Comprehensive Physiology Wiley Online Library

Neurocardiology: Structure‐Based Function

Full Article on Wiley Online Library



ABSTRACT

Cardiac control is mediated via a series of reflex control networks involving somata in the (i) intrinsic cardiac ganglia (heart), (ii) intrathoracic extracardiac ganglia (stellate, middle cervical), (iii) superior cervical ganglia, (iv) spinal cord, (v) brainstem, and (vi) higher centers. Each of these processing centers contains afferent, efferent, and local circuit neurons, which interact locally and in an interdependent fashion with the other levels to coordinate regional cardiac electrical and mechanical indices on a beat‐to‐beat basis. This control system is optimized to respond to normal physiological stressors (standing, exercise, and temperature); however, it can be catastrophically disrupted by pathological events such as myocardial ischemia. In fact, it is now recognized that autonomic dysregulation is central to the evolution of heart failure and arrhythmias. Autonomic regulation therapy is an emerging modality in the management of acute and chronic cardiac pathologies. Neuromodulation‐based approaches that target select nexus points of this hierarchy for cardiac control offer unique opportunities to positively affect therapeutic outcomes via improved efficacy of cardiovascular reflex control. As such, understanding the anatomical and physiological basis for such control is necessary to implement effectively novel neuromodulation therapies. © 2016 American Physiological Society. Compr Physiol 6:1635‐1653, 2016.

Comprehensive Physiology offers downloadable PowerPoint presentations of figures for non-profit, educational use, provided the content is not modified and full credit is given to the author and publication.

Download a PowerPoint presentation of all images


Figure 1. Figure 1. Network interactions occurring within and between peripheral ganglia and the central nervous system for control of the heart. The intrinsic cardiac nervous system (ICNS) possesses sympathetic (Sympath) and parasympathetic (Parasym) efferent postganglionic neurons, LCNs and afferent neurons. Extracardiac intrathoracic ganglia contain afferent neurons, LCN's and sympathetic efferent postganglionic neurons. Neurons in intrinsic cardiac and extracardiac networks form nested feedback loops that act in concert with CNS feedback loops (spinal cord, brainstem, hypothalamus, and forebrain) to coordinate cardiac function on a beat‐to‐beat basis. Primary nexus points for neuromodulation of the neural hierarchy are indicated: these include carotid sinus nerve (CSN) stimulation; spinal cord stimulation (SCS); vagus nerve stimulation (VNS); axonal modulation therapy (AMT); surgical ablation of the carotid body chemoreceptors (CBx); surgical decentralization (decent) of the stellate ganglia from the central nervous system; and an example of selective pharmacological interruption of cardiac afferent inputs with resiniferatoxin (RTX). Adapted, with permission, from (62).
Figure 2. Figure 2. Neural recordings from intrinsic cardiac ganglia. Left panel: An afferent neuron in the right atrial ganglionated plexus that was activated by a discrete mechanical stimulus applied to the LV epicardium. In this animal, all connections to and from the ICNS to higher centers were interrupted chronically. Middle panel: Intrinsic cardiac parasympathetic efferent postganglionic neurons in an atrial ganglion respond with fix latency to low‐frequency stimuli delivered to a cervical vagus. Right panel: Intrinsic cardiac neurons responded after a fixed latency to low‐frequency stimuli delivered to a subclavia ansae—thereby being classified as sympathetic efferent postganglionic neurons. The latter was no longer activated following hexamethonium. Adapted from (10,33,34) with permission.
Figure 3. Figure 3. Functional classification of intrinsic cardiac neurons. Left panel: Neural responses evoked from intrinsic cardiac neurons in response to: (i) discrete cardiac mechanoreceptor stimuli (right or left ventricular touch: RV; LV); (ii) global activation of cardiac mechanoreceptors via transient occlusion of the (iii) inferior vena cava (IVC) or (iv) descending aorta; (v) activation of cardiac nociceptors via transient MI (LAD CAO): or (vi) low‐level cervical vagal (right or left, RCV; LCV), or (vii) stellate ganglion (right or left, RSS; LSS) stimulation. Significance for each intervention was based on a Skellam distribution and was subdivided based on induced increases (green) or decreases (red) in evoked activity. IC LCN populations can be functionally subdivided into: (1) afferent LCNs, which transduce cardiac sensory information; (2) efferent LCNs or (3) convergent LCNs, which transduce both afferent and efferent inputs (pie chart, upper right). Bottom right panel illustrates the different functional characteristics of cardiac‐related neuronal activity including that related to isovolumetric contraction (neuron 2), the left ventricular ejection phase (neuron 1), or neurons with activity unrelated to the cardiac cycle (neuron 3). Adapted from (46) with permission.
Figure 4. Figure 4. Neurochemical diversity in human intrinsic cardiac ganglia. Top panels: Intrinsic cardiac neurons that demonstrate the cholinergic phenotype and receive cholinergic input. (A‐C) Confocal images of a ganglion that was double labeled to show high affinity choline transporter (CHT) (A) and choline acetyltransferase (ChAT) (B). Staining for CHT (A, red) was prominent in varicose nerve fibers around intrinsic cardiac neurons and faint or absent in the neuronal cell bodies. ChAT immunoreactivity (B, green) was associated with neuronal somata with less intensity in surrounding nerve processes. (C) Colocalization of CHT and ChAT was evident from the yellow color of some cell bodies and nerve processes in an overlay image (CHT+ChAT). Scale bar = 100 μm in A‐C. Bottom panels: Most intrinsic cardiac neurons stained for vesicular monoamine transporter type 2 (VMAT2), but only a subpopulation of these neurons were also tyrosine hydroxylase (TH)‐positive (D‐F). Confocal images of a section that was double labeled to show TH and VMAT2. (D) A few neurons and nerve fibers show TH immunoreactivity. (E) Prominent staining for VMAT2 occurred in most somata and many nerves fibers. VMAT2‐positive nerve varicosities are evident around several neurons. (F) OVL of TH and VMAT2 images shows that much of the TH is colocalized (yellow) with VMAT2. Adapted from (128) with permission.
Figure 5. Figure 5. Neuronal recordings obtained from canine middle cervical ganglia. Efferent neurons respond with fixed latency to stimuli delivered to preganglionic axons (left panel). LCNs were only activated by trains of stimuli delivered to axons in nerves connected to their ganglia and then with variable latency (middle panel). Middle cervical ganglia afferent neurons can be activated when discrete mechanical stimuli are applied to the heart, even when disconnected from the central nervous system right panel. Adapted from (18,20,36) with permission.
Figure 6. Figure 6. Temporal changes in cardiac innervation with disease progression: NE, norepinephrine; LIF, leukemia inhibitory factor; NGF, nerve growth factor. Taken from (98) with permission.
Figure 7. Figure 7. Photomicrographs of intrinsic cardiac ganglia obtained from the posterior right atrial ganglionated plexus from two patients with ischemic heart disease. (A) Neurons in this ganglion have a normal appearance, with many lipofuscin granules and a pale, eccentrically located nucleus. (B) In this ganglion, many neurons are enlarged and filled with dark (black arrow) or lucent (white arrow) inclusions. One neuron (arrowhead) that appears to be degenerating has very darkly stained cytoplase and is misshapen. Scale bars: A,B = 100 μm. Taken from (135) with permission.
Figure 8. Figure 8. Chronic MI functionally remodels the ICNS. Panel A: From an in vitro whole mount preparation, fiber bundles synapsing with the intrinsic cardiac neurons were stimulated via an extracellular electrode. Panel A: Recordings from preparations at 4, 7, and 14 days recovery from MI. Panel B shows summary data from multiple cells, including shams. The output frequency with fiber tract stimulation was significantly greater in neurons from 7‐day recovery preparations as compared with neurons from shams, 4 and 14 days recovery. Panel C: Adrenergic (norepinephrine: NE) modulation of IC neuronal excitability following MI. Excitability assessed by short‐term (500 μs) direct current intracellular injections into soma. The maximal responses (at 0.6 nA) shows a significant increase in evoked action potentials with NE application in control (NE), shams, and post‐MI preparations. Panel D: Muscarinic modulation of IC neuronal excitability following MI. The maximal response (at 0.6 nA) shows significant increase in action potential generation versus baseline with bethanechol application under all conditions. The maximal responses with bethanechol application in sham preparations and at 7 days post‐MI were significantly less than all other bethanechol application states. Adapted from (118) with permission.
Figure 9. Figure 9. Chronic myocardial infarction (MI) induces bilateral changes in stellate ganglia. Panel A: Somata neuropeptide Y (NPY) immunoreactivity increased following MI in left and right stellate ganglia (LSG and RSG). Specimens obtained from control animals versus left circumflex (LCX) artery or right coronary artery (RCA) occlusions that created left and right‐sided myocardial infarctions (Scale bar = 50 μm). Panel B: Quantification of NPY immunoreactivity in left and right stellate ganglia of control subjects compared to LCX and RCA infarcts. Panel C: Representative images of thionin‐stained sections of right and left stellate ganglia from control animals, compared to animals with LCX or RCA induced chronic myocardial infarctions (Scale bar 50 μm). Panel D: Quantification of mean neuronal size in left and right stellate ganglia of control subjects compared to LCX and RCA infarcts are presented. Adapted from (5) with permission.
Figure 10. Figure 10. Bursts of electrical stimuli delivered to intracardiac mediastinal nerves (MSNS, panels A and B) reproducibly evoke transient periods of atrial fibrillation (1 s latency, duration of AF ∼30 s). This methodology provides a reproducible stressor to evaluate cardiac network stability in the applications of various modes of autonomic regulation therapy (ART). Panel B: Preemptive ART with T1‐T3 SCS blunted the MSNS‐induced augmentation in IC neural activity, with a resultant decrease in the arrhythmogenic potential (panel C). Blockade of ganglionic nicotinic receptors with hexamethonium exerted similar suppression of neuronal activity concomitant with decreased atrial arhythmia formation in response to MSNS. Adapted from (108) with permission.
Figure 11. Figure 11. SCS alters peripheral autonomic reflex responses to acute ventricular ischemia, thereby exerting overall cardioprotective effects. Panel A. Coronary artery occlusion (CAO) increased middle cervical ganglia (MCG) neural activity, indicative of cardiac afferent neuron‐mediated sympathoexcitation. Right columns: While SCS by itself did not change overall MCG activity, it blunted the neuronal response previously evoked by transient CAO. Adapted from (12) with permission. Panel B: Preemptive SCS delivered either to the high cervical or upper thoracic dorsal columns reduce infarct size in response to transient MI. Adapted from (230,231) with permission.


Figure 1. Network interactions occurring within and between peripheral ganglia and the central nervous system for control of the heart. The intrinsic cardiac nervous system (ICNS) possesses sympathetic (Sympath) and parasympathetic (Parasym) efferent postganglionic neurons, LCNs and afferent neurons. Extracardiac intrathoracic ganglia contain afferent neurons, LCN's and sympathetic efferent postganglionic neurons. Neurons in intrinsic cardiac and extracardiac networks form nested feedback loops that act in concert with CNS feedback loops (spinal cord, brainstem, hypothalamus, and forebrain) to coordinate cardiac function on a beat‐to‐beat basis. Primary nexus points for neuromodulation of the neural hierarchy are indicated: these include carotid sinus nerve (CSN) stimulation; spinal cord stimulation (SCS); vagus nerve stimulation (VNS); axonal modulation therapy (AMT); surgical ablation of the carotid body chemoreceptors (CBx); surgical decentralization (decent) of the stellate ganglia from the central nervous system; and an example of selective pharmacological interruption of cardiac afferent inputs with resiniferatoxin (RTX). Adapted, with permission, from (62).


Figure 2. Neural recordings from intrinsic cardiac ganglia. Left panel: An afferent neuron in the right atrial ganglionated plexus that was activated by a discrete mechanical stimulus applied to the LV epicardium. In this animal, all connections to and from the ICNS to higher centers were interrupted chronically. Middle panel: Intrinsic cardiac parasympathetic efferent postganglionic neurons in an atrial ganglion respond with fix latency to low‐frequency stimuli delivered to a cervical vagus. Right panel: Intrinsic cardiac neurons responded after a fixed latency to low‐frequency stimuli delivered to a subclavia ansae—thereby being classified as sympathetic efferent postganglionic neurons. The latter was no longer activated following hexamethonium. Adapted from (10,33,34) with permission.


Figure 3. Functional classification of intrinsic cardiac neurons. Left panel: Neural responses evoked from intrinsic cardiac neurons in response to: (i) discrete cardiac mechanoreceptor stimuli (right or left ventricular touch: RV; LV); (ii) global activation of cardiac mechanoreceptors via transient occlusion of the (iii) inferior vena cava (IVC) or (iv) descending aorta; (v) activation of cardiac nociceptors via transient MI (LAD CAO): or (vi) low‐level cervical vagal (right or left, RCV; LCV), or (vii) stellate ganglion (right or left, RSS; LSS) stimulation. Significance for each intervention was based on a Skellam distribution and was subdivided based on induced increases (green) or decreases (red) in evoked activity. IC LCN populations can be functionally subdivided into: (1) afferent LCNs, which transduce cardiac sensory information; (2) efferent LCNs or (3) convergent LCNs, which transduce both afferent and efferent inputs (pie chart, upper right). Bottom right panel illustrates the different functional characteristics of cardiac‐related neuronal activity including that related to isovolumetric contraction (neuron 2), the left ventricular ejection phase (neuron 1), or neurons with activity unrelated to the cardiac cycle (neuron 3). Adapted from (46) with permission.


Figure 4. Neurochemical diversity in human intrinsic cardiac ganglia. Top panels: Intrinsic cardiac neurons that demonstrate the cholinergic phenotype and receive cholinergic input. (A‐C) Confocal images of a ganglion that was double labeled to show high affinity choline transporter (CHT) (A) and choline acetyltransferase (ChAT) (B). Staining for CHT (A, red) was prominent in varicose nerve fibers around intrinsic cardiac neurons and faint or absent in the neuronal cell bodies. ChAT immunoreactivity (B, green) was associated with neuronal somata with less intensity in surrounding nerve processes. (C) Colocalization of CHT and ChAT was evident from the yellow color of some cell bodies and nerve processes in an overlay image (CHT+ChAT). Scale bar = 100 μm in A‐C. Bottom panels: Most intrinsic cardiac neurons stained for vesicular monoamine transporter type 2 (VMAT2), but only a subpopulation of these neurons were also tyrosine hydroxylase (TH)‐positive (D‐F). Confocal images of a section that was double labeled to show TH and VMAT2. (D) A few neurons and nerve fibers show TH immunoreactivity. (E) Prominent staining for VMAT2 occurred in most somata and many nerves fibers. VMAT2‐positive nerve varicosities are evident around several neurons. (F) OVL of TH and VMAT2 images shows that much of the TH is colocalized (yellow) with VMAT2. Adapted from (128) with permission.


Figure 5. Neuronal recordings obtained from canine middle cervical ganglia. Efferent neurons respond with fixed latency to stimuli delivered to preganglionic axons (left panel). LCNs were only activated by trains of stimuli delivered to axons in nerves connected to their ganglia and then with variable latency (middle panel). Middle cervical ganglia afferent neurons can be activated when discrete mechanical stimuli are applied to the heart, even when disconnected from the central nervous system right panel. Adapted from (18,20,36) with permission.


Figure 6. Temporal changes in cardiac innervation with disease progression: NE, norepinephrine; LIF, leukemia inhibitory factor; NGF, nerve growth factor. Taken from (98) with permission.


Figure 7. Photomicrographs of intrinsic cardiac ganglia obtained from the posterior right atrial ganglionated plexus from two patients with ischemic heart disease. (A) Neurons in this ganglion have a normal appearance, with many lipofuscin granules and a pale, eccentrically located nucleus. (B) In this ganglion, many neurons are enlarged and filled with dark (black arrow) or lucent (white arrow) inclusions. One neuron (arrowhead) that appears to be degenerating has very darkly stained cytoplase and is misshapen. Scale bars: A,B = 100 μm. Taken from (135) with permission.


Figure 8. Chronic MI functionally remodels the ICNS. Panel A: From an in vitro whole mount preparation, fiber bundles synapsing with the intrinsic cardiac neurons were stimulated via an extracellular electrode. Panel A: Recordings from preparations at 4, 7, and 14 days recovery from MI. Panel B shows summary data from multiple cells, including shams. The output frequency with fiber tract stimulation was significantly greater in neurons from 7‐day recovery preparations as compared with neurons from shams, 4 and 14 days recovery. Panel C: Adrenergic (norepinephrine: NE) modulation of IC neuronal excitability following MI. Excitability assessed by short‐term (500 μs) direct current intracellular injections into soma. The maximal responses (at 0.6 nA) shows a significant increase in evoked action potentials with NE application in control (NE), shams, and post‐MI preparations. Panel D: Muscarinic modulation of IC neuronal excitability following MI. The maximal response (at 0.6 nA) shows significant increase in action potential generation versus baseline with bethanechol application under all conditions. The maximal responses with bethanechol application in sham preparations and at 7 days post‐MI were significantly less than all other bethanechol application states. Adapted from (118) with permission.


Figure 9. Chronic myocardial infarction (MI) induces bilateral changes in stellate ganglia. Panel A: Somata neuropeptide Y (NPY) immunoreactivity increased following MI in left and right stellate ganglia (LSG and RSG). Specimens obtained from control animals versus left circumflex (LCX) artery or right coronary artery (RCA) occlusions that created left and right‐sided myocardial infarctions (Scale bar = 50 μm). Panel B: Quantification of NPY immunoreactivity in left and right stellate ganglia of control subjects compared to LCX and RCA infarcts. Panel C: Representative images of thionin‐stained sections of right and left stellate ganglia from control animals, compared to animals with LCX or RCA induced chronic myocardial infarctions (Scale bar 50 μm). Panel D: Quantification of mean neuronal size in left and right stellate ganglia of control subjects compared to LCX and RCA infarcts are presented. Adapted from (5) with permission.


Figure 10. Bursts of electrical stimuli delivered to intracardiac mediastinal nerves (MSNS, panels A and B) reproducibly evoke transient periods of atrial fibrillation (1 s latency, duration of AF ∼30 s). This methodology provides a reproducible stressor to evaluate cardiac network stability in the applications of various modes of autonomic regulation therapy (ART). Panel B: Preemptive ART with T1‐T3 SCS blunted the MSNS‐induced augmentation in IC neural activity, with a resultant decrease in the arrhythmogenic potential (panel C). Blockade of ganglionic nicotinic receptors with hexamethonium exerted similar suppression of neuronal activity concomitant with decreased atrial arhythmia formation in response to MSNS. Adapted from (108) with permission.


Figure 11. SCS alters peripheral autonomic reflex responses to acute ventricular ischemia, thereby exerting overall cardioprotective effects. Panel A. Coronary artery occlusion (CAO) increased middle cervical ganglia (MCG) neural activity, indicative of cardiac afferent neuron‐mediated sympathoexcitation. Right columns: While SCS by itself did not change overall MCG activity, it blunted the neuronal response previously evoked by transient CAO. Adapted from (12) with permission. Panel B: Preemptive SCS delivered either to the high cervical or upper thoracic dorsal columns reduce infarct size in response to transient MI. Adapted from (230,231) with permission.
References
 1.Abraham WT, Zile MR, Weaver FA, Butter C, Ducharme A, Halbach M, Klug D, Lovett EG, Muller‐Ehmsen J, Schafer JE, Senni M, Swarup V, Wachter R, Little WC. Baroreflex activation therapy for the treatment of heart failure with a reduced ejection fraction. JACC Heart Fail 3: 487‐496, 2015.
 2.Ahonen A, Harkonen M, Juntunen J, Kormano M, Penttila A. Effects of myocardial infarction on adrenergic nerves of the rat heart muscle, a histochemical study. Acta Physiol Scand 93: 336‐344, 1975.
 3.Ajijola OA, Lellouche N, Bourke T, Tung R, Ahn S, Mahajan A, Shivkumar K. Bilateral cardiac sympathetic denervation for the management of electrical storm. J Am Coll Cardiol 59: 91‐92, 2012.
 4.Ajijola OA, Wisco JJ, Lambert HW, Mahajan A, Stark E, Fishbein MC, Shivkumar K. Extracardiac neural remodeling in humans with cardiomyopathy. Circ Arrhythm Electrophysiol 5: 1010‐1116, 2012.
 5.Ajijola OA, Yagishita D, Reddy NK, Yamakawa K, Vaseghi M, Downs AM, Hoover DB, Ardell JL, Shivkumar K. Remodeling of stellate ganglion neurons after spatially targeted myocardial infarction: Neuropeptide and morphologic changes. Heart Rhythm 12: 1027‐1035, 2015.
 6.Anderson DJ, Najafi K, Tanghe SJ, Evans DA, Levy KL, Hetke JF, Xue XL, Zappia JJ, Wise KD. Batch‐fabricated thin‐film electrodes for stimulation of the central auditory system. IEEE Trans Biomed Eng 36: 693‐704, 1989.
 7.Andresen MC, Kunze DL, Mendelowitz D. Central nervous system regulation of the heart. In: Armour JA, Ardell JL, editors. Basic and Clincial Neurocardiology. New York: Oxford University Press, 2004, pp. 187‐219.
 8.Antoni ML, Boden H, Hoogslag GE, Ewe SH, Auger D, Holman ER, van der Wall EE, Schalij MJ, Bax JJ, Delgado V. Prevalence of dyssynchrony and relation with long‐term outcome in patients after acute myocardial infarction. Am J Cardiol 108: 1689‐1696, 2011.
 9.Ardell JL. Intrathoracic neuronal regulation of cardiac function. In: Armour JA, Ardell JL, editors. Basic and Clinical Neurocardiology. New York: Oxford University Press, 2004, pp. 118‐152.
 10.Ardell JL, Butler CK, Smith FM, Hopkins DA, Armour JA. Activity of in vivo atrial and ventricular neurons in chronically decentralized canine hearts. Am J Physiol 260: H713‐H721, 1991.
 11.Ardell JL, Cardinal R, Beaumont E, Vermeulen M, Smith FM, Andrew Armour J. Chronic spinal cord stimulation modifies intrinsic cardiac synaptic efficacy in the suppression of atrial fibrillation. Auton Neurosci 186: 38‐44, 2014.
 12.Ardell JL, Cardinal R, Vermeulen M, Armour JA. Dorsal spinal cord stimulation obtunds the capacity of intrathoracic extracardiac neurons to transduce myocardial ischemia. Am J Physiol Regul Integr Comp Physiol 297: R470‐R477, 2009.
 13.Ardell JL, Rajendran PS, Nier HA, KenKnight BH, Armour JA. Central‐peripheral neural network interactions evoked by vagus nerve stimulation: functional consequences on control of cardiac function. Am J Physiol Heart Circ Physiol 309: H1740‐H1752, 2015.
 14.Ardell JL, Randall WC. Selective vagal innervation of sinoatrial and atrioventricular nodes in canine heart. Am J Physiol 251: H764‐H773, 1986.
 15.Armour JA. Physiological behavior of thoracic cardiovascular receptors. Am J Physiol 225: 177‐185, 1973.
 16.Armour JA. Instant to instant reflex cardiac regulation. Cardiology 61: 309‐328, 1976.
 17.Armour JA. Synaptic transmission in the chronically decentralized middle cervical and stellate ganglia of the dog. Can J Physiol Pharmacol 61: 1149‐1155, 1983.
 18.Armour JA. Activity of in situ middle cervical ganglion neurons in dogs, using extracellular recording techniques. Can J Physiol Pharmacol 63: 704‐716, 1985.
 19.Armour JA. Activity of in situ stellate ganglion neurons of dogs recorded extracellularly. Can J Physiol Pharmacol 64: 101‐111, 1986.
 20.Armour JA. Neuronal activity recorded extracellularly in chronically decentralized in situ canine middle cervical ganglia. Can J Physiol Pharmacol 64: 1038‐1046, 1986.
 21.Armour JA. Anatomy and function of intrathoracic neurons regulating the heart. In: Zucker IH, Gilmore JP, editors. Reflex Control of the Circulation. Boca Raton: CRC Press, 1991, pp. 1‐37.
 22.Armour JA. Peripheral autonomic neuronal interactions in cardiac regulation. In: Armour JA, Ardell JL, editors. Neurocardiology. NY: Oxford University Press, 1994, pp. 219‐244.
 23.Armour JA. Intrinsic cardiac neurons involved in cardiac regulation possess alpha 1‐, alpha 2‐, beta 1‐ and beta 2‐adrenoceptors. Can J Cardiol 13: 277‐284, 1997.
 24.Armour JA. Myocardial ischaemia and the cardiac nervous system. Cardiovasc Res 41: 41‐54, 1999.
 25.Armour JA. Cardiac neuronal hierarchy in health and disease. Am J Physiol Regul Integr Comp Physiol 287: R262‐R271, 2004.
 26.Armour JA. Potential clinical relevance of the ‘little brain’ on the mammalian heart. Exp Physiol 93: 165‐176, 2008.
 27.Armour JA. Functional anatomy of intrathoracic neurons innervating the atria and ventricles. Heart Rhythm 7: 994‐996, 2010.
 28.Armour JA, Ardell JL. Neurocardiology. New York: Oxford University Press, 1994.
 29.Armour JA, Ardell JL. Basic and Clinical Neurocardiology. New York: Oxford University Press, 2004.
 30.Armour JA, Collier K, Kember G, Ardell JL. Differential selectivity of cardiac neurons in separate intrathoracic autonomic ganglia. Am J Physiol 274: R939‐R949, 1998.
 31.Armour JA, Hageman GR, Randall WC. Arrhythmias induced by local cardiac nerve stimulation. Am J Physiol 223: 1068‐1075, 1972.
 32.Armour JA, Hopkins DA. Anatomy of the extrinsic autnonomic nerves and ganglia innervating the mammalian heart. In: Randall WC, editor. Nervous Control of Cardiovascular Function. New York: Oxford University Press, 1984, pp. 21‐67.
 33.Armour JA, Hopkins DA. Activity of canine in situ left atrial ganglion neurons. Am J Physiol 259: H1207‐H1215, 1990.
 34.Armour JA, Hopkins DA. Activity of in vivo canine ventricular neurons. Am J Physiol 258: H326‐H336, 1990.
 35.Armour JA, Huang MH, Pelleg A, Sylven C. Responsiveness of in situ canine nodose ganglion afferent neurones to epicardial mechanical or chemical stimuli. Cardiovasc Res 28: 1218‐1225, 1994.
 36.Armour JA, Janes RD. Neuronal activity recorded extracellularly from in situ canine mediastinal ganglia. Can J Physiol Pharmacol 66: 119‐127, 1988.
 37.Armour JA, Kember G. Cardiac sensory neurons. In: Armour JA, Ardell JL, editors. Basic and Clinical Neurocardiology. New York: Oxford University Press, 2004, pp. 79‐117.
 38.Armour JA, Murphy DA, Yuan BX, Macdonald S, Hopkins DA. Gross and microscopic anatomy of the human intrinsic cardiac nervous system. Anat Rec 247: 289‐298, 1997.
 39.Armour JA, Randall WC. In vivo papillary muscle responses to cardiac nerve stimulation. Proc Soc Exp Biol Med 133: 948‐952, 1970.
 40.Armour JA, Randall WC. Functional anatomy of canine cardiac nerves. Acta Anat (Basel) 91: 510‐528, 1975.
 41.Armour JA, Richer LP, Page P, Vinet A, Kus T, Vermeulen M, Nadeau R, Cardinal R. Origin and pharmacological response of atrial tachyarrhythmias induced by activation of mediastinal nerves in canines. Auton Neurosci 118: 68‐78, 2005.
 42.Arora RC, Ardell JL, Armour JA. Cardiac denervation and cardiac function. Curr Interv Cardiol Rep 2: 188‐195, 2000.
 43.Arora RC, Armour JA. Adenosine A1 receptor activation reduces myocardial reperfusion effects on intrinsic cardiac nervous system. Am J Physiol Regul Integr Comp Physiol 284: R1314‐R1321, 2003.
 44.Arora RC, Cardinal R, Smith FM, Ardell JL, Dell'Italia LJ, Armour JA. Intrinsic cardiac nervous system in tachycardia induced heart failure. Am J Physiol Regul Integr Comp Physiol 285: R1212‐R1223, 2003.
 45.Arora RC, Waldmann M, Hopkins DA, Armour JA. Porcine intrinsic cardiac ganglia. Anat Rec A Discov Mol Cell Evol Biol 271: 249‐258, 2003.
 46.Beaumont E, Salavatian S, Southerland EM, Vinet A, Jacquemet V, Armour JA, Ardell JL. Network interactions within the canine intrinsic cardiac nervous system: Implications for reflex control of regional cardiac function. J Physiol 591: 4515‐4533, 2013.
 47.Beaumont E, Southerland EM, Hardwick JC, Wright GL, Ryan S, Li Y, KenKnight BH, Armour JA, Ardell JL. Vagus nerve stimulation mitigates intrinsic cardiac neuronal and adverse myocyte remodeling postmyocardial infarction. Am J Physiol Heart Circ Physiol 309: H1198‐H1206, 2015.
 48.Belardinelli R. Exercise training in chronic heart failure: How to harmonize oxidative stress, sympathetic outflow, and angiotensin II. Circulation 115: 3042‐3044, 2007.
 49.Belardinelli R, Georgiou D, Cianci G, Purcaro A. 10‐year exercise training in chronic heart failure: A randomized controlled trial. J Am Coll Cardiol 60: 1521‐1528, 2012.
 50.Belevych AE, Terentyev D, Terentyeva R, Ho HT, Gyorke I, Bonilla IM, Carnes CA, Billman GE, Gyorke S. Shortened Ca2+ signaling refractoriness underlies cellular arrhythmogenesis in a postinfarction model of sudden cardiac death. Circ Res 110: 569‐577, 2012.
 51.Bibevski S, Dunlap ME. Ganglionic mechanisms contribute to diminished vagal control in heart failure. Circulation 99: 2958‐2963, 1999.
 52.Bibevski S, Dunlap ME. Prevention of diminished parasympathetic control of the heart in experimental heart failure. Am J Physiol Heart Circ Physiol 287: H1780‐H1785, 2004.
 53.Bibevski S, Dunlap ME. Evidence for impaired vagus nerve activity in heart failure. Heart Fail Rev 16: 129‐135, 2011.
 54.Billman GE. A comprehensive review and analysis of 25 years of data from an in vivo canine model of sudden cardiac death: Implications for future anti‐arrhythmic drug development. Pharmacol Ther 111: 808‐835, 2006.
 55.Blankestijn PJ, Alings M, Voskuil M, Grobbee DE. The complexity after simplicity: how to proceed with renal denervation in hypertension? Eur J Prev Cardiol 22: 412‐414, 2015.
 56.Bohm M, Linz D, Ukena C, Esler M, Mahfoud F. Renal denervation for the treatment of cardiovascular high risk‐hypertension or beyond? Circ Res 115: 400‐409, 2014.
 57.Bosnjak ZJ, Kampine JP. Cardiac sympathetic afferent cell bodies are located in the peripheral nervous system of the cat. Circ Res 64: 554‐562, 1989.
 58.Bourke T, Vaseghi M, Michowitz Y, Sankhla V, Shah M, Swapna N, Boyle NG, Mahajan A, Narasimhan C, Lokhandwala Y, Shivkumar K. Neuraxial modulation for refractory ventricular arrhythmias: Value of thoracic epidural anesthesia and surgical left cardiac sympathetic denervation. Circulation 121: 2255‐2262, 2010.
 59.Bradfield JS, Vaseghi M, Shivkumar K. Renal denervation for refractory ventricular arrhythmias. Trends Cardiovasc Med 24: 206‐213, 2014.
 60.Brandt MC, Mahfoud F, Reda S, Schirmer SH, Erdmann E, Bohm M, Hoppe UC. Renal sympathetic denervation reduces left ventricular hypertrophy and improves cardiac function in patients with resistant hypertension. J Am Coll Cardiol 59: 901‐909, 2012.
 61.Brown AM. Cardiac Reflexes. In: Berne RM, Sperelakis N, Geiger SR, editors. Handbook of Physiology, The Cardiovascular System. Bethesda: American Physiological Society: Williams and Wilkins, 1979, pp. 677‐689.
 62.Buckley U, Shivkumar K, Ardell JL. Autonomic regulation therapy in heart failure. Curr Heart Fail Rep 12: 284‐293, 2015.
 63.Buckley U, Yamakawa K, Takamiya T, Armour JA, Shivkumar K, Ardell JL. Targeted stellate decentralization: Implications for sympathetic control of ventricular electrophysiology. Heart Rhythm 13: 282‐288, 2015.
 64.Butler CK, Smith FM, Cardinal R, Murphy DA, Hopkins DA, Armour JA. Cardiac responses to electrical stimulation of discrete loci in canine atrial and ventricular ganglionated plexi. Am J Physiol 259: H1365‐H1373, 1990.
 65.Butler CK, Smith FM, Nicholson J, Armour JA. Cardiac effects induced by chemically activated neurons in canine intrathoracic ganglia. Am J Physiol 259: H1108‐H1117, 1990.
 66.Cao JM, Chen LS, KenKnight BH, Ohara T, Lee MH, Tsai J, Lai WW, Karagueuzian HS, Wolf PL, Fishbein MC, Chen PS. Nerve sprouting and sudden cardiac death. Circ Res 86: 816‐821, 2000.
 67.Cardinal R, Ardell JL, Linderoth B, Vermeulen M, Foreman RD, Armour JA. Spinal cord activation differentially modulates ischaemic electrical responses to different stressors in canine ventricles. Auton Neurosci 111: 37‐47, 2004.
 68.Cardinal R, Armour JA, Bouchard C, Vermeulen M, Vinet A, Nadeau R, Page P. Atrial tachyarrhythmias and repolarization changes induced by discrete activation of dorsal mediastinal cardiac nerves in canines. Circ Arrhythm Electrophysiol 3: 511‐520, 2010.
 69.Cardinal R, Page P, Vermeulen M, Ardell JL, Armour JA. Spatially divergent cardiac responses to nicotinic stimulation of ganglionated plexus neurons in the canine heart. Auton Neurosci 145: 55‐62, 2009.
 70.Cardinal R, Page P, Vermeulen M, Bouchard C, Ardell JL, Foreman RD, Armour JA. Spinal cord stimulation suppresses bradycardias and atrial tachyarrhythmias induced by mediastinal nerve stimulation in dogs. Am J Physiol Regul Integr Comp Physiol 291: R1369‐R1375, 2006.
 71.Chapleau MW, Hajduczok G, Sharma RV, Wachtel RE, Cunningham JT, Sullivan MJ, Abboud FM. Mechanisms of baroreceptor activation. Clin Exp Hypertens 17: 1‐13, 1995.
 72.Chapleau MW, Li Z, Meyrelles SS, Ma X, Abboud FM. Mechanisms determining sensitivity of baroreceptor afferents in health and disease. Ann N Y Acad Sci 940: 1‐19, 2001.
 73.Chatterjee NA, Singh JP. Novel interventional therapies to modulate the autonomic tone in heart failure. JACC Heart Fail 3: 786‐802, 2015.
 74.Chechetto DF. Forebrain Control of Healthy and Diseased Hearts. In: Armour JA, Ardell JL, editors. Basic and Clinical Neurocardiology. New York: Oxford University press, 2004, pp. 221‐251.
 75.Chen M, Yu L, Zhou X, Liu Q, Jiang H, Zhou S. Low‐level vagus nerve stimulation: An important therapeutic option for atrial fibrillation treatment via modulating cardiac autonomic tone. Int J Cardiol 199: 437‐438, 2015.
 76.Chen PS, Chen LS, Cao JM, Sharifi B, Karagueuzian HS, Fishbein MC. Sympathetic nerve sprouting, electrical remodeling and the mechanisms of sudden cardiac death. Cardiovasc Res 50: 409‐416, 2001.
 77.Chen PS, Chen LS, Fishbein MC, Lin SF, Nattel S. Role of the autonomic nervous system in atrial fibrillation: Pathophysiology and therapy. Circ Res 114: 1500‐1515, 2014.
 78.Cheng Z, Powley TL, Schwaber JS, Doyle FJ, 3rd. Vagal afferent innervation of the atria of the rat heart reconstructed with confocal microscopy. J Comp Neurol 381: 1‐17, 1997.
 79.Coote JH. Myths and realities of the cardiac vagus. J Physiol 591: 4073‐4085, 2013.
 80.Crow MT, Mani K, Nam YJ, Kitsis RN. The mitochondrial death pathway and cardiac myocyte apoptosis. Circ Res 95: 957‐970, 2004.
 81.Dampney RA, Coleman MJ, Fontes MA, Hirooka Y, Horiuchi J, Li YW, Polson JW, Potts PD, Tagawa T. Central mechanisms underlying short‐ and long‐term regulation of the cardiovascular system. Clin Exp Pharmacol Physiol 29: 261‐268, 2002.
 82.Darvesh S, Nance DM, Hopkins DA, Armour JA. Distribution of neuropeptide‐like immunoreactivity in intact and chronically decentralized middle cervical and stellate ganglia of dogs. J Auton Nerv Syst 21: 167‐180, 1987.
 83.De Ferrari GM. Vagal stimulation in heart failure. J Cardiovasc Transl Res 7: 310‐320, 2014.
 84.Dell'Italia LJ. Translational success stories: Angiotensin receptor 1 antagonists in heart failure. Circ Res 109: 437‐452, 2011.
 85.Dickerson LW, Rodak DJ, Fleming TJ, Gatti PJ, Massari VJ, McKenzie JC, Gillis RA. Parasympathetic neurons in the cranial medial ventricular fat pad on the dog heart selectively decrease ventricular contractility. J Auton Nerv Syst 70: 129‐141, 1998.
 86.Dobaczewski M, Gonzalez‐Quesada C, Frangogiannis NG. The extracellular matrix as a modulator of the inflammatory and reparative response following myocardial infarction. J Mol Cell Cardiol 48: 504‐511, 2010.
 87.Ellison JP, Hibbs RG. An ultrastructural study of mammalian cardiac ganglia. J Mol Cell Cardiol 8: 89‐101, 1976.
 88.Ewert TJ, Gritman KR, Bader M, Habecker BA. Post‐infarct cardiac sympathetic hyperactivity regulates galanin expression. Neurosci Lett 436: 163‐166, 2008.
 89.Florea VG, Cohn JN. The autonomic nervous system and heart failure. Circ Res 114: 1815‐1826, 2014.
 90.Foreman RD. Mechanisms of cardiac pain. Annu Rev Physiol 61: 143‐167, 1999.
 91.Foreman RD, Blair RW, Holmes HR, Armour JA. Correlation of ventricular mechanosensory neurite activity with myocardial sensory field deformation. Am J Physiol 276: R979‐R989, 1999.
 92.Foreman RD, Linderoth B. Neural mechanisms of spinal cord stimulation. Int Rev Neurobiol 107: 87‐119, 2012.
 93.Foreman RDD, DeJongste M.J.L.; Linderoth, B. Integrative control of cardiac function by cervical and thoracic spinal neurons. In: Armour JA, Ardell JL, editors. Basic and Clinical Neurocardiology. New York: Oxford University Press, 2004, pp. 153‐186.
 94.Forsgren S, Moravec M, Moravec J. Catecholamine‐synthesizing enzymes and neuropeptides in rat heart epicardial ganglia; an immunohistochemical study. Histochem J 22: 667‐676, 1990.
 95.Francillon MR. Zur Topographie der Ganglien des menschlichen Herzens. Ztschr Anat Entwg 85: 131‐165, 1928.
 96.Franco‐Cereceda A, Kallner G, Lundberg JM. Capsazepine‐sensitive release of calcitonin gene‐related peptide from C‐fibre afferents in the guinea‐pig heart by low pH and lactic acid. Eur J Pharmacol 238: 311‐316, 1993.
 97.Fu LW, Longhurst JC. Regulation of cardiac afferent excitability in ischemia. Handb Exp Pharmacol 194: 185‐225, 2009.
 98.Fukuda K, Kanazawa H, Aizawa Y, Ardell JL, Shivkumar K. Cardiac innervation and sudden cardiac death. Circ Res 116: 2005‐2019, 2015.
 99.Furukawa Y, Hoyano Y, Chiba S. Parasympathetic inhibition of sympathetic effects on sinus rate in anesthetized dogs. Am J Physiol 271: H44‐H50, 1996.
 100.Gagliardi M, Randall WC, Bieger D, Wurster RD, Hopkins DA, Armour JA. Activity of in vivo canine cardiac plexus neurons. Am J Physiol 255: H789‐H800, 1988.
 101.Gardner RT, Wang L, Lang BT, Cregg JM, Dunbar CL, Woodward WR, Silver J, Ripplinger CM, Habecker BA. Targeting protein tyrosine phosphatase sigma after myocardial infarction restores cardiac sympathetic innervation and prevents arrhythmias. Nat Commun 6: 6235, 2015.
 102.Gatti PJ, Johnson TA, Massari VJ. Can neurons in the nucleus ambiguus selectively regulate cardiac rate and atrio‐ventricular conduction? J Auton Nerv Syst 57: 123‐127, 1996.
 103.Gatti PJ, Johnson TA, Phan P, Jordan IK, III, Coleman W, Massari VJ. The physiological and anatomical demonstration of functionally selective parasympathetic ganglia located in discrete fat pads on the feline myocardium. J Auton Nerv Syst 51: 255‐259, 1995.
 104.Gebber GL, Zhong S, Paitel Y. Bispectral analysis of complex patterns of sympathetic nerve discharge. Am J Physiol 271: R1173‐R1185, 1996.
 105.Geis GS, Wurster RD. Cardiac responses during stimulation of the dorsal motor nucleus and nucleus ambiguus in the cat. Circ Res 46: 606‐611, 1980.
 106.Geis GS, Wurster RD. Horseradish peroxidase localization of cardiac vagal preganglionic somata. Brain Res 182: 19‐30, 1980.
 107.Gelband H, Rosen MR, Myerburg RJ, Bush HL, Bassett AL, Hoffman BF. Restorative effect of epinephrine on the electrophysiologic properties of depressed human atrial tissue. J Electrocardiol 10: 313‐320, 1977.
 108.Gibbons DD, Southerland EM, Hoover DB, Beaumont E, Armour JA, Ardell JL. Neuromodulation targets intrinsic cardiac neurons to attenuate neuronally mediated atrial arrhythmias. Am J Physiol Regul Integr Comp Physiol 302: R357‐R364, 2012.
 109.Girasole AE, Palmer CP, Corrado SL, Marie Southerland E, Ardell JL, Hardwick JC. Angiotensin II potentiates adrenergic and muscarinic modulation of guinea pig intracardiac neurons. Am J Physiol Regul Integr Comp Physiol 301: R1391‐R1399, 2011.
 110.Glukhov AV, Fedorov VV, Kalish PW, Ravikumar VK, Lou Q, Janks D, Schuessler RB, Moazami N, Efimov IR. Conduction remodeling in human end‐stage nonischemic left ventricular cardiomyopathy. Circulation 125: 1835‐1847, 2012.
 111.Glukhov AV, Fedorov VV, Lou Q, Ravikumar VK, Kalish PW, Schuessler RB, Moazami N, Efimov IR. Transmural dispersion of repolarization in failing and nonfailing human ventricle. Circ Res 106: 981‐991, 2010.
 112.Gray AL, Johnson TA, Ardell JL, Massari VJ. Parasympathetic control of the heart. II. A novel interganglionic intrinsic cardiac circuit mediates neural control of heart rate. J Appl Physiol (1985) 96: 2273‐2278, 2004.
 113.Gray AL, Johnson TA, Lauenstein JM, Newton SS, Ardell JL, Massari VJ. Parasympathetic control of the heart. III. Neuropeptide Y‐immunoreactive nerve terminals synapse on three populations of negative chronotropic vagal preganglionic neurons. J Appl Physiol (1985) 96: 2279‐2287, 2004.
 114.Hamann JJ, Ruble SB, Stolen C, Wang M, Gupta RC, Rastogi S, Sabbah HN. Vagus nerve stimulation improves left ventricular function in a canine model of chronic heart failure. Eur J Heart Fail 15: 1319‐1326, 2013.
 115.Han S, Kobayashi K, Joung B, Piccirillo G, Maruyama M, Vinters HV, March K, Lin SF, Shen C, Fishbein MC, Chen PS, Chen LS. Electroanatomic remodeling of the left stellate ganglion after myocardial infarction. J Am Coll Cardiol 59: 954‐961, 2012.
 116.Hankes GH, Ardell JL, Tallaj J, Wei CC, Aban I, Holland M, Rynders P, Dillon R, Cardinal R, Hoover DB, Armour JA, Husain A, Dell'Italia LJ. Beta1‐adrenoceptor blockade mitigates excessive norepinephrine release into cardiac interstitium in mitral regurgitation in dog. Am J Physiol Heart Circ Physiol 291: H147‐H151, 2006.
 117.Hardwick JC, Baran CN, Southerland EM, Ardell JL. Remodeling of the guinea pig intrinsic cardiac plexus with chronic pressure overload. Am J Physiol Regul Integr Comp Physiol 297: R859‐R866, 2009.
 118.Hardwick JC, Ryan SE, Beaumont E, Ardell JL, Southerland EM. Dynamic remodeling of the guinea pig intrinsic cardiac plexus induced by chronic myocardial infarction. Auton Neurosci 181: 4‐12, 2014.
 119.Hardwick JC, Ryan SE, Powers EN, Southerland EM, Ardell JL. Angiotensin receptors alter myocardial infarction‐induced remodeling of the guinea pig cardiac plexus. Am J Physiol Regul Integr Comp Physiol 309: R179‐R188, 2015.
 120.Hardwick JC, Southerland EM, Ardell JL. Chronic myocardial infarction induces phenotypic and functional remodeling in the guinea pig cardiac plexus. Am J Physiol Regul Integr Comp Physiol 295: R1926‐R1933, 2008.
 121.Hardwick JC, Southerland EM, Girasole AE, Ryan SE, Negrotto S, Ardell JL. Remodeling of intrinsic cardiac neurons: Effects of beta‐adrenergic receptor blockade in guinea pig models of chronic heart disease. Am J Physiol Regul Integr Comp Physiol 303: R950‐R958, 2012.
 122.Harper RM, Kumar R, Macey PM, Ogren JA, Richardson HL. Functional neuroanatomy and sleep‐disordered breathing: implications for autonomic regulation. Anat Rec (Hoboken) 295: 1385‐1395, 2012.
 123.Harper RM, Kumar R, Ogren JA, Macey PM. Sleep‐disordered breathing: Effects on brain structure and function. Respir Physiol Neurobiol 188: 383‐391, 2013.
 124.Harper RM, Richard CA, Rector DM. Physiological and ventral medullary surface activity during hypovolemia. Neuroscience 94: 579‐586, 1999.
 125.Herring N. Autonomic control of the heart: Going beyond the classical neurotransmitters. Exp Physiol 100: 354‐358, 2015.
 126.Herring N, Cranley J, Lokale MN, Li D, Shanks J, Alston EN, Girard BM, Carter E, Parsons RL, Habecker BA, Paterson DJ. The cardiac sympathetic co‐transmitter galanin reduces acetylcholine release and vagal bradycardia: Implications for neural control of cardiac excitability. J Mol Cell Cardiol 52: 667‐676, 2012.
 127.Herring N, Paterson DJ. Neuromodulators of peripheral cardiac sympatho‐vagal balance. Exp Physiol 94: 46‐53, 2009.
 128.Hoover DB, Isaacs ER, Jacques F, Hoard JL, Page P, Armour JA. Localization of multiple neurotransmitters in surgically derived specimens of human atrial ganglia. Neuroscience 164: 1170‐1179, 2009.
 129.Hoover DB, Shepherd AV, Southerland EM, Armour JA, Ardell JL. Neurochemical diversity of afferent neurons that transduce sensory signals from dog ventricular myocardium. Auton Neurosci 141: 38‐45, 2008.
 130.Hopkins DA, Armour JA. Medullary cells of origin of physiologically identified cardiac nerves in the dog. Brain Res Bull 8: 359‐365, 1982.
 131.Hopkins DA, Armour JA. Localization of sympathetic postganglionic and parasympathetic preganglionic neurons which innervate different regions of the dog heart. J Comp Neurol 229: 186‐198, 1984.
 132.Hopkins DA, Armour JA. Ganglionic distribution of afferent neurons innervating the canine heart and cardiopulmonary nerves. J Auton Nerv Syst 26: 213‐222, 1989.
 133.Hopkins DA, Armour JA. Brainstem cells of origin of physiologically identified cardiopulmonary nerves in the rhesus monkey (Macaca mulatta). J Auton Nerv Syst 68: 21‐32, 1998.
 134.Hopkins DA, Gootman PM, Gootman N, Armour JA. Anatomy of medullary and peripheral autonomic neurons innervating the neonatal porcine heart. J Auton Nerv Syst 64: 74‐84, 1997.
 135.Hopkins DA, Macdonald SE, Murphy DA, Armour JA. Pathology of intrinsic cardiac neurons from ischemic human hearts. Anat Rec 259: 424‐436, 2000.
 136.Horackova M, Armour JA, Byczko Z. Distribution of intrinsic cardiac neurons in whole‐mount guinea pig atria identified by multiple neurochemical coding. A confocal microscope study. Cell Tissue Res 297: 409‐421, 1999.
 137.Horackova M, Armour JA, Hopkins DA, Huang MH. Nitric oxide modulates signaling between cultured adult peripheral cardiac neurons and cardiomyocytes. Am J Physiol 269: C504‐C510, 1995.
 138.Horackova M, Croll RP, Hopkins DA, Losier AM, Armour JA. Morphological and immunohistochemical properties of primary long‐term cultures of adult guinea‐pig ventricular cardiomyocytes with peripheral cardiac neurons. Tissue Cell 28: 411‐425, 1996.
 139.Horackova M, Huang MH, Armour JA. Purinergic modulation of adult guinea pig cardiomyocytes in long term cultures and co‐cultures with extracardiac or intrinsic cardiac neurones. Cardiovasc Res 28: 673‐679, 1994.
 140.Houser SR, Margulies KB, Murphy AM, Spinale FG, Francis GS, Prabhu SD, Rockman HA, Kass DA, Molkentin JD, Sussman MA, Koch WJ, American Heart Association Council on Basic Cardiovascular Sciences CoCC, Council on Functional G, Translational B. Animal models of heart failure: A scientific statement from the American Heart Association. Circ Res 111: 131‐150, 2012.
 141.Howell WH. A Text‐book of Physiology. Philadelphia: W.B. Saunders, 1915.
 142.Huang HS, Pan HL, Stahl GL, Longhurst JC. Ischemia‐ and reperfusion‐sensitive cardiac sympathetic afferents: Influence of H2O2 and hydroxyl radicals. Am J Physiol 269: H888‐H901, 1995.
 143.Huang MH, Horackova M, Negoescu RM, Wolf S, Armour JA. Polysensory response characteristics of dorsal root ganglion neurones that may serve sensory functions during myocardial ischaemia. Cardiovasc Res 32: 503‐515, 1996.
 144.Huang MH, Sylven C, Horackova M, Armour JA. Ventricular sensory neurons in canine dorsal root ganglia: Effects of adenosine and substance P. Am J Physiol 269: R318‐R324, 1995.
 145.Issa ZF, Zhou X, Ujhelyi MR, Rosenberger J, Bhakta D, Groh WJ, Miller JM, Zipes DP. Thoracic spinal cord stimulation reduces the risk of ischemic ventricular arrhythmias in a postinfarction heart failure canine model. Circulation 111: 3217‐3220, 2005.
 146.Jänig W. The Integrative Action of the Autonomic Nervous System: Neurobiology of Homeostasis. New York: Cambridge University Press, 2006.
 147.Kalia M, Mesulam MM. Brain stem projections of sensory and motor components of the vagus complex in the cat: I. The cervical vagus and nodose ganglion. J Comp Neurol 193: 435‐465, 1980.
 148.Kalia M, Mesulam MM. Brain stem projections of sensory and motor components of the vagus complex in the cat: II. Laryngeal, tracheobronchial, pulmonary, cardiac, and gastrointestinal branches. J Comp Neurol 193: 467‐508, 1980.
 149.Kember G, Armour JA, Zamir M. Neural control of heart rate: The role of neuronal networking. J Theor Biol 277: 41‐47, 2011.
 150.Kember G, Armour JA, Zamir M. Dynamic neural networking as a basis for plasticity in the control of heart rate. J Theor Biol 317: 39‐46, 2013.
 151.Kember G, Armour JA, Zamir M. Neural control hierarchy of the heart has not evolved to deal with myocardial ischemia. Physiol Genomics 45: 638‐644, 2013.
 152.Kember GC, Fenton GA, Armour JA, Kalyaniwalla N. Competition model for aperiodic stochastic resonance in a Fitzhugh‐Nagumo model of cardiac sensory neurons. Phys Rev E Stat Nonlin Soft Matter Phys 63: 041911, 2001.
 153.Kember GC, Fenton GA, Collier K, Armour JA. Aperiodic stochastic resonance in a hysteretic population of cardiac neurons. Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics 61: 1816‐1824, 2000.
 154.Killingsworth CR, Wei CC, Dell'Italia LJ, Ardell JL, Kingsley MA, Smith WM, Ideker RE, Walcott GP. Short‐acting beta‐adrenergic antagonist esmolol given at reperfusion improves survival after prolonged ventricular fibrillation. Circulation 109: 2469‐2474, 2004.
 155.King TS, Coakley JB. The intrinsic nerve cells of the cardiac atria of mammals and man. J Anat 92: 353‐376, 1958.
 156.Kirchheim HR. Systemic arterial baroreceptor reflexes. Physiol Rev 56: 100‐177, 1976.
 157.Kumar R, Chavez AS, Macey PM, Woo MA, Yan‐Go FL, Harper RM. Altered global and regional brain mean diffusivity in patients with obstructive sleep apnea. J Neurosci Res 90: 2043‐2052, 2012.
 158.Kuntz A. The Autonomic Nervous System. Philadelphia: Lea & Febiger, 1934.
 159.Leiria TL, Glavinovic T, Armour JA, Cardinal R, de Lima GG, Kus T. Longterm effects of cardiac mediastinal nerve cryoablation on neural inducibility of atrial fibrillation in canines. Auton Neurosci 161: 68‐74, 2011.
 160.Levett JM, Murphy DA, McGuirt AS, Ardell JL, Armour JA. Cardiac augmentation can be maintained by continuous exposure of intrinsic cardiac neurons to a beta‐adrenergic agonist or angiotensin II. J Surg Res 66: 167‐173, 1996.
 161.Levy MN. Sympathetic‐parasympathetic interactions in the heart. Circ Res 29: 437‐445, 1971.
 162.Levy MN, Martin PJ. Neural control of the heart. In: Berne RM, editor. Handbook of Physiology: Section 2: The Cardiovascular System, Volume 1: The Heart. Bethesda: The American Physiological Society, 1979, pp. 581‐620.
 163.Li M, Zheng C, Sato T, Kawada T, Sugimachi M, Sunagawa K. Vagal nerve stimulation markedly improves long‐term survival after chronic heart failure in rats. Circulation 109: 120‐124, 2004.
 164.Lo LW, Scherlag BJ, Chang HY, Lin YJ, Chen SA, Po SS. Paradoxical long‐term proarrhythmic effects after ablating the “head station” ganglionated plexi of the vagal innervation to the heart. Heart Rhythm 10: 751‐757, 2013.
 165.Lopshire JC, Zhou X, Dusa C, Ueyama T, Rosenberger J, Courtney N, Ujhelyi M, Mullen T, Das M, Zipes DP. Spinal cord stimulation improves ventricular function and reduces ventricular arrhythmias in a canine postinfarction heart failure model. Circulation 120: 286‐294, 2009.
 166.Lowie AD, Spyer KM. Central Regulation of Autonomic Functions. New York: Oxford University Press, 1990.
 167.Lu CJ, Hao G, Nikiforova N, Larsen HE, Liu K, Crabtree MJ, Li D, Herring N, Paterson DJ. CAPON modulates neuronal calcium handling and cardiac sympathetic neurotransmission during dysautonomia in hypertension. Hypertension 65: 1288‐1297, 2015.
 168.Lujan HL, Palani G, Zhang L, DiCarlo SE. Targeted ablation of cardiac sympathetic neurons reduces the susceptibility to ischemia‐induced sustained ventricular tachycardia in conscious rats. Am J Physiol Heart Circ Physiol 298: H1330‐H1339, 2010.
 169.Malliani A, Lombardi F. Consideration of the fundamental mechanisms eliciting cardiac pain. Am Heart J 103: 575‐578, 1982.
 170.Malliani A, Lombardi F, Pagani M, Recordati G, Schwartz PJ. Spinal cardiovascular reflexes. Brain Res 87: 239‐246, 1975.
 171.McAllen RM, Salo LM, Paton JF, Pickering AE. Processing of central and reflex vagal drives by rat cardiac ganglion neurones: An intracellular analysis. J Physiol 589: 5801‐5818, 2011.
 172.McAllen RM, Spyer KM. The location of cardiac vagal preganglionic motoneurones in the medulla of the cat. J Physiol 258: 187‐204, 1976.
 173.McGuirt AS, Schmacht DC, Ardell JL. Autonomic interactions for control of atrial rate are maintained after SA nodal parasympathectomy. Am J Physiol 272: H2525‐H2533, 1997.
 174.Mill JG, Stefanon I, dos Santos L, Baldo MP. Remodeling in the ischemic heart: the stepwise progression for heart failure. Braz J Med Biol Res 44: 890‐898, 2011.
 175.Mitchell GAG. Cardiovascular Innervation. London: E. & S. Livingstone, 1956.
 176.Mollema SA, Liem SS, Suffoletto MS, Bleeker GB, van der Hoeven BL, van de Veire NR, Boersma E, Holman ER, van der Wall EE, Schalij MJ, Gorcsan J, III, Bax JJ. Left ventricular dyssynchrony acutely after myocardial infarction predicts left ventricular remodeling. J Am Coll Cardiol 50: 1532‐1540, 2007.
 177.Moravec J, Moravec M. Intrinsic nerve plexus of mammalian heart: Morphological basis of cardiac rhythmical activity? Int Rev Cytol 106: 89‐148, 1987.
 178.Murphy DA, O'Blenes S, Hanna BD, Armour JA. Capacity of intrinsic cardiac neurons to modify the acutely autotransplanted mammalian heart. J Heart Lung Transplant 13: 847‐856, 1994.
 179.Murphy DA, Thompson GW, Ardell JL, McCraty R, Stevenson RS, Sangalang VE, Cardinal R, Wilkinson M, Craig S, Smith FM, Kingma JG, Armour JA. The heart reinnervates after transplantation. Ann Thorac Surg 69: 1769‐1781, 2000.
 180.Nakagawa H, Scherlag BJ, Patterson E, Ikeda A, Lockwood D, Jackman WM. Pathophysiologic basis of autonomic ganglionated plexus ablation in patients with atrial fibrillation. Heart Rhythm 6: S26‐S34, 2009.
 181.Ng GA, Brack KE, Patel VH, Coote JH. Autonomic modulation of electrical restitution, alternans and ventricular fibrillation initiation in the isolated heart. Cardiovasc Res 73: 750‐760, 2007.
 182.Nguyen BL, Li H, Fishbein MC, Lin SF, Gaudio C, Chen PS, Chen LS. Acute myocardial infarction induces bilateral stellate ganglia neural remodeling in rabbits. Cardiovasc Pathol 21: 143‐148, 2012.
 183.Niewinski P, Janczak D, Rucinski A, Jazwiec P, Sobotka PA, Engelman ZJ, Fudim M, Tubek S, Jankowska EA, Banasiak W, Hart EC, Paton JF, Ponikowski P. Carotid body removal for treatment of chronic systolic heart failure. Int J Cardiol 168: 2506‐2509, 2013.
 184.Norris JE, Foreman RD, Wurster RK. Responses of the canine heart to stimulation of the first five ventral thoracic roots. Am J Physiol 227: 9‐12, 1974.
 185.Norris JE, Lippincott D, Wurster RD. Responses of canine endocardium to stimulation of the upper thoracic roots. Am J Physiol 233: H655‐H659, 1977.
 186.Olshansky B, Sabbah HN, Hauptman PJ, Colucci WS. Parasympathetic nervous system and heart failure: Pathophysiology and potential implications for therapy. Circulation 118: 863‐871, 2008.
 187.Oppenheimer SM, Gelb A, Girvin JP, Hachinski VC. Cardiovascular effects of human insular cortex stimulation. Neurology 42: 1727‐1732, 1992.
 188.Oppenheimer SM, Hopkins DA. Suprabulbar Neuronal Regulation of the Heart. In: Armour JA, Ardell JL, editors. Neurocardiology. New York: Oxford University Press, 1994, pp. 309‐341.
 189.Paintal AS. A study of right and left atrial receptors. J Physiol 120: 596‐610, 1953.
 190.Paintal AS. A study of ventricular pressure receptors and their role in the Bezold reflex. Q J Exp Physiol Cogn Med Sci 40: 348‐363, 1955.
 191.Paintal AS. Vagal sensory receptors and their reflex effects. Physiol Rev 53: 159‐227, 1973.
 192.Paintal AS, Damodaran VN, Guz A. Mechanism of excitation of type J receptors. Acta Neurobiol Exp (Wars) 33: 15‐19, 1973.
 193.Pappone C, Santinelli V, Manguso F, Vicedomini G, Gugliotta F, Augello G, Mazzone P, Tortoriello V, Landoni G, Zangrillo A, Lang C, Tomita T, Mesas C, Mastella E, Alfieri O. Pulmonary vein denervation enhances long‐term benefit after circumferential ablation for paroxysmal atrial fibrillation. Circulation 109: 327‐334, 2004.
 194.Park HW, Shen MJ, Lin SF, Fishbein MC, Chen LS, Chen PS. Neural mechanisms of atrial fibrillation. Curr Opin Cardiol 27: 24‐28, 2012.
 195.Parsons RL. Mammalian cardiac ganglia as local integration centers: histochemical and electrophysiological evidence. In: Dun NJ, Machado BH, Pilowsky PM, editors. Neural Mechanisms in Cardiovascular Regulation. Boston: Kluwer Academic Publishers, 2004, pp. 335‐356.
 196.Paton JF, Sobotka PA, Fudim M, Engelman ZJ, Hart EC, McBryde FD, Abdala AP, Marina N, Gourine AV, Lobo M, Patel N, Burchell A, Ratcliffe L, Nightingale A. The carotid body as a therapeutic target for the treatment of sympathetically mediated diseases. Hypertension 61: 5‐13, 2013.
 197.Pauza DH, Rysevaite‐Kyguoliene K, Vismantaite J, Brack KE, Inokaitis H, Pauza AG, Rimasauskaite‐Petraitiene V, Pauzaite JI, Pauziene N. A combined acetylcholinesterase and immunohistochemical method for precise anatomical analysis of intrinsic cardiac neural structures. Ann Anat 196: 430‐440, 2014.
 198.Pauza DH, Skripka V, Pauziene N, Stropus R. Morphology, distribution, and variability of the epicardiac neural ganglionated subplexuses in the human heart. Anat Rec 259: 353‐382, 2000.
 199.Peters SR, Kostreva DR, Armour JA, Zuperku EJ, Igler FO, Coon RL, Kampine JP. Cardiac, aortic, pericardial, and pulmonary receptors in the dog. Cardiology 65: 85‐100, 1980.
 200.Plecha DM, Randall WC, Geis GS, Wurster RD. Localization of vagal preganglionic somata controlling sinoatrial and atrioventricular nodes. Am J Physiol 255: R703‐R708, 1988.
 201.Potts JT, Mitchell JH. Synchronization of somato‐sympathetic outflows during exercise: role for a spinal rhythm generator. J Physiol 508(Pt 3): 646, 1998.
 202.Premchand RK, Sharma K, Mittal S, Monteiro R, Dixit S, Libbus I, DiCarlo LA, Ardell JL, Rector TS, Amurthur B, KenKnight BH, Anand IS. Autonomic regulation therapy via left or right cervical vagus nerve stimulation in patients with chronic heart failure: Results of the ANTHEM‐HF trial. J Card Fail 20: 808‐816, 2014.
 203.Rajendran PS, Nakamura K, Ajijola OA, Vaseghi M, Armour JA, Ardell JL, Shivkumar K. Myocardial infarction induces structural and functional remodelling of the intrinsic cardiac nervous system. J Physiol 594: 321‐341, 2016.
 204.Randall DC, Brown DR, Li SG, Olmstead ME, Kilgore JM, Sprinkle AG, Randall WC, Ardell JL. Ablation of posterior atrial ganglionated plexus potentiates sympathetic tachycardia to behavioral stress. Am J Physiol 275: R779‐R787, 1998.
 205.Randall DC, Brown DR, McGuirt AS, Thompson GW, Armour JA, Ardell JL. Interactions within the intrinsic cardiac nervous system contribute to chronotropic regulation. Am J Physiol Regul Integr Comp Physiol 285: R1066‐R1075, 2003.
 206.Randall DC, Randall WC, Brown DR, Yingling JD, Raisch RM. Heart rate control in awake dog after selective SA‐nodal parasympathectomy. Am J Physiol 262: H1128‐H1135, 1992.
 207.Randall WC. Efferent Sympathetic Innervation of the Heart. In: Armour JA, Ardell JL, editors. Neurocardiology. New York: Oxford University Press, 1994, pp. 77‐94.
 208.Randall WC, Armour JA. Regional vagosympathetic control of the heart. Am J Physiol 227: 444‐452, 1974.
 209.Randall WC, Armour JA, Geis WP, Lippincott DB. Regional cardiac distribution of the sympathetic nerves. Fed Proc 31: 1199‐1208, 1972.
 210.Reeves TJ, Hefner LL. The effect of vagal stimulation on ventricular contractility. Trans Assoc Am Physicians 74: 260‐270, 1961.
 211.Remo BF, Preminger M, Bradfield J, Mittal S, Boyle N, Gupta A, Shivkumar K, Steinberg JS, Dickfeld T. Safety and efficacy of renal denervation as a novel treatment of ventricular tachycardia storm in patients with cardiomyopathy. Heart Rhythm 11: 541‐546, 2014.
 212.Sabbah HN, Ilsar I, Zaretsky A, Rastogi S, Wang M, Gupta RC. Vagus nerve stimulation in experimental heart failure. Heart Fail Rev 16: 171‐178, 2011.
 213.Scherlag BJ, Patterson E, Po SS. The neural basis of atrial fibrillation. J Electrocardiol 39: S180‐S183, 2006.
 214.Scherlag BJ, Po S. The intrinsic cardiac nervous system and atrial fibrillation. Curr Opin Cardiol 21: 51‐54, 2006.
 215.Schultz HD. Cardiac vagal chemosensory afferents. Function in pathophysiological states. Ann N Y Acad Sci 940: 59‐73, 2001.
 216.Schultz HD, Marcus NJ, Del Rio R. Mechanisms of carotid body chemoreflex dysfunction during heart failure. Exp Physiol 100: 124‐129, 2015.
 217.Schwartz PJ. Sympathetic imbalance and cardiac arrhythmias. In: Randall WC, editor. Nervous Control of Cardiovascular Functions. New York: Oxford University Press, 1984, pp. 225‐252.
 218.Schwartz PJ. QT prolongation, sudden death, and sympathetic imbalance: The pendulum swings. J Cardiovasc Electrophysiol 12: 1074‐1077, 2001.
 219.Schwartz PJ. Vagal stimulation for the treatment of heart failure: A translational success story. Heart 98: 1687‐1689, 2012.
 220.Schwartz PJ. Cardiac sympathetic denervation to prevent life‐threatening arrhythmias. Nat Rev Cardiol 11: 346‐353, 2014.
 221.Schwartz PJ, La Rovere MT, Vanoli E. Autonomic nervous system and sudden cardiac death. Experimental basis and clinical observations for post‐myocardial infarction risk stratification. Circulation 85: I77‐I91, 1992.
 222.Seagard JL, van Brederode JF, Dean C, Hopp FA, Gallenberg LA, Kampine JP. Firing characteristics of single‐fiber carotid sinus baroreceptors. Circ Res 66: 1499‐1509, 1990.
 223.Selyanko AA, Skok VI. Synaptic transmission in rat cardiac neurones. J Auton Nerv Syst 39: 191‐199, 1992.
 224.Shen MJ, Choi EK, Tan AY, Han S, Shinohara T, Maruyama M, Chen LS, Shen C, Hwang C, Lin SF, Chen PS. Patterns of baseline autonomic nerve activity and the development of pacing‐induced sustained atrial fibrillation. Heart Rhythm 8: 583‐589, 2011.
 225.Shen MJ, Zipes DP. Role of the autonomic nervous system in modulating cardiac arrhythmias. Circ Res 114: 1004‐1021, 2014.
 226.Shinlapawittayatorn K, Chinda K, Palee S, Surinkaew S, Thunsiri K, Weerateerangkul P, Chattipakorn S, KenKnight BH, Chattipakorn N. Low‐amplitude, left vagus nerve stimulation significantly attenuates ventricular dysfunction and infarct size through prevention of mitochondrial dysfunction during acute ischemia‐reperfusion injury. Heart Rhythm 10: 1700‐1707, 2013.
 227.Shinohara T, Shen MJ, Han S, Maruyama M, Park HW, Fishbein MC, Shen C, Chen PS, Lin SF. Heart failure decreases nerve activity in the right atrial ganglionated plexus. J Cardiovasc Electrophysiol 23: 404‐412, 2012.
 228.Shvalev VN, Sosunov AA. A light and electron microscopic study of cardiac ganglia in mammals. Z Mikrosk Anat Forsch 99: 676‐694, 1985.
 229.Skok VI. Physiology of Autonomic Ganglia. Tokyo: Igadu Shoin, 1973.
 230.Southerland EM, Gibbons DD, Smith SB, Sipe A, Williams CA, Beaumont E, Armour JA, Foreman RD, Ardell JL. Activated cranial cervical cord neurons affect left ventricular infarct size and the potential for sudden cardiac death. Auton Neurosci 169: 34‐42, 2012.
 231.Southerland EM, Milhorn DM, Foreman RD, Linderoth B, DeJongste MJ, Armour JA, Subramanian V, Singh M, Singh K, Ardell JL. Preemptive, but not reactive, spinal cord stimulation mitigates transient ischemia‐induced myocardial infarction via cardiac adrenergic neurons. Am J Physiol Heart Circ Physiol 292: H311‐H317, 2007.
 232.Steele PA, Gibbins IL, Morris JL, Mayer B. Multiple populations of neuropeptide‐containing intrinsic neurons in the guinea‐pig heart. Neuroscience 62: 241‐250, 1994.
 233.Sylven C. The genesis of pain during myocardiac ischemia and infarction. In: Armour JA, Ardell JL, editors. Basic and Clinical Neurocardiology. New York: Oxford University Press, 2004.
 234.Tallaj J, Wei CC, Hankes GH, Holland M, Rynders P, Dillon AR, Ardell JL, Armour JA, Lucchesi PA, Dell'Italia LJ. Beta1‐adrenergic receptor blockade attenuates angiotensin II‐mediated catecholamine release into the cardiac interstitium in mitral regurgitation. Circulation 108: 225‐230, 2003.
 235.Thompson GW, Collier K, Ardell JL, Kember G, Armour JA. Functional interdependence of neurons in a single canine intrinsic cardiac ganglionated plexus. J Physiol 528: 561‐571, 2000.
 236.Thompson GW, Hoover DB, Ardell JL, Armour JA. Canine intrinsic cardiac neurons involved in cardiac regulation possess NK1, NK2, and NK3 receptors. Am J Physiol 275: R1683‐R1689, 1998.
 237.Thompson GW, Horackova M, Armour JA. Sensitivity of canine intrinsic cardiac neurons to H2O2 and hydroxyl radical. Am J Physiol 275: H1434‐H1440, 1998.
 238.Thompson GW, Horackova M, Armour JA. Chemotransduction properties of nodose ganglion cardiac afferent neurons in guinea pigs. Am J Physiol Regul Integr Comp Physiol 279: R433‐R439, 2000.
 239.Thompson GW, Horackova M, Armour JA. Role of P(1) purinergic receptors in myocardial ischemia sensory transduction. Cardiovasc Res 53: 888‐901, 2002.
 240.Thoren PN. Characteristics of left ventricular receptors with nonmedullated vagal afferents in cats. Circ Res 40: 415‐421, 1977.
 241.Thoren PN, Donald DE, Shepherd JT. Role of heart and lung receptors with nonmedullated vagal afferents in circulatory control. Circ Res 38: 2‐9, 1976.
 242.Tse HF, Turner S, Sanders P, Okuyama Y, Fujiu K, Cheung CW, Russo M, Green MD, Yiu KH, Chen P, Shuto C, Lau EO, Siu CW. Thoracic spinal cord stimulation for heart failure as a restorative treatment (SCS HEART study): First‐in‐man experience. Heart Rhythm 12: 588‐595, 2015.
 243.Ulasova E, Gladden JD, Chen Y, Zheng J, Pat B, Bradley W, Powell P, Zmijewski JW, Zelickson BR, Ballinger SW, Darley‐Usmar V, Dell'italia LJ. Loss of interstitial collagen causes structural and functional alterations of cardiomyocyte subsarcolemmal mitochondria in acute volume overload. J Mol Cell Cardiol 50: 147‐156, 2011.
 244.Vance WH, Bowker RC. Spinal origins of cardiac afferents from the region of the left anterior descending artery. Brain Res 258: 96‐100, 1983.
 245.Vaseghi M, Gima J, Kanaan C, Ajijola OA, Marmureanu A, Mahajan A, Shivkumar K. Cardiac sympathetic denervation in patients with refractory ventricular arrhythmias or electrical storm: Intermediate and long‐term follow‐up. Heart Rhythm 11: 360‐366, 2014.
 246.Vaseghi M, Lellouche N, Ritter H, Fonarow GC, Patel JK, Moriguchi J, Fishbein MC, Kobashigawa JA, Shivkumar K. Mode and mechanisms of death after orthotopic heart transplantation. Heart Rhythm 6: 503‐509, 2009.
 247.Vaseghi M, Shivkumar K. The role of the autonomic nervous system in sudden cardiac death. Prog Cardiovasc Dis 50: 404‐419, 2008.
 248.Waldmann M, Thompson GW, Kember GC, Ardell JL, Armour JA. Stochastic behavior of atrial and ventricular intrinsic cardiac neurons. J Appl Physiol 101: 413‐419, 2006.
 249.Wang HJ, Wang W, Cornish KG, Rozanski GJ, Zucker IH. Cardiac sympathetic afferent denervation attenuates cardiac remodeling and improves cardiovascular dysfunction in rats with heart failure. Hypertension 64: 745‐755, 2014.
 250.Wei CC, Chen Y, Powell LC, Zheng J, Shi K, Bradley WE, Powell PC, Ahmad S, Ferrario CM, Dell'Italia LJ. Cardiac kallikrein‐kinin system is upregulated in chronic volume overload and mediates an inflammatory induced collagen loss. PLoS One 7: e40110, 2012.
 251.White CB, Roberts AM, Joshua IG. Arteriolar dilation mediated by capsaicin and calcitonin gene‐related peptide in rats. Am J Physiol 265: H1411‐H1415, 1993.
 252.Williamson JW, Fadel PJ, Mitchell JH. New insights into central cardiovascular control during exercise in humans: A central command update. Exp Physiol 91: 51‐58, 2006.
 253.Woo MA, Kumar R, Macey PM, Fonarow GC, Harper RM. Brain injury in autonomic, emotional, and cognitive regulatory areas in patients with heart failure. J Card Fail 15: 214‐223, 2009.
 254.Woo MA, Macey PM, Keens PT, Kumar R, Fonarow GC, Hamilton MA, Harper RM. Functional abnormalities in brain areas that mediate autonomic nervous system control in advanced heart failure. J Card Fail 11: 437‐446, 2005.
 255.Woollard HH. The innervation of the heart. J Anat 60: 345‐373, 1926.
 256.Xi‐Moy SX, Randall WC, Wurster RD. Nicotinic and muscarinic synaptic transmission in canine intracardiac ganglion cells innervating the sinoatrial node. J Auton Nerv Syst 42: 201‐213, 1993.
 257.Yamakawa K, Rajendran PS, Takamiya T, Yagishita D, So EL, Mahajan A, Shivkumar K, Vaseghi M. Vagal nerve stimulation activates vagal afferent fibers that reduce cardiac efferent parasympathetic effects. Am J Physiol Heart Circ Physiol 309: H1579‐H1590, 2015.
 258.Yaoita H, Sato E, Kawaguchi M, Saito T, Maehara K, Maruyama Y. Nonadrenergic noncholinergic nerves regulate basal coronary flow via release of capsaicin‐sensitive neuropeptides in the rat heart. Circ Res 75: 780‐788, 1994.
 259.Yuan BX, Ardell JL, Hopkins DA, Armour JA. Differential cardiac responses induced by nicotine sensitive canine atrial and ventricular neurones. Cardiovasc Res 27: 760‐769, 1993.
 260.Yuan BX, Ardell JL, Hopkins DA, Losier AM, Armour JA. Gross and microscopic anatomy of the canine intrinsic cardiac nervous system. Anat Rec 239: 75‐87, 1994.
 261.Zhou S, Chen LS, Miyauchi Y, Miyauchi M, Kar S, Kangavari S, Fishbein MC, Sharifi B, Chen PS. Mechanisms of cardiac nerve sprouting after myocardial infarction in dogs. Circ Res 95: 76‐83, 2004.
 262.Zipes DP. Antiarrhythmic therapy in 2014: Contemporary approaches to treating arrhythmias. Nat Rev Cardiol 12: 68‐69, 2015.
 263.Zipes DP, Camm AJ, Borggrefe M, Buxton AE, Chaitman B, Fromer M, Gregoratos G, Klein G, Moss AJ, Myerburg RJ, Priori SG, Quinones MA, Roden DM, Silka MJ, Tracy C, Smith SC, Jr., Jacobs AK, Adams CD, Antman EM, Anderson JL, Hunt SA, Halperin JL, Nishimura R, Ornato JP, Page RL, Riegel B, Priori SG, Blanc JJ, Budaj A, Camm AJ, Dean V, Deckers JW, Despres C, Dickstein K, Lekakis J, McGregor K, Metra M, Morais J, Osterspey A, Tamargo JL, Zamorano JL, American College of C, American Heart Association Task F, European Society of Cardiology Committee for Practice G. ACC/AHA/ESC 2006 guidelines for management of patients with ventricular arrhythmias and the prevention of sudden cardiac death: a report of the American College of Cardiology/American Heart Association Task Force and the European Society of Cardiology Committee for Practice Guidelines (Writing Committee to Develop Guidelines for Management of Patients With Ventricular Arrhythmias and the Prevention of Sudden Cardiac Death). J Am Coll Cardiol 48: e247‐e346, 2006.
 264.Zipes DP, Neuzil P, Theres H, Caraway D, Mann DL, Mannheimer C, Van Buren P, Linde C, Linderoth B, Kueffer F, Sarazin SA, DeJongste MJ, Investigators D‐HT. Determining the feasibility of spinal cord neuromodulation for the treatment of chronic systolic heart failure: The DEFEAT‐HF study. JACC Heart Fail 4: 129‐136, 2015.
 265.Zucker IH, Gilmore JP. Reflex Control of the Circulation. Boca Raton: CRC Press, 1991.
 266.Zucker IH, Hackley JF, Cornish KG, Hiser BA, Anderson NR, Kieval R, Irwin ED, Serdar DJ, Peuler JD, Rossing MA. Chronic baroreceptor activation enhances survival in dogs with pacing‐induced heart failure. Hypertension 50: 904‐910, 2007.
 267.Zucker IH, Patel KP, Schultz HD. Neurohumoral stimulation. Heart Fail Clin 8: 87‐99, 2012.

Contact Editor

Submit a note to the editor about this article by filling in the form below.

* Required Field

How to Cite

Jeffrey L. Ardell, John Andrew Armour. Neurocardiology: Structure‐Based Function. Compr Physiol 2016, 6: 1635-1653. doi: 10.1002/cphy.c150046