Comprehensive Physiology Wiley Online Library

Mitochondrial Actions of Thyroid Hormone

Full Article on Wiley Online Library



ABSTRACT

The hypermetabolic effects of thyroid hormones (THs), the major endocrine regulators of metabolic rate, are widely recognized. Although, the cellular mechanisms underlying these effects have been extensively investigated, much has yet to be learned about how TH regulates diverse cellular functions. THs have a profound impact on mitochondria, the organelles responsible for the majority of cellular energy production, and several studies have been devoted to understand the respective importance of the nuclear and mitochondrial pathways for organelle activity. During the last decades, several new aspects of both THs (i.e., metabolism, transport, mechanisms of action, and the existence of metabolically active TH derivatives) and mitochondria (i.e., dynamics, respiratory chain organization in supercomplexes, and the discovery of uncoupling proteins other than uncoupling protein 1) have emerged, thus opening new perspectives to the investigation of the complex relationship between thyroid and the mitochondrial compartment. In this review, in the light of an historical background, we attempt to point out the present findings regarding thyroid physiology and the emerging recognition that mitochondrial dynamics as well as the arrangement of the electron transport chain in mitochondrial cristae contribute to the mitochondrial activity. We unravel the genomic and nongenomic mechanisms so far studied as well as the effects of THs on mitochondrial energetics and, principally, uncoupling of oxidative phosphorylation via various mechanisms involving uncoupling proteins. The emergence of new approaches to the question as to what extent and how the action of TH can affect mitochondria is highlighted. © 2016 American Physiological Society. Compr Physiol 6:1591‐1607, 2016.

Comprehensive Physiology offers downloadable PowerPoint presentations of figures for non-profit, educational use, provided the content is not modified and full credit is given to the author and publication.

Download a PowerPoint presentation of all images


Figure 1. Figure 1. Schematic representation of the TH‐dependent nucleus‐mitochondrion regulation of mitochondrial functions. Trough active transport or passive diffusion, TH (T4/T3) move from outside the plasma membrane into the cytoplasm approaching the extranuclear as well as the extramitochondrial space. Moreover, TH can bind to surface receptor such as integrin αvb3 receptor. In the cytoplasm, several events can occur, among which deiodination (conversion of T4 into T3 by D1 or D2 action) and binding of T3 to cytosolic proteins (i.e., cytosolic TH receptors, TR). These can signal through transduction pathways involving MAPKs, PKC, AKT, and PI3‐K‐AKT/PKB. TH‐dependent activation of integrins gives rise to similar signaling pathways that, in turn, may result in gene transcription. TR‐dependent genomic action requires TREs for the recognition of genes for direct transcriptional regulation [early expression (early)]. Some of these target genes serve as intermediate factors (e.g., NRF‐1, NRF‐2, PPARγ, and transcriptional coactivators such as PGC‐1α and PGC‐1β) and regulate a second series of TH target genes [late expression (late)]. The transcription of these genes can be either dependent or not by a TRE recognition by TR. Also nongenomic actions of TH (e.g., activation of kinases such as p38 MAPK and AMPK) can lead to modulation of transcription factors (not depicted mechanisms). Intermediate factors can enter the mitochondrion finally modulating mitochondrial functions such as biogenesis, oxygen consumption, and gene expression. In the TH‐dependent nucleus‐mitochondrion cross‐talk an important role is also played by the nuclear‐encoded transcription factor mtTFA, a key modulator of mitochondrial DNA (mtDNA) stabilization. In addition, mitochondria contain two N‐terminally truncated forms of the TR alpha 1 receptor isoform, with molecular weights of 43 (p43) and 28 kDa (p28). Whereas the function of p28 remains uncertain, p43 can be considered a T3‐dependent transcription factor of the mitochondrial genome.
Figure 2. Figure 2. Schematic representation of the mitochondrial respiratory chain and the main mitochondrial “sites” of action of TH. The main mitochondrial respiratory complexes are represented: I (Complex I, NADH dehydrogenase), II (Complex II, Succinate dehydrogenase), III (Complex III, ubiquinone cytochrome c‐reduttase), IV (complex IV, cytochrome c‐oxidase), V (Complex V, ATP synthetase), C (cytochrome c), and Q (coenzyme Q). Transfers electrons from reduced coenzymes to O2 and, pumping out H+ from the matrix to the intermembrane space, generates an electrochemical gradient, ΔμH+, which provides the driving force for ATP synthesis by Complex V. H+ can also enter the matrix by mechanisms not coupled to ATP synthesis either directly, across the lipid bilayer, or indirectly, by protein‐mediated transport [e.g., ADP/ATP carrier (ANT) and UCP]. Some sites of ROS production into the intermembrane space and the matrix are depicted too. As discussed in the main text, TH not only affects mitochondrial biogenesis but also significantly influences mitochondrial oxygen consumption. T3, in particular, elicits both short‐term and delayed stimulation of mitochondrial oxidative capacity. The early influence has been suggested to occur through protein synthesis independent extranuclear mechanisms (e.g., a direct T3 influence through mitochondrial specific T3‐binding sites). The more delayed influence of T3 upon mitochondrial respiration probably results from nuclear/transcriptional mechanisms that in turn modulate phospholipid turnover and uncoupling protein expression, finally leading to an increased inner membrane proton leak. The biochemical/molecular events underlying such modulation of mitochondrial energy efficiency are tissue specific (for details, see text).


Figure 1. Schematic representation of the TH‐dependent nucleus‐mitochondrion regulation of mitochondrial functions. Trough active transport or passive diffusion, TH (T4/T3) move from outside the plasma membrane into the cytoplasm approaching the extranuclear as well as the extramitochondrial space. Moreover, TH can bind to surface receptor such as integrin αvb3 receptor. In the cytoplasm, several events can occur, among which deiodination (conversion of T4 into T3 by D1 or D2 action) and binding of T3 to cytosolic proteins (i.e., cytosolic TH receptors, TR). These can signal through transduction pathways involving MAPKs, PKC, AKT, and PI3‐K‐AKT/PKB. TH‐dependent activation of integrins gives rise to similar signaling pathways that, in turn, may result in gene transcription. TR‐dependent genomic action requires TREs for the recognition of genes for direct transcriptional regulation [early expression (early)]. Some of these target genes serve as intermediate factors (e.g., NRF‐1, NRF‐2, PPARγ, and transcriptional coactivators such as PGC‐1α and PGC‐1β) and regulate a second series of TH target genes [late expression (late)]. The transcription of these genes can be either dependent or not by a TRE recognition by TR. Also nongenomic actions of TH (e.g., activation of kinases such as p38 MAPK and AMPK) can lead to modulation of transcription factors (not depicted mechanisms). Intermediate factors can enter the mitochondrion finally modulating mitochondrial functions such as biogenesis, oxygen consumption, and gene expression. In the TH‐dependent nucleus‐mitochondrion cross‐talk an important role is also played by the nuclear‐encoded transcription factor mtTFA, a key modulator of mitochondrial DNA (mtDNA) stabilization. In addition, mitochondria contain two N‐terminally truncated forms of the TR alpha 1 receptor isoform, with molecular weights of 43 (p43) and 28 kDa (p28). Whereas the function of p28 remains uncertain, p43 can be considered a T3‐dependent transcription factor of the mitochondrial genome.


Figure 2. Schematic representation of the mitochondrial respiratory chain and the main mitochondrial “sites” of action of TH. The main mitochondrial respiratory complexes are represented: I (Complex I, NADH dehydrogenase), II (Complex II, Succinate dehydrogenase), III (Complex III, ubiquinone cytochrome c‐reduttase), IV (complex IV, cytochrome c‐oxidase), V (Complex V, ATP synthetase), C (cytochrome c), and Q (coenzyme Q). Transfers electrons from reduced coenzymes to O2 and, pumping out H+ from the matrix to the intermembrane space, generates an electrochemical gradient, ΔμH+, which provides the driving force for ATP synthesis by Complex V. H+ can also enter the matrix by mechanisms not coupled to ATP synthesis either directly, across the lipid bilayer, or indirectly, by protein‐mediated transport [e.g., ADP/ATP carrier (ANT) and UCP]. Some sites of ROS production into the intermembrane space and the matrix are depicted too. As discussed in the main text, TH not only affects mitochondrial biogenesis but also significantly influences mitochondrial oxygen consumption. T3, in particular, elicits both short‐term and delayed stimulation of mitochondrial oxidative capacity. The early influence has been suggested to occur through protein synthesis independent extranuclear mechanisms (e.g., a direct T3 influence through mitochondrial specific T3‐binding sites). The more delayed influence of T3 upon mitochondrial respiration probably results from nuclear/transcriptional mechanisms that in turn modulate phospholipid turnover and uncoupling protein expression, finally leading to an increased inner membrane proton leak. The biochemical/molecular events underlying such modulation of mitochondrial energy efficiency are tissue specific (for details, see text).
References
 1.Abel ED, Boers ME, Pazos‐Moura C, Moura E, Kaulbach H, Zakaria M, Lowell B, Radovick S, Liberman MC, Wondisford F. Divergent roles for thyroid hormone receptor beta isoforms in the endocrine axis and auditory system. J Clin Invest 104: 291‐300, 1999.
 2.Arsenijevic D, Onurna H, Pecqueur C, Raimbault S, Manning BS, Miroux B, Couplan E, Alves‐Guerra MC, Goubern M, Surwit R, Bouillaud F, Richard D, Collins S, Ricquier D. Disruption of the uncoupling protein‐2 gene in mice reveals a role in immunity and reactive oxygen species production. Nat Genet 26: 435‐439, 2000.
 3.Azzu V, Mookerjee SA, Brand MD. Rapid turnover of mitochondrial uncoupling protein 3. Biochem J 426: 13‐17, 2010.
 4.Baqui M, Botero D, Gereben B, Curcio C, Harney JW, Salvatore D, Sorimachi K, Larsen PR, Bianco AC. Human type 3 iodothyronine selenodeiodinase is located in the plasma membrane and undergoes rapid internalization to endosomes. J Biol Chem 278: 1206‐1211, 2003.
 5.Baqui MM, Gereben B, Harney JW, Larsen PR, Bianco AC. Distinct subcellular localization of transiently expressed types 1 and 2 iodothyronine deiodinases as determined by immunofluorescence confocal microscopy. Endocrinology 141: 4309‐4312, 2000.
 6.Benard G, Bellance N, Jose C, Melser S, Nouette‐Gaulain K, Rossignol R. Multi‐site control and regulation of mitochondrial energy production. Biochim Biophys Acta 1797: 698‐709, 2010.
 7.Bender E, Kadenbach B. The allosteric ATP‐inhibition of cytochrome c oxidase activity is reversibly switched on by cAMP‐dependent phosphorylation. FEBS Lett 466(1): 130‐134, 2000.
 8.Benvenga S. Thyroid hormone transport proteins and the physiology of hormone binding. In: Braverman LE, Couper DS, editors. Werner and Ingbar's The Thyroid: A Fundamental and Clinical Text. Philadelphia, PA: Lippincott Williams and Wilkins, 2013.
 9.Bergh JJ, Lin HY, Lansing L, Mohamed SN, Davis FB, Mousa S, Davis PJ. Integrin αvβ3 contains a cell surface receptor site for thyroid hormone that is linked to activation of mitogen‐activated protein kinase and induction of angiogenesis. Endocrinology 146: 2864‐2871, 2005.
 10.Bernardi P, Rasola A, Forte M, Lippe G. The mitochondrial permeability transition pore: Channel formation by F‐ATP synthase, integration in signal transduction, and role in pathophysiology. Physiol Rev 95: 1111‐1155, 2015.
 11.Berry MJ, Banu L, Larsen PR. Type I iodothyronine deiodinase is a selenocysteine‐containing enzyme. Nature 349: 438‐440, 1991.
 12.Beyer RE. An analysis of the role of coenzyme Q in free radical generation and as an antioxidant. Biochem Cell Biol 70: 390‐403, 1992.
 13.Bianco AC, Salvatore D, Gereben B, Berry MJ, Larsen PR. Biochemistry, cellular and molecular biology, and physiological roles of the iodothyronine selenodeiodinases. Endocr Rev 23: 38‐89, 2002.
 14.Boss O, Hagen T, Lowell BB. Uncoupling proteins 2 and 3: Potential regulators of mitochondrial energy metabolism. Diabetes 49: 143‐156, 2000.
 15.Bouillaud F, Couplan E, Pecqueur C, Ricquier D. Homologues of the uncoupling protein from brown adipose tissue (UCP1): UCP2, UCP3, BMCP1 and UCP4. Biochim Biophys Acta. 1504: 107‐119, 2001.
 16.Brand MD, Pakay JL, Ocloo A, Kokoszka J, Wallace DC, Brookes PS, Cornwall EJ. The basal proton conductance of mitochondria depends on adenine nucleotide translocase content. Biochem J 392: 353‐362, 2005.
 17.Brand MD, Steverding D, Kadenbach B, Stivenson PM, Hafner RP. The mechanism of the increase in mitochondrial proton permeability induced by thyroid hormones. Eur J Biochem 206: 775‐781, 1992.
 18.Brand MD. The proton leak across the mitochondrial inner membrane. Biochem Biophys Acta 1018: 128‐133, 1990.
 19.Brent GA. Mechanisms of thyroid hormone action. J Clin Invest 122: 3035‐43, 2012.
 20.Brookes PS, Rolfe DF, Brand MD. The proton permeability of liposomes made from mitochondrial inner membrane phospholipids: Comparison with isolated mitochondria. J Membr Biol 155: 167‐174, 1997.
 21.Brown NS, Smart A, Sharma V, Brinkmeier ML, Greenlee L, Camper SA, Jensen DR, Eckel RH, Krezel W, Chambon P, Haugen BR. Thyroid hormone resistance and increased metabolic rate in the RXR‐γ‐deficient mouse. J Clin Invest 106: 73‐79, 2000.
 22.Cable EE, Finn PD, Stebbins JW, Hou J, Ito BR, van Poelje PD, Linemeyer DL, Erion MD. Reduction of hepatic steatosis in rats and mice after treatment with a liver‐targeted thyroid hormone receptor agonist. Hepatology 49: 407‐417, 2009.
 23.Cadenas S, Buckingham JA, Samec S, Seydoux J, Din N, Dulloo AG, Brand MD. UCP2 and UCP3 rise in starved rat skeletal muscle but mitochondrial proton conductance is unchanged. FEBS Lett 462: 257‐260, 1999.
 24.Canton M, Luvisetto S, Schmehl I, Azzone GF. The nature of mitochondrial respiration and discrimination between membrane and pump properties. Biochem J 310:477‐481, 1995.
 25.Cao HJ, Lin HY, Luidens MK, Davis FB, Davis PJ. Cytoplasm‐to‐nucleus shuttling of thyroid hormone receptor‐beta1 (Trbeta1) is directed from a plasma membrane integrin receptor by thyroid hormone. Endocr Res 34: 31‐42, 2009.
 26.Cao SG, Cheng P, Angel A, Hatch GM. Thyroxine stimulates phosphatidylglycerolphosphate synthase activity in rat heart mitochondria. Biochim Biophys Acta 1256: 241‐244, 1995.
 27.Casas F, Pessemesse L, Grandemange S, Seyer P, Baris O, Gueguen N, Ramonatxo C, Perrin F, Fouret G, Lepourry L, Cabello G, Wrutniak‐Cabello C. Overexpression of the mitochondrial T3 receptor induces skeletal muscle atrophy during aging. PLoS One. 4: e5631, 2009.
 28.Casas F, Rochard P, Rodier A, Cassar‐Malek I, Marchal‐Victorion S, Wiesner RJ, Cabello G, Wrutniak C. A variant form of the nuclear triiodothyronine receptor c‐ErbAalpha1 plays a direct role in regulation of mitochondrial RNA synthesis. Mol. Cell Biol 19: 7913‐7924, 1999.
 29.Chan CB, Harper ME. Uncoupling proteins: Role in insulin resistance and insulin insufficiency. Curr Diabetes Rev 2: 271‐283, 2006.
 30.Chan DC. Fusion and fission: Interlinked processes critical for mitochondrial health. Annu Rev Genet 46: 265‐287, 2012.
 31.Chance B, Williams GR. Respiratory enzymes in oxidative phosphorylation. III. The steady state. J Biol Chem 217: 409‐427, 1955.
 32.Cheng SY, Leonard JL, Davis PJ. Molecular aspects of thyroid hormone actions. Endocr Rev 31: 139‐170, 2010.
 33.Cheng SY. Multiple mechanisms for regulation of the transcriptional activity of thyroid hormone receptors. Rev Endocr Metab Disord 1: 9‐18, 2000.
 34.Cheng SY. Thyroid hormone receptor mutations and disease: Beyond thyroid hormone resistance. Trends Endocrinol Metab 16: 176‐182, 2005.
 35.Chinnery PF, Johnson MA, Wardell TM, Singh‐Kler R, Hayes C, Brown DT, Taylor RW, Bindoff LA, Turnbull DM. The epidemiology of pathogenic mitochondrial DNA mutations. Ann Neurol 48: 188‐193, 2000.
 36.Chocron ES, Sayre NL, Holstein D, Saelim N, Ibdah JA, Dong LQ, Zhu X, Cheng SY, Lechleiter JD. The trifunctional protein mediates thyroid hormone receptor‐dependent stimulation of mitochondria metabolism. Mol Endocrinol 26: 1117‐1128, 2012.
 37.Choi CS, Fillmore JJ, Kim JK, Liu ZX, Kim S, Collier EF, Kulkarni A, Distefano A, Hwang YJ, Kahn M, Chen Y, Yu C, Moore IK, Reznick RM, Higashimori T, Shulman GI. Overexpression of uncoupling protein 3 in skeletal muscle protects against fat‐induced insulin resistance. J Clin Invest 117: 1995‐2003, 2007.
 38.Cioffi F, Senese R, de Lange P, Goglia F, Lanni A, Lombardi A. Uncoupling proteins: A complex journey to function discovery. Biofactors 35:417‐428, 2009.
 39.Cioffi F, Senese R, Lanni A, Goglia F. Thyroid hormones and mitochondria: With a brief look at derivatives and analogues. Mol Cell Endocrinol 379: 51‐61, 2013.
 40.Cioffi F, Zambad SP, Chhipa L, Senese R, Busiello RA, Tuli D, Munshi S, Moreno M, Lombardi A, Gupta RC, Chauthaiwale V, Dutt C, de Lange P, Silvestri E, Lanni A, Goglia F. TRC150094, a novel functional analog of iodothyronines, reduces adiposity by increasing energy expenditure and fatty acid oxidation in rats receiving a high‐fat diet. FASEB J 24: 3451‐3461, 2010.
 41.Cipolat S, de Brito OM, Dal Zilio B, Scorrano L. OPA1 requires mitofusin 1 to promote mitochondrial fusion. Proc Natl Acad Sci U S A 101: 15927‐15932, 2004.
 42.Clapham JC, Arch JRS, Chapman H, Haynes A, Lister C, Moore GBT, Piercy V, Carter SA, Lehner I, Smith SA, Beeley LJ, Godden RJ, Herrity N, Skehel M, Changani KK, Hockings PD, Reid DG, Squires SM, Hatcher J, Trail B, Latcham J, Rastan S, Harper AJ, Cadenas S, Buckingham JA, Brand MD, Abuin A. Mice overexpressing human uncoupling protein‐3 in skeletal muscle are hyperphagic and lean. Nature 406: 415‐418, 2000.
 43.Cody V, Davis PJ, Davis FB. Molecular modeling of the thyroid hormone interactions with alpha v beta 3 integrin. Steroids 72: 165‐170, 2007.
 44.Costford SR, Chaudhry SN, Crawford SA, Salkhordeh M, Harper ME. Long‐term high‐fat feeding induces greater fat storage in mice lacking UCP3. Am J Physiol Endocrinol Metab 295: E1018‐E1024, 2008.
 45.Costford SR, Chaudhry SN, Salkhordeh M, Harper ME. Effects of the presence, absence, and overexpression of uncoupling protein‐3 on adiposity and fuel metabolism in congenic mice. Am J Physiol Endocrinol Metab 290: E1304‐1312, 2006.
 46.Davis PJ, Goglia F, Leonard JL. Nongenomic actions of thyroid hormone. Nat Rev Endocrinol 12:111‐121, 2016.
 47.Davis PJ, Shih A, Lin HY, Martino LJ, Davis FB. Thyroxine promotes association of mitogen‐activated protein kinase and nuclear thyroid hormone receptor (TR) and causes serine phosphorylation of TR. J Biol Chem 275: 38032‐38039, 2000.
 48.de Brito OM, Scorrano L. Mitofusin‐2 regulates mitochondrial and endoplasmic reticulum morphology and tethering: The role of Ras. Mitochondrion 9: 222‐226, 2009.
 49.de Lange P, Cioffi F, Senese R, Moreno M, Lombardi A, Silvestri E, De Matteis R, Lionetti L, Mollica MP, Goglia F, Lanni A. Nonthyrotoxic prevention of diet‐induced insulin resistance by 3,5‐diiodo‐l‐thyronine in rats. Diabetes 60: 2730‐2739, 2011.
 50.de Lange P, Lanni A, Beneduce L, Moreno M, Lombardi A, Silvestri E, Goglia F. Uncoupling protein‐3 is a molecular determinant for the regulation of resting metabolic rate by thyroid hormone. Endocrinology 142: 3414‐3420, 2001.
 51.de Lange P, Senese R, Cioffi F, Moreno M, Lombardi A, Silvestri E, Goglia F, Lanni A. Rapid activation by 3,5,3′‐l‐triiodothyronine of adenosine 5′‐monophosphate‐activated protein kinase/acetylcoenzyme a carboxylase and akt/protein kinase B signaling pathways: Relation to changes in fuel metabolism and myosin heavy‐chain protein content in rat gastrocnemius muscle in vivo. Endocrinology 149: 6462‐6470, 2008.
 52.Del Viscovo A, Secondo A, Esposito A, Goglia F, Moreno M, Canzoniero LM. Intracellular and plasma membrane‐initiated pathways involved in the [Ca2C]i elevations induced by iodothyronines (T3 and T2) in pituitary GH3 cells. Am J Physiol 302: E1419‐E1430, 2012.
 53.Dentice M, Marsili A, Zavacki A, Larsen PR, Salvatore D. The deiodinases and the control of intracellular thyroid hormone signaling during cellular differentiation. Biochim Biophys Acta 1830: 3937‐3945, 2013.
 54.Denton RL, McCormac JG. Ca2+ transport by mammalian mitochondria and its role in hormone action. Am J Physiol 249: E543‐E554, 1985.
 55.Dudkina NV, Heinemeyer J, Keegstra W, Boekema EJ, Braun HP. Structure of dimeric ATP synthase from mitochondria: An angular association of monomers induces the strong curvature of the inner membrane. FEBS Lett 579: 5769‐5772, 2005.
 56.Dudkina NV, Sunderhaus S, Boekema EJ, Braun HP. The higher level of organization of the oxidative phosphorylation system: Mitochondrial supercomplexes. J Bioenerg Biomembr 40: 419‐424, 2008.
 57.Dulloo AG, Samec S. Uncoupling proteins: Their roles in adaptive thermogenesis and substrate metabolism reconsidered. Br J Nutr 86: 123‐139, 2001.
 58.Dummler K, Muller S, Seitz HJ. Regulation of adenine nucleotide translocase and glycerol 3‐phosphate dehydrogenase expression by thyroid hormones in different rat tissues. Biochem J 317: 913‐918, 1996.
 59.Echtay KS, Brand MD. Coenzyme Q induces GDP‐sensitive proton conductance in kidney mitochondria. Biochem Soc Trans 29: 763‐768, 2001.
 60.Echtay KS, Roussel D, St‐Pierre J, Jekabsons MB, Cadenas S, Stuart JA, Harper JA, Roebuck SJ, Clapham JC, Brand MD. Superoxide activates mitochondrial uncoupling proteins. Nature 415: 96‐99, 2002.
 61.Echtay KS, Winkler E, Frischmuth K, Klingenberg M. Uncoupling proteins 2 and 3 are highly active H(+) transporters and highly nucleotide sensitive when activated by coenzyme Q (ubiquinone). Proc Natl Acad Sci U S A 98: 1416‐1421, 2001.
 62.Eubel H, Heinemeyer J, Sunderhaus S, Braun HP. Respiratory chain supercomplexes in plant mitochondria. Plant Physiol Biochem 42: 937‐942, 2004.
 63.Eubel H, Jänsch L, Braun HP. New insights into the respiratory chain of plant mitochondria supercomplexes and a unique compositions of complex II. Plant Physiol 133: 274‐286, 2003.
 64.Evans RM. The steroid and thyroid hormone receptor superfamily. Science 240: 889‐895, 1988.
 65.Fernandez‐Real JM, Corella D, Goumidi L, Mercader JM, Valdes S, Rojo Martinez G, Ortega F, Martinez‐Larrad MT, Gomez‐Zumaquero JM, Salas‐Salvado J, Martinez González MA, Covas MI, Botas P, Delgado E, Cottel D, Ferrieres J, Amouyel P, Ricart W, Ros E, Meirhaeghe A, Serrano‐Rios M, Soriguer F, Estruch R. Thyroid hormone receptor α gene variants increase the risk of developing obesity and show gene‐diet interactions. Int J Obes, 37: 1499‐1505, 2013.
 66.Flandin P, Lehr L, Asensio C, Giacobino JP, Rohner‐Jeanrenaud F, Muzzin P, Jimenez M. Uncoupling protein‐3 as a molecular determinant of the action of 3,5,3′‐triiodothyronine on energy metabolism. Endocrine 36: 246‐254, 2009.
 67.Fontaine EM, Moussa M, Devin A, Garcia J, Ghisolfi J, Rigoulet M, Leverve XM. Effect of polyunsaturated fatty acids deficiency on oxidative phosphorylation in rat liver mitochondria. Biochim Biophys Acta 1276: 181‐187, 1996.
 68.Friesema EC, Ganguly S, Abdalla A, Manning Fox JE, Halestrap AP, Visser TJ. Identification of monocarboxylate transporter 8 as a specific thyroid hormone transporter. J Biol Chem 278: 40128‐40135, 2003.
 69.Galo MG, Unates LE, Farìas RN. Effect of membrane fatty acid composition on the action of thyroid hormone on (Ca2CC Mg2C)‐adenosine triphosphatase from rat erythrocyte. J Biol Chem 256: 7113‐7114, 1981.
 70.Garstka HL, Facke M, Escribano JR, Wiesner RJ. Stoichiometry of mitochondrial transcripts and regulation of gene expression by mitochondrial transcription factor A. Biochem Biophys Res Commun 200: 619‐626, 1994.
 71.Genova ML, Lenaz G. Functional role of mitochondrial respiratory supercomplexes. Biochim Biophys Acta 1837: 427‐443, 2014.
 72.Gereben B, Zavacki AM, Ribich S, Kim BW, Huang SA, Simonides WS, Zeöld A, Bianco AC. Cellular and molecular basis of deiodinase‐regulated thyroid hormone signaling. Endocr Rev 29: 898‐938, 2008.
 73.Germain DL, Galton VA. The deiodinase family of selenoproteins. Thyroid 7: 655‐668, 1997.
 74.Goglia F, Lanni A, Barth J, Kadenbach B. Interaction of diiodothyronines with isolated cytochrome c oxidase. FEBS Lett 346: 295‐298, 1994.
 75.Goglia F, Skulachev VP. A function for novel uncoupling proteins: Antioxidant defense of mitochondrial matrix by translocating fatty acid peroxides from the inner to the outer membrane leaflet. FASEB J 17: 1585‐1591, 2003.
 76.Goglia F, Torresani J, Bugli P, Barletta A, Liverini G. In vitro binding of triiodothyronine to rat liver mitochondria. Pflügers Archiv 390: 120‐124, 1981.
 77.Gong DW, Monemdjou S, Gavrilova O, Leon LR, Marcus‐Samuels B, Chou CJ, Everett C, Kozak LP, Li C, Deng C, Harper ME, Reitman M. Lack of obesity and normal response to fasting and thyroid hormone in mice lacking uncoupling protein‐3. J Biol Chem 275: 16251‐16257, 2000.
 78.Goto Y, Nonaka I, Horai S. A mutation in the tRNA(Leu)(UUR) gene associated with the MELAS subgroup of mitochondrial encephalomyopathies. Nature 348: 651‐653, 1990.
 79.Hafner RP, Brand MD. Effect of protonmotive force on the relative proton stoichiometries of the mitochondrial proton pumps. Biochem J 275: 75‐80, 1991.
 80.Hafner RP, Brown GC, Brand MD. Thyroid‐hormone control of state‐3 respiration in isolated rat liver mitochondria. Biochem J 265: 731‐734, 1990.
 81.Hafner RP, Nobes CD, McGown AD, Brand MD. Altered relationship between protonmotive force and respiration rate in non‐phosphorylating liver mitochondria isolated from rats of different thyroid hormone status. Eur J Biochem 178: 511‐518, 1988.
 82.Harper ME, Brand MD. Use of top‐down elasticity analysis to identify sites of thyroid hormone‐induced thermogenesis. Proc Soc Exp Biol Med 208: 228‐237, 1995.
 83.Harper ME, Stuart JA, Jekabsons MB, Roussel D, Brindle KM, Dickinson K, Jones RB, Brand MD. Artifactual uncoupling by uncoupling protein 3 in yeast mitochondria at the concentrations found in mouse and rat skeletal‐muscle mitochondria. Biochem J 361: 49‐56, 2002.
 84.Hashizume K, Ichikawa K. Localization of 3,5,3′‐l‐triiodothyronine receptor in rat mitochondrial membrane. Biochem Biophys Res Commun 106: 920‐926, 1982.
 85.Heinemeyer J, Braun HP, Boekema EJ, Kouřil R. A structural model of the cytochrome C reductase/oxidase supercomplex from yeast mitochondria. J Biol Chem 282: 12240‐12248, 2007.
 86.Hennemann G, Docter R, Friesema EC, de Jong M, Krenning EP, Visser TJ. Plasma membrane transport of thyroid hormones and its role in thyroid hormone metabolism and bioavailability. Endocr Rev 22: 451‐476, 2001.
 87.Herzovich V, Vaiani E, Marino A, Dratler G, Lazzati JM, Tilitzky S, Ramirez P, Iorcansky S, Rivarola MA, Belgorosky A. Unexpected peripheral markers of thyroid function in a patient with a novel mutation of the MCT8 thyroid hormone transporter gene. Horm Res 67: 1‐6, 2007.
 88.Hess B, Martius C. The mode of action of thyroxin. Arch Biochem Biophys 33: 486‐487, 1951.
 89.Hesselink MK, Greenha PL, Constantin‐Teodosiu D, Hultman E, Saris WH, Nieuwlaat R, Schaart G, Kornips E, Schrauwen P. Increased uncoupling protein 3 content does not affect mitochondrial function in human skeletal muscle in vivo. J Clin Invest 111: 479‐486, 2003.
 90.Himms‐Hagen J. Brown adipose tissue thermogenesis: Interdisciplinary studies. FASEB J 4: 2890‐2898, 1990.
 91.Hirst J. Towards the molecular mechanism of respiratory complex I. Biochem J 425(2): 327‐339, 2009.
 92.Hoefig CS, Wuensch T, Rijntjes E, Lehmphul I, Daniel H, Schweizer U, Mittag J, Köhrle J. Biosynthesis of 3‐iodothyronamine from T4 in murine intestinal tissue. Endocrinol 156: 4356‐4364, 2015.
 93.Horrum MA, Tobin RB, Ecklund RE. Thyroxine‐induced changes in rat liver mitochondrial cytochromes. Mol Cell Endocrinol 41: 163‐169, 1985.
 94.Irrcher I, Walkinshaw DR, Sheehan TE, Hood DA. Thyroid hormone (T3) rapidly activates p38 and AMPK in skeletal muscle in vivo. J Appl Physiol 104: 178‐185, 2008.
 95.Jabůrek M, Varecha M, Gimeno RE, Dembski M, Jezek P, Zhang M, Burn P, Tartaglia LA, Garlid KD. Transport function and regulation of mitochondrial uncoupling proteins 2 and 3. J Biol Chem 274: 26003‐26007, 1999.
 96.Jensen RE, Dunn CD, Youngman MJ, Sesaki H. Mitochondrial building blocks. Trends Cell Biol 14: 215‐218, 2004.
 97.Joseph AM, Rungi AA, Robinson BH, Hood DA. Compensatory responses of protein import and transcription factor expression in mitochondrial DNA defects. Am J Physiol Cell Physiol 286: C867‐C875, 2004.
 98.Kadenbach B, Huttemann M, Arnold S, Lee L, Bender E. Mitochondrial energy metabolism is regulated via nuclear‐coded subunits of cytochrome c oxidase. Free Radic Biol Med 29: 211‐221, 2000.
 99.Kadenbach B. Intrinsic and extrinsic uncoupling of oxidative phosphorylation. Biochim Biophys Acta 1604: 77‐94, 2003.
 100.Keilin D, Hartree EF. Activity of the cytochrome system in heart muscle preparations. Biochem J 41: 500‐502, 1947.
 101.Kim KH, Rodriguez AM, Carrico PM, Melendez JA. Potential mechanisms for the inhibition of tumor cell growth by manganese superoxide dismutase. Antioxid Redox Signal 3: 361‐373, 2001.
 102.Kinne A, Kleinau G, Hoefig CS, Gruters A, Kohrle J, Krause G, Schweizer U. Essential molecular determinants for thyroid hormone transport and first structural implications for monocarboxylate transporter 8. J Biol Chem 285: 28054‐28063, 2010.
 103.Koshiba T, Detmer SA, Kaiser JT, Chen H, McCaffery JM, Chan DC. Structural basis of mitochondrial tethering by mitofusin complexes. Science 305: 858‐862, 2004.
 104.Kroemer G, Dallaporta B, Resche‐Rigon M. The mitochondrial death/life regulator in apoptosis and necrosis. Annu Rev Physiol 60: 619‐642, 1998.
 105.Kurokawa R, Yu VC, Naar A, Kyakumoto S, Han Z, Silverman S, Rosenfeld MG, Glass CK. Differential orientations of the DNA‐binding domain and carboxy‐terminal dimerization interface regulate binding site selection by nuclear receptor heterodimers. Genes Dev 7: 1423‐1435, 1993.
 106.Lanni A, Beneduce L, Lombardi A, Moreno M, Boss O, Muzzin P, Giacobino JP, Goglia F. Expression of uncoupling protein‐3 and mitochondrial activity in the transition from hypothyroid to hyperthyroid state in rat skeletal muscle. FEBS Lett 444: 250‐254, 1999.
 107.Lanni A, De Felice M, Lombardi A, Moreno M, Fleury C, Ricquier D, Goglia F. Induction of UCP2 mRNA by thyroid hormones in rat heart. FEBS Lett 418: 171‐174, 1997.
 108.Lanni A, Moreno M, Horst C, Lombardi A, Goglia F. Specific binding sites for 3,3‐diiodo‐l‐thyronine (3,3′‐T2) in rat liver mitochondria. FEBS Lett 351: 237‐240, 1994.
 109.Lanni A, Moreno M, Lombardi A, Goglia F. Thyroid hormone and uncoupling proteins. FEBS Lett 543: 5‐10, 2003.
 110.Lanni A, Moreno M, Lombardi A, de Lange P, Goglia F. Control of energy metabolism by iodothyronines. J Endocrinol Invest 24: 897‐913, 2001.
 111.Lardy HA, Feldcott G. Metabolic effects of thyroxine in vitro. Ann NY Acad Sci 54: 636‐648, 1951.
 112.Larsen NB, Rasmussen M, Rasmussen LJ. Nuclear and mitochondrial DNA repair: Similar pathways? Mitochondrion 5: 89‐108, 2005.
 113.Lazar MA, Berrodin TJ, Harding HP. Differential DNA binding by monomeric, homodimeric, and potentially heteromeric forms of the thyroid hormone receptor. Mol Cell Biol 11: 5005‐5015, 1991.
 114.Lazar MA. Thyroid hormone receptors: Multiple forms, multiple possibilities. Endocr Rev 14: 184‐193, 1993.
 115.Leary SC, Barton KN, Ballantyne JS. Thyroid effects of 3,5,3_‐triiodothyronine and 3,5‐diiodothyronine on mitochondrial metabolism in the goldfish Carassius auratus. Gen Comp Endocrinol 104: 61‐66, 1996.
 116.Lesmana R, Sinha RA, Singh BK, Zhou J, Ohba K, Wu Y, Yau WW, Bay BH, Yen PM. Thyroid hormone stimulation of autophagy is essential for mitochondrial biogenesis and activity in skeletal muscle. Endocrinol 157: 23‐38, 2016.
 117.Lin HY, Davis FB, Gordinier JK, Martino LJ, Davis PJ. Thyroid hormone induces activation of mitogen‐activated protein kinase in cultured cells. Am J Physiol 276: C1014‐C1024, 1999.
 118.Lin HY, Sun M, Tang HY, Lin C, Luidens MK, Mousa SA, Incerpi S, Drusano GL, Davis FB, Davis PJ. l‐Thyroxine vs. 3,5,3′‐triiodo‐l‐thyronine and cell proliferation: Activation of mitogen‐activated protein kinase and phosphatidylinositol 3‐kinase. Am J Physiol Cell Physiol 296: C980‐C991, 2009.
 119.Lombardi A, Busiello RA, Napolitano L, Cioffi F, Moreno M, de Lange P, Silvestri E, Lanni A, Goglia F. UCP3 translocates lipid hydroperoxide and mediates lipid hydroperoxide‐dependent mitochondrial uncoupling. J Biol Chem 285: 16599‐16605, 2010.
 120.Lombardi A, Lanni A, Moreno M, Brand MD, Goglia F. Effect of 3,5‐di‐iodo‐l‐thyronine on the mitochondrial energy‐transduction apparatus. Biochem J 330: 521‐526, 1998.
 121.Luvisetto S, Schmehl I, Intravaia E, Conti E, Azzone GF. Mechanism of loss of thermodynamic control in mitochondria due to hyperthyroidism and temperature. J BioI Chem 267: 15348‐15355, 1992.
 122.Magnus‐Levy A. Uber den respiratorischen Gaswechsel unter dem Ein fluss der Thyroidea sowie unter verschiedenen pathologischen Zustanden. Berl Klin Wochenschr 34: 650‐654, 1895.
 123.Mai W, Janier MF, Allioli N, Quignodon L, Chuzel T, Flamant F, Samarut J. Thyroid hormone receptor alpha is a molecular switch of cardiac function between fetal and postnatal life. Proc Natl Acad Sci USA 101: 10332‐10337, 2004.
 124.Mailloux RJ, Seifert EL, Bouillaud F, Aguer C, Collins S, Harper ME. Glutathionylation acts as a control switch for uncoupling proteins UCP2 and UCP3. J Biol Chem 286: 21865‐21875, 2011.
 125.Mangelsdorf DJ, Thummel C, Beato M, Herrlich P, Schutz G, Umesono K, Blumberg B, Kastner P, Mark M, Chambon P, Evans RM. The nuclear receptor superfamily: The second decade. Cell 83: 835‐839, 1995.
 126.Marsili A, Zavacki AM, Harney JW, Larsen PR. Physiological role and regulation of iodothyronine deiodinases: A 2011 update. J Endocrinol Invest 34: 395‐407, 2011.
 127.Medvedev AV, Snedden SK, Raimbault S, Ricquier D, Collins S. Transcriptional regulation of the mouse uncoupling protein‐2 gene. Double E‐box motif is required for peroxisome proliferator‐activated receptor‐gamma‐dependent activation. J Biol Chem 276: 10817‐10823, 2001.
 128.Mitchell CS, Savage DB, Dufour S, Schoenmakers E, Murgatroyd P, Befroy D, Halsall D, Northcott S, Raymond‐Barker P, Curran S, Henning E, Keogh J, Owen P, Lazarus J, Rothman DL, Farooqi IS, Shulman GI, Chatterjee K, Petersen KF. Resistance to thyroid hormone is associated with raised energy expenditure, muscle mitochondrial uncoupling, and hyperphagia. J Clin Invest 120: 1345‐1354, 2010.
 129.Moeller LC, Broecker‐Preuss M. Transcriptional regulation by nonclassical action of thyroid hormone. Thyroid Res 4: S6, 2011.
 130.Moran C, Schoenmakers N, Agostini M, Schoenmakers E, Offiah A, Kydd A, Kahaly G, Mohr‐Kahaly S, Rajanayagam O, Lyons G, Wareham N, Halsall D, Dattani M, Hughes S, Gurnell M, Park SM, Chatterjee K. An adult female with resistance to thyroid hormone mediated by defective thyroid hormone receptor. J Clin Endocrinol Metab 98: 4254‐4261, 2013.
 131.Moreno M, de Lange P, Lombardi A, Silvestri E, Lanni A, Goglia F. Metabolic effects of thyroid hormone derivatives. Thyroid 18: 239‐253, 2008.
 132.Mourier A, Devin A, Rigoulet M. Active proton leak in mitochondria: A new way to regulate substrate oxidation. Biochim Biophys Acta 1797: 255‐261, 2010.
 133.Mullur R, Liu YY, Brent GA. Thyroid hormone regulation of metabolism. Physiol Rev 94: 355‐382, 2014.
 134.Naar AM, Boutin JM, Lipkin SM, Yu VC, Holloway JM, Glass CK, Rosenfeld MG. The orientation and spacing of core DNA‐binding motifs dictate selective transcriptional responses to three nuclear receptors. Cell 65: 1267‐1279, 1991.
 135.Nabben M, Hoeks J, Briedé JJ, Glatz JF, Moonen‐Kornips E, Hesselink MK, Schrauwen P. The effect of UCP3 overexpression on mitochondrial ROS production in skeletal muscle of young versus aged mice. FEBS Lett 582: 4147‐4152, 2008.
 136.Nedergaard J, Cannon B. The ‘novel’ ‘uncoupling’ proteins UCP2 and UCP3: What do they really do? Pros and cons for suggested functions. Exp Physiol 88: 65‐84, 2003.
 137.Nedergaard J, Golozoubova V, Matthias A, Asadi A, Jacobsson A, Cannon B. UCP1: The only protein able to mediate adaptive non‐shivering thermogenesis and metabolic inefficiency. Biochim Biophys Acta 1504: 82‐106, 2001.
 138.Negre‐Salvayre A, Hirtz C, Carrera G, Cazenave R, Troly M, Salvayre R, Pelicaud L, Casteilla L. A role for uncoupling protein‐2 as a regulator of mitochondrial hydrogen peroxide generation. FASEB J 11: 809‐815, 1997.
 139.Noji H, Yoshida M. The rotary machine in the cell, adenosine‐5′‐triphosphate synthase. J Biol Chem 276: 1665‐1668, 2001.
 140.O'Reilly I, Murphy MP. Treatment of hypothyroid rats with T2 (3,5‐di‐iodo‐l‐thyronine) rapidly stimulates respiration in subsequently isolated mitochondria. Biochem Soc Trans 20: 59S, 1992.
 141.Orozco A, Navarrete‐Ramírez P, Olvera A, García‐G C. 3,5‐Diiodothyronine (T2) is on a role. A new hormone in search of recognition. Gen Comp Endocrinol 203: 174‐180, 2014.
 142.Palacios‐Romero R, Mowbray J. Evidence for the rapid direct control both in vivo and in vitro of the efficiency of oxidative phosphorylation by 3,5,3‐Tri‐iodo‐thyronine in rats. Biochem J 184: 527‐538, 1979.
 143.Papa S, Scacco S, Sardanelli AM, Petruzzella V, Vergari R, Signorile A, Technikova‐Dobrova Z. Complex I and the cAMP cascade in human physiopathology. Biosci Rep 22: 3‐16, 2002.
 144.Paradies G, Paradies V, De Benedictis V, Ruggiero FM, Petrosillo G. Functional role of cardiolipin in mitochondrial bioenergetics. Biochim Biophys Acta 1837: 408‐417, 2014.
 145.Paradies G, Ruggiero FM, Dinoi P. The influence of hypothyroidism on the transport of phosphate and on the lipid composition in rat‐liver mitochondria. Biochim Biophys Acta 1070: 180‐186, 1991.
 146.Pecquer C, Alves‐Guerra MC, Gelly C, Levi‐Meyrueis C, Couplan E, Collins S, Ricquier D, Bouillaud F, Miroux B. Uncoupling protein 2, in vivo distribution, induction upon oxidative stress, and evidence for translational regulation. J Biol Chem 276: 8705‐8871, 2001.
 147.Pessemesse L, Lepourry L, Bouton K, Levin J, Cabello G, Wrutniak‐Cabello C, Casas F. p28, a truncated form of TRa1 regulates mitochondrial physiology. FEBS Lett 588: 4037‐4043, 2014.
 148.Pfeiffer K, Gohil V, Stuart RA, Hunte C, Brandt U, Greenberg ML, Schägger H. Cardiolipin stabilizes respiratory chain supercomplexes. J Biol Chem 278: 52873‐52880, 2003.
 149.Pietrobon D, Azzone GF, Walz D. Effect of funiculosin and antimycin A on the redox‐driven H+‐pumps in mitochondria: On the nature of “leaks”. Eur J Biochem 117: 389‐394, 1998.
 150.Pietrobon D, Luvisetto S, Azzone GF. Uncoupling of oxidative phosphorylation. 2. Alternative mechanisms: Intrinsic uncoupling or decoupling? Biochemistry 26: 7339‐7347, 1987.
 151.Pillar TM, Seitz HJ. Thyroid hormone and gene expression in the regulation of mitochondrial respiratory function. Eur J Endocrinol 136: 231‐239, 1997.
 152.Porter RK, Hulbert AJ, Brand MD. Allometry of mitochondrial proton leak: Influence of membrane surface area and fatty acid composition. Am J Physiol Regul Integr Comp Physiol 271: R1550‐R1560, 1996.
 153.Privalsky ML, Lee S, Hahm JB, Young BM, Fong RN, Chan IH. The p160 coactivator PAS‐B motif stabilizes nuclear receptor binding and contributes to isoform‐specific regulation by thyroid hormone receptors. J Biol Chem 284: 19554‐19563, 2009.
 154.Richter C, Park JW, Ames BN. Normal oxidative damage to mitochondrial and nuclear DNA is extensive. Proc Natl Acad Sci U S A 85: 6465‐6467, 1988.
 155.Ricquier D, Bouillaud F. The uncoupling protein homologues: UCP1, UCP2, UCP3, StUCP and AtUCP. Biochem J 345: 161‐179, 2000.
 156.Rochard P, Rodier A, Casas F, Cassar‐Malek I, Marchal‐Victorion S, Daury L, Wrutniak C, Cabello G. Mitochondrial activity is involved in the regulation of myoblast differentiation through myogenin expression and activity of myogenic factors. J Biol Chem 275: 2733‐2744, 2000.
 157.Rodríguez‐Hernández A, Cordero MD, Salviati L, Artuch R, Pineda M, Briones P, Gómez Izquierdo L, Cotán D, Navas P, Sánchez‐Alcázar JA. Coenzyme Q deficiency triggers mitochondria degradation by mitophagy. Autophagy 5: 19‐32, 2009.
 158.Rolfe DF, Brand MD. Contribution of mitochondrial proton leak to skeletal muscle respiration and to standard metabolic rate. Am J Physiol 271: C1380‐C1389, 1996.
 159.Rolfe DF, Hulbert AJ, Brand MD. Characteristics of mitochondrial proton leak and control of oxidative phosphorylation in the major oxygen‐consuming tissues of the rat. Biochem Biophys Acta 1118: 405‐416, 1994.
 160.Sauer H, Wartenberg M, Hescheler J. Reactive oxygen species as intracellular messengers during cell growth and differentiation. Cell Physiol Biochem 11: 173‐186, 2001.
 161.Schäfer E, Seelert H, Reifschneider NH, Krause F, Dencher NA, Vonck J. Architecture of active mammalian respiratory chain supercomplexes. J Biol Chem 281: 15370‐15375, 2006.
 162.Schägger H, Pfeiffer K. Supercomplexes in the respiratory chains of yeast and mammalian mitochondria. EMBO J 19: 1777‐1783, 2000.
 163.Schmehl I, Luvisetto S, Canton M, Gennari F, Azzone GF. Nature of respiratory stimulation in hyperthyroidism: The redox behaviour of cytochrome c. FEBS Lett 375: 206‐210, 1995.
 164.Schönfeld P, Wiêckowski MR, Wojtczak L. Thyroid hormone‐induced expression of the ADP/ATP carrier and its effect on fatty acid‐induced uncoupling of oxidative phosphorylation. FEBS Lett 416: 19‐22, 1997.
 165.Schwartz CE, May MM, Carpenter NJ, Rogers RC, Martin J, Bialer MG, Ward J, Sanabria J, Marsa S, Lewis JA, Echeverri R, Lubs Ha, Voeller K, Simensen RJ, Stevenson RE. Allan–Herndon–Dudley syndrome and the monocarboxylate transporter 8 (MCT8) gene. Am J Hum Genet 77: 41‐53, 2005.
 166.Schweizer U, Johannes J, Bayer D, Braun D. Structure and function of thyroid hormone plasma membrane transporters. Eur Thyroid J 3: 143‐153, 2014.
 167.Seitz HJ, Muller MJ, Soboll S. Rapid thyroid‐hormone effect on mitochondrial and cytosolic ATP/ADP ratios in the intact liver cell. Biochem J 227:149‐153, 1985.
 168.Senese R, Cioffi F, de Lange P, Goglia F, Lanni A. Thyroid: Biological actions of ‘nonclassical’ thyroid hormones. J Endocrinol 221: R1‐R12, 2014.
 169.Seyer P, Grandemange S, Busson M, Carazo A, Gamaléri F, Pessemesse L, Casas F, Cabello G, Wrutniak‐Cabello C. Mitochondrial activity regulates myoblast differentiation by control of c‐Myc expression. J Cell Physiol 207: 75‐86, 2006.
 170.Seyer P, Grandemange S, Rochard P, Busson M, Pessemesse L, Casas F, Cabello G, Wrutniak‐Cabello C. P43‐dependent mitochondrial activity regulates myoblast differentiation and slow myosin isoform expression by control of Calcineurin expression. Exp Cell Res 317: 2059‐2071, 2011.
 171.Shadel GS, Clayton DA. Mitochondrial DNA maintenance in vertebrates. Annu Rev Biochem 66: 409‐435, 1997.
 172.Sharifi J, St Germain DL. The cDNA for the type I iodothyronine 5′‐deiodinase encodes an enzyme manifesting both high Km and low Km activity. Evidence that rat liver and kidney contain a single enzyme which converts thyroxine to 3,5,3′‐triiodothyronine. J Biol Chem 267: 12539‐12544, 1992.
 173.Sheehan TE, Kumar PA, Hood DA. Tissue‐specific regulation of cytochrome c oxidase subunit expression by thyroid hormone. Am J Physiol Endocrinol Metab 286: E968‐E974, 2004.
 174.Shupnik MA, Ridgway EC, Chin WW. Molecular biology of thyrotropin. Endocr Rev 10: 459‐475, 1989.
 175.Siegrist‐Kaiser C, Burger AG. Modification of the side chain of thyroid hormones. In: Wu SY, Visser TJ, editor. Thyroid Hormone Metabolism. Boca Raton: CRC, 1994, pp. 175‐198.
 176.Sinha RA, Singh BK, Zhou J, Wu Y, Farah BL, Ohba K, Lesmana R, Gooding J, Bay BH, Yen PM. Thyroid hormone induction of mitochondrial activity is coupled to mitophagy via ROS-AMPKULK1 signaling. Autophagy 11: 1341‐1357, 2015.
 177.Silva JE. Thermogenic mechanisms and their hormonal regulation. Physiol Rev 86: 435‐464, 2006.
 178.Silvestri E, Schiavo L, Lombardi A, Goglia F. Thyroid hormones as molecular determinants of thermogenesis. Acta Physiol Scand 184: 265‐283, 2005.
 179.Skulachev VP. Fatty acid circuit as a physiological mechanism of uncoupling of oxidative phosphorylation. FEBS Lett 294: 158‐162, 1991.
 180.Skulachev VP. Anion carriers in fatty acid‐mediated physiological uncoupling. J Bioenerg Biomembr 31: 431‐445, 1999.
 181.Skulachev VP. Fatty acid circuit as a physiological mechanism of uncoupling of oxidative phosphorylation. FEBS Lett 294: 158‐162, 1991.
 182.Skulachev VP. Uncoupling: New approaches to an old problem of bioenergetics. Biochim Biophys Acta 1363: 100‐124, 1998.
 183.Slater EC. Keilin, cytochrome, and the respiratory chain. J Biol Chem 278: 16455‐16461, 2003.
 184.Solmaz SR, Hunte C. Structure of complex III with bound cytochrome c in reduced state and definition of a minimal core interface for electron transfer. J Biol Chem 283: 17542‐17549, 2008.
 185.St Germain DL, Galton VA, Hernandez A. Minireview: Defining the roles of the iodothyronine deiodinases: Current concepts and challenges. Endocrinology 150: 1097‐1107, 2009.
 186.St Germain DL. The effects and interactions of substrates, inhibitors, and the cellular thiol‐disulfide balance on the regulation of type II iodothyronine 5′‐deiodinase. Endocrinology 122: 1860‐1868, 1988.
 187.Sterling K, Brenner MA, Sakurada T. Rapid effect of triiodothyronine on the mitochondrial pathway in rat liver in vivo. Science 210: 340‐343, 1980.
 188.Sterling K, Brenner MA. Thyroid hormone action: Effect of triiodothyronine on mitochondrial adenine nucleotide translocase in vivo and in vitro. Metabolism 34: 193‐199, 1995.
 189.Sterling K, Milch PO, Brenner MA, Lazarus JH. Thyroid hormone action: The mitochondrial pathway. Science 197: 996‐999, 1977.
 190.Sterling K, Milch PO. Thyroid hormone binding by a component of mitochondrial membrane. Proc Natl Acad Sci U S A 72: 3225‐3229, 1975.
 191.Stuart JA, Cadenas S, Jekabsons MB, Roussel D, Brand MD. Mitochondrial proton leak and the uncoupling protein 1 homologues. Biochem Biophys Acta 1504: 144‐158, 2001.
 192.Sudo A, Honzawa S, Nonaka I, Goto Y. Leigh syndrome caused by mitochondrial DNA G13513A mutation: Frequency and clinical features in Japan. J Hum Genet 49: 92‐96, 2004.
 193.Tang HY, Lin HY, Zhang S, Davis FB, Davis PJ. Thyroid hormone causes mitogen‐activated protein kinase‐dependent phosphorylation of the nuclear estrogen receptor. Endocrinology 145: 3265‐3272, 2004.
 194.Tata JR. The road to nuclear receptors of thyroid hormone. Biochim Biophys Acta 1830: 3860‐3866, 2013.
 195.Telford JE, Kilbride SM, Davey GP. Complex I is rate‐limiting for oxygen consumption in the nerve terminal. J Biol Chem 284: 9109‐9114, 2009.
 196.Thomas WE, Crespo‐Armas A, Mowbray J. The influence of nanomolar calcium ions and physiological levels of thyroid hormone on oxidative phosphorylation in rat liver mitochondria. A possible signal amplification control mechanism. Biochem J 247: 315‐320, 1987.
 197.Tomitsuka E, Kita K, Esumi H. Regulation of succinate‐ubiquinone reductase and fumarate reductase activities in human complex II by phosphorylation of its flavoprotein subunit. Proc Jpn Acad Ser B Phys Biol Sci 85: 258‐265, 2009.
 198.van Erven PM, Cillessen JP, Eekhoff EM, Gabreels FJ, Doesburg WH, Lemmens WA, Slooff JL, Renier WO, Ruitenbeek W. Leigh syndrome, a mitochondrial encephalo(myo)pathy. A review of the literature. Clin Neurol Neurosurg 89: 217‐230, 1987.
 199.Venditti P, Chiellini G, Di Stefano L, Napolitano G, Zucchi R, Columbano A, Scanlan TS, Di Meo S. The TRbeta‐selective agonist, GC‐1, stimulates mitochondrial oxidative processes to a lesser extent than triiodothyronine. J Endocrinol 205: 279‐289, 2010.
 200.Venditti P, Napolitano G, Di Stefano L, Chiellini G, Zucchi R, Scanlan TS, Di Meo S. Effects of the thyroid hormone derivatives 3‐iodothyronamine and thyronamine on rat liver oxidative capacity. Mol Cell Endocrinol 341: 55‐62, 2011.
 201.Vidal‐Puig AJ, Grujic D, Zhang CY, Hagen T, Boss O, Ido Y, Szcsepanik A, Wade J, Mootha V, Corthright R, Muoio DM, Lowell BB. Energy metabolism in uncoupling protein 3 gene knockout mice. J Biol Chem 275: 16258‐16266, 2000.
 202.Visser TJ. Importance of deiodination and conjugation in the hepatic metabolism of thyroid hormone. In: Greer MA editor. The Thyroid Gland. New York: Raven Press, 1990.
 203.Visser TJ. Thyroid hormone transporters and resistance. Endocr Dev 24: 1‐10, 2013.
 204.Wahlstrom GM, Sjoberg M, Andersson M, Nordstrom K, Vennstrom B. Binding characteristics of the thyroid hormone receptor homo‐ and heterodimers to consensus AGGTCA repeat motifs. Mol Endocrinol 6: 1013‐1022, 1992.
 205.Weitzel JM, Iwen KA, Seitz HJ. Regulation of mitochondrial biogenesis by thyroid hormone. Exp Physiol 88: 121‐128, 2003.
 206.Winkler E, Klingenberg M. Effect of fatty acids on H+ transport activity of the reconstituted uncoupling protein. J Biol Chem 269: 2508‐2515, 1994.
 207.Wrutniak C, Cassar‐Malek I, Marchal S, Rascle A, Heusser S, Keller JM, Fléchon J, Dauça M, Samarut J, Ghysdael J, Cabello G. A 43‐kDa protein related to c‐Erb A alpha 1 is located in the mitochondrial matrix of rat liver. J Biol Chem 270, 16347‐16354, 1995.
 208.Wrutniak‐Cabello C, Carazo A, Casas F, Cabello G. Triiodothyronine mitochondrial receptors: Import and molecular mechanisms. J Soc Biol 202: 83‐92, 2008.
 209.Wrutniak‐Cabello C, Casas F, Cabello G. Thyroid hormone action in mitochondria. J Mol Endocrinol 26: 67‐77, 2001.
 210.Yehuda‐Shnaidman E, Kalderon B, Azazmeh N, Bar‐Tana J. Gating of the mitochondrial permeability transition pore by thyroid hormone. FASEB J 24: 93‐104, 2010.
 211.Yen PM, Chin WW. New advances in understanding the molecular mechanisms of thyroid hormone action. Trends Endocrinol Metab 5: 65‐72, 1994.
 212.Yen PM. Physiological and molecular basis of thyroid hormone action. Physiol Rev 8: 1097‐1142, 2001.
 213.Youle RJ, van der Bliek AM. Mitochondrial fission, fusion, and stress. Science 337: 1062‐1065, 2012.
 214.Zhang CY, Hagen T, Mootha VK, Slieker LJ, Lowell BB. Assessment of uncoupling activity of uncoupling protein 3 using a yeast heterologous expression system. FEBS Lett 449: 129‐134, 1999.
 215.Zhang M, Mileykovskaya E, Dowhan W. Gluing the respiratory chain together. Cardiolipin is required for supercomplex formation in the inner mitochondrial membrane. J Biol Chem 277: 43553‐43556, 2002.
 216.Zoratti M, Favaron M, Pietrobon D, Azzone GF. Intrinsic uncoupling of mitochondrial proton pumps. 1. Non‐ohmic conductance cannot account for the nonlinear dependence of static head respiration on delta microH. Biochemistry 25: 760‐767, 1986.
 217.Zucchi R, Accorroni A, Chiellini G. Update on 3‐iodothyronamine and its neurological and metabolic actions. Front Physiol 5: 1‐12, 2014.

Related Articles:

Thyroid Hormone Receptors
Regulation of Gene Expression by Thyroid Hormones: Relation to Growth and Development
Energy Metabolism in the Liver

Contact Editor

Submit a note to the editor about this article by filling in the form below.

* Required Field

How to Cite

Antonia Lanni, Maria Moreno, Fernando Goglia. Mitochondrial Actions of Thyroid Hormone. Compr Physiol 2016, 6: 1591-1607. doi: 10.1002/cphy.c150019