References |
1. |
Abmayr
SM
,
Pavlath
GK
. Myoblast fusion: Lessons from flies and mice. Development
139: 641‐656, 2012. |
2. |
Abou‐Khalil
R
,
Le Grand
F
,
Pallafacchina
G
,
Valable
S
,
Authier
FJ
,
Rudnicki
MA
,
Gherardi
RK
,
Germain
S
,
Chretien
F
,
Sotiropoulos
A
,
Lafuste
P
,
Montarras
D
,
Chazaud
B
. Autocrine and paracrine angiopoietin 1/Tie‐2 signaling promotes muscle satellite cell self‐renewal. Cell Stem Cell
5: 298‐309, 2009. |
3. |
Acharyya
S
,
Sharma
SM
,
Cheng
AS
,
Ladner
KJ
,
He
W
,
Kline
W
,
Wang
H
,
Ostrowski
MC
,
Huang
TH
,
Guttridge
DC
. TNF inhibits Notch‐1 in skeletal muscle cells by Ezh2 and DNA methylation mediated repression: Implications in duchenne muscular dystrophy. PloS One
5: e12479, 2010. |
4. |
Adli
M
,
Bernstein
BE
. Whole‐genome chromatin profiling from limited numbers of cells using nano‐ChIP‐seq. Nat Protoc
6: 1656‐1668, 2011. |
5. |
Alfaro
LA
,
Dick
SA
,
Siegel
AL
,
Anonuevo
AS
,
McNagny
KM
,
Megeney
LA
,
Cornelison
DD
,
Rossi
FM
. CD34 promotes satellite cell motility and entry into proliferation to facilitate efficient skeletal muscle regeneration. Stem Cells
29: 2030‐2041, 2011. |
6. |
Allen
RE
,
Sheehan
SM
,
Taylor
RG
,
Kendall
TL
,
Rice
GM
. Hepatocyte growth factor activates quiescent skeletal muscle satellite cells in vitro. J Cell Physiol
165: 307‐312, 1995. |
7. |
Alter
J
,
Rozentzweig
D
,
Bengal
E
. Inhibition of myoblast differentiation by tumor necrosis factor alpha is mediated by c‐Jun N‐terminal kinase 1 and leukemia inhibitory factor. J Biol Chem
283: 23224‐23234, 2008. |
8. |
Anderson
JE
. A role for nitric oxide in muscle repair: Nitric oxide‐mediated activation of muscle satellite cells. Mol Biol Cell
11: 1859‐1874, 2000. |
9. |
Anderson
MS
,
Kunkel
LM
. The molecular and biochemical basis of Duchenne muscular dystrophy. Trends Biochem Sci
17: 289‐292, 1992. |
10. |
Argiles
JM
,
Busquets
S
,
Felipe
A
,
Lopez‐Soriano
FJ
. Muscle wasting in cancer and ageing: Cachexia versus sarcopenia. Adv Gerontol
18: 39‐54, 2006. |
11. |
Arnold
L
,
Henry
A
,
Poron
F
,
Baba‐Amer
Y
,
van Rooijen
N
,
Plonquet
A
,
Gherardi
RK
,
Chazaud
B
. Inflammatory monocytes recruited after skeletal muscle injury switch into antiinflammatory macrophages to support myogenesis. J Exp Med
204: 1057‐1069, 2007. |
12. |
Asakura
A
,
Seale
P
,
Girgis‐Gabardo
A
,
Rudnicki
MA
. Myogenic specification of side population cells in skeletal muscle. J Cell Biol
159: 123‐134, 2002. |
13. |
Asp
P
,
Blum
R
,
Vethantham
V
,
Parisi
F
,
Micsinai
M
,
Cheng
J
,
Bowman
C
,
Kluger
Y
,
Dynlacht
BD
. Genome‐wide remodeling of the epigenetic landscape during myogenic differentiation. Proc Natl Acad Sci U S A
108: E149‐E158, 2011. |
14. |
Auffray
C
,
Fogg
D
,
Garfa
M
,
Elain
G
,
Join‐Lambert
O
,
Kayal
S
,
Sarnacki
S
,
Cumano
A
,
Lauvau
G
,
Geissmann
F
. Monitoring of blood vessels and tissues by a population of monocytes with patrolling behavior. Science
317: 666‐670, 2007. |
15. |
Bachrach
E
,
Li
S
,
Perez
AL
,
Schienda
J
,
Liadaki
K
,
Volinski
J
,
Flint
A
,
Chamberlain
J
,
Kunkel
LM
. Systemic delivery of human microdystrophin to regenerating mouse dystrophic muscle by muscle progenitor cells. Proc Natl Acad Sci U S A
101: 3581‐3586, 2004. |
16. |
Barani
AE
,
Durieux
AC
,
Sabido
O
,
Freyssenet
D
. Age‐related changes in the mitotic and metabolic characteristics of muscle‐derived cells. J Appl Physiol (1985)
95: 2089‐2098, 2003. |
17. |
Barjot
C
,
Cotten
ML
,
Goblet
C
,
Whalen
RG
,
Bacou
F
. Expression of myosin heavy chain and of myogenic regulatory factor genes in fast or slow rabbit muscle satellite cell cultures. J Muscle Res Cell Motil
16: 619‐628, 1995. |
18. |
Bassel‐Duby
R
,
Olson
EN
. Signaling pathways in skeletal muscle remodeling. Annu Rev Biochem
75: 19‐37, 2006. |
19. |
Beauchamp
JR
,
Heslop
L
,
Yu
DS
,
Tajbakhsh
S
,
Kelly
RG
,
Wernig
A
,
Buckingham
ME
,
Partridge
TA
,
Zammit
PS
. Expression of CD34 and Myf5 defines the majority of quiescent adult skeletal muscle satellite cells. J Cell Biol
151: 1221‐1234, 2000. |
20. |
Bencze
M
,
Negroni
E
,
Vallese
D
,
Yacoub‐Youssef
H
,
Chaouch
S
,
Wolff
A
,
Aamiri
A
,
Di Santo
JP
,
Chazaud
B
,
Butler‐Browne
G
,
Savino
W
,
Mouly
V
,
Riederer
I
. Proinflammatory macrophages enhance the regenerative capacity of human myoblasts by modifying their kinetics of proliferation and differentiation. Mol Ther
20: 2168‐2179, 2012. |
21. |
Bentzinger
CF
,
Lin
S
,
Romanino
K
,
Castets
P
,
Guridi
M
,
Summermatter
S
,
Handschin
C
,
Tintignac
LA
,
Hall
MN
,
Ruegg
MA
. Differential response of skeletal muscles to mTORC1 signaling during atrophy and hypertrophy. Skelet Muscle
3: 6, 2013. |
22. |
Bentzinger
CF
,
Rudnicki
MA
. Rejuvenating aged muscle stem cells. Nat Med
20: 234‐235, 2014. |
23. |
Bentzinger
CF
,
von Maltzahn
J
,
Dumont
NA
,
Stark
DA
,
Wang
YX
,
Nhan
K
,
Frenette
J
,
Cornelison
DD
,
Rudnicki
MA
. Wnt7a stimulates myogenic stem cell motility and engraftment resulting in improved muscle strength. J Cell Biol
205: 97‐111, 2014. |
24. |
Bentzinger
CF
,
Wang
YX
,
Dumont
NA
,
Rudnicki
MA
. Cellular dynamics in the muscle satellite cell niche. EMBO Rep
14: 1062‐1072, 2013. |
25. |
Bentzinger
CF
,
Wang
YX
,
Rudnicki
MA
. Building muscle: Molecular regulation of myogenesis. Cold Spring Harb Perspect Biol
4: pii: a008342, 2012. |
26. |
Bentzinger
CF
,
Wang
YX
,
von Maltzahn
J
,
Soleimani
VD
,
Yin
H
,
Rudnicki
MA
. Fibronectin regulates Wnt7a signaling and satellite cell expansion. Cell Stem Cell
12: 75‐87, 2013. |
27. |
Berkes
CA
,
Bergstrom
DA
,
Penn
BH
,
Seaver
KJ
,
Knoepfler
PS
,
Tapscott
SJ
. Pbx marks genes for activation by MyoD indicating a role for a homeodomain protein in establishing myogenic potential. Mol Cell
14: 465‐477, 2004. |
28. |
Bernet
JD
,
Doles
JD
,
Hall
JK
,
Kelly Tanaka
K
,
Carter
TA
,
Olwin
BB
. p38 MAPK signaling underlies a cell‐autonomous loss of stem cell self‐renewal in skeletal muscle of aged mice. Nat Med
20: 265‐271, 2014. |
29. |
Bintliff
S
,
Walker
BE
. Radioautographic study of skeletal muscle regeneration. Am J Anat
106: 233‐245, 1960. |
30. |
Biressi
S
,
Molinaro
M
,
Cossu
G
. Cellular heterogeneity during vertebrate skeletal muscle development. Dev Biol
308: 281‐293, 2007. |
31. |
Bischoff
R
. Regeneration of single skeletal muscle fibers in vitro. Anat Rec
182: 215‐235, 1975. |
32. |
Bischoff
R
. Chemotaxis of skeletal muscle satellite cells. Dev Dyn
208: 505‐515, 1997. |
33. |
Bjornson
CR
,
Cheung
TH
,
Liu
L
,
Tripathi
PV
,
Steeper
KM
,
Rando
TA
. Notch signaling is necessary to maintain quiescence in adult muscle stem cells. Stem Cells
30: 232‐242, 2012. |
34. |
Blaauw
B
,
Schiaffino
S
,
Reggiani
C
. Mechanisms modulating skeletal muscle phenotype. Compr Physiol
3: 1645‐1687, 2013. |
35. |
Bober
E
,
Franz
T
,
Arnold
HH
,
Gruss
P
,
Tremblay
P
. Pax‐3 is required for the development of limb muscles: A possible role for the migration of dermomyotomal muscle progenitor cells. Development
120: 603‐612, 1994. |
36. |
Bonavaud
S
,
Agbulut
O
,
Nizard
R
,
D'Honneur
G
,
Mouly
V
,
Butler‐Browne
G
. A discrepancy resolved: Human satellite cells are not preprogrammed to fast and slow lineages. Neuromuscul Disord
11: 747‐752, 2001. |
37. |
Bosnakovski
D
,
Xu
Z
,
Li
W
,
Thet
S
,
Cleaver
O
,
Perlingeiro
RC
,
Kyba
M
. Prospective isolation of skeletal muscle stem cells with a Pax7 reporter. Stem Cells
26: 3194‐3204, 2008. |
38. |
Bouchentouf
M
,
Benabdallah
BF
,
Bigey
P
,
Yau
TM
,
Scherman
D
,
Tremblay
JP
. Vascular endothelial growth factor reduced hypoxia‐induced death of human myoblasts and improved their engraftment in mouse muscles. Gene Ther
15: 404‐414, 2008. |
39. |
Brack
AS
,
Conboy
IM
,
Conboy
MJ
,
Shen
J
,
Rando
TA
. A temporal switch from notch to Wnt signaling in muscle stem cells is necessary for normal adult myogenesis. Cell Stem Cell
2: 50‐59, 2008. |
40. |
Brack
AS
,
Rando
TA
. Intrinsic changes and extrinsic influences of myogenic stem cell function during aging. Stem Cell Rev
3: 226‐237, 2007. |
41. |
Braun
T
,
Rudnicki
MA
,
Arnold
HH
,
Jaenisch
R
. Targeted inactivation of the muscle regulatory gene Myf‐5 results in abnormal rib development and perinatal death. Cell
71: 369‐382, 1992. |
42. |
Buckingham
M
,
Rigby
PW
. Gene regulatory networks and transcriptional mechanisms that control myogenesis. Dev Cell
28: 225‐238, 2014. |
43. |
Campisi
J
,
Kim
SH
,
Lim
CS
,
Rubio
M
. Cellular senescence, cancer and aging: The telomere connection. Exp Gerontol
36: 1619‐1637, 2001. |
44. |
Cantini
M
,
Massimino
ML
,
Rapizzi
E
,
Rossini
K
,
Catani
C
,
Dalla Libera
L
,
Carraro
U
. Human satellite cell proliferation in vitro is regulated by autocrine secretion of IL‐6 stimulated by a soluble factor(s) released by activated monocytes. Biochem Biophys Res Commun
216: 49‐53, 1995. |
45. |
Capers
CR
. Multinucleation of skeletal muscle in vitro. J Biophy Biochem Cytol
7: 559‐565, 1960. |
46. |
Cardinali
B
,
Castellani
L
,
Fasanaro
P
,
Basso
A
,
Alema
S
,
Martelli
F
,
Falcone
G
. Microrna‐221 and microrna‐222 modulate differentiation and maturation of skeletal muscle cells. PloS One
4: e7607, 2009. |
47. |
Caretti
G
,
Di Padova
M
,
Micales
B
,
Lyons
GE
,
Sartorelli
V
. The Polycomb Ezh2 methyltransferase regulates muscle gene expression and skeletal muscle differentiation. Genes Dev
18: 2627‐2638, 2004. |
48. |
Carlson
BM
,
Faulkner
JA
. Muscle transplantation between young and old rats: Age of host determines recovery. Am J Physiol
256: C1262‐C1266, 1989. |
49. |
Carlson
ME
,
Conboy
IM
. Loss of stem cell regenerative capacity within aged niches. Aging Cell
6: 371‐382, 2007. |
50. |
Carlson
ME
,
Hsu
M
,
Conboy
IM
. Imbalance between pSmad3 and Notch induces CDK inhibitors in old muscle stem cells. Nature
454: 528‐532, 2008. |
51. |
Cerletti
M
,
Jurga
S
,
Witczak
CA
,
Hirshman
MF
,
Shadrach
JL
,
Goodyear
LJ
,
Wagers
AJ
. Highly efficient, functional engraftment of skeletal muscle stem cells in dystrophic muscles. Cell
134: 37‐47, 2008. |
52. |
Chakkalakal
JV
,
Christensen
J
,
Xiang
W
,
Tierney
MT
,
Boscolo
FS
,
Sacco
A
,
Brack
AS
. Early forming label‐retaining muscle stem cells require p27kip1 for maintenance of the primitive state. Development
141: 1649‐1659, 2014. |
53. |
Chakkalakal
JV
,
Jones
KM
,
Basson
MA
,
Brack
AS
. The aged niche disrupts muscle stem cell quiescence. Nature
490: 355‐360, 2012. |
54. |
Chakravarthy
MV
,
Abraha
TW
,
Schwartz
RJ
,
Fiorotto
ML
,
Booth
FW
. Insulin‐like growth factor‐I extends in vitro replicative life span of skeletal muscle satellite cells by enhancing G1/S cell cycle progression via the activation of phosphatidylinositol 3'‐kinase/Akt signaling pathway. J Biol Chem
275: 35942‐35952, 2000. |
55. |
Charge
SB
,
Brack
AS
,
Hughes
SM
. Aging‐related satellite cell differentiation defect occurs prematurely after Ski‐induced muscle hypertrophy. Am J Physiol Cell Physiol
283: C1228‐C1241, 2002. |
56. |
Chen
JF
,
Mandel
EM
,
Thomson
JM
,
Wu
Q
,
Callis
TE
,
Hammond
SM
,
Conlon
FL
,
Wang
DZ
. The role of microRNA‐1 and microRNA‐133 in skeletal muscle proliferation and differentiation. Nat Genet
38: 228‐233, 2006. |
57. |
Chen
JF
,
Tao
Y
,
Li
J
,
Deng
Z
,
Yan
Z
,
Xiao
X
,
Wang
DZ
. microRNA‐1 and microRNA‐206 regulate skeletal muscle satellite cell proliferation and differentiation by repressing Pax7. J Cell Biol
190: 867‐879, 2010. |
58. |
Chen
SE
,
Jin
B
,
Li
YP
. TNF‐alpha regulates myogenesis and muscle regeneration by activating p38 MAPK. Am J Physiol Cell Physiol
292: C1660‐C1671, 2007. |
59. |
Cheung
TH
,
Quach
NL
,
Charville
GW
,
Liu
L
,
Park
L
,
Edalati
A
,
Yoo
B
,
Hoang
P
,
Rando
TA
. Maintenance of muscle stem‐cell quiescence by microRNA‐489. Nature
482: 524‐528, 2012. |
60. |
Cheung
TH
,
Rando
TA
. Molecular regulation of stem cell quiescence. Nat Rev Mol Cell Biol
14: 329‐340, 2013. |
61. |
Christov
C
,
Chretien
F
,
Abou‐Khalil
R
,
Bassez
G
,
Vallet
G
,
Authier
FJ
,
Bassaglia
Y
,
Shinin
V
,
Tajbakhsh
S
,
Chazaud
B
,
Gherardi
RK
. Muscle satellite cells and endothelial cells: Close neighbors and privileged partners. Mol Biol Cell
18: 1397‐1409, 2007. |
62. |
Cirillo
LA
,
Lin
FR
,
Cuesta
I
,
Friedman
D
,
Jarnik
M
,
Zaret
KS
. Opening of compacted chromatin by early developmental transcription factors HNF3 (FoxA) and GATA‐4. Mol Cell
9: 279‐289, 2002. |
63. |
Clark
P
,
Coles
D
,
Peckham
M
. Preferential adhesion to and survival on patterned laminin organizes myogenesis in vitro. Exp Cell Res
230: 275‐283, 1997. |
64. |
Clark
WE
,
Blomfield
LB
. The efficiency of intramuscular anastomoses, with observations on the regeneration of devascularized muscle. J Anat
79: 15‐32.4, 1945. |
65. |
Cohn
RD
,
Henry
MD
,
Michele
DE
,
Barresi
R
,
Saito
F
,
Moore
SA
,
Flanagan
JD
,
Skwarchuk
MW
,
Robbins
ME
,
Mendell
JR
,
Williamson
RA
,
Campbell
KP
. Disruption of DAG1 in differentiated skeletal muscle reveals a role for dystroglycan in muscle regeneration. Cell
110: 639‐648, 2002. |
66. |
Cohn
RD
,
van Erp
C
,
Habashi
JP
,
Soleimani
AA
,
Klein
EC
,
Lisi
MT
,
Gamradt
M
,
ap Rhys
CM
,
Holm
TM
,
Loeys
BL
,
Ramirez
F
,
Judge
DP
,
Ward
CW
,
Dietz
HC
. Angiotensin II type 1 receptor blockade attenuates TGF‐beta‐induced failure of muscle regeneration in multiple myopathic states. Nat Med
13: 204‐210, 2007. |
67. |
Collins
CA
,
Olsen
I
,
Zammit
PS
,
Heslop
L
,
Petrie
A
,
Partridge
TA
,
Morgan
JE
. Stem cell function, self‐renewal, and behavioral heterogeneity of cells from the adult muscle satellite cell niche. Cell
122: 289‐301, 2005. |
68. |
Conboy
IM
,
Conboy
MJ
,
Smythe
GM
,
Rando
TA
. Notch‐mediated restoration of regenerative potential to aged muscle. Science
302: 1575‐1577, 2003. |
69. |
Conboy
IM
,
Conboy
MJ
,
Wagers
AJ
,
Girma
ER
,
Weissman
IL
,
Rando
TA
. Rejuvenation of aged progenitor cells by exposure to a young systemic environment. Nature
433: 760‐764, 2005. |
70. |
Conboy
IM
,
Rando
TA
. The regulation of Notch signaling controls satellite cell activation and cell fate determination in postnatal myogenesis. Dev Cell
3: 397‐409, 2002. |
71. |
Corbeil
HB
,
Whyte
P
,
Branton
PE
. Characterization of transcription factor E2F complexes during muscle and neuronal differentiation. Oncogene
11: 909‐920, 1995. |
72. |
Cornelison
DD
,
Olwin
BB
,
Rudnicki
MA
,
Wold
BJ
. MyoD(‐/‐) satellite cells in single‐fiber culture are differentiation defective and MRF4 deficient. Dev Biol
224: 122‐137, 2000. |
73. |
Cornelison
DD
,
Wilcox‐Adelman
SA
,
Goetinck
PF
,
Rauvala
H
,
Rapraeger
AC
,
Olwin
BB
. Essential and separable roles for Syndecan‐3 and Syndecan‐4 in skeletal muscle development and regeneration. Genes Dev
18: 2231‐2236, 2004. |
74. |
Cosgrove
BD
,
Gilbert
PM
,
Porpiglia
E
,
Mourkioti
F
,
Lee
SP
,
Corbel
SY
,
Llewellyn
ME
,
Delp
SL
,
Blau
HM
. Rejuvenation of the muscle stem cell population restores strength to injured aged muscles. Nat Med
20: 255‐264, 2014. |
75. |
Crist
CG
,
Montarras
D
,
Buckingham
M
. Muscle satellite cells are primed for myogenesis but maintain quiescence with sequestration of Myf5 mRNA targeted by microRNA‐31 in mRNP granules. Cell Stem Cell
11: 118‐126, 2012. |
76. |
Cserjesi
P
,
Olson
EN
. Myogenin induces the myocyte‐specific enhancer binding factor MEF‐2 independently of other muscle‐specific gene products. Mol Cell Biol
11: 4854‐4862, 1991. |
77. |
Dacwag
CS
,
Ohkawa
Y
,
Pal
S
,
Sif
S
,
Imbalzano
AN
. The protein arginine methyltransferase Prmt5 is required for myogenesis because it facilitates ATP‐dependent chromatin remodeling. Mol Cell Biol
27: 384‐394, 2007. |
78. |
Dalkilic
I
,
Schienda
J
,
Thompson
TG
,
Kunkel
LM
. Loss of FilaminC (FLNc) results in severe defects in myogenesis and myotube structure. Mol Cell Biol
26: 6522‐6534, 2006. |
79. |
Darabi
R
,
Arpke
RW
,
Irion
S
,
Dimos
JT
,
Grskovic
M
,
Kyba
M
,
Perlingeiro
RC
. Human ES‐ and iPS‐derived myogenic progenitors restore DYSTROPHIN and improve contractility upon transplantation in dystrophic mice. Cell Stem Cell
10: 610‐619, 2012. |
80. |
Davie
JK
,
Cho
JH
,
Meadows
E
,
Flynn
JM
,
Knapp
JR
,
Klein
WH
. Target gene selectivity of the myogenic basic helix‐loop‐helix transcription factor myogenin in embryonic muscle. Dev Biol
311: 650‐664, 2007. |
81. |
de la Serna
IL
,
Carlson
KA
,
Imbalzano
AN
. Mammalian SWI/SNF complexes promote MyoD‐mediated muscle differentiation. Nat Genet
27: 187‐190, 2001. |
82. |
de la Serna
IL
,
Ohkawa
Y
,
Berkes
CA
,
Bergstrom
DA
,
Dacwag
CS
,
Tapscott
SJ
,
Imbalzano
AN
. MyoD targets chromatin remodeling complexes to the myogenin locus prior to forming a stable DNA‐bound complex. Mol Cell Biol
25: 3997‐4009, 2005. |
83. |
Decary
S
,
Hamida
CB
,
Mouly
V
,
Barbet
JP
,
Hentati
F
,
Butler‐Browne
GS
. Shorter telomeres in dystrophic muscle consistent with extensive regeneration in young children. Neuromuscul Disord
10: 113‐120, 2000. |
84. |
Decary
S
,
Mouly
V
,
Hamida
CB
,
Sautet
A
,
Barbet
JP
,
Butler‐Browne
GS
. Replicative potential and telomere length in human skeletal muscle: Implications for satellite cell‐mediated gene therapy. Hum Gene Ther
8: 1429‐1438, 1997. |
85. |
Dellavalle
A
,
Sampaolesi
M
,
Tonlorenzi
R
,
Tagliafico
E
,
Sacchetti
B
,
Perani
L
,
Innocenzi
A
,
Galvez
BG
,
Messina
G
,
Morosetti
R
,
Li
S
,
Belicchi
M
,
Peretti
G
,
Chamberlain
JS
,
Wright
WE
,
Torrente
Y
,
Ferrari
S
,
Bianco
P
,
Cossu
G
. Pericytes of human skeletal muscle are myogenic precursors distinct from satellite cells. Nat Cell Biol
9: 255‐267, 2007. |
86. |
Deng
B
,
Wehling‐Henricks
M
,
Villalta
SA
,
Wang
Y
,
Tidball
JG
. IL‐10 triggers changes in macrophage phenotype that promote muscle growth and regeneration. J Immunol
189: 3669‐3680, 2012. |
87. |
Dey
BK
,
Gagan
J
,
Dutta
A
. miR‐206 and ‐486 induce myoblast differentiation by downregulating Pax7. Mol Cell Biol
31: 203‐214, 2011. |
88. |
DiMario
J
,
Buffinger
N
,
Yamada
S
,
Strohman
RC
. Fibroblast growth factor in the extracellular matrix of dystrophic (mdx) mouse muscle. Science
244: 688‐690, 1989. |
89. |
Doyle
MJ
,
Zhou
S
,
Tanaka
KK
,
Pisconti
A
,
Farina
NH
,
Sorrentino
BP
,
Olwin
BB
. Abcg2 labels multiple cell types in skeletal muscle and participates in muscle regeneration. J Cell Biol
195: 147‐163, 2011. |
90. |
Duchesne
E
,
Bouchard
P
,
Roussel
MP
,
Cote
CH
. Mast cells can regulate skeletal muscle cell proliferation by multiple mechanisms. Muscle Nerve
48: 403‐414, 2013. |
91. |
Duchesne
E
,
Tremblay
MH
,
Cote
CH
. Mast cell tryptase stimulates myoblast proliferation; A mechanism relying on protease‐activated receptor‐2 and cyclooxygenase‐2. BMC Musculoskelet Disord
12: 235, 2011. |
92. |
Dumont
N
,
Bouchard
P
,
Frenette
J
. Neutrophil‐induced skeletal muscle damage: A calculated and controlled response following hindlimb unloading and reloading. Am J Physiol Regul Integr Comp Physiol
295: R1831‐R1838, 2008. |
93. |
Dumont
N
,
Lepage
K
,
Cote
CH
,
Frenette
J
. Mast cells can modulate leukocyte accumulation and skeletal muscle function following hindlimb unloading. J Appl Physiol (1985)
103: 97‐104, 2007. |
94. |
Dumont
NA
,
Frenette
J
. Macrophage colony‐stimulating factor‐induced macrophage differentiation promotes regrowth in atrophied skeletal muscles and C2C12 myotubes. Am J Pathol
182: 505‐515, 2013. |
95. |
Edom
F
,
Mouly
V
,
Barbet
JP
,
Fiszman
MY
,
Butler‐Browne
GS
. Clones of human satellite cells can express in vitro both fast and slow myosin heavy chains. Dev Biol
164: 219‐229, 1994. |
96. |
Epstein
JA
,
Shapiro
DN
,
Cheng
J
,
Lam
PY
,
Maas
RL
. Pax3 modulates expression of the c‐Met receptor during limb muscle development. Proc Natl Acad Sci U S A
93: 4213‐4218, 1996. |
97. |
Feldman
JL
,
Stockdale
FE
. Skeletal muscle satellite cell diversity: Satellite cells form fibers of different types in cell culture. Dev Biol
143: 320‐334, 1991. |
98. |
Fitts
RH
,
Riley
DR
,
Widrick
JJ
. Physiology of a microgravity environment invited review: Microgravity and skeletal muscle. J Appl Physiol (1985)
89: 823‐839, 2000. |
99. |
Floss
T
,
Arnold
HH
,
Braun
T
. A role for FGF‐6 in skeletal muscle regeneration. Genes Dev
11: 2040‐2051, 1997. |
100. |
Friday
BB
,
Horsley
V
,
Pavlath
GK
. Calcineurin activity is required for the initiation of skeletal muscle differentiation. J Cell Biol
149: 657‐666, 2000. |
101. |
Friday
BB
,
Mitchell
PO
,
Kegley
KM
,
Pavlath
GK
. Calcineurin initiates skeletal muscle differentiation by activating MEF2 and MyoD. Differentiation
71: 217‐227, 2003. |
102. |
Fuchtbauer
EM
,
Westphal
H
. MyoD and myogenin are coexpressed in regenerating skeletal muscle of the mouse. Dev Dyn
193: 34‐39, 1992. |
103. |
Fukada
S
,
Higuchi
S
,
Segawa
M
,
Koda
K
,
Yamamoto
Y
,
Tsujikawa
K
,
Kohama
Y
,
Uezumi
A
,
Imamura
M
,
Miyagoe‐Suzuki
Y
,
Takeda
S
,
Yamamoto
H
. Purification and cell‐surface marker characterization of quiescent satellite cells from murine skeletal muscle by a novel monoclonal antibody. Exp Cell Res
296: 245‐255, 2004. |
104. |
Fukada
S
,
Uezumi
A
,
Ikemoto
M
,
Masuda
S
,
Segawa
M
,
Tanimura
N
,
Yamamoto
H
,
Miyagoe‐Suzuki
Y
,
Takeda
S
. Molecular signature of quiescent satellite cells in adult skeletal muscle. Stem Cells
25: 2448‐2459, 2007. |
105. |
Fukada
S
,
Yamaguchi
M
,
Kokubo
H
,
Ogawa
R
,
Uezumi
A
,
Yoneda
T
,
Matev
MM
,
Motohashi
N
,
Ito
T
,
Zolkiewska
A
,
Johnson
RL
,
Saga
Y
,
Miyagoe‐Suzuki
Y
,
Tsujikawa
K
,
Takeda
S
,
Yamamoto
H
. Hesr1 and Hesr3 are essential to generate undifferentiated quiescent satellite cells and to maintain satellite cell numbers. Development
138: 4609‐4619, 2011. |
106. |
Fulco
M
,
Schiltz
RL
,
Iezzi
S
,
King
MT
,
Zhao
P
,
Kashiwaya
Y
,
Hoffman
E
,
Veech
RL
,
Sartorelli
V
. Sir2 regulates skeletal muscle differentiation as a potential sensor of the redox state. Mol Cell
12: 51‐62, 2003. |
107. |
Galli
SJ
,
Borregaard
N
,
Wynn
TA
. Phenotypic and functional plasticity of cells of innate immunity: Macrophages, mast cells and neutrophils. Nat Immunol
12: 1035‐1044, 2011. |
108. |
Germani
A
,
Di Carlo
A
,
Mangoni
A
,
Straino
S
,
Giacinti
C
,
Turrini
P
,
Biglioli
P
,
Capogrossi
MC
. Vascular endothelial growth factor modulates skeletal myoblast function. Am J Pathol
163: 1417‐1428, 2003. |
109. |
Gibson
MC
,
Schultz
E
. Age‐related differences in absolute numbers of skeletal muscle satellite cells. Muscle Nerve
6: 574‐580, 1983. |
110. |
Gilbert
PM
,
Havenstrite
KL
,
Magnusson
KE
,
Sacco
A
,
Leonardi
NA
,
Kraft
P
,
Nguyen
NK
,
Thrun
S
,
Lutolf
MP
,
Blau
HM
. Substrate elasticity regulates skeletal muscle stem cell self‐renewal in culture. Science
329: 1078‐1081, 2010. |
111. |
Gildor
B
,
Schejter
ED
,
Shilo
BZ
. Bidirectional Notch activation represses fusion competence in swarming adult Drosophila myoblasts. Development
139: 4040‐4050, 2012. |
112. |
Gillespie
MA
,
Le Grand
F
,
Scime
A
,
Kuang
S
,
von Maltzahn
J
,
Seale
V
,
Cuenda
A
,
Ranish
JA
,
Rudnicki
MA
. p38‐{gamma}‐dependent gene silencing restricts entry into the myogenic differentiation program. J Cell Biol
187: 991‐1005, 2009. |
113. |
Gnocchi
VF
,
White
RB
,
Ono
Y
,
Ellis
JA
,
Zammit
PS
. Further characterisation of the molecular signature of quiescent and activated mouse muscle satellite cells. PloS One
4: e5205, 2009. |
114. |
Gomez‐Gaviro
MV
,
Lovell‐Badge
R
,
Fernandez‐Aviles
F
,
Lara‐Pezzi
E
. The vascular stem cell niche. J Cardiovasc Transl Res
5: 618‐630, 2012. |
115. |
Gopinath
SD
,
Webb
AE
,
Brunet
A
,
Rando
TA
. FOXO3 promotes quiescence in adult muscle stem cells during the process of self‐renewal. Stem Cell Reports
2: 414‐426, 2014. |
116. |
Gordon
S
. Alternative activation of macrophages. Nat Rev Immunol
3: 23‐35, 2003. |
117. |
Gratchev
A
,
Guillot
P
,
Hakiy
N
,
Politz
O
,
Orfanos
CE
,
Schledzewski
K
,
Goerdt
S
. Alternatively activated macrophages differentially express fibronectin and its splice variants and the extracellular matrix protein betaIG‐H3. Scand J Immunol
53: 386‐392, 2001. |
118. |
Gros
J
,
Serralbo
O
,
Marcelle
C
. WNT11 acts as a directional cue to organize the elongation of early muscle fibres. Nature
457: 589‐593, 2009. |
119. |
Grounds
MD
. Age‐associated changes in the response of skeletal muscle cells to exercise and regeneration. Ann N Y Acad Sci
854: 78‐91, 1998. |
120. |
Grounds
MD
,
Garrett
KL
,
Lai
MC
,
Wright
WE
,
Beilharz
MW
. Identification of skeletal muscle precursor cells in vivo by use of MyoD1 and myogenin probes. Cell Tissue Res
267: 99‐104, 1992. |
121. |
Gundersen
K
,
Bruusgaard
JC
. Nuclear domains during muscle atrophy: Nuclei lost or paradigm lost? J Physiol
586: 2675‐2681, 2008. |
122. |
Gunther
S
,
Kim
J
,
Kostin
S
,
Lepper
C
,
Fan
CM
,
Braun
T
. Myf5‐positive satellite cells contribute to Pax7‐dependent long‐term maintenance of adult muscle stem cells. Cell Stem Cell
13: 590‐601, 2013. |
123. |
Gussoni
E
,
Soneoka
Y
,
Strickland
CD
,
Buzney
EA
,
Khan
MK
,
Flint
AF
,
Kunkel
LM
,
Mulligan
RC
. Dystrophin expression in the mdx mouse restored by stem cell transplantation. Nature
401: 390‐394, 1999. |
124. |
Guttridge
DC
,
Albanese
C
,
Reuther
JY
,
Pestell
RG
,
Baldwin
AS, Jr
. NF‐kappaB controls cell growth and differentiation through transcriptional regulation of cyclin D1. Mol Cell Biol
19: 5785‐5799, 1999. |
125. |
Halevy
O
,
Novitch
BG
,
Spicer
DB
,
Skapek
SX
,
Rhee
J
,
Hannon
GJ
,
Beach
D
,
Lassar
AB
. Correlation of terminal cell cycle arrest of skeletal muscle with induction of p21 by MyoD. Science
267: 1018‐1021, 1995. |
126. |
Han
J
,
Jiang
Y
,
Li
Z
,
Kravchenko
VV
,
Ulevitch
RJ
. Activation of the transcription factor MEF2C by the MAP kinase p38 in inflammation. Nature
386: 296‐299, 1997. |
127. |
Hasty
P
,
Bradley
A
,
Morris
JH
,
Edmondson
DG
,
Venuti
JM
,
Olson
EN
,
Klein
WH
. Muscle deficiency and neonatal death in mice with a targeted mutation in the myogenin gene. Nature
364: 501‐506, 1993. |
128. |
Hawke
TJ
,
Garry
DJ
. Myogenic satellite cells: Physiology to molecular biology. J Appl Physiol (1985)
91: 534‐551, 2001. |
129. |
Heredia
JE
,
Mukundan
L
,
Chen
FM
,
Mueller
AA
,
Deo
RC
,
Locksley
RM
,
Rando
TA
,
Chawla
A
. Type 2 innate signals stimulate fibro/adipogenic progenitors to facilitate muscle regeneration. Cell
153: 376‐388, 2013. |
130. |
Hernandez‐Hernandez
JM
,
Mallappa
C
,
Nasipak
BT
,
Oesterreich
S
,
Imbalzano
AN
. The Scaffold attachment factor b1 (Safb1) regulates myogenic differentiation by facilitating the transition of myogenic gene chromatin from a repressed to an activated state. Nucleic Acids Res
41: 5704‐5716, 2013. |
131. |
Heron
MI
,
Richmond
FJ
. In‐series fiber architecture in long human muscles. J Morphol
216: 35‐45, 1993. |
132. |
Hollenberg
SM
,
Cheng
PF
,
Weintraub
H
. Use of a conditional MyoD transcription factor in studies of MyoD trans‐activation and muscle determination. Proc Natl Acad Sci U S A
90: 8028‐8032, 1993. |
133. |
Horsley
V
,
Jansen
KM
,
Mills
ST
,
Pavlath
GK
. IL‐4 acts as a myoblast recruitment factor during mammalian muscle growth. Cell
113: 483‐494, 2003. |
134. |
Hosoyama
T
,
Nishijo
K
,
Prajapati
SI
,
Li
G
,
Keller
C
. Rb1 gene inactivation expands satellite cell and postnatal myoblast pools. J Biol Chem
286: 19556‐19564, 2011. |
135. |
Huang
YC
,
Dennis
RG
,
Baar
K
. Cultured slow vs. fast skeletal muscle cells differ in physiology and responsiveness to stimulation. Am J Physiol Cell Physiol
291: C11‐C17, 2006. |
136. |
Huard
J
,
Bouchard
JP
,
Roy
R
,
Malouin
F
,
Dansereau
G
,
Labrecque
C
,
Albert
N
,
Richards
CL
,
Lemieux
B
,
Tremblay
JP
. Human myoblast transplantation: Preliminary results of 4 cases. Muscle Nerve
15: 550‐560, 1992. |
137. |
Hutcheson
DA
,
Zhao
J
,
Merrell
A
,
Haldar
M
,
Kardon
G
. Embryonic and fetal limb myogenic cells are derived from developmentally distinct progenitors and have different requirements for beta‐catenin. Genes Dev
23: 997‐1013, 2009. |
138. |
Iezzi
S
,
Cossu
G
,
Nervi
C
,
Sartorelli
V
,
Puri
PL
. Stage‐specific modulation of skeletal myogenesis by inhibitors of nuclear deacetylases. Proc Natl Acad Sci U S A
99: 7757‐7762, 2002. |
139. |
Irintchev
A
,
Zeschnigk
M
,
Starzinski‐Powitz
A
,
Wernig
A
. Expression pattern of M‐cadherin in normal, denervated, and regenerating mouse muscles. Dev Dyn
199: 326‐337, 1994. |
140. |
Ishikawa
H
. The fine structure of myo‐tendon junction in some mammalian skeletal muscles. Arch Histol Jpn
25: 275‐296, 1965. |
141. |
Ito
N
,
Ruegg
UT
,
Kudo
A
,
Miyagoe‐Suzuki
Y
,
Takeda
S
. Activation of calcium signaling through Trpv1 by nNOS and peroxynitrite as a key trigger of skeletal muscle hypertrophy. Nat Med
19: 101‐106, 2013. |
142. |
Jockusch
H
,
Voigt
S
. Migration of adult myogenic precursor cells as revealed by GFP/nLacZ labelling of mouse transplantation chimeras. J Cell Sci
116: 1611‐1616, 2003. |
143. |
Joe
AW
,
Yi
L
,
Natarajan
A
,
Le Grand
F
,
So
L
,
Wang
J
,
Rudnicki
MA
,
Rossi
FM
. Muscle injury activates resident fibro/adipogenic progenitors that facilitate myogenesis. Nat Cell Biol
12: 153‐163, 2010. |
144. |
Jones
NC
,
Tyner
KJ
,
Nibarger
L
,
Stanley
HM
,
Cornelison
DD
,
Fedorov
YV
,
Olwin
BB
. The p38alpha/beta MAPK functions as a molecular switch to activate the quiescent satellite cell. J Cell Biol
169: 105‐116, 2005. |
145. |
Juan
AH
,
Derfoul
A
,
Feng
X
,
Ryall
JG
,
Dell'Orso
S
,
Pasut
A
,
Zare
H
,
Simone
JM
,
Rudnicki
MA
,
Sartorelli
V
. Polycomb EZH2 controls self‐renewal and safeguards the transcriptional identity of skeletal muscle stem cells. Genes Dev
25: 789‐794, 2011. |
146. |
Juan
AH
,
Kumar
RM
,
Marx
JG
,
Young
RA
,
Sartorelli
V
. Mir‐214‐dependent regulation of the polycomb protein Ezh2 in skeletal muscle and embryonic stem cells. Mol Cell
36: 61‐74, 2009. |
147. |
Kaar
JL
,
Li
Y
,
Blair
HC
,
Asche
G
,
Koepsel
RR
,
Huard
J
,
Russell
AJ
. Matrix metalloproteinase‐1 treatment of muscle fibrosis. Acta Biomater
4: 1411‐1420, 2008. |
148. |
Kalhovde
JM
,
Jerkovic
R
,
Sefland
I
,
Cordonnier
C
,
Calabria
E
,
Schiaffino
S
,
Lomo
T
. “Fast” and “slow” muscle fibres in hindlimb muscles of adult rats regenerate from intrinsically different satellite cells. J Physiol
562: 847‐857, 2005. |
149. |
Kanisicak
O
,
Mendez
JJ
,
Yamamoto
S
,
Yamamoto
M
,
Goldhamer
DJ
. Progenitors of skeletal muscle satellite cells express the muscle determination gene, MyoD. Dev Biol
332: 131‐141, 2009. |
150. |
Karalaki
M
,
Fili
S
,
Philippou
A
,
Koutsilieris
M
. Muscle regeneration: Cellular and molecular events. In Vivo
23: 779‐796, 2009. |
151. |
Kassar‐Duchossoy
L
,
Gayraud‐Morel
B
,
Gomes
D
,
Rocancourt
D
,
Buckingham
M
,
Shinin
V
,
Tajbakhsh
S
. Mrf4 determines skeletal muscle identity in Myf5:Myod double‐mutant mice. Nature
431: 466‐471, 2004. |
152. |
Kassar‐Duchossoy
L
,
Giacone
E
,
Gayraud‐Morel
B
,
Jory
A
,
Gomes
D
,
Tajbakhsh
S
. Pax3/Pax7 mark a novel population of primitive myogenic cells during development. Genes Dev
19: 1426‐1431, 2005. |
153. |
Kastner
S
,
Elias
MC
,
Rivera
AJ
,
Yablonka‐Reuveni
Z
. Gene expression patterns of the fibroblast growth factors and their receptors during myogenesis of rat satellite cells. J Histochem Cytochem
48: 1079‐1096, 2000. |
154. |
Kaushal
S
,
Schneider
JW
,
Nadal‐Ginard
B
,
Mahdavi
V
. Activation of the myogenic lineage by MEF2A, a factor that induces and cooperates with MyoD. Science
266: 1236‐1240, 1994. |
155. |
Kawabe
Y
,
Wang
YX
,
McKinnell
IW
,
Bedford
MT
,
Rudnicki
MA
. Carm1 regulates Pax7 transcriptional activity through MLL1/2 recruitment during asymmetric satellite stem cell divisions. Cell Stem Cell
11: 333‐345, 2012. |
156. |
Kherif
S
,
Lafuma
C
,
Dehaupas
M
,
Lachkar
S
,
Fournier
JG
,
Verdiere‐Sahuque
M
,
Fardeau
M
,
Alameddine
HS
. Expression of matrix metalloproteinases 2 and 9 in regenerating skeletal muscle: A study in experimentally injured and mdx muscles. Dev Biol
205: 158‐170, 1999. |
157. |
Kim
S
,
Shilagardi
K
,
Zhang
S
,
Hong
SN
,
Sens
KL
,
Bo
J
,
Gonzalez
GA
,
Chen
EH
. A critical function for the actin cytoskeleton in targeted exocytosis of prefusion vesicles during myoblast fusion. Dev Cell
12: 571‐586, 2007. |
158. |
Komiya
Y
,
Habas
R
. Wnt signal transduction pathways. Organogenesis
4: 68‐75, 2008. |
159. |
Koning
M
,
Werker
PM
,
van der Schaft
DW
,
Bank
RA
,
Harmsen
MC
. MicroRNA‐1 and microRNA‐206 improve differentiation potential of human satellite cells: A novel approach for tissue engineering of skeletal muscle. Tissue Eng Part A
18: 889‐898, 2012. |
160. |
Koning
M
,
Werker
PM
,
van Luyn
MJ
,
Krenning
G
,
Harmsen
MC
. A global downregulation of microRNAs occurs in human quiescent satellite cells during myogenesis. Differentiation
84: 314‐321, 2012. |
161. |
Kottlors
M
,
Kirschner
J
. Elevated satellite cell number in Duchenne muscular dystrophy. Cell Tissue Res
340: 541‐548, 2010. |
162. |
Kuang
S
,
Charge
SB
,
Seale
P
,
Huh
M
,
Rudnicki
MA
. Distinct roles for Pax7 and Pax3 in adult regenerative myogenesis. J Cell Biol
172: 103‐113, 2006. |
163. |
Kuang
S
,
Kuroda
K
,
Le Grand
F
,
Rudnicki
MA
. Asymmetric self‐renewal and commitment of satellite stem cells in muscle. Cell
129: 999‐1010, 2007. |
164. |
Lafreniere
JF
,
Caron
MC
,
Skuk
D
,
Goulet
M
,
Cheikh
AR
,
Tremblay
JP
. Growth factor coinjection improves the migration potential of monkey myogenic precursors without affecting cell transplantation success. Cell Transplant
18: 719‐730, 2009. |
165. |
Lafreniere
JF
,
Mills
P
,
Bouchentouf
M
,
Tremblay
JP
. Interleukin‐4 improves the migration of human myogenic precursor cells in vitro and in vivo. Exp Cell Res
312: 1127‐1141, 2006. |
166. |
Lansdorp
PM
. Immortal strands? Give me a break. Cell
129: 1244‐1247, 2007. |
167. |
Laurie
GW
,
Leblond
CP
,
Martin
GR
. Localization of type IV collagen, laminin, heparan sulfate proteoglycan, and fibronectin to the basal lamina of basement membranes. J Cell Biol
95: 340‐344, 1982. |
168. | Le
Grand
F
,
Grifone
R
,
Mourikis
P
,
Houbron
C
,
Gigaud
C
,
Pujol
J
,
Maillet
M
,
Pages
G
,
Rudnicki
M
,
Tajbakhsh
S
,
Maire
P
. Six1 regulates stem cell repair potential and self‐renewal during skeletal muscle regeneration. J Cell Biol
198: 815‐832, 2012. |
169. |
Le Grand
F
,
Jones
AE
,
Seale
V
,
Scime
A
,
Rudnicki
MA
. Wnt7a activates the planar cell polarity pathway to drive the symmetric expansion of satellite stem cells. Cell Stem Cell
4: 535‐547, 2009. |
170. |
Lee
H
,
Habas
R
,
Abate‐Shen
C
. MSX1 cooperates with histone H1b for inhibition of transcription and myogenesis. Science
304: 1675‐1678, 2004. |
171. |
Lee
TI
,
Jenner
RG
,
Boyer
LA
,
Guenther
MG
,
Levine
SS
,
Kumar
RM
,
Chevalier
B
,
Johnstone
SE
,
Cole
MF
,
Isono
K
,
Koseki
H
,
Fuchikami
T
,
Abe
K
,
Murray
HL
,
Zucker
JP
,
Yuan
B
,
Bell
GW
,
Herbolsheimer
E
,
Hannett
NM
,
Sun
K
,
Odom
DT
,
Otte
AP
,
Volkert
TL
,
Bartel
DP
,
Melton
DA
,
Gifford
DK
,
Jaenisch
R
,
Young
RA
. Control of developmental regulators by Polycomb in human embryonic stem cells. Cell
125: 301‐313, 2006. |
172. |
Lepper
C
,
Partridge
TA
,
Fan
CM
. An absolute requirement for Pax7‐positive satellite cells in acute injury‐induced skeletal muscle regeneration. Development
138: 3639‐3646, 2011. |
173. |
Lesault
PF
,
Theret
M
,
Magnan
M
,
Cuvellier
S
,
Niu
Y
,
Gherardi
RK
,
Tremblay
JP
,
Hittinger
L
,
Chazaud
B
. Macrophages improve survival, proliferation and migration of engrafted myogenic precursor cells into MDX skeletal muscle. PloS One
7: e46698, 2012. |
174. |
Lesley
J
,
Hyman
R
,
Kincade
PW
. CD44 and its interaction with extracellular matrix. Adv Immunol
54: 271‐335, 1993. |
175. |
Lewis
WH
,
Lewis
MR
. Behavior of cross striated muscle in tissue cultures. Am J Anat
22: 169‐194, 1917. |
176. |
Li
YP
. TNF‐alpha is a mitogen in skeletal muscle. Am J Physiol Cell Physiol
285: C370‐C376, 2003. |
177. |
Liadaki
K
,
Casar
JC
,
Wessen
M
,
Luth
ES
,
Jun
S
,
Gussoni
E
,
Kunkel
LM
. beta4 integrin marks interstitial myogenic progenitor cells in adult murine skeletal muscle. J Histochem Cytochem
60: 31‐44, 2012. |
178. |
Liu
JX
,
Hoglund
AS
,
Karlsson
P
,
Lindblad
J
,
Qaisar
R
,
Aare
S
,
Bengtsson
E
,
Larsson
L
. Myonuclear domain size and myosin isoform expression in muscle fibres from mammals representing a 100,000‐fold difference in body size. Exp Physiol
94: 117‐129, 2009. |
179. |
Liu
L
,
Cheung
TH
,
Charville
GW
,
Hurgo
BM
,
Leavitt
T
,
Shih
J
,
Brunet
A
,
Rando
TA
. Chromatin modifications as determinants of muscle stem cell quiescence and chronological aging. Cell Reports
4: 189‐204, 2013. |
180. |
Liu
N
,
Nelson
BR
,
Bezprozvannaya
S
,
Shelton
JM
,
Richardson
JA
,
Bassel‐Duby
R
,
Olson
EN
. Requirement of MEF2A, C, and D for skeletal muscle regeneration. Proc Natl Acad Sci U S A
111: 4109‐4114, 2014. |
181. |
Liu
Y
,
Schneider
MF
. FGF2 activates TRPC and Ca(2+) signaling leading to satellite cell activation. Front Physiol
5: 38, 2014. |
182. |
Lluis
F
,
Ballestar
E
,
Suelves
M
,
Esteller
M
,
Munoz‐Canoves
P
. E47 phosphorylation by p38 MAPK promotes MyoD/E47 association and muscle‐specific gene transcription. EMBO J
24: 974‐984, 2005. |
183. |
Lu
H
,
Huang
D
,
Saederup
N
,
Charo
IF
,
Ransohoff
RM
,
Zhou
L
. Macrophages recruited via CCR2 produce insulin‐like growth factor‐1 to repair acute skeletal muscle injury. FASEB J
25: 358‐369, 2011. |
184. |
Lu
J
,
McKinsey
TA
,
Nicol
RL
,
Olson
EN
. Signal‐dependent activation of the MEF2 transcription factor by dissociation from histone deacetylases. Proc Natl Acad Sci U S A
97: 4070‐4075, 2000. |
185. |
Luo
G
,
Hershko
DD
,
Robb
BW
,
Wray
CJ
,
Hasselgren
PO
. IL‐1beta stimulates IL‐6 production in cultured skeletal muscle cells through activation of MAP kinase signaling pathway and NF‐kappa B. Am J Physiol Regul Integr Comp Physiol
284: R1249‐R1254, 2003. |
186. |
Ma
K
,
Chan
JK
,
Zhu
G
,
Wu
Z
. Myocyte enhancer factor 2 acetylation by p300 enhances its DNA binding activity, transcriptional activity, and myogenic differentiation. Mol Cell Biol
25: 3575‐3582, 2005. |
187. |
Machida
S
,
Spangenburg
EE
,
Booth
FW
. Forkhead transcription factor FoxO1 transduces insulin‐like growth factor's signal to p27Kip1 in primary skeletal muscle satellite cells. J Cell Physiol
196: 523‐531, 2003. |
188. |
MacIntosh
BR
,
Gardiner
PF
,
McComas
AJ
. Skeletal Mmuscle: Form and Function, second edition. Champaign, Ill.; Leeds: Human Kinetics, 2006. |
189. |
Maher
P
. p38 mitogen‐activated protein kinase activation is required for fibroblast growth factor‐2‐stimulated cell proliferation but not differentiation. J Biol Chem
274: 17491‐17498, 1999. |
190. |
Mal
AK
. Histone methyltransferase Suv39h1 represses MyoD‐stimulated myogenic differentiation. EMBO J
25: 3323‐3334, 2006. |
191. |
Manzur
AY
,
Kuntzer
T
,
Pike
M
,
Swan
A
. Glucocorticoid corticosteroids for Duchenne muscular dystrophy. Cochrane Database Syst Rev
1: CD003725, 2008. |
192. |
Mauro
A
. Satellite cell of skeletal muscle fibers. J Biophy Biochem Cytol
9: 493‐495, 1961. |
193. |
McCall
GE
,
Allen
DL
,
Linderman
JK
,
Grindeland
RE
,
Roy
RR
,
Mukku
VR
,
Edgerton
VR
. Maintenance of myonuclear domain size in rat soleus after overload and growth hormone/IGF‐I treatment. J Appl Physiol (1985)
84: 1407‐1412, 1998. |
194. |
McCarthy
JJ
,
Mula
J
,
Miyazaki
M
,
Erfani
R
,
Garrison
K
,
Farooqui
AB
,
Srikuea
R
,
Lawson
BA
,
Grimes
B
,
Keller
C
,
Van Zant
G
,
Campbell
KS
,
Esser
KA
,
Dupont‐Versteegden
EE
,
Peterson
CA
. Effective fiber hypertrophy in satellite cell‐depleted skeletal muscle. Development
138: 3657‐3666, 2011. |
195. |
McKinnell
IW
,
Ishibashi
J
,
Le Grand
F
,
Punch
VG
,
Addicks
GC
,
Greenblatt
JF
,
Dilworth
FJ
,
Rudnicki
MA
. Pax7 activates myogenic genes by recruitment of a histone methyltransferase complex. Nat Cell Biol
10: 77‐84, 2008. |
196. |
McKinsey
TA
,
Zhang
CL
,
Lu
J
,
Olson
EN
. Signal‐dependent nuclear export of a histone deacetylase regulates muscle differentiation. Nature
408: 106‐111, 2000. |
197. |
McKinsey
TA
,
Zhang
CL
,
Olson
EN
. Control of muscle development by dueling HATs and HDACs. Curr Opin Genet Dev
11: 497‐504, 2001. |
198. |
Megeney
LA
,
Kablar
B
,
Garrett
K
,
Anderson
JE
,
Rudnicki
MA
. MyoD is required for myogenic stem cell function in adult skeletal muscle. Genes Dev
10: 1173‐1183, 1996. |
199. |
Meng
J
,
Chun
S
,
Asfahani
R
,
Lochmuller
H
,
Muntoni
F
,
Morgan
J
. Human skeletal muscle‐derived CD133(+) cells form functional satellite cells after intramuscular transplantation in immunodeficient host mice. Mol Ther
22: 1008‐1017, 2014. |
200. |
Millay
DP
,
O'Rourke
JR
,
Sutherland
LB
,
Bezprozvannaya
S
,
Shelton
JM
,
Bassel‐Duby
R
,
Olson
EN
. Myomaker is a membrane activator of myoblast fusion and muscle formation. Nature
499: 301‐305, 2013. |
201. |
Millay
DP
,
Sutherland
LB
,
Bassel‐Duby
R
,
Olson
EN
. Myomaker is essential for muscle regeneration. Genes Dev
28: 1641‐1646, 2014. |
202. |
Mintz
B
,
Baker
WW
. Normal mammalian muscle differentiation and gene control of isocitrate dehydrogenase synthesis. Proc Natl Acad Sci U S A
58: 592, 1967. |
203. |
Mitchell
KJ
,
Pannerec
A
,
Cadot
B
,
Parlakian
A
,
Besson
V
,
Gomes
ER
,
Marazzi
G
,
Sassoon
DA
. Identification and characterization of a non‐satellite cell muscle resident progenitor during postnatal development. Nat Cell Biol
12: 257‐266, 2010. |
204. |
Molkentin
JD
,
Black
BL
,
Martin
JF
,
Olson
EN
. Cooperative activation of muscle gene expression by MEF2 and myogenic bHLH proteins. Cell
83: 1125‐1136, 1995. |
205. |
Montarras
D
,
L'Honore
A
,
Buckingham
M
. Lying low but ready for action: The quiescent muscle satellite cell. FEBS J
280: 4036‐4050, 2013. |
206. |
Montarras
D
,
Morgan
J
,
Collins
C
,
Relaix
F
,
Zaffran
S
,
Cumano
A
,
Partridge
T
,
Buckingham
M
. Direct isolation of satellite cells for skeletal muscle regeneration. Science
309: 2064‐2067, 2005. |
207. |
Morgan
J
,
Rouche
A
,
Bausero
P
,
Houssaini
A
,
Gross
J
,
Fiszman
MY
,
Alameddine
HS
. MMP‐9 overexpression improves myogenic cell migration and engraftment. Muscle Nerve
42: 584‐595, 2010. |
208. |
Mourikis
P
,
Sambasivan
R
,
Castel
D
,
Rocheteau
P
,
Bizzarro
V
,
Tajbakhsh
S
. A critical requirement for notch signaling in maintenance of the quiescent skeletal muscle stem cell state. Stem Cells
30: 243‐252, 2012. |
209. |
Murphy
MM
,
Lawson
JA
,
Mathew
SJ
,
Hutcheson
DA
,
Kardon
G
. Satellite cells, connective tissue fibroblasts and their interactions are crucial for muscle regeneration. Development
138: 3625‐3637, 2011. |
210. |
Musaro
A
,
McCullagh
K
,
Paul
A
,
Houghton
L
,
Dobrowolny
G
,
Molinaro
M
,
Barton
ER
,
Sweeney
HL
,
Rosenthal
N
. Localized Igf‐1 transgene expression sustains hypertrophy and regeneration in senescent skeletal muscle. Nat Genet
27: 195‐200, 2001. |
211. |
Muskiewicz
KR
,
Frank
NY
,
Flint
AF
,
Gussoni
E
. Myogenic potential of muscle side and main population cells after intravenous injection into sub‐lethally irradiated mdx mice. J Histochem Cytochem
53: 861‐873, 2005. |
212. |
Mylona
E
,
Jones
KA
,
Mills
ST
,
Pavlath
GK
. CD44 regulates myoblast migration and differentiation. J Cell Physiol
209: 314‐321, 2006. |
213. |
Nagata
Y
,
Kobayashi
H
,
Umeda
M
,
Ohta
N
,
Kawashima
S
,
Zammit
PS
,
Matsuda
R
. Sphingomyelin levels in the plasma membrane correlate with the activation state of muscle satellite cells. J Histochem Cytochem
54: 375‐384, 2006. |
214. |
Nagata
Y
,
Partridge
TA
,
Matsuda
R
,
Zammit
PS
. Entry of muscle satellite cells into the cell cycle requires sphingolipid signaling. J Cell Biol
174: 245‐253, 2006. |
215. |
Neuhaus
P
,
Oustanina
S
,
Loch
T
,
Kruger
M
,
Bober
E
,
Dono
R
,
Zeller
R
,
Braun
T
. Reduced mobility of fibroblast growth factor (FGF)‐deficient myoblasts might contribute to dystrophic changes in the musculature of FGF2/FGF6/mdx triple‐mutant mice. Mol Cell Biol
23: 6037‐6048, 2003. |
216. |
Ng
RK
,
Gurdon
JB
. Epigenetic memory of an active gene state depends on histone H3.3 incorporation into chromatin in the absence of transcription. Nat Cell Biol
10: 102‐109, 2008. |
217. |
Nishimura
T
,
Nakamura
K
,
Kishioka
Y
,
Kato‐Mori
Y
,
Wakamatsu
J
,
Hattori
A
. Inhibition of matrix metalloproteinases suppresses the migration of skeletal muscle cells. J Muscle Res Cell Motil
29: 37‐44, 2008. |
218. |
Olguin
HC
,
Yang
Z
,
Tapscott
SJ
,
Olwin
BB
. Reciprocal inhibition between Pax7 and muscle regulatory factors modulates myogenic cell fate determination. J Cell Biol
177: 769‐779, 2007. |
219. |
Ono
Y
,
Masuda
S
,
Nam
HS
,
Benezra
R
,
Miyagoe‐Suzuki
Y
,
Takeda
S
. Slow‐dividing satellite cells retain long‐term self‐renewal ability in adult muscle. J Cell Sci
125: 1309‐1317, 2012. |
220. |
Otis
JS
,
Niccoli
S
,
Hawdon
N
,
Sarvas
JL
,
Frye
MA
,
Chicco
AJ
,
Lees
SJ
. Pro‐inflammatory mediation of myoblast proliferation. PloS One
9: e92363, 2014. |
221. |
Oustanina
S
,
Hause
G
,
Braun
T
. Pax7 directs postnatal renewal and propagation of myogenic satellite cells but not their specification. EMBO J
23: 3430‐3439, 2004. |
222. |
Palacios
D
,
Mozzetta
C
,
Consalvi
S
,
Caretti
G
,
Saccone
V
,
Proserpio
V
,
Marquez
VE
,
Valente
S
,
Mai
A
,
Forcales
SV
,
Sartorelli
V
,
Puri
PL
. TNF/p38alpha/polycomb signaling to Pax7 locus in satellite cells links inflammation to the epigenetic control of muscle regeneration. Cell Stem Cell
7: 455‐469, 2010. |
223. |
Pallafacchina
G
,
Francois
S
,
Regnault
B
,
Czarny
B
,
Dive
V
,
Cumano
A
,
Montarras
D
,
Buckingham
M
. An adult tissue‐specific stem cell in its niche: A gene profiling analysis of in vivo quiescent and activated muscle satellite cells. Stem Cell Res
4: 77‐91, 2010. |
224. |
Pannerec
A
,
Marazzi
G
,
Sassoon
D
. Stem cells in the hood: The skeletal muscle niche. Trends Mol Med
18: 599‐606, 2012. |
225. |
Park
IH
,
Chen
J
. Mammalian target of rapamycin (mTOR) signaling is required for a late‐stage fusion process during skeletal myotube maturation. J Biol Chem
280: 32009‐32017, 2005. |
226. |
Park
IH
,
Erbay
E
,
Nuzzi
P
,
Chen
J
. Skeletal myocyte hypertrophy requires mTOR kinase activity and S6K1. Exp Cell Res
309: 211‐219, 2005. |
227. |
Parsons
SA
,
Millay
DP
,
Wilkins
BJ
,
Bueno
OF
,
Tsika
GL
,
Neilson
JR
,
Liberatore
CM
,
Yutzey
KE
,
Crabtree
GR
,
Tsika
RW
,
Molkentin
JD
. Genetic loss of calcineurin blocks mechanical overload‐induced skeletal muscle fiber type switching but not hypertrophy. J Biol Chem
279: 26192‐26200, 2004. |
228. |
Partridge
TA
,
Morgan
JE
,
Coulton
GR
,
Hoffman
EP
,
Kunkel
LM
. Conversion of mdx myofibres from dystrophin‐negative to ‐positive by injection of normal myoblasts. Nature
337: 176‐179, 1989. |
229. |
Pasut
A
,
Oleynik
P
,
Rudnicki
MA
. Isolation of muscle stem cells by fluorescence activated cell sorting cytometry. Methods Mol Biol
798: 53‐64, 2012. |
230. |
Perdiguero
E
,
Ruiz‐Bonilla
V
,
Serrano
AL
,
Munoz‐Canoves
P
. Genetic deficiency of p38alpha reveals its critical role in myoblast cell cycle exit: The p38alpha‐JNK connection. Cell Cycle
6: 1298‐1303, 2007. |
231. |
Perrone
CE
,
Fenwick‐Smith
D
,
Vandenburgh
HH
. Collagen and stretch modulate autocrine secretion of insulin‐like growth factor‐1 and insulin‐like growth factor binding proteins from differentiated skeletal muscle cells. J Biol Chem
270: 2099‐2106, 1995. |
232. |
Pietsch
P
. Differentiation in regeneration. I. The development of muscle and cartilage following deplantation of of regenerating limb blastemata of Amblystoma larvae. Dev Biol
3: 255‐264, 1961. |
233. |
Pisconti
A
,
Cornelison
DD
,
Olguin
HC
,
Antwine
TL
,
Olwin
BB
. Syndecan‐3 and Notch cooperate in regulating adult myogenesis. J Cell Biol
190: 427‐441, 2010. |
234. |
Pizza
FX
,
McLoughlin
TJ
,
McGregor
SJ
,
Calomeni
EP
,
Gunning
WT
. Neutrophils injure cultured skeletal myotubes. Am J Physiol Cell Physiol
281: C335‐C341, 2001. |
235. |
Pizza
FX
,
Peterson
JM
,
Baas
JH
,
Koh
TJ
. Neutrophils contribute to muscle injury and impair its resolution after lengthening contractions in mice. J Physiol
562: 899‐913, 2005. |
236. |
Prelovsek
O
,
Mars
T
,
Jevsek
M
,
Podbregar
M
,
Grubic
Z
. High dexamethasone concentration prevents stimulatory effects of TNF‐alpha and LPS on IL‐6 secretion from the precursors of human muscle regeneration. Am J Physiol Regul Integr Comp Physiol
291: R1651‐R1656, 2006. |
237. |
Price
FD
,
von Maltzahn
J
,
Bentzinger
CF
,
Dumont
NA
,
Yin
H
,
Chang
NC
,
Wilson
DH
,
Frenette
J
,
Rudnicki
MA
. Inhibition of JAK‐STAT signaling stimulates adult satellite cell function. Nat Med
20: 1174‐1181, 2014. |
238. |
Proctor
DN
,
O'Brien
PC
,
Atkinson
EJ
,
Nair
KS
. Comparison of techniques to estimate total body skeletal muscle mass in people of different age groups. Am J Physiol
277: E489‐E495, 1999. |
239. |
Punch
VG
,
Jones
AE
,
Rudnicki
MA
. Transcriptional networks that regulate muscle stem cell function. Wiley Interdiscip Rev Syst Biol Med
1: 128‐140, 2009. |
240. |
Puri
PL
,
Iezzi
S
,
Stiegler
P
,
Chen
TT
,
Schiltz
RL
,
Muscat
GE
,
Giordano
A
,
Kedes
L
,
Wang
JY
,
Sartorelli
V
. Class I histone deacetylases sequentially interact with MyoD and pRb during skeletal myogenesis. Mol Cell
8: 885‐897, 2001. |
241. |
Rampalli
S
,
Li
L
,
Mak
E
,
Ge
K
,
Brand
M
,
Tapscott
SJ
,
Dilworth
FJ
. p38 MAPK signaling regulates recruitment of Ash2L‐containing methyltransferase complexes to specific genes during differentiation. Nat Struct Mol Biol
14: 1150‐1156, 2007. |
242. |
Rawls
A
,
Valdez
MR
,
Zhang
W
,
Richardson
J
,
Klein
WH
,
Olson
EN
. Overlapping functions of the myogenic bHLH genes MRF4 and MyoD revealed in double mutant mice. Development
125: 2349‐2358, 1998. |
243. |
Reimann
J
,
Irintchev
A
,
Wernig
A
. Regenerative capacity and the number of satellite cells in soleus muscles of normal and mdx mice. Neuromuscul Disord
10: 276‐282, 2000. |
244. |
Relaix
F
,
Montarras
D
,
Zaffran
S
,
Gayraud‐Morel
B
,
Rocancourt
D
,
Tajbakhsh
S
,
Mansouri
A
,
Cumano
A
,
Buckingham
M
. Pax3 and Pax7 have distinct and overlapping functions in adult muscle progenitor cells. J Cell Biol
172: 91‐102, 2006. |
245. |
Relaix
F
,
Rocancourt
D
,
Mansouri
A
,
Buckingham
M
. Divergent functions of murine Pax3 and Pax7 in limb muscle development. Genes Dev
18: 1088‐1105, 2004. |
246. |
Relaix
F
,
Rocancourt
D
,
Mansouri
A
,
Buckingham
M
. A Pax3/Pax7‐dependent population of skeletal muscle progenitor cells. Nature
435: 948‐953, 2005. |
247. |
Rocheteau
P
,
Gayraud‐Morel
B
,
Siegl‐Cachedenier
I
,
Blasco
MA
,
Tajbakhsh
S
. A subpopulation of adult skeletal muscle stem cells retains all template DNA strands after cell division. Cell
148: 112‐125, 2012. |
248. |
Rochlin
K
,
Yu
S
,
Roy
S
,
Baylies
MK
. Myoblast fusion: When it takes more to make one. Dev Biol
341: 66‐83, 2010. |
249. |
Rommel
C
,
Bodine
SC
,
Clarke
BA
,
Rossman
R
,
Nunez
L
,
Stitt
TN
,
Yancopoulos
GD
,
Glass
DJ
. Mediation of IGF‐1‐induced skeletal myotube hypertrophy by PI(3)K/Akt/mTOR and PI(3)K/Akt/GSK3 pathways. Nat Cell Biol
3: 1009‐1013, 2001. |
250. |
Rosenblatt
JD
,
Parry
DJ
,
Partridge
TA
. Phenotype of adult mouse muscle myoblasts reflects their fiber type of origin. Differentiation
60: 39‐45, 1996. |
251. |
Rudnicki
MA
,
Braun
T
,
Hinuma
S
,
Jaenisch
R
. Inactivation of MyoD in mice leads to up‐regulation of the myogenic HLH gene Myf‐5 and results in apparently normal muscle development. Cell
71: 383‐390, 1992. |
252. |
Rudnicki
MA
,
Schnegelsberg
PN
,
Stead
RH
,
Braun
T
,
Arnold
HH
,
Jaenisch
R
. MyoD or Myf‐5 is required for the formation of skeletal muscle. Cell
75: 1351‐1359, 1993. |
253. |
Ruffell
D
,
Mourkioti
F
,
Gambardella
A
,
Kirstetter
P
,
Lopez
RG
,
Rosenthal
N
,
Nerlov
C
. A CREB‐C/EBPbeta cascade induces M2 macrophage‐specific gene expression and promotes muscle injury repair. Proc Natl Acad Sci U S A
106: 17475‐17480, 2009. |
254. |
Sabourin
LA
,
Girgis‐Gabardo
A
,
Seale
P
,
Asakura
A
,
Rudnicki
MA
. Reduced differentiation potential of primary MyoD‐/‐ myogenic cells derived from adult skeletal muscle. J Cell Biol
144: 631‐643, 1999. |
255. |
Sacco
A
,
Doyonnas
R
,
Kraft
P
,
Vitorovic
S
,
Blau
HM
. Self‐renewal and expansion of single transplanted muscle stem cells. Nature
456: 502‐506, 2008. |
256. |
Sacco
A
,
Mourkioti
F
,
Tran
R
,
Choi
J
,
Llewellyn
M
,
Kraft
P
,
Shkreli
M
,
Delp
S
,
Pomerantz
JH
,
Artandi
SE
,
Blau
HM
. Short telomeres and stem cell exhaustion model Duchenne muscular dystrophy in mdx/mTR mice. Cell
143: 1059‐1071, 2010. |
257. |
Saclier
M
,
Yacoub‐Youssef
H
,
Mackey
AL
,
Arnold
L
,
Ardjoune
H
,
Magnan
M
,
Sailhan
F
,
Chelly
J
,
Pavlath
GK
,
Mounier
R
,
Kjaer
M
,
Chazaud
B
. Differentially activated macrophages orchestrate myogenic precursor cell fate during human skeletal muscle regeneration. Stem Cells
31: 384‐396, 2013. |
258. |
Sadeh
M
. Effects of aging on skeletal muscle regeneration. J Neurol Sci
87: 67‐74, 1988. |
259. |
Sambasivan
R
,
Yao
R
,
Kissenpfennig
A
,
Van Wittenberghe
L
,
Paldi
A
,
Gayraud‐Morel
B
,
Guenou
H
,
Malissen
B
,
Tajbakhsh
S
,
Galy
A
. Pax7‐expressing satellite cells are indispensable for adult skeletal muscle regeneration. Development
138: 3647‐3656, 2011. |
260. |
Sampaolesi
M
,
Torrente
Y
,
Innocenzi
A
,
Tonlorenzi
R
,
D'Antona
G
,
Pellegrino
MA
,
Barresi
R
,
Bresolin
N
,
De Angelis
MG
,
Campbell
KP
,
Bottinelli
R
,
Cossu
G
. Cell therapy of alpha‐sarcoglycan null dystrophic mice through intra‐arterial delivery of mesoangioblasts. Science
301: 487‐492, 2003. |
261. |
Sandri
M
,
Sandri
C
,
Gilbert
A
,
Skurk
C
,
Calabria
E
,
Picard
A
,
Walsh
K
,
Schiaffino
S
,
Lecker
SH
,
Goldberg
AL
. Foxo transcription factors induce the atrophy‐related ubiquitin ligase atrogin‐1 and cause skeletal muscle atrophy. Cell
117: 399‐412, 2004. |
262. |
Sanes
JR
. The basement membrane/basal lamina of skeletal muscle. J Biol Chem
278: 12601‐12604, 2003. |
263. |
Sartorelli
V
,
Puri
PL
,
Hamamori
Y
,
Ogryzko
V
,
Chung
G
,
Nakatani
Y
,
Wang
JY
,
Kedes
L
. Acetylation of MyoD directed by PCAF is necessary for the execution of the muscle program. Mol Cell
4: 725‐734, 1999. |
264. |
Scharner
J
,
Zammit
PS
. The muscle satellite cell at 50: The formative years. Skelet Muscle
1: 28, 2011. |
265. |
Schnoor
M
,
Cullen
P
,
Lorkowski
J
,
Stolle
K
,
Robenek
H
,
Troyer
D
,
Rauterberg
J
,
Lorkowski
S
. Production of type VI collagen by human macrophages: A new dimension in macrophage functional heterogeneity. J Immunol
180: 5707‐5719, 2008. |
266. |
Schultz
E
. Satellite cell proliferative compartments in growing skeletal muscles. Dev Biol
175: 84‐94, 1996. |
267. |
Schultz
E
,
Jaryszak
DL
,
Valliere
CR
. Response of satellite cells to focal skeletal muscle injury. Muscle Nerve
8: 217‐222, 1985. |
268. |
Schwander
M
,
Leu
M
,
Stumm
M
,
Dorchies
OM
,
Ruegg
UT
,
Schittny
J
,
Muller
U
. Beta1 integrins regulate myoblast fusion and sarcomere assembly. Dev Cell
4: 673‐685, 2003. |
269. |
Seale
P
,
Sabourin
LA
,
Girgis‐Gabardo
A
,
Mansouri
A
,
Gruss
P
,
Rudnicki
MA
. Pax7 is required for the specification of myogenic satellite cells. Cell
102: 777‐786, 2000. |
270. |
Seenundun
S
,
Rampalli
S
,
Liu
QC
,
Aziz
A
,
Palii
C
,
Hong
S
,
Blais
A
,
Brand
M
,
Ge
K
,
Dilworth
FJ
. UTX mediates demethylation of H3K27me3 at muscle‐specific genes during myogenesis. EMBO J
29: 1401‐1411, 2010. |
271. |
Serra
C
,
Palacios
D
,
Mozzetta
C
,
Forcales
SV
,
Morantte
I
,
Ripani
M
,
Jones
DR
,
Du
K
,
Jhala
US
,
Simone
C
,
Puri
PL
. Functional interdependence at the chromatin level between the MKK6/p38 and IGF1/PI3K/AKT pathways during muscle differentiation. Mol Cell
28: 200‐213, 2007. |
272. |
Serrano
AL
,
Baeza‐Raja
B
,
Perdiguero
E
,
Jardi
M
,
Munoz‐Canoves
P
. Interleukin‐6 is an essential regulator of satellite cell‐mediated skeletal muscle hypertrophy. Cell Metab
7: 33‐44, 2008. |
273. |
Serrano
AL
,
Mann
CJ
,
Vidal
B
,
Ardite
E
,
Perdiguero
E
,
Munoz‐Canoves
P
. Cellular and molecular mechanisms regulating fibrosis in skeletal muscle repair and disease. Curr Top Dev Biol
96: 167‐201, 2011. |
274. |
Shea
KL
,
Xiang
W
,
LaPorta
VS
,
Licht
JD
,
Keller
C
,
Basson
MA
,
Brack
AS
. Sprouty1 regulates reversible quiescence of a self‐renewing adult muscle stem cell pool during regeneration. Cell Stem Cell
6: 117‐129, 2010. |
275. |
Shefer
G
,
Van de Mark
DP
,
Richardson
JB
,
Yablonka‐Reuveni
Z
. Satellite‐cell pool size does matter: Defining the myogenic potency of aging skeletal muscle. Dev Biol
294: 50‐66, 2006. |
276. |
Shi
X
,
Garry
DJ
. Muscle stem cells in development, regeneration, and disease. Genes Dev
20: 1692‐1708, 2006. |
277. |
Shinin
V
,
Gayraud‐Morel
B
,
Gomes
D
,
Tajbakhsh
S
. Asymmetric division and cosegregation of template DNA strands in adult muscle satellite cells. Nat Cell Biol
8: 677‐687, 2006. |
278. |
Siegel
AL
,
Atchison
K
,
Fisher
KE
,
Davis
GE
,
Cornelison
DD
. 3D timelapse analysis of muscle satellite cell motility. Stem Cells
27: 2527‐2538, 2009. |
279. |
Simone
C
,
Forcales
SV
,
Hill
DA
,
Imbalzano
AN
,
Latella
L
,
Puri
PL
. p38 pathway targets SWI‐SNF chromatin‐remodeling complex to muscle‐specific loci. Nat Genet
36: 738‐743, 2004. |
280. |
Skuk
D
,
Goulet
M
,
Roy
B
,
Tremblay
JP
. Efficacy of myoblast transplantation in nonhuman primates following simple intramuscular cell injections: Toward defining strategies applicable to humans. Exp Neurol
175: 112‐126, 2002. |
281. |
Soehnlein
O
,
Lindbom
L
. Phagocyte partnership during the onset and resolution of inflammation. Nat Rev Immunol
10: 427‐439, 2010. |
282. |
Sohn
RL
,
Huang
P
,
Kawahara
G
,
Mitchell
M
,
Guyon
J
,
Kalluri
R
,
Kunkel
LM
,
Gussoni
E
. A role for nephrin, a renal protein, in vertebrate skeletal muscle cell fusion. Proc Natl Acad Sci U S A
106: 9274‐9279, 2009. |
283. |
Soleimani
VD
,
Punch
VG
,
Kawabe
Y
,
Jones
AE
,
Palidwor
GA
,
Porter
CJ
,
Cross
JW
,
Carvajal
JJ
,
Kockx
CE
,
van
IWF
,
Perkins
TJ
,
Rigby
PW
,
Grosveld
F
,
Rudnicki
MA
. Transcriptional dominance of Pax7 in adult myogenesis is due to high‐affinity recognition of homeodomain motifs. Dev Cell
22: 1208‐1220, 2012. |
284. |
Sonnet
C
,
Lafuste
P
,
Arnold
L
,
Brigitte
M
,
Poron
F
,
Authier
FJ
,
Chretien
F
,
Gherardi
RK
,
Chazaud
B
. Human macrophages rescue myoblasts and myotubes from apoptosis through a set of adhesion molecular systems. J Cell Sci
119: 2497‐2507, 2006. |
285. |
Sousa‐Victor
P
,
Gutarra
S
,
Garcia‐Prat
L
,
Rodriguez‐Ubreva
J
,
Ortet
L
,
Ruiz‐Bonilla
V
,
Jardi
M
,
Ballestar
E
,
Gonzalez
S
,
Serrano
AL
,
Perdiguero
E
,
Munoz‐Canoves
P
. Geriatric muscle stem cells switch reversible quiescence into senescence. Nature
506: 316‐321, 2014. |
286. |
Stark
DA
,
Karvas
RM
,
Siegel
AL
,
Cornelison
DD
. Eph/ephrin interactions modulate muscle satellite cell motility and patterning. Development
138: 5279‐5289, 2011. |
287. |
Stradal
TE
,
Rottner
K
,
Disanza
A
,
Confalonieri
S
,
Innocenti
M
,
Scita
G
. Regulation of actin dynamics by WASP and WAVE family proteins. Trends Cell Biol
14: 303‐311, 2004. |
288. |
Strunkelnberg
M
,
Bonengel
B
,
Moda
LM
,
Hertenstein
A
,
de Couet
HG
,
Ramos
RG
,
Fischbach
KF
. rst and its paralogue kirre act redundantly during embryonic muscle development in Drosophila. Development
128: 4229‐4239, 2001. |
289. |
Sun
L
,
Ma
K
,
Wang
H
,
Xiao
F
,
Gao
Y
,
Zhang
W
,
Wang
K
,
Gao
X
,
Ip
N
,
Wu
Z
. JAK1‐STAT1‐STAT3, a key pathway promoting proliferation and preventing premature differentiation of myoblasts. J Cell Biol
179: 129‐138, 2007. |
290. |
Tajbakhsh
S
. Skeletal muscle stem cells in developmental versus regenerative myogenesis. J Intern Med
266: 372‐389, 2009. |
291. |
Tanaka
KK
,
Hall
JK
,
Troy
AA
,
Cornelison
DD
,
Majka
SM
,
Olwin
BB
. Syndecan‐4‐expressing muscle progenitor cells in the SP engraft as satellite cells during muscle regeneration. Cell Stem Cell
4: 217‐225, 2009. |
292. |
Tang
F
,
Barbacioru
C
,
Nordman
E
,
Li
B
,
Xu
N
,
Bashkirov
VI
,
Lao
K
,
Surani
MA
. RNA‐Seq analysis to capture the transcriptome landscape of a single cell. Nat Protoc
5: 516‐535, 2010. |
293. |
Taniguti
AP
,
Pertille
A
,
Matsumura
CY
,
Santo Neto
H
,
Marques
MJ
. Prevention of muscle fibrosis and myonecrosis in mdx mice by suramin, a TGF‐beta1 blocker. Muscle Nerve
43: 82‐87, 2011. |
294. |
Tatsumi
R
. Mechano‐biology of skeletal muscle hypertrophy and regeneration: Possible mechanism of stretch‐induced activation of resident myogenic stem cells. Anim Sci J
81: 11‐20, 2010. |
295. |
Tatsumi
R
,
Anderson
JE
,
Nevoret
CJ
,
Halevy
O
,
Allen
RE
. HGF/SF is present in normal adult skeletal muscle and is capable of activating satellite cells. Dev Biol
194: 114‐128, 1998. |
296. |
Taylor
SM
,
Jones
PA
. Multiple new phenotypes induced in 10T1/2 and 3T3 cells treated with 5‐azacytidine. Cell
17: 771‐779, 1979. |
297. |
Tedesco
FS
,
Dellavalle
A
,
Diaz‐Manera
J
,
Messina
G
,
Cossu
G
. Repairing skeletal muscle: Regenerative potential of skeletal muscle stem cells. J Clin Invest
120: 11‐19, 2010. |
298. |
Tidball
JG
,
Villalta
SA
. Regulatory interactions between muscle and the immune system during muscle regeneration. Am J Physiol Regul Integr Comp Physiol
298: R1173‐R1187, 2010. |
299. |
Tierney
MT
,
Aydogdu
T
,
Sala
D
,
Malecova
B
,
Gatto
S
,
Puri
PL
,
Latella
L
,
Sacco
A
. STAT3 signaling controls satellite cell expansion and skeletal muscle repair. Nat Med
20: 1182‐1186, 2014. |
300. |
Torrente
Y
,
Belicchi
M
,
Sampaolesi
M
,
Pisati
F
,
Meregalli
M
,
D'Antona
G
,
Tonlorenzi
R
,
Porretti
L
,
Gavina
M
,
Mamchaoui
K
,
Pellegrino
MA
,
Furling
D
,
Mouly
V
,
Butler‐Browne
GS
,
Bottinelli
R
,
Cossu
G
,
Bresolin
N
. Human circulating AC133(+) stem cells restore dystrophin expression and ameliorate function in dystrophic skeletal muscle. J Clin Invest
114: 182‐195, 2004. |
301. |
Tremblay
P
,
Dietrich
S
,
Mericskay
M
,
Schubert
FR
,
Li
Z
,
Paulin
D
. A crucial role for Pax3 in the development of the hypaxial musculature and the long‐range migration of muscle precursors. Dev Biol
203: 49‐61, 1998. |
302. |
Troy
A
,
Cadwallader
AB
,
Fedorov
Y
,
Tyner
K
,
Tanaka
KK
,
Olwin
BB
. Coordination of satellite cell activation and self‐renewal by Par‐complex‐dependent asymmetric activation of p38alpha/beta MAPK. Cell Stem Cell
11: 541‐553, 2012. |
303. |
Uezumi
A
,
Fukada
S
,
Yamamoto
N
,
Takeda
S
,
Tsuchida
K
. Mesenchymal progenitors distinct from satellite cells contribute to ectopic fat cell formation in skeletal muscle. Nat Cell Biol
12: 143‐152, 2010. |
304. |
Urciuolo
A
,
Quarta
M
,
Morbidoni
V
,
Gattazzo
F
,
Molon
S
,
Grumati
P
,
Montemurro
F
,
Tedesco
FS
,
Blaauw
B
,
Cossu
G
,
Vozzi
G
,
Rando
TA
,
Bonaldo
P
. Collagen VI regulates satellite cell self‐renewal and muscle regeneration. Nat Commun
4: 1964, 2013. |
305. |
van der Vlag
J
,
Otte
AP
. Transcriptional repression mediated by the human polycomb‐group protein EED involves histone deacetylation. Nat Genet
23: 474‐478, 1999. |
306. |
Verrier
L
,
Escaffit
F
,
Chailleux
C
,
Trouche
D
,
Vandromme
M
. A new isoform of the histone demethylase JMJD2A/KDM4A is required for skeletal muscle differentiation. PLoS Genet
7: e1001390, 2011. |
307. |
Villalta
SA
,
Nguyen
HX
,
Deng
B
,
Gotoh
T
,
Tidball
JG
. Shifts in macrophage phenotypes and macrophage competition for arginine metabolism affect the severity of muscle pathology in muscular dystrophy. Hum Mol Genet
18: 482‐496, 2009. |
308. |
von Maltzahn
J
,
Bentzinger
CF
,
Rudnicki
MA
. Wnt7a‐Fzd7 signalling directly activates the Akt/mTOR anabolic growth pathway in skeletal muscle. Nat Cell Biol
14: 186‐191, 2012. |
309. |
von Maltzahn
J
,
Jones
AE
,
Parks
RJ
,
Rudnicki
MA
. Pax7 is critical for the normal function of satellite cells in adult skeletal muscle. Proc Natl Acad Sci U S A
110: 16474‐16479, 2013. |
310. |
von Maltzahn
J
,
Renaud
JM
,
Parise
G
,
Rudnicki
MA
. Wnt7a treatment ameliorates muscular dystrophy. Proc Natl Acad Sci U S A
109: 20614‐20619, 2012. |
311. |
von Maltzahn
J
,
Zinoviev
R
,
Chang
NC
,
Bentzinger
CF
,
Rudnicki
MA
. A truncated Wnt7a retains full biological activity in skeletal muscle. Nat Commun
4: 2869, 2013. |
312. |
Wang
X
,
Wu
H
,
Zhang
Z
,
Liu
S
,
Yang
J
,
Chen
X
,
Fan
M
,
Wang
X
. Effects of interleukin‐6, leukemia inhibitory factor, and ciliary neurotrophic factor on the proliferation and differentiation of adult human myoblasts. Cell Mol Neurobiol
28: 113‐124, 2008. |
313. |
Watt
DJ
,
Morgan
JE
,
Clifford
MA
,
Partridge
TA
. The movement of muscle precursor cells between adjacent regenerating muscles in the mouse. Anat Embryol (Berl)
175: 527‐536, 1987. |
314. |
Webster
C
,
Blau
HM
. Accelerated age‐related decline in replicative life‐span of Duchenne muscular dystrophy myoblasts: Implications for cell and gene therapy. Somat Cell Mol Genet
16: 557‐565, 1990. |
315. |
Wei
L
,
Zhou
W
,
Croissant
JD
,
Johansen
FE
,
Prywes
R
,
Balasubramanyam
A
,
Schwartz
RJ
. RhoA signaling via serum response factor plays an obligatory role in myogenic differentiation. J Biol Chem
273: 30287‐30294, 1998. |
316. |
Weintraub
H
,
Davis
R
,
Tapscott
S
,
Thayer
M
,
Krause
M
,
Benezra
R
,
Blackwell
TK
,
Turner
D
,
Rupp
R
,
Hollenberg
S
, et al. The myoD gene family: Nodal point during specification of the muscle cell lineage. Science
251: 761‐766, 1991. |
317. |
Weintraub
H
,
Tapscott
SJ
,
Davis
RL
,
Thayer
MJ
,
Adam
MA
,
Lassar
AB
,
Miller
AD
. Activation of muscle‐specific genes in pigment, nerve, fat, liver, and fibroblast cell lines by forced expression of MyoD. Proc Natl Acad Sci U S A
86: 5434‐5438, 1989. |
318. |
Weir
AP
,
Morgan
JE
,
Davies
KE
. A‐utrophin up‐regulation in mdx skeletal muscle is independent of regeneration. Neuromuscul Disord
14: 19‐23, 2004. |
319. |
Wen
Y
,
Bi
P
,
Liu
W
,
Asakura
A
,
Keller
C
,
Kuang
S
. Constitutive Notch activation upregulates Pax7 and promotes the self‐renewal of skeletal muscle satellite cells. Mol Cell Biol
32: 2300‐2311, 2012. |
320. |
Wong
CF
,
Tellam
RL
. MicroRNA‐26a targets the histone methyltransferase Enhancer of Zeste homolog 2 during myogenesis. J Biol Chem
283: 9836‐9843, 2008. |
321. |
Wu
Z
,
Woodring
PJ
,
Bhakta
KS
,
Tamura
K
,
Wen
F
,
Feramisco
JR
,
Karin
M
,
Wang
JY
,
Puri
PL
. p38 and extracellular signal‐regulated kinases regulate the myogenic program at multiple steps. Mol Cell Biol
20: 3951‐3964, 2000. |
322. |
Xu
Q
,
Yu
L
,
Liu
L
,
Cheung
CF
,
Li
X
,
Yee
SP
,
Yang
XJ
,
Wu
Z
. p38 Mitogen‐activated protein kinase‐, calcium‐calmodulin‐dependent protein kinase‐, and calcineurin‐mediated signaling pathways transcriptionally regulate myogenin expression. Mol Biol Cell
13: 1940‐1952, 2002. |
323. |
Yablonka‐Reuveni
Z
,
Rivera
AJ
. Influence of PDGF‐BB on proliferation and transition through the MyoD‐myogenin‐MEF2A expression program during myogenesis in mouse C2 myoblasts. Growth Factors
15: 1‐27, 1997. |
324. |
Yamada
M
,
Tatsumi
R
,
Yamanouchi
K
,
Hosoyama
T
,
Shiratsuchi
S
,
Sato
A
,
Mizunoya
W
,
Ikeuchi
Y
,
Furuse
M
,
Allen
RE
. High concentrations of HGF inhibit skeletal muscle satellite cell proliferation in vitro by inducing expression of myostatin: A possible mechanism for reestablishing satellite cell quiescence in vivo. Am J Physiol Cell Physiol
298: C465‐C476, 2010. |
325. |
Yamaguchi
M
,
Ogawa
R
,
Watanabe
Y
,
Uezumi
A
,
Miyagoe‐Suzuki
Y
,
Tsujikawa
K
,
Yamamoto
H
,
Takeda
S
,
Fukada
S
. Calcitonin receptor and Odz4 are differently expressed in Pax7‐positive cells during skeletal muscle regeneration. J Mol Histol
43: 581‐587, 2012. |
326. |
Yennek
S
,
Burute
M
,
Thery
M
,
Tajbakhsh
S
. Cell adhesion geometry regulates non‐random DNA segregation and asymmetric cell fates in mouse skeletal muscle stem cells. Cell Reports
7: 961‐970, 2014. |
327. |
Yin
H
,
Price
F
,
Rudnicki
MA
. Satellite cells and the muscle stem cell niche. Physiol Rev
93: 23‐67, 2013. |
328. |
Yoshida
N
,
Yoshida
S
,
Koishi
K
,
Masuda
K
,
Nabeshima
Y
. Cell heterogeneity upon myogenic differentiation: Down‐regulation of MyoD and Myf‐5 generates ‘reserve cells’. J Cell Sci
111(Pt 6): 769‐779, 1998. |
329. |
Zammit
PS
,
Golding
JP
,
Nagata
Y
,
Hudon
V
,
Partridge
TA
,
Beauchamp
JR
. Muscle satellite cells adopt divergent fates: A mechanism for self‐renewal? J Cell Biol
166: 347‐357, 2004. |
330. |
Zhang
CL
,
McKinsey
TA
,
Olson
EN
. Association of class II histone deacetylases with heterochromatin protein 1: Potential role for histone methylation in control of muscle differentiation. Mol Cell Biol
22: 7302‐7312, 2002. |
331. |
Zhang
W
,
Behringer
RR
,
Olson
EN
. Inactivation of the myogenic bHLH gene MRF4 results in up‐regulation of myogenin and rib anomalies. Genes Dev
9: 1388‐1399, 1995. |
332. |
Zhao
M
,
New
L
,
Kravchenko
VV
,
Kato
Y
,
Gram
H
,
di Padova
F
,
Olson
EN
,
Ulevitch
RJ
,
Han
J
. Regulation of the MEF2 family of transcription factors by p38. Mol Cell Biol
19: 21‐30, 1999. |
333. |
Zhao
X
,
Sternsdorf
T
,
Bolger
TA
,
Evans
RM
,
Yao
TP
. Regulation of MEF2 by histone deacetylase 4‐ and SIRT1 deacetylase‐mediated lysine modifications. Mol Cell Biol
25: 8456‐8464, 2005. |
334. |
Zhao
XD
,
Han
X
,
Chew
JL
,
Liu
J
,
Chiu
KP
,
Choo
A
,
Orlov
YL
,
Sung
WK
,
Shahab
A
,
Kuznetsov
VA
,
Bourque
G
,
Oh
S
,
Ruan
Y
,
Ng
HH
,
Wei
CL
. Whole‐genome mapping of histone H3 Lys4 and 27 trimethylations reveals distinct genomic compartments in human embryonic stem cells. Cell Stem Cell
1: 286‐298, 2007. |
335. |
Zhou
VW
,
Goren
A
,
Bernstein
BE
. Charting histone modifications and the functional organization of mammalian genomes. Nat Rev Genet
12: 7‐18, 2011. |