References |
1. |
Allard
MF
,
Henning
SL
,
Wambolt
RB
,
Granleese
SR
,
English
DR
, and
Lopaschuk
GD
. Glycogen metabolism in the aerobic hypertrophied rat heart. Circulation
96: 676‐682, 1997. |
2. |
Allard
MF
,
Schonekess
BO
,
Henning
SL
,
English
DR
, and
Lopaschuk
GD
. Contribution of oxidative metabolism and glycolysis to ATP production in hypertrophied hearts. The American Journal of Physiology
267: H742‐750, 1994. |
3. |
Allard
MF
,
Wambolt
RB
,
Longnus
SL
,
Grist
M
,
Lydell
CP
,
Parsons
HL
,
Rodrigues
B
,
Hall
JL
,
Stanley
WC
, and
Bondy
GP
. Hypertrophied rat hearts are less responsive to the metabolic and functional effects of insulin. American Journal of Physiology Endocrinology and Metabolism
279: E487‐493, 2000. |
4. |
Amr Moussa
JL
. AMPK in myocardial infarction and diabetes: the yin/yang effect. Acta Pharmaceutica Sinica B
2: 10, 2012. |
5. |
An
D
,
Kewalramani
G
,
Qi
D
,
Pulinilkunnil
T
,
Ghosh
S
,
Abrahani
A
,
Wambolt
R
,
Allard
M
,
Innis
SM
, and
Rodrigues
B
. beta‐Agonist stimulation produces changes in cardiac AMPK and coronary lumen LPL only during increased workload. American Journal of Physiology Endocrinology and Metabolism
288: E1120‐1127, 2005. |
6. |
Apstein
CS
,
Gravino
FN
, and
Haudenschild
CC
. Determinants of a protective effect of glucose and insulin on the ischemic myocardium. Effects on contractile function, diastolic compliance, metabolism, and ultrastructure during ischemia and reperfusion. Circulation Research
52: 515‐526, 1983. |
7. |
Augustus
AS
,
Kako
Y
,
Yagyu
H
, and
Goldberg
IJ
. Routes of FA delivery to cardiac muscle: Modulation of lipoprotein lipolysis alters uptake of TG‐derived FA. American Journal of Physiology Endocrinology and Metabolism
284: E331‐339, 2003. |
8. |
Bae
JS
,
Yang
LK
,
Manithody
C
, and
Rezaie
AR
. Engineering a disulfide bond to stabilize the calcium‐binding loop of activated protein C eliminates its anticoagulant but not its protective signaling properties. Journal of Biological Chemistry
282: 9251‐9259, 2007. |
9. |
Barnes
K
,
Ingram
JC
,
Porras
OH
,
Barros
LF
,
Hudson
ER
,
Fryer
LG
,
Foufelle
F
,
Carling
D
,
Hardie
DG
, and
Baldwin
SA
. Activation of GLUT1 by metabolic and osmotic stress: Potential involvement of AMP‐activated protein kinase (AMPK). Journal of Cell Science
115: 2433‐2442, 2002. |
10. |
Baron
SJ
,
Li
J
,
Russell
RR
,
Neumann
D
,
Miller
EJ
,
Tuerk
R
,
Wallimann
T
,
Hurley
RL
,
Witters
LA
, and
Young
LH
. Dual mechanisms regulating AMPK kinase action in the ischemic heart. Circulation Research
96: 337‐345, 2005. |
11. |
Beauloye
C
,
Bertrand
L
,
Horman
S
, and
Hue
L
. AMPK activation, a preventive therapeutic target in the transition from cardiac injury to heart failure. Cardiovascular Research
90: 224‐233, 2011. |
12. |
Beauloye
C
,
Marsin
AS
,
Bertrand
L
,
Krause
U
,
Hardie
DG
,
Vanoverschelde
JL
, and
Hue
L
. Insulin antagonizes AMP‐activated protein kinase activation by ischemia or anoxia in rat hearts, without affecting total adenine nucleotides. FEBS Letters
505: 348‐352, 2001. |
13. |
Bolster
DR
,
Crozier
SJ
,
Kimball
SR
, and
Jefferson
LS
. AMP‐activated protein kinase suppresses protein synthesis in rat skeletal muscle through down‐regulated mammalian target of rapamycin (mTOR) signaling. Journal of Biological Chemistry
277: 23977‐23980, 2002. |
14. |
Browne
GJ
,
Finn
SG
, and
Proud
CG
. Stimulation of the AMP‐activated protein kinase leads to activation of eukaryotic elongation factor 2 kinase and to its phosphorylation at a novel site, Serine 398. Journal of Biological Chemistry
279: 12220‐12231, 2004. |
15. |
Camps
M
,
Castello
A
,
Munoz
P
,
Monfar
M
,
Testar
X
,
Palacin
M
, and
Zorzano
A
. Effect of diabetes and fasting on GLUT‐4 (muscle/fat) glucose‐transporter expression in insulin‐sensitive tissues. Heterogeneous response in heart, red and white muscle. The Biochemical Journal
282 (Pt 3): 765‐772, 1992. |
16. |
Canto
C
and
Auwerx
J
. PGC‐1alpha, SIRT1 and AMPK, an energy sensing network that controls energy expenditure. Current Opinion in Lipidology
20: 98‐105, 2009. |
17. |
Carling
D
and
Hardie
DG
. The substrate and sequence specificity of the AMP‐activated protein kinase. Phosphorylation of glycogen synthase and phosphorylase kinase. Biochimica et Biophysica Acta
1012: 81‐86, 1989. |
18. |
Caterson
ID
,
Fuller
SJ
, and
Randle
PJ
. Effect of the fatty acid oxidation inhibitor 2‐tetradecylglycidic acid on pyruvate dehydrogenase complex activity in starved and alloxan‐diabetic rats. The Biochemical Journal
208: 53‐60, 1982. |
19. |
Chan
AY
,
Dolinsky
VW
,
Soltys
CL
,
Viollet
B
,
Baksh
S
,
Light
PE
, and
Dyck
JR
. Resveratrol inhibits cardiac hypertrophy via AMP‐activated protein kinase and Akt. The Journal of Biological Chemistry
283: 24194‐24201, 2008. |
20. |
Chan
AY
,
Soltys
CL
,
Young
ME
,
Proud
CG
, and
Dyck
JR
. Activation of AMP‐activated protein kinase inhibits protein synthesis associated with hypertrophy in the cardiac myocyte. The Journal of Biological Chemistry
279: 32771‐32779, 2004. |
21. |
Chen
JC
,
Warshaw
JB
, and
Sanadi
DR
. Regulation of mitochondrial respiration in senescence. Journal of Cellular Physiology
80: 141‐148, 1972. |
22. |
Chen
V
,
Ianuzzo
CD
,
Fong
BC
, and
Spitzer
JJ
. The effects of acute and chronic diabetes on myocardial metabolism in rats. Diabetes
33: 1078‐1084, 1984. |
23. |
Costa
R
,
Morrison
A
,
Wang
J
,
Manithody
C
,
Li
J
, and
Rezaie
AR
. Activated protein C modulates cardiac metabolism and augments autophagy in the ischemic heart. Journal of Thrombosis and Haemostasis: JTH
10: 1736‐1744, 2012. |
24. |
Costa
R
,
Morrison
A
,
Wang
J
,
Manithody
C
,
Li
J
, and
Rezaie
AR
. Activated protein C modulates cardiac metabolism and augments autophagy in the ischemic heart. Journal of Thrombosis and Haemostasis
10: 1736‐1744, 2012. |
25. |
Cusack
BJ
,
Mushlin
PS
,
Andrejuk
T
,
Voulelis
LD
, and
Olson
RD
. Aging alters the force‐frequency relationship and toxicity of oxidative stress in rabbit heart. Life Sciences
48: 1769‐1777, 1991. |
26. | da Silva
Xavier
G
,
Leclerc
I
,
Varadi
A
,
Tsuboi
T
,
Moule
SK
, and
Rutter
GA
. Role for AMP‐activated protein kinase in glucose‐stimulated insulin secretion and preproinsulin gene expression. The Biochemical Journal
371: 761‐774, 2003. |
27. |
Degli Esposti
M
and
McLennan
H
. Mitochondria and cells produce reactive oxygen species in virtual anaerobiosis: Relevance to ceramide‐induced apoptosis. FEBS Letters
430: 338‐342, 1998. |
28. |
Denton
RM
and
Randle
PJ
. Concentrations of glycerides and phospholipids in rat heart and gastrocnemius muscles. Effects of alloxan‐diabetes and perfusion. The Biochemical Journal
104: 416‐422, 1967. |
29. |
Dolinsky
VW
and
Dyck
JRB
. Role of AMP‐activated protein kinase in healthy and diseased hearts. Am J Physiol‐Heart C
291: H2557‐H2569, 2006. |
30. |
Drake
AJ
,
Haines
JR
, and
Noble
MI
. Preferential uptake of lactate by the normal myocardium in dogs. Cardiovascular Research
14: 65‐72, 1980. |
31. |
Du
JH
,
Guan
TJ
,
Zhang
H
,
Xia
Y
,
Liu
F
, and
Zhang
YY
. Inhibitory crosstalk between ERK and AMPK in the growth and proliferation of cardiac fibroblasts. Biochemical and Biophysical Research Communications
368: 402‐407, 2008. |
32. |
Dyck
JR
,
Kudo
N
,
Barr
AJ
,
Davies
SP
,
Hardie
DG
, and
Lopaschuk
GD
. Phosphorylation control of cardiac acetyl‐CoA carboxylase by cAMP‐dependent protein kinase and 5′‐AMP activated protein kinase. European Journal of Biochemistry/FEBS
262: 184‐190, 1999. |
33. |
Dyck
JR
and
Lopaschuk
GD
. AMPK alterations in cardiac physiology and pathology: Enemy or ally? The Journal of Physiology
574: 95‐112, 2006. |
34. |
El Alaoui‐Talibi
Z
,
Guendouz
A
,
Moravec
M
, and
Moravec
J
. Control of oxidative metabolism in volume‐overloaded rat hearts: Effect of propionyl‐L‐carnitine. The American Journal of Physiology
272: H1615‐1624, 1997. |
35. |
Esmon
CT
. Molecular events that control the protein‐C anticoagulant pathway. Thrombosis and Haemostasis
70: 29‐35, 1993. |
36. |
Eurich
DT
,
Majumdar
SR
,
McAlister
FA
,
Tsuyuki
RT
, and
Johnson
JA
. Improved clinical outcomes associated with metformin in patients with diabetes and heart failure. Diabetes Care
28: 2345‐2351, 2005. |
37. |
Ferdinandy
P
,
Schulz
R
, and
Baxter
GF
. Interaction of cardiovascular risk factors with myocardial ischemia/reperfusion injury, preconditioning, and postconditioning. Pharmacological Reviews
59: 418‐458, 2007. |
38. |
Foretz
M
,
Ancellin
N
,
Andreelli
F
,
Saintillan
Y
,
Grondin
P
,
Kahn
A
,
Thorens
B
,
Vaulont
S
, and
Viollet
B
. Short‐term overexpression of a constitutively active form of AMP‐activated protein kinase in the liver leads to mild hypoglycemia and fatty liver. Diabetes
54: 1331‐1339, 2005. |
39. |
Fraser
H
,
Lopaschuk
GD
, and
Clanachan
AS
. Alteration of glycogen and glucose metabolism in ischaemic and post‐ischaemic working rat hearts by adenosine A1 receptor stimulation. British Journal of Pharmacology
128: 197‐205, 1999. |
40. |
French
TJ
,
Holness
MJ
,
MacLennan
PA
, and
Sugden
MC
. Effects of nutritional status and acute variation in substrate supply on cardiac and skeletal‐muscle fructose 2,6‐bisphosphate concentrations. The Biochemical Journal
250: 773‐779, 1988. |
41. |
Fryer
LG
,
Foufelle
F
,
Barnes
K
,
Baldwin
SA
,
Woods
A
, and
Carling
D
. Characterization of the role of the AMP‐activated protein kinase in the stimulation of glucose transport in skeletal muscle cells. The Biochemical Journal
363: 167‐174, 2002. |
42. |
Fujii
N
,
Hayashi
T
,
Hirshman
MF
,
Smith
JT
,
Habinowski
SA
,
Kaijser
L
,
Mu
J
,
Ljungqvist
O
,
Birnbaum
MJ
,
Witters
LA
,
Thorell
A
, and
Goodyear
LJ
. Exercise induces isoform‐specific increase in 5′AMP‐activated protein kinase activity in human skeletal muscle. Biochemical and Biophysical Research Communications
273: 1150‐1155, 2000. |
43. |
Gamble
J
and
Lopaschuk
GD
. Glycolysis and glucose‐oxidation during reperfusion of ischemic hearts from diabetic rats. Bba‐Mol Basis Dis
1225: 191‐199, 1994. |
44. |
Garvey
WT
,
Hardin
D
,
Juhaszova
M
, and
Dominguez
JH
. Effects of diabetes on myocardial glucose transport system in rats: Implications for diabetic cardiomyopathy. The AmericanJournal of Physiology
264: H837‐844, 1993. |
45. |
Gong
H
,
Xie
J
,
Zhang
N
,
Yao
L
, and
Zhang
Y
. MEF2A binding to the Glut4 promoter occurs via an AMPKalpha2‐dependent mechanism. Medicine and Science in Sports and Exercise
43: 1441‐1450, 2011. |
46. |
Goodman
MN
,
Dluz
SM
,
McElaney
MA
,
Belur
E
, and
Ruderman
NB
. Glucose uptake and insulin sensitivity in rat muscle: Changes during 3‐96 weeks of age. The American Journal of Physiology
244: E93‐100, 1983. |
47. |
Greenberg
CC
,
Jurczak
MJ
,
Danos
AM
, and
Brady
MJ
. Glycogen branches out: New perspectives on the role of glycogen metabolism in the integration of metabolic pathways. American Journal of Physiology Endocrinology and Metabolism
291: E1‐8, 2006. |
48. |
Habinowski
SA
,
Hirshman
M
,
Sakamoto
K
,
Kemp
BE
,
Gould
SJ
,
Goodyear
LJ
, and
Witters
LA
. Malonyl‐CoA decarboxylase is not a substrate of AMP‐activated protein kinase in rat fast‐twitch skeletal muscle or an islet cell line. Archives of Biochemistry and Biophysics
396: 71‐79, 2001. |
49. |
Hall
JL
,
Mazzeo
RS
,
Podolin
DA
,
Cartee
GD
, and
Stanley
WC
. Exercise training does not compensate for age‐related decrease in myocardial GLUT‐4 content. Journal of Applied Physiology
76: 328‐332, 1994. |
50. |
Hall
JL
,
Stanley
WC
,
Lopaschuk
GD
,
Wisneski
JA
,
Pizzurro
RD
,
Hamilton
CD
, and
McCormack
JG
. Impaired pyruvate oxidation but normal glucose uptake in diabetic pig heart during dobutamine‐induced work. The American Journal of Physiology
271: H2320‐2329, 1996. |
51. |
Hansford
RG
. Bioenergetics in aging. Biochimica et Biophysica Acta
726: 41‐80, 1983. |
52. |
Hansford
RG
and
Cohen
L
. Relative importance of pyruvate dehydrogenase interconversion and feed‐back inhibition in the effect of fatty acids on pyruvate oxidation by rat heart mitochondria. Archives of Biochemistry and Biophysics
191: 65‐81, 1978. |
53. |
Hardie
DG
. AMP‐activated protein kinase as a drug target. Annu Rev Pharmacol
47: 185‐210, 2007. |
54. |
Hardie
DG
. AMPK and SNF1: Snuffing out stress. Cell Metabolism
6: 339‐340, 2007. |
55. |
Hardie
DG
and
Carling
D
. The AMP‐activated protein kinase–fuel gauge of the mammalian cell? European Journal of Biochemistry/FEBS
246: 259‐273, 1997. |
56. |
Hardie
DG
,
Carling
D
, and
Carlson
M
. The AMP‐activated/SNF1 protein kinase subfamily: metabolic sensors of the eukaryotic cell?
Annual Review of Biochemistry
67: 821‐855, 1998. |
57. |
Hardie
DG
,
Ross
FA
, and
Hawley
SA
. AMPK: A nutrient and energy sensor that maintains energy homeostasis. Nature Reviews Molecular Cell Biology
13: 251‐262, 2012. |
58. |
Hausenloy
DJ
and
Yellon
DM
. New directions for protecting the heart against ischaemia‐reperfusion injury: Targeting the reperfusion injury salvage kinase (RISK)‐pathway. Cardiovascular Research
61: 448‐460, 2004. |
59. |
Hayashi
T
,
Hirshman
MF
,
Fujii
N
,
Habinowski
SA
,
Witters
LA
, and
Goodyear
LJ
. Metabolic stress and altered glucose transport: Activation of AMP‐activated protein kinase as a unifying coupling mechanism. Diabetes
49: 527‐531, 2000. |
60. |
Home
PD
,
Pocock
SJ
,
Beck‐Nielsen
H
,
Curtis
PS
,
Gomis
R
,
Hanefeld
M
,
Jones
NP
,
Komajda
M
,
McMurray
JJV
, and
Team
RS
. Rosiglitazone evaluated for cardiovascular outcomes in oral agent combination therapy for type 2 diabetes (RECORD): A multicentre, randomised, open‐label trial. Lancet
373: 2125‐2135, 2009. |
61. |
Hudson
ER
,
Pan
DA
,
James
J
,
Lucocq
JM
,
Hawley
SA
,
Green
KA
,
Baba
O
,
Terashima
T
, and
Hardie
DG
. A novel domain in AMP‐activated protein kinase causes glycogen storage bodies similar to those seen in hereditary cardiac arrhythmias. Current Biology: CB
13: 861‐866, 2003. |
62. |
Hue
L
,
Beauloye
C
,
Marsin
AS
,
Bertrand
L
,
Horman
S
, and
Rider
MH
. Insulin and ischemia stimulate glycolysis by acting on the same targets through different and opposing signaling pathways. Journal of Molecular and Cellular Cardiology
34: 1091‐1097, 2002. |
63. |
Huss
JM
and
Kelly
DP
. Mitochondrial energy metabolism in heart failure: A question of balance. Journal of Clinical Investigation
115: 547‐555, 2005. |
64. |
Ide
T
,
Tsutsui
H
,
Kinugawa
S
,
Utsumi
H
,
Kang
D
,
Hattori
N
,
Uchida
K
,
Arimura
K
,
Egashira
K
, and
Takeshita
A
. Mitochondrial electron transport complex I is a potential source of oxygen free radicals in the failing myocardium. Circulation Research
85: 357‐363, 1999. |
65. |
Inoki
K
,
Zhu
T
, and
Guan
KL
. TSC2 mediates cellular energy response to control cell growth and survival. Cell
115: 577‐590, 2003. |
66. |
Inoki
K
,
Zhu
TQ
, and
Guan
KL
. TSC2 mediates cellular energy response to control cell growth and survival. Cell
115: 577‐590, 2003. |
67. |
Jain
M
,
Liao
R
,
Cui
L
,
D'Agostoni
J
,
Aiello
F
,
Lupak
I
,
Ngoy
S
,
Mortensen
RM
, and
Tian
R
. Cardiac‐specific overexpression of GLUT1 improves survival and prevents the development of heart failure secondary to pressure overload in mice. Circulation
106: 306‐306, 2002. |
68. |
Janero
DR
,
Hreniuk
D
, and
Sharif
HM
. Hydroperoxide‐induced oxidative stress impairs heart muscle cell carbohydrate metabolism. The American Journal of Physiology
266: C179‐188, 1994. |
69. |
Ji
LL
,
Dillon
D
, and
Wu
E
. Myocardial aging: Antioxidant enzyme systems and related biochemical properties. The American Journal of Physiology
261: R386‐392, 1991. |
70. |
Joost
HG
and
Thorens
B
. The extended GLUT‐family of sugar/polyol transport facilitators: nomenclature, sequence characteristics, and potential function of its novel members (review). Molecular Membrane Biology
18: 247‐256, 2001. |
71. |
Kagaya
Y
,
Kanno
Y
,
Takeyama
D
,
Ishide
N
,
Maruyama
Y
,
Takahashi
T
,
Ido
T
, and
Takishima
T
. Effects of long‐term pressure overload on regional myocardial glucose and free fatty acid uptake in rats. A quantitative autoradiographic study. Circulation
81: 1353‐1361, 1990. |
72. |
Kantor
PF
,
Dyck
JR
, and
Lopaschuk
GD
. Fatty acid oxidation in the reperfused ischemic heart. The American Journal of the Medical Sciences
318: 3‐14, 1999. |
73. |
Kates
AM
,
Herrero
P
,
Dence
C
,
Soto
P
,
Srinivasan
M
,
Delano
DG
,
Ehsani
A
, and
Gropler
RJ
. Impact of aging on substrate metabolism by the human heart. Journal of the American College of Cardiology
41: 293‐299, 2003. |
74. |
Kemp
BE
,
Akhill
JS
, and
Scott
JW
. AMPK structure and regulation from three angles. Structure
15: 1161‐1163, 2007. |
75. |
King
LM
and
Opie
LH
. Glucose delivery is a major determinant of glucose utilisation in the ischemic myocardium with a residual coronary flow. Cardiovascular Research
39: 381‐392, 1998. |
76. |
Kolwicz
SC
and
Tian
R
. Glucose metabolism and cardiac hypertrophy. Cardiovascular Research
90: 194‐201, 2011. |
77. |
Kubota
T
,
Miyagishima
M
,
Alvarez
RJ
,
Kormos
R
,
Rosenblum
WD
,
Demetris
AJ
,
Semigran
MJ
,
Dec
GW
,
Holubkov
R
,
McTiernan
CF
,
Mann
DL
,
Feldman
AM
, and
McNamara
DM
. Expression of proinflammatory cytokines in the failing human heart: Comparison of recent‐onset and end‐stage congestive heart failure. The Journal of Heart and Lung Transplantation: The Official Publication of the International Society for Heart Transplantation
19: 819‐824, 2000. |
78. |
Kudo
N
,
Barr
AJ
,
Barr
RL
,
Desai
S
, and
Lopaschuk
GD
. High rates of fatty acid oxidation during reperfusion of ischemic hearts are associated with a decrease in malonyl‐CoA levels due to an increase in 5′‐AMP‐activated protein kinase inhibition of acetyl‐CoA carboxylase. The Journal of Biological Chemistry
270: 17513‐17520, 1995. |
79. |
Kudo
N
,
Gillespie
JG
,
Kung
L
,
Witters
LA
,
Schulz
R
,
Clanachan
AS
, and
Lopaschuk
GD
. Characterization of 5′AMP‐activated protein kinase activity in the heart and its role in inhibiting acetyl‐CoA carboxylase during reperfusion following ischemia. Biochimica et Biophysica Acta
1301: 67‐75, 1996. |
80. |
Kurokawa
T
,
Ozaki
N
, and
Ishibashi
S
. Difference between senescence‐accelerated prone and resistant mice in response to insulin in the heart. Mechanisms of Ageing and Development
102: 25‐32, 1998. |
81. |
Lakatta
EG
and
Yin
FC
. Myocardial aging: Functional alterations and related cellular mechanisms. The American Journal of Physiology
242: H927‐941, 1982. |
82. |
Leong
HS
,
Grist
M
,
Parsons
H
,
Wambolt
RB
,
Lopaschuk
GD
,
Brownsey
R
, and
Allard
MF
. Accelerated rates of glycolysis in the hypertrophied heart: Are they a methodological artifact? American Journal of Physiology Endocrinology and Metabolism
282: E1039‐1045, 2002. |
83. |
Lesnefsky
EJ
,
Moghaddas
S
,
Tandler
B
,
Kerner
J
, and
Hoppel
CL
. Mitochondrial dysfunction in cardiac disease: Ischemia‐reperfusion, aging, and heart failure. Journal of Molecular and Cellular Cardiology
33: 1065‐1089, 2001. |
84. |
Li
HL
,
Yin
R
,
Chen
D
,
Liu
D
,
Wang
D
,
Yang
Q
, and
Dong
YG
. Long‐term activation of adenosine monophosphate‐activated protein kinase attenuates pressure‐overload‐induced cardiac hypertrophy. Journal of Cellular Biochemistry
100: 1086‐1099, 2007. |
85. |
Li
J
,
Coven
DL
,
Miller
EJ
,
Hu
XY
,
Young
ME
,
Carling
D
,
Sinusas
AJ
, and
Young
LH
. Activation of AMPK alpha‐ and gamma‐isoform complexes in the intact ischemic rat heart. Am J Physiol‐Heart C
291: H1927‐H1934, 2006. |
86. |
Liao
Y
,
Takashima
S
,
Maeda
N
,
Ouchi
N
,
Komamura
K
,
Shimomura
I
,
Hori
M
,
Matsuzawa
Y
,
Funahashi
T
, and
Kitakaze
M
. Exacerbation of heart failure in adiponectin‐deficient mice due to impaired regulation of AMPK and glucose metabolism. Cardiovascular Research
67: 705‐713, 2005. |
87. |
Linn
TC
,
Pettit
FH
,
Hucho
F
, and
Reed
LJ
. Alpha‐keto acid dehydrogenase complexes. XI. Comparative studies of regulatory properties of the pyruvate dehydrogenase complexes from kidney, heart, and liver mitochondria. Proceedings of the National Academy of Sciences of the United States of America
64: 227‐234, 1969. |
88. |
Liu
B
,
Clanachan
AS
,
Schulz
R
, and
Lopaschuk
GD
. Cardiac efficiency is improved after ischemia by altering both the source and fate of protons. Circulation Research
79: 940‐948, 1996. |
89. |
Liu
B
,
el Alaoui‐Talibi
Z
,
Clanachan
AS
,
Schulz
R
, and
Lopaschuk
GD
. Uncoupling of contractile function from mitochondrial TCA cycle activity and MVO2 during reperfusion of ischemic hearts. The American Journal of Physiology
270: H72‐80, 1996. |
90. |
Lopaschuk
GD
. Abnormal mechanical function in diabetes: Relationship to altered myocardial carbohydrate/lipid metabolism. Coronary Artery Disease
7: 116‐123, 1996. |
91. |
Lopaschuk
GD
. Optimizing cardiac energy metabolism: A new approach to treating ischaemic heart disease. Eur Heart J Suppl
1: O32‐39, 1999. |
92. |
Lopaschuk
GD
,
Belke
DD
,
Gamble
J
,
Itoi
T
, and
Schonekess
BO
. Regulation of fatty acid oxidation in the mammalian heart in health and disease. Biochimica et Biophysica Acta
1213: 263‐276, 1994. |
93. |
Lopaschuk
GD
and
Stanley
WC
. Glucose metabolism in the ischemic heart. Circulation
95: 313‐315, 1997. |
94. |
Lopaschuk
GD
and
Tsang
H
. Metabolism of palmitate in isolated working hearts from spontaneously diabetic “BB” Wistar rats. Circulation Research
61: 853‐858, 1987. |
95. |
Luiken
JJ
,
Coort
SL
,
Willems
J
,
Coumans
WA
,
Bonen
A
,
van der Vusse
GJ
, and
Glatz
JF
. Contraction‐induced fatty acid translocase/CD36 translocation in rat cardiac myocytes is mediated through AMP‐activated protein kinase signaling. Diabetes
52: 1627‐1634, 2003. |
96. |
Ma
Y
,
Wang
J
,
Gao
J
,
Yang
H
,
Wang
Y
,
Manithody
C
,
Li
J
, and
Rezaie
AR
. Antithrombin up‐regulates AMP‐activated protein kinase signalling during myocardial ischaemia/reperfusion injury. Thrombosis and haemostasis
113, 2014. |
97. |
Marin‐Garcia
J
,
Hu
Y
,
Ananthakrishnan
R
,
Pierpont
ME
,
Pierpont
GL
, and
Goldenthal
MJ
. A point mutation in the cytb gene of cardiac mtDNA associated with complex III deficiency in ischemic cardiomyopathy. Biochemistry and Molecular Biology International
40: 487‐495, 1996. |
98. |
Marsin
AS
,
Bertrand
L
,
Rider
MH
,
Deprez
J
,
Beauloye
C
,
Vincent
MF
,
Van den Berghe
G
,
Carling
D
, and
Hue
L
. Phosphorylation and activation of heart PFK‐2 by AMPK has a role in the stimulation of glycolysis during ischaemia. Current Biology: CB
10: 1247‐1255, 2000. |
99. |
Martineau
LC
,
Chadan
SG
, and
Parkhouse
WS
. Age‐associated alterations in cardiac and skeletal muscle glucose transporters, insulin and IGF‐1 receptors, and PI3‐kinase protein contents in the C57BL/6 mouse. Mechanisms of Ageing and Development
106: 217‐232, 1999. |
100. |
McGaffin
KR
,
Witham
WG
,
Yester
KA
,
Romano
LC
,
O'Doherty
RM
,
McTiernan
CF
, and
O'Donnell
CP
. Cardiac‐specific leptin receptor deletion exacerbates ischaemic heart failure in mice. Cardiovascular Research
89: 60‐71, 2011. |
101. |
McMullen
JR
,
Sherwood
MC
,
Tarnavski
O
,
Zhang
L
,
Dorfman
AL
,
Shioi
T
, and
Izumo
S
. Inhibition of mTOR signaling with rapamycin regresses established cardiac hypertrophy induced by pressure overload. Circulation
109: 3050‐3055, 2004. |
102. |
McTiernan
CF
and
Feldman
AM
. The role of tumor necrosis factor alpha in the pathophysiology of congestive heart failure. Current Cardiology Reports
2: 189‐197, 2000. |
103. |
Miller
EJ
,
Li
J
,
Leng
L
,
McDonald
C
,
Atsumi
T
,
Bucala
R
, and
Young
LH
. Macrophage migration inhibitory factor stimulates AMP‐activated protein kinase in the ischaemic heart. Nature
451: 578‐582, 2008. |
104. |
Mishra
R
,
Cool
BL
,
Laderoute
KR
,
Foretz
M
,
Viollet
B
, and
Simonson
MS
. AMP‐activated protein kinase inhibits transforming growth factor‐beta‐induced Smad3‐dependent transcription and myofibroblast transdifferentiation. Journal of Biological Chemistry
283: 10461‐10469, 2008. |
105. |
Mootha
VK
,
Arai
A
,
Kasserra
C
, and
Balaban
RS
. Maximum mitochondrial respiratory capacity of the mammalian heart. Faseb J
10: 1886‐1886, 1996. |
106. |
Morrison
A
and
Li
J
. PPAR‐gamma and AMPK–advantageous targets for myocardial ischemia/reperfusion therapy. Biochemical Pharmacology
82: 195‐200, 2011. |
107. |
Morrison
A
,
Yan
XY
, and
Li
J
. Acute rosiglitazone treatment is cardioprotective against ischemia/reperfusion injury by modulating AMPK, Akt, and JNK signaling in non‐diabetic mice. Circulation
124, 2011. |
108. |
Mosnier
LO
,
Zlokovic
BV
, and
Griffin
JH
. The cytoprotective protein C pathway. Blood
109: 3161‐3172, 2007. |
109. |
Mu
J
,
Brozinick
JT
,
Valladares
O
,
Bucan
M
, and
Birnbaum
MJ
. A role for AMP‐activated protein kinase in contraction‐ and hypoxia‐regulated glucose transport in skeletal muscle. Molecular Cell
7: 1085‐1094, 2001. |
110. |
Murthy
VK
and
Shipp
JC
. Accumulation of myocardial triglycerides ketotic diabetes; evidence for increased biosynthesis. Diabetes
26: 222‐229, 1977. |
111. |
Nakai
N
,
Sato
Y
,
Oshida
Y
,
Yoshimura
A
,
Fujitsuka
N
,
Sugiyama
S
, and
Shimomura
Y
. Effects of aging on the activities of pyruvate dehydrogenase complex and its kinase in rat heart. Life Sciences
60: 2309‐2314, 1997. |
112. |
Nascimben
L
,
Ingwall
JS
,
Lorell
BH
,
Pinz
I
,
Schultz
V
,
Tornheim
K
, and
Tian
R
. Mechanisms for increased glycolysis in the hypertrophied rat heart. Hypertension
44: 662‐667, 2004. |
113. |
Neely
JR
and
Morgan
HE
. Relationship between carbohydrate and lipid‐metabolism and energy‐balance of heart‐muscle. Annu Rev Physiol
36: 413‐459, 1974. |
114. |
Neely
JR
,
Rovetto
MJ
, and
Oram
JF
. Myocardial utilization of carbohydrate and lipids. Progress in Cardiovascular Diseases
15: 289‐329, 1972. |
115. |
Neely
JR
,
Whitfiel
Cf
, and
Morgan
HE
. Regulation of glycogenolysis in hearts ‐ Effects of pressure development, glucose, and Ffa. American Journal of Physiology
219: 1083, 1970. |
116. |
Newsholme
EA
and
Randle
PJ
. Regulation of glucose uptake by muscle. 7. Effects of fatty acids, ketone bodies and pyruvate, and of alloxan‐diabetes, starvation, hypophysectomy and adrenalectomy, on the concentrations of hexose phosphates, nucleotides and inorganic phosphate in perfused rat heart. The Biochemical Journal
93: 641‐651, 1964. |
117. |
Nohl
H
. Demonstration of the existence of an organo‐specific NADH dehydrogenase in heart mitochondria. European Journal of Biochemistry/FEBS
169: 585‐591, 1987. |
118. |
Nohl
H
and
Hegner
D
. The effects of some nutritive antibiotics on the respiration of rat liver mitochondria. Biochemical Pharmacology
26: 433‐437, 1977. |
119. |
Odiet
JA
,
Boerrigter
ME
, and
Wei
JY
. Carnitine palmitoyl transferase‐I activity in the aging mouse heart. Mechanisms of Ageing and Development
79: 127‐136, 1995. |
120. |
Ozaki
N
,
Sato
E
,
Kurokawa
T
, and
Ishibashi
S
. Early changes in the expression of GLUT4 protein in the heart of senescence‐accelerated mouse. Mechanisms of Ageing and Development
88: 149‐158, 1996. |
121. |
Park
H
,
Kaushik
VK
,
Constant
S
,
Prentki
M
,
Przybytkowski
E
,
Ruderman
NB
, and
Saha
AK
. Coordinate regulation of malonyl‐CoA decarboxylase, sn‐glycerol‐3‐phosphate acyltransferase, and acetyl‐CoA carboxylase by AMP‐activated protein kinase in rat tissues in response to exercise. Journal of Biological Chemistry
277: 32571‐32577, 2002. |
122. |
Petersen
KF
,
Befroy
D
,
Dufour
S
,
Dziura
J
,
Ariyan
C
,
Rothman
DL
,
DiPietro
L
,
Cline
GW
, and
Shulman
GI
. Mitochondrial dysfunction in the elderly: Possible role in insulin resistance. Science
300: 1140‐1142, 2003. |
123. |
Polekhina
G
,
Gupta
A
,
Michell
BJ
,
van Denderen
B
,
Murthy
S
,
Feil
SC
,
Jennings
IG
,
Campbell
DJ
,
Witters
LA
,
Parker
MW
,
Kemp
BE
, and
Stapleton
D
. AMPK beta subunit targets metabolic stress sensing to glycogen. Current Biology: CB
13: 867‐871, 2003. |
124. |
Ponticos
M
,
Lu
QL
,
Morgan
JE
,
Hardie
DG
,
Partridge
TA
, and
Carling
D
. Dual regulation of the AMP‐activated protein kinase provides a novel mechanism for the control of creatine kinase in skeletal muscle. The EMBO Journal
17: 1688‐1699, 1998. |
125. |
Randle
PJ
,
Garland
PB
,
Hales
CN
, and
Newsholme
EA
. The glucose fatty‐acid cycle. Its role in insulin sensitivity and the metabolic disturbances of diabetes mellitus. Lancet
1: 785‐789, 1963. |
126. |
Razeghi
P
,
Young
ME
,
Alcorn
JL
,
Moravec
CS
,
Frazier
OH
, and
Taegtmeyer
H
. Metabolic gene expression in fetal and failing human heart. Circulation
104: 2923‐2931, 2001. |
127. |
Reznick
RM
,
Zong
H
,
Li
J
,
Morino
K
,
Moore
IK
,
Yu
HJ
,
Liu
ZX
,
Dong
J
,
Mustard
KJ
,
Hawley
SA
,
Befroy
D
,
Pypaert
M
,
Hardie
DG
,
Young
LH
, and
Shulman
GI
. Aging‐associated reductions in AMP‐activated protein kinase activity and mitochondrial biogenesis. Cell Metabolism
5: 151‐156, 2007. |
128. |
Riewald
M
,
Petrovan
RJ
,
Donner
A
,
Mueller
BM
, and
Ruf
W
. Activation of endothelial cell protease activated receptor 1 by the protein C pathway. Science
296: 1880‐1882, 2002. |
129. |
Rosca
MG
and
Hoppel
CL
. Mitochondria in heart failure. Cardiovascular Research
88: 40‐50, 2010. |
130. |
Russell
RR, 3rd
,
Bergeron
R
,
Shulman
GI
, and
Young
LH
. Translocation of myocardial GLUT‐4 and increased glucose uptake through activation of AMPK by AICAR. The American Journal of Physiology
277: H643‐649, 1999. |
131. |
Sabbah
HN
,
Sharov
V
,
Riddle
JM
,
Kono
T
,
Lesch
M
, and
Goldstein
S
. Mitochondrial abnormalities in myocardium of dogs with chronic heart‐failure. Journal of Molecular and Cellular Cardiology
24: 1333‐1347, 1992. |
132. |
Sack
MN
,
Rader
TA
,
Park
SH
,
Bastin
J
,
McCune
SA
, and
Kelly
DP
. Fatty acid oxidation enzyme gene expression is downregulated in the failing heart. Circulation
94: 2837‐2842, 1996. |
133. |
Saha
AK
,
Schwarsin
AJ
,
Roduit
R
,
Masse
F
,
Kaushik
V
,
Tornheim
K
,
Prentki
M
, and
Ruderman
NB
. Activation of malonyl‐CoA decarboxylase in rat skeletal muscle by contraction and the AMP‐activated protein kinase activator 5‐aminoimidazole‐4‐carboxamide‐1‐beta‐D‐ribofuranoside. Journal of Biological Chemistry
275: 24279‐24283, 2000. |
134. |
Sambandam
N
and
Lopaschuk
GD
. AMP‐activated protein kinase (AMPK) control of fatty acid and glucose metabolism in the ischemic heart. Progress in Lipid Research
42: 238‐256, 2003. |
135. |
Sawada
M
and
Carlson
JC
. Changes in superoxide radical and lipid peroxide formation in the brain, heart and liver during the lifetime of the rat. Mechanisms of Ageing and Development
41: 125‐137, 1987. |
136. |
Schaper
J
,
Froede
R
,
Hein
ST
,
Buck
A
,
Hashizume
H
,
Speiser
B
,
Friedl
A
, and
Bleese
N
. Impairment of the myocardial ultrastructure and changes of the cytoskeleton in dilated cardiomyopathy. Circulation
83: 504‐514, 1991. |
137. |
Schonekess
BO
. Competition between lactate and fatty acids as sources of ATP in the isolated working rat heart. Journal of Molecular and Cellular Cardiology
29: 2725‐2733, 1997. |
138. |
Shaw
RJ
,
Kosmatka
M
,
Bardeesy
N
,
Hurley
RL
,
Witters
LA
,
DePinho
RA
, and
Cantley
LC
. The tumor suppressor LKB1 kinase directly activates AMP‐activated kinase and regulates apoptosis in response to energy stress. Proceedings of the National Academy of Sciences of the United States of America
101: 3329‐3335, 2004. |
139. |
Shibata
R
,
Ouchi
N
,
Ito
M
,
Kihara
S
,
Shiojima
I
,
Pimentel
DR
,
Kumada
M
,
Sato
K
,
Schiekofer
S
,
Ohashi
K
,
Funahashi
T
,
Colucci
WS
, and
Walsh
K
. Adiponectin‐mediated modulation of hypertrophic signals in the heart. Nature Medicine
10: 1384‐1389, 2004. |
140. |
Shibata
R
,
Sato
K
,
Pimentel
DR
,
Takemura
Y
,
Kihara
S
,
Ohashi
K
,
Funahashi
T
,
Ouchi
N
, and
Walsh
K
. Adiponectin protects against myocardial ischemia‐reperfusion injury through AMPK‐ and COX‐2‐dependent mechanisms. Nature Medicine
11: 1096‐1103, 2005. |
141. |
Shioi
T
,
McMullen
JR
,
Tarnavski
O
,
Converso
K
,
Sherwood
MC
,
Manning
WJ
, and
Izumo
S
. Rapamycin attenuates load‐induced cardiac hypertrophy in mice. Circulation
107: 1664‐1670, 2003. |
142. |
Smith
SH
,
Kramer
MF
,
Reis
I
,
Bishop
SP
, and
Ingwall
JS
. Regional changes in creatine kinase and myocyte size in hypertensive and nonhypertensive cardiac hypertrophy. Circulation Research
67: 1334‐1344, 1990. |
143. |
Stanley
WC
,
Hall
JL
,
Hacker
TA
,
Hernandez
LA
, and
Whitesell
LF
. Decreased myocardial glucose uptake during ischemia in diabetic swine. Metabolism: Clinical and Experimental
46: 168‐172, 1997. |
144. |
Stanley
WC
,
Hall
JL
,
Smith
KR
,
Cartee
GD
,
Hacker
TA
, and
Wisneski
JA
. Myocardial glucose transporters and glycolytic metabolism during ischemia in hyperglycemic diabetic swine. Metabolism: Clinical and Experimental
43: 61‐69, 1994. |
145. |
Stanley
WC
,
Hall
JL
,
Stone
CK
,
Hacker
TA
,
Voss
SG
,
Whitesell
LF
, and
Eggleston
AM
. Acute Myocardial‐Ischemia Causes a Transmural Gradient in Glucose Extraction but Not Glucose‐Uptake. American Journal of Physiology
262: H91‐H96, 1992. |
146. |
Stanley
WC
,
Lopaschuk
GD
, and
McCormack
JG
. Regulation of energy substrate metabolism in the diabetic heart. Cardiovascular Research
34: 25‐33, 1997. |
147. |
Stanley
WC
,
Recchia
FA
, and
Lopaschuk
GD
. Myocardial substrate metabolism in the normal and failing heart. Physiol Rev
85: 1093‐1129, 2005. |
148. |
Sugden
PH
and
Clerk
A
. Cellular mechanisms of cardiac hypertrophy. Journal of Molecular Medicine
76: 725‐746, 1998. |
149. |
Taegtmeyer
H
,
Golfman
L
,
Sharma
S
,
Razeghi
P
, and
van Arsdall
M
. Linking gene expression to function: Metabolic flexibility in the normal and diseased heart. Annals of the New York Academy of Sciences
1015: 202‐213, 2004. |
150. |
Taegtmeyer
H
and
Overturf
ML
. Effects of moderate hypertension on cardiac function and metabolism in the rabbit. Hypertension
11: 416‐426, 1988. |
151. |
Takagi
H
,
Matsui
Y
,
Hirotani
S
,
Sakoda
H
,
Asano
T
, and
Sadoshima
J
. AMPK mediates autophagy during myocardial ischemia in vivo. Autophagy
3: 405‐407, 2007. |
152. |
Takahashi
S
,
Suzuki
J
,
Kohno
M
,
Oida
K
,
Tamai
T
,
Miyabo
S
,
Yamamoto
T
, and
Nakai
T
. Enhancement of the binding of triglyceride‐rich lipoproteins to the very low density lipoprotein receptor by apolipoprotein E and lipoprotein lipase. The Journal of Biological Chemistry
270: 15747‐15754, 1995. |
153. |
Taylor
FB
,
Chang
A
,
Esmon
CT
,
Dangelo
A
,
Viganodangelo
S
, and
Blick
KE
. Protein‐C prevents the coaggulopathic and lethal effects of escherichia‐coli infusion in the baboon. Journal of Clinical Investigation
79: 918‐925, 1987. |
154. |
Taylor
FB
,
Stearns‐Kurosawa
DJ
,
Kurosawa
S
,
Ferrell
G
,
Chang
ACK
,
Laszik
Z
,
Kosanke
S
,
Peer
G
, and
Esmon
CT
. The endothelial cell protein C receptor aids in host defense against Escherichia coli sepsis. Blood
95: 1680‐1686, 2000. |
155. |
Tian
R
,
Musi
N
,
D'Agostino
J
,
Hirshman
MF
, and
Goodyear
LJ
. Increased adenosine monophosphate‐activated protein kinase activity in rat hearts with pressure‐overload hypertrophy. Circulation
104: 1664‐1669, 2001. |
156. |
Tian
R
,
Nascimben
L
,
Ingwall
JS
, and
Lorell
BH
. Failure to maintain a low ADP concentration impairs diastolic function in hypertrophied rat hearts. Circulation
96: 1313‐1319, 1997. |
157. |
Turer
AT
,
Malloy
CR
,
Newgard
CB
, and
Podgoreanu
MV
. Energetics and metabolism in the failing heart: important but poorly understood. Curr Opin Clin Nutr
13: 458‐465, 2010. |
158. |
van der Vusse
GJ
,
van Bilsen
M
, and
Glatz
JF
. Cardiac fatty acid uptake and transport in health and disease. Cardiovascular Research
45: 279‐293, 2000. |
159. |
Ventura‐Clapier
R
,
Garnier
A
, and
Veksler
V
. Energy metabolism in heart failure. J Physiol‐London
555: 1‐13, 2004. |
160. |
Walker
FJ
and
Fay
PJ
. Regulation of blood‐coagulation by the protein‐C system. Faseb J
6: 2561‐2567, 1992. |
161. |
Wall
SR
and
Lopaschuk
GD
. Glucose‐oxidation rates in fatty acid‐perfused isolated working hearts from diabetic rats. Biochimica et Biophysica Acta
1006: 97‐103, 1989. |
162. |
Wambolt
RB
,
Henning
SL
,
English
DR
,
Dyachkova
Y
,
Lopaschuk
GD
, and
Allard
MF
. Glucose utilization and glycogen turnover are accelerated in hypertrophied rat hearts during severe low‐flow ischemia. Journal of Molecular and Cellular Cardiology
31: 493‐502, 1999. |
163. |
Wang
J
,
Yang
L
,
Rezaie
AR
, and
Li
J
. Activated protein C protects against myocardial ischemic/reperfusion injury through AMP‐activated protein kinase signaling. Journal of Thrombosis and Haemostasis: JTH
9: 1308‐1317, 2011. |
164. |
Weiss
JN
and
Lamp
ST
. Glycolysis preferentially inhibits ATP‐sensitive K +channels in isolated guinea pig cardiac myocytes. Science
238: 67‐69, 1987. |
165. |
Wieland
O
,
Funcke
H
, and
Loffler
G
. Interconversion of pyruvate dehydrogenase in rat heart muscle upon perfusion with fatty acids or ketone bodies. FEBS Letters
15: 295‐298, 1971. |
166. |
Wieland
O
,
Siess
E
,
Schulze‐Wethmar
FH
,
von Funcke
HG
, and
Winton
B
. Active and inactive forms of pyruvate dehydrogenase in rat heart and kidney: Effect of diabetes, fasting, and refeeding on pyruvate dehydrogenase interconversion. Archives of Biochemistry and Biophysics
143: 593‐601, 1971. |
167. |
Wojtaszewski
JFP
,
Jorgensen
SB
,
Hellsten
Y
,
Hardie
DG
,
and Richter
EA
. Glycogen‐dependent effects of 5‐aminoimidazole‐4‐carboxamide (AICA)‐riboside on AMP‐activated protein kinase and glycogen synthase activities in rat skeletal muscle. Diabetes
51: 284‐292, 2002. |
168. |
Yamanouchi
K
,
Nakajima
H
,
Shinozaki
T
,
Chikada
K
,
Kato
K
,
Oshida
Y
,
Osawa
I
,
Sato
J
,
Sato
Y
,
Higuchi
M
, et al. Effects of daily physical activity on insulin action in the elderly. Journal of Applied Physiology
73: 2241‐2245, 1992. |
169. |
Yan
J
,
Young
ME
,
Cui
L
,
Lopaschuk
GD
,
Liao
R
, and
Tian
R
. Increased glucose uptake and oxidation in mouse hearts prevent high fatty acid oxidation but cause cardiac dysfunction in diet‐induced obesity. Circulation
119: U2818‐2131, 2009. |
170. |
Yang
LK
,
Bae
JS
,
Manithody
C
, and
Rezaie
AR
. Identification of a specific exosite on activated protein C for interaction with protease‐activated receptor 1. Journal of Biological Chemistry
282: 25493‐25500, 2007. |
171. |
Yeh
LA
,
Lee
KH
, and
Kim
KH
. Regulation of rat‐liver acetyl‐Coa carboxylase ‐ Regulation of phosphorylation and inactivation of acetyl‐Coa carboxylase by the adenylate energy‐charge. Journal of Biological Chemistry
255: 2308‐2314, 1980. |
172. |
Young
LH
,
Renfu
Y
,
Russell
R
,
Hu
X
,
Caplan
M
,
Ren
J
,
Shulman
GI
, and
Sinusas
AJ
. Low‐flow ischemia leads to translocation of canine heart GLUT‐4 and GLUT‐1 glucose transporters to the sarcolemma in vivo. Circulation
95: 415‐422, 1997. |
173. |
Young
LH
,
Renfu
Y
,
Russell
R
,
Hu
XY
,
Caplan
M
,
Ren
JM
,
Shulman
GI
, and
Sinusas
AJ
. Low‐flow ischemia leads to translocation of canine heart GLUT‐4 and GLUT‐1 glucose transporters to the sarcolemma in vivo. Circulation
95: 415‐422, 1997. |
174. |
Young
ME
,
Laws
FA
,
Goodwin
GW
, and
Taegtmeyer
H
. Reactivation of peroxisome proliferator‐activated receptor alpha is associated with contractile dysfunction in hypertrophied rat heart. The Journal of Biological Chemistry
276: 44390‐44395, 2001. |
175. |
Young
ME
,
Radda
GK
, and
Leighton
B
. Activation of glycogen phosphorylase and glycogenolysis in rat skeletal muscle by AICAR–an activator of AMP‐activated protein kinase. FEBS Letters
382: 43‐47, 1996. |
176. |
Yue
P
,
Massie
BM
,
Simpson
PC
, and
Long
CS
. Cytokine expression increases in nonmyocytes from rats with postinfarction heart failure. The American Journal of Physiology
275: H250‐258, 1998. |
177. |
Zelissen
PM
,
Stenlof
K
,
Lean
ME
,
Fogteloo
J
,
Keulen
ET
,
Wilding
J
,
Finer
N
,
Rossner
S
,
Lawrence
E
,
Fletcher
C
,
McCamish
M
, and
Author
G
. Effect of three treatment schedules of recombinant methionyl human leptin on body weight in obese adults: A randomized, placebo‐controlled trial. Diabetes, Obesity & Metabolism
7: 755‐761, 2005. |
178. |
Zhang
J
,
Duncker
DJ
,
Ya
X
,
Zhang
Y
,
Pavek
T
,
Wei
H
,
Merkle
H
,
Ugurbil
K
,
From
AH
, and
Bache
RJ
. Effect of left ventricular hypertrophy secondary to chronic pressure overload on transmural myocardial 2‐deoxyglucose uptake. A 31P NMR spectroscopic study. Circulation
92: 1274‐1283, 1995. |
179. |
Zhou
GC
,
Myers
R
,
Li
Y
,
Chen
YL
,
Shen
XL
,
Fenyk‐Melody
J
,
Wu
M
,
Ventre
J
,
Doebber
T
,
Fujii
N
,
Musi
N
,
Hirshman
MF
,
Goodyear
LJ
, and
Moller
DE
. Role of AMP‐activated protein kinase in mechanism of metformin action. Journal of Clinical Investigation
108: 1167‐1174, 2001. |
180. |
Zong
HH
,
Ren
JM
,
Young
LH
,
Pypaert
M
,
Mu
J
,
Birnbaum
MJ
, and
Shulman
GI
. AMP kinase is required for mitochondrial biogenesis in skeletal muscle in response to chronic energy deprivation. Proceedings of the National Academy of Sciences of the United States of America
99: 15983‐15987, 2002. |