Comprehensive Physiology Wiley Online Library

Thioredoxin Superfamily and Its Effects on Cardiac Physiology and Pathology

Full Article on Wiley Online Library



ABSTRACT

A precise control of oxidation/reduction of protein thiols is essential for intact cardiac physiology. Irreversible oxidative modifications have been proposed to play a role in the pathogenesis of cardiovascular diseases. An imbalance of redox homeostasis with diminution of antioxidant capacities predisposes the heart to oxidant injury. There is growing interest in endoplasmic reticulum (ER) stress in the cardiovascular field, since perturbation of redox homeostasis in the ER is sufficient to cause ER stress. Because a number of human diseases are related to altered redox homeostasis and defects in protein folding, many research efforts have been devoted in recent years to understanding the structure and enzymatic properties of the thioredoxin superfamily. The thioredoxin superfamily has been well documented as thiol oxidoreductases to exert a role in various cell signaling pathways. The redox properties of the thioredoxin motif account for the different functions of several members of the thioredoxin superfamily. While thioredoxin and glutaredoxin primarily act as antioxidants by reducing protein disulfides and mixed disulfide, another member of the superfamily, protein disulfide isomerase (PDI), can act as an oxidant by forming intrachain disulfide bonds that contribute to proper protein folding. Increasing evidence suggests a pivotal role of PDI in the survival pathway that promotes cardiomyocyte survival and leads to more favorable cardiac remodeling. Thus, the thiol redox state is important for cellular redox signaling and survival pathway in the heart. This review summarizes the key features of major members of the thioredoxin superfamily directly involved in cardiac physiology and pathology. © 2015 American Physiological Society. Compr Physiol 5:513‐530, 2015.

Comprehensive Physiology offers downloadable PowerPoint presentations of figures for non-profit, educational use, provided the content is not modified and full credit is given to the author and publication.

Download a PowerPoint presentation of all images


Figure 1. Figure 1. Architecture of the thioredoxin (Trx) fold in Trx protein. β‐sheet strands are shown as arrows and α‐helices are shown as cylinders. Trx has the common basic Trx fold with an additional β‐sheet (β1') and α‐helix (α1') at the N‐terminus of the protein. Members of the Trx superfamily have an active site containing the Cys‐XX‐Cys motif and share the same catalytic mechanism. The Cys‐XX‐Cys motif is always located at the N‐terminus of α1 helix.
Figure 2. Figure 2. Architecture of the thioredoxin (Trx) fold in glutaredoxin (Grx) protein. As in Figure 1, β‐sheet strands are shown as arrows and α‐helices are shown as cylinders. Grx has the basic Trx fold only, without any insertion of secondary structure elements. The Trx fold is very versatile, which makes a protein of the Trx superfamily suitable to perform several catalytic functions.
Figure 3. Figure 3. Architecture of the thioredoxin (Trx) fold in the “a” domain of protein disulfide isomerase (PDI) protein. As in Figure 1, β‐sheet strands are shown as arrows and α‐helices are shown as cylinders. PDI has the common basic Trx fold with an additional β‐sheet (β1') and α‐helix (α1') at the N‐terminus of the protein. The PDI “a” domain shares notable features with Trx. In particular, the two active site cysteine residues are in the same position at the N‐terminus of α1helix.
Figure 4. Figure 4. Redox potential of major enzymes of the thioredoxin superfamily. The protein redox potential E0 is based on coupling with the glutathione redox potential (101). Mitochondria and cytosolic compartments are relatively reduced, while the endoplasmic reticulum (ER) is more oxidized. The protein disulfide isomerase (PDI) family normally localizes to the ER compartment and acts as oxidant by forming intrachain disulfide bonds. TrxRD, thioredoxin reductase; Trx, thioredoxin; Grx, glutaredoxin; GSH, reduced glutathione; GR, glutathione reductase.
Figure 5. Figure 5. The thioredoxin (Trx) system. The catalytic active site of Trx includes a Cys‐Gly‐Pro‐Cys motif. These two cysteines (Cys32 and Cys35) are responsible for reducing disulfide bonds of the substrate proteins. The substrate proteins include peroxiredoxins, which reduce H2O2, thereby scavenging redox oxygen species (ROS). Upon transferring the two protons to the substrate protein, Trx becomes oxidized. The oxidized Trx is converted back into the reduced form by Trx reductase (TrxRD) which extracts reducing equivalents from NADPH. Trx1 also interacts with other signaling molecules including nuclear factor κB (NF‐κB), activating protein 1 (AP‐1), and apoptosis signal‐regulating kinase 1 (ASK1).
Figure 6. Figure 6. The thioredoxin (Trx) activity is regulated by posttranslational modifications of cysteine and tyrosine residues in Trx protein. The Cys32‐Gly‐Pro‐Cys35 is the highly conserved active site. Trx contains three other critical cysteine residues at positions 62, 69, and 73, providing the versatile properties of the protein. The Cys62 and Cys69 form a disulfide bond and suppress the activity of Trx. Both Cys69 and Cys73 are the sites of S‐nitrosylation to enhance the Trx activity. The Cys73 undergoes glutathionylation, which inactivate Trx. The Tyr49 has known to be nitrated by peroxynitrite, which irreversibly inactivates Trx.
Figure 7. Figure 7. The glutaredoxin (Grx) system. The catalytic active site of Grx includes a Cys‐Pro‐Tyr‐Cys motif. These two cysteines are responsible for reducing disulfide bonds of the substrate proteins. The substrate proteins include Grx‐dependent peroxiredoxins, which reduce H2O2, thereby scavenging redox oxygen species (ROS). Upon transferring the two protons to the substrate proteins, Grx becomes oxidized. When oxidized, the Grx isoform is regenerated by reduced glutathione (GSH). The resulting oxidized glutathione (GSSG) is in turn reduced by glutathione reductase (GR) at the expense of NADPH.
Figure 8. Figure 8. Schemes for the domain structure of protein disulfide isomerase (PDI), PDIA6, and thioredoxin (Trx). PDI or PDIA6 contains two domains (a and a′) closely similar in their amino acid sequences to that of Trx. The a and a′ domains contain active sites comprising the Cys‐Gly‐His‐Cys motif. The domains b and b′ are structurally similar domains lacking redox activity. The c domain comprises a 24 residue acidic C‐terminal extension in which over half the residues are glutamate or aspartate, followed by a KDEL sequence for retention in the endoplasmic reticulum. The x is an extended linker.
Figure 9. Figure 9. Misfolded proteins accumulate, resulting in endoplasmic reticulum (ER) stress in cardiomyocytes. The protein disulfide isomerase (PDI) family resides in the ER and promotes the proper folding of proteins. PDI transitions from its reduced to oxidized state to drive isomerization of incorrectly formed disulfide bonds in client proteins (right side). PDI can also transition from its oxidized to reduced state to promote disulfide bond formation in client proteins (left side). Thus, PDI is responsible for the appropriate protein folding and suppresses ER stress in cardiomyocytes.
Figure 10. Figure 10. The cardioprotective roles of the thioredoxin superfamily. Production of reactive oxygen species (ROS) is linked to endoplasmic reticulum (ER) stress. Altered redox homeostasis in the ER is sufficient to cause ER stress. Changes in the protein‐folding environment in the ER induce the production of ROS in the ER to cause oxidative stress. Thus, ER stress and oxidative stress coexist in pathologic states, which result in cardiomyocyte apoptosis and eventually lead to the development of cardiac failure. The thioredoxin (Trx) superfamily provides a fundamental defense response to these pathological conditions through multiple mechanisms. Grx, glutaredoxin; PDI, protein disulfide isomerase.


Figure 1. Architecture of the thioredoxin (Trx) fold in Trx protein. β‐sheet strands are shown as arrows and α‐helices are shown as cylinders. Trx has the common basic Trx fold with an additional β‐sheet (β1') and α‐helix (α1') at the N‐terminus of the protein. Members of the Trx superfamily have an active site containing the Cys‐XX‐Cys motif and share the same catalytic mechanism. The Cys‐XX‐Cys motif is always located at the N‐terminus of α1 helix.


Figure 2. Architecture of the thioredoxin (Trx) fold in glutaredoxin (Grx) protein. As in Figure 1, β‐sheet strands are shown as arrows and α‐helices are shown as cylinders. Grx has the basic Trx fold only, without any insertion of secondary structure elements. The Trx fold is very versatile, which makes a protein of the Trx superfamily suitable to perform several catalytic functions.


Figure 3. Architecture of the thioredoxin (Trx) fold in the “a” domain of protein disulfide isomerase (PDI) protein. As in Figure 1, β‐sheet strands are shown as arrows and α‐helices are shown as cylinders. PDI has the common basic Trx fold with an additional β‐sheet (β1') and α‐helix (α1') at the N‐terminus of the protein. The PDI “a” domain shares notable features with Trx. In particular, the two active site cysteine residues are in the same position at the N‐terminus of α1helix.


Figure 4. Redox potential of major enzymes of the thioredoxin superfamily. The protein redox potential E0 is based on coupling with the glutathione redox potential (101). Mitochondria and cytosolic compartments are relatively reduced, while the endoplasmic reticulum (ER) is more oxidized. The protein disulfide isomerase (PDI) family normally localizes to the ER compartment and acts as oxidant by forming intrachain disulfide bonds. TrxRD, thioredoxin reductase; Trx, thioredoxin; Grx, glutaredoxin; GSH, reduced glutathione; GR, glutathione reductase.


Figure 5. The thioredoxin (Trx) system. The catalytic active site of Trx includes a Cys‐Gly‐Pro‐Cys motif. These two cysteines (Cys32 and Cys35) are responsible for reducing disulfide bonds of the substrate proteins. The substrate proteins include peroxiredoxins, which reduce H2O2, thereby scavenging redox oxygen species (ROS). Upon transferring the two protons to the substrate protein, Trx becomes oxidized. The oxidized Trx is converted back into the reduced form by Trx reductase (TrxRD) which extracts reducing equivalents from NADPH. Trx1 also interacts with other signaling molecules including nuclear factor κB (NF‐κB), activating protein 1 (AP‐1), and apoptosis signal‐regulating kinase 1 (ASK1).


Figure 6. The thioredoxin (Trx) activity is regulated by posttranslational modifications of cysteine and tyrosine residues in Trx protein. The Cys32‐Gly‐Pro‐Cys35 is the highly conserved active site. Trx contains three other critical cysteine residues at positions 62, 69, and 73, providing the versatile properties of the protein. The Cys62 and Cys69 form a disulfide bond and suppress the activity of Trx. Both Cys69 and Cys73 are the sites of S‐nitrosylation to enhance the Trx activity. The Cys73 undergoes glutathionylation, which inactivate Trx. The Tyr49 has known to be nitrated by peroxynitrite, which irreversibly inactivates Trx.


Figure 7. The glutaredoxin (Grx) system. The catalytic active site of Grx includes a Cys‐Pro‐Tyr‐Cys motif. These two cysteines are responsible for reducing disulfide bonds of the substrate proteins. The substrate proteins include Grx‐dependent peroxiredoxins, which reduce H2O2, thereby scavenging redox oxygen species (ROS). Upon transferring the two protons to the substrate proteins, Grx becomes oxidized. When oxidized, the Grx isoform is regenerated by reduced glutathione (GSH). The resulting oxidized glutathione (GSSG) is in turn reduced by glutathione reductase (GR) at the expense of NADPH.


Figure 8. Schemes for the domain structure of protein disulfide isomerase (PDI), PDIA6, and thioredoxin (Trx). PDI or PDIA6 contains two domains (a and a′) closely similar in their amino acid sequences to that of Trx. The a and a′ domains contain active sites comprising the Cys‐Gly‐His‐Cys motif. The domains b and b′ are structurally similar domains lacking redox activity. The c domain comprises a 24 residue acidic C‐terminal extension in which over half the residues are glutamate or aspartate, followed by a KDEL sequence for retention in the endoplasmic reticulum. The x is an extended linker.


Figure 9. Misfolded proteins accumulate, resulting in endoplasmic reticulum (ER) stress in cardiomyocytes. The protein disulfide isomerase (PDI) family resides in the ER and promotes the proper folding of proteins. PDI transitions from its reduced to oxidized state to drive isomerization of incorrectly formed disulfide bonds in client proteins (right side). PDI can also transition from its oxidized to reduced state to promote disulfide bond formation in client proteins (left side). Thus, PDI is responsible for the appropriate protein folding and suppresses ER stress in cardiomyocytes.


Figure 10. The cardioprotective roles of the thioredoxin superfamily. Production of reactive oxygen species (ROS) is linked to endoplasmic reticulum (ER) stress. Altered redox homeostasis in the ER is sufficient to cause ER stress. Changes in the protein‐folding environment in the ER induce the production of ROS in the ER to cause oxidative stress. Thus, ER stress and oxidative stress coexist in pathologic states, which result in cardiomyocyte apoptosis and eventually lead to the development of cardiac failure. The thioredoxin (Trx) superfamily provides a fundamental defense response to these pathological conditions through multiple mechanisms. Grx, glutaredoxin; PDI, protein disulfide isomerase.
References
 1. Abdiu A , Nakamura H , Sahaf B , Yodoi J , Holmgren A , Rosen A . Thioredoxin blood level increases after severe burn injury. Antioxid Redox Signal 2: 707‐716, 2000.
 2. Adluri RS , Thirunavukkarasu M , Zhan L , Akita Y , Samuel SM , Otani H , Ho YS , Maulik G , Maulik N . Thioredoxin 1 enhances neovascularization and reduces ventricular remodeling during chronic myocardial infarction: A study using thioredoxin 1 transgenic mice. J Mol Cell Cardiol 50: 239‐247, 2011.
 3. Ago T , Liu T , Zhai P , Chen W , Li H , Molkentin JD , Vatner SF , Sadoshima J . A redox‐dependent pathway for regulating class II HDACs and cardiac hypertrophy. Cell 133: 978‐993, 2008.
 4. Ahsan MK , Lekli I , Ray D , Yodoi J , Das DK . Redox regulation of cell survival by the thioredoxin superfamily: An implication of redox gene therapy in the heart. Antioxid Redox Signal 11: 2741‐2758, 2009.
 5. Aota M , Matsuda K , Isowa N , Wada H , Yodoi J , Ban T . Protection against reperfusion‐induced arrhythmias by human thioredoxin. J Cardiovasc Pharmacol 27: 727‐732, 1996.
 6. Arner ES . Focus on mammalian thioredoxin reductases–important selenoproteins with versatile functions. Biochim Biophys Acta 1790: 495‐526, 2009.
 7. Arner ES , Holmgren A . Physiological functions of thioredoxin and thioredoxin reductase. Eur J Biochem 267: 6102‐6109, 2000.
 8. Azfer A , Niu J , Rogers LM , Adamski FM , Kolattukudy PE . Activation of endoplasmic reticulum stress response during the development of ischemic heart disease. Am J Physiol Heart Circ Physiol 291: H1411‐H1420, 2006.
 9. Bachschmid MM , Xu S , Maitland‐Toolan KA , Ho YS , Cohen RA , Matsui R . Attenuated cardiovascular hypertrophy and oxidant generation in response to angiotensin II infusion in glutaredoxin‐1 knockout mice. Free Radic Biol Med 49: 1221‐1229, 2010.
 10. Baker AF , Dragovich T , Tate WR , Ramanathan RK , Roe D , Hsu CH , Kirkpatrick DL , Powis G . The antitumor thioredoxin‐1 inhibitor PX‐12 (1‐methylpropyl 2‐imidazolyl disulfide) decreases thioredoxin‐1 and VEGF levels in cancer patient plasma. J Lab Clin Med 147: 83‐90, 2006.
 11. Bandyopadhyay S , Starke DW , Mieyal JJ , Gronostajski RM . Thioltransferase (glutaredoxin) reactivates the DNA‐binding activity of oxidation‐inactivated nuclear factor I. J Biol Chem 273: 392‐397, 1998.
 12. Becker K , Gromer S , Schirmer RH , Muller S . Thioredoxin reductase as a pathophysiological factor and drug target. Eur J Biochem 267: 6118‐6125, 2000.
 13. Beer SM , Taylor ER , Brown SE , Dahm CC , Costa NJ , Runswick MJ , Murphy MP . Glutaredoxin 2 catalyzes the reversible oxidation and glutathionylation of mitochondrial membrane thiol proteins: Implications for mitochondrial redox regulation and antioxidant DEFENSE. J Biol Chem 279: 47939‐47951, 2004.
 14. Berndt C , Lillig CH , Holmgren A . Thiol‐based mechanisms of the thioredoxin and glutaredoxin systems: Implications for diseases in the cardiovascular system. Am J Physiol Heart Circ Physiol 292: H1227‐H1236, 2007.
 15. Berndt C , Lillig CH , Holmgren A . Thioredoxins and glutaredoxins as facilitators of protein folding. Biochim Biophys Acta 1783: 641‐650, 2008.
 16. Bjornstedt M , Xue J , Huang W , Akesson B , Holmgren A . The thioredoxin and glutaredoxin systems are efficient electron donors to human plasma glutathione peroxidase. J Biol Chem 269: 29382‐29384, 1994.
 17. Bucciarelli LG , Kaneko M , Ananthakrishnan R , Harja E , Lee LK , Hwang YC , Lerner S , Bakr S , Li Q , Lu Y , Song F , Qu W , Gomez T , Zou YS , Yan SF , Schmidt AM , Ramasamy R . Receptor for advanced‐glycation end products: Key modulator of myocardial ischemic injury. Circulation 113: 1226‐1234, 2006.
 18. Callister ME , Burke‐Gaffney A , Quinlan GJ , Nicholson AG , Florio R , Nakamura H , Yodoi J , Evans TW . Extracellular thioredoxin levels are increased in patients with acute lung injury. Thorax 61: 521‐527, 2006.
 19. Cao G , Llambi HG , Muller A , Ottaviano G , Milei J . Rosuvastatin increases myocardial microvessels in SHR rats. Role of thioredoxin‐1 and peroxiredoxin‐2 expression. Int J Cardiol 174: 153‐155, 2014.
 20. Carvalho AP , Fernandes PA , Ramos MJ . Similarities and differences in the thioredoxin superfamily. Prog Biophys Mol Biol 91: 229‐248, 2006.
 21. Casagrande S , Bonetto V , Fratelli M , Gianazza E , Eberini I , Massignan T , Salmona M , Chang G , Holmgren A , Ghezzi P . Glutathionylation of human thioredoxin: A possible crosstalk between the glutathione and thioredoxin systems. Proc Natl Acad Sci U S A 99: 9745‐9749, 2002.
 22. Chen Y , Cai J , Murphy TJ , Jones DP . Overexpressed human mitochondrial thioredoxin confers resistance to oxidant‐induced apoptosis in human osteosarcoma cells. J Biol Chem 277: 33242‐33248, 2002.
 23. Chiueh CC , Andoh T , Chock PB . Induction of thioredoxin and mitochondrial survival proteins mediates preconditioning‐induced cardioprotection and neuroprotection. Ann N Y Acad Sci 1042: 403‐418, 2005.
 24. Choi HJ , Kang SW , Yang CH , Rhee SG , Ryu SE . Crystal structure of a novel human peroxidase enzyme at 2.0 A resolution. Nat Struct Biol 5: 400‐406, 1998.
 25. Choi JO , Yun SH , Sung K , Lee YT , Park JI , Ju ES , Lee SC , Park SW , Kim DK , Oh JK , Jeon ES . Thioredoxin, adiponectin and clinical course of acute fulminant myocarditis. Heart 97: 1067‐1073, 2011.
 26. Chrestensen CA , Starke DW , Mieyal JJ . Acute cadmium exposure inactivates thioltransferase (Glutaredoxin), inhibits intracellular reduction of protein‐glutathionyl‐mixed disulfides, and initiates apoptosis. J Biol Chem 275: 26556‐26565, 2000.
 27. Conrad M , Jakupoglu C , Moreno SG , Lippl S , Banjac A , Schneider M , Beck H , Hatzopoulos AK , Just U , Sinowatz F , Schmahl W , Chien KR , Wurst W , Bornkamm GW , Brielmeier M . Essential role for mitochondrial thioredoxin reductase in hematopoiesis, heart development, and heart function. Mol Cell Biol 24: 9414‐9423, 2004.
 28. Cordes KR , Srivastava D . MicroRNA regulation of cardiovascular development. Circ Res 104: 724‐732, 2009.
 29. Cross CE , Halliwell B , Borish ET , Pryor WA , Ames BN , Saul RL , McCord JM , Harman D . Oxygen radicals and human disease. Ann Intern Med 107: 526‐545, 1987.
 30. Dai J , Wang X , Feng J , Kong W , Xu Q , Shen X . Regulatory role of thioredoxin in homocysteine‐induced monocyte chemoattractant protein‐1 secretion in monocytes/macrophages. FEBS Lett 582: 3893‐3898, 2008.
 31. Daily D , Vlamis‐Gardikas A , Offen D , Mittelman L , Melamed E , Holmgren A , Barzilai A . Glutaredoxin protects cerebellar granule neurons from dopamine‐induced apoptosis by activating NF‐kappa B via Ref‐1. J Biol Chem 276: 1335‐1344, 2001.
 32. Daily D , Vlamis‐Gardikas A , Offen D , Mittelman L , Melamed E , Holmgren A , Barzilai A . Glutaredoxin protects cerebellar granule neurons from dopamine‐induced apoptosis by dual activation of the ras‐phosphoinositide 3‐kinase and jun n‐terminal kinase pathways. J Biol Chem 276: 21618‐21626, 2001.
 33. Dammeyer P , Damdimopoulos AE , Nordman T , Jimenez A , Miranda‐Vizuete A , Arner ES . Induction of cell membrane protrusions by the N‐terminal glutaredoxin domain of a rare splice variant of human thioredoxin reductase 1. J Biol Chem 283: 2814‐2821, 2008.
 34. Diotte NM , Xiong Y , Gao J , Chua BH , Ho YS . Attenuation of doxorubicin‐induced cardiac injury by mitochondrial glutaredoxin 2. Biochim Biophys Acta 1793: 427‐438, 2009.
 35. Doroudgar S , Thuerauf DJ , Marcinko MC , Belmont PJ , Glembotski CC . Ischemia activates the ATF6 branch of the endoplasmic reticulum stress response. J Biol Chem 284: 29735‐29745, 2009.
 36. Dwivedi VK , Chandra M , Misra PC , Misra A , Misra MK . Status of some free radical scavenging enzymes in the blood of myocardial infarction patients. J Enzyme Inhib Med Chem 21: 43‐46, 2006.
 37. Ebrahimian T , Sairam MR , Schiffrin EL , Touyz RM . Cardiac hypertrophy is associated with altered thioredoxin and ASK‐1 signaling in a mouse model of menopause. Am J Physiol Heart Circ Physiol 295: H1481‐H1488, 2008.
 38. Edman JC , Ellis L , Blacher RW , Roth RA , Rutter WJ . Sequence of protein disulphide isomerase and implications of its relationship to thioredoxin. Nature 317: 267‐270, 1985.
 39. Ellgaard L , Helenius A . Quality control in the endoplasmic reticulum. Nat Rev Mol Cell Biol 4: 181‐191, 2003.
 40. Ellgaard L , Ruddock LW . The human protein disulphide isomerase family: Substrate interactions and functional properties. EMBO Rep 6: 28‐32, 2005.
 41. Enoksson M , Fernandes AP , Prast S , Lillig CH , Holmgren A , Orrenius S . Overexpression of glutaredoxin 2 attenuates apoptosis by preventing cytochrome c release. Biochem Biophys Res Commun 327: 774‐779, 2005.
 42. Fae KC , Diefenbach da Silva D , Bilate AM , Tanaka AC , Pomerantzeff PM , Kiss MH , Silva CA , Cunha‐Neto E , Kalil J , Guilherme L . PDIA3, HSPA5 and vimentin, proteins identified by 2‐DE in the valvular tissue, are the target antigens of peripheral and heart infiltrating T cells from chronic rheumatic heart disease patients. J Autoimmun 31: 136‐141, 2008.
 43. Fernandes AP , Holmgren A . Glutaredoxins: glutathione‐dependent redox enzymes with functions far beyond a simple thioredoxin backup system. Antioxid Redox Signal 6: 63‐74, 2004.
 44. Ferrari DM , Soling HD . The protein disulphide‐isomerase family: Unravelling a string of folds. Biochem J 339(Pt 1): 1‐10, 1999.
 45. Fisher‐Wellman KH , Mattox TA , Thayne K , Katunga LA , La Favor JD , Neufer PD , Hickner RC , Wingard CJ , Anderson EJ . Novel role for thioredoxin reductase‐2 in mitochondrial redox adaptations to obesogenic diet and exercise in heart and skeletal muscle. J Physiol 591: 3471‐3486, 2013.
 46. Fu C , Wu C , Liu T , Ago T , Zhai P , Sadoshima J , Li H . Elucidation of thioredoxin target protein networks in mouse. Mol Cell Proteomics 8: 1674‐1687, 2009.
 47. Gallogly MM , Shelton MD , Qanungo S , Pai HV , Starke DW , Hoppel CL , Lesnefsky EJ , Mieyal JJ . Glutaredoxin regulates apoptosis in cardiomyocytes via NFkappaB targets Bcl‐2 and Bcl‐xL: Implications for cardiac aging. Antioxid Redox Signal 12: 1339‐1353, 2010.
 48. Gallogly MM , Starke DW , Mieyal JJ . Mechanistic and kinetic details of catalysis of thiol‐disulfide exchange by glutaredoxins and potential mechanisms of regulation. Antioxid Redox Signal 11: 1059‐1081, 2009.
 49. Gladyshev VN , Liu A , Novoselov SV , Krysan K , Sun QA , Kryukov VM , Kryukov GV , Lou MF . Identification and characterization of a new mammalian glutaredoxin (thioltransferase), Grx2. J Biol Chem 276: 30374‐30380, 2001.
 50. Glembotski CC . Endoplasmic reticulum stress in the heart. Circ Res 101: 975‐984, 2007.
 51. Graven KK , Molvar C , Roncarati JS , Klahn BD , Lowrey S , Farber HW . Identification of protein disulfide isomerase as an endothelial hypoxic stress protein. Am J Physiol Lung Cell Mol Physiol 282: L996‐1003, 2002.
 52. Guo Y , Einhorn L , Kelley M , Hirota K , Yodoi J , Reinbold R , Scholer H , Ramsey H , Hromas R . Redox regulation of the embryonic stem cell transcription factor oct‐4 by thioredoxin. Stem Cells 22: 259‐264, 2004.
 53. Haendeler J , Hoffmann J , Tischler V , Berk BC , Zeiher AM , Dimmeler S . Redox regulatory and anti‐apoptotic functions of thioredoxin depend on S‐nitrosylation at cysteine 69. Nat Cell Biol 4: 743‐749, 2002.
 54. Haendeler J , Hoffmann J , Zeiher AM , Dimmeler S . Antioxidant effects of statins via S‐nitrosylation and activation of thioredoxin in endothelial cells: A novel vasculoprotective function of statins. Circulation 110: 856‐861, 2004.
 55. Hattori I , Takagi Y , Nakamura H , Nozaki K , Bai J , Kondo N , Sugino T , Nishimura M , Hashimoto N , Yodoi J . Intravenous administration of thioredoxin decreases brain damage following transient focal cerebral ischemia in mice. Antioxid Redox Signal 6: 81‐87, 2004.
 56. Herrero E , de la Torre‐Ruiz MA . Monothiol glutaredoxins: A common domain for multiple functions. Cell Mol Life Sci 64: 1518‐1530, 2007.
 57. Hirota K , Matsui M , Murata M , Takashima Y , Cheng FS , Itoh T , Fukuda K , Yodoi J . Nucleoredoxin, glutaredoxin, and thioredoxin differentially regulate NF‐kappaB, AP‐1, and CREB activation in HEK293 cells. Biochem Biophys Res Commun 274: 177‐182, 2000.
 58. Ho YS , Xiong Y , Ho DS , Gao J , Chua BH , Pai H , Mieyal JJ . Targeted disruption of the glutaredoxin 1 gene does not sensitize adult mice to tissue injury induced by ischemia/reperfusion and hyperoxia. Free Radic Biol Med 43: 1299‐1312, 2007.
 59. Hokamaki J , Kawano H , Soejima H , Miyamoto S , Kajiwara I , Kojima S , Sakamoto T , Sugiyama S , Yoshimura M , Nakamura H , Yodoi J , Ogawa H . Plasma thioredoxin levels in patients with unstable angina. Int J Cardiol 99: 225‐231, 2005.
 60. Holmgren A . Hydrogen donor system for Escherichia coli ribonucleoside‐diphosphate reductase dependent upon glutathione. Proc Natl Acad Sci U S A 73: 2275‐2279, 1976.
 61. Holmgren A . Thioredoxin. Annu Rev Biochem 54: 237‐271, 1985.
 62. Holmgren A . Thioredoxin and glutaredoxin systems. J Biol Chem 264: 13963‐13966, 1989.
 63. Holmgren A . Thioredoxin and glutaredoxin: Small multi‐functional redox proteins with active‐site disulphide bonds. Biochem Soc Trans 16: 95‐96, 1988.
 64. Holmgren A . Thioredoxin. 4. Amino acid sequence of peptide B. Eur J Biochem 5: 359‐365, 1968.
 65. Horstkotte J , Perisic T , Schneider M , Lange P , Schroeder M , Kiermayer C , Hinkel R , Ziegler T , Mandal PK , David R , Schulz S , Schmitt S , Widder J , Sinowatz F , Becker BF , Bauersachs J , Naebauer M , Franz WM , Jeremias I , Brielmeier M , Zischka H , Conrad M , Kupatt C . Mitochondrial thioredoxin reductase is essential for early postischemic myocardial protection. Circulation 124: 2892‐2902, 2011.
 66. Hoshino Y , Shioji K , Nakamura H , Masutani H , Yodoi J . From oxygen sensing to heart failure: Role of thioredoxin. Antioxid Redox Signal 9: 689‐699, 2007.
 67. Ichijo H , Nishida E , Irie K , ten Dijke P , Saitoh M , Moriguchi T , Takagi M , Matsumoto K , Miyazono K , Gotoh Y . Induction of apoptosis by ASK1, a mammalian MAPKKK that activates SAPK/JNK and p38 signaling pathways. Science 275: 90‐94, 1997.
 68. Inadomi C , Murata H , Ihara Y , Goto S , Urata Y , Yodoi J , Kondo T , Sumikawa K . Overexpression of glutaredoxin protects cardiomyocytes against nitric oxide‐induced apoptosis with suppressing the S‐nitrosylation of proteins and nuclear translocation of GAPDH. Biochem Biophys Res Commun 425: 656‐661, 2012.
 69. Ito K , Inaba K . The disulfide bond formation (Dsb) system. Curr Opin Struct Biol 18: 450‐458, 2008.
 70. Jakupoglu C , Przemeck GK , Schneider M , Moreno SG , Mayr N , Hatzopoulos AK , de Angelis MH , Wurst W , Bornkamm GW , Brielmeier M , Conrad M . Cytoplasmic thioredoxin reductase is essential for embryogenesis but dispensable for cardiac development. Mol Cell Biol 25: 1980‐1988, 2005.
 71. Jekell A , Hossain A , Alehagen U , Dahlstrom U , Rosen A . Elevated circulating levels of thioredoxin and stress in chronic heart failure. Eur J Heart Fail 6: 883‐890, 2004.
 72. Jeong D , Cha H , Kim E , Kang M , Yang DK , Kim JM , Yoon PO , Oh JG , Bernecker OY , Sakata S , Le TT , Cui L , Lee YH , Kim do H , Woo SH , Liao R , Hajjar RJ , Park WJ . PICOT inhibits cardiac hypertrophy and enhances ventricular function and cardiomyocyte contractility. Circ Res 99: 307‐314, 2006.
 73. Jeong D , Kim JM , Cha H , Oh JG , Park J , Yun SH , Ju ES , Jeon ES , Hajjar RJ , Park WJ . PICOT attenuates cardiac hypertrophy by disrupting calcineurin‐NFAT signaling. Circ Res 102: 711‐719, 2008.
 74. Johansson C , Lillig CH , Holmgren A . Human mitochondrial glutaredoxin reduces S‐glutathionylated proteins with high affinity accepting electrons from either glutathione or thioredoxin reductase. J Biol Chem 279: 7537‐7543, 2004.
 75. Kaga S , Zhan L , Matsumoto M , Maulik N . Resveratrol enhances neovascularization in the infarcted rat myocardium through the induction of thioredoxin‐1, heme oxygenase‐1 and vascular endothelial growth factor. J Mol Cell Cardiol 39: 813‐822, 2005.
 76. Kakisaka Y , Nakashima T , Sumida Y , Yoh T , Nakamura H , Yodoi J , Senmaru H . Elevation of serum thioredoxin levels in patients with type 2 diabetes. Horm Metab Res 34: 160‐164, 2002.
 77. Kasuno K , Nakamura H , Ono T , Muso E , Yodoi J . Protective roles of thioredoxin, a redox‐regulating protein, in renal ischemia/reperfusion injury. Kidney Int 64: 1273‐1282, 2003.
 78. Kern R , Malki A , Holmgren A , Richarme G . Chaperone properties of Escherichia coli thioredoxin and thioredoxin reductase. Biochem J 371: 965‐972, 2003.
 79. Kikuchi M , Doi E , Tsujimoto I , Horibe T , Tsujimoto Y . Functional analysis of human P5, a protein disulfide isomerase homologue. J Biochem 132: 451‐455, 2002.
 80. Kishimoto C , Shioji K , Nakamura H , Nakayama Y , Yodoi J , Sasayama S . Serum thioredoxin (TRX) levels in patients with heart failure. Jpn Circ J 65: 491‐494, 2001.
 81. Kondo N , Nakamura H , Masutani H , Yodoi J . Redox regulation of human thioredoxin network. Antioxid Redox Signal 8: 1881‐1890, 2006.
 82. Koneru S , Penumathsa SV , Thirunavukkarasu M , Zhan L , Maulik N . Thioredoxin‐1 gene delivery induces heme oxygenase‐1 mediated myocardial preservation after chronic infarction in hypertensive rats. Am J Hypertens 22: 183‐190, 2009.
 83. Kuster GM , Pimentel DR , Adachi T , Ido Y , Brenner DA , Cohen RA , Liao R , Siwik DA , Colucci WS . Alpha‐adrenergic receptor‐stimulated hypertrophy in adult rat ventricular myocytes is mediated via thioredoxin‐1‐sensitive oxidative modification of thiols on Ras. Circulation 111: 1192‐1198, 2005.
 84. Kuster GM , Siwik DA , Pimentel DR , Colucci WS . Role of reversible, thioredoxin‐sensitive oxidative protein modifications in cardiac myocytes. Antioxid Redox Signal 8: 2153‐2159, 2006.
 85. LaMantia ML , Lennarz WJ . The essential function of yeast protein disulfide isomerase does not reside in its isomerase activity. Cell 74: 899‐908, 1993.
 86. Laurent TC , Moore EC , Reichard P . Enzymatic synthesis of deoxyribonucleotides. Iv. Isolation and characterization of thioredoxin, the hydrogen donor from Escherichia coli B. J Biol Chem 239: 3436‐3444, 1964.
 87. Laurindo FR , Fernandes DC , Amanso AM , Lopes LR , Santos CX . Novel role of protein disulfide isomerase in the regulation of NADPH oxidase activity: Pathophysiological implications in vascular diseases. Antioxid Redox Signal 10: 1101‐1113, 2008.
 88. Laurindo FR , Pescatore LA , Fernandes Dde C . Protein disulfide isomerase in redox cell signaling and homeostasis. Free Radic Biol Med 52: 1954‐1969, 2012.
 89. Laybutt DR , Preston AM , Akerfeldt MC , Kench JG , Busch AK , Biankin AV , Biden TJ . Endoplasmic reticulum stress contributes to beta cell apoptosis in type 2 diabetes. Diabetologia 50: 752‐763, 2007.
 90. Lee AS . The glucose‐regulated proteins: Stress induction and clinical applications. Trends Biochem Sci 26: 504‐510, 2001.
 91. Lekli I , Mukherjee S , Ray D , Gurusamy N , Kim YH , Tosaki A , Engelman RM , Ho YS , Das DK . Functional recovery of diabetic mouse hearts by glutaredoxin‐1 gene therapy: Role of Akt‐FoxO‐signaling network. Gene Ther 17: 478‐485, 2010.
 92. Li X , Tang K , Xie B , Li S , Rozanski GJ . Regulation of Kv4 channel expression in failing rat heart by the thioredoxin system. Am J Physiol Heart Circ Physiol 295: H416‐H424, 2008.
 93. Li X , Xu Z , Li S , Rozanski GJ . Redox regulation of Ito remodeling in diabetic rat heart. Am J Physiol Heart Circ Physiol 288: H1417‐H1424, 2005.
 94. Lillig CH , Berndt C , Holmgren A . Glutaredoxin systems. Biochim Biophys Acta 1780: 1304‐1317, 2008.
 95. Lillig CH , Holmgren A . Thioredoxin and related molecules–From biology to health and disease. Antioxid Redox Signal 9: 25‐47, 2007.
 96. Lillig CH , Lonn ME , Enoksson M , Fernandes AP , Holmgren A . Short interfering RNA‐mediated silencing of glutaredoxin 2 increases the sensitivity of HeLa cells toward doxorubicin and phenylarsine oxide. Proc Natl Acad Sci U S A 101: 13227‐13232, 2004.
 97. Liu Q , Sargent MA , York AJ , Molkentin JD . ASK1 regulates cardiomyocyte death but not hypertrophy in transgenic mice. Circ Res 105: 1110‐1117, 2009.
 98. Liu W , Nakamura H , Shioji K , Tanito M , Oka S , Ahsan MK , Son A , Ishii Y , Kishimoto C , Yodoi J . Thioredoxin‐1 ameliorates myosin‐induced autoimmune myocarditis by suppressing chemokine expressions and leukocyte chemotaxis in mice. Circulation 110: 1276‐1283, 2004.
 99. Liu Y , Ma Y , Wang R , Xia C , Zhang R , Lian K , Luan R , Sun L , Yang L , Lau WB , Wang H , Tao L . Advanced glycation end products accelerate ischemia/reperfusion injury through receptor of advanced end product/nitrative thioredoxin inactivation in cardiac microvascular endothelial cells. Antioxid Redox Signal 15: 1769‐1778, 2011.
 100. Liu Y , Qu Y , Wang R , Ma Y , Xia C , Gao C , Liu J , Lian K , Xu A , Lu X , Sun L , Yang L , Lau WB , Gao E , Koch W , Wang H , Tao L . The alternative crosstalk between RAGE and nitrative thioredoxin inactivation during diabetic myocardial ischemia‐reperfusion injury. Am J Physiol Endocrinol Metab 303: E841‐E852, 2012.
 101. Lu J , Holmgren A . The thioredoxin superfamily in oxidative protein folding. Antioxid Redox Signal 21: 457‐470, 2014.
 102. Luan R , Liu S , Yin T , Lau WB , Wang Q , Guo W , Wang H , Tao L . High glucose sensitizes adult cardiomyocytes to ischaemia/reperfusion injury through nitrative thioredoxin inactivation. Cardiovasc Res 83: 294‐302, 2009.
 103. Lundberg M , Fernandes AP , Kumar S , Holmgren A . Cellular and plasma levels of human glutaredoxin 1 and 2 detected by sensitive ELISA systems. Biochem Biophys Res Commun 319: 801‐809, 2004.
 104. Lundberg M , Johansson C , Chandra J , Enoksson M , Jacobsson G , Ljung J , Johansson M , Holmgren A . Cloning and expression of a novel human glutaredoxin (Grx2) with mitochondrial and nuclear isoforms. J Biol Chem 276: 26269‐26275, 2001.
 105. Mahmood DF , Abderrazak A , El Hadri K , Simmet T , Rouis M . The thioredoxin system as a therapeutic target in human health and disease. Antioxid Redox Signal 19: 1266‐1303, 2013.
 106. Mailloux RJ , Xuan JY , McBride S , Maharsy W , Thorn S , Holterman CE , Kennedy CR , Rippstein P , deKemp R , da Silva J , Nemer M , Lou M , Harper ME . Glutaredoxin‐2 is required to control oxidative phosphorylation in cardiac muscle by mediating deglutathionylation reactions. J Biol Chem 289: 14812‐14828, 2014.
 107. Matsui M , Oshima M , Oshima H , Takaku K , Maruyama T , Yodoi J , Taketo MM . Early embryonic lethality caused by targeted disruption of the mouse thioredoxin gene. Dev Biol 178: 179‐185, 1996.
 108. Matsushima S , Zablocki D , Sadoshima J . Application of recombinant thioredoxin1 for treatment of heart disease. J Mol Cell Cardiol 51: 570‐573, 2011.
 109. Maurice MM , Nakamura H , Gringhuis S , Okamoto T , Yoshida S , Kullmann F , Lechner S , van der Voort EA , Leow A , Versendaal J , Muller‐Ladner U , Yodoi J , Tak PP , Breedveld FC , Verweij CL . Expression of the thioredoxin‐thioredoxin reductase system in the inflamed joints of patients with rheumatoid arthritis. Arthritis Rheum 42: 2430‐2439, 1999.
 110. Meyer EB , Wells WW . Thioltransferase overexpression increases resistance of MCF‐7 cells to adriamycin. Free Radic Biol Med 26: 770‐776, 1999.
 111. Miranda‐Vizuete A , Ljung J , Damdimopoulos AE , Gustafsson JA , Oko R , Pelto‐Huikko M , Spyrou G . Characterization of Sptrx, a novel member of the thioredoxin family specifically expressed in human spermatozoa. J Biol Chem 276: 31567‐31574, 2001.
 112. Mitchell DA , Marletta MA . Thioredoxin catalyzes the S‐nitrosation of the caspase‐3 active site cysteine. Nat Chem Biol 1: 154‐158, 2005.
 113. Miwa K , Kishimoto C , Nakamura H , Makita T , Ishii K , Okuda N , Yodoi J , Sasayama S . Serum thioredoxin and alpha‐tocopherol concentrations in patients with major risk factors. Circ J 69: 291‐294, 2005.
 114. Miyamoto M , Kishimoto C , Nimata M , Nakamura H , Yodoi J . Thioredoxin, a redox‐regulating protein, is expressed in spontaneous myocarditis in inbred strains of mice. Int J Cardiol 95: 315‐319, 2004.
 115. Miyamoto S , Kawano H , Sakamoto T , Soejima H , Kajiwara I , Hokamaki J , Hirai N , Sugiyama S , Yoshimura M , Yasue H , Nakamura H , Yodoi J , Ogawa H . Increased plasma levels of thioredoxin in patients with coronary spastic angina. Antioxid Redox Signal 6: 75‐80, 2004.
 116. Miyamoto S , Sakamoto T , Soejima H , Shimomura H , Kajiwara I , Kojima S , Hokamaki J , Sugiyama S , Yoshimura M , Ozaki Y , Nakamura H , Yodoi J , Ogawa H . Plasma thioredoxin levels and platelet aggregability in patients with acute myocardial infarction. Am Heart J 146: 465‐471, 2003.
 117. Murata H , Ihara Y , Nakamura H , Yodoi J , Sumikawa K , Kondo T . Glutaredoxin exerts an antiapoptotic effect by regulating the redox state of Akt. J Biol Chem 278: 50226‐50233, 2003.
 118. Nakamura H , De Rosa S , Roederer M , Anderson MT , Dubs JG , Yodoi J , Holmgren A , Herzenberg LA . Elevation of plasma thioredoxin levels in HIV‐infected individuals. Int Immunol 8: 603‐611, 1996.
 119. Nakamura H , De Rosa SC , Yodoi J , Holmgren A , Ghezzi P , Herzenberg LA . Chronic elevation of plasma thioredoxin: Inhibition of chemotaxis and curtailment of life expectancy in AIDS. Proc Natl Acad Sci U S A 98: 2688‐2693, 2001.
 120. Nakamura H , Herzenberg LA , Bai J , Araya S , Kondo N , Nishinaka Y , Yodoi J . Circulating thioredoxin suppresses lipopolysaccharide‐induced neutrophil chemotaxis. Proc Natl Acad Sci U S A 98: 15143‐15148, 2001.
 121. Nakamura H , Masutani H , Yodoi J . Extracellular thioredoxin and thioredoxin‐binding protein 2 in control of cancer. Semin Cancer Biol 16: 444‐451, 2006.
 122. Nakamura H , Vaage J , Valen G , Padilla CA , Bjornstedt M , Holmgren A . Measurements of plasma glutaredoxin and thioredoxin in healthy volunteers and during open‐heart surgery. Free Radic Biol Med 24: 1176‐1186, 1998.
 123. Nicholson CK , Lambert JP , Molkentin JD , Sadoshima J , Calvert JW . Thioredoxin 1 is essential for sodium sulfide‐mediated cardioprotection in the setting of heart failure. Arterioscler Thromb Vasc Biol 33: 744‐751, 2013.
 124. Nishida M , Harada S , Noguchi S , Satow Y , Inoue H , Takahashi K . Three‐dimensional structure of Escherichia coli glutathione S‐transferase complexed with glutathione sulfonate: Catalytic roles of Cys10 and His106. J Mol Biol 281: 135‐147, 1998.
 125. Nonn L , Williams RR , Erickson RP , Powis G . The absence of mitochondrial thioredoxin 2 causes massive apoptosis, exencephaly, and early embryonic lethality in homozygous mice. Mol Cell Biol 23: 916‐922, 2003.
 126. Oh JG , Jeong D , Cha H , Kim JM , Lifirsu E , Kim J , Yang DK , Park CS , Kho C , Park S , Yoo YJ , Kim do H , Hajjar RJ , Park WJ . PICOT increases cardiac contractility by inhibiting PKCzeta activity. J Mol Cell Cardiol 53: 53‐63, 2012.
 127. Okada K , Minamino T , Tsukamoto Y , Liao Y , Tsukamoto O , Takashima S , Hirata A , Fujita M , Nagamachi Y , Nakatani T , Yutani C , Ozawa K , Ogawa S , Tomoike H , Hori M , Kitakaze M . Prolonged endoplasmic reticulum stress in hypertrophic and failing heart after aortic constriction: Possible contribution of endoplasmic reticulum stress to cardiac myocyte apoptosis. Circulation 110: 705‐712, 2004.
 128. Otaki Y , Watanabe T , Takahashi H , Kadowaki S , Narumi T , Honda Y , Wanezaki M , Sasaki S , Tamura H , Nishiyama S , Arimoto T , Shishido T , Miyamoto T , Kubota I . Association of plasma thioredoxin‐1 with renal tubular damage and cardiac prognosis in patients with chronic heart failure. J Cardiol 2014 [Epub ahead of print].
 129. Ozcan U , Cao Q , Yilmaz E , Lee AH , Iwakoshi NN , Ozdelen E , Tuncman G , Gorgun C , Glimcher LH , Hotamisligil GS . Endoplasmic reticulum stress links obesity, insulin action, and type 2 diabetes. Science 306: 457‐461, 2004.
 130. Pai HV , Starke DW , Lesnefsky EJ , Hoppel CL , Mieyal JJ . What is the functional significance of the unique location of glutaredoxin 1 (GRx1) in the intermembrane space of mitochondria? Antioxid Redox Signal 9: 2027‐2033, 2007.
 131. Pan JL , Bardwell JC . The origami of thioredoxin‐like folds. Protein Sci 15: 2217‐2227, 2006.
 132. Pan S , Berk BC . Glutathiolation regulates tumor necrosis factor‐alpha‐induced caspase‐3 cleavage and apoptosis: Key role for glutaredoxin in the death pathway. Circ Res 100: 213‐219, 2007.
 133. Peltoniemi MJ , Rytila PH , Harju TH , Soini YM , Salmenkivi KM , Ruddock LW , Kinnula VL . Modulation of glutaredoxin in the lung and sputum of cigarette smokers and chronic obstructive pulmonary disease. Respir Res 7: 133, 2006.
 134. Pimentel DR , Adachi T , Ido Y , Heibeck T , Jiang B , Lee Y , Melendez JA , Cohen RA , Colucci WS . Strain‐stimulated hypertrophy in cardiac myocytes is mediated by reactive oxygen species‐dependent Ras S‐glutathiolation. J Mol Cell Cardiol 41: 613‐622, 2006.
 135. Powis G , Montfort WR . Properties and biological activities of thioredoxins. Annu Rev Pharmacol Toxicol 41: 261‐295, 2001.
 136. Powis G , Montfort WR . Properties and biological activities of thioredoxins. Annu Rev Biophys Biomol Struct 30: 421‐455, 2001.
 137. Powis G , Mustacich D , Coon A . The role of the redox protein thioredoxin in cell growth and cancer. Free Radic Biol Med 29: 312‐322, 2000.
 138. Prinz WA , Aslund F , Holmgren A , Beckwith J . The role of the thioredoxin and glutaredoxin pathways in reducing protein disulfide bonds in the Escherichia coli cytoplasm. J Biol Chem 272: 15661‐15667, 1997.
 139. Qanungo S , Starke DW , Pai HV , Mieyal JJ , Nieminen AL . Glutathione supplementation potentiates hypoxic apoptosis by S‐glutathionylation of p65‐NFkappaB. J Biol Chem 282: 18427‐18436, 2007.
 140. Ren G , Stephan D , Xu Z , Zheng Y , Tang D , Harrison RS , Kurz M , Jarrott R , Shouldice SR , Hiniker A , Martin JL , Heras B , Bardwell JC . Properties of the thioredoxin fold superfamily are modulated by a single amino acid residue. J Biol Chem 284: 10150‐10159, 2009.
 141. Reynaert NL , van der Vliet A , Guala AS , McGovern T , Hristova M , Pantano C , Heintz NH , Heim J , Ho YS , Matthews DE , Wouters EF , Janssen‐Heininger YM . Dynamic redox control of NF‐kappaB through glutaredoxin‐regulated S‐glutathionylation of inhibitory kappaB kinase beta. Proc Natl Acad Sci U S A 103: 13086‐13091, 2006.
 142. Rundlof AK , Arner ES . Regulation of the mammalian selenoprotein thioredoxin reductase 1 in relation to cellular phenotype, growth, and signaling events. Antioxid Redox Signal 6: 41‐52, 2004.
 143. Saitoh M , Nishitoh H , Fujii M , Takeda K , Tobiume K , Sawada Y , Kawabata M , Miyazono K , Ichijo H . Mammalian thioredoxin is a direct inhibitor of apoptosis signal‐regulating kinase (ASK) 1. EMBO J 17: 2596‐2606, 1998.
 144. Samarel AM . PICOT: A multidomain scaffolding inhibitor of hypertrophic signal transduction. Circ Res 102: 625‐627, 2008.
 145. Samuel SM , Thirunavukkarasu M , Penumathsa SV , Koneru S , Zhan L , Maulik G , Sudhakaran PR , Maulik N . Thioredoxin‐1 gene therapy enhances angiogenic signaling and reduces ventricular remodeling in infarcted myocardium of diabetic rats. Circulation 121: 1244‐1255, 2010.
 146. Sato Y , Kojima R , Okumura M , Hagiwara M , Masui S , Maegawa K , Saiki M , Horibe T , Suzuki M , Inaba K . Synergistic cooperation of PDI family members in peroxiredoxin 4‐driven oxidative protein folding. Sci Rep 3: 2456, 2013.
 147. Satoh M , Matter CM , Ogita H , Takeshita K , Wang CY , Dorn GW, II , Liao JK . Inhibition of apoptosis‐regulated signaling kinase‐1 and prevention of congestive heart failure by estrogen. Circulation 115: 3197‐3204, 2007.
 148. Schroder M , Kaufman RJ . The mammalian unfolded protein response. Annu Rev Biochem 74: 739‐789, 2005.
 149. Severino A , Campioni M , Straino S , Salloum FN , Schmidt N , Herbrand U , Frede S , Toietta G , Di Rocco G , Bussani R , Silvestri F , Piro M , Liuzzo G , Biasucci LM , Mellone P , Feroce F , Capogrossi M , Baldi F , Fandrey J , Ehrmann M , Crea F , Abbate A , Baldi A . Identification of protein disulfide isomerase as a cardiomyocyte survival factor in ischemic cardiomyopathy. J Am Coll Cardiol 50: 1029‐1037, 2007.
 150. Shelton MD , Kern TS , Mieyal JJ . Glutaredoxin regulates nuclear factor kappa‐B and intercellular adhesion molecule in Muller cells: Model of diabetic retinopathy. J Biol Chem 282: 12467‐12474, 2007.
 151. Shim YK , Kim JT , Seong MH , Kim YJ , Shim TJ , Kim SM , Lee SY , Bae JW , Kim KS , Hwang KK , Kim DW , Cho MC . Serum thioredoxin 1 level has close relation with myocardial damage amount in acute myocardial infarction patients. J Korean Med Sci 27: 1162‐1169, 2012.
 152. Shioji K , Kishimoto C , Nakamura H , Masutani H , Yuan Z , Oka S , Yodoi J . Overexpression of thioredoxin‐1 in transgenic mice attenuates adriamycin‐induced cardiotoxicity. Circulation 106: 1403‐1409, 2002.
 153. Shioji K , Kishimoto C , Nakamura H , Toyokuni S , Nakayama Y , Yodoi J , Sasayama S . Upregulation of thioredoxin (TRX) expression in giant cell myocarditis in rats. FEBS Lett 472: 109‐113, 2000.
 154. Shioji K , Matsuura Y , Iwase T , Kitaguchi S , Nakamura H , Yodoi J , Hashimoto T , Kawai C , Kishimoto C . Successful immunoglobulin treatment for fulminant myocarditis and serial analysis of serum thioredoxin: A case report. Circ J 66: 977‐980, 2002.
 155. Shioji K , Nakamura H , Masutani H , Yodoi J . Redox regulation by thioredoxin in cardiovascular diseases. Antioxid Redox Signal 5: 795‐802, 2003.
 156. Sibbing D , Pfeufer A , Perisic T , Mannes AM , Fritz‐Wolf K , Unwin S , Sinner MF , Gieger C , Gloeckner CJ , Wichmann HE , Kremmer E , Schafer Z , Walch A , Hinterseer M , Nabauer M , Kaab S , Kastrati A , Schomig A , Meitinger T , Bornkamm GW , Conrad M , von Beckerath N . Mutations in the mitochondrial thioredoxin reductase gene TXNRD2 cause dilated cardiomyopathy. Eur Heart J 32: 1121‐1133, 2011.
 157. Soderberg A , Hossain A , Rosen A . A protein disulfide isomerase/thioredoxin‐1 complex is physically attached to exofacial membrane tumor necrosis factor receptors: Overexpression in chronic lymphocytic leukemia cells. Antioxid Redox Signal 18: 363‐375, 2013.
 158. Soejima H , Suefuji H , Miyamoto S , Kajiwaram I , Kojima S , Hokamaki J , Sakamoto T , Yoshimura M , Nakamura H , Yodoi J , Ogawa H . Increased plasma thioredoxin in patients with acute myocardial infarction. Clin Cardiol 26: 583‐587, 2003.
 159. Song JJ , Lee YJ . Differential role of glutaredoxin and thioredoxin in metabolic oxidative stress‐induced activation of apoptosis signal‐regulating kinase 1. Biochem J 373: 845‐853, 2003.
 160. Song JJ , Rhee JG , Suntharalingam M , Walsh SA , Spitz DR , Lee YJ . Role of glutaredoxin in metabolic oxidative stress. Glutaredoxin as a sensor of oxidative stress mediated by H2O2. J Biol Chem 277: 46566‐46575, 2002.
 161. Spyrou G , Enmark E , Miranda‐Vizuete A , Gustafsson J . Cloning and expression of a novel mammalian thioredoxin. J Biol Chem 272: 2936‐2941, 1997.
 162. Stanley BA , Sivakumaran V , Shi S , McDonald I , Lloyd D , Watson WH , Aon MA , Paolocci N . Thioredoxin reductase‐2 is essential for keeping low levels of H(2)O(2) emission from isolated heart mitochondria. J Biol Chem 286: 33669‐33677, 2011.
 163. Sullivan DC , Huminiecki L , Moore JW , Boyle JJ , Poulsom R , Creamer D , Barker J , Bicknell R . EndoPDI, a novel protein‐disulfide isomerase‐like protein that is preferentially expressed in endothelial cells acts as a stress survival factor. J Biol Chem 278: 47079‐47088, 2003.
 164. Sumida Y , Nakashima T , Yoh T , Furutani M , Hirohama A , Kakisaka Y , Nakajima Y , Ishikawa H , Mitsuyoshi H , Okanoue T , Kashima K , Nakamura H , Yodoi J . Serum thioredoxin levels as a predictor of steatohepatitis in patients with nonalcoholic fatty liver disease. J Hepatol 38: 32‐38, 2003.
 165. Sumida Y , Nakashima T , Yoh T , Nakajima Y , Ishikawa H , Mitsuyoshi H , Sakamoto Y , Okanoue T , Kashima K , Nakamura H , Yodoi J . Serum thioredoxin levels as an indicator of oxidative stress in patients with hepatitis C virus infection. J Hepatol 33: 616‐622, 2000.
 166. Tagaya Y , Maeda Y , Mitsui A , Kondo N , Matsui H , Hamuro J , Brown N , Arai K , Yokota T , Wakasugi H , et al. ATL‐derived factor (ADF), an IL‐2 receptor/Tac inducer homologous to thioredoxin; possible involvement of dithiol‐reduction in the IL‐2 receptor induction. EMBO J 8: 757‐764, 1989.
 167. Takashima Y , Hirota K , Nakamura H , Nakamura T , Akiyama K , Cheng FS , Maeda M , Yodoi J . Differential expression of glutaredoxin and thioredoxin during monocytic differentiation. Immunol Lett 68: 397‐401, 1999.
 168. Tanaka S , Uehara T , Nomura Y . Up‐regulation of protein‐disulfide isomerase in response to hypoxia/brain ischemia and its protective effect against apoptotic cell death. J Biol Chem 275: 10388‐10393, 2000.
 169. Tanaka T , Hosoi F , Yamaguchi‐Iwai Y , Nakamura H , Masutani H , Ueda S , Nishiyama A , Takeda S , Wada H , Spyrou G , Yodoi J . Thioredoxin‐2 (TRX‐2) is an essential gene regulating mitochondria‐dependent apoptosis. EMBO J 21: 1695‐1703, 2002.
 170. Tanaka T , Nakamura H , Nishiyama A , Hosoi F , Masutani H , Wada H , Yodoi J . Redox regulation by thioredoxin superfamily; protection against oxidative stress and aging. Free Radic Res 33: 851‐855, 2000.
 171. Tao L , Gao E , Bryan NS , Qu Y , Liu HR , Hu A , Christopher TA , Lopez BL , Yodoi J , Koch WJ , Feelisch M , Ma XL . Cardioprotective effects of thioredoxin in myocardial ischemia and reperfusion: Role of S‐nitrosation [corrected]. Proc Natl Acad Sci U S A 101: 11471‐11476, 2004.
 172. Tao L , Gao E , Hu A , Coletti C , Wang Y , Christopher TA , Lopez BL , Koch W , Ma XL . Thioredoxin reduces post‐ischemic myocardial apoptosis by reducing oxidative/nitrative stress. Br J Pharmacol 149: 311‐318, 2006.
 173. Tao L , Jiao X , Gao E , Lau WB , Yuan Y , Lopez B , Christopher T , RamachandraRao SP , Williams W , Southan G , Sharma K , Koch W , Ma XL . Nitrative inactivation of thioredoxin‐1 and its role in postischemic myocardial apoptosis. Circulation 114: 1395‐1402, 2006.
 174. Thuerauf DJ , Marcinko M , Gude N , Rubio M , Sussman MA , Glembotski CC . Activation of the unfolded protein response in infarcted mouse heart and hypoxic cultured cardiac myocytes. Circ Res 99: 275‐282, 2006.
 175. Tian F , Zhou X , Wikstrom J , Karlsson H , Sjoland H , Gan LM , Boren J , Akyurek LM . Protein disulfide isomerase increases in myocardial endothelial cells in mice exposed to chronic hypoxia: A stimulatory role in angiogenesis. Am J Physiol Heart Circ Physiol 297: H1078‐H1086, 2009.
 176. Tian H , Matsuo Y , Fukunaga A , Ono R , Nishigori C , Yodoi J . Thioredoxin ameliorates cutaneous inflammation by regulating the epithelial production and release of pro‐inflammatory cytokines. Front Immunol 4: 269, 2013.
 177. Todd DJ , Lee AH , Glimcher LH . The endoplasmic reticulum stress response in immunity and autoimmunity. Nat Rev Immunol 8: 663‐674, 2008.
 178. Toldo S , Boccellino M , Rinaldi B , Seropian IM , Mezzaroma E , Severino A , Quagliuolo L , Van Tassell BW , Marfella R , Paolisso G , Rossi F , Natarajan R , Voelkel N , Abbate A , Crea F , Baldi A . Altered oxido‐reductive state in the diabetic heart: Loss of cardioprotection due to protein disulfide isomerase. Mol Med 17: 1012‐1021, 2011.
 179. Toldo S , Severino A , Abbate A , Baldi A . The role of PDI as a survival factor in cardiomyocyte ischemia. Methods Enzymol 489: 47‐65, 2011.
 180. Tonissen KF , Di Trapani G . Thioredoxin system inhibitors as mediators of apoptosis for cancer therapy. Mol Nutr Food Res 53: 87‐103, 2009.
 181. Turoczi T , Chang VW , Engelman RM , Maulik N , Ho YS , Das DK . Thioredoxin redox signaling in the ischemic heart: An insight with transgenic mice overexpressing Trx1. J Mol Cell Cardiol 35: 695‐704, 2003.
 182. Ueda S , Nakamura T , Yamada A , Teratani A , Matsui N , Furukawa S , Hoshino Y , Narita M , Yodoi J , Nakamura H . Recombinant human thioredoxin suppresses lipopolysaccharide‐induced bronchoalveolar neutrophil infiltration in rat. Life Sci 79: 1170‐1177, 2006.
 183. Uehara T , Nakamura T , Yao D , Shi ZQ , Gu Z , Ma Y , Masliah E , Nomura Y , Lipton SA . S‐nitrosylated protein‐disulphide isomerase links protein misfolding to neurodegeneration. Nature 441: 513‐517, 2006.
 184. Urata Y , Ihara Y , Murata H , Goto S , Koji T , Yodoi J , Inoue S , Kondo T . 17Beta‐estradiol protects against oxidative stress‐induced cell death through the glutathione/glutaredoxin‐dependent redox regulation of Akt in myocardiac H9c2 cells. J Biol Chem 281: 13092‐13102, 2006.
 185. van der Kallen CJ , van Greevenbroek MM , Stehouwer CD , Schalkwijk CG . Endoplasmic reticulum stress‐induced apoptosis in the development of diabetes: Is there a role for adipose tissue and liver? Apoptosis 14: 1424‐1434, 2009.
 186. Vekich JA , Belmont PJ , Thuerauf DJ , Glembotski CC . Protein disulfide isomerase‐associated 6 is an ATF6‐inducible ER stress response protein that protects cardiac myocytes from ischemia/reperfusion‐mediated cell death. J Mol Cell Cardiol 53: 259‐267, 2012.
 187. Vuori K , Myllyla R , Pihlajaniemi T , Kivirikko KI . Expression and site‐directed mutagenesis of human protein disulfide isomerase in Escherichia coli. This multifunctional polypeptide has two independently acting catalytic sites for the isomerase activity. J Biol Chem 267: 7211‐7214, 1992.
 188. Wakasugi N , Tagaya Y , Wakasugi H , Mitsui A , Maeda M , Yodoi J , Tursz T . Adult T‐cell leukemia‐derived factor/thioredoxin, produced by both human T‐lymphotropic virus type I‐ and Epstein‐Barr virus‐transformed lymphocytes, acts as an autocrine growth factor and synergizes with interleukin 1 and interleukin 2. Proc Natl Acad Sci U S A 87: 8282‐8286, 1990.
 189. Wang C , Li W , Ren J , Fang J , Ke H , Gong W , Feng W , Wang CC . Structural insights into the redox‐regulated dynamic conformations of human protein disulfide isomerase. Antioxid Redox Signal 19: 36‐45, 2013.
 190. Wang XL , Lau WB , Yuan YX , Wang YJ , Yi W , Christopher TA , Lopez BL , Liu HR , Ma XL . Methylglyoxal increases cardiomyocyte ischemia‐reperfusion injury via glycative inhibition of thioredoxin activity. Am J Physiol Endocrinol Metab 299: E207‐E214, 2010.
 191. Watson WH , Pohl J , Montfort WR , Stuchlik O , Reed MS , Powis G , Jones DP . Redox potential of human thioredoxin 1 and identification of a second dithiol/disulfide motif. J Biol Chem 278: 33408‐33415, 2003.
 192. Watson WH , Yang X , Choi YE , Jones DP , Kehrer JP . Thioredoxin and its role in toxicology. Toxicol Sci 78: 3‐14, 2004.
 193. Welsh SJ , Bellamy WT , Briehl MM , Powis G . The redox protein thioredoxin‐1 (Trx‐1) increases hypoxia‐inducible factor 1alpha protein expression: Trx‐1 overexpression results in increased vascular endothelial growth factor production and enhanced tumor angiogenesis. Cancer Res 62: 5089‐5095, 2002.
 194. Westphal V , Darby NJ , Winther JR . Functional properties of the two redox‐active sites in yeast protein disulphide isomerase in vitro and in vivo. J Mol Biol 286: 1229‐1239, 1999.
 195. Widder JD , Fraccarollo D , Galuppo P , Hansen JM , Jones DP , Ertl G , Bauersachs J . Attenuation of angiotensin II‐induced vascular dysfunction and hypertension by overexpression of thioredoxin 2. Hypertension 54: 338‐344, 2009.
 196. Wilkinson B , Gilbert HF . Protein disulfide isomerase. Biochim Biophys Acta 1699: 35‐44, 2004.
 197. World CJ , Yamawaki H , Berk BC . Thioredoxin in the cardiovascular system. J Mol Med (Berl) 84: 997‐1003, 2006.
 198. Wu J , Kaufman RJ . From acute ER stress to physiological roles of the Unfolded Protein Response. Cell Death Differ 13: 374‐384, 2006.
 199. Xiao L , Pimental DR , Amin JK , Singh K , Sawyer DB , Colucci WS . MEK1/2‐ERK1/2 mediates alpha1‐adrenergic receptor‐stimulated hypertrophy in adult rat ventricular myocytes. J Mol Cell Cardiol 33: 779‐787, 2001.
 200. Xiao L , Pimentel DR , Wang J , Singh K , Colucci WS , Sawyer DB . Role of reactive oxygen species and NAD(P)H oxidase in alpha(1)‐adrenoceptor signaling in adult rat cardiac myocytes. Am J Physiol Cell Physiol 282: C926‐934, 2002.
 201. Yamada Y , Nakamura H , Adachi T , Sannohe S , Oyamada H , Kayaba H , Yodoi J , Chihara J . Elevated serum levels of thioredoxin in patients with acute exacerbation of asthma. Immunol Lett 86: 199‐205, 2003.
 202. Yamaguchi O , Higuchi Y , Hirotani S , Kashiwase K , Nakayama H , Hikoso S , Takeda T , Watanabe T , Asahi M , Taniike M , Matsumura Y , Tsujimoto I , Hongo K , Kusakari Y , Kurihara S , Nishida K , Ichijo H , Hori M , Otsu K . Targeted deletion of apoptosis signal‐regulating kinase 1 attenuates left ventricular remodeling. Proc Natl Acad Sci U S A 100: 15883‐15888, 2003.
 203. Yamamoto M , Yang G , Hong C , Liu J , Holle E , Yu X , Wagner T , Vatner SF , Sadoshima J . Inhibition of endogenous thioredoxin in the heart increases oxidative stress and cardiac hypertrophy. J Clin Invest 112: 1395‐1406, 2003.
 204. Yamawaki H , Haendeler J , Berk BC . Thioredoxin: A key regulator of cardiovascular homeostasis. Circ Res 93: 1029‐1033, 2003.
 205. Yang Y , Ago T , Zhai P , Abdellatif M , Sadoshima J . Thioredoxin 1 negatively regulates angiotensin II‐induced cardiac hypertrophy through upregulation of miR‐98/let‐7. Circ Res 108: 305‐313, 2011.
 206. Yin T , Hou R , Liu S , Lau WB , Wang H , Tao L . Nitrative inactivation of thioredoxin‐1 increases vulnerability of diabetic hearts to ischemia/reperfusion injury. J Mol Cell Cardiol 49: 354‐361, 2010.
 207. Zeng XS , Jia JJ , Kwon Y , Wang SD , Bai J . The role of thioredoxin‐1 in suppression of endoplasmic reticulum stress in Parkinson disease. Free Radic Biol Med 67: 10‐18, 2014.
 208. Zhang H , Luo Y , Zhang W , He Y , Dai S , Zhang R , Huang Y , Bernatchez P , Giordano FJ , Shadel G , Sessa WC , Min W . Endothelial‐specific expression of mitochondrial thioredoxin improves endothelial cell function and reduces atherosclerotic lesions. Am J Pathol 170: 1108‐1120, 2007.
 209. Zhang H , Tao L , Jiao X , Gao E , Lopez BL , Christopher TA , Koch W , Ma XL . Nitrative thioredoxin inactivation as a cause of enhanced myocardial ischemia/reperfusion injury in the aging heart. Free Radic Biol Med 43: 39‐47, 2007.
 210. Zhou J , Damdimopoulos AE , Spyrou G , Brune B . Thioredoxin 1 and thioredoxin 2 have opposed regulatory functions on hypoxia‐inducible factor‐1alpha. J Biol Chem 282: 7482‐7490, 2007.

Contact Editor

Submit a note to the editor about this article by filling in the form below.

* Required Field

How to Cite

Jun Yoshioka. Thioredoxin Superfamily and Its Effects on Cardiac Physiology and Pathology. Compr Physiol 2015, 5: 513-530. doi: 10.1002/cphy.c140042