References |
1. | Ardehali H, O'Rourke B. Mitochondrial KATP channels in cell survival and death. J Mol Cell Cardiol 39: 7‐16, 2005. |
2. | Armstead WM, Mirro R, Zuckerman S, Busija DW, Leffler CW. The influence of opioids on local cerebral glucose utilization in the newborn pig. Brain Res 571: 97‐102, 1992. |
3. | Auchampach JA, Gross GJ. Adenosine A1 receptors, KATP channels, and ischemic preconditioning in dogs. Am J Physiol Heart Circ Physiol 264: H1327‐H1336, 1993. |
4. | Ayajiki K, Tanaka T, Okamura T, Toda N. Evidence for nitroxidergic innervation in monkey ophthalmic arteries in vivo and in vitro. Am J Physiol Heart Circ Physiol 279: H2006‐H2012, 2000. |
5. | Bari F, Louis TM, Busija DW. Calcium‐activated K+ channels in cerebral arterioles in piglets are resistant to ischemia. J Cereb Blood Flow Metab 17: 1152‐1156, 1997. |
6. | Bari F, Louis TM, Meng W, Busija DW. Global ischemia impairs ATP‐sensitive K+ channel function in cerebral arterioles in piglets. Stroke 27: 1874‐1881, 1996. |
7. | Bednarczyk P, Koziel A, Jarmuszkiewicz W, Szewczyk A. Large‐conductance Ca2+‐activated potassium channel in mitochondria of endothelial EA.hy926 cells. Am J Physiol Heart Circ Physiol 304: H1415‐H1427, 2013. |
8. | Bienert GP, Moller AL, Kristiansen KA, Schulz A, Moller IM, Schjoerring JK, Jan TP. Specific aquaporins facilitate the diffusion of hydrogen peroxide across membranes. Biochim Biophys Acta 1717: 1‐10, 2007. |
9. | Broadhead MW, Kharbanda RK, Peters MJ, MacAllister RJ. KATP channel activation induces ischemic preconditioning of the endothelium in humans in vivo. Circ 110: 2077‐2082, 2004. |
10. | Brown KA, Didion SP, Andresen JJ, Faraci FF. Effects of aging, MnSOD deficiency, and genetic background on endothelial function: Evidence for MnSOD haploinsufficiency. Arterioscler Thromb Vasc Biol 27: 1941‐1946, 2007. |
11. | Busija DW, Bari F, Domoki F, Horiguchi T, Shimizu K. Mechanisms involved in the cerebrovascular dilator effects of cortical spreading depression. Prog Neurobiol 86: 417‐433, 2008. |
12. | Busija DW, Gaspar T, Domoki F, Katakam PV, Bari F. Mitochondrial‐mediated suppression of ROS production upon exposure of neurons to lethal stress: Mitochondrial targeted preconditioning. Adv Drug Del Rev 16: 1471‐1477, 2008. |
13. | Busija DW, Heistad DD. Factors involved in the physiological regulation of the cerebral circulation. Rev Physiol Biochem Pharmacol 101: 161‐211, 1984. |
14. | Busija DW, Katakam PV. Mitochondrial mechanisms in cerebral vascular control: Shared signaling pathways with preconditioning. J Vasc Res 51: 175‐189, 2014. |
15. | Busija DW, Katakam P, Rajapakse NC, Kis B, Grover G, Domoki F, Bari F. Effects of ATP‐sensitive potassium channel activators diazoxide and BMS‐191095 on membrane potential and reactive oxygen species production in isolated piglet mitochondria. Brain Res Bull 66: 85‐90, 2005. |
16. | Busija DW, Lacza Z, Rajapakse N, Shimizu K, Kis B, Bari F, Domoki F, Horiguchi T. Targeting mitochondrial ATP‐sensitive potassium channels—A novel approach to neuroprotection. Brain Res Rev 46: 282‐294, 2004. |
17. | Busija DW, Leffler CW. Hypothermia reduces cerebral metabolic rate and cerebral blood flow in newborn pigs. Am J Physiol Heart Circ Physiol 22: H869‐H873, 1987. |
18. | Busija DW, Leffler CW, Pourcyrous M. Hyperthermia increases cerebral metabolic rate and blood flow in neonatal pigs. Am J Physiol Heart Circ Physiol 24: H343‐H346, 1988. |
19. | Busija DW, Miller AW, Katakam P, Simandle S, Erdős B. Mechanisms of vascular dysfunction in insulin resistance. Cur Opin Invest Drugs 5: 929‐935, 2004. |
20. | Calamita G, Ferri D, Gena P, Liquori GE, Cavalier A, Thomas D, Svelto M. The inner mitochondrial membrane has aquaporin‐8 water channels and is highly permeable to water. J Biol Chem 280: 17149‐17153, 2005. |
21. | Chalmers S, Olson ML, MacMillan D, Rainbow RD, McCarron JG. Ion channels in smooth muscle: Regulation by the sarcoplasmic reticulum and mitochondria. Cell Calcium 42: 447‐466, 2007. |
22. | Chalmers S, Saunter C, Wilson C, Coats P, Girkin JM, McCarron JG. Mitochondrial motility and vascular smooth muscle proliferation. Arterioscler Thromb Vasc Biol 32: 3000‐3011, 2012. |
23. | Chalmers S, Saunter CD, Girkin JM, McCarron JG. Flicker‐assisted localization reveals altered mitochondrial architecture in hypertension. Sci Rep 5: 16875, 2015. |
24. | Chaplin NL, Nieves‐Cintrón M, Fresquez AM, Navedo MF, Amberg GC. Arterial smooth muscle mitochondria amplify hydrogen peroxide microdomains functionally coupled to L‐type calcium channels. Circ Res 117: 1013‐1023, 2015. |
25. | Cheney JA, Weisser JD, Barere FM, Laurer HL, Saatman KE, Raghupathi R, Gribkoff V, Starret JE. The maxi‐K channel opener BMS‐204352 attenuates regional cerebral edema and neurologic motor impairment after experimental brain injury. J Cereb Blood Flow Metab 21: 396‐403, 2001. |
26. | Cheranov SY, Jaggar JH. Mitochondrial modulation of Ca2+ sparks and transient KCa currents in smooth muscle cells of rat cerebral arteries. J Physiol 556: 755‐771, 2004. |
27. | Chrissobolis S, Faraci FM. Sex differences in protection against angiotensin II‐induced endothelial dysfunction by manganese superoxide dismutase in the cerebral circulation. Hypertension 55: 905‐910, 2010. |
28. | Coetzee WA. Multiplicity of effectors of the cardioprotective agent, diazoxide. Pharmacol Ther 140: 167‐175, 2013. |
29. | Dai DR, Rabinovitch PS, Ungvari Z. Mitochondria and cardiovascular aging. Circ Res 110: 1109‐1124, 2012. |
30. | Dai J, Kuo KH, Leo JM, van Breemen C, Lee CH. Rearrangement of the close contact between the mitochondria and the sarcoplasmic reticulum in airway smooth muscle. Cell Calcium 37: 333‐340, 2005. |
31. | Daiber A, Di Lisa F, Oelze M, Kroller‐Schon S, Steven S, Schutz E, Munzel T. Crosstalk of mitochondria with NADPH oxidase via reactive oxygen and nitrogen species signaling and its role for vascular function. Br J Pharmacol, 2016 (in press). |
32. | Dalkara T, Alarcon‐Martinez L. Cerebral microvascular pericytes and neurogliovascular signaling in health and disease. Brain Res 14(1623): 3‐17, 2015. |
33. | Dauphin F, MacKenzie ET. Cholinergic and vasoactive intestinal polypeptidergic innervation of the cerebral arteries. Pharmacol Ther 67: 385‐417, 1995. |
34. | Davidson SM. Endothelial mitochondria and heart disease. Cardiovasc Res 88: 58‐66, 2010. |
35. | Debska G, Kicinska A, Dobrucki J, Dworakowska B, Nurowska E, Skallska J, Dolowy K, Szewczyk A. A Large‐conductance K+ channel openers NS1619 and NS004 as inhibitors of mitochondrial function in glioma cells. Biochem Pharmacol 65: 1827‐1834, 2003. |
36. | Dietrich HH, Horiuchi T, Xiang C, Hongo K, Falck JR, Dacey RG, Jr. Mechanism of ATP‐induced local and conducted vasomotor responses in isolated rat cerebral penetrating arterioles. J Vasc Res 46: 253‐264, 2009. |
37. | Dikalov SI, Nazarewicz RR, Bikineyeva A, Hilenski L, Lassègue B, Griendling KK, Harrison DG, Dikalova AE. Nox2‐induced production of mitochondrial superoxide in angiotensin II‐mediated endothelial oxidative stress and hypertension. Antiox Redox Signal 20: 281‐294, 2014. |
38. | Dikalov SI, Ungvari Z. Role of mitochondrial oxidative stress in hypertension. Am J Physiol Heart Circ Physiol 305: H1417‐H1427, 2013. |
39. | Dikalova AE, Bikineyeva AT, Budzyn K, Nazarewicz RR, McCann L, Lewis W, Harrison DG, Dikalov SI. Therapeutic targeting of mitochondrial superoxide in hypertension. Circ Res 107: 106‐116, 2010. |
40. | Domoki F, Bari F, Nagy K, Busija DW, Siklos L. Diazoxide prevents mitochondrial swelling and Ca (2+) accumulation in CAI pyramidal cells after cerebral ischemia in newborn pigs. Brain Res 1019: 97‐104, 2004. |
41. | Domoki F, Kis B, Gaspar T, Snipes JA, Bari F, Busija DW. Rosuvastatin induces delayed preconditioning against oxygen‐glucose deprivation in cultured cortical neurons. Am J Physiol Cell Physiol 296: C97‐C105, 2009. |
42. | Domoki F, Kis B, Nagy K, Farkas E, Busija DW, Bari F. Diazoxide preserves hypercapnia‐induced arteriolar vasodilation after global cerebral ischemia in piglets. Am J Physiol Heart Circ Physiol 289: H368‐H373, 2005. |
43. | Domoki F, Perciaccante JV, Veltkamp R, Bari F, Busija DW. Mitochondrial potassium channel opener diazoxide preserves neuronal‐vascular function after cerebral ischemia in newborn pigs. Stroke 30: 2713‐2718, 1999. |
44. | Dorn GW, Scorrano L. Two close, too close: Sarcoplasmic reticulum‐mitochondrial crosstalk and cardiomyocyte fate. Circ Res 107: 689‐699, 2010. |
45. | Drake CT, Iadecola C. The role of neuronal signaling in controlling cerebral blood flow. Brain Lang 102(2): 141‐52, 2007. |
46. | Dromparis P, Sutendra G, Michelakis ED. The role of mitochondria in pulmonary vascular remodeling. J Mol Med (Berl) 88: 1003‐1010, 2010. |
47. | Duckles SP, Krause DN. Cerebrovascular effects of oestrogen: Multiplicity of action. Clin Exp Pharmacol Physiol 34: 801‐808, 2007. |
48. | Duckles SP, Krause DN. Mechanisms of cerebrovascular protection: Oestrogen, inflammation and mitochondria. Acta Physiol 203: 149‐154, 2011. |
49. | Dunn KM, Nelson MT. Neurovascular signaling in the brain and the pathological consequences of hypertension. Am J Physiol Heart Circ Physiol 306: H1‐H14, 2014. |
50. | Dutta S, Rutkai I, Katakam PV, Busija DW. The mechanistic target of rapamycin (mTOR) pathway and S6 Kinase mediate diazoxide preconditioning in primary rat cortical neurons. J Neurochem 134: 845‐56, 2015. |
51. | Erdős B, Simandle SA, Snipes JA, Miller AW, Busija DW. Potassium channel dysfunction in cerebral arteries of insulin‐resistant rats is mediated by reactive oxygen species. Stroke 35: 964‐969, 2004. |
52. | Erdős B, Snipes JA, Miller AW, Busija DW. Cerebrovascular dysfunction in Zucker obese rats is mediated by oxidative stress and protein kinase C. Diabetes 53: 1352‐1359, 2004. |
53. | Erdős B, Snipes JA, Tulbert CD, Katakam P, Miller AW, Busija DW. Rosuvastatin improves cerebrovascular function in Zucker obese rats by inhibiting NAD(P)H‐oxidase‐dependent superoxide anion production. Am J Physiol Heart Circ Physiol 290: H1264‐H1270, 2006. |
54. | Faraci FM. Reactive oxygen species: Influence on cerebral vascular tone. J Appl Physiol 100: 739‐43, 2006. |
55. | Farkas E, Domoki F, Institoris A, Annahazi A, Busija DW, Bari F. Neuroprotection by diazoxide in animal models for cerebrovascular disorders. Vasc Dis Prev 3: 253‐263, 2006. |
56. | Fernández‐Klett F, Priller J. Diverse functions of pericytes in cerebral blood flow regulation and ischemia. J Cereb Blood Flow Metab 35: 883‐7, 2015. |
57. | Filosa JA, Morrison HW, Iddings JA, Du W, Kim KJ. Beyond neurovascular coupling, role of astrocytes in the regulation of vascular tone. Neuroscience 323: 96‐109, 2016. |
58. | Förstermann U. Nitric oxide and oxidative stress in vascular disease. Pflugers Arch 459: 923‐939, 2010. |
59. | Foster DB, Ho AS, Rucker J, Garlid AO, Chen L, Sidor A, Garlid KD, O'Rourke B. Mitochondrial ROMK channel is a molecular component of mitoK(ATP). Circ Res 111: 446‐454, 2012. |
60. | Garlid, KD, Halestrap AP. The mitochondrial K(ATP) channel—fact or fiction? J Mol Cell Cardiol 52: 578‐583, 2012. |
61. | Gaspar T, Domoki F, Lenti L, Katakam PV, Snipes JA, Bari F, Busija DW. Immediate neuronal preconditioning with NS1619. Brain Res 1285: 196‐207, 2009. |
62. | Gaspar T, Katakam P, Snipes JA, Kis B, Domoki F, Bari F, Busija DW. Delayed neuronal preconditioning by NS1619 is independent of calcium activated potassium channels. J Neurochem 105: 1115‐1128, 2008. |
63. | Gaspar T, Kis B, Snipes JA, Lenzser G, Mayanagi K, Bari F, Busija DW. Transient glucose and amino acid deprivation induces delayed preconditioning in cultured rat cortical neurons. J Neurochem 98: 555‐565, 2006. |
64. | Gaspar T, Snipes JA, Busija AR, Kis B, Domoki F, Bari F, Busija DW. ROS‐independent preconditioning in neurons via activation of mitoKATP channels by BMS‐191095. J Cereb Blood Flow Metab 28: 1090‐1103, 2008. |
65. | Ghezzi D, Zeviani M. Assembly factors of human mitochondrial respiratory chain complexes: Physiology and pathophysiology. Adv Exp Med Biol 748: 65‐106, 2012. |
66. | Gidday JM. Cerebral preconditioning and ischaemic tolerance. Nat Rev Neurosci 7: 437‐448, 2006. |
67. | Graham D, Huynh NN, Hamilton CA, Beattie E, Smith RA, Cocheme HM, Murphy MP, Dominiczak AF. Mitochondria‐targeted antioxidant MitoQ10 improves endothelial function and attenuates cardiac hypertrophy. Hypertension 54: 322‐328, 2009. |
68. | Gravina FS, Jobling P, Kerr KP, de Oliveira RB, Parkington HC, van Helden DR. Oxytocin depolarizes mitochondria in isolated myometrial cells. Exp Physiol 96: 949‐956, 2011. |
69. | Grover GJ, D'Alonzo AJ, Garlid KD, Bajgar R, Lodge NJ, Slelph PG, Darbenzio RB, Hess TA, Smith MA, Paucek P, Atwal KS. Pharmacologic characterization of BMS‐191095, a mitochondrial K(ATP) opener with no peripheral vasodilator or cardiac action potential shortening activity. J Pharmacol Exp Ther 297: 1184‐1192, 2001. |
70. | Grover GJ, Burkett DE, Parham CS, Scalese RJ, Sadanaga KK. Protective effect of mitochondrial KATP activation in an isolated gracilis model of ischemia and reperfusion in dogs. J Cardiovasc Pharmacol 42: 790‐792, 2003. |
71. | Han D, Antunes F, Canali R, Rettori D, Cadenas E. Voltage‐dependent anion channels control the release of the superoxide anion from mitochondria to cytosol. Arterioscler Thromb Vasc Biol 32: 2531‐2539, 2012. |
72. | Han D, William E, Cadenas E. Mitochondrial respiratory chain‐dependent generation of superoxide anion and its release into the intermembrane space. Biochem J 353: 411‐416, 2001. |
73. | Hanley PJ, Gopalan KV, Lareau RA, Srivastava DK, Von Meltzer M, Daut J. Beta‐oxidation of 5‐hydroxydecanoate, a putative blocker of mitochondrial ATP‐sensitive potassium channels. J Physiol 547: 387‐393, 2003. |
74. | Holland M, Langton PD, Standen NB, Boyle JP. Effects of the BKCa channel activator, NS1619, on rat cerebral artery smooth muscle. Br J Pharmacol 117: 119‐129, 1996. |
75. | Horiguchi T, Snipes JA, Kis B, Shimizu K, Busija DW. The role of nitric oxide in the development of cortical spreading depression‐induced tolerance to transient focal cerebral ischemia in rats. Brain Res 1039: 84‐89, 2005. |
76. | Iadecola C, Davisson RL. Hypertension and cerebrovascular dysfunction. Cell Metab 7: 476‐484, 2008. |
77. | Iadecola C, Nedergaard M. Glial regulation of the cerebral microvasculature. Nat Neurosci 10: 1369‐1376, 2007. |
78. | Jastroch M, Divakaruni AS, Mookerjee S, Treberg JR, Brand MD. Mitochondrial proton and electron leaks. Essays Biochem 47: 53‐67, 2010. |
79. | Jiang K, Wang J, Zhao C, Feng M, Shen Z, Yu Z, Xia Z. Regulation of gap junctional communication by astrocytic mitochondrial K(ATP) channels following neurotoxin administration in in vitro and in vivo models. Neurosignals 19: 63‐74, 2011. |
80. | Johnson AC, Cipolla MJ. The cerebral circulation during pregnancy: Adapting to preserve normalcy. Physiology (Bethesda) 30: 139‐47, 2015. |
81. | Jonckheere AI, Smeitink JA, Rodenburg RJ. Mitochondrial ATP synthase: Architecture, function and pathology. J Inherit Metab Dis 35: 211‐225, 2012. |
82. | Joutel A, Haddad I, Ratelade J, Nelson MT. Perturbations of the cerebrovascular matrisome: A convergent mechanism in small vessel disease of the brain? J Cereb Blood Flow Metab 36: 143‐157, 2016. |
83. | Kalogeris T, Bao Y, Korthuis RJ. Mitochondrial reactive oxygen species: A double edged sword in ischemia/reperfusion vs preconditioning. Redox Biol 2: 702‐714, 2014. |
84. | Kalyanaraman B. Oxidative chemistry of fluorescent dyes: Implications in the detection of reactive oxygen and nitrogen species. Biochem Soc Trans 39: 1221‐1225, 2011. |
85. | Katakam PV, Domoki F, Snipes JA, Busija AR, Jarajapu YP, Busija DW. Impaired mitochondria‐dependent vasodilation in cerebral arteries of Zucker obese rats with insulin resistance. Am J Physiol 296: R289‐R298, 2009. |
86. | Katakam PV, Gordon AO, Sure VN, Rutkai I, Busija DW. Diversity of mitochondria‐dependent dilator mechanisms in vascular smooth muscle of cerebral arteries from normal and insulin‐resistant rats. Am J Physiol Heart Circ Physiol 307: H493‐H503, 2014. |
87. | Katakam PV, Jordan JE, Snipes JA, Tulbert CD, Miller AW, Busija DW. Myocardial preconditioning against ischemia‐reperfusion is abolished in Zucker obese rats with insulin. Am J Physiol 292: R920‐R926, 2007. |
88. | Katakam PV, Wappler EA, Katz PS, Rutkai I, Institoris A, Domoki F, Gaspar T, Grovenburg SM, Snipes JA, Busija DW. Depolarization of mitochondria in endothelial cells promotes cerebral vascular vasodilation by activation of nitric oxide synthase. Art Throm Vasc Biol 33: 752‐759, 2013. |
89. | Katakam PVG, Dutta S, Grovenburg SM, Sure VN, Gordon A, Peterson NR, Rutkai I, Busija DW. Depolarization of mitochondria in neurons promotes activation of nitric oxide synthase and generation of nitric oxide. Am J Physiol Heart Circ Physiol, 2016 (in press). |
90. | Kicinska A, Szewczyk A. A Large‐conductance potassium cation channel opener NS1619 inhibits cardiac mitochondria respiratory chain. Toxicol Mech Methods 14: 59‐61, 2004. |
91. | Kirino T. Ischemic tolerance. J Cereb Blood Flow Metab 22: 1283‐1296, 2002. |
92. | Kis B, Nagy K, Snipes JA, Rajapakse NC, Horiguchi T, Grover GJ, Busija DW. The mitochondrial KATP channel opener BMS191095 induces neuronal preconditioning. Neuroreport 15: 345‐349, 2004. |
93. | Kis B, Rajapakse NC, Snipes JA, Nagy K, Horiguchi T, Busija DW. Diazoxide induces delayed preconditioning in cultured rat cortical neurons. J Neurochem 87: 969‐980, 2003. |
94. | Kizhakekuttu TJ, Wang J, Dharmashankar K, Ying R, Gutterman DD, Vita JA, Widlansky ME. Adverse alterations in mitochondrial function contribute to type 2 diabetes mellitus‐related endothelial dysfunction in humans. Biochem Biophys Res Commun 422: 515‐521, 2012. |
95. | Kluge MA, Fetterman JL, Vita JA. Mitochondria and endothelial function. Circ Res 12: 1171‐1188, 2013. |
96. | Korper S, Nolte F, Rojewski MT, Thiel E, Schrezenmeier H. The K+ channel openers diazoxide and NS1619 induce depolarization of mitochondria and have differential effects on cell Ca2+ in CD34+ cell line KG‐1a. Exp Hematol 31: 815‐823, 2003. |
97. | Kubli DA, Gustafsson ÅB. Mitochondria and mitophagy: The yin and yang of cell death control. Circ Res 11: 1208‐1221, 2012. |
98. | Lacza Z, Horn TF, Snipes JA, Zhang J, Roychowdhury S, Horvath EM, Figueroa JP, Kollai M, Szabo C, Busija DW. Lack of mitochondrial nitric oxide production in the brain. J Neurochem 90: 942‐951, 2004. |
99. | Lacza Z, Kozlov AV, Pankotai E, Csordas A, Wolf G, Redi H, Kollai M, Szabo C, Busija DW, Horn TF. Mitochondria produce reactive nitrogen species via an arginine‐independent pathway. Free Rad Res 40: 369‐378, 2006. |
100. | Lacza Z, Pankotai E, Csordas A, Gero D, Kiss L, Horvath EM, Kollai M, Busija DW, Szabo C. Mitochondrial NO and reactive nitrogen species production: Does mtNOS exist? Nitric Oxide 14: 162‐168, 2006. |
101. | Lacza Z, Snipes JA, Kis B, Szabo C, Grover G, Busija DW. Investigation of the subunit composition and the pharmacology of the mitochondrial ATP‐dependent K +channel in the brain. Brain Res 19: 27‐36. 2003. |
102. | Lacza Z, Snipes JA, Miller AW, Szabo G, Grover G, Busija DW. Heart mitochondria contain functional ATP‐dependent K+ channels. J Mol Cell Cardiol 35: 1339‐1347, 2003. |
103. | Lenaz G, Genova ML. Structure and organization of mitochondrial respiratory complexes: A new understanding of an old subject. Antioxid Redox Signal 12: 961‐1008. 2010. |
104. | Lenzser G, Kis B, Bari F, Busija DW. Diazoxide preconditioning attenuates global cerebral ischemia‐induced blood‐brain barrier permeability. Brain Res 105: 72‐80, 2005. |
105. | Loukogeorgakis SP, et al. Transient limb ischemia induces remote preconditioning and remote postconditioning in humans by a K(ATP)‐channel dependent mechanisms. Circ 116: 1386‐1395, 2007. |
106. | Lu B, Poirier C, Gaspar T, Gratzke C, Harrison W, Busija D, Matzuk MM, Andersson KE, Overbeek PA, Bishop CE. A mutation in the inner mitochondrial membrane peptidase 2‐like gene (Immp2l) affects mitochondrial function and impairs fertility in mice. Biol Reprod 78: 601‐610, 2008. |
107. | Lustgarten MS, Bhattacharya A, Muller FL, Jang YC, Shimizu T, Shirasawa T, Richardson A, Van Remmen H. Complex I generated, mitochondrial matrix‐directed superoxide is released from the mitochondria through voltage dependent anion channels. Biochem Biophy Res Commun 422: 515‐521, 2012. |
108. | Marchissio MJ, Frances DE, Carnovale CE, Marinelli RA. Mitochondrial aquaporin‐8 knockdown in human hepatoma HepG2 cells causes ROS‐induced mitochondrial depolarization and loss of viability. Toxicol Appl Pharmacol 64: 246‐254, 2012. |
109. | Mathiisen TM, Lehre KP, Danbolt NC, Ottersen OP. The perivascular astroglial sheath provides a complete covering of the brain microvessels: An electron microscopic 3D reconstruction. Glia 58: 1094‐1103, 2010. |
110. | Mayanagi K, Gaspar T, Katakam PV, Busija DW. Systemic administration of diazoxide induces delayed preconditioning against transient focal cerebral ischemia in rats. Brain Res 1168: 106‐111, 2007. |
111. | Mayanagi K, Gaspar T, Katakam PV, Kis B, Busija DW. The mitochondrial K(ATP) channel opener BMS‐191095 reduces neuronal damage after transient focal cerebral ischemia in rats. J Cereb Blood Flow Metab 27: 348‐355, 2007. |
112. | Mayanagi K, Katakam PV, Gaspar T, Domoki F, Busija DW. Acute treatment with rosuvastatin protects insulin resistant (C57BL/6J ob/ob) mice against transient cerebral ischemia. J Cerebral Blood Flow Metabol 28: 1927‐1935, 2008. |
113. | McBride HM, Neuspiel M, Wasiak S. Mitochondria: More than just a powerhouse. Curr Biol 16: R551‐R560, 2006. |
114. | McCarron JG, Wilson C, Sandison ME, Olson ML, Girkin JM, Saunter C, Chalmers S. From structure to function: Mitochondrial morphology, motion and shaping in vascular smooth muscle. J Vasc Res 50: 357‐371, 2013. |
115. | McIntosh VJ, Lasley RD. Adenosine receptor‐mediated cardioprotection: Are all 4 subtypes required or redundant? J Cardiovasc Pharmacol Ther 17: 21‐33, 2012. |
116. | Merdzo I, Rutkai I, Tokes T, Sure V, Katakam PV, Busjia DW. The mitochondrial function of the cerebral vasculature in insulin resistant Zucker obese rats. Am J Physiol Heart Circ Physiol 310: H830‐H838, 2016. |
117. | Miller JD, Peotta VA, Chu Y, Weiss RM, Zimmerman K, Brooks RM, Heistad DD. MnSOD protects against COX1‐mediated endothelial dysfunction in chronic heart failure. Am J Physiol Heart Circ Physiol 298: H1600‐H1607, 2010. |
118. | Muller FL, Liu Y, Van Remmem H. Complex III releases superoxide to both sides of the inner mitochondrial membrane. J Biol Chem 279: 49064‐49073, 2004. |
119. | Nishikawa T, Edelstein D, Du XL, Yamagishi S, Matsumura T, Kaneda Y, Yorek MA, Beebe D, Oates PJ, Hammes HP, Giardinno I, Brownlee M. Normalizing mitochondrial superoxide production blocks three pathways of hyperglycaemic damage. Nature 404: 787‐790, 2000. |
120. | Oldendorf WH, Cornford ME, Brown WJ. The large apparent work capacity of the blood‐brain barrier: A study of the mitochondrial content of capillary endothelial cells in brain and other tissues of the rat. Ann Neurol 1: 409‐417, 1977. |
121. | O'Reilly CM, Fogarty KE, Drummond RM, Tuft RA, Walsh JV, Jr. Spontaneous mitochondrial depolarizations are independent of SR Ca2+ release. Am J Physiol Cell Physiol 286: C1139‐C1151, 2014. |
122. | Patterson HC, Gerbeth C, Thiru P, Vögtle NF, Knoll M, Shahsafaei A, Samocha KE, Huang CX, Harden MM, Song R, Chen C, Kao J, Shi J, Salmon W, Shaul YD, Stokes MP, Silva JC, Bell GW, MacArthur DG, Ruland J, Meisinger C, Lodish HF. A respiratory chain controlled signal transduction cascade in the mitochondrial intermembrane space mediates hydrogen peroxide signaling. Proc Natl Acad Sci U S A 112: E5679‐E5688, 2015. |
123. | Pelligrino DA, Vetri F, Xu HL. Purinergic mechanisms in gliovascular coupling. Semin Cell Dev Biol 22: 229‐236. 2011. |
124. | Perez‐Pinzon MA, Dave KR, Raval AP. Role of reactive oxygen species and protein kinase C in ischemic tolerance in the brain. Antioxid Redox Signal 7: 1150‐1157, 2005. |
125. | Picard M, Shirihai OS, Gentil BJ, Burelle Y. Mitochondrial morphology transitions and functions: Implications for retrograde signaling? Am J Physiol Regul Integr Comp Physiol 304: R393‐R406, 2013. |
126. | Pung YF, Sam WJ, Hardwick JP, Yin L, Ohanyan V, Logan S, Di Vincenzo L, Chilian WM. The role of mitochondria bioenergetics and reactive oxygen species in coronary collateral growth. Am J Physiol 305: H1275‐H1280, 2013. |
127. | Rajapakse N, Kis B, Horiguchi T, Snipes J, Busija D. Diazoxide pretreatment induces delayed preconditioning in astrocytes against oxygen glucose deprivation and hydrogen peroxide‐induced toxicity. J Neurosci Res 73: 206‐214, 2003. |
128. | Revuelta M, Arteaga O, Montalvo H, Alvarez A, Hilario E, Martinez‐Ibarguen A. Antioxidant treatments recover the alteration of auditory‐evoked potentials and reduce morphological damage in the inferior colliculus after perinantal asphyxia in rat. Brain Path 26: 186‐198, 2016. |
129. | Rines AK, Bayeva M, Ardehali H. A new pROM king for the MitoKATP dance ROMK takes the lead. Circ Res 111: 392‐393, 2012. |
130. | Robin E, Simerabet M, Hassoun SM, Adamczyk S, Tavernier B, Vallet B, Bordet R, Lebuffe G. Postconditioning in focal cerebral ischemia: Role of the mitochondrial ATP‐dependent potassium channel. Brain Res 1375: 137‐146, 2011. |
131. | Rutkai I, Dutta S, Katakam PV, Busija DW. Dynamics of enhanced mitochondrial respiration in female compared with male rat cerebral arteries. Am J Physiol Heart Circ Physiol 309: H1490‐H1500, 2015. |
132. | Rutkai I, Katakam PV, Dutta S, Busija DW. Sustained mitochondrial functioning in cerebral arteries after transient ischemic stress in the rat: A potential target for therapies. Am J Physiol Heart Circ Physiol 307: H958‐H966, 2014. |
133. | Seharaseyon J, Ohler A, Sasaki N, Fraser H, Sato T, Johns DC, O'Rourke B, Marban E. Molecular composition of mitochondrial ATP‐sensitive potassium channels probed by viral Kir gene transfer. J Mol Cell Cardiol 32: 1923‐1930, 2000. |
134. | Sheldon KL, San Martin A. Role of subplasmalemmal mitochondria in angiotensin‐II mediated contraction. Circ Res 117: 984‐986, 2015. |
135. | Shimizu K, Lacza Z, Rajapakse N, Horiguchi T, Snipes J, Busija DW. MitoKATP opener, diazoxide, reduces neuronal damage after middle cerebral artery occlusion in the rat. Am J Physiol Heart Circ Physiol 283: H1005‐H1011, 2002. |
136. | Silachev DN, Plotnikov EY, Zorova LD, Pevzner IB, Sumbatyan NV, Korshunova GA, Gulyaev MV, Pirogov YA, Skulachev VP, Zorov DB. Neuroprotective effects of mitochondria‐targeted plastoquinone and thymoquinone in a rat model of brain ischemia/reperfusion injury. Molecules 20: 14487‐14503, 2015. |
137. | Somlyo AV, Somlyo AP. Strontium accumulation by sarcoplasmic reticulum and mitochondria in vascular smooth muscle. Science 174: 955‐958, 1971. |
138. | Springo Z, Tarantini S, Toth P, Tucsek Z, Koller A, Sonntag WE, Csiszar A, Ungvari Z. Aging exacerbates pressure‐induced mitochondrial oxidative stress in mouse cerebral arteries. J Gerontol A Biol Sci Med Sci 70: 1355‐1359, 2015. |
139. | Szeto HH, Birk AV. Serendipity and the discovery of novel compounds that restore mitochondrial plasticity. Clin Pharmacol Ther 96: 672‐683, 2014. |
140. | Terao S, Yimaz G, Stokes KY, Ishikawa M, Kawase T, Granger DN. Inflammatory and injury responses to ischemic stroke in obese mice. Stroke 9: 943‐950, 2008. |
141. | Toda N, Okamura T. Nitroxidergic nerve: Regulation of vascular tone and blood flow in the brain. J Hypertens 14: 423‐434, 1996. |
142. | Toda N, Toda H, Hatano Y. Nitric oxide: Involvement in the effects of anesthetic agents. Anesthesiology 107: 822‐842, 2007. |
143. | Tretter L, Adam‐Vizi V. Uncoupling without an effect on the production of reactive oxygen species by in situ synaptic mitochondria. J Neurochem 103: 1864‐1871, 2007. |
144. | Votyakova TV, Reynolds IJ. DeltaPsi(m)‐dependent and ‐independent production of reactive oxygen species by rat brain mitochondria. J Neurochem 79: 266‐277, 2001. |
145. | Wappler EA, Institoris A, Dutta S, Katakam PV, Busija DW. Mitochondrial dynamics associated with oxygen‐glucose deprivation in rat primary neuronal cultures. PLoS One 8: e63206, 2013. |
146. | Widlansky ME, Gutterman DD. Regulation of endothelial function by mitochondrial reactive species. Antiox Redox Sig 15: 1517‐1530, 2011. |
147. | Wojtovich AP, Smith CO, Haynes CM, Nehrke KW, Brookes PS. Physiological consequences of complex II inhibition for aging, disease, and the mKATP channel. Biochim Biophys Acta 1827: 598‐611, 2013. |
148. | Xi Q, Cheranov SY, Jaggar JH. Mitochondria‐derived reactive oxygen species dilate cerebral arteries by activating Ca2+ sparks. Circ Res 97: 354‐362, 2005. |
149. | Zhang DX, Gutterman DD. Mitochondrial reactive oxygen species‐mediated signaling in endothelial cells. Am J Physiol Heart Circ Physiol 292: H2023‐H2031, 2007. |
150. | Zhao H. Ischemic postconditioning as a novel avenue to protect against brain injury after stroke. J Cereb Blood Flow Metab 29: 873‐885, 2009. |
151. | Zick M, Rabl R, Reichert AS. Cristae formation‐linking ultrastructure and function of mitochondria. Biochim Biophys Acta 1793: 5‐19, 2008. |