , Oganov VS , Bakulin AV , Shackelford LC , LeBlanc AD . Recovery of spaceflight‐induced bone loss: Bone mineral density after long‐duration missions as fitted with an exponential function. Bone 41: 973‐978, 2007.
 254. Simmons DJ , Grynpas MD , Rosenberg GD . Maturation of bone and dentin matrices in rats flown on the Soviet biosatellite Cosmos 1887. FASEB J 4: 29‐33, 1990.
 255. Sinha RK , Shah SA , Hume EL , Tuan RS . The effect of a 5‐day space flight on the immature rat spine. Spine J 2: 239‐243, 2002.
 256. Skutek M , van Griensven M , Zeichen J , Brauer N , Bosch U . Cyclic mechanical stretching enhances secretion of Interleukin 6 in human tendon fibroblasts. Knee Surg Sports Traumatol Arthrosc 9: 322‐326, 2001.
 257. Smith S , Davis‐Street J , Fesperman J , Calkins D , Bawa M , Macias B , Meyer R , Hargens A . Evaluation of treadmill exercise in a lower body negative pressure chamber as a countermeasure for weightlessness‐induced bone loss: A bed rest study with identical twins. J Bone Miner Res 18: 2223‐2230, 2003.
 258. Smith S , Zwart S , Heer M , Baecker N , Evans H , Feiveson A , Shackelford L , LeBlanc A . Effects of artificial gravity during bed rest on bone metabolism in humans. J Appl Physiol 107: 47‐53, 2009.
 259. Smith S , Zwart S , Heer M , Lee S , Baecker N , Meuche S , Macias B , Shackelford L , Schneider S , Hargens A . WISE‐2005: Supine treadmill exercise within lower body negative pressure and flywheel resistive exercise as a countermeasure to bed rest‐induced bone loss in women during 60‐day simulated microgravity. Bone 42: 572‐581, 2008.
 260. Smith SM , Heer M . Calcium and bone metabolism during space flight. Nutrition 18: 849‐852, 2002.
 261. Smith SM , Heer MA , Shackelford LC , Sibonga JD , Ploutz‐Snyder L , Zwart SR . Benefits for bone from resistance exercise and nutrition in long‐duration spaceflight: Evidence from biochemistry and densitometry. J Bone Miner Res 27: 1896‐1906, 2012.
 262. Smith SM , Wastney ME , Morukov BV , Larina IM , Nyquist LE , Abrams SA , Taran EN , Shih C , Nillen JL , Davis‐Street JE , Rice BL , Lane HW . Calcium metabolism before, during, and after a 3‐mo spaceflight: Kinetic and biochemical changes. Am J Physiol Regul Integr Comp Physiol 277: R1‐R10, 1999.
 263. Smith SM , Wastney ME , O'Brien KO , Morukov BV , Larina IM , Abrams SA , Davis‐Street JE , Oganov V , Shackelford LC . Bone markers, calcium metabolism, and calcium kinetics during extended‐duration space flight on the Mir space station. J Bone Miner Res 20: 208‐218, 2005.
 264. Soderqvist A , Ekstrom W , Ponzer S , Pettersson H , Cederholm T , Dalen N , Hedstrom M , Tidermark J , Stockholm Hip Fracture G. Prediction of mortality in elderly patients with hip fractures: A two‐year prospective study of 1,944 patients. Gerontology 55: 496‐504, 2009.
 265. Spangenburg EE , Abraha T , Childs TE , Pattison JS , Booth FW . Skeletal muscle IGF‐binding protein‐3 and ‐5 expressions are age, muscle, and load dependent. Am J Physiol Endocrinol Metab 284: E340‐350, 2003.
 266. Spatz J , Fields E , Yu E , Pajevic P , Bouxsein M , Sibonga J , Zwart S , Smith S . Serum sclerostin increases in healthy adult men during bed rest. J Clin Endocrinol Metab 97: E1736‐E1740, 2012.
 267. Spatz JM , Ellman R , Cloutier AM , Louis L , van Vliet M , Suva LJ , Dwyer D , Stolina M , Ke HZ , Bouxsein ML . Sclerostin antibody inhibits skeletal deterioration due to reduced mechanical loading. J Bone Miner Res 28: 865‐874, 2013.
 268. Spector E , Smith S , Sibonga J . Skeletal effects of long‐duration head‐down bed rest. Aviat Space Environ Med 80: A23‐A28, 2009.
 269. Spengler DM , Morey ER , Carter DR , Turner RT , Baylink DJ . Effects of spaceflight on structural and material strength of growing bone. Proc Soc Exp Biol Med 174: 224‐228, 1983.
 270. Squire M , Brazin A , Keng Y , Judex S . Baseline bone morphometry and cellular activity modulate the degree of bone loss in the appendicular skeleton during disuse. Bone 42: 341‐349, 2008.
 271. St Pierre BA and Tidball JG . Macrophage activation and muscle remodeling at myotendinous junctions after modifications in muscle loading. Am J Pathol 145: 1463‐1471, 1994.
 272. Stein T , Schluter M , Moldawer L . Endocrine relationships during human spaceflight. Am J Physiol 276: E155‐E162, 1999.
 273. Stephens D, Jr. , Townsend L , Hoff J . Interplanetary crew dose estimates for worst case solar particle events based on historical data for the Carrington flare of 1859. Acta Astronaut 56: 969‐974, 2005.
 274. Stupakov G , Kazeikin V , Morukov B . Microgravity‐induced changes in human bone strength. Physiologist 32: S41‐S44, 1989.
 275. Suda T , Takahashi N , Udagawa N , Jimi E , Gillespie M , Martin T . Modulation of osteoclast differentiation and function by the new members of the tumor necrosis factor receptor and ligand families. Endocr Rev 20: 345‐357, 1999.
 276. Swift J , Hogan H , Bloomfield S . Beta‐1 adrenergic agonist dobutamine mitigates unloading‐induced bone loss by maintaining formation. Med Sci Exerc Sports 45: 1665‐1673, 2013.
 277. Swift JM , Swift SN , Nilsson MI , Hogan HA , Bouse SD , Bloomfield SA . Cancellous bone formation response to simulated resistance training during disuse is blunted by concurrent alendronate treatment. J Bone Miner Res 26: 2140‐2150, 2011.
 278. Szomor ZL , Appleyard RC , Murrell GA . Overexpression of nitric oxide synthases in tendon overuse. J Orthop Res 24: 80‐86, 2006.
 279. Szulc P , Delmas P . Biochemical markers of bone turnover in osteoporosis. In: Rosen C , editor. Primer on the Metabolic Bone Diseases and Disorders of Mineral Metabolism (7th ed.) Washington, DC: American Society of Bone and Mineral Research, 2008, pp. 174‐179.
 280. Szymczyk K , Shapiro I , Adams C . Ionizing radiation sensitizes bone cells to apoptosis. Bone 34: 148‐156, 2004.
 281. Takahashi N , Udagawa N , Kobayashi Y . Osteoclast generation. In: Bilezikian J , Raisz L , Martin T , editors. Principles of Bone Biology (3rd ed.). San Diego: Academic Press, Inc., 2008, pp. 175‐192.
 282. Takayanagi H . Inflammatory bone destruction and osteoimmunology. J Periodontal Res 40: 287‐293, 2005.
 283. Takeda S , Elefteriou F , Levasseur R , Liu X , Zhao L , Parker K , Armstrong D , Ducy P , Karsenty G . Leptin regulates bone formation via the sympathetic nervous system. Cell 111: 305‐317, 2002.
 284. Tavella S , Ruggiu A , Giuliani A , Brun F , Canciani B , Manescu A , Marozzi K , Cilli M , Costa D , Liu Y , Piccardi F , Tasso R , Tromba G , Rustichelli F , Cancedda R . Bone turnover in wild type and pleiotrophin‐transgenic mice housed for three months in the International Space Station (ISS). PLoS One 7: e33179, 2012.
 285. Taylor C , Hanna M , Behnke B , Stabley J , McCullough D , Davis III R , Ghosh P , Papadopoulos A , Muller‐Delp J , Delp M . Spaceflight‐induced alterations in cerebral artery vasoconstrictor, mechanical, and structural properties: Implications for elevated cerebral perfusion and intracranial pressure. FASEB J 27: 2282‐2292, 2013.
 286. Thomsen J , Morukov B , Vico L , Alexandre C , Saparin P , Gowin W . Cancellous bone structure of iliac crest biopsies following 370 days of head‐down bed rest. Aviat Space Environ Med 76: 915‐922, 2005.
 287. Thornton GM , Shrive NG , Frank CB . Healing ligaments have decreased cyclic modulus compared to normal ligaments and immobilization further compromises healing ligament response to cyclic loading. J Orthop Res 21: 716‐722, 2003.
 288. Tidball JG . Distribution of collagens and fibronectin in the subepicardium during avian cardiac development. Anat Embryol 185: 155‐162, 1992.
 289. Tidball JG , Spencer MJ . PDGF stimulation induces phosphorylation of talin and cytoskeletal reorganization in skeletal muscle. J Cell Biol 123: 627‐635, 1993.
 290. Tilton FE , Degioanni JJC , Schneider VS . Long‐term follow‐up of Skylab bone demineralization. Aviat Space Environ Med 51: 1209‐1213, 1980.
 291. Trudel G , Payne M , Madler B , Ramachandran N , Lecompte M , Wade C , Biolo G , Blanc S , Hughson R , Bear L , Uhthoff H . Bone marrow fat accumulation after 60 days of bed rest persisted 1 year after activities were resumed along with hemopoietic stimulation: The Women International Space for Exploration study. J Appl Physiol 107: 540‐548, 2009.
 292. Turner A . How to select your animal model for osteoporosis research. In: Duque G , Watanabe K , editors. Osteoporosis Research: Animal Models. London: Springer‐Verlag, 2011, pp. 1‐12.
 293. Turner N , Braby L , Ford J , Lupton J . Opportunities for nutritional amelioration of radiation‐induced cellular damage. Nutrition 18: 904‐912, 2002.
 294. Turner R , Evans G , Wakley G . Spaceflight results in depressed cancellous bone formation in rat humeri. Aviat Space Environ Med 66: 770‐774, 1995.
 295. Turner RT . What do we know about the effects of spaceflight on bone? J Appl Physiol 89: 840‐847, 2000.
 296. Vailas AC , Deluna DM , Lewis LL , Curwin SL , Roy RR , Alford EK . Adaptation of bone and tendon to prolonged hindlimb suspension in rats. J Appl Physiol 65: 373‐376, 1988.
 297. Vailas AC , Zernicke RF , Grindeland RE , Kaplansky A , Durnova GN , Li KC , Martinez DA . Effects of spaceflight on rat humerus geometry, biomechanics, and biochemistry. FASEB J 4: 47‐54, 1990.
 298. Vailas AC , Zernicke RF , Grindeland RE , Li KC . Suspension effects on rat femur‐medial collateral ligament‐tibia unit. Am J Physiol 258: R724‐728, 1990.
 299. Van Loon JJ , Bervoets DJ , Burger EH , Dieudonne SC , Hagen JW , Semeins CM , Doulabi BZ , Veldhuijzen JP . Decreased mineralization and increased calcium release in isolated fetal mouse long bones under near weightlessness. J Bone Miner Res 10: 550‐557, 1995.
 300. Vanderby R, Jr. , Vailas AC , Graf BK , Thielke RJ , Ulm MJ , Kohles SS , Kunz DN . Acute modification of biomechanical properties of the bone‐ligament insertion to rat limb unweighting. FASEB J 4: 2499‐2505, 1990.
 301. Veldhuijzen JP , Van Loon JJ , Haaijman CM , Bervoets TJ . Short‐term exposure to 1‐g conditions counteracts micro‐g effects on mineralization in isolated fetal mouse long bones. ASGSB Bull 9: 89, 1995.
 302. Verborgt O , Gibson G , Schaffler M . Loss of osteocyte integrity in association with microdamage and bone remodeling after fatigue in vivo. J Bone Miner Res 15: 60‐67, 2000.
 303. Vergnaud P , Garnero P , Meunier PJ , Breart G , Kamihagi K , Delmas PD . Undercarboxylated osteocalcin measured with a specific immunoassay predicts hip fracture in elderly women: The EPIDOS study. J Clin Endocrinol Metab 82: 719–724, 1997.
 304. Vernon‐Roberts B , Fazzalari NL , Manthey BA . Pathogenesis of tears of the anulus investigated by multiple‐level transaxial analysis of the T12‐L1 disc. Spine 22: 2641‐2646, 1997.
 305. Vico L , Bourrin S , Genty C , Palle S , Alexandre C . Histomorphometric analyses of cancellous bone from COSMOS 2044 rats. J Appl Physiol 75: 2203‐2208, 1993.
 306. Vico L , Bourrin S , Very JM , Radziszowska M , Collet P , Alexandre C . Bone changes in 6‐mo‐old rats after head‐down suspension and a reambulation period. J Appl Physiol 79: 1426‐1433, 1995.
 307. Vico L , Chappard D , Palle S , Bakulin AV , Novikov VE , Alexandre C . Trabecular bone remodeling after seven days of weightlessness exposure (BIOCOSMOS 1667). Am J Physiol Regul Integr Comp Physiol 255: R243‐R247, 1988.
 308. Vico L , Chappard D , Palle S , Minaire P , Riffat G , Morukov B , Rakmanov S . Effects of a 120 day period of bed‐rest on bone mass and bone cell activities in man: Attempts at countermeasures. Bone Miner 2: 383‐394, 1987.
 309. Vico L , Collet P , Guignandon A , Lafage‐Proust M‐H , Thomas T , Rehailia M , Alexandre C . Effects of long‐term microgravity exposure on cancellous and cortical weight‐bearing bones of cosmonauts. Lancet 355: 1607‐1611, 2000.
 310. Vico L , Novikov VE , Very JM , Alexandre C . Bone histomorphometric comparison of rat tibial metaphysis after 7‐day tail suspension vs. 7‐day spaceflight. Aviat Space Environ Med 62: 26‐31, 1991.
 311. Vunjak‐Novakovic G , Altman G , Horan R , Kaplan DL . Tissue engineering of ligaments. Annu Rev Biomed Eng 6: 131‐156, 2004.
 312. Wagner EB , Granzella NP , Saito H , Newman DJ , Young LR , Bouxsein ML . Partial weight suspension: A novel murine model for investigating adaptation to reduced musculoskeletal loading. J Appl Physiol 109: 350‐357, 2010.
 313. Walsh M , Kim N , Kadono Y , Rho J , Lee S , Lorenzo J , Choi Y . Osteoimmunology: Interplay between the immune system and bone metabolism. Annu Rev Immunol 24: 33‐63, 2006.
 314. Wang K , Shi Y , Denhardt D . Osteopontin regulates hindlimb‐unloading‐induced lymphoid organ atrophy and weight loss by modulating corticosteroid production. Proc Natl Acad Sci U S A 104: 14777‐14782, 2007.
 315. Wang Y , Liu W , Masuyama R , Fukuyama R , Ito M , Zhang Q , Komori H , Murakami T , Moriishi T , Miyazaki T , Kitazawa R , Yoshida C , Kawai Y , Izumi S , Komori T . Pyruvate dehydrogenase kinase 4 induces bone loss of unloading by promoting osteoclastogenesis. Bone 50: 409‐419, 2012.
 316. Warden SJ , Galley MR , Richard JS , George LA , Dirks RC , Guildenbecher EA , Judd AM , Robling AG , Fuchs RK . Reduced gravitational loading does not account for the skeletal effect of botulinum toxin‐induced muscle inhibition suggesting a direct effect of muscle on bone. Bone 54: 98‐105, 2013.
 317. Warner SE , Sanford DA , Becker BA , Bain SD , Srinivasan S , Gross TS . Botox induced muscle paralysis rapidly degrades bone. Bone 38: 257‐264, 2006.
 318. Watanabe Y , Ohshima H , Mizuno K , Sekiguchi C , Fukunaga M , Kohri K , Rittweger J , Felsenberg D , Matsumoto T , Nakamura T . Intravenous pamidronate prevents femoral bone loss and renal stone formation during 90‐day bed rest. J Bone Miner Res 19: 1771‐1778, 2004.
 319. Wei S , Siegal G . Mechanisms modulating inflammatory osteolysis: A review with insights into therapeutic targets. Pathol Res Pract 204: 695‐706, 2008.
 320. Weinbaum S , Cowin SC , Zeng Y . A model for the excitation of osteocytes by mechanical loading‐induced bone fluid shear stresses. J Biomech 27: 339‐360, 1994.
 321. Weinstein R . Glucocorticoid‐induced bone disease. In: Rosen C , Bouillon R , Compston J , Rosen V , editors. Primer on the Metabolic Bone Diseases and Disorders of Mineral Metabolism (Eighth ed.). Somerset, NJ: Wiley‐Blackwell, 2013, pp. 473‐481.
 322. Wernle J , Damron T , Allen M , Mann K . Local irradiation alters bone morphology and increases bone fragility. J Biomech 43: 2738‐2746, 2010.
 323. Whitson PA , Pietrzyk RA , Jones JA , Nelman‐Gonzalez M , Hudson EK , Sams CF . Effect of potassium citrate therapy on the risk of renal stone formation during spaceflight. J Urol 182: 2490‐2496, 2009.
 324. Willey JS , Livingston EW , Robbins ME , Bourland JD , Tirado‐Lee L , Smith‐Sielicki H , Bateman TA . Risedronate prevents early radiation‐induced osteoporosis in mice at multiple skeletal locations. Bone 46: 101‐111, 2010.
 325. Willey JS , Lloyd SA , Nelson GA , Bateman TA . Ionizing radiation and bone loss: Space exploration and clinical therapy applications. Clin Rev Bone Miner Metab 9: 54‐62, 2011.
 326. Willey JS , Lloyd SA , Robbins ME , Bourland JD , Smith‐Sielicki H , Bowman LC , Norrdin RW , Bateman TA . Early increase in osteoclast number in mice after whole‐body irradiation with 2 Gy X rays. Radiat Res 170: 388‐392, 2008.
 327. Wing PC , Tsang IK , Susak L , Gagnon F , Gagnon R , Potts JE . Back pain and spinal changes in microgravity. Orthop Clin North Am 22: 255‐262, 1991.
 328. Wronski T , Morey E . Effect of spaceflight on periosteal bone formation in rats. Am J Physiol Regul Integr Comp Physiol 244: R305‐R309, 1983.
 329. Wronski TJ , Morey‐Holton E , Jee WS . Cosmos 1129: Spaceflight and bone changes. Physiologist 23: S79‐S82, 1980.
 330. Yang P , Jia B , Ding C , Wang Z , Qian A , Shang P . Whole‐body vibration effects on bone before and after hind‐limb unloading in rats. Aviat Space Environ Med 80: 88‐93, 2009.
 331. Yasuoka H , Asazuma T , Nakanishi K , Yoshihara Y , Sugihara A , Tomiya M , Okabayashi T , Nemoto K . Effects of reloading after simulated microgravity on proteoglycan metabolism in the nucleus pulposus and anulus fibrosus of the lumbar intervertebral disc: An experimental study using a rat tail suspension model. Spine 32: E734‐E740, 2007.
 332. Yumoto K , Globus RK , Mojarrab R , Arakaki J , Wang A , Searby ND , Almeida EA , Limoli CL . Short‐term effects of whole‐body exposure to (56)Fe ions in combination with musculoskeletal disuse on bone cells. Radiat Res 173: 494‐504, 2010.
 333. Zamora AJ , Carnino A , Roffino S , Marini JF . Respective effects of hindlimb suspension, confinement and spaceflight on myotendinous junction ultrastructure. Acta Astronaut 36: 693‐706, 1995.
 334. Zerath E , Novikov V , Leblanc A , Bakulin A , Oganov V , Grynpas M . Effects of spaceflight on bone mineralization in the rhesus monkey. J Appl Physiol 81: 194‐200, 1996.
 335. Zernicke RF , Hou JC , Vailas AC , Nishimoto M , Patel S , Shaw SR . Changes in geometrical and biomechanical properties of immature male and female rat tibia. Aviat Space Environ Med 61: 814‐820, 1990.
 336. Zernicke RF , Vailas AC , Grindeland RE , Kaplansky A , Salem GJ , Martinez DA . Spaceflight effects on biomechanical and biochemical properties of rat vertebrae. Am J Physiol 258: R1327‐R1332, 1990.
 337. Zerwekh J , Ruml L , Gottschalk F , Pak C . The effects of twelve weeks of bed rest on bone histology, biochemical markers of bone turnover, and calcium homoeostasis in eleven normal subjects. J Bone Miner Res 13: 1594‐1601, 1998.
 338. Zhang B , Cory E , Bhattacharya R , Sah R , Hargens A . Fifteen days of microgravity causes growth in calvaria of mice. Bone 56: 290‐295, 2013.
 339. Zhang R , Supowit SC , Klein GL , Lu Z , Christensen MD , Lozano R , Simmons DJ . Rat tail suspension reduces messenger RNA level for growth factors and osteopontin and decreases the osteoblastic differentiation of bone marrow stromal cells. J Bone Miner Res 10: 415‐423, 1995.
 340. Zhong N , Garman RA , Squire ME , Donahue LR , Rubin CT , Hadjiargyrou M , Judex S . Gene expression patterns in bone after 4 days of hind‐limb unloading in two inbred strains of mice. Aviat Space Environ Med 76: 530‐535, 2005.
 341. Zittermann A , Heer M , Caillot‐Augusseau A , Rettberg P , Scheld K , Drummer C , Alexandre C , Horneck G , Vorobiev D , Stehle P . Microgravity inhibits intestinal calcium absorption as shown by a stable strontium test. Eur J Clin Invest 30: 1036‐1043, 2000.
 342. Zwart S , Davis‐Street J , Paddon‐Jones D , Ferrando A , Wolfe R , Smith S . Amino acid supplementation alters bone metabolism during simulated weightlessness. J Appl Physiol 99: 134‐140, 2005.
 343. Zwart S , Hargens A , Lee S , Macias B , Watenpaugh D , Tse K , Smith S . Lower body negative pressure treadmill exercise as a countermeasure for bed rest‐induced bone loss in female identical twins. Bone 40: 529‐537, 2007.
 344. Zwart S , Hargens A , Smith S . The ratio of animal protein intake to potassium intake is a predictor of bone resorption in space flight analogues and in ambulatory subjects. Am J Clin Nutr 80: 1058‐1065, 2004.
 345. Zwart S , Morgan J , Smith S . Iron status and its relations with oxidative damage and bone loss during long‐duration space flight on the International Space Station. Am J Clin Nutr 98: 217‐223, 2013.
 346. Zwart S , Pierson D , Mehta S , Gonda S , Smith S . Capacity of omega‐3 fatty acids or eicosapentaenoic acid to counteract weightless‐induced bone loss by inhibiting NF‐kB activation: From cells to bed rest to astronauts. J Bone Miner Res 25: 1049‐1057, 2010.
 347. Zwart SR , Booth SL , Peterson JW , Wang Z , Smith SM . Vitamin K status in spaceflight and ground‐based models of spaceflight. J Bone Miner Res 26: 948‐954, 2011.

Contact Editor

Submit a note to the editor about this article by filling in the form below.

* Required Field

How to Cite

Susan A. Bloomfield, Daniel A. Martinez, Ramon D. Boudreaux, Anita V. Mantri. Microgravity Stress: Bone and Connective Tissue. Compr Physiol 2016, null: 645-686. doi: 10.1002/cphy.c130027