Comprehensive Physiology Wiley Online Library

Wnt Signaling in Cardiac Disease

Full Article on Wiley Online Library



ABSTRACT

Wnt signaling encompasses multiple and complex signaling cascades and is involved in many developmental processes such as tissue patterning, cell fate specification, and control of cell division. Consequently, accurate regulation of signaling activities is essential for proper embryonic development. Wnt signaling is mostly silent in the healthy adult organs but a reactivation of Wnt signaling is generally observed under pathological conditions. This has generated increasing interest in this pathway from a therapeutic point of view. In this review article, the involvement of Wnt signaling in cardiovascular development will be outlined, followed by its implication in myocardial infarct healing, cardiac hypertrophy, heart failure, arrhythmias, and atherosclerosis. The initial experiments not always offer consensus on the effects of activation or inactivation of the pathway, which may be attributed to (i) the type of cardiac disease, (ii) timing of the intervention, and (iii) type of cells that are targeted. Therefore, more research is needed to determine the exact implication of Wnt signaling in the conditions mentioned above to exploit it as a powerful therapeutic target. © 2015 American Physiological Society. Compr Physiol 5:1183‐1209, 2015.

Comprehensive Physiology offers downloadable PowerPoint presentations of figures for non-profit, educational use, provided the content is not modified and full credit is given to the author and publication.

Download a PowerPoint presentation of all images


Figure 1. Figure 1. Crystal structure of Xenopus Wnt8 in complex with the cysteine rich domain (CRD) of Frizzled8 (Fzd8). The structure of the Wnt protein mimics the palm of a hand with an index finger at the C‐terminal domain and a thumb and the N‐terminal domain. The index finger and the palmitic acid both make contact with the CRD leaving a gap in the middle that might be important for Wnt/Frizzled specificity.
Figure 2. Figure 2. Schematic overview of the noncanonical signaling pathways. (A) In the planar cell polarity pathway, Wnt binds to Frizzled and activates signaling independent from low‐density lipoprotein receptor‐related protein (LRP) 5/6. Dishevelled (Dvl) activates the small GTPases Rho and RAC that thereafter activate Rho kinase (ROCK) and c‐jun N‐terminal kinase (JNK) respectively. (B) The Wnt/Ca2+ signals through G‐proteins that activate phospholipase‐C (PLC). PLC causes a rise in intracellular Ca2+ that activates the Ca2+‐dependent enzymes calcineurin, calcium/calmodulin‐dependent kinase II (CaMKII), and protein kinase C (PKC). These enzymes can modulate the translocation of NFAT to the nucleus.
Figure 3. Figure 3. Schematic overview of the canonical/β‐catenin‐mediated signaling pathway. In the “off state” (left) the Frizzled receptor is not engaged by a Wnt protein. Wnts can also be scavenged by secreted frizzled‐related proteins (sFRP), thereby inhibiting signaling. In addition, canonical signaling is also prevented by inhibition of the low‐density lipoprotein receptor‐related protein (LRP) 5/6 coreceptors by Dickkopf (DKK). In the absence of signaling, the β‐catenin degradation complex consisting of glycogen synthase kinase 3β (GSK3β), Axin, adenomatous polyposis coli (APC), and casein kinase 1 (CK1) phosphorylates β‐catenin, which causes ubiquitination and degradation of the latter. In this way, cytoplasmic β‐catenin levels are kept low and prevent the protein from entering the nucleus to activate gene transcription. In the “on state” (right) Wnt binds to Frizzled and activates signaling together with the LRP coreceptors. Now Dvl is mobilized and inactivates the β‐catenin degradation complex. Hence, β‐catenin accumulates in the cytoplasm and is able to translocate to the nucleus where it interacts with the TCF/LEF transcription factors. These factors induce the transcription of Wnt‐responsive genes.
Figure 4. Figure 4. Effect of Wnt signaling on sprouting angiogenesis. In sprouting angiogenesis, tip cells guide the sprout into the required direction whereas the following sprout cells can proliferate and form the new vessel. Activation of Wnt signaling promotes the proliferation of stalk cells and their organization into tube‐like structures. There is no evidence for a direct effect of Wnt signaling on tip cells, but Wnt signaling can affect these cells indirectly by augmenting the expression of Delta‐like ligand 4 (Dll4) in the stalk cells, which can activate the Notch signaling in the tip cells in a paracrine way, thereby inducing a stalk‐like phenotype in these cells.
Figure 5. Figure 5. Expression patterns of Wnt signaling components ± 1 week after MI in experimental animal models. A green arrow indicates an upregulation, a red arrow downregulation and “=” indicates no difference in gene expression. Fzd; Frizzled, sFRP; secreted frizzled‐related protein.
Figure 6. Figure 6. Hypertrophic response of the heart to different types of stress. Physiological hypertrophy is induced by pregnancy or intensive exercise training. Cardiomyocytes increase in thickness and in length. This type of hypertrophy is reversible. Concentric hypertrophy is the result of disorders that cause pressure overload and goes along with thickening of the cardiomyocytes, reduced left ventricular volume, increased fibrosis, and stiffening of the heart muscle and is usually not reversible. Prolonged pressure overload can result in dilated cardiomyopathy in which the heart muscle is overstretched and loses contractile force. In addition, chronic volume overload can also result in dilated cardiomyopathy.
Figure 7. Figure 7. Signaling pathways leading to pathological and physiological hypertrophy. In pathological hypertrophy (A), neurohumoral regulators such as angiotensin II (AngII), endothelin‐1 (ET‐1), and catecholamines like phenylephrine (PE), activate Phospholipase‐C (PLC) through G‐protein‐coupled receptors. Activated PLC hydrolyzes PIP2 into inositol triphosphate (IP3) and diacylglycerol (DAG). IP3 causes a rise in intracellular Ca2+, which activates calcineurin that in turn dephosphorylates NFAT. DAG activates protein kinase C (PKC) that induces hypertrophic gene transcription together with NFAT. Physiological hypertrophy (B) is initiated by growth factors such as growth hormone (GH) and insulin‐like growth factor (IGF) that provoke phosphoinositide 3'kinase (PI3K) signaling. Activated PI3K phosphorylates PIP2 to PIP3 that subsequently activates Akt through phosphorylation. Activated Akt inactivates glycogen synthase kinase 3β (GSK3β) by phosphorylation. Now, GSK3β can no longer inactivate transcription factors such as NFAT and GATA4, which causes translocation to the nucleus and subsequent hypertrophic gene transcription.
Figure 8. Figure 8. A schematic representation of an intercalated disk between adjacent cardiomyocytes. Mechanical coupling of the cardiomyocytes is coordinated by adherens junctions and desmosomes. Gap junctions are necessary for rapid current propagation through the myocardium to induce cardiac contraction.


Figure 1. Crystal structure of Xenopus Wnt8 in complex with the cysteine rich domain (CRD) of Frizzled8 (Fzd8). The structure of the Wnt protein mimics the palm of a hand with an index finger at the C‐terminal domain and a thumb and the N‐terminal domain. The index finger and the palmitic acid both make contact with the CRD leaving a gap in the middle that might be important for Wnt/Frizzled specificity.


Figure 2. Schematic overview of the noncanonical signaling pathways. (A) In the planar cell polarity pathway, Wnt binds to Frizzled and activates signaling independent from low‐density lipoprotein receptor‐related protein (LRP) 5/6. Dishevelled (Dvl) activates the small GTPases Rho and RAC that thereafter activate Rho kinase (ROCK) and c‐jun N‐terminal kinase (JNK) respectively. (B) The Wnt/Ca2+ signals through G‐proteins that activate phospholipase‐C (PLC). PLC causes a rise in intracellular Ca2+ that activates the Ca2+‐dependent enzymes calcineurin, calcium/calmodulin‐dependent kinase II (CaMKII), and protein kinase C (PKC). These enzymes can modulate the translocation of NFAT to the nucleus.


Figure 3. Schematic overview of the canonical/β‐catenin‐mediated signaling pathway. In the “off state” (left) the Frizzled receptor is not engaged by a Wnt protein. Wnts can also be scavenged by secreted frizzled‐related proteins (sFRP), thereby inhibiting signaling. In addition, canonical signaling is also prevented by inhibition of the low‐density lipoprotein receptor‐related protein (LRP) 5/6 coreceptors by Dickkopf (DKK). In the absence of signaling, the β‐catenin degradation complex consisting of glycogen synthase kinase 3β (GSK3β), Axin, adenomatous polyposis coli (APC), and casein kinase 1 (CK1) phosphorylates β‐catenin, which causes ubiquitination and degradation of the latter. In this way, cytoplasmic β‐catenin levels are kept low and prevent the protein from entering the nucleus to activate gene transcription. In the “on state” (right) Wnt binds to Frizzled and activates signaling together with the LRP coreceptors. Now Dvl is mobilized and inactivates the β‐catenin degradation complex. Hence, β‐catenin accumulates in the cytoplasm and is able to translocate to the nucleus where it interacts with the TCF/LEF transcription factors. These factors induce the transcription of Wnt‐responsive genes.


Figure 4. Effect of Wnt signaling on sprouting angiogenesis. In sprouting angiogenesis, tip cells guide the sprout into the required direction whereas the following sprout cells can proliferate and form the new vessel. Activation of Wnt signaling promotes the proliferation of stalk cells and their organization into tube‐like structures. There is no evidence for a direct effect of Wnt signaling on tip cells, but Wnt signaling can affect these cells indirectly by augmenting the expression of Delta‐like ligand 4 (Dll4) in the stalk cells, which can activate the Notch signaling in the tip cells in a paracrine way, thereby inducing a stalk‐like phenotype in these cells.


Figure 5. Expression patterns of Wnt signaling components ± 1 week after MI in experimental animal models. A green arrow indicates an upregulation, a red arrow downregulation and “=” indicates no difference in gene expression. Fzd; Frizzled, sFRP; secreted frizzled‐related protein.


Figure 6. Hypertrophic response of the heart to different types of stress. Physiological hypertrophy is induced by pregnancy or intensive exercise training. Cardiomyocytes increase in thickness and in length. This type of hypertrophy is reversible. Concentric hypertrophy is the result of disorders that cause pressure overload and goes along with thickening of the cardiomyocytes, reduced left ventricular volume, increased fibrosis, and stiffening of the heart muscle and is usually not reversible. Prolonged pressure overload can result in dilated cardiomyopathy in which the heart muscle is overstretched and loses contractile force. In addition, chronic volume overload can also result in dilated cardiomyopathy.


Figure 7. Signaling pathways leading to pathological and physiological hypertrophy. In pathological hypertrophy (A), neurohumoral regulators such as angiotensin II (AngII), endothelin‐1 (ET‐1), and catecholamines like phenylephrine (PE), activate Phospholipase‐C (PLC) through G‐protein‐coupled receptors. Activated PLC hydrolyzes PIP2 into inositol triphosphate (IP3) and diacylglycerol (DAG). IP3 causes a rise in intracellular Ca2+, which activates calcineurin that in turn dephosphorylates NFAT. DAG activates protein kinase C (PKC) that induces hypertrophic gene transcription together with NFAT. Physiological hypertrophy (B) is initiated by growth factors such as growth hormone (GH) and insulin‐like growth factor (IGF) that provoke phosphoinositide 3'kinase (PI3K) signaling. Activated PI3K phosphorylates PIP2 to PIP3 that subsequently activates Akt through phosphorylation. Activated Akt inactivates glycogen synthase kinase 3β (GSK3β) by phosphorylation. Now, GSK3β can no longer inactivate transcription factors such as NFAT and GATA4, which causes translocation to the nucleus and subsequent hypertrophic gene transcription.


Figure 8. A schematic representation of an intercalated disk between adjacent cardiomyocytes. Mechanical coupling of the cardiomyocytes is coordinated by adherens junctions and desmosomes. Gap junctions are necessary for rapid current propagation through the myocardium to induce cardiac contraction.
References
 1. Ahmad F , Lal H , Zhou J , Vagnozzi RJ , Yu JE , Shang X , Woodgett JR , Gao E , Force T . Cardiomyocyte‐specific deletion of gsk3alpha mitigates post‐myocardial infarction remodeling, contractile dysfunction, and heart failure. J Am Coll Cardiol 64: 696‐706, 2014.
 2. Ai D , Fu X , Wang J , Lu MF , Chen L , Baldini A , Klein WH , Martin JF . Canonical Wnt signaling functions in second heart field to promote right ventricular growth. Proc Natl Acad Sci U S A 104: 9319‐9324, 2007.
 3. Ai Z , Fischer A , Spray DC , Brown AM , Fishman GI . Wnt‐1 regulation of connexin43 in cardiac myocytes. J Clin Invest 105: 161‐171, 2000.
 4. Aicher A , Kollet O , Heeschen C , Liebner S , Urbich C , Ihling C , Orlandi A , Lapidot T , Zeiher AM , Dimmeler S . The Wnt antagonist Dickkopf‐1 mobilizes vasculogenic progenitor cells via activation of the bone marrow endosteal stem cell niche. Circ Res 103: 796‐803, 2008.
 5. Aisagbonhi O , Rai M , Ryzhov S , Atria N , Feoktistov I , Hatzopoulos AK . Experimental myocardial infarction triggers canonical Wnt signaling and endothelial‐to‐mesenchymal transition. Dis Model Mech 4: 469‐483, 2011.
 6. Alfaro MP , Pagni M , Vincent A , Atkinson J , Hill MF , Cates J , Davidson JM , Rottman J , Lee E , Young PP . The Wnt modulator sFRP2 enhances mesenchymal stem cell engraftment, granulation tissue formation and myocardial repair. Proc Natl Acad Sci U S A 105: 18366‐18371, 2008.
 7. Alfaro MP , Vincent A , Saraswati S , Thorne CA , Hong CC , Lee E , Young PP . sFRP2 suppression of bone morphogenic protein (BMP) and Wnt signaling mediates mesenchymal stem cell (MSC) self‐renewal promoting engraftment and myocardial repair. J Biol Chem 285: 35645‐35653, 2010.
 8. Ambrosy AP , Fonarow GC , Butler J , Chioncel O , Greene SJ , Vaduganathan M , Nodari S , Lam CS , Sato N , Shah AN , Gheorghiade M . The global health and economic burden of hospitalizations for heart failure: Lessons learned from hospitalized heart failure registries. J Am Coll Cardiol 63: 1123‐1133, 2014.
 9. Angers S , Moon RT . Proximal events in Wnt signal transduction. Nat Rev Mol Cell Biol 10: 468‐477, 2009.
 10. Antos CL , McKinsey TA , Frey N , Kutschke W , McAnally J , Shelton JM , Richardson JA , Hill JA , Olson EN . Activated glycogen synthase‐3 beta suppresses cardiac hypertrophy in vivo. Proc Natl Acad Sci U S A 99: 907‐912, 2002.
 11. Armstrong PW , Committee WS . A comparison of pharmacologic therapy with/without timely coronary intervention vs. primary percutaneous intervention early after ST‐elevation myocardial infarction: The WEST (Which Early ST‐elevation myocardial infarction Therapy) study. Eur Heart J 27: 1530‐1538, 2006.
 12. Askevold ET , Aukrust P , Nymo SH , Lunde IG , Kaasboll OJ , Aakhus S , Florholmen G , Ohm IK , Strand ME , Attramadal H , Fiane A , Dahl CP , Finsen AV , Vinge LE , Christensen G , Yndestad A , Gullestad L , Latini R , Masson S , Tavazzi L , Investigators G‐H , Ueland T . The cardiokine secreted Frizzled‐related protein 3, a modulator of Wnt signalling, in clinical and experimental heart failure. J Intern Med 275: 621‐630, 2014.
 13. Askevold ET , Gullestad L , Aakhus S , Ranheim T , Tonnessen T , Solberg OG , Aukrust P , Ueland T . Secreted Wnt modulators in symptomatic aortic stenosis. J Am Heart Assoc 1: e002261, 2012.
 14. Asuni AA , Hooper C , Reynolds CH , Lovestone S , Anderton BH , Killick R . GSK3alpha exhibits beta‐catenin and tau directed kinase activities that are modulated by Wnt. Eur J Neurosci 24: 3387‐3392, 2006.
 15. Banziger C , Soldini D , Schutt C , Zipperlen P , Hausmann G , Basler K . Wntless, a conserved membrane protein dedicated to the secretion of Wnt proteins from signaling cells. Cell 125: 509‐522, 2006.
 16. Barandon L , Casassus F , Leroux L , Moreau C , Allieres C , Lamaziere JM , Dufourcq P , Couffinhal T , Duplaa C . Secreted frizzled‐related protein‐1 improves postinfarction scar formation through a modulation of inflammatory response. Arterioscler Thromb Vasc Biol 31: e80‐e87, 2011.
 17. Barandon L , Couffinhal T , Dufourcq P , Ezan J , Costet P , Daret D , Deville C , Duplaa C . Frizzled A, a novel angiogenic factor: Promises for cardiac repair. Eur J Cardiothorac Surg 25: 76‐83, 2004.
 18. Barandon L , Couffinhal T , Ezan J , Dufourcq P , Costet P , Alzieu P , Leroux L , Moreau C , Dare D , Duplaa C . Reduction of infarct size and prevention of cardiac rupture in transgenic mice overexpressing FrzA. Circulation 108: 2282‐2289, 2003.
 19. Barandon L , Dufourcq P , Costet P , Moreau C , Allieres C , Daret D , Dos Santos P , Daniel Lamaziere JM , Couffinhal T , Duplaa C . Involvement of FrzA/sFRP‐1 and the Wnt/frizzled pathway in ischemic preconditioning. Circ Res 96: 1299‐1306, 2005.
 20. Barrott JJ , Cash GM , Smith AP , Barrow JR , Murtaugh LC . Deletion of mouse Porcn blocks Wnt ligand secretion and reveals an ectodermal etiology of human focal dermal hypoplasia/Goltz syndrome. Proc Natl Acad Sci U S A 108: 12752‐12757, 2011.
 21. Barry SP , Townsend PA . What causes a broken heart–molecular insights into heart failure. Intern Rev Cell Mol Biol 284: 113‐179, 2010.
 22. Bartscherer K , Pelte N , Ingelfinger D , Boutros M . Secretion of Wnt ligands requires Evi, a conserved transmembrane protein. Cell 125: 523‐533, 2006.
 23. Baurand A , Zelarayan L , Betney R , Gehrke C , Dunger S , Noack C , Busjahn A , Huelsken J , Taketo MM , Birchmeier W , Dietz R , Bergmann MW . Beta‐catenin downregulation is required for adaptive cardiac remodeling. Circ Res 100: 1353‐1362, 2007.
 24. Bhat R , Xue Y , Berg S , Hellberg S , Ormo M , Nilsson Y , Radesater AC , Jerning E , Markgren PO , Borgegard T , Nylof M , Gimenez‐Cassina A , Hernandez F , Lucas JJ , Diaz‐Nido J , Avila J . Structural insights and biological effects of glycogen synthase kinase 3‐specific inhibitor AR‐A014418. J Biol Chem 278: 45937‐45945, 2003.
 25. Blankesteijn WM , Essers‐Janssen YP , Ulrich MM , Smits JF . Increased expression of a homologue of drosophila tissue polarity gene “frizzled” in left ventricular hypertrophy in the rat, as identified by subtractive hybridization. J Mol Cell Cardiol 28: 1187‐1191, 1996.
 26. Blankesteijn WM , Essers‐Janssen YP , Verluyten MJ , Daemen MJ , Smits JF . A homologue of Drosophila tissue polarity gene frizzled is expressed in migrating myofibroblasts in the infarcted rat heart. Nat Med 3: 541‐544, 1997.
 27. Blankesteijn WM , van Gijn ME , Essers‐Janssen YP , Daemen MJ , Smits JF . Beta‐catenin, an inducer of uncontrolled cell proliferation and migration in malignancies, is localized in the cytoplasm of vascular endothelium during neovascularization after myocardial infarction. Am J Pathol 157: 877‐883, 2000.
 28. Bond J , Sedmera D , Jourdan J , Zhang Y , Eisenberg CA , Eisenberg LM , Gourdie RG . Wnt11 and Wnt7a are up‐regulated in association with differentiation of cardiac conduction cells in vitro and in vivo. Dev Dyn 227: 536‐543, 2003.
 29. Borrell‐Pages M , Romero JC , Badimon L . Cholesterol modulates LRP5 expression in the vessel wall. Atherosclerosis 235: 363‐370, 2014.
 30. Borrell‐Pages M , Romero JC , Juan‐Babot O , Badimon L . Wnt pathway activation, cell migration, and lipid uptake is regulated by low‐density lipoprotein receptor‐related protein 5 in human macrophages. Eur Heart J 32: 2841‐2850, 2011.
 31. Brade T , Manner J , Kuhl M . The role of Wnt signalling in cardiac development and tissue remodelling in the mature heart. Cardiovasc Res 72: 198‐209, 2006.
 32. Braz JC , Gill RM , Corbly AK , Jones BD , Jin N , Vlahos CJ , Wu Q , Shen W . Selective activation of PI3Kalpha/Akt/GSK‐3beta signalling and cardiac compensatory hypertrophy during recovery from heart failure. Eur J Heart Fail 11: 739‐748, 2009.
 33. Buckingham M , Meilhac S , Zaffran S . Building the mammalian heart from two sources of myocardial cells. Nat Rev Genet 6: 826‐835, 2005.
 34. Caspi O , Huber I , Gepstein A , Arbel G , Maizels L , Boulos M , Gepstein L . Modeling of arrhythmogenic right ventricular cardiomyopathy with human induced pluripotent stem cells. Circ Cardiovasc Genet 6: 557‐568, 2013.
 35. Cattelino A , Liebner S , Gallini R , Zanetti A , Balconi G , Corsi A , Bianco P , Wolburg H , Moore R , Oreda B , Kemler R , Dejana E . The conditional inactivation of the beta‐catenin gene in endothelial cells causes a defective vascular pattern and increased vascular fragility. J Cell Biol 162: 1111‐1122, 2003.
 36. Cerutti C , Kurdi M , Bricca G , Hodroj W , Paultre C , Randon J , Gustin MP . Transcriptional alterations in the left ventricle of three hypertensive rat models. Physiol Genomics 27: 295‐308, 2006.
 37. Chen B , Dodge ME , Tang W , Lu J , Ma Z , Fan CW , Wei S , Hao W , Kilgore J , Williams NS , Roth MG , Amatruda JF , Chen C , Lum L . Small molecule‐mediated disruption of Wnt‐dependent signaling in tissue regeneration and cancer. Nat Chem Biol 5: 100‐107, 2009.
 38. Chen DM , Cai X , Kwik‐Uribe CL , Zeng R , Zhu XZ . Inhibitory effects of procyanidin B(2) dimer on lipid‐laden macrophage formation. J Cardiovasc Pharmacol 48: 54‐70, 2006.
 39. Chen L , Wu Q , Guo F , Xia B , Zuo J . Expression of Dishevelled‐1 in wound healing after acute myocardial infarction: Possible involvement in myofibroblast proliferation and migration. J Cell Mol Med 8: 257‐264, 2004.
 40. Chen SN , Gurha P , Lombardi R , Ruggiero A , Willerson JT , Marian AJ . The hippo pathway is activated and is a causal mechanism for adipogenesis in arrhythmogenic cardiomyopathy. Circ Res 114: 454‐468, 2014.
 41. Cho J , Zhai P , Maejima Y , Sadoshima J . Myocardial injection with GSK‐3beta‐overexpressing bone marrow‐derived mesenchymal stem cells attenuates cardiac dysfunction after myocardial infarction. Circ Res 108: 478‐489, 2011.
 42. Choukroun G , Hajjar R , Fry S , del Monte F , Haq S , Guerrero JL , Picard M , Rosenzweig A , Force T . Regulation of cardiac hypertrophy in vivo by the stress‐activated protein kinases/c‐Jun NH(2)‐terminal kinases. J Clin Invest 104: 391‐398, 1999.
 43. Christman MA, II , Goetz DJ , Dickerson E , McCall KD , Lewis CJ , Benencia F , Silver MJ , Kohn LD , Malgor R . Wnt5a is expressed in murine and human atherosclerotic lesions. Am J Physiol Heart Circ Physiol 294: H2864‐H2870, 2008.
 44. Chu ML , Ahn VE , Choi HJ , Daniels DL , Nusse R , Weis WI . structural Studies of Wnts and identification of an LRP6 binding site. Structure 21: 1235‐1242, 2013.
 45. Cipolletta E , Monaco S , Maione AS , Vitiello L , Campiglia P , Pastore L , Franchini C , Novellino E , Limongelli V , Bayer KU , Means AR , Rossi G , Trimarco B , Iaccarino G , Illario M . Calmodulin‐dependent kinase II mediates vascular smooth muscle cell proliferation and is potentiated by extracellular signal regulated kinase. Endocrinology 151: 2747‐2759, 2010.
 46. Cleutjens JP , Blankesteijn WM , Daemen MJ , Smits JF . The infarcted myocardium: Simply dead tissue, or a lively target for therapeutic interventions. Cardiovasc Res 44: 232‐241, 1999.
 47. Clevers H . Wnt/beta‐catenin signaling in development and disease. Cell 127: 469‐480, 2006.
 48. Cliffe A , Hamada F , Bienz M . A role of Dishevelled in relocating Axin to the plasma membrane during wingless signaling. Curr Biol 13: 960‐966, 2003.
 49. Coghlan MP , Culbert AA , Cross DA , Corcoran SL , Yates JW , Pearce NJ , Rausch OL , Murphy GJ , Carter PS , Roxbee Cox L , Mills D , Brown MJ , Haigh D , Ward RW , Smith DG , Murray KJ , Reith AD , Holder JC . Selective small molecule inhibitors of glycogen synthase kinase‐3 modulate glycogen metabolism and gene transcription. Chem Biol 7: 793‐803, 2000.
 50. Cohen ED , Wang Z , Lepore JJ , Lu MM , Taketo MM , Epstein DJ , Morrisey EE . Wnt/beta‐catenin signaling promotes expansion of Isl‐1‐positive cardiac progenitor cells through regulation of FGF signaling. J Clin Invest 117: 1794‐1804, 2007.
 51. Cola C , Almeida M , Li D , Romeo F , Mehta JL . Regulatory role of endothelium in the expression of genes affecting arterial calcification. Biochem Biophys Res Commun 320: 424‐427, 2004.
 52. Colston JT , de la Rosa SD , Koehler M , Gonzales K , Mestril R , Freeman GL , Bailey SR , Chandrasekar B . Wnt‐induced secreted protein‐1 is a prohypertrophic and profibrotic growth factor. Am J Physiol Heart Circ Physiol 293: H1839‐H1846, 2007.
 53. Cong F , Schweizer L , Varmus H . Wnt signals across the plasma membrane to activate the beta‐catenin pathway by forming oligomers containing its receptors, Frizzled and LRP. Development 131: 5103‐5115, 2004.
 54. Corada M , Morini MF , Dejana E . Signaling pathways in the specification of arteries and veins. Arterioscler Thromb Vasc Biol, 2014.
 55. Corada M , Nyqvist D , Orsenigo F , Caprini A , Giampietro C , Taketo MM , Iruela‐Arispe ML , Adams RH , Dejana E . The Wnt/beta‐catenin pathway modulates vascular remodeling and specification by upregulating Dll4/Notch signaling. Dev Cell 18: 938‐949, 2010.
 56. Courtwright A , Siamakpour‐Reihani S , Arbiser JL , Banet N , Hilliard E , Fried L , Livasy C , Ketelsen D , Nepal DB , Perou CM , Patterson C , Klauber‐Demore N . Secreted frizzle‐related protein 2 stimulates angiogenesis via a calcineurin/NFAT signaling pathway. Canc Res 69: 4621‐4628, 2009.
 57. Crompton M . Mitochondrial intermembrane junctional complexes and their role in cell death. J Physiol 529(Pt 1): 11‐21, 2000.
 58. Cruciat CM , Niehrs C . Secreted and transmembrane wnt inhibitors and activators. Cold Spring Harb Perspect Biol 5: a015081, 2013.
 59. Daskalopoulos EP , Janssen BJ , Blankesteijn WM . Myofibroblasts in the infarct area: Concepts and challenges. Microsc Microanal 18: 35‐49, 2012.
 60. Dejana E . The role of wnt signaling in physiological and pathological angiogenesis. Circ Res 107: 943‐952, 2010.
 61. Dejmek J , Safholm A , Kamp Nielsen C , Andersson T , Leandersson K . Wnt‐5a/Ca2+‐induced NFAT activity is counteracted by Wnt‐5a/Yes‐Cdc42‐casein kinase 1alpha signaling in human mammary epithelial cells. Mol Cell Biol 26: 6024‐6036, 2006.
 62. Dorn GW , 2nd . The fuzzy logic of physiological cardiac hypertrophy. Hypertension 49: 962‐970, 2007.
 63. Duan J , Gherghe C , Liu D , Hamlett E , Srikantha L , Rodgers L , Regan JN , Rojas M , Willis M , Leask A , Majesky M , Deb A . Wnt1/betacatenin injury response activates the epicardium and cardiac fibroblasts to promote cardiac repair. EMBO J 31: 429‐442, 2012.
 64. Eisenberg CA , Gourdie RG , Eisenberg LM . Wnt‐11 is expressed in early avian mesoderm and required for the differentiation of the quail mesoderm cell line QCE‐6. Development 124: 525‐536, 1997.
 65. Eisenberg LM , Eisenberg CA . Evaluating the role of Wnt signal transduction in promoting the development of the heart. ScientificWorldJournal 7: 161‐176, 2007.
 66. Emami KH , Nguyen C , Ma H , Kim DH , Jeong KW , Eguchi M , Moon RT , Teo JL , Kim HY , Moon SH , Ha JR , Kahn M . A small molecule inhibitor of beta‐catenin/CREB‐binding protein transcription [corrected]. Proc Natl Acad Sci U S A 101: 12682‐12687, 2004.
 67. Felkin LE , Lara‐Pezzi EA , Hall JL , Birks EJ , Barton PJ . Reverse remodelling and recovery from heart failure are associated with complex patterns of gene expression. J Cardiovasc Transl Res 4: 321‐331, 2011.
 68. Foord SM , Bonner TI , Neubig RR , Rosser EM , Pin JP , Davenport AP , Spedding M , Harmar AJ . International Union of Pharmacology. XLVI. G protein‐coupled receptor list. Pharmacol Rev 57: 279‐288, 2005.
 69. Forrester WC , Dell M , Perens E , Garriga G . A C. elegans Ror receptor tyrosine kinase regulates cell motility and asymmetric cell division. Nature 400: 881‐885, 1999.
 70. Franco CA , Liebner S , Gerhardt H . Vascular morphogenesis: A Wnt for every vessel? Curr Opin Gen Dev 19: 476‐483, 2009.
 71. Fujio Y , Matsuda T , Oshima Y , Maeda M , Mohri T , Ito T , Takatani T , Hirata M , Nakaoka Y , Kimura R , Kishimoto T , Azuma J . Signals through gp130 upregulate Wnt5a and contribute to cell adhesion in cardiac myocytes. FEBS Lett 573: 202‐206, 2004.
 72. Fukuda K , Yuasa S . Stem cells as a source of regenerative cardiomyocytes. Circ Res 98: 1002‐1013, 2006.
 73. Gale NW , Dominguez MG , Noguera I , Pan L , Hughes V , Valenzuela DM , Murphy AJ , Adams NC , Lin HC , Holash J , Thurston G , Yancopoulos GD . Haploinsufficiency of delta‐like 4 ligand results in embryonic lethality due to major defects in arterial and vascular development. Proc Natl Acad Sci U S A 101: 15949‐15954, 2004.
 74. Garcia‐Gras E , Lombardi R , Giocondo MJ , Willerson JT , Schneider MD , Khoury DS , Marian AJ . Suppression of canonical Wnt/beta‐catenin signaling by nuclear plakoglobin recapitulates phenotype of arrhythmogenic right ventricular cardiomyopathy. J Clin Invest 116: 2012‐2021, 2006.
 75. Gelfand BD , Meller J , Pryor AW , Kahn M , Bortz PD , Wamhoff BR , Blackman BR . Hemodynamic activation of beta‐catenin and T‐cell‐specific transcription factor signaling in vascular endothelium regulates fibronectin expression. Arterioscler Thromb Vasc Biol 31: 1625‐1633, 2011.
 76. Gessert S , Kuhl M . The multiple phases and faces of wnt signaling during cardiac differentiation and development. Circ Res 107: 186‐199, 2010.
 77. Go GW , Mani A . Low‐density lipoprotein receptor (LDLR) family orchestrates cholesterol homeostasis. Yale J Biol Med 85: 19‐28, 2012.
 78. Go GW , Srivastava R , Hernandez‐Ono A , Gang G , Smith SB , Booth CJ , Ginsberg HN , Mani A . The combined hyperlipidemia caused by impaired Wnt‐LRP6 signaling is reversed by Wnt3a rescue. Cell Metab 19: 209‐220, 2014.
 79. Goodwin AM , Sullivan KM , D'Amore PA . Cultured endothelial cells display endogenous activation of the canonical Wnt signaling pathway and express multiple ligands, receptors, and secreted modulators of Wnt signaling. Dev Dyn 235: 3110‐3120, 2006.
 80. Grigoryan T , Wend P , Klaus A , Birchmeier W . Deciphering the function of canonical Wnt signals in development and disease: Conditional loss‐ and gain‐of‐function mutations of beta‐catenin in mice. Genes Dev 22: 2308‐2341, 2008.
 81. Hagenmueller M , Riffel JH , Bernhold E , Fan J , Katus HA , Hardt SE . Dapper‐1 is essential for Wnt5a induced cardiomyocyte hypertrophy by regulating the Wnt/PCP pathway. FEBS Lett 588: 2230‐2237, 2014.
 82. Hagenmueller M , Riffel JH , Bernhold E , Fan J , Zhang M , Ochs M , Steinbeisser H , Katus HA , Hardt SE . Dapper‐1 induces myocardial remodeling through activation of canonical Wnt signaling in cardiomyocytes. Hypertension 61: 1177‐1183, 2013.
 83. Hahn JY , Cho HJ , Bae JW , Yuk HS , Kim KI , Park KW , Koo BK , Chae IH , Shin CS , Oh BH , Choi YS , Park YB , Kim HS . Beta‐catenin overexpression reduces myocardial infarct size through differential effects on cardiomyocytes and cardiac fibroblasts. J Biol Chem 281: 30979‐30989, 2006.
 84. Haq S , Choukroun G , Kang ZB , Ranu H , Matsui T , Rosenzweig A , Molkentin JD , Alessandrini A , Woodgett J , Hajjar R , Michael A , Force T . Glycogen synthase kinase‐3beta is a negative regulator of cardiomyocyte hypertrophy. J Cell Biol 151: 117‐130, 2000.
 85. Haq S , Choukroun G , Lim H , Tymitz KM , del Monte F , Gwathmey J , Grazette L , Michael A , Hajjar R , Force T , Molkentin JD . Differential activation of signal transduction pathways in human hearts with hypertrophy versus advanced heart failure. Circulation 103: 670‐677, 2001.
 86. Haq S , Michael A , Andreucci M , Bhattacharya K , Dotto P , Walters B , Woodgett J , Kilter H , Force T . Stabilization of beta‐catenin by a Wnt‐independent mechanism regulates cardiomyocyte growth. Proc Natl Acad Sci U S A 100: 4610‐4615, 2003.
 87. Harris TJ , Peifer M . Decisions, decisions: Beta‐catenin chooses between adhesion and transcription. Trends Cell Biol 15: 234‐237, 2005.
 88. Hassler C , Cruciat CM , Huang YL , Kuriyama S , Mayor R , Niehrs C . Kremen is required for neural crest induction in Xenopus and promotes LRP6‐mediated Wnt signaling. Development 134: 4255‐4263, 2007.
 89. He W , Zhang L , Ni A , Zhang Z , Mirotsou M , Mao L , Pratt RE , Dzau VJ . Exogenously administered secreted frizzled related protein 2 (Sfrp2) reduces fibrosis and improves cardiac function in a rat model of myocardial infarction. Proc Natl Acad Sci U S A 107: 21110‐21115, 2010.
 90. Herr P , Basler K . Porcupine‐mediated lipidation is required for Wnt recognition by Wls. Dev Biol 361: 392‐402, 2012.
 91. Hirotani S , Zhai P , Tomita H , Galeotti J , Marquez JP , Gao S , Hong C , Yatani A , Avila J , Sadoshima J . Inhibition of glycogen synthase kinase 3beta during heart failure is protective. Circ Res 101: 1164‐1174, 2007.
 92. Hoffman BF , Rosen MR . Cellular mechanisms for cardiac arrhythmias. Circ Res 49: 1‐15, 1981.
 93. Hu Y , Cheng L , Hochleitner BW , Xu Q . Activation of mitogen‐activated protein kinases (ERK/JNK) and AP‐1 transcription factor in rat carotid arteries after balloon injury. Arterioscler Thromb Vasc Biol 17: 2808‐2816, 1997.
 94. Huang SM , Mishina YM , Liu S , Cheung A , Stegmeier F , Michaud GA , Charlat O , Wiellette E , Zhang Y , Wiessner S , Hild M , Shi X , Wilson CJ , Mickanin C , Myer V , Fazal A , Tomlinson R , Serluca F , Shao W , Cheng H , Shultz M , Rau C , Schirle M , Schlegl J , Ghidelli S , Fawell S , Lu C , Curtis D , Kirschner MW , Lengauer C , Finan PM , Tallarico JA , Bouwmeester T , Porter JA , Bauer A , Cong F . Tankyrase inhibition stabilizes axin and antagonizes Wnt signalling. Nature 461: 614‐620, 2009.
 95. Huber AH , Nelson WJ , Weis WI . Three‐dimensional structure of the armadillo repeat region of beta‐catenin. Cell 90: 871‐882, 1997.
 96. Hudson J , Titmarsh D , Hidalgo A , Wolvetang E , Cooper‐White J . Primitive cardiac cells from human embryonic stem cells. Stem Cells Dev 21: 1513‐1523, 2012.
 97. Huelsken J , Vogel R , Brinkmann V , Erdmann B , Birchmeier C , Birchmeier W . Requirement for beta‐catenin in anterior‐posterior axis formation in mice. J Cell Biol 148: 567‐578, 2000.
 98. Hurlstone AF , Haramis AP , Wienholds E , Begthel H , Korving J , Van Eeden F , Cuppen E , Zivkovic D , Plasterk RH , Clevers H . The Wnt/beta‐catenin pathway regulates cardiac valve formation. Nature 425: 633‐637, 2003.
 99. Iribarren C , Sidney S , Sternfeld B , Browner WS . Calcification of the aortic arch: Risk factors and association with coronary heart disease, stroke, and peripheral vascular disease. JAMA 283: 2810‐2815, 2000.
 100. Ishikawa T , Tamai Y , Zorn AM , Yoshida H , Seldin MF , Nishikawa T , Taketo MM . Mouse wnt receptor gene Fzd5 is essential for yolk sac and placental angiogenesis. Development 128: 25‐33, 2001.
 101. Janda CY , Waghray D , Levin AM , Thomas C , Garcia KC . Structural basis of Wnt recognition by Frizzled. Science 337: 59‐64, 2012.
 102. Javadov S , Karmazyn M . Mitochondrial permeability transition pore opening as an endpoint to initiate cell death and as a putative target for cardioprotection. Cell Physiol Biochem 20: 1‐22, 2007.
 103. Jho EH , Zhang T , Domon C , Joo CK , Freund JN , Costantini F . Wnt/beta‐catenin/Tcf signaling induces the transcription of Axin2, a negative regulator of the signaling pathway. Mol Cell Biol 22: 1172‐1183, 2002.
 104. Juhaszova M , Zorov DB , Kim SH , Pepe S , Fu Q , Fishbein KW , Ziman BD , Wang S , Ytrehus K , Antos CL , Olson EN , Sollott SJ . Glycogen synthase kinase‐3beta mediates convergence of protection signaling to inhibit the mitochondrial permeability transition pore. J Clin Invest 113: 1535‐1549, 2004.
 105. Kaidanovich‐Beilin O , Woodgett JR . GSK‐3: Functional insights from cell biology and animal models. Front Mol Neurosci 4: 40, 2011.
 106. Karakikes I , Senyei GD , Hansen J , Kong CW , Azeloglu EU , Stillitano F , Lieu DK , Wang J , Ren L , Hulot JS , Iyengar R , Li RA , Hajjar RJ . Small molecule‐mediated directed differentiation of human embryonic stem cells toward ventricular cardiomyocytes. Stem Cells Transl Med 3: 18‐31, 2014.
 107. Kawamura M , Miyagawa S , Miki K , Saito A , Fukushima S , Higuchi T , Kawamura T , Kuratani T , Daimon T , Shimizu T , Okano T , Sawa Y . Feasibility, safety, and therapeutic efficacy of human induced pluripotent stem cell‐derived cardiomyocyte sheets in a porcine ischemic cardiomyopathy model. Circulation 126: S29‐S37, 2012.
 108. Kawano Y , Kypta R . Secreted antagonists of the Wnt signalling pathway. J Cell Sci 116: 2627‐2634, 2003.
 109. Kaykas A , Yang‐Snyder J , Heroux M , Shah KV , Bouvier M , Moon RT . Mutant Frizzled 4 associated with vitreoretinopathy traps wild‐type Frizzled in the endoplasmic reticulum by oligomerization. Nat Cell Biol 6: 52‐58, 2004.
 110. Kerkela R , Kockeritz L , Macaulay K , Zhou J , Doble BW , Beahm C , Greytak S , Woulfe K , Trivedi CM , Woodgett JR , Epstein JA , Force T , Huggins GS . Deletion of GSK‐3beta in mice leads to hypertrophic cardiomyopathy secondary to cardiomyoblast hyperproliferation. J Clin Invest 118: 3609‐3618, 2008.
 111. Kerkela R , Woulfe K , Force T . Glycogen synthase kinase‐3beta – Actively inhibiting hypertrophy. Trends Cardiovasc Med 17: 91‐96, 2007.
 112. Kikuchi A . Regulation of beta‐catenin signaling in the Wnt pathway. Biochem Biophys Res Commun 268: 243‐248, 2000.
 113. Kikuchi A , Yamamoto H , Kishida S . Multiplicity of the interactions of Wnt proteins and their receptors. Cell Signal 19: 659‐671, 2007.
 114. Kim J , Kim J , Kim DW , Ha Y , Ihm MH , Kim H , Song K , Lee I . Wnt5a induces endothelial inflammation via beta‐catenin‐independent signaling. J Immunol 185: 1274‐1282, 2010.
 115. Kim KI , Park KU , Chun EJ , Choi SI , Cho YS , Youn TJ , Cho GY , Chae IH , Song J , Choi DJ , Kim CH . A novel biomarker of coronary atherosclerosis: Serum DKK1 concentration correlates with coronary artery calcification and atherosclerotic plaques. J Korean Med Sci 26: 1178‐1184, 2011.
 116. Kimelman D , Xu W . beta‐catenin destruction complex: Insights and questions from a structural perspective. Oncogene 25: 7482‐7491, 2006.
 117. Kirk JA , Holewinski RJ , Kooij V , Agnetti G , Tunin RS , Witayavanitkul N , de Tombe PP , Gao WD , Van Eyk J , Kass DA . Cardiac resynchronization sensitizes the sarcomere to calcium by reactivating GSK‐3beta. J Clin Invest 124: 129‐138, 2014.
 118. Klaus A , Saga Y , Taketo MM , Tzahor E , Birchmeier W . Distinct roles of Wnt/beta‐catenin and Bmp signaling during early cardiogenesis. Proc Natl Acad Sci U S A 104: 18531‐18536, 2007.
 119. Klein PS , Melton DA . A molecular mechanism for the effect of lithium on development. Proc Natl Acad Sci U S A 93: 8455‐8459, 1996.
 120. Kobayashi K , Luo M , Zhang Y , Wilkes DC , Ge G , Grieskamp T , Yamada C , Liu TC , Huang G , Basson CT , Kispert A , Greenspan DS , Sato TN . Secreted Frizzled‐related protein 2 is a procollagen C proteinase enhancer with a role in fibrosis associated with myocardial infarction. Nat Cell Biol 11: 46‐55, 2009.
 121. Kostin S , Hein S , Bauer EP , Schaper J . Spatiotemporal development and distribution of intercellular junctions in adult rat cardiomyocytes in culture. Circ Res 85: 154‐167, 1999.
 122. Koyanagi M , Haendeler J , Badorff C , Brandes RP , Hoffmann J , Pandur P , Zeiher AM , Kuhl M , Dimmeler S . Non‐canonical Wnt signaling enhances differentiation of human circulating progenitor cells to cardiomyogenic cells. J Biol Chem 280: 16838‐16842, 2005.
 123. Koyanagi M , Iwasaki M , Haendeler J , Leitges M , Zeiher AM , Dimmeler S . Wnt5a increases cardiac gene expressions of cultured human circulating progenitor cells via a PKC delta activation. PloS One 4: e5765, 2009.
 124. Kumar S , Zigman M , Patel TR , Trageser B , Gross JC , Rahm K , Boutros M , Gradl D , Steinbeisser H , Holstein T , Stetefeld J , Ozbek S . Molecular dissection of Wnt3a‐Frizzled8 interaction reveals essential and modulatory determinants of Wnt signaling activity. BMC Biol 12: 44, 2014.
 125. Kuwabara M , Kakinuma Y , Katare RG , Ando M , Yamasaki F , Doi Y , Sato T . Granulocyte colony‐stimulating factor activates Wnt signal to sustain gap junction function through recruitment of beta‐catenin and cadherin. FEBS Lett 581: 4821‐4830, 2007.
 126. Kuwahara K , Nakao K . New molecular mechanisms for cardiovascular disease:transcriptional pathways and novel therapeutic targets in heart failure. J Pharmacol Sci 116: 337‐342, 2011.
 127. Kwon C , Arnold J , Hsiao EC , Taketo MM , Conklin BR , Srivastava D . Canonical Wnt signaling is a positive regulator of mammalian cardiac progenitors. Proc Natl Acad Sci U S A 104: 10894‐10899, 2007.
 128. Laeremans H , Hackeng TM , van Zandvoort MA , Thijssen VL , Janssen BJ , Ottenheijm HC , Smits JF , Blankesteijn WM . Blocking of frizzled signaling with a homologous peptide fragment of wnt3a/wnt5a reduces infarct expansion and prevents the development of heart failure after myocardial infarction. Circulation 124: 1626‐1635, 2011.
 129. LaFramboise WA , Bombach KL , Dhir RJ , Muha N , Cullen RF , Pogozelski AR , Turk D , George JD , Guthrie RD , Magovern JA . Molecular dynamics of the compensatory response to myocardial infarct. J Mol Cell Cardiol 38: 103‐117, 2005.
 130. Lal H , Zhou J , Ahmad F , Zaka R , Vagnozzi RJ , Decaul M , Woodgett J , Gao E , Force T . Glycogen synthase kinase‐3alpha limits ischemic injury, cardiac rupture, post‐myocardial infarction remodeling and death. Circulation 125: 65‐75, 2012.
 131. Lee DK , Nathan Grantham R , Trachte AL , Mannion JD , Wilson CL . Activation of the canonical Wnt/beta‐catenin pathway enhances monocyte adhesion to endothelial cells. Biochem Biophys Res Commun 347: 109‐116, 2006.
 132. Lepourcelet M , Chen YN , France DS , Wang H , Crews P , Petersen F , Bruseo C , Wood AW , Shivdasani RA . Small‐molecule antagonists of the oncogenic Tcf/beta‐catenin protein complex. Cancer Cell 5: 91‐102, 2004.
 133. Leung JY , Kolligs FT , Wu R , Zhai Y , Kuick R , Hanash S , Cho KR , Fearon ER . Activation of AXIN2 expression by beta‐catenin‐T cell factor. A feedback repressor pathway regulating Wnt signaling. J Biol Chem 277: 21657‐21665, 2002.
 134. Li J , Xuan W , Yan R , Tropak MB , Jean‐St‐Michel E , Liang W , Gladstone R , Backx PH , Kharbanda RK , Redington AN . Remote preconditioning provides potent cardioprotection via PI3K/Akt activation and is associated with nuclear accumulation of beta‐catenin. Clin Sci 120: 451‐462, 2011.
 135. Li JM , Eslami MH , Rohrer MJ , Dargon P , Joris I , Hendricks G , Baker S , Cutler BS . Interleukin 18 binding protein (IL18‐BP) inhibits neointimal hyperplasia after balloon injury in an atherosclerotic rabbit model. J Vasc Surg 47: 1048‐1057, 2008.
 136. Lian X , Hsiao C , Wilson G , Zhu K , Hazeltine LB , Azarin SM , Raval KK , Zhang J , Kamp TJ , Palecek SP . Robust cardiomyocyte differentiation from human pluripotent stem cells via temporal modulation of canonical Wnt signaling. Proc Natl Acad Sci U S A 109: E1848‐E1857, 2012.
 137. Liebner S , Corada M , Bangsow T , Babbage J , Taddei A , Czupalla CJ , Reis M , Felici A , Wolburg H , Fruttiger M , Taketo MM , von Melchner H , Plate KH , Gerhardt H , Dejana E . Wnt/beta‐catenin signaling controls development of the blood‐brain barrier. J Cell Biol 183: 409‐417, 2008.
 138. Lievens D , von Hundelshausen P . Platelets in atherosclerosis. Thromb Haemost 106: 827‐838, 2011.
 139. Lin L , Cui L , Zhou W , Dufort D , Zhang X , Cai CL , Bu L , Yang L , Martin J , Kemler R , Rosenfeld MG , Chen J , Evans SM . Beta‐catenin directly regulates Islet1 expression in cardiovascular progenitors and is required for multiple aspects of cardiogenesis. Proc Natl Acad Sci U S A 104: 9313‐9318, 2007.
 140. Liu P , Wakamiya M , Shea MJ , Albrecht U , Behringer RR , Bradley A . Requirement for Wnt3 in vertebrate axis formation. Nat Genet 22: 361‐365, 1999.
 141. Lo CW . Role of gap junctions in cardiac conduction and development: Insights from the connexin knockout mice. Circ Res 87: 346‐348, 2000.
 142. Louis SF , Zahradka P . Vascular smooth muscle cell motility: From migration to invasion. Exp Clin Cardiol 15: e75‐e85, 2010.
 143. Lu W , Yamamoto V , Ortega B , Baltimore D . Mammalian Ryk is a Wnt coreceptor required for stimulation of neurite outgrowth. Cell 119: 97‐108, 2004.
 144. Luckey SW , Mansoori J , Fair K , Antos CL , Olson EN , Leinwand LA . Blocking cardiac growth in hypertrophic cardiomyopathy induces cardiac dysfunction and decreased survival only in males. Am J Physiol Heart Circ Physiol 292: H838‐H845, 2007.
 145. MacDonald BT , Hien A , Zhang X , Iranloye O , Virshup DM , Waterman ML , He X . Disulfide bond requirements for active wnt ligands. J Biol Chem 289: 18122‐18136, 2014.
 146. MacDonnell SM , Weisser‐Thomas J , Kubo H , Hanscome M , Liu Q , Jaleel N , Berretta R , Chen X , Brown JH , Sabri AK , Molkentin JD , Houser SR . CaMKII negatively regulates calcineurin‐NFAT signaling in cardiac myocytes. Circ Res 105: 316‐325, 2009.
 147. Malekar P , Hagenmueller M , Anyanwu A , Buss S , Streit MR , Weiss CS , Wolf D , Riffel J , Bauer A , Katus HA , Hardt SE . Wnt signaling is critical for maladaptive cardiac hypertrophy and accelerates myocardial remodeling. Hypertension 55: 939‐945, 2010.
 148. Mani A , Radhakrishnan J , Wang H , Mani MA , Nelson‐Williams C , Carew KS , Mane S , Najmabadi H , Wu D , Lifton RP . LRP6 mutation in a family with early coronary disease and metabolic risk factors. Science 315: 1278‐1282, 2007.
 149. Mao B , Wu W , Davidson G , Marhold J , Li M , Mechler BM , Delius H , Hoppe D , Stannek P , Walter C , Glinka A , Niehrs C . Kremen proteins are Dickkopf receptors that regulate Wnt/beta‐catenin signalling. Nature 417: 664‐667, 2002.
 150. Marcelo KL , Goldie LC , Hirschi KK . Regulation of endothelial cell differentiation and specification. Circ Res 112: 1272‐1287, 2013.
 151. Marchand A , Atassi F , Gaaya A , Leprince P , Le Feuvre C , Soubrier F , Lompre AM , Nadaud S . The Wnt/beta‐catenin pathway is activated during advanced arterial aging in humans. Aging Cell 10: 220‐232, 2011.
 152. Martinez A , Alonso M , Castro A , Perez C , Moreno FJ . First non‐ATP competitive glycogen synthase kinase 3 beta (GSK‐3beta) inhibitors: Thiadiazolidinones (TDZD) as potential drugs for the treatment of Alzheimer's disease. J Med Chem 45: 1292‐1299, 2002.
 153. Marvin MJ , Di Rocco G , Gardiner A , Bush SM , Lassar AB . Inhibition of Wnt activity induces heart formation from posterior mesoderm. Genes Dev 15: 316‐327, 2001.
 154. Mastri M , Shah Z , Hsieh K , Wang X , Wooldridge B , Martin S , Suzuki G , Lee T . Secreted Frizzled‐related protein 2 as a target in antifibrotic therapeutic intervention. Am J Physiol Cell Physiol 306: C531‐C539, 2014.
 155. Masuelli L , Bei R , Sacchetti P , Scappaticci I , Francalanci P , Albonici L , Coletti A , Palumbo C , Minieri M , Fiaccavento R , Carotenuto F , Fantini C , Carosella L , Modesti A , Di Nardo P . Beta‐catenin accumulates in intercalated disks of hypertrophic cardiomyopathic hearts. Cardiovasc Res 60: 376‐387, 2003.
 156. Matsushima K , Suyama T , Takenaka C , Nishishita N , Ikeda K , Ikada Y , Sawa Y , Jakt LM , Mori H , Kawamata S . Secreted frizzled related protein 4 reduces fibrosis scar size and ameliorates cardiac function after ischemic injury. Tissue Eng Part A 16: 3329‐3341, 2010.
 157. Maye P , Zheng J , Li L , Wu D . Multiple mechanisms for Wnt11‐mediated repression of the canonical Wnt signaling pathway. J Biol Chem 279: 24659‐24665, 2004.
 158. McKinsey TA , Kass DA . Small‐molecule therapies for cardiac hypertrophy: Moving beneath the cell surface. Nat Rev Drug Discov 6: 617‐635, 2007.
 159. McMurray JJ , Packer M , Desai AS , Gong J , Lefkowitz MP , Rizkala AR , Rouleau JL , Shi VC , Solomon SD , Swedberg K , Zile MR , Investigators P‐H, Committees. Angiotensin‐neprilysin inhibition versus enalapril in heart failure. N Engl J Med 371: 993‐1004, 2014.
 160. Mechoulam H , Pierce EA . Retinopathy of prematurity: Molecular pathology and therapeutic strategies. Am J Pharmacogenomics 3: 261‐277, 2003.
 161. Meijer L , Skaltsounis AL , Magiatis P , Polychronopoulos P , Knockaert M , Leost M , Ryan XP , Vonica CA , Brivanlou A , Dajani R , Crovace C , Tarricone C , Musacchio A , Roe SM , Pearl L , Greengard P . GSK‐3‐selective inhibitors derived from Tyrian purple indirubins. Chem Biol 10: 1255‐1266, 2003.
 162. Melenovsky V , Benes J , Skaroupkova P , Sedmera D , Strnad H , Kolar M , Vlcek C , Petrak J , Benes J, Jr. , Papousek F , Oliyarnyk O , Kazdova L , Cervenka L . Metabolic characterization of volume overload heart failure due to aorto‐caval fistula in rats. Mol Cell Biochem 354: 83‐96, 2011.
 163. Mi K , Johnson GV . Role of the intracellular domains of LRP5 and LRP6 in activating the Wnt canonical pathway. J Cell Biochem 95: 328‐338, 2005.
 164. Michael A , Haq S , Chen X , Hsich E , Cui L , Walters B , Shao Z , Bhattacharya K , Kilter H , Huggins G , Andreucci M , Periasamy M , Solomon RN , Liao R , Patten R , Molkentin JD , Force T . Glycogen synthase kinase‐3beta regulates growth, calcium homeostasis, and diastolic function in the heart. J Biol Chem 279: 21383‐21393, 2004.
 165. Mikels AJ , Nusse R . Purified Wnt5a protein activates or inhibits beta‐catenin‐TCF signaling depending on receptor context. PLoS Biol 4: e115, 2006.
 166. Miller JR . The Wnts. Genome Biol 3: REVIEWS3001, 2002.
 167. Min JK , Park H , Choi HJ , Kim Y , Pyun BJ , Agrawal V , Song BW , Jeon J , Maeng YS , Rho SS , Shim S , Chai JH , Koo BK , Hong HJ , Yun CO , Choi C , Kim YM , Hwang KC , Kwon YG . The WNT antagonist Dickkopf2 promotes angiogenesis in rodent and human endothelial cells. J Clin Invest 121: 1882‐1893, 2011.
 168. Minami I , Yamada K , Otsuji TG , Yamamoto T , Shen Y , Otsuka S , Kadota S , Morone N , Barve M , Asai Y , Tenkova‐Heuser T , Heuser JE , Uesugi M , Aiba K , Nakatsuji N . A small molecule that promotes cardiac differentiation of human pluripotent stem cells under defined, cytokine‐ and xeno‐free conditions. Cell Rep 2: 1448‐1460, 2012.
 169. Mirotsou M , Zhang Z , Deb A , Zhang L , Gnecchi M , Noiseux N , Mu H , Pachori A , Dzau V . Secreted frizzled related protein 2 (Sfrp2) is the key Akt‐mesenchymal stem cell‐released paracrine factor mediating myocardial survival and repair. Proc Natl Acad Sci U S A 104: 1643‐1648, 2007.
 170. Miyoshi T , Doi M , Usui S , Iwamoto M , Kajiya M , Takeda K , Nosaka K , Nakayama R , Okawa K , Takagi W , Nakamura K , Hirohata S , Ito H . Low serum level of secreted frizzled‐related protein 5, an anti‐inflammatory adipokine, is associated with coronary artery disease. Atherosclerosis 233: 454‐459, 2014.
 171. Montes de Oca A , Guerrero F , Martinez‐Moreno JM , Madueno JA , Herencia C , Peralta A , Almaden Y , Lopez I , Aguilera‐Tejero E , Gundlach K , Buchel J , Peter ME , Passlick‐Deetjen J , Rodriguez M , Munoz‐Castaneda JR . Magnesium inhibits Wnt/beta‐catenin activity and reverses the osteogenic transformation of vascular smooth muscle cells. PloS One 9: e89525, 2014.
 172. Morini MF , Dejana E . Transcriptional regulation of arterial differentiation via Wnt, Sox and Notch. Curr Opin Hematol 21: 229‐234, 2014.
 173. Morisco C , Zebrowski D , Condorelli G , Tsichlis P , Vatner SF , Sadoshima J . The Akt‐glycogen synthase kinase 3beta pathway regulates transcription of atrial natriuretic factor induced by beta‐adrenergic receptor stimulation in cardiac myocytes. J Biol Chem 275: 14466‐14475, 2000.
 174. Morris AJ , Malbon CC . Physiological regulation of G protein‐linked signaling. Physiol Rev 79: 1373‐1430, 1999.
 175. Motiwala SR , Szymonifka J , Belcher A , Weiner RB , Baggish AL , Gaggin HK , Bhardwaj A , Januzzi JL, Jr . Measurement of novel biomarkers to predict chronic heart failure outcomes and left ventricular remodeling. J Cardiovasc Transl Res 7: 250‐261, 2014.
 176. Mulligan KA , Fuerer C , Ching W , Fish M , Willert K , Nusse R . Secreted Wingless‐interacting molecule (Swim) promotes long‐range signaling by maintaining Wingless solubility. Proc Natl Acad Sci U S A 109: 370‐377, 2012.
 177. Mureli S , Gans CP , Bare DJ , Geenen DL , Kumar NM , Banach K . Mesenchymal stem cells improve cardiac conduction by upregulation of connexin 43 through paracrine signaling. Am J Physiol Heart Circ Physiol 304: H600‐H609, 2013.
 178. Murry CE , Jennings RB , Reimer KA . Preconditioning with ischemia: A delay of lethal cell injury in ischemic myocardium. Circulation 74: 1124‐1136, 1986.
 179. Nakamura T , Sano M , Songyang Z , Schneider MD . A Wnt‐ and beta ‐catenin‐dependent pathway for mammalian cardiac myogenesis. Proc Natl Acad Sci U S A 100: 5834‐5839, 2003.
 180. Nakashima T , Ohkusa T , Okamoto Y , Yoshida M , Lee JK , Mizukami Y , Yano M . Rapid electrical stimulation causes alterations in cardiac intercellular junction proteins of cardiomyocytes. Am J Physiol Heart Circ Physiol 306: H1324‐H1333, 2014.
 181. Nakashima Y , Raines EW , Plump AS , Breslow JL , Ross R . Upregulation of VCAM‐1 and ICAM‐1 at atherosclerosis‐prone sites on the endothelium in the ApoE‐deficient mouse. Arterioscler Thromb Vasc Biol 18: 842‐851, 1998.
 182. Nimmagadda S , Geetha‐Loganathan P , Scaal M , Christ B , Huang R . FGFs, Wnts and BMPs mediate induction of VEGFR‐2 (Quek‐1) expression during avian somite development. Dev Biol 305: 421‐429, 2007.
 183. Nishino Y , Webb IG , Davidson SM , Ahmed AI , Clark JE , Jacquet S , Shah AM , Miura T , Yellon DM , Avkiran M , Marber MS . Glycogen synthase kinase‐3 inactivation is not required for ischemic preconditioning or postconditioning in the mouse. Circ Res 103: 307‐314, 2008.
 184. Nishita M , Yoo SK , Nomachi A , Kani S , Sougawa N , Ohta Y , Takada S , Kikuchi A , Minami Y . Filopodia formation mediated by receptor tyrosine kinase Ror2 is required for Wnt5a‐induced cell migration. J Cell Biol 175: 555‐562, 2006.
 185. Nusse R , Brown A , Papkoff J , Scambler P , Shackleford G , McMahon A , Moon R , Varmus H . A new nomenclature for int‐1 and related genes: The Wnt gene family. Cell 64: 231, 1991.
 186. Nusse R , Varmus HE . Many tumors induced by the mouse mammary tumor virus contain a provirus integrated in the same region of the host genome. Cell 31: 99‐109, 1982.
 187. Obermeier B , Daneman R , Ransohoff RM . Development, maintenance and disruption of the blood‐brain barrier. Nat Med 19: 1584‐1596, 2013.
 188. Oerlemans MI , Goumans MJ , van Middelaar B , Clevers H , Doevendans PA , Sluijter JP . Active Wnt signaling in response to cardiac injury. Basic Res Cardiol 105: 631‐641, 2010.
 189. Oikonomopoulos A , Sereti KI , Conyers F , Bauer M , Liao A , Guan J , Crapps D , Han JK , Dong H , Bayomy AF , Fine GC , Westerman K , Biechele TL , Moon RT , Force T , Liao R . Wnt signaling exerts an antiproliferative effect on adult cardiac progenitor cells through IGFBP3. Circ Res 109: 1363‐1374, 2011.
 190. Oishi I , Suzuki H , Onishi N , Takada R , Kani S , Ohkawara B , Koshida I , Suzuki K , Yamada G , Schwabe GC , Mundlos S , Shibuya H , Takada S , Minami Y . The receptor tyrosine kinase Ror2 is involved in non‐canonical Wnt5a/JNK signalling pathway. Genes Cells 8: 645‐654, 2003.
 191. Oka T , Xu J , Molkentin JD . Re‐employment of developmental transcription factors in adult heart disease. Semin Cell Dev Biol 18: 117‐131, 2007.
 192. Oon CE , Harris AL . New pathways and mechanisms regulating and responding to Delta‐like ligand 4‐Notch signalling in tumour angiogenesis. Biochem Soc Trans 39: 1612‐1618, 2011.
 193. Opie LH , Commerford PJ , Gersh BJ , Pfeffer MA . Controversies in ventricular remodelling. Lancet 367: 356‐367, 2006.
 194. Ostrom RS . A new molecular target for blunting organ fibrosis. Focus on “Secreted Frizzled‐related protein 2 as a target in antifibrotic therapeutic intervention”. Am J Physiol Cell Physiol 306: C527‐C528, 2014.
 195. Owens GK , Kumar MS , Wamhoff BR . Molecular regulation of vascular smooth muscle cell differentiation in development and disease. Physiol Rev 84: 767‐801, 2004.
 196. Panakova D , Sprong H , Marois E , Thiele C , Eaton S . Lipoprotein particles are required for Hedgehog and Wingless signalling. Nature 435: 58‐65, 2005.
 197. Pandur P , Lasche M , Eisenberg LM , Kuhl M . Wnt‐11 activation of a non‐canonical Wnt signalling pathway is required for cardiogenesis. Nature 418: 636‐641, 2002.
 198. Patthy L . The WIF module. Trends Biochem Sci 25: 12‐13, 2000.
 199. Pauly RR , Bilato C , Sollott SJ , Monticone R , Kelly PT , Lakatta EG , Crow MT . Role of calcium/calmodulin‐dependent protein kinase II in the regulation of vascular smooth muscle cell migration. Circulation 91: 1107‐1115, 1995.
 200. Pena E , Arderiu G , Badimon L . Tissue factor induces human coronary artery smooth muscle cell motility through Wnt‐signalling. J Thromb Haemost 11: 1880‐1891, 2013.
 201. Pennica D , Swanson TA , Welsh JW , Roy MA , Lawrence DA , Lee J , Brush J , Taneyhill LA , Deuel B , Lew M , Watanabe C , Cohen RL , Melhem MF , Finley GG , Quirke P , Goddard AD , Hillan KJ , Gurney AL , Botstein D , Levine AJ . WISP genes are members of the connective tissue growth factor family that are up‐regulated in wnt‐1‐transformed cells and aberrantly expressed in human colon tumors. Proc Natl Acad Sci U S A 95: 14717‐14722, 1998.
 202. Petrich BG , Eloff BC , Lerner DL , Kovacs A , Saffitz JE , Rosenbaum DS , Wang Y . Targeted activation of c‐Jun N‐terminal kinase in vivo induces restrictive cardiomyopathy and conduction defects. J Biol Chem 279: 15330‐15338, 2004.
 203. Povelones M , Nusse R . The role of the cysteine‐rich domain of Frizzled in Wingless‐Armadillo signaling. EMBO J 24: 3493‐3503, 2005.
 204. Qu J , Zhou J , Yi XP , Dong B , Zheng H , Miller LM , Wang X , Schneider MD , Li F . Cardiac‐specific haploinsufficiency of beta‐catenin attenuates cardiac hypertrophy but enhances fetal gene expression in response to aortic constriction. J Mol Cell Cardiol 43: 319‐326, 2007.
 205. Radice GL , Rayburn H , Matsunami H , Knudsen KA , Takeichi M , Hynes RO . Developmental defects in mouse embryos lacking N‐cadherin. Dev Biol 181: 64‐78, 1997.
 206. Reddy VS , Valente AJ , Delafontaine P , Chandrasekar B . Interleukin‐18/WNT1‐inducible signaling pathway protein‐1 signaling mediates human saphenous vein smooth muscle cell proliferation. J Cell Physiol 226: 3303‐3315, 2011.
 207. Ribatti D , Crivellato E . “Sprouting angiogenesis”, a reappraisal. Dev Biol 372: 157‐165, 2012.
 208. Ring DB , Johnson KW , Henriksen EJ , Nuss JM , Goff D , Kinnick TR , Ma ST , Reeder JW , Samuels I , Slabiak T , Wagman AS , Hammond ME , Harrison SD . Selective glycogen synthase kinase 3 inhibitors potentiate insulin activation of glucose transport and utilization in vitro and in vivo. Diabetes 52: 588‐595, 2003.
 209. Robitaille J , MacDonald ML , Kaykas A , Sheldahl LC , Zeisler J , Dube MP , Zhang LH , Singaraja RR , Guernsey DL , Zheng B , Siebert LF , Hoskin‐Mott A , Trese MT , Pimstone SN , Shastry BS , Moon RT , Hayden MR , Goldberg YP , Samuels ME . Mutant frizzled‐4 disrupts retinal angiogenesis in familial exudative vitreoretinopathy. Nat Genet 32: 326‐330, 2002.
 210. Roger VL , Go AS , Lloyd‐Jones DM , Benjamin EJ , Berry JD , Borden WB , Bravata DM , Dai S , Ford ES , Fox CS , Fullerton HJ , Gillespie C , Hailpern SM , Heit JA , Howard VJ , Kissela BM , Kittner SJ , Lackland DT , Lichtman JH , Lisabeth LD , Makuc DM , Marcus GM , Marelli A , Matchar DB , Moy CS , Mozaffarian D , Mussolino ME , Nichol G , Paynter NP , Soliman EZ , Sorlie PD , Sotoodehnia N , Turan TN , Virani SS , Wong ND , Woo D , Turner MB , American Heart Association Statistics C, Stroke Statistics S. Heart disease and stroke statistics–2012 update: A report from the American Heart Association. Circulation 125: e2‐e220, 2012.
 211. Rohini A , Agrawal N , Koyani CN , Singh R . Molecular targets and regulators of cardiac hypertrophy. Pharmacol Res 61: 269‐280, 2010.
 212. Samarzija I , Sini P , Schlange T , Macdonald G , Hynes NE . Wnt3a regulates proliferation and migration of HUVEC via canonical and non‐canonical Wnt signaling pathways. Biochem Biophys Res Comm 386: 449‐454, 2009.
 213. Sanbe A , Gulick J , Hanks MC , Liang Q , Osinska H , Robbins J . Reengineering inducible cardiac‐specific transgenesis with an attenuated myosin heavy chain promoter. Circ Res 92: 609‐616, 2003.
 214. Saraswati S , Alfaro MP , Thorne CA , Atkinson J , Lee E , Young PP . Pyrvinium, a potent small molecule Wnt inhibitor, promotes wound repair and post‐MI cardiac remodeling. PloS One 5: e15521, 2010.
 215. Sarzani R , Salvi F , Bordicchia M , Guerra F , Battistoni I , Pagliariccio G , Carbonari L , Dessi‐Fulgheri P , Rappelli A . Carotid artery atherosclerosis in hypertensive patients with a functional LDL receptor‐related protein 6 gene variant. Nutr Metab Cardiovasc Dis 21: 150‐156, 2011.
 216. Sasaki T , Hwang H , Nguyen C , Kloner RA , Kahn M . The small molecule Wnt signaling modulator ICG‐001 improves contractile function in chronically infarcted rat myocardium. PloS One 8: e75010, 2013.
 217. Schelbert EB , Fonarow GC , Bonow RO , Butler J , Gheorghiade M . Therapeutic targets in heart failure: Refocusing on the myocardial interstitium. J Am Coll Cardiol 63: 2188‐2198, 2014.
 218. Schneider VA , Mercola M . Wnt antagonism initiates cardiogenesis in Xenopus laevis. Genes Dev 15: 304‐315, 2001.
 219. Schulte G , Bryja V . The Frizzled family of unconventional G‐protein‐coupled receptors. Trends Pharmacol Sci 28: 518‐525, 2007.
 220. Schumann H , Holtz J , Zerkowski HR , Hatzfeld M . Expression of secreted frizzled related proteins 3 and 4 in human ventricular myocardium correlates with apoptosis related gene expression. Cardiovasc Res 45: 720‐728, 2000.
 221. Seifert‐Held T , Pekar T , Gattringer T , Simmet NE , Scharnagl H , Stojakovic T , Fazekas F , Storch MK . Circulating Dickkopf‐1 in acute ischemic stroke and clinically stable cerebrovascular disease. Atherosclerosis 218: 233‐237, 2011.
 222. Seimi SK , Seinosuke K , Tsuyoshi S , Tomomi U , Tetsuaki H , Miki K , Ryuji T , Kenji I , Mitsuhiro Y . Glycogen synthase kinase‐3beta is involved in the process of myocardial hypertrophy stimulated by insulin‐like growth factor‐1. Circ J 68: 247‐253, 2004.
 223. Sen‐Chowdhry S , Syrris P , McKenna WJ . Genetics of right ventricular cardiomyopathy. J Cardiovasc Electrophysiol 16: 927‐935, 2005.
 224. Shao JS , Aly ZA , Lai CF , Cheng SL , Cai J , Huang E , Behrmann A , Towler DA . Vascular Bmp Msx2 Wnt signaling and oxidative stress in arterial calcification. Ann N Y Acad Sci 1117: 40‐50, 2007.
 225. Shao JS , Cheng SL , Pingsterhaus JM , Charlton‐Kachigian N , Loewy AP , Towler DA . Msx2 promotes cardiovascular calcification by activating paracrine Wnt signals. J Clin Invest 115: 1210‐1220, 2005.
 226. Simons M , Mlodzik M . Planar cell polarity signaling: From fly development to human disease. Ann Rev Genet 42: 517‐540, 2008.
 227. Sklepkiewicz P , Schermuly RT , Tian X , Ghofrani HA , Weissmann N , Sedding D , Kashour T , Seeger W , Grimminger F , Pullamsetti SS . Glycogen synthase kinase 3beta contributes to proliferation of arterial smooth muscle cells in pulmonary hypertension. PloS One 6: e18883, 2011.
 228. Srivastava D . Making or breaking the heart: From lineage determination to morphogenesis. Cell 126: 1037‐1048, 2006.
 229. Stenman JM , Rajagopal J , Carroll TJ , Ishibashi M , McMahon J , McMahon AP . Canonical Wnt signaling regulates organ‐specific assembly and differentiation of CNS vasculature. Science 322: 1247‐1250, 2008.
 230. Sugden PH , Fuller SJ , Weiss SC , Clerk A . Glycogen synthase kinase 3 (GSK3) in the heart: A point of integration in hypertrophic signalling and a therapeutic target? A critical analysis. Br J Pharmacol 153(Suppl 1): S137‐S153, 2008.
 231. Swope D , Cheng L , Gao E , Li J , Radice GL . Loss of cadherin‐binding proteins beta‐catenin and plakoglobin in the heart leads to gap junction remodeling and arrhythmogenesis. Mol Cell Biol 32: 1056‐1067, 2012.
 232. Takada R , Satomi Y , Kurata T , Ueno N , Norioka S , Kondoh H , Takao T , Takada S . Monounsaturated fatty acid modification of Wnt protein: Its role in Wnt secretion. Dev Cell 11: 791‐801, 2006.
 233. Tateishi A , Matsushita M , Asai T , Masuda Z , Kuriyama M , Kanki K , Ishino K , Kawada M , Sano S , Matsui H . Effect of inhibition of glycogen synthase kinase‐3 on cardiac hypertrophy during acute pressure overload. Gen Thorac Cardiovasc Surg 58: 265‐270, 2010.
 234. Temple IK , MacDowall P , Baraitser M , Atherton DJ . Focal dermal hypoplasia (Goltz syndrome). J Med Genet 27: 180‐187, 1990.
 235. Thorne CA , Hanson AJ , Schneider J , Tahinci E , Orton D , Cselenyi CS , Jernigan KK , Meyers KC , Hang BI , Waterson AG , Kim K , Melancon B , Ghidu VP , Sulikowski GA , LaFleur B , Salic A , Lee LA , Miller DM, III , Lee E . Small‐molecule inhibition of Wnt signaling through activation of casein kinase 1alpha. Nat Chem Biol 6: 829‐836, 2010.
 236. Tong H , Imahashi K , Steenbergen C , Murphy E . Phosphorylation of glycogen synthase kinase‐3beta during preconditioning through a phosphatidylinositol‐3‐kinase‐dependent pathway is cardioprotective. Circ Res 90: 377‐379, 2002.
 237. Toyofuku T , Hong Z , Kuzuya T , Tada M , Hori M . Wnt/frizzled‐2 signaling induces aggregation and adhesion among cardiac myocytes by increased cadherin‐beta‐catenin complex. J Cell Biol 150: 225‐241, 2000.
 238. Tsaousi A , Williams H , Lyon CA , Taylor V , Swain A , Johnson JL , George SJ . Wnt4/beta‐catenin signaling induces VSMC proliferation and is associated with intimal thickening. Circ Res 108: 427‐436, 2011.
 239. Tzahor E . Wnt/beta‐catenin signaling and cardiogenesis: Timing does matter. Dev Cell 13: 10‐13, 2007.
 240. Ueland T , Otterdal K , Lekva T , Halvorsen B , Gabrielsen A , Sandberg WJ , Paulsson‐Berne G , Pedersen TM , Folkersen L , Gullestad L , Oie E , Hansson GK , Aukrust P . Dickkopf‐1 enhances inflammatory interaction between platelets and endothelial cells and shows increased expression in atherosclerosis. Arterioscler Thromb Vasc Biol 29: 1228‐1234, 2009.
 241. Ueno S , Weidinger G , Osugi T , Kohn AD , Golob JL , Pabon L , Reinecke H , Moon RT , Murry CE . Biphasic role for Wnt/beta‐catenin signaling in cardiac specification in zebrafish and embryonic stem cells. Proc Natl Acad Sci U S A 104: 9685‐9690, 2007.
 242. Vaduganathan M , Greene SJ , Ambrosy AP , Gheorghiade M , Butler J . The disconnect between phase II and phase III trials of drugs for heart failure. Nat Rev Cardiol 10: 85‐97, 2013.
 243.van de Schans VA , van den Borne SW , Strzelecka AE , Janssen BJ , van der Velden JL , Langen RC , Wynshaw‐Boris A , Smits JF , Blankesteijn WM . Interruption of Wnt signaling attenuates the onset of pressure overload‐induced cardiac hypertrophy. Hypertension 49: 473‐480, 2007.
 244. van der Wal AC , Becker AE . Atherosclerotic plaque rupture–pathologic basis of plaque stability and instability. Cardiovasc Res 41: 334‐344, 1999.
 245. Verma V , Purnamawati K , Manasi, Shim W . Steering signal transduction pathway towards cardiac lineage from human pluripotent stem cells: A review. Cell Signal 25: 1096‐1107, 2013.
 246. Vigneron F , Dos Santos P , Lemoine S , Bonnet M , Tariosse L , Couffinhal T , Duplaa C , Jaspard‐Vinassa B . GSK‐3beta at the crossroads in the signalling of heart preconditioning: Implication of mTOR and Wnt pathways. Cardiovasc Res 90: 49‐56, 2011.
 247. Vite A , Gandjbakhch E , Prost C , Fressart V , Fouret P , Neyroud N , Gary F , Donal E , Varnous S , Fontaine G , Fornes P , Hidden‐Lucet F , Komajda M , Charron P , Villard E . Desmosomal cadherins are decreased in explanted arrhythmogenic right ventricular dysplasia/cardiomyopathy patient hearts. PloS One 8: e75082, 2013.
 248. Wallingford JB , Habas R . The developmental biology of Dishevelled: An enigmatic protein governing cell fate and cell polarity. Development 132: 4421‐4436, 2005.
 249. Wang D , Zhang F , Shen W , Chen M , Yang B , Zhang Y , Cao K . Mesenchymal stem cell injection ameliorates the inducibility of ventricular arrhythmias after myocardial infarction in rats. Int J Cardiol 152: 314‐320, 2011.
 250. Wang H , Charles PC , Wu Y , Ren R , Pi X , Moser M , Barshishat‐Kupper M , Rubin JS , Perou C , Bautch V , Patterson C . Gene expression profile signatures indicate a role for Wnt signaling in endothelial commitment from embryonic stem cells. Circ Res 98: 1331‐1339, 2006.
 251. Wang H , Hao J , Hong CC . Cardiac induction of embryonic stem cells by a small molecule inhibitor of Wnt/beta‐catenin signaling. ACS Chem Biol 6: 192‐197, 2011.
 252. Wang HY , Liu T , Malbon CC . Structure‐function analysis of Frizzleds. Cell Signal 18: 934‐941, 2006.
 253. Wang X , Adhikari N , Li Q , Hall JL . LDL receptor‐related protein LRP6 regulates proliferation and survival through the Wnt cascade in vascular smooth muscle cells. Am J Physiol Heart Circ Physiol 287: H2376‐H2383, 2004.
 254. Wang X , Xiao Y , Mou Y , Zhao Y , Blankesteijn WM , Hall JL . A role for the beta‐catenin/T‐cell factor signaling cascade in vascular remodeling. Circ Res 90: 340‐347, 2002.
 255. Wang Y , Su B , Sah VP , Brown JH , Han J , Chien KR . Cardiac hypertrophy induced by mitogen‐activated protein kinase kinase 7, a specific activator for c‐Jun NH2‐terminal kinase in ventricular muscle cells. J Biol Chem 273: 5423‐5426, 1998.
 256. Weber C , Zernecke A , Libby P . The multifaceted contributions of leukocyte subsets to atherosclerosis: Lessons from mouse models. Nat Rev Immunol 8: 802‐815, 2008.
 257. Weidinger G , Moon RT . When Wnts antagonize Wnts. J Cell Biol 162: 753‐755, 2003.
 258. White HD , Chew DP . Acute myocardial infarction. Lancet 372: 570‐584, 2008.
 259. Willert K , Brown JD , Danenberg E , Duncan AW , Weissman IL , Reya T , Yates JR , 3rd, Nusse R . Wnt proteins are lipid‐modified and can act as stem cell growth factors. Nature 423: 448‐452, 2003.
 260. Willert KH . Isolation and application of bioactive Wnt proteins. Methods Mol Biol 468: 17‐29, 2008.
 261. Wouda RR , Bansraj MR , de Jong AW , Noordermeer JN , Fradkin LG . Src family kinases are required for WNT5 signaling through the Derailed/RYK receptor in the Drosophila embryonic central nervous system. Development 135: 2277‐2287, 2008.
 262. Woulfe KC , Gao E , Lal H , Harris D , Fan Q , Vagnozzi R , DeCaul M , Shang X , Patel S , Woodgett JR , Force T , Zhou J . Glycogen synthase kinase‐3beta regulates post‐myocardial infarction remodeling and stress‐induced cardiomyocyte proliferation in vivo. Circ Res 106: 1635‐1645, 2010.
 263. Wu JC , Wang SM , Tseng YZ . The involvement of PKC in N‐cadherin‐mediated adherens junction assembly in cultured cardiomyocytes. Biochem Biophys Res Commun 225: 733‐739, 1996.
 264. Wu X , Wang J , Jiang H , Hu Q , Chen J , Zhang J , Zhu R , Liu W , Li B . Wnt3a activates beta1‐integrin and regulates migration and adhesion of vascular smooth muscle cells. Mol Med Rep 9: 1159‐1164, 2014.
 265. Xiang G , Yang Q , Wang B , Sekiya N , Mu X , Tang Y , Chen CW , Okada M , Cummins J , Gharaibeh B , Huard J . Lentivirus‐mediated Wnt11 gene transfer enhances Cardiomyogenic differentiation of skeletal muscle‐derived stem cells. Mol Ther 19: 790‐796, 2011.
 266. Yadav HN , Singh M , Sharma PL . Involvement of GSK‐3beta in attenuation of the cardioprotective effect of ischemic preconditioning in diabetic rat heart. Mol Cell Biochem 343: 75‐81, 2010.
 267. Yamamoto H , Sakane H , Yamamoto H , Michiue T , Kikuchi A . Wnt3a and Dkk1 regulate distinct internalization pathways of LRP6 to tune the activation of beta‐catenin signaling. Dev Cell 15: 37‐48, 2008.
 268. Yang DH , Yoon JY , Lee SH , Bryja V , Andersson ER , Arenas E , Kwon YG , Choi KY . Wnt5a is required for endothelial differentiation of embryonic stem cells and vascularization via pathways involving both Wnt/beta‐catenin and protein kinase Calpha. Circ Res 104: 372‐379, 2009.
 269. You LR , Lin FJ , Lee CT , DeMayo FJ , Tsai MJ , Tsai SY . Suppression of Notch signalling by the COUP‐TFII transcription factor regulates vein identity. Nature 435: 98‐104, 2005.
 270. Zelarayan LC , Noack C , Sekkali B , Kmecova J , Gehrke C , Renger A , Zafiriou MP , van der Nagel R , Dietz R , de Windt LJ , Balligand JL , Bergmann MW . Beta‐catenin downregulation attenuates ischemic cardiac remodeling through enhanced resident precursor cell differentiation. Proc Natl Acad Sci U S A 105: 19762‐19767, 2008.
 271. Zerlin M , Julius MA , Kitajewski J . Wnt/Frizzled signaling in angiogenesis. Angiogenesis 11: 63‐69, 2008.
 272. Zhang CG , Jia ZQ , Li BH , Zhang H , Liu YN , Chen P , Ma KT , Zhou CY . beta‐Catenin/TCF/LEF1 can directly regulate phenylephrine‐induced cell hypertrophy and Anf transcription in cardiomyocytes. Biochem Biophys Res Commun 390: 258‐262, 2009.
 273. Zheng Q , Chen P , Xu Z , Li F , Yi XP . Expression and redistribution of beta‐catenin in the cardiac myocytes of left ventricle of spontaneously hypertensive rat. J Mol Histol 44: 565‐573, 2013.
 274. Zhou J , Freeman TA , Ahmad F , Shang X , Mangano E , Gao E , Farber J , Wang Y , Ma XL , Woodgett J , Vagnozzi RJ , Lal H , Force T . GSK‐3alpha is a central regulator of age‐related pathologies in mice. J Clin Invest 123: 1821‐1832, 2013.
 275. Zhou X , Hu X , Xie J , Xu C , Xu W , Jiang H . Exogenous high‐mobility group box 1 protein injection improves cardiac function after myocardial infarction: Involvement of Wnt signaling activation. J Biomed Biotechnol 2012: 743879, 2012.
 276. Zhou Y , Wang Y , Tischfield M , Williams J , Smallwood PM , Rattner A , Taketo MM , Nathans J . Canonical WNT signaling components in vascular development and barrier formation. J Clin Invest 124: 3825‐3846, 2014.
 277. Zuo S , Jones WK , Li H , He Z , Pasha Z , Yang Y , Wang Y , Fan GC , Ashraf M , Xu M . Paracrine effect of Wnt11‐overexpressing mesenchymal stem cells on ischemic injury. Stem Cells Dev 21: 598‐608, 2012.

Related Articles:

Pathophysiology of Myocardial Infarction
Pathophysiology of Heart Failure
Myocardial Cell Signaling During the Transition to Heart Failure
Physiological Implications of Myocardial Scar Structure

Contact Editor

Submit a note to the editor about this article by filling in the form below.

* Required Field

How to Cite

Kevin CM Hermans, W Matthijs Blankesteijn. Wnt Signaling in Cardiac Disease. Compr Physiol 2015, 5: 1183-1209. doi: 10.1002/cphy.c140060