Comprehensive Physiology Wiley Online Library

Critical Illness Myopathy (CIM) and Ventilator‐Induced Diaphragm Muscle Dysfunction (VIDD): Acquired Myopathies Affecting Contractile Proteins

Full Article on Wiley Online Library



ABSTRACT

Critical care and intensive care units (ICUs) have undergone dramatic changes and improvements in recent years, and critical care is today one of the fastest growing hospital disciplines. Significant improvements in treatments, removal of inefficient and harmful interventions, and introduction of advanced technological support systems have improved survival among critically ill ICU patients. However, the improved survival is associated with an increased number of patients with complications related to modern critical care. Severe muscle wasting and impaired muscle function are frequently observed in immobilized and mechanically ventilated ICU patients. Approximately 30% of mechanically ventilated and immobilized ICU patients for durations of five days and longer develop generalized muscle paralysis of all limb and trunk muscles. These patients typically have intact sensory and cognitive functions, a condition known as critical illness myopathy (CIM). Mechanical ventilation is a lifesaving treatment in critically ill ICU patients; however, the being on a ventilator creates dependence, and the weaning process occupies as much as 40% of the total time of mechanical ventilation. Furthermore, 20% to 30% of patients require prolonged intensive care due to ventilator‐induced diaphragm dysfunction (VIDD), resulting in poorer outcomes, and greatly increased costs to health care providers. Our understanding of the mechanisms underlying both CIM and VIDD has increased significantly in the past decade and intervention strategies are presently being evaluated in different experimental models. This short review is restricted CIM and VIDD pathophysiology rather than giving a comprehensive review of all acquired muscle wasting conditions associated with modern critical care. © 2017 American Physiological Society. Compr Physiol 7:105‐112, 2017.

Comprehensive Physiology offers downloadable PowerPoint presentations of figures for non-profit, educational use, provided the content is not modified and full credit is given to the author and publication.

Download a PowerPoint presentation of all images


Figure 1. Figure 1. Myofibrillar protein isoform composition (A). Chemically skinned single muscle cells from the tibialis anterior muscle from a normal control subject (a) and a patient with CIM (b) in relaxing solution (Relax) and during maximum activation (pCa 4.5). Scale bar, 50 μm. (B) Electrophoretic separation of myosin heavy chain (MyHC) isoforms by 6% sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS‐PAGE). MyHCs were separated from single tibial anterior fiber segments (lanes 1‐5, 7‐10), bundles of 10 tibial anterior fibers (lanes 11, 12) and from single 10 μm cross‐section from a vastus lateralis muscle biopsy (lanes 6, 13) expressing three MyHCs bands (types I, IIa, and IIx). Lanes 9 to 12 are from the quadriplegic patient (lane 10 corresponds to the fiber b above, A) and the other lanes are from normal control subjects. (C) Electrophoretic separation of thick‐ and thin‐filament protein isoforms with 12% SDS‐PAGE. Fibers 1 to 3 are from the tibialis anterior muscle of a patient with hemi paresis due to an upper motoneuron lesion. Lane 1 from the paretic side and lanes 2 and 3 from the nonparetic normal side. Lanes 4 and 5 (encircled in red) correspond to the fiber bundles from the quadriplegic patient, that is, the same bundles as lanes 11 and 12 (encircled in red) on the 6% SDS‐PAGE (B). Modified, with permission, from Larsson and Roland (24).
Figure 2. Figure 2. Possible mechanisms of action of BGP‐15 in response to nicotinamide adenine dinucleotide hydride (NADH) oxidase and ROS production. Modified, with permission, from Crul et al. (9).


Figure 1. Myofibrillar protein isoform composition (A). Chemically skinned single muscle cells from the tibialis anterior muscle from a normal control subject (a) and a patient with CIM (b) in relaxing solution (Relax) and during maximum activation (pCa 4.5). Scale bar, 50 μm. (B) Electrophoretic separation of myosin heavy chain (MyHC) isoforms by 6% sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS‐PAGE). MyHCs were separated from single tibial anterior fiber segments (lanes 1‐5, 7‐10), bundles of 10 tibial anterior fibers (lanes 11, 12) and from single 10 μm cross‐section from a vastus lateralis muscle biopsy (lanes 6, 13) expressing three MyHCs bands (types I, IIa, and IIx). Lanes 9 to 12 are from the quadriplegic patient (lane 10 corresponds to the fiber b above, A) and the other lanes are from normal control subjects. (C) Electrophoretic separation of thick‐ and thin‐filament protein isoforms with 12% SDS‐PAGE. Fibers 1 to 3 are from the tibialis anterior muscle of a patient with hemi paresis due to an upper motoneuron lesion. Lane 1 from the paretic side and lanes 2 and 3 from the nonparetic normal side. Lanes 4 and 5 (encircled in red) correspond to the fiber bundles from the quadriplegic patient, that is, the same bundles as lanes 11 and 12 (encircled in red) on the 6% SDS‐PAGE (B). Modified, with permission, from Larsson and Roland (24).


Figure 2. Possible mechanisms of action of BGP‐15 in response to nicotinamide adenine dinucleotide hydride (NADH) oxidase and ROS production. Modified, with permission, from Crul et al. (9).
References
 1.Aare S, Ochala J, Norman HS, Radell P, Eriksson LI, Goransson H, Chen YW, Hoffman EP, Larsson L. Mechanisms underlying the sparing of masticatory versus limb muscle function in an experimental critical illness model. Physiol Genomics 43: 1334‐1350, 2011.
 2.Aare S, Radell P, Eriksson LI, Akkad H, Chen YW, Hoffman EP, Larsson L. Effects of corticosteroids in the development of limb muscle weakness in a porcine intensive care unit model. Physiol Genomics 45: 312‐320, 2013.
 3.Aare S, Radell P, Eriksson LI, Chen YW, Hoffman EP, Larsson L. Role of sepsis in the development of limb muscle weakness in a porcine intensive care unit model. Physiol Genomics 44: 865‐877, 2012.
 4.Akkad H, Corpeno R, Larsson L. Masseter muscle myofibrillar protein synthesis and degradation in an experimental critical illness myopathy model. PLoS One 9: e92622, 2014.
 5.Banduseela VC, Ochala J, Chen YW, Goransson H, Norman H, Radell P, Eriksson LI, Hoffman EP, Larsson L. Gene expression and muscle fiber function in a porcine ICU model. Physiol Genomics 39: 141‐159, 2009.
 6.Blake MJ, Fargnoli J, Gershon D, Holbrook NJ. Concomitant decline in heat‐induced hyperthermia and HSP70 mRNA expression in aged rats. Am J Physiol 260: R663‐667, 1991.
 7.Chung J, Nguyen AK, Henstridge DC, Holmes AG, Chan MH, Mesa JL, Lancaster GI, Southgate RJ, Bruce CR, Duffy SJ, Horvath I, Mestril R, Watt MJ, Hooper PL, Kingwell BA, Vigh L, Hevener A, Febbraio MA. HSP72 protects against obesity‐induced insulin resistance. Proc Natl Acad Sci U S A 105: 1739‐1744, 2008.
 8.Corpeno R, Dworkin B, Cacciani N, Salah H, Bergman HM, Ravara B, Vitadello M, Gorza L, Gustafson AM, Hedstrom Y, Petersson J, Feng HZ, Jin JP, Iwamoto H, Yagi N, Artemenko K, Bergquist J, Larsson L. Time course analysis of mechanical ventilation‐induced diaphragm contractile muscle dysfunction in the rat. J Physiol‐London 592: 3859‐3880, 2014.
 9.Crul T, Toth N, Piotto S, Literati‐Nagy P, Tory K, Haldimann P, Kalmar B, Greensmith L, Torok Z, Balogh G, Gombos I, Campana F, Concilio S, Gallyas F, Nagy G, Berente Z, Gungor B, Peter M, Glatz A, Hunya A, Literati‐Nagy Z, Vigh L, Jr., Hoogstra‐Berends F, Heeres A, Kuipers I, Loen L, Seerden JP, Zhang D, Meijering RA, Henning RH, Brundel BJ, Kampinga HH, Koranyi L, Szilvassy Z, Mandl J, Sumegi B, Febbraio MA, Horvath I, Hooper PL, Vigh L. Hydroxamic acid derivatives: Pleiotropic HSP co‐inducers restoring homeostasis and robustness. Curr Pharm Des 19: 309‐346, 2013.
 10.Di Giovanni S, Molon A, Broccolini A, Melcon G, Mirabella M, Hoffman EP, Servidei S. Constitutive activation of MAPK cascade in acute quadriplegic myopathy. Ann Neurol 55: 195‐206, 2004.
 11.Dodd S, Hain B, Judge A. Hsp70 prevents disuse muscle atrophy in senescent rats. Biogerontology 10: 605‐611, 2009.
 12.Dworkin BR, Dworkin S. Learning of physiological responses: I. Habituation, sensitization, and classical conditioning. Behav Neurosci 104: 298‐319, 1990.
 13.Esteban A, Alia I, Tobin MJ, Gil A, Gordo F, Vallverdu I, Blanch L, Bonet A, Vazquez A, de Pablo R, Torres A, de La Cal MA, Macias S. Effect of spontaneous breathing trial duration on outcome of attempts to discontinue mechanical ventilation. Spanish Lung Failure Collaborative Group. Am J Respir Crit Care Med 159: 512‐518, 1999.
 14.Friedrich O, Fink RH, Hund E. Understanding critical illness myopathy: Approaching the pathomechanism. J Nutr 135: 1813 S‐1817 S, 2005.
 15.Friedrich O, Reid MB, Van den Berghe G, Vanhorebeek I, Hermans G, Rich MM, Larsson L. The sick and the weak: Neuropathies/myopathies in the critically ill. Physiol Rev 95: 1025‐1109, 2015.
 16.Heier CR, Damsker JM, Yu Q, Dillingham BC, Huynh T, Van der Meulen JH, Sali A, Miller BK, Phadke A, Scheffer L, Quinn J, Tatem K, Jordan S, Dadgar S, Rodriguez OC, Albanese C, Calhoun M, Gordish‐Dressman H, Jaiswal JK, Connor EM, McCall JM, Hoffman EP, Reeves EKM, Nagaraju K. VBP15, a novel anti‐inflammatory and membrane‐stabilizer, improves muscular dystrophy without side effects. Embo Mol Med 5: 1569‐1585, 2013.
 17.Henstridge DC, Bruce CR, Drew BG, Tory K, Kolonics A, Estevez E, Chung J, Watson N, Gardner T, Lee‐Young RS, Connor T, Watt MJ, Carpenter K, Hargreaves M, McGee SL, Hevener AL, Febbraio MA. Activating HSP72 in rodent skeletal muscle increases mitochondrial number and oxidative capacity and decreases insulin resistance. Diabetes 63: 1881‐1894, 2014.
 18.Jaber S, Jung B, Matecki S, Petrof BJ. Clinical review: Ventilator‐induced diaphragmatic dysfunction‐human studies confirm animal model findings! Crit Care 15: 206, 2011.
 19.Jaber S, Petrof BJ, Jung B, Chanques G, Berthet JP, Rabuel C, Bouyabrine H, Courouble P, Koechlin‐Ramonatxo C, Sebbane M, Similowski T, Scheuermann V, Mebazaa A, Capdevila X, Mornet D, Mercier J, Lacampagne A, Philips A, Matecki S. Rapidly progressive diaphragmatic weakness and injury during mechanical ventilation in humans. Am J Respir Crit Care Med 183: 364‐371, 2011.
 20.Kalamgi RC, Salah H, Gastaldello S, Martinez‐Redondo V, Ruas J, Fury W, Bai Y, Gromada J, Sartori R, Guttridge DC, Sandri M, Larsson L. Mechano‐signaling pathways in an experimental intensive critical illness myopathy model. J Physiol 594: 4371‐4388, 2016.
 21.Lacomis D, Zochodne DW, Bird SJ. Critical illness myopathy. Muscle Nerve 23: 1785‐1788, 2000.
 22.Larsson L. Experimental animal models of muscle wasting in intensive care unit patients. Crit Care Med 35: S484‐487, 2007.
 23.Larsson L, Li X, Edstrom L, Eriksson LI, Zackrisson H, Argentini C, Schiaffino S. Acute quadriplegia and loss of muscle myosin in patients treated with nondepolarizing neuromuscular blocking agents and corticosteroids: Mechanisms at the cellular and molecular levels [see comments]. Crit Care Med 28: 34‐45, 2000.
 24.Larsson L, Roland A. Drug induced tetraparesis and loss of myosin. Mild types are probably overlooked. Lakartidningen 93: 2249‐2254, 1996.
 25.Levine S, Nguyen T, Taylor N, Friscia ME, Budak MT, Rothenberg P, Zhu J, Sachdeva R, Sonnad S, Kaiser LR, Rubinstein NA, Powers SK, Shrager JB. Rapid disuse atrophy of diaphragm fibers in mechanically ventilated humans. N Engl J Med 358: 1327‐1335, 2008.
 26.Lindquist S, Craig EA. The heat‐shock proteins. Annu Rev Genet 22: 631‐677, 1988.
 27.Llano‐Diez M, Renaud G, Andersson M, Marrero HG, Cacciani N, Engquist H, Corpeno R, Artemenko K, Bergquist J, Larsson L. Mechanisms underlying ICU muscle wasting and effects of passive mechanical loading. Crit Care 16: R209, 2012.
 28.MacFarlane IA, Rosenthal FD. Severe myopathy after status asthmaticus. Lancet 2: 615, 1977.
 29.Navalesi P, Frigerio P, Patzlaff A, Haussermann S, Henseke P, Kubitschek M. Prolonged weaning: From the intensive care unit to home. Rev Port Pneumol 20: 264‐272, 2014.
 30.Norman H, Nordquist J, Andersson P, Ansved T, Tang X, Dworkin B, Larsson L. Impact of post‐synaptic block of neuromuscular transmission, muscle unloading and mechanical ventilation on skeletal muscle protein and mRNA expression. Pflugers Arch 453: 53‐66, 2006.
 31.Norman H, Zackrisson H, Hedstrom Y, Andersson P, Nordquist J, Eriksson LI, Libelius R, Larsson L. Myofibrillar protein and gene expression in acute quadriplegic myopathy. J Neurol Sci 285: 28‐38, 2009.
 32.Ochala J, Ahlbeck K, Radell PJ, Eriksson LI, Larsson L. Factors underlying the early limb muscle weakness in acute quadriplegic myopathy using an experimental ICU porcine model. PLoS One 6: e20876, 2011.
 33.Ochala J, Gustafson AM, Diez ML, Renaud G, Li M, Aare S, Qaisar R, Banduseela VC, Hedstrom Y, Tang X, Dworkin B, Ford GC, Nair KS, Perera S, Gautel M, Larsson L. Preferential skeletal muscle myosin loss in response to mechanical silencing in a novel rat intensive care unit model: Underlying mechanisms. J Physiol 589: 2007‐2026, 2011.
 34.Ochala J, Renaud G, Llano Diez M, Banduseela VC, Aare S, Ahlbeck K, Radell PJ, Eriksson LI, Larsson L. Diaphragm muscle weakness in an experimental porcine intensive care unit model. PLoS One 6: e20558, 2011.
 35.Ogilvie H, Cacciani N, Akkad H, Larsson L. Targeting heat shock proteins mitigates ventilator induced diaphragm muscle dysfunction in an age‐dependent manner. Front Physiol. In press: 2016.
 36.Petrof BJ, Jaber S, Matecki S. Ventilator‐induced diaphragmatic dysfunction. Curr Opin Crit Care 16: 19‐25, 2010.
 37.Renaud G, Llano‐Diez M, Ravara B, Gorza L, Feng HZ, Jin JP, Cacciani N, Gustafson AM, Ochala J, Corpeno R, Li M, Hedstrom Y, Ford GC, Nair KS, Larsson L. Sparing of muscle mass and function by passive loading in an experimental intensive care unit model. J Physiol 591: 1385‐1402, 2013.
 38.Rich MM, Teener JW, Raps EC, Schotland DL, Bird SJ. Muscle is electrically inexcitable in acute quadriplegic myopathy. Neurology 46: 731‐736, 1996.
 39.Rudis MI, Guslits BJ, Peterson EL, Hathaway SJ, Angus E, Beis S, Zarowitz BJ. Economic impact of prolonged motor weakness complicating neuromuscular blockade in the intensive care unit. Crit Care Med 24: 1749‐1756, 1996.
 40.Salah H, Li M, Cacciani N, Gastaldello S, Ogilvie H, Akkad H, Venkant Namaduri A, Morbidino V, Artemenko K, Balogh G, Martinez‐Redondo V, Hedström Y, Dworkin B, Bergquist J, Ruas J, Vigh L, Salviati L, Larsson L. The chaperone co‐inducer BGP‐15 alleviates ventilation induced diaphragm dysfunction. Sci Transl Med 2016 Aug 3;8(350):350ra103. doi:10.1126/scitranslmed.aaf7099.
 41.Schefold JC, Bierbrauer J, Weber‐Carstens S. Intensive care unit‐acquired weakness (ICUAW) and muscle wasting in critically ill patients with severe sepsis and septic shock. J Cachexia Sarcopenia Muscle 1: 147‐157, 2010.
 42.Seneff MG, Wagner D, Thompson D, Honeycutt C, Silver MR. The impact of long‐term acute‐care facilities on the outcome and cost of care for patients undergoing prolonged mechanical ventilation. Crit Care Med 28: 342‐350, 2000.
 43.Senf SM, Dodd SL, McClung JM, Judge AR. Hsp70 overexpression inhibits NF‐kappaB and Foxo3 a transcriptional activities and prevents skeletal muscle atrophy. FASEB J 22: 3836‐3845, 2008.
 44.Supinski GS, Callahan LA. Diaphragm weakness in mechanically ventilated critically ill patients. Crit Care 17: R120, 2013.
 45.Vaillancourt JP, Lyons C, Cote G. Identification of two phosphorylated threonines in the tail region of Dictyostelium myosin II. J Biol Chem 263: 10082‐10087, 1988.
 46.Vallverdu I, Calaf N, Subirana M, Net A, Benito S, Mancebo J. Clinical characteristics, respiratory functional parameters, and outcome of a two‐hour T‐piece trial in patients weaning from mechanical ventilation. Am J Respir Crit Care Med 158: 1855‐1862, 1998.
 47.Vincent JL. Critical care—where have we been and where are we going? Crit Care 17(Suppl 1): S2, 2013.
 48.Zilberberg MD, Shorr AF. Prolonged acute mechanical ventilation and hospital bed utilization in 2020 in the United States: Implications for budgets, plant and personnel planning. BMC Health Serv Res 8: 242, 2008.

Contact Editor

Submit a note to the editor about this article by filling in the form below.

* Required Field

How to Cite

Lars Larsson, Oliver Friedrich. Critical Illness Myopathy (CIM) and Ventilator‐Induced Diaphragm Muscle Dysfunction (VIDD): Acquired Myopathies Affecting Contractile Proteins. Compr Physiol 2016, 7: 105-112. doi: 10.1002/cphy.c150054