References |
1. |
Acampora
D
,
Postiglione
MP
,
Avantaggiato
V
,
Di Bonito
M
,
Vaccarino
FM
,
Michaud
J
,
Simeone
A
. Progressive impairment of developing neuroendocrine cell lineages in the hypothalamus of mice lacking the Orthopedia gene. Genes Dev
13: 2787‐2800, 1999. |
2. |
Adams
RH
,
Eichmann
A
. Axon guidance molecules in vascular patterning. Cold Spring Harb Perspect Biol
2: a001875, 2010. |
3. |
Adelman
HB
. The significance of the prechrodal plate: An interpretive study. Am J Anat
31: 55‐101, 1922. |
4. |
Alaynick
WA
,
Jessell
TM
,
Pfaff
SL
. SnapShot: Spinal cord development. Cell
146: 178‐178 e171, 2011. |
5. |
Altman
J
,
Bayer
SA
. The development of the rat hypothalamus. Adv Anat Embryol Cell Biol
100: 1‐178, 1986. |
6. |
Altmann
CR
,
Brivanlou
AH
. Neural patterning in the vertebrate embryo. Int Rev Cytol
203: 447‐482, 2001. |
7. |
Alvarez‐Medina
R
,
Cayuso
J
,
Okubo
T
,
Takada
S
,
Marti
E
. Wnt canonical pathway restricts graded Shh/Gli patterning activity through the regulation of Gli3 expression. Development
135: 237‐247, 2008. |
8. |
Amir‐Zilberstein
L
,
Blechman
J
,
Sztainberg
Y
,
Norton
WH
,
Reuveny
A
,
Borodovsky
N
,
Tahor
M
,
Bonkowsky
JL
,
Bally‐Cuif
L
,
Chen
A
,
Levkowitz
G
. Homeodomain protein otp and activity‐dependent splicing modulate neuronal adaptation to stress. Neuron
73: 279‐291, 2012. |
9. |
Andoniadou
CL
,
Signore
M
,
Young
RM
,
Gaston‐Massuet
C
,
Wilson
SW
,
Fuchs
E
,
Martinez‐Barbera
JP
. HESX1‐ and TCF3‐mediated repression of Wnt/beta‐catenin targets is required for normal development of the anterior forebrain. Development
138: 4931‐4942, 2011. |
10. |
Anthwal
N
,
Pelling
M
,
Claxton
S
,
Mellitzer
G
,
Collin
C
,
Kessaris
N
,
Richardson
WD
,
Gradwohl
G
,
Ang
SL
. Conditional deletion of neurogenin‐3 using Nkx2.1iCre results in a mouse model for the central control of feeding, activity and obesity. Dis Model Mech
6: 1133‐1145, 2013. |
11. |
Aujla
PK
,
Bora
A
,
Monahan
P
,
Sweedler
JV
,
Raetzman
LT
. The Notch effector gene Hes1 regulates migration of hypothalamic neurons, neuropeptide content and axon targeting to the pituitary. Dev Biol
353: 61‐71, 2011. |
12. |
Aujla
PK
,
Naratadam
GT
,
Xu
L
,
Raetzman
LT
. Notch/Rbpjkappa signaling regulates progenitor maintenance and differentiation of hypothalamic arcuate neurons. Development
140: 3511‐3521, 2013. |
13. |
Balaskas
N
,
Ribeiro
A
,
Panovska
J
,
Dessaud
E
,
Sasai
N
,
Page
KM
,
Briscoe
J
,
Ribes
V
. Gene regulatory logic for reading the Sonic Hedgehog signaling gradient in the vertebrate neural tube. Cell
148: 273‐284, 2012. |
14. |
Barth
KA
,
Wilson
SW
. Expression of zebrafish nk2.2 is influenced by sonic hedgehog/vertebrate hedgehog‐1 and demarcates a zone of neuronal differentiation in the embryonic forebrain. Development
121: 1755‐1768, 1995. |
15. |
Bedont
JL
,
Blackshaw
S
. Constructing the suprachiasmatic nucleus: A watchmaker's perspective on the central clockworks. Front Syst Neurosci
9: 74, 2015. |
16. |
Bedont
JL
,
Newman
EA
,
Blackshaw
S
. Patterning, specification, and differentiation in the developing hypothalamus. Wiley Interdiscip Rev Dev Biol
4: 445‐468, 2015. |
17. |
Belloni
E
,
Muenke
M
,
Roessler
E
,
Traverso
G
,
Siegel‐Bartelt
J
,
Frumkin
A
,
Mitchell
HF
,
Donis‐Keller
H
,
Helms
C
,
Hing
AV
,
Heng
HH
,
Koop
B
,
Martindale
D
,
Rommens
JM
,
Tsui
LC
,
Scherer
SW
. Identification of Sonic hedgehog as a candidate gene responsible for holoprosencephaly. Nat Genet
14: 353‐356, 1996. |
18. |
Blechman
J
,
Borodovsky
N
,
Eisenberg
M
,
Nabel‐Rosen
H
,
Grimm
J
,
Levkowitz
G
. Specification of hypothalamic neurons by dual regulation of the homeodomain protein Orthopedia. Development
134: 4417‐4426, 2007. |
19. |
Bolborea
M
,
Dale
N
. Hypothalamic tanycytes: Potential roles in the control of feeding and energy balance. Trends Neurosci
36: 91‐100, 2013. |
20. |
Borodovsky
N
,
Ponomaryov
T
,
Frenkel
S
,
Levkowitz
G
. Neural protein Olig2 acts upstream of the transcriptional regulator Sim1 to specify diencephalic dopaminergic neurons. Dev Dyn
238: 826‐834, 2009. |
21. |
Bosco
A
,
Bureau
C
,
Affaticati
P
,
Gaspar
P
,
Bally‐Cuif
L
,
Lillesaar
C
. Development of hypothalamic serotoninergic neurons requires Fgf signalling via the ETS‐domain transcription factor Etv5b. Development
140: 372‐384, 2013. |
22. |
Braun
MM
,
Etheridge
A
,
Bernard
A
,
Robertson
CP
,
Roelink
H
. Wnt signaling is required at distinct stages of development for the induction of the posterior forebrain. Development
130: 5579‐5587, 2003. |
23. |
Brinkmeier
ML
,
Potok
MA
,
Davis
SW
,
Camper
SA
. TCF4 deficiency expands ventral diencephalon signaling and increases induction of pituitary progenitors. Dev Biol
311: 396‐407, 2007. |
24. |
Briscoe
J
,
Therond
PP
. The mechanisms of Hedgehog signalling and its roles in development and disease. Nat Rev Mol Cell Biol
14: 416‐429, 2013. |
25. |
Budefeld
T
,
Tobet
SA
,
Majdic
G
. Altered position of cell bodies and fibers in the ventromedial region in SF‐1 knockout mice. Exp Neurol
232: 176‐184, 2011. |
26. |
Caqueret
A
,
Coumailleau
P
,
Michaud
JL
. Regionalization of the anterior hypothalamus in the chick embryo. Dev Dyn
233: 652‐658, 2005. |
27. |
Chapman
SC
,
Brown
R
,
Lees
L
,
Schoenwolf
GC
,
Lumsden
A
. Expression analysis of chick Wnt and frizzled genes and selected inhibitors in early chick patterning. Dev Dyn
229: 668‐676, 2004. |
28. |
Charron
F
,
Stein
E
,
Jeong
J
,
McMahon
AP
,
Tessier‐Lavigne
M
. The morphogen sonic hedgehog is an axonal chemoattractant that collaborates with netrin‐1 in midline axon guidance. Cell
113: 11‐23, 2003. |
29. |
Cheng
LE
,
Zhang
J
,
Reed
RR
. The transcription factor Zfp423/OAZ is required for cerebellar development and CNS midline patterning. Dev Biol
307: 43‐52, 2007. |
30. |
Chiang
C
,
Litingtung
Y
,
Lee
E
,
Young
KE
,
Corden
JL
,
Westphal
H
,
Beachy
PA
. Cyclopia and defective axial patterning in mice lacking Sonic hedgehog gene function. Nature
383: 407‐413, 1996. |
31. |
Chizhikov
VV
,
Millen
KJ
. Roof plate‐dependent patterning of the vertebrate dorsal central nervous system. Dev Biol
277: 287‐295, 2005. |
32. |
Christ
A
,
Christa
A
,
Kur
E
,
Lioubinski
O
,
Bachmann
S
,
Willnow
TE
,
Hammes
A
. LRP2 is an auxiliary SHH receptor required to condition the forebrain ventral midline for inductive signals. Dev Cell
22: 268‐278, 2012. |
33. |
Conte
I
,
Morcillo
J
,
Bovolenta
P
. Comparative analysis of Six 3 and Six 6 distribution in the developing and adult mouse brain. Dev Dyn
234: 718‐725, 2005. |
34. |
Correa
SM
,
Newstrom
DW
,
Warne
JP
,
Flandin
P
,
Cheung
CC
,
Lin‐Moore
AT
,
Pierce
AA
,
Xu
AW
,
Rubenstein
JL
,
Ingraham
HA
. An estrogen‐responsive module in the ventromedial hypothalamus selectively drives sex‐specific activity in females. Cell Rep
10: 62‐74, 2015. |
35. |
Dale
JK
,
Vesque
C
,
Lints
TJ
,
Sampath
TK
,
Furley
A
,
Dodd
J
,
Placzek
M
. Cooperation of BMP7 and SHH in the induction of forebrain ventral midline cells by prechordal mesoderm. Cell
90: 257‐269, 1997. |
36. |
Dasen
JS
,
Rosenfeld
MG
. Signaling and transcriptional mechanisms in pituitary development. Annu Rev Neurosci
24: 327‐355, 2001. |
37. |
Dattani
MT
,
Martinez‐Barbera
JP
,
Thomas
PQ
,
Brickman
JM
,
Gupta
R
,
Martensson
IL
,
Toresson
H
,
Fox
M
,
Wales
JK
,
Hindmarsh
PC
,
Krauss
S
,
Beddington
RS
,
Robinson
IC
. Mutations in the homeobox gene HESX1/Hesx1 associated with septo‐optic dysplasia in human and mouse. Nat Genet
19: 125‐133, 1998. |
38. |
Davis
SW
,
Camper
SA
. Noggin regulates Bmp4 activity during pituitary induction. Dev Biol
305: 145‐160, 2007. |
39. |
de Moraes
DC
,
Vaisman
M
,
Conceicao
FL
,
Ortiga‐Carvalho
TM
. Pituitary development: a complex, temporal regulated process dependent on specific transcriptional factors. J Endocrinol
215: 239‐245, 2012. |
40. |
de Souza
FS
,
Santangelo
AM
,
Bumaschny
V
,
Avale
ME
,
Smart
JL
,
Low
MJ
,
Rubinstein
M
. Identification of neuronal enhancers of the proopiomelanocortin gene by transgenic mouse analysis and phylogenetic footprinting. Mol Cell Biol
25: 3076‐3086, 2005. |
41. |
Deiner
MS
,
Sretavan
DW
. Altered midline axon pathways and ectopic neurons in the developing hypothalamus of netrin‐1‐ and DCC‐deficient mice. J Neurosci
19: 9900‐9912, 1999. |
42. |
Del Bene
F
,
Tessmar‐Raible
K
,
Wittbrodt
J
. Direct interaction of geminin and Six3 in eye development. Nature
427: 745‐749, 2004. |
43. |
Dessaud
E
,
McMahon
AP
,
Briscoe
J
. Pattern formation in the vertebrate neural tube: A sonic hedgehog morphogen‐regulated transcriptional network. Development
135: 2489‐2503, 2008. |
44. |
Dessaud
E
,
Ribes
V
,
Balaskas
N
,
Yang
LL
,
Pierani
A
,
Kicheva
A
,
Novitch
BG
,
Briscoe
J
,
Sasai
N
. Dynamic assignment and maintenance of positional identity in the ventral neural tube by the morphogen sonic hedgehog. PLoS Biol
8: e1000382, 2010. |
45. |
Dessaud
E
,
Yang
LL
,
Hill
K
,
Cox
B
,
Ulloa
F
,
Ribeiro
A
,
Mynett
A
,
Novitch
BG
,
Briscoe
J
. Interpretation of the sonic hedgehog morphogen gradient by a temporal adaptation mechanism. Nature
450: 717‐720, 2007. |
46. |
di Iorgi
N
,
Secco
A
,
Napoli
F
,
Calandra
E
,
Rossi
A
,
Maghnie
M
. Developmental abnormalities of the posterior pituitary gland. Endocr Dev
14: 83‐94, 2009. |
47. |
Dominguez
L
,
Gonzalez
A
,
Moreno
N
. Ontogenetic distribution of the transcription factor nkx2.2 in the developing forebrain of Xenopus laevis
. Front Neuroanat
5: 11, 2011. |
48. |
Dulcis
D
,
Jamshidi
P
,
Leutgeb
S
,
Spitzer
NC
. Neurotransmitter switching in the adult brain regulates behavior. Science
340: 449‐453, 2013. |
49. |
Echelard
Y
,
Epstein
DJ
,
St‐Jacques
B
,
Shen
L
,
Mohler
J
,
McMahon
JA
,
McMahon
AP
. Sonic hedgehog, a member of a family of putative signaling molecules, is implicated in the regulation of CNS polarity. Cell
75: 1417‐1430, 1993. |
50. |
Elghazi
L
,
Gould
AP
,
Weiss
AJ
,
Barker
DJ
,
Callaghan
J
,
Opland
D
,
Myers
M
,
Cras‐Meneur
C
,
Bernal‐Mizrachi
E
. Importance of beta‐catenin in glucose and energy homeostasis. Sci Rep
2: 693, 2012. |
51. |
Epstein
DJ
. Regulation of thalamic development by sonic hedgehog. Front Neurosci
6: 57, 2012. |
52. |
Ericson
J
,
Norlin
S
,
Jessell
TM
,
Edlund
T
. Integrated FGF and BMP signaling controls the progression of progenitor cell differentiation and the emergence of pattern in the embryonic anterior pituitary. Development
125: 1005‐1015, 1998. |
53. |
Erter
CE
,
Wilm
TP
,
Basler
N
,
Wright
CV
,
Solnica‐Krezel
L
. Wnt8 is required in lateral mesendodermal precursors for neural posteriorization in vivo. Development
128: 3571‐3583, 2001. |
54. |
Ezzat
S
,
Mader
R
,
Fischer
S
,
Yu
S
,
Ackerley
C
,
Asa
SL
. An essential role for the hematopoietic transcription factor Ikaros in hypothalamic‐pituitary‐mediated somatic growth. Proc Natl Acad Sci U S A
103: 2214‐2219, 2006. |
55. |
Fabbro
D
,
Tell
G
,
Pellizzari
L
,
Leonardi
A
,
Pucillo
C
,
Lonigro
R
,
Damante
G
. Definition of the DNA‐binding specificity of TTF‐1 homeodomain by chromatographic selection of binding sequences. Biochem Biophys Res Commun
213: 781‐788, 1995. |
56. |
Feldman
B
,
Gates
MA
,
Egan
ES
,
Dougan
ST
,
Rennebeck
G
,
Sirotkin
HI
,
Schier
AF
,
Talbot
WS
. Zebrafish organizer development and germ‐layer formation require nodal‐related signals. Nature
395: 181‐185, 1998. |
57. |
Ferri
A
,
Favaro
R
,
Beccari
L
,
Bertolini
J
,
Mercurio
S
,
Nieto‐Lopez
F
,
Verzeroli
C
,
La Regina
F
,
De Pietri Tonelli
D
,
Ottolenghi
S
,
Bovolenta
P
,
Nicolis
SK
. Sox2 is required for embryonic development of the ventral telencephalon through the activation of the ventral determinants Nkx2.1 and Shh. Development
140: 1250‐1261, 2013. |
58. |
Fox
DL
,
Good
DJ
. Nescient helix‐loop‐helix 2 interacts with signal transducer and activator of transcription 3 to regulate transcription of prohormone convertase 1/3. Mol Endocrinol
22: 1438‐1448, 2008. |
59. |
Garcia‐Calero
E
,
Fernandez‐Garre
P
,
Martinez
S
,
Puelles
L
. Early mammillary pouch specification in the course of prechordal ventralization of the forebrain tegmentum. Dev Biol
320: 366‐377, 2008. |
60. |
Garda
AL
,
Puelles
L
,
Rubenstein
JL
,
Medina
L
. Expression patterns of Wnt8b and Wnt7b in the chicken embryonic brain suggest a correlation with forebrain patterning centers and morphogenesis. Neuroscience
113: 689‐698, 2002. |
61. |
Geng
X
,
Speirs
C
,
Lagutin
O
,
Inbal
A
,
Liu
W
,
Solnica‐Krezel
L
,
Jeong
Y
,
Epstein
DJ
,
Oliver
G
. Haploinsufficiency of Six3 fails to activate Sonic hedgehog expression in the ventral forebrain and causes holoprosencephaly. Dev Cell
15: 236‐247, 2008. |
62. |
Gill
JC
,
Tsai
PS
. Expression of a dominant negative FGF receptor in developing GNRH1 neurons disrupts axon outgrowth and targeting to the median eminence. Biol Reprod
74: 463‐472, 2006. |
63. |
Goshu
E
,
Jin
H
,
Fasnacht
R
,
Sepenski
M
,
Michaud
JL
,
Fan
CM
. Sim2 mutants have developmental defects not overlapping with those of Sim1 mutants. Mol Cell Biol
22: 4147‐4157, 2002. |
64. |
Goshu
E
,
Jin
H
,
Lovejoy
J
,
Marion
JF
,
Michaud
JL
,
Fan
CM
. Sim2 contributes to neuroendocrine hormone gene expression in the anterior hypothalamus. Mol Endocrinol
18: 1251‐1262, 2004. |
65. |
Gregory
LC
,
Gaston‐Massuet
C
,
Andoniadou
CL
,
Carreno
G
,
Webb
EA
,
Kelberman
D
,
McCabe
MJ
,
Panagiotakopoulos
L
,
Saldanha
JW
,
Spoudeas
HA
,
Torpiano
J
,
Rossi
M
,
Raine
J
,
Canham
N
,
Martinez‐Barbera
JP
,
Dattani
MT
. The role of the sonic hedgehog signalling pathway in patients with midline defects and congenital hypopituitarism. Clin Endocrinol (Oxf)
82: 728‐738, 2015. |
66. |
Gregory
LC
,
Humayun
KN
,
Turton
JP
,
McCabe
MJ
,
Rhodes
SJ
,
Dattani
MT
. Novel lethal form of congenital hypopituitarism associated with the first recessive LHX4 mutation. J Clin Endocrinol Metab
100: 2158‐2164, 2015. |
67. |
Gritsman
K
,
Zhang
J
,
Cheng
S
,
Heckscher
E
,
Talbot
WS
,
Schier
AF
. The EGF‐CFC protein one‐eyed pinhead is essential for nodal signaling. Cell
97: 121‐132, 1999. |
68. |
Guillemot
F
. Spatial and temporal specification of neural fates by transcription factor codes. Development
134: 3771‐3780, 2007. |
69. |
Guner
B
,
Ozacar
AT
,
Thomas
JE
,
Karlstrom
RO
. Graded hedgehog and fibroblast growth factor signaling independently regulate pituitary cell fates and help establish the pars distalis and pars intermedia of the zebrafish adenohypophysis. Endocrinology
149: 4435‐4451, 2008. |
70. |
Gutnick
A
,
Blechman
J
,
Kaslin
J
,
Herwig
L
,
Belting
HG
,
Affolter
M
,
Bonkowsky
JL
,
Levkowitz
G
. The hypothalamic neuropeptide oxytocin is required for formation of the neurovascular interface of the pituitary. Dev Cell
21: 642‐654, 2011. |
71. |
Hatini
V
,
Tao
W
,
Lai
E
. Expression of winged helix genes, BF‐1 and BF‐2, define adjacent domains within the developing forebrain and retina. J Neurobiol
25: 1293‐1309, 1994. |
72. |
Hatta
K
,
Kimmel
CB
,
Ho
RK
,
Walker
C
. The cyclops mutation blocks specification of the floor plate of the zebrafish central nervous system. Nature
350: 339‐341, 1991. |
73. |
Heisenberg
CP
,
Nusslein‐Volhard
C
. The function of silberblick in the positioning of the eye anlage in the zebrafish embryo. Dev Biol
184: 85‐94, 1997. |
74. |
Hermesz
E
,
Williams‐Simons
L
,
Mahon
KA
. A novel inducible element, activated by contact with Rathke's pouch, is present in the regulatory region of the Rpx/Hesx1 homeobox gene. Dev Biol
260: 68‐78, 2003. |
75. |
Herzog
W
,
Sonntag
C
,
von der Hardt
S
,
Roehl
HH
,
Varga
ZM
,
Hammerschmidt
M
. Fgf3 signaling from the ventral diencephalon is required for early specification and subsequent survival of the zebrafish adenohypophysis. Development
131: 3681‐3692, 2004. |
76. |
Hosoya
T
,
Oda
Y
,
Takahashi
S
,
Morita
M
,
Kawauchi
S
,
Ema
M
,
Yamamoto
M
,
Fujii‐Kuriyama
Y
. Defective development of secretory neurones in the hypothalamus of Arnt2‐knockout mice. Genes Cells
6: 361‐374, 2001. |
77. |
Hu
Y
,
Poopalasundaram
S
,
Graham
A
,
Bouloux
PM
. GnRH neuronal migration and olfactory bulb neurite outgrowth are dependent on FGF receptor 1 signaling, specifically via the PI3K p110alpha isoform in chick embryo. Endocrinology
154: 388‐399, 2013. |
78. |
Ikeda
Y
,
Luo
X
,
Abbud
R
,
Nilson
JH
,
Parker
KL
. The nuclear receptor steroidogenic factor 1 is essential for the formation of the ventromedial hypothalamic nucleus. Mol Endocrinol
9: 478‐486, 1995. |
79. |
Ingraham
HA
,
Lala
DS
,
Ikeda
Y
,
Luo
X
,
Shen
WH
,
Nachtigal
MW
,
Abbud
R
,
Nilson
JH
,
Parker
KL
. The nuclear receptor steroidogenic factor 1 acts at multiple levels of the reproductive axis. Genes Dev
8: 2302‐2312, 1994. |
80. |
Jeong
Y
,
Leskow
FC
,
El‐Jaick
K
,
Roessler
E
,
Muenke
M
,
Yocum
A
,
Dubourg
C
,
Li
X
,
Geng
X
,
Oliver
G
,
Epstein
DJ
. Regulation of a remote Shh forebrain enhancer by the Six3 homeoprotein. Nat Genet
40: 1348‐1353, 2008. |
81. |
Jessell
TM
. Neuronal specification in the spinal cord: Inductive signals and transcriptional codes. Nat Rev Genet
1: 20‐29, 2000. |
82. |
Jing
E
,
Nillni
EA
,
Sanchez
VC
,
Stuart
RC
,
Good
DJ
. Deletion of the Nhlh2 transcription factor decreases the levels of the anorexigenic peptides alpha melanocyte‐stimulating hormone and thyrotropin‐releasing hormone and implicates prohormone convertases I and II in obesity. Endocrinology
145: 1503‐1513, 2004. |
83. |
Jo
YH
,
Chua
S, Jr
. Transcription factors in the development of medial hypothalamic structures. Am J Physiol Endocrinol Metab
297: E563‐E567, 2009. |
84. |
Kapsimali
M
,
Caneparo
L
,
Houart
C
,
Wilson
SW
. Inhibition of Wnt/Axin/beta‐catenin pathway activity promotes ventral CNS midline tissue to adopt hypothalamic rather than floorplate identity. Development
131: 5923‐5933, 2004. |
85. |
Keith
B
,
Adelman
DM
,
Simon
MC
. Targeted mutation of the murine arylhydrocarbon receptor nuclear translocator 2 (Arnt2) gene reveals partial redundancy with Arnt. Proc Natl Acad Sci U S A
98: 6692‐6697, 2001. |
86. |
Kelberman
D
,
Dattani
MT
. Role of transcription factors in midline central nervous system and pituitary defects. Endocr Dev
14: 67‐82, 2009. |
87. |
Kim
EJ
,
Battiste
J
,
Nakagawa
Y
,
Johnson
JE
. Ascl1 (Mash1) lineage cells contribute to discrete cell populations in CNS architecture. Mol Cell Neurosci
38: 595‐606, 2008. |
88. |
Kim
KW
,
Li
S
,
Zhao
H
,
Peng
B
,
Tobet
SA
,
Elmquist
JK
,
Parker
KL
,
Zhao
L
. CNS‐specific ablation of steroidogenic factor 1 results in impaired female reproductive function. Mol Endocrinol
24: 1240‐1250, 2010. |
89. |
Kim
KW
,
Zhao
L
,
Parker
KL
. Central nervous system‐specific knockout of steroidogenic factor 1. Mol Cell Endocrinol
300: 132‐136, 2009. |
90. |
Kimura
S
,
Hara
Y
,
Pineau
T
,
Fernandez‐Salguero
P
,
Fox
CH
,
Ward
JM
,
Gonzalez
FJ
. The T/ebp null mouse: Thyroid‐specific enhancer‐binding protein is essential for the organogenesis of the thyroid, lung, ventral forebrain, and pituitary. Genes Dev
10: 60‐69, 1996. |
91. |
Kita
A
,
Imayoshi
I
,
Hojo
M
,
Kitagawa
M
,
Kokubu
H
,
Ohsawa
R
,
Ohtsuka
T
,
Kageyama
R
,
Hashimoto
N
. Hes1 and Hes5 control the progenitor pool, intermediate lobe specification, and posterior lobe formation in the pituitary development. Mol Endocrinol
21: 1458‐1466, 2007. |
92. |
Kohtz
JD
,
Baker
DP
,
Corte
G
,
Fishell
G
. Regionalization within the mammalian telencephalon is mediated by changes in responsiveness to Sonic Hedgehog. Development
125: 5079‐5089, 1998. |
93. |
Krauss
RS
. Holoprosencephaly: New models, new insights. Expert Rev Mol Med
9: 1‐17, 2007. |
94. |
Kuenzel
WJ
,
van Tienhoven
A
. Nomenclature and location of avian hypothalamic nuclei and associated circumventricular organs. J Comp Neurol
206: 293‐313, 1982. |
95. |
Kurrasch
DM
,
Cheung
CC
,
Lee
FY
,
Tran
PV
,
Hata
K
,
Ingraham
HA
. The neonatal ventromedial hypothalamus transcriptome reveals novel markers with spatially distinct patterning. J Neurosci
27: 13624‐13634, 2007. |
96. |
Lagutin
OV
,
Zhu
CC
,
Kobayashi
D
,
Topczewski
J
,
Shimamura
K
,
Puelles
L
,
Russell
HR
,
McKinnon
PJ
,
Solnica‐Krezel
L
,
Oliver
G
. Six3 repression of Wnt signaling in the anterior neuroectoderm is essential for vertebrate forebrain development. Genes Dev
17: 368‐379, 2003. |
97. |
Langer
L
,
Taranova
O
,
Sulik
K
,
Pevny
L
. SOX2 hypomorphism disrupts development of the prechordal floor and optic cup. Mech Dev
129: 1‐12, 2012. |
98. |
Lazzaro
D
,
Price
M
,
de Felice
M
,
Di Lauro
R
. The transcription factor TTF‐1 is expressed at the onset of thyroid and lung morphogenesis and in restricted regions of the foetal brain. Development
113: 1093‐1104, 1991. |
99. |
Lee
DA
,
Blackshaw
S
. Functional implications of hypothalamic neurogenesis in the adult mammalian brain. Int J Dev Neurosci
30: 615‐621, 2012. |
100. |
Lee
JE
,
Wu
SF
,
Goering
LM
,
Dorsky
RI
. Canonical Wnt signaling through Lef1 is required for hypothalamic neurogenesis. Development
133: 4451‐4461, 2006. |
101. |
Li
H
,
Zeitler
PS
,
Valerius
MT
,
Small
K
,
Potter
SS
. Gsh‐1, an orphan Hox gene, is required for normal pituitary development. EMBO J
15: 714‐724, 1996. |
102. |
Li
P
,
Shah
S
,
Huang
L
,
Carr
AL
,
Gao
Y
,
Thisse
C
,
Thisse
B
,
Li
L
. Cloning and spatial and temporal expression of the zebrafish dopamine D1 receptor. Dev Dyn
236: 1339‐1346, 2007. |
103. |
Lipinski
RJ
,
Godin
EA
,
O'Leary‐Moore
SK
,
Parnell
SE
,
Sulik
KK
. Genesis of teratogen‐induced holoprosencephaly in mice. Am J Med Genet C Semin Med Genet
154C: 29‐42, 2010. |
104. |
Liu
F
,
Placzek
M
. Axon guidance effects of classical morphogens Shh and BMP7 in the hypothalamo‐pituitary system. Neurosci Lett
562: 108‐113, 2014. |
105. |
Liu
F
,
Pogoda
HM
,
Pearson
CA
,
Ohyama
K
,
Lohr
H
,
Hammerschmidt
M
,
Placzek
M
. Direct and indirect roles of Fgf3 and Fgf10 in innervation and vascularisation of the vertebrate hypothalamic neurohypophysis. Development
140: 1111‐1122, 2013. |
106. |
Liu
NA
,
Ren
M
,
Song
J
,
Rios
Y
,
Wawrowsky
K
,
Ben‐Shlomo
A
,
Lin
S
,
Melmed
S
. In vivo time‐lapse imaging delineates the zebrafish pituitary proopiomelanocortin lineage boundary regulated by FGF3 signal. Dev Biol
319: 192‐200, 2008. |
107. |
Lohr
H
,
Hammerschmidt
M
. Zebrafish in endocrine systems: Recent advances and implications for human disease. Annu Rev Physiol
73: 183‐211, 2011. |
108. |
Low
VF
,
Fiorini
Z
,
Fisher
L
,
Jasoni
CL
. Netrin‐1 stimulates developing GnRH neurons to extend neurites to the median eminence in a calcium‐dependent manner. PLoS One
7: e46999, 2012. |
109. |
Lu
F
,
Kar
D
,
Gruenig
N
,
Zhang
ZW
,
Cousins
N
,
Rodgers
HM
,
Swindell
EC
,
Jamrich
M
,
Schuurmans
C
,
Mathers
PH
,
Kurrasch
DM
. Rax is a selector gene for mediobasal hypothalamic cell types. J Neurosci
33: 259‐272, 2013. |
110. |
Lutz
TA
,
Woods
SC
. Overview of animal models of obesity. Curr Protoc Pharmacol Chapter 5: Unit5 61, 2012. |
111. |
Machluf
Y
,
Gutnick
A
,
Levkowitz
G
. Development of the zebrafish hypothalamus. Ann N Y Acad Sci
1220: 93‐105, 2011. |
112. |
Maggi
R
,
Zasso
J
,
Conti
L
. Neurodevelopmental origin and adult neurogenesis of the neuroendocrine hypothalamus. Front Cell Neurosci
8: 440, 2014. |
113. |
Majdic
G
,
Young
M
,
Gomez‐Sanchez
E
,
Anderson
P
,
Szczepaniak
LS
,
Dobbins
RL
,
McGarry
JD
,
Parker
KL
. Knockout mice lacking steroidogenic factor 1 are a novel genetic model of hypothalamic obesity. Endocrinology
143: 607‐614, 2002. |
114. |
Manning
L
,
Ohyama
K
,
Saeger
B
,
Hatano
O
,
Wilson
SA
,
Logan
M
,
Placzek
M
. Regional morphogenesis in the hypothalamus: A BMP‐Tbx2 pathway coordinates fate and proliferation through Shh downregulation. Dev Cell
11: 873‐885, 2006. |
115. |
Manoli
M
,
Driever
W
. nkx2.1 and nkx2.4 genes function partially redundant during development of the zebrafish hypothalamus, preoptic region, and pallidum. Front Neuroanat
8: 145, 2014. |
116. |
Marcucio
RS
,
Cordero
DR
,
Hu
D
,
Helms
JA
. Molecular interactions coordinating the development of the forebrain and face. Dev Biol
284: 48‐61, 2005. |
117. |
Marin
O
,
Baker
J
,
Puelles
L
,
Rubenstein
JL
. Patterning of the basal telencephalon and hypothalamus is essential for guidance of cortical projections. Development
129: 761‐773, 2002. |
118. |
Mathieu
J
,
Barth
A
,
Rosa
FM
,
Wilson
SW
,
Peyrieras
N
. Distinct and cooperative roles for Nodal and Hedgehog signals during hypothalamic development. Development
129: 3055‐3065, 2002. |
119. |
Matise
MP
,
Epstein
DJ
,
Park
HL
,
Platt
KA
,
Joyner
AL
. Gli2 is required for induction of floor plate and adjacent cells, but not most ventral neurons in the mouse central nervous system. Development
125: 2759‐2770, 1998. |
120. |
McCabe
MJ
,
Alatzoglou
KS
,
Dattani
MT
. Septo‐optic dysplasia and other midline defects: The role of transcription factors: HESX1 and beyond. Best Pract Res Clin Endocrinol Metab
25: 115‐124, 2011. |
121. |
McCabe
MJ
,
Gaston‐Massuet
C
,
Gregory
LC
,
Alatzoglou
KS
,
Tziaferi
V
,
Sbai
O
,
Rondard
P
,
Masumoto
KH
,
Nagano
M
,
Shigeyoshi
Y
,
Pfeifer
M
,
Hulse
T
,
Buchanan
CR
,
Pitteloud
N
,
Martinez‐Barbera
JP
,
Dattani
MT
. Variations in PROKR2, but not PROK2, are associated with hypopituitarism and septo‐optic dysplasia. J Clin Endocrinol Metab
98: E547‐E557, 2013. |
122. |
McNay
DE
,
Pelling
M
,
Claxton
S
,
Guillemot
F
,
Ang
SL
. Mash1 is required for generic and subtype differentiation of hypothalamic neuroendocrine cells. Mol Endocrinol
20: 1623‐1632, 2006. |
123. |
Medina‐Martinez
O
,
Amaya‐Manzanares
F
,
Liu
C
,
Mendoza
M
,
Shah
R
,
Zhang
L
,
Behringer
RR
,
Mahon
KA
,
Jamrich
M
. Cell‐autonomous requirement for rx function in the mammalian retina and posterior pituitary. PLoS One
4: e4513, 2009. |
124. |
Merkle
FT
,
Maroof
A
,
Wataya
T
,
Sasai
Y
,
Studer
L
,
Eggan
K
,
Schier
AF
. Generation of neuropeptidergic hypothalamic neurons from human pluripotent stem cells. Development
142: 633‐643, 2015. |
125. |
Meyer
NP
,
Roelink
H
. The amino‐terminal region of Gli3 antagonizes the Shh response and acts in dorsoventral fate specification in the developing spinal cord. Dev Biol
257: 343‐355, 2003. |
126. |
Michaud
JL
. The developmental program of the hypothalamus and its disorders. Clin Genet
60: 255‐263, 2001. |
127. |
Michaud
JL
,
DeRossi
C
,
May
NR
,
Holdener
BC
,
Fan
CM
. ARNT2 acts as the dimerization partner of SIM1 for the development of the hypothalamus. Mech Dev
90: 253‐261, 2000. |
128. |
Michaud
JL
,
Rosenquist
T
,
May
NR
,
Fan
CM
. Development of neuroendocrine lineages requires the bHLH‐PAS transcription factor SIM1. Genes Dev
12: 3264‐3275, 1998. |
129. |
Miranda‐Angulo
AL
,
Byerly
MS
,
Mesa
J
,
Wang
H
,
Blackshaw
S
. Rax regulates hypothalamic tanycyte differentiation and barrier function in mice. J Comp Neurol
522: 876‐899, 2014. |
130. |
Monuki
ES
. The morphogen signaling network in forebrain development and holoprosencephaly. J Neuropathol Exp Neurol
66: 566‐575, 2007. |
131. |
Morales‐Delgado
N
,
Merchan
P
,
Bardet
SM
,
Ferran
JL
,
Puelles
L
,
Diaz
C
. Topography of somatostatin gene expression relative to molecular progenitor domains during ontogeny of the mouse hypothalamus. Front Neuroanat
5: 10, 2011. |
132. |
Mortensen
AH
,
Schade
V
,
Lamonerie
T
,
Camper
SA
. Deletion of OTX2 in neural ectoderm delays anterior pituitary development. Hum Mol Genet
24: 939‐953, 2015. |
133. |
Muenke
M
,
Beachy
PA
. Genetics of ventral forebrain development and holoprosencephaly. Curr Opin Genet Dev
10: 262‐269, 2000. |
134. |
Muller
F
,
Albert
S
,
Blader
P
,
Fischer
N
,
Hallonet
M
,
Strahle
U
. Direct action of the nodal‐related signal cyclops in induction of sonic hedgehog in the ventral midline of the CNS. Development
127: 3889‐3897, 2000. |
135. |
Muller
MB
,
Keck
ME
. Genetically engineered mice for studies of stress‐related clinical conditions. J Psychiatr Res
36: 53‐76, 2002. |
136. |
Mutsuga
N
,
Iwasaki
Y
,
Morishita
M
,
Nomura
A
,
Yamamori
E
,
Yoshida
M
,
Asai
M
,
Ozaki
N
,
Kambe
F
,
Seo
H
,
Oiso
Y
,
Saito
H
. Homeobox protein Gsh‐1‐dependent regulation of the rat GHRH gene promoter. Mol Endocrinol
15: 2149‐2156, 2001. |
137. |
Nakai
S
,
Kawano
H
,
Yudate
T
,
Nishi
M
,
Kuno
J
,
Nagata
A
,
Jishage
K
,
Hamada
H
,
Fujii
H
,
Kawamura
K
, et al. The POU domain transcription factor Brn‐2 is required for the determination of specific neuronal lineages in the hypothalamus of the mouse. Genes Dev
9: 3109‐3121, 1995. |
138. |
Nakamura
K
,
Kimura
S
,
Yamazaki
M
,
Kawaguchi
A
,
Inoue
K
,
Sakai
T
. Immunohistochemical analyses of thyroid‐specific enhancer‐binding protein in the fetal and adult rat hypothalami and pituitary glands. Brain Res Dev Brain Res
130: 159‐166, 2001. |
139. |
Nasif
S
,
de Souza
FS
,
Gonzalez
LE
,
Yamashita
M
,
Orquera
DP
,
Low
MJ
,
Rubinstein
M
. Islet 1 specifies the identity of hypothalamic melanocortin neurons and is critical for normal food intake and adiposity in adulthood. Proc Natl Acad Sci U S A
112: E1861‐E1870, 2015. |
140. |
Norlin
S
,
Nordstrom
U
,
Edlund
T
. Fibroblast growth factor signaling is required for the proliferation and patterning of progenitor cells in the developing anterior pituitary. Mech Dev
96: 175‐182, 2000. |
141. |
Norris
DP
,
Brennan
J
,
Bikoff
EK
,
Robertson
EJ
. The Foxh1‐dependent autoregulatory enhancer controls the level of Nodal signals in the mouse embryo. Development
129: 3455‐3468, 2002. |
142. |
O'Leary
DD
,
Chou
SJ
,
Sahara
S
. Area patterning of the mammalian cortex. Neuron
56: 252‐269, 2007. |
143. |
Ohkubo
Y
,
Chiang
C
,
Rubenstein
JL
. Coordinate regulation and synergistic actions of BMP4, SHH and FGF8 in the rostral prosencephalon regulate morphogenesis of the telencephalic and optic vesicles. Neuroscience
111: 1‐17, 2002. |
144. |
Ohuchi
H
,
Hori
Y
,
Yamasaki
M
,
Harada
H
,
Sekine
K
,
Kato
S
,
Itoh
N
. FGF10 acts as a major ligand for FGF receptor 2 IIIb in mouse multi‐organ development. Biochem Biophys Res Commun
277: 643‐649, 2000. |
145. |
Ohyama
K
,
Das
R
,
Placzek
M
. Temporal progression of hypothalamic patterning by a dual action of BMP. Development
135: 3325‐3331, 2008. |
146. |
Ohyama
K
,
Ellis
P
,
Kimura
S
,
Placzek
M
. Directed differentiation of neural cells to hypothalamic dopaminergic neurons. Development
132: 5185‐5197, 2005. |
147. |
Pabst
O
,
Herbrand
H
,
Takuma
N
,
Arnold
HH
. NKX2 gene expression in neuroectoderm but not in mesendodermally derived structures depends on sonic hedgehog in mouse embryos. Dev Genes Evol
210: 47‐50, 2000. |
148. |
Padilla
SL
,
Carmody
JS
,
Zeltser
LM
. Pomc‐expressing progenitors give rise to antagonistic neuronal populations in hypothalamic feeding circuits. Nat Med
16: 403‐405, 2010. |
149. |
Park
HL
,
Bai
C
,
Platt
KA
,
Matise
MP
,
Beeghly
A
,
Hui
CC
,
Nakashima
M
,
Joyner
AL
. Mouse Gli1 mutants are viable but have defects in SHH signaling in combination with a Gli2 mutation. Development
127: 1593‐1605, 2000. |
150. |
Patten
I
,
Kulesa
P
,
Shen
MM
,
Fraser
S
,
Placzek
M
. Distinct modes of floor plate induction in the chick embryo. Development
130: 4809‐4821, 2003. |
151. |
Patten
I
,
Placzek
M
. The role of Sonic hedgehog in neural tube patterning. Cell Mol Life Sci
57: 1695‐1708, 2000. |
152. |
Pearson
CA
,
Ohyama
K
,
Manning
L
,
Aghamohammadzadeh
S
,
Sang
H
,
Placzek
M
. FGF‐dependent midline‐derived progenitor cells in hypothalamic infundibular development. Development
138: 2613‐2624, 2011. |
153. |
Pelletier
G
. Anatomy of the hypothalamic‐pituitary axis. Methods Achiev Exp Pathol
14: 1‐22, 1991. |
154. |
Pelling
M
,
Anthwal
N
,
McNay
D
,
Gradwohl
G
,
Leiter
AB
,
Guillemot
F
,
Ang
SL
. Differential requirements for neurogenin 3 in the development of POMC and NPY neurons in the hypothalamus. Dev Biol
349: 406‐416, 2011. |
155. |
Pencea
V
,
Bingaman
KD
,
Freedman
LJ
,
Luskin
MB
. Neurogenesis in the subventricular zone and rostral migratory stream of the neonatal and adult primate forebrain. Exp Neurol
172: 1‐16, 2001. |
156. |
Perez‐Martin
M
,
Cifuentes
M
,
Grondona
JM
,
Lopez‐Avalos
MD
,
Gomez‐Pinedo
U
,
Garcia‐Verdugo
JM
,
Fernandez‐Llebrez
P
. IGF‐I stimulates neurogenesis in the hypothalamus of adult rats. Eur J Neurosci
31: 1533‐1548, 2010. |
157. |
Pierce
AA
,
Xu
AW
. De novo neurogenesis in adult hypothalamus as a compensatory mechanism to regulate energy balance. J Neurosci
30: 723‐730, 2010. |
158. |
Placzek
M
,
Briscoe
J
. The floor plate: Multiple cells, multiple signals. Nat Rev Neurosci
6: 230‐240, 2005. |
159. |
Pontecorvi
M
,
Goding
CR
,
Richardson
WD
,
Kessaris
N
. Expression of Tbx2 and Tbx3 in the developing hypothalamic‐pituitary axis. Gene Expr Patterns
8: 411‐417, 2008. |
160. |
Potok
MA
,
Cha
KB
,
Hunt
A
,
Brinkmeier
ML
,
Leitges
M
,
Kispert
A
,
Camper
SA
. WNT signaling affects gene expression in the ventral diencephalon and pituitary gland growth. Dev Dyn
237: 1006‐1020, 2008. |
161. |
Puelles
L
,
Martinez‐de‐la‐Torre
M
,
Bardet
S
,
Rubenstein
JLR
. Hypothalamus. Mouse Nervous System
221‐312, 2012. |
162. |
Ratie
L
,
Ware
M
,
Barloy‐Hubler
F
,
Rome
H
,
Gicquel
I
,
Dubourg
C
,
David
V
,
Dupe
V
. Novel genes upregulated when NOTCH signalling is disrupted during hypothalamic development. Neural Dev
8: 25, 2013. |
163. |
Rebagliati
MR
,
Toyama
R
,
Fricke
C
,
Haffter
P
,
Dawid
IB
. Zebrafish nodal‐related genes are implicated in axial patterning and establishing left‐right asymmetry. Dev Biol
199: 261‐272, 1998. |
164. |
Reynaud
R
,
Jayakody
SA
,
Monnier
C
,
Saveanu
A
,
Bouligand
J
,
Guedj
AM
,
Simonin
G
,
Lecomte
P
,
Barlier
A
,
Rondard
P
,
Martinez‐Barbera
JP
,
Guiochon‐Mantel
A
,
Brue
T
. PROKR2 variants in multiple hypopituitarism with pituitary stalk interruption. J Clin Endocrinol Metab
97: E1068‐E1073, 2012. |
165. |
Rizzoti
K
,
Brunelli
S
,
Carmignac
D
,
Thomas
PQ
,
Robinson
IC
,
Lovell‐Badge
R
. SOX3 is required during the formation of the hypothalamo‐pituitary axis. Nat Genet
36: 247‐255, 2004. |
166. |
Roessler
E
,
Belloni
E
,
Gaudenz
K
,
Jay
P
,
Berta
P
,
Scherer
SW
,
Tsui
LC
,
Muenke
M
. Mutations in the human Sonic Hedgehog gene cause holoprosencephaly. Nat Genet
14: 357‐360, 1996. |
167. |
Roessler
E
,
Muenke
M
. The molecular genetics of holoprosencephaly. Am J Med Genet C Semin Med Genet
154C: 52‐61, 2010. |
168. |
Rogers
N
,
Cheah
PS
,
Szarek
E
,
Banerjee
K
,
Schwartz
J
,
Thomas
P
. Expression of the murine transcription factor SOX3 during embryonic and adult neurogenesis. Gene Expr Patterns
13: 240‐248, 2013. |
169. |
Rojczyk‐Golebiewska
E
,
Palasz
A
,
Wiaderkiewicz
R
. Hypothalamic subependymal niche: A novel site of the adult neurogenesis. Cell Mol Neurobiol
34: 631‐642, 2014. |
170. |
Roy
A
,
de Melo
J
,
Chaturvedi
D
,
Thein
T
,
Cabrera‐Socorro
A
,
Houart
C
,
Meyer
G
,
Blackshaw
S
,
Tole
S
. LHX2 is necessary for the maintenance of optic identity and for the progression of optic morphogenesis. J Neurosci
33: 6877‐6884, 2013. |
171. |
Ryu
S
,
Mahler
J
,
Acampora
D
,
Holzschuh
J
,
Erhardt
S
,
Omodei
D
,
Simeone
A
,
Driever
W
. Orthopedia homeodomain protein is essential for diencephalic dopaminergic neuron development. Curr Biol
17: 873‐880, 2007. |
172. |
Sabado
V
,
Barraud
P
,
Baker
CV
,
Streit
A
. Specification of GnRH‐1 neurons by antagonistic FGF and retinoic acid signaling. Dev Biol
362: 254‐262, 2012. |
173. |
Sahara
S
,
O'Leary
DD
. Fgf10 regulates transition period of cortical stem cell differentiation to radial glia controlling generation of neurons and basal progenitors. Neuron
63: 48‐62, 2009. |
174. |
Sakkou
M
,
Wiedmer
P
,
Anlag
K
,
Hamm
A
,
Seuntjens
E
,
Ettwiller
L
,
Tschop
MH
,
Treier
M
. A role for brain‐specific homeobox factor Bsx in the control of hyperphagia and locomotory behavior. Cell Metab
5: 450‐463, 2007. |
175. |
Salvatierra
J
,
Lee
DA
,
Zibetti
C
,
Duran‐Moreno
M
,
Yoo
S
,
Newman
EA
,
Wang
H
,
Bedont
JL
,
de Melo
J
,
Miranda‐Angulo
AL
,
Gil‐Perotin
S
,
Garcia‐Verdugo
JM
,
Blackshaw
S
. The LIM homeodomain factor Lhx2 is required for hypothalamic tanycyte specification and differentiation. J Neurosci
34: 16809‐16820, 2014. |
176. |
Sampath
K
,
Rubinstein
AL
,
Cheng
AM
,
Liang
JO
,
Fekany
K
,
Solnica‐Krezel
L
,
Korzh
V
,
Halpern
ME
,
Wright
CV
. Induction of the zebrafish ventral brain and floorplate requires cyclops/nodal signalling. Nature
395: 185‐189, 1998. |
177. |
Sanchez‐Camacho
C
,
Bovolenta
P
. Emerging mechanisms in morphogen‐mediated axon guidance. Bioessays
31: 1013‐1025, 2009. |
178. |
Sanek
NA
,
Taylor
AA
,
Nyholm
MK
,
Grinblat
Y
. Zebrafish zic2a patterns the forebrain through modulation of Hedgehog‐activated gene expression. Development
136: 3791‐3800, 2009. |
179. |
Sanz
E
,
Quintana
A
,
Deem
JD
,
Steiner
RA
,
Palmiter
RD
,
McKnight
GS
. Fertility‐regulating Kiss1 neurons arise from hypothalamic POMC‐expressing progenitors. J Neurosci
35: 5549‐5556, 2015. |
180. |
Saper
CB
,
Lowell
BB
. The hypothalamus. Curr Biol
24: R1111‐R1116, 2014. |
181. |
Sbrogna
JL
,
Barresi
MJ
,
Karlstrom
RO
. Multiple roles for Hedgehog signaling in zebrafish pituitary development. Dev Biol
254: 19‐35, 2003. |
182. |
Schier
AF
,
Neuhauss
SC
,
Helde
KA
,
Talbot
WS
,
Driever
W
. The one‐eyed pinhead gene functions in mesoderm and endoderm formation in zebrafish and interacts with no tail. Development
124: 327‐342, 1997. |
183. |
Scholpp
S
,
Lumsden
A
. Building a bridal chamber: Development of the thalamus. Trends Neurosci
33: 373‐380, 2010. |
184. |
Schonemann
MD
,
Ryan
AK
,
McEvilly
RJ
,
O'Connell
SM
,
Arias
CA
,
Kalla
KA
,
Li
P
,
Sawchenko
PE
,
Rosenfeld
MG
. Development and survival of the endocrine hypothalamus and posterior pituitary gland requires the neuronal POU domain factor Brn‐2. Genes Dev
9: 3122‐3135, 1995. |
185. |
Seth
A
,
Culverwell
J
,
Walkowicz
M
,
Toro
S
,
Rick
JM
,
Neuhauss
SC
,
Varga
ZM
,
Karlstrom
RO
. belladonna/(Ihx2) is required for neural patterning and midline axon guidance in the zebrafish forebrain. Development
133: 725‐735, 2006. |
186. |
Shimamura
K
,
Rubenstein
JL
. Inductive interactions direct early regionalization of the mouse forebrain. Development
124: 2709‐2718, 1997. |
187. |
Shimogori
T
,
Lee
DA
,
Miranda‐Angulo
A
,
Yang
Y
,
Wang
H
,
Jiang
L
,
Yoshida
AC
,
Kataoka
A
,
Mashiko
H
,
Avetisyan
M
,
Qi
L
,
Qian
J
,
Blackshaw
S
. A genomic atlas of mouse hypothalamic development. Nat Neurosci
13: 767‐775, 2010. |
188. |
Shinoda
K
,
Lei
H
,
Yoshii
H
,
Nomura
M
,
Nagano
M
,
Shiba
H
,
Sasaki
H
,
Osawa
Y
,
Ninomiya
Y
,
Niwa
O
, et al. Developmental defects of the ventromedial hypothalamic nucleus and pituitary gonadotroph in the Ftz‐F1 disrupted mice. Dev Dyn
204: 22‐29, 1995. |
189. |
Sirotkin
HI
,
Gates
MA
,
Kelly
PD
,
Schier
AF
,
Talbot
WS
. Fast1 is required for the development of dorsal axial structures in zebrafish. Curr Biol
10: 1051‐1054, 2000. |
190. |
Sousa‐Ferreira
L
,
de Almeida
LP
,
Cavadas
C
. Role of hypothalamic neurogenesis in feeding regulation. Trends Endocrinol Metab
25: 80‐88, 2014. |
191. |
Sternson
SM
. Hypothalamic survival circuits: Blueprints for purposive behaviors. Neuron
77: 810‐824, 2013. |
192. |
Swaab
DF
. Neuropeptides in hypothalamic neuronal disorders. Int Rev Cytol
240: 305‐375, 2004. |
193. |
Szabo
NE
,
Zhao
T
,
Zhou
X
,
Alvarez‐Bolado
G
. The role of Sonic hedgehog of neural origin in thalamic differentiation in the mouse. J Neurosci
29: 2453‐2466, 2009. |
194. |
Szarek
E
,
Cheah
PS
,
Schwartz
J
,
Thomas
P
. Molecular genetics of the developing neuroendocrine hypothalamus. Mol Cell Endocrinol
323: 115‐123, 2010. |
195. |
Tajima
T
,
Ishizu
K
,
Nakamura
A
. Molecular and clinical findings in patients with LHX4 and OTX2 mutations. Clin Pediatr Endocrinol
22: 15‐23, 2013. |
196. |
Takuma
N
,
Sheng
HZ
,
Furuta
Y
,
Ward
JM
,
Sharma
K
,
Hogan
BL
,
Pfaff
SL
,
Westphal
H
,
Kimura
S
,
Mahon
KA
. Formation of Rathke's pouch requires dual induction from the diencephalon. Development
125: 4835‐4840, 1998. |
197. |
Tessmar‐Raible
K
,
Raible
F
,
Christodoulou
F
,
Guy
K
,
Rembold
M
,
Hausen
H
,
Arendt
D
. Conserved sensory‐neurosecretory cell types in annelid and fish forebrain: Insights into hypothalamus evolution. Cell
129: 1389‐1400, 2007. |
198. |
Thisse
B
,
Heyer
V
,
Lux
A
,
Alunni
V
,
Degrave
A
,
Seiliez
I
,
Kirchner
J
,
Parkhill
JP
,
Thisse
C
. Spatial and temporal expression of the zebrafish genome by large‐scale in situ hybridization screening. Methods Cell Biol
77: 505‐519, 2004. |
199. |
Tran
PV
,
Lee
MB
,
Marin
O
,
Xu
B
,
Jones
KR
,
Reichardt
LF
,
Rubenstein
JR
,
Ingraham
HA
. Requirement of the orphan nuclear receptor SF‐1 in terminal differentiation of ventromedial hypothalamic neurons. Mol Cell Neurosci
22: 441‐453, 2003. |
200. |
Trowe
MO
,
Zhao
L
,
Weiss
AC
,
Christoffels
V
,
Epstein
DJ
,
Kispert
A
. Inhibition of Sox2‐dependent activation of Shh in the ventral diencephalon by Tbx3 is required for formation of the neurohypophysis. Development
140: 2299‐2309, 2013. |
201. |
Tsai
PS
,
Brooks
LR
,
Rochester
JR
,
Kavanaugh
SI
,
Chung
WC
. Fibroblast growth factor signaling in the developing neuroendocrine hypothalamus. Front Neuroendocrinol
32: 95‐107, 2011. |
202. |
Tschop
M
,
Heiman
ML
. Rodent obesity models: An overview. Exp Clin Endocrinol Diabetes
109: 307‐319, 2001. |
203. |
Ulloa
F
,
Briscoe
J
. Morphogens and the control of cell proliferation and patterning in the spinal cord. Cell Cycle
6: 2640‐2649, 2007. |
204. |
Wallis
D
,
Muenke
M
. Mutations in holoprosencephaly. Hum Mutat
16: 99‐108, 2000. |
205. |
Wang
L
,
Meece
K
,
Williams
DJ
,
Lo
KA
,
Zimmer
M
,
Heinrich
G
,
Martin Carli
J
,
Leduc
CA
,
Sun
L
,
Zeltser
LM
,
Freeby
M
,
Goland
R
,
Tsang
SH
,
Wardlaw
SL
,
Egli
D
,
Leibel
RL
. Differentiation of hypothalamic‐like neurons from human pluripotent stem cells. J Clin Invest
125: 796‐808, 2015. |
206. |
Wang
W
,
Grimmer
JF
,
Van De Water
TR
,
Lufkin
T
. Hmx2 and Hmx3 homeobox genes direct development of the murine inner ear and hypothalamus and can be functionally replaced by Drosophila Hmx. Dev Cell
7: 439‐453, 2004. |
207. |
Wang
W
,
Lufkin
T
. The murine Otp homeobox gene plays an essential role in the specification of neuronal cell lineages in the developing hypothalamus. Dev Biol
227: 432‐449, 2000. |
208. |
Wang
W
,
Lufkin
T
. Hmx homeobox gene function in inner ear and nervous system cell‐type specification and development. Exp Cell Res
306: 373‐379, 2005. |
209. |
Wang
X
,
Kopinke
D
,
Lin
J
,
McPherson
AD
,
Duncan
RN
,
Otsuna
H
,
Moro
E
,
Hoshijima
K
,
Grunwald
DJ
,
Argenton
F
,
Chien
CB
,
Murtaugh
LC
,
Dorsky
RI
. Wnt signaling regulates postembryonic hypothalamic progenitor differentiation. Dev Cell
23: 624‐636, 2012. |
210. |
Wang
X
,
Lee
JE
,
Dorsky
RI
. Identification of Wnt‐responsive cells in the zebrafish hypothalamus. Zebrafish
6: 49‐58, 2009. |
211. |
Wankhade
UD
,
Good
DJ
. Melanocortin 4 receptor is a transcriptional target of nescient helix‐loop‐helix‐2. Mol Cell Endocrinol
341: 39‐47, 2011. |
212. |
Warr
N
,
Powles‐Glover
N
,
Chappell
A
,
Robson
J
,
Norris
D
,
Arkell
RM
. Zic2‐associated holoprosencephaly is caused by a transient defect in the organizer region during gastrulation. Hum Mol Genet
17: 2986‐2996, 2008. |
213. |
Wataya
T
,
Ando
S
,
Muguruma
K
,
Ikeda
H
,
Watanabe
K
,
Eiraku
M
,
Kawada
M
,
Takahashi
J
,
Hashimoto
N
,
Sasai
Y
. Minimization of exogenous signals in ES cell culture induces rostral hypothalamic differentiation. Proc Natl Acad Sci U S A
105: 11796‐11801, 2008. |
214. |
Wattez
JS
,
Delahaye
F
,
Lukaszewski
MA
,
Risold
PY
,
Eberle
D
,
Vieau
D
,
Breton
C
. Perinatal nutrition programs the hypothalamic melanocortin system in offspring. Horm Metab Res
45: 980‐990, 2013. |
215. |
Wolf
A
,
Ryu
S
. Specification of posterior hypothalamic neurons requires coordinated activities of Fezf2, Otp, Sim1a and Foxb1.2. Development
140: 1762‐1773, 2013. |
216. |
Woods
KS
,
Cundall
M
,
Turton
J
,
Rizotti
K
,
Mehta
A
,
Palmer
R
,
Wong
J
,
Chong
WK
,
Al‐Zyoud
M
,
El‐Ali
M
,
Otonkoski
T
,
Martinez‐Barbera
JP
,
Thomas
PQ
,
Robinson
IC
,
Lovell‐Badge
R
,
Woodward
KJ
,
Dattani
MT
. Over‐ and underdosage of SOX3 is associated with infundibular hypoplasia and hypopituitarism. Am J Hum Genet
76: 833‐849, 2005. |
217. |
Wray
S
. Development of gonadotropin‐releasing hormone‐1 neurons. Front Neuroendocrinol
23: 292‐316, 2002. |
218. |
Xu
C
,
Fan
CM
. Allocation of paraventricular and supraoptic neurons requires Sim1 function: A role for a Sim1 downstream gene PlexinC1. Mol Endocrinol
21: 1234‐1245, 2007. |
219. |
Yam
PT
,
Charron
F
. Signaling mechanisms of non‐conventional axon guidance cues: The Shh, BMP and Wnt morphogens. Curr Opin Neurobiol
23: 965‐973, 2013. |
220. |
Yamamoto
M
,
Meno
C
,
Sakai
Y
,
Shiratori
H
,
Mochida
K
,
Ikawa
Y
,
Saijoh
Y
,
Hamada
H
. The transcription factor FoxH1 (FAST) mediates Nodal signaling during anterior‐posterior patterning and node formation in the mouse. Genes Dev
15: 1242‐1256, 2001. |
221. |
Yang
N
,
Dong
Z
,
Guo
S
. Fezf2 regulates multilineage neuronal differentiation through activating basic helix‐loop‐helix and homeodomain genes in the zebrafish ventral forebrain. J Neurosci
32: 10940‐10948, 2012. |
222. |
Yee
CL
,
Wang
Y
,
Anderson
S
,
Ekker
M
,
Rubenstein
JL
. Arcuate nucleus expression of NKX2.1 and DLX and lineages expressing these transcription factors in neuropeptide Y(+), proopiomelanocortin(+), and tyrosine hydroxylase(+) neurons in neonatal and adult mice. J Comp Neurol
517: 37‐50, 2009. |
223. |
Zhang
J
,
Talbot
WS
,
Schier
AF
. Positional cloning identifies zebrafish one‐eyed pinhead as a permissive EGF‐related ligand required during gastrulation. Cell
92: 241‐251, 1998. |
224. |
Zhao
L
,
Zevallos
SE
,
Rizzoti
K
,
Jeong
Y
,
Lovell‐Badge
R
,
Epstein
DJ
. Disruption of SoxB1‐dependent Sonic hedgehog expression in the hypothalamus causes septo‐optic dysplasia. Dev Cell
22: 585‐596, 2012. |
225. |
Zhao
T
,
Szabo
N
,
Ma
J
,
Luo
L
,
Zhou
X
,
Alvarez‐Bolado
G
. Genetic mapping of Foxb1‐cell lineage shows migration from caudal diencephalon to telencephalon and lateral hypothalamus. Eur J Neurosci
28: 1941‐1955, 2008. |
226. |
Zhao
Y
,
Mailloux
CM
,
Hermesz
E
,
Palkovits
M
,
Westphal
H
. A role of the LIM‐homeobox gene Lhx2 in the regulation of pituitary development. Dev Biol
337: 313‐323, 2010. |
227. |
Zhu
X
,
Gleiberman
AS
,
Rosenfeld
MG
. Molecular physiology of pituitary development: Signaling and transcriptional networks. Physiol Rev
87: 933‐963, 2007. |