Comprehensive Physiology Wiley Online Library

Circadian Rhythms in Adipose Tissue Physiology

Full Article on Wiley Online Library



ABSTRACT

The different types of adipose tissues fulfill a wide range of biological functions—from energy storage to hormone secretion and thermogenesis—many of which show pronounced variations over the course of the day. Such 24‐h rhythms in physiology and behavior are coordinated by endogenous circadian clocks found in all tissues and cells, including adipocytes. At the molecular level, these clocks are based on interlocked transcriptional‐translational feedback loops comprised of a set of clock genes/proteins. Tissue‐specific clock‐controlled transcriptional programs translate time‐of‐day information into physiologically relevant signals. In adipose tissues, clock gene control has been documented for adipocyte proliferation and differentiation, lipid metabolism as well as endocrine function and other adipose oscillations are under control of systemic signals tied to endocrine, neuronal, or behavioral rhythms. Circadian rhythm disruption, for example, by night shift work or through genetic alterations, is associated with changes in adipocyte metabolism and hormone secretion. At the same time, adipose metabolic state feeds back to central and peripheral clocks, adjusting behavioral and physiological rhythms. In this overview article, we summarize our current knowledge about the crosstalk between circadian clocks and energy metabolism with a focus on adipose physiology. © 2017 American Physiological Society. Compr Physiol 7:383‐427, 2017.

Comprehensive Physiology offers downloadable PowerPoint presentations of figures for non-profit, educational use, provided the content is not modified and full credit is given to the author and publication.

Download a PowerPoint presentation of all images


Figure 1. Figure 1. Molecular dynamics of the mammalian clock's core TTL. BMAL1:CLOCK (B and C, respectively) heterodimers bind to E‐Box motifs in the promotor regions of target genes and promote transcription of Period (Per, P) and Cryptochrome (Cry, C) genes in the morning. Over the following hour, PER and CRY proteins accumulate in the cytoplasm and are rapidly degraded following phosphorylation by CK1s and AMPK/GSK3ß, respectively. At the beginning of the dark phase, PER and CRY complexes form, stabilizing both proteins against degradation and initiating translocation into the nucleus. Nuclear PER:CRY complexes inhibit the transactivational activity of BMAL1:CLOCK during the night, thus blocking Per/Cry transcription. Toward the morning, PER and CRY levels in the nucleus decline, releasing BMAL1:CLOCK repression, and initiating a new circadian cycle.
Figure 2. Figure 2. Interlocking TTLs within the mammalian circadian clockwork. The positive limb of the pace making core TTL comprises of the two transcription factors BMAL1 and CLOCK, whereas the PERs and CRYs form its negative limb. Several auxiliary TTLs reinforce stabilization and robustness of the 24‐h oscillation. Rev‐ERBs and RORs repress or stimulate the transcription of Bmal1, respectively. In addition, E4bp4 transcription is regulated by REV‐ERBs/RORs and E4BP4 protein represses Per2 expression. Dbp transcription is activated by BMAL1:CLOCK and DBP activates Per1 transcription via D‐box binding. Transcription of the two Dec genes is regulated by BMAL1:CLOCK and DEC proteins represses CLOCK:BMAL1 transactivation, similar to PER:CRY complexes.
Figure 3. Figure 3. Hierarchical organization of the mammalian circadian clock system. The different clocks within the mammalian organism are organized in a hierarchical manner. A master clock in the SCN receives light information via retinal ipRGC and integrates this information to coordinate circadian rhythms of non‐SCN CNS and peripheral oscillators. The SCN resets peripheral oscillators via regulation of hormonal rhythms (e.g., melatonin), through rhythmic autonomic innervation, or indirectly through the regulation of body temperature and behavioral functions such as sleep/wake and food intake cycles.
Figure 4. Figure 4. Zeitgebers entrain endogenous rhythms to the 24‐h day cycle. (A) The SCN clock controls rest/activity rhythms in rodents. In constant environmental conditions (constant darkness, DD) mice show locomotor free‐running rhythms with periods below 24 h (left). Under 12‐h light: 12‐h dark (LD) cycle locomotor rhythms are entrained to the external 24‐h period (right). (B) Peripheral clock function can be monitored by measuring luminescence from a clock promoter‐driven luciferase construct such as Bmal1:Luc in cultivated cells or tissues. After synchronization tissue clocks free‐run with an endogenous period of close to, but not exactly, 24 h (left). By applying rhythmic temperature cycles these rhythms become entrained to a 24‐h period (right). In a similar way peripheral tissues are entrained by the SCN pacemaker in vivo.
Figure 5. Figure 5. Central and peripheral circadian clocks are synchronized to the 24‐h day by different zeitgebers. Light is the most potent zeitgeber in mammals. Photic information is transmitted to the SCN via ipRGCs. In poikilothermic organisms, temperature fluctuations can also directly affect the circadian pacemaker. Tight coupling of neuronal firing within the SCN resets the SCN clock. From there, time information is passed on to peripheral oscillators. Experiments with transgenic mice have recently shown that SCN clock function is principally not necessary to transmit light information to peripheral clocks, but the mechanisms of this pathway remain largely unclear. In contrast to light, food intake can reset peripheral clocks independent of the SCN via peripheral hormonal and metabolite signals.
Figure 6. Figure 6. Adipose tissue depots. WAT (A, C) and BAT (B, D, E) are differently localized in rodents (A, B) and humans (C‐E). (A) In rodents, WAT is found at subcutaneous, visceral (surrounding the inner organs), and intramuscular sites. Visceral depots are further divided into cervical (in the neck), mesenteric (attached to the intestine), retroperitoneal, perirenal (around the kidney), gonadal, and inguinal (in the groin) pads. (B) BAT is mainly localized between the shoulder blades (interscapular). Smaller depots are found at cervical, axillary, mediastinic, and perirenal sites. (C) In humans, WAT is also principally divided into subcutaneous, visceral, and intramuscular depots. The most prominent subcutaneous WAT depots are localized abdominally and gluteofemorally (at the buttocks and thighs). Visceral depots are spread very broadly throughout the body and divided into pericardial (around the heart), omental (near to the stomach and spleen) peri‐ and pararenal, mesenteric, retroperitoneal, and gonadal pads. (D) In infants large BAT depots are located between the shoulder blades (interscapular), while (E) in adults more widespread, but less distinct depots are found at cervical, interscapular, para‐aortic, paravertebral, and suprarenal sites.
Figure 7. Figure 7. Modern lifestyle factors promote chronodisruption. Different lifestyle factors such as irregular and nighttime food intake, reduced activity, irregular and disrupted sleep and shift work as well as nocturnal exposure to artificial light perturb natural zeitgeber rhythms, disrupting phase coherence between different tissue clocks. Circadian clock misalignment promotes general chronodisruption, promoting the development of various diseases including metabolic dysfunction, cancer, and neuropsychiatric disorders.
Figure 8. Figure 8. Clock gene‐controlled regulation of adipose tissue differentiation. BMAL1:CLOCK regulates BAT adipogenesis through coordination of BMP and TGF‐ß signaling. It also inhibits WAT adipogenesis by activation of WNT pathways. REV‐ERBα induces WAT adipogenesis through stimulation of PPARγ and C/EBPα signaling.
Figure 9. Figure 9. Clock gene‐controlled regulation of WAT lipolysis. Local adipocyte clocks regulate TG breakdown and FFA release through CLOCK:BMAL1 controlled expression of rate limiting enzymes such as HSL, ATGL, and TGH.
Figure 10. Figure 10. Clock gene‐controlled regulation of BAT thermogenesis. BAT circadian oscillators regulate non‐shivering thermogenesis through REV‐ERBα‐mediated suppression of UCP1 expression. At the same time, the BAT clock machinery controls thermogenesis by limiting BAT differentiation through balancing TGF‐ß and BMP signaling in BAT preadipocytes. Of note, the expression of Rev‐erbα itself is downregulated by a thermogenesis inducing cold stimulus.
Figure 11. Figure 11. Adipose specific clock disruption in mice reveals a peripheral feedback mechanism controlling feeding behavior. The SCN synchronizes adipose clocks through endogenous zeitgebers including endocrine factors and behavioral rhythms such as feeding. Adipocyte‐derived and systemic factors together coordinate adipose physiology. Adipocyte‐specific KO of the essential clock gene Bmal1 reveals an adipose clock controlled regulation of polyunsaturated FFA release. Lack of polyunsaturated FFAs in adipose clock‐deficient mice leads to disinhibition of appetite, hyperphagy, and obesity.
Figure 12. Figure 12. The role of GC rhythms in the regulation of WAT physiology. The SCN controls circadian release of GCs from the adrenal via combined neuronal and endocrine pathways. Direct GABAergic projections from the SCN reach the PVN and the subparaventricular zone. From the PVN, CRH is released into the hypophyseal portal system to stimulate secretion of ACTH. ACTH, in turn, induces GC production and secretion in the adrenal cortex. In parallel, from PVN neurons sympathetic ganglia reach via the pituitary and the IML to innervate the adrenal medulla and, to a lesser extent, cortex, regulating sensitivity of the adrenal to ACTH stimulation. Upon binding to GR, GCs exert multiple effects on adipose tissue including the stimulation of lipolysis through activation of ATGL, HSL, and MGLL and of TG uptake through activation of LPL. GCs can also reset adipocyte clocks via induction of Per gene transcription. At the same time, local GC sensitivity is regulated by the adipocyte clock machinery, through CRYs and CLOCK:BMAL1 regulating GR availability and expression, respectively.
Figure 13. Figure 13. The role of melatonin rhythms in the regulation of BAT physiology. SCN regulates circadian rhythms of melatonin release from the pineal gland via a multisynaptic pathway involving the PVN and the IML of the spinal cord. Melatonin can feed back on SCN clock function through MT1/2 signaling. The main regulator of circadian rhythms of BAT activity is the SNS, through activation of ß3‐adrenergic receptor by NE. Melatonin modulates ß3‐AR signaling by inhibiting downstream adenylate cyclase activity and activating CREB through PKC‐mediated signals. At the same time melatonin signaling activates RORa expression through Gaq signaling, which, in turn, counteracts REV‐ERBα‐mediated suppression of UCP1.
Figure 14. Figure 14. The role of insulin in the regulation of WAT physiology. Baseline circadian blood levels of insulin are regulated by the SCN through sympathetic innervation of pancreas beta cells and CLOCK:BMAL1 stimulated insulin secretion. Insulin acts on white adipocytes to stimulate TG uptake—via LPL—and to inhibit lipolysis through inhibition of HSL. Insulin further promotes de novo lipogenesis via activation of chREBPs. Insulin can also reset adipocyte clocks via MAP kinase and PI3 kinase‐dependent upregulation of Per gene expression.
Figure 15. Figure 15. Adipose tissue immune cell‐clock crosstalk in lean and obese conditions. The SCN coordinates adipose physiology through neuronal and endocrine factors affecting, both, adipose tissue immune cell function and adipocyte clocks. (A) In lean subjects, adipose tissue‐resident immunocytes maintain anti‐inflammatory, or type‐2, responses via secretion of immunomodulatory mediators such as IL‐4, IL‐5, IL‐10, IL‐13, and NE. Lean adipocytes mainly release adiponectin and IL‐33 to stabilize this state. (B) In obesity, type‐1 immune responses dominate in adipose tissue immunocytes, leading to chronic adipose tissue inflammation (metaflammation) and insulin resistance. Adipose tissue is infiltrated by proinflammatory immune cells, notably macrophages. At the same time, in response to nutrient overload, adipocytes elevate leptin production, and release proinflammatory cytokines such as TNFα, IL‐1ß, and IL‐6 as well as chemo‐attractants such as CCL2, further recruiting and activating proinflammatory immune cells.


Figure 1. Molecular dynamics of the mammalian clock's core TTL. BMAL1:CLOCK (B and C, respectively) heterodimers bind to E‐Box motifs in the promotor regions of target genes and promote transcription of Period (Per, P) and Cryptochrome (Cry, C) genes in the morning. Over the following hour, PER and CRY proteins accumulate in the cytoplasm and are rapidly degraded following phosphorylation by CK1s and AMPK/GSK3ß, respectively. At the beginning of the dark phase, PER and CRY complexes form, stabilizing both proteins against degradation and initiating translocation into the nucleus. Nuclear PER:CRY complexes inhibit the transactivational activity of BMAL1:CLOCK during the night, thus blocking Per/Cry transcription. Toward the morning, PER and CRY levels in the nucleus decline, releasing BMAL1:CLOCK repression, and initiating a new circadian cycle.


Figure 2. Interlocking TTLs within the mammalian circadian clockwork. The positive limb of the pace making core TTL comprises of the two transcription factors BMAL1 and CLOCK, whereas the PERs and CRYs form its negative limb. Several auxiliary TTLs reinforce stabilization and robustness of the 24‐h oscillation. Rev‐ERBs and RORs repress or stimulate the transcription of Bmal1, respectively. In addition, E4bp4 transcription is regulated by REV‐ERBs/RORs and E4BP4 protein represses Per2 expression. Dbp transcription is activated by BMAL1:CLOCK and DBP activates Per1 transcription via D‐box binding. Transcription of the two Dec genes is regulated by BMAL1:CLOCK and DEC proteins represses CLOCK:BMAL1 transactivation, similar to PER:CRY complexes.


Figure 3. Hierarchical organization of the mammalian circadian clock system. The different clocks within the mammalian organism are organized in a hierarchical manner. A master clock in the SCN receives light information via retinal ipRGC and integrates this information to coordinate circadian rhythms of non‐SCN CNS and peripheral oscillators. The SCN resets peripheral oscillators via regulation of hormonal rhythms (e.g., melatonin), through rhythmic autonomic innervation, or indirectly through the regulation of body temperature and behavioral functions such as sleep/wake and food intake cycles.


Figure 4. Zeitgebers entrain endogenous rhythms to the 24‐h day cycle. (A) The SCN clock controls rest/activity rhythms in rodents. In constant environmental conditions (constant darkness, DD) mice show locomotor free‐running rhythms with periods below 24 h (left). Under 12‐h light: 12‐h dark (LD) cycle locomotor rhythms are entrained to the external 24‐h period (right). (B) Peripheral clock function can be monitored by measuring luminescence from a clock promoter‐driven luciferase construct such as Bmal1:Luc in cultivated cells or tissues. After synchronization tissue clocks free‐run with an endogenous period of close to, but not exactly, 24 h (left). By applying rhythmic temperature cycles these rhythms become entrained to a 24‐h period (right). In a similar way peripheral tissues are entrained by the SCN pacemaker in vivo.


Figure 5. Central and peripheral circadian clocks are synchronized to the 24‐h day by different zeitgebers. Light is the most potent zeitgeber in mammals. Photic information is transmitted to the SCN via ipRGCs. In poikilothermic organisms, temperature fluctuations can also directly affect the circadian pacemaker. Tight coupling of neuronal firing within the SCN resets the SCN clock. From there, time information is passed on to peripheral oscillators. Experiments with transgenic mice have recently shown that SCN clock function is principally not necessary to transmit light information to peripheral clocks, but the mechanisms of this pathway remain largely unclear. In contrast to light, food intake can reset peripheral clocks independent of the SCN via peripheral hormonal and metabolite signals.


Figure 6. Adipose tissue depots. WAT (A, C) and BAT (B, D, E) are differently localized in rodents (A, B) and humans (C‐E). (A) In rodents, WAT is found at subcutaneous, visceral (surrounding the inner organs), and intramuscular sites. Visceral depots are further divided into cervical (in the neck), mesenteric (attached to the intestine), retroperitoneal, perirenal (around the kidney), gonadal, and inguinal (in the groin) pads. (B) BAT is mainly localized between the shoulder blades (interscapular). Smaller depots are found at cervical, axillary, mediastinic, and perirenal sites. (C) In humans, WAT is also principally divided into subcutaneous, visceral, and intramuscular depots. The most prominent subcutaneous WAT depots are localized abdominally and gluteofemorally (at the buttocks and thighs). Visceral depots are spread very broadly throughout the body and divided into pericardial (around the heart), omental (near to the stomach and spleen) peri‐ and pararenal, mesenteric, retroperitoneal, and gonadal pads. (D) In infants large BAT depots are located between the shoulder blades (interscapular), while (E) in adults more widespread, but less distinct depots are found at cervical, interscapular, para‐aortic, paravertebral, and suprarenal sites.


Figure 7. Modern lifestyle factors promote chronodisruption. Different lifestyle factors such as irregular and nighttime food intake, reduced activity, irregular and disrupted sleep and shift work as well as nocturnal exposure to artificial light perturb natural zeitgeber rhythms, disrupting phase coherence between different tissue clocks. Circadian clock misalignment promotes general chronodisruption, promoting the development of various diseases including metabolic dysfunction, cancer, and neuropsychiatric disorders.


Figure 8. Clock gene‐controlled regulation of adipose tissue differentiation. BMAL1:CLOCK regulates BAT adipogenesis through coordination of BMP and TGF‐ß signaling. It also inhibits WAT adipogenesis by activation of WNT pathways. REV‐ERBα induces WAT adipogenesis through stimulation of PPARγ and C/EBPα signaling.


Figure 9. Clock gene‐controlled regulation of WAT lipolysis. Local adipocyte clocks regulate TG breakdown and FFA release through CLOCK:BMAL1 controlled expression of rate limiting enzymes such as HSL, ATGL, and TGH.


Figure 10. Clock gene‐controlled regulation of BAT thermogenesis. BAT circadian oscillators regulate non‐shivering thermogenesis through REV‐ERBα‐mediated suppression of UCP1 expression. At the same time, the BAT clock machinery controls thermogenesis by limiting BAT differentiation through balancing TGF‐ß and BMP signaling in BAT preadipocytes. Of note, the expression of Rev‐erbα itself is downregulated by a thermogenesis inducing cold stimulus.


Figure 11. Adipose specific clock disruption in mice reveals a peripheral feedback mechanism controlling feeding behavior. The SCN synchronizes adipose clocks through endogenous zeitgebers including endocrine factors and behavioral rhythms such as feeding. Adipocyte‐derived and systemic factors together coordinate adipose physiology. Adipocyte‐specific KO of the essential clock gene Bmal1 reveals an adipose clock controlled regulation of polyunsaturated FFA release. Lack of polyunsaturated FFAs in adipose clock‐deficient mice leads to disinhibition of appetite, hyperphagy, and obesity.


Figure 12. The role of GC rhythms in the regulation of WAT physiology. The SCN controls circadian release of GCs from the adrenal via combined neuronal and endocrine pathways. Direct GABAergic projections from the SCN reach the PVN and the subparaventricular zone. From the PVN, CRH is released into the hypophyseal portal system to stimulate secretion of ACTH. ACTH, in turn, induces GC production and secretion in the adrenal cortex. In parallel, from PVN neurons sympathetic ganglia reach via the pituitary and the IML to innervate the adrenal medulla and, to a lesser extent, cortex, regulating sensitivity of the adrenal to ACTH stimulation. Upon binding to GR, GCs exert multiple effects on adipose tissue including the stimulation of lipolysis through activation of ATGL, HSL, and MGLL and of TG uptake through activation of LPL. GCs can also reset adipocyte clocks via induction of Per gene transcription. At the same time, local GC sensitivity is regulated by the adipocyte clock machinery, through CRYs and CLOCK:BMAL1 regulating GR availability and expression, respectively.


Figure 13. The role of melatonin rhythms in the regulation of BAT physiology. SCN regulates circadian rhythms of melatonin release from the pineal gland via a multisynaptic pathway involving the PVN and the IML of the spinal cord. Melatonin can feed back on SCN clock function through MT1/2 signaling. The main regulator of circadian rhythms of BAT activity is the SNS, through activation of ß3‐adrenergic receptor by NE. Melatonin modulates ß3‐AR signaling by inhibiting downstream adenylate cyclase activity and activating CREB through PKC‐mediated signals. At the same time melatonin signaling activates RORa expression through Gaq signaling, which, in turn, counteracts REV‐ERBα‐mediated suppression of UCP1.


Figure 14. The role of insulin in the regulation of WAT physiology. Baseline circadian blood levels of insulin are regulated by the SCN through sympathetic innervation of pancreas beta cells and CLOCK:BMAL1 stimulated insulin secretion. Insulin acts on white adipocytes to stimulate TG uptake—via LPL—and to inhibit lipolysis through inhibition of HSL. Insulin further promotes de novo lipogenesis via activation of chREBPs. Insulin can also reset adipocyte clocks via MAP kinase and PI3 kinase‐dependent upregulation of Per gene expression.


Figure 15. Adipose tissue immune cell‐clock crosstalk in lean and obese conditions. The SCN coordinates adipose physiology through neuronal and endocrine factors affecting, both, adipose tissue immune cell function and adipocyte clocks. (A) In lean subjects, adipose tissue‐resident immunocytes maintain anti‐inflammatory, or type‐2, responses via secretion of immunomodulatory mediators such as IL‐4, IL‐5, IL‐10, IL‐13, and NE. Lean adipocytes mainly release adiponectin and IL‐33 to stabilize this state. (B) In obesity, type‐1 immune responses dominate in adipose tissue immunocytes, leading to chronic adipose tissue inflammation (metaflammation) and insulin resistance. Adipose tissue is infiltrated by proinflammatory immune cells, notably macrophages. At the same time, in response to nutrient overload, adipocytes elevate leptin production, and release proinflammatory cytokines such as TNFα, IL‐1ß, and IL‐6 as well as chemo‐attractants such as CCL2, further recruiting and activating proinflammatory immune cells.
References
 1.Abdou HS, Atlas E, Hache RJ. A positive regulatory domain in CCAAT/enhancer binding protein beta (C/EBPBeta) is required for the glucocorticoid‐mediated displacement of histone deacetylase 1 (HDAC1) from the C/ebpalpha promoter and maximum adipogenesis. Endocrinology 154: 1454‐1464, 2013.
 2.Abellán PG, Santos CG, Madrid JA, Milagro FI, Campion J, Martínez JA, Luján JA, Ordovás JM, Garaulet M. Site‐specific circadian expression of leptin and its receptor in human adipose tissue. Nutr Hosp 26: 1394‐1401, 2011.
 3.Abo T, Kawate T, Itoh K, Kumagai K. Studies on the bioperiodicity of the immune response. I. Circadian rhythms of human T, B, and K cell traffic in the peripheral blood. J Immunol 126: 1360‐1363, 1981.
 4.Aeschbach D, Lockyer BJ, Dijk DJ, Lockley SW, Nuwayser ES, Nichols LD, Czeisler CA. Use of transdermal melatonin delivery to improve sleep maintenance during daytime. Clin Pharmacol Ther 86: 378‐382, 2009.
 5.Aeschbach D, Sher L, Postolache TT, Matthews JR, Jackson MA, Wehr TA. A longer biological night in long sleepers than in short sleepers. J Clin Endocrinol Metab 88: 26‐30, 2003.
 6.Agorastos A, Hauger RL, Barkauskas DA, Moeller‐Bertram T, Clopton PL, Haji U, Lohr JB, Geracioti TD, Patel PM, Chrousos GP, Baker DG. Circadian rhythmicity, variability and correlation of interleukin‐6 levels in plasma and cerebrospinal fluid of healthy men. Psychoneuroendocrinology 44: 71‐82, 2014.
 7.Aguilar‐Arnal L, Katada S, Orozco‐Solis R, Sassone‐Corsi P. NAD(+)‐SIRT1 control of H3K4 trimethylation through circadian deacetylation of MLL1. Nat Struct Mol Biol 22: 312‐318, 2015.
 8.Ahmadian M, Duncan RE, Sul HS. The skinny on fat: Lipolysis and fatty acid utilization in adipocytes. Trends Endocrinol Metab 20: 424‐428, 2009.
 9.Akerstedt T, Kecklund G, Knutsson A. Spectral analysis of sleep electroencephalography in rotating three‐shift work. Scand J Work Environ Health 17: 330‐336, 1991.
 10.Alesci S, Martinez PE, Kelkar S, Ilias I, Ronsaville DS, Listwak SJ, Ayala AR, Licinio J, Gold HK, Kling MA, Chrousos GP, Gold PW. Major depression is associated with significant diurnal elevations in plasma interleukin‐6 levels, a shift of its circadian rhythm, and loss of physiological complexity in its secretion: Clinical implications. J Clin Endocrinol Metab 90: 2522‐2530, 2005.
 11.Alonso‐Vale MI, Andreotti S, Borges‐Silva C, Mukai PY, Cipolla‐Neto J, Lima FB. Intermittent and rhythmic exposure to melatonin in primary cultured adipocytes enhances the insulin and dexamethasone effects on leptin expression. J Pineal Res 41: 28‐34, 2006.
 12.Alonso‐Vale MI, Andreotti S, Mukai PY, Borges‐Silva C, Peres SB, Cipolla‐Neto J, Lima FB. Melatonin and the circadian entrainment of metabolic and hormonal activities in primary isolated adipocytes. J Pineal Res 45: 422‐429, 2008.
 13.Alonso‐Vale MI, Andreotti S, Peres SB, Anhe GF, das Neves Borges‐Silva C, Neto JC, Lima FB. Melatonin enhances leptin expression by rat adipocytes in the presence of insulin. Am J Physiol Endocrinol Metab 288: E805‐E812, 2005.
 14.Alzoghaibi MA, Pandi‐Perumal SR, Sharif MM, BaHammam AS. Diurnal intermittent fasting during Ramadan: The effects on leptin and ghrelin levels. PLoS One 9: e92214, 2014.
 15.Amano SU, Cohen JL, Vangala P, Tencerova M, Nicoloro SM, Yawe JC, Shen Y, Czech MP, Aouadi M. Local proliferation of macrophages contributes to obesity‐associated adipose tissue inflammation. Cell Metab 19: 162‐171, 2014.
 16.Amir S. Retinohypothalamic tract stimulation activates thermogenesis in brown adipose tissue in the rat. Brain Res 503: 163‐166, 1989.
 17.Amir S, Shizgal P, Rompre PP. Glutamate injection into the suprachiasmatic nucleus stimulates brown fat thermogenesis in the rat. Brain Res 498: 140‐144, 1989.
 18.Ando H, Yanagihara H, Hayashi Y, Obi Y, Tsuruoka S, Takamura T, Kaneko S, Fujimura A. Rhythmic messenger ribonucleic acid expression of clock genes and adipocytokines in mouse visceral adipose tissue. Endocrinology 146: 5631‐5636, 2005.
 19.Angeli A. Circadian rhythms of human NK cell activity. Chronobiologia 19: 195‐198, 1992.
 20.Angleton P, Chandler WL, Schmer G. Diurnal variation of tissue‐type plasminogen activator and its rapid inhibitor (PAI‐1). Circulation 79: 101‐106, 1989.
 21.Arble DM, Bass J, Laposky AD, Vitaterna MH, Turek FW. Circadian timing of food intake contributes to weight gain. Obesity 17: 2100‐2102, 2009.
 22.Arble DM, Vitaterna MH, Turek FW. Rhythmic leptin is required for weight gain from circadian desynchronized feeding in the mouse. PLoS One 6: e25079, 2011.
 23.Arendt J, Broadway J. Light and melatonin as zeitgebers in man. Chronobiol Int 4: 273‐282, 1987.
 24.Arita Y, Kihara S, Ouchi N, Takahashi M, Maeda K, Miyagawa J‐i, Hotta K, Shimomura I, Nakamura T, Miyaoka K, Kuriyama H, Nishida M, Yamashita S, Okubo K, Matsubara K, Muraguchi M, Ohmoto Y, Funahashi T, Matsuzawa Y. Paradoxical decrease of an adipose‐specific protein, adiponectin, in obesity. Biochem Biophys Res Commun 257: 79‐83, 1999.
 25.Arjona A, Sarkar DK. Circadian oscillations of clock genes, cytolytic factors, and cytokines in rat NK cells. J Immunol 174: 7618‐7624, 2005.
 26.Arjona A, Sarkar DK. Evidence supporting a circadian control of natural killer cell function. Brain Behav Immun 20: 469‐476, 2006.
 27.Arjona A, Silver AC, Walker WE, Fikrig E. Immunity's fourth dimension: Approaching the circadian‐immune connection. Trends Immunol 33: 607‐612, 2012.
 28.Arlt W, Allolio B. Adrenal insufficiency. Lancet 361: 1881‐1893, 2003.
 29.Armstrong SM, Cassone VM, Chesworth MJ, Redman JR, Short RV. Synchronization of mammalian circadian rhythms by melatonin. J Neural Transm Suppl 21: 375‐394, 1986.
 30.Arner P. Human fat cell lipolysis: Biochemistry, regulation and clinical role. Best Pract Res Clin Endocrinol Metab 19: 471‐482, 2005.
 31.Arner E, Mejhert N, Kulyte A, Balwierz PJ, Pachkov M, Cormont M, Lorente‐Cebrian S, Ehrlund A, Laurencikiene J, Heden P, Dahlman‐Wright K, Tanti JF, Hayashizaki Y, Ryden M, Dahlman I, van Nimwegen E, Daub CO, Arner P. Adipose tissue microRNAs as regulators of CCL2 production in human obesity. Diabetes 61: 1986‐1993, 2012.
 32.Arner P, Spalding KL. Fat cell turnover in humans. Biochem Biophys Res Commun 396: 101‐104, 2010.
 33.Asano H, Kanamori Y, Higurashi S, Nara T, Kato K, Matsui T, Funaba M. Induction of Beige‐like adipocytes in 3T3‐L1 cells. J Vet Med Sci 76: 57‐64, 2014.
 34.Bacquer DD, Risseghem MV, Clays E, Kittel F, Backer GD, Braeckman L. Rotating shift work and the metabolic syndrome: A prospective study. Int J Epidemiol 38: 848‐854, 2009.
 35.Bado A, Levasseur S, Attoub S, Kermorgant S, Laigneau J‐P, Bortoluzzi M‐N, Moizo L, Lehy T, Guerre‐Millo M, Le Marchand‐Brustel Y, Lewin MJM. The stomach is a source of leptin. Nature 394: 790‐793, 1998.
 36.Baglioni S, Cantini G, Poli G, Francalanci M, Squecco R, Franco AD, Borgogni E, Frontera S, Nesi G, Liotta F, Lucchese M, Perigli G, Francini F, Forti G, Serio M, Luconi M. Functional differences in visceral and subcutaneous fat pads originate from differences in the adipose stem cell. PLoS One 7: e36569, 2012.
 37.Balistreri CR, Caruso C, Candore G. The role of adipose tissue and adipokines in obesity‐related inflammatory diseases. Mediators Inflamm 2010: 802078, 2010.
 38.Balsalobre A, Brown SA, Marcacci L, Tronche F, Kellendonk C, Reichardt HM, Schutz G, Schibler U. Resetting of circadian time in peripheral tissues by glucocorticoid signaling. Science 289: 2344‐2347, 2000.
 39.Bamshad M, Aoki VT, Adkison MG, Warren WS, Bartness TJ. Central nervous system origins of the sympathetic nervous system outflow to white adipose tissue. Am J Physiol Regul Integr Comp Physiol 275: R291‐R299, 1998.
 40.Barclay JL, Husse J, Bode B, Naujokat N, Meyer‐Kovac J, Schmid SM, Lehnert H, Oster H. Circadian desynchrony promotes metabolic disruption in a mouse model of shiftwork. PLoS One 7: e37150, 2012.
 41.Barclay JL, Shostak A, Leliavski A, Tsang AH, Johren O, Muller‐Fielitz H, Landgraf D, Naujokat N, van der Horst GT, Oster H. High‐fat diet‐induced hyperinsulinemia and tissue‐specific insulin resistance in Cry‐deficient mice. Am J Physiol Endocrinol Metab 304: E1053‐1063, 2013.
 42.Barf RP, Desprez T, Meerlo P, Scheurink AJW. Increased food intake and changes in metabolic hormones in response to chronic sleep restriction alternated with short periods of sleep allowance. Am J Physiol Regul Integr Comp Physiol 302: R112‐R117, 2012.
 43.Barf RP, Meerlo P, Scheurink AJW. Chronic sleep disturbance impairs glucose homeostasis in rats. Int J Endocrinol 2010: e819414, 2010.
 44.Barnes MA, Carson MJ, Nair MG. Non‐traditional cytokines: How catecholamines and adipokines influence macrophages in immunity, metabolism and the central nervous system. Cytokine 72: 210‐219, 2015.
 45.Barrett P, Bolborea M. Molecular pathways involved in seasonal body weight and reproductive responses governed by melatonin. J Pineal Res 52: 376‐388, 2012.
 46.Barrett RK, Takahashi JS. Temperature compensation and temperature entrainment of the chick pineal cell circadian clock. J Neurosci 15: 5681‐5692, 1995.
 47.Bartness TJ, Shrestha YB, Vaughan CH, Schwartz GJ, Song CK. Sensory and sympathetic nervous system control of white adipose tissue lipolysis. Mol Cell Endocrinol 318: 34‐43, 2010.
 48.Bartness TJ, Song CK. Thematic review series: Adipocyte biology. Sympathetic and sensory innervation of white adipose tissue. J Lipid Res 48: 1655‐1672, 2007.
 49.Bartness TJ, Song CK, Demas GE. SCN efferents to peripheral tissues: Implications for biological rhythms. J Biol Rhythms 16: 196‐204, 2001.
 50.Bartness TJ, Wade GN. Photoperiodic control of seasonal body weight cycles in hamsters. Neurosci Biobehav Rev 9: 599‐612, 1985.
 51.Basharat S, Parker JA, Murphy KG, Bloom SR, Buckingham JC, John CD. Leptin fails to blunt the lipopolysaccharide‐induced activation of the hypothalamic‐pituitary‐adrenal axis in rats. J Endocrinol 221: 229‐234, 2014.
 52.Baumann A, Feilhauer K, Bischoff SC, Froy O, Lorentz A. IgE‐dependent activation of human mast cells and fMLP‐mediated activation of human eosinophils is controlled by the circadian clock. Mol Immunol 64: 76‐81, 2015.
 53.Baumann A, Gonnenwein S, Bischoff SC, Sherman H, Chapnik N, Froy O, Lorentz A. The circadian clock is functional in eosinophils and mast cells. Immunology 140: 465‐474, 2013.
 54.Behnes M, Brueckmann M, Lang S, Putensen C, Saur J, Borggrefe M, Hoffmann U. Alterations of leptin in the course of inflammation and severe sepsis. BMC Infect Dis 12: 217, 2012.
 55.Benedict C, Shostak A, Lange T, Brooks SJ, Schiöth HB, Schultes B, Born J, Oster H, Hallschmid M. Diurnal rhythm of circulating nicotinamide phosphoribosyltransferase (Nampt/visfatin/PBEF): Impact of sleep loss and relation to glucose metabolism. J Clin Endocrinol Metab 97: E218‐222, 2012.
 56.Bener A, Yousafzai MT, Darwish S, Al‐Hamaq AOAA, Nasralla EA, Abdul‐Ghani M. Obesity index that better predict metabolic syndrome: Body mass index, waist circumference, waist hip ratio, or waist height ratio, obesity index that better predict metabolic syndrome: Body mass index, waist circumference, waist hip ratio, or waist height ratio. J Obes, 2013: e269038, 2013.
 57.Berg AH, Combs TP, Du X, Brownlee M, Scherer PE. The adipocyte‐secreted protein Acrp30 enhances hepatic insulin action. Nat Med 7: 947‐953, 2001.
 58.Besedovsky L, Born J, Lange T. Endogenous glucocorticoid receptor signaling drives rhythmic changes in human T‐cell subset numbers and the expression of the chemokine receptor CXCR4. FASEB J 28: 67‐75, 2014.
 59.Biggi N, Consonni D, Galluzzo V, Sogliani M, Costa PG. Metabolic syndrome in permanent night workers. Chronobiol Int 25: 443‐454, 2008.
 60.Björntorp P, Carlgren G, Isaksson B, Krotkiewski M, Larsson B, Sjöström L. Effect of an energy‐reduced dietary regimen in relation to adipose tissue cellularity in obese women. Am J Clin Nutr 28: 445‐452, 1975.
 61.Blondin DP, Labbé SM, Phoenix S, Guérin B, Turcotte ÉE, Richard D, Carpentier AC, Haman F. Contributions of white and brown adipose tissues and skeletal muscles to acute cold‐induced metabolic responses in healthy men. J Physiol 593: 701‐714, 2015.
 62.Bollinger T, Bollinger A, Skrum L, Dimitrov S, Lange T, Solbach W. Sleep‐dependent activity of T cells and regulatory T cells. Clin Exp Immunol 155: 231‐238, 2009.
 63.Bollinger T, Leutz A, Leliavski A, Skrum L, Kovac J, Bonacina L, Benedict C, Lange T, Westermann J, Oster H, Solbach W. Circadian clocks in mouse and human CD4+ T cells. PLoS One 6: e29801, 2011.
 64.Born J, Lange T, Hansen K, Molle M, Fehm HL. Effects of sleep and circadian rhythm on human circulating immune cells. J Immunol 158: 4454‐4464, 1997.
 65.Bowers RR, Festuccia WTL, Song CK, Shi H, Migliorini RH, Bartness TJ. Sympathetic innervation of white adipose tissue and its regulation of fat cell number. Am J Physiol Regul Integr Comp Physiol 286: R1167‐R1175, 2004.
 66.Bray MS, Ratcliffe WF, Grenett MH, Brewer RA, Gamble KL, Young ME. Quantitative analysis of light‐phase restricted feeding reveals metabolic dyssynchrony in mice. Int J Obes (2005) 37: 843‐852, 2013.
 67.Bray GA, Stern JS, Castonguay TW. Effect of adrenalectomy and high‐fat diet on the fatty Zucker rat. Am J Physiol 262: E32‐39, 1992.
 68.Bray MS, Tsai JY, Villegas‐Montoya C, Boland BB, Blasier Z, Egbejimi O, Kueht M, Young ME. Time‐of‐day‐dependent dietary fat consumption influences multiple cardiometabolic syndrome parameters in mice. Int J Obesity 34: 1589‐1598, 2010.
 69.Bray MS, Young ME. Circadian rhythms in the development of obesity: Potential role for the circadian clock within the adipocyte. Obes Rev 8: 169‐181, 2007.
 70.Brestoff JR, Artis D. Immune regulation of metabolic homeostasis in health and disease. Cell 161: 146‐160, 2015.
 71.Brestoff JR, Kim BS, Saenz SA, Stine RR, Monticelli LA, Sonnenberg GF, Thome JJ, Farber DL, Lutfy K, Seale P, Artis D. Group 2 innate lymphoid cells promote beiging of white adipose tissue and limit obesity. Nature 519: 242‐246, 2015.
 72.Bruss MD, Khambatta CF, Ruby MA, Aggarwal I, Hellerstein MK. Calorie restriction increases fatty acid synthesis and whole body fat oxidation rates. Am J Physiol Endocrinol Metab 298: E108‐116, 2010.
 73.Buhr ED, Takahashi JS. Molecular components of the Mammalian circadian clock. Handb Exp Pharmacol 2013: 3‐27.
 74.Buhr ED, Yoo S‐H, Takahashi JS. Temperature as a universal resetting cue for mammalian circadian oscillators. Science (New York, NY) 330: 379‐385, 2010.
 75.Buijs RM, Escobar C, Swaab DF. The circadian system and the balance of the autonomic nervous system. Handb Clin Neurol 117: 173‐191, 2013.
 76.Buijs RM, van Eden CG, Goncharuk VD, Kalsbeek A. The biological clock tunes the organs of the body: Timing by hormones and the autonomic nervous system. J Endocrinol 177: 17‐26, 2003.
 77.Buijs RM, Wortel J, Van Heerikhuize JJ, Feenstra MG, Ter Horst GJ, Romijn HJ, Kalsbeek A. Anatomical and functional demonstration of a multisynaptic suprachiasmatic nucleus adrenal (cortex) pathway. Eur J Neurosci 11: 1535‐1544, 1999.
 78.Busino L, Bassermann F, Maiolica A, Lee C, Nolan PM, Godinho SIH, Draetta GF, Pagano M. SCFFbxl3 controls the oscillation of the circadian clock by directing the degradation of cryptochrome proteins. Science (New York, NY) 316: 900‐904, 2007.
 79.Butruille L, Drougard A, Knauf C, Moitrot E, Valet P, Storme L, Deruelle P, Lesage J. The apelinergic system: Sexual dimorphism and tissue‐specific modulations by obesity and insulin resistance in female mice. Peptides 46: 94‐101, 2013.
 80.Camacho F, Cilio M, Guo Y, Virshup DM, Patel K, Khorkova O, Styren S, Morse B, Yao Z, Keesler GA. Human casein kinase Idelta phosphorylation of human circadian clock proteins period 1 and 2. FEBS Lett 489: 159‐165, 2001.
 81.Campino C, Valenzuela FJ, Torres‐Farfan C, Reynolds HE, Abarzua‐Catalan L, Arteaga E, Trucco C, Guzman S, Valenzuela GJ, Seron‐Ferre M. Melatonin exerts direct inhibitory actions on ACTH responses in the human adrenal gland. Horm Metab Res 43: 337‐342, 2011.
 82.Cannon B, Nedergaard J. Brown adipose tissue: Function and physiological significance. Physiol Rev 84: 277‐359, 2004.
 83.Cano P, Cardinali DP, Rios‐Lugo MJ, Fernandez‐Mateos MP, Reyes Toso CF, Esquifino AI. Effect of a high‐fat diet on 24‐hour pattern of circulating adipocytokines in rats. Obesity (Silver Spring) 17: 1866‐1871, 2009.
 84.Cao H. Adipocytokines in obesity and metabolic disease. J Endocrinol 220: T47‐59, 2014.
 85.Cao H, Gerhold K, Mayers JR, Wiest MM, Watkins SM, Hotamisligil GS. Identification of a lipokine, a lipid hormone linking adipose tissue to systemic metabolism. Cell 134: 933‐944, 2008.
 86.Carey AL, Vorlander C, Reddy‐Luthmoodoo M, Natoli AK, Formosa MF, Bertovic DA, Anderson MJ, Duffy SJ, Kingwell BA. Reduced UCP‐1 content in in vitro differentiated Beige/Brite adipocytes derived from preadipocytes of human subcutaneous white adipose tissues in obesity. PLoS One 9: e91997, 2014.
 87.Carter SJ, Durrington HJ, Gibbs JE, Blaikley J, Loudon AS, Ray DW, Sabroe I. A matter of time: Study of circadian clocks and their role in inflammation. J Leukoc Biol 99: 549‐560, 2016.
 88.Caton PW, Kieswich J, Yaqoob MM, Holness MJ, Sugden MC. Metformin opposes impaired AMPK and SIRT1 function and deleterious changes in core clock protein expression in white adipose tissue of genetically‐obese db/db mice. Diabetes Obes Metab 13: 1097‐1104, 2011.
 89.Cavallari JF, Denou E, Foley KP, Khan WI, Schertzer JD. Different Th17 immunity in gut, liver, and adipose tissues during obesity: The role of diet, genetics, and microbes. Gut Microbes 7: 82‐89, 2016.
 90.Cawthorn WP, Sethi JK. TNF‐alpha and adipocyte biology. FEBS Lett 582: 117‐131, 2008.
 91.Cermakian N, Lange T, Golombek D, Sarkar D, Nakao A, Shibata S, Mazzoccoli G. Crosstalk between the circadian clock circuitry and the immune system. Chronobiol Int 30: 870‐888, 2013.
 92.Chakir I, Dumont S, Pevet P, Ouarour A, Challet E, Vuillez P. Pineal melatonin is a circadian time‐giver for leptin rhythm in Syrian hamsters. Front Neurosci 9: 190, 2015.
 93.Chakrabarti SK, Wen Y, Dobrian AD, Cole BK, Ma Q, Pei H, Williams MD, Bevard MH, Vandenhoff GE, Keller SR, Gu J, Nadler JL. Evidence for activation of inflammatory lipoxygenase pathways in visceral adipose tissue of obese Zucker rats. Am J Physiol Endocrinol Metab 300: E175‐187, 2011.
 94.Chamberland JP, Berman RL, Aronis KN, Mantzoros CS. Chemerin is expressed mainly in pancreas and liver, is regulated by energy deprivation, and lacks day/night variation in humans. Eur J Endocrinol 169: 453‐462, 2013.
 95.Chan S, Debono M. Replication of cortisol circadian rhythm: New advances in hydrocortisone replacement therapy. Ther Adv Endocrinol Metab 1: 129‐138, 2010.
 96.Chappuis S, Ripperger JA, Schnell A, Rando G, Jud C, Wahli W, Albrecht U. Role of the circadian clock gene Per2 in adaptation to cold temperature. Mol Metab 2: 184‐193, 2013.
 97.Chawla A, Lazar MA. Induction of Rev‐ErbA alpha, an orphan receptor encoded on the opposite strand of the alpha‐thyroid hormone receptor gene, during adipocyte differentiation. J Biol Chem 268: 16265‐16269, 1993.
 98.Chedid P, Hurtado‐Nedelec M, Marion‐Gaber B, Bournier O, Hayem G, Gougerot‐Pocidalo MA, Frystyk J, Flyvbjerg A, El Benna J, Marie JC. Adiponectin and its globular fragment differentially modulate the oxidative burst of primary human phagocytes. Am J Pathol 180: 682‐692, 2012.
 99.Chen W, Baler R. The rat arylalkylamine N‐acetyltransferase E‐box: Differential use in a master vs. a slave oscillator. Brain Res Mol Brain Res 81: 43‐50, 2000.
 100.Chen W, Liu Z, Li T, Zhang R, Xue Y, Zhong Y, Bai W, Zhou D, Zhao Z. Regulation of Drosophila circadian rhythms by miRNA let‐7 is mediated by a regulatory cycle. Nat Commun 5: 5549, 2014.
 101.Choi B, Dobson M, Schnall P, Garcia‐Rivas J. 24‐hour work shifts, sedentary work, and obesity in male firefighters. Am J Ind Med 59: 486‐500, 2016.
 102.Chomez P, Neveu I, Mansen A, Kiesler E, Larsson L, Vennstrom B, Arenas E. Increased cell death and delayed development in the cerebellum of mice lacking the rev‐erbA(alpha) orphan receptor. Development 127: 1489‐1498, 2000.
 103.Christ E, Pfeffer M, Korf HW, von Gall C. Pineal melatonin synthesis is altered in Period1 deficient mice. Neuroscience 171: 398‐406, 2010.
 104.Cinti S, Mitchell G, Barbatelli G, Murano I, Ceresi E, Faloia E, Wang S, Fortier M, Greenberg AS, Obin MS. Adipocyte death defines macrophage localization and function in adipose tissue of obese mice and humans. J Lipid Res 46: 2347‐2355, 2005.
 105.Cintra DE, Ropelle ER, Moraes JC, Pauli JR, Morari J, Souza CT, Grimaldi R, Stahl M, Carvalheira JB, Saad MJ, Velloso LA. Unsaturated fatty acids revert diet‐induced hypothalamic inflammation in obesity. PLoS One 7: e30571, 2012.
 106.Cipolletta D, Feuerer M, Li A, Kamei N, Lee J, Shoelson SE, Benoist C, Mathis D. PPAR‐gamma is a major driver of the accumulation and phenotype of adipose tissue Treg cells. Nature 486: 549‐553, 2012.
 107.Colwell CS. Circadian modulation of calcium levels in cells in the suprachiasmatic nucleus. Eur J Neurosci 12: 571‐576, 2000.
 108.Combs TP, Berg AH, Obici S, Scherer PE, Rossetti L. Endogenous glucose production is inhibited by the adipose‐derived protein Acrp30. J Clin Invest 108: 1875‐1881, 2001.
 109.Combs TP, Nagajyothi, Mukherjee S, de Almeida CJ, Jelicks LA, Schubert W, Lin Y, Jayabalan DS, Zhao D, Braunstein VL, Landskroner‐Eiger S, Cordero A, Factor SM, Weiss LM, Lisanti MP, Tanowitz HB, Scherer PE. The adipocyte as an important target cell for Trypanosoma cruzi infection. J Biol Chem 280: 24085‐24094, 2005.
 110.Conditions EFftIoL and Working. First Findings: Sixth European Working Conditions Survey. Brussels, BE: Publications Office [of the European Union], 2015.
 111.Cook DN, Kang HS, Jetten AM. Retinoic acid‐related orphan receptors (RORs): Regulatory functions in immunity, development, circadian rhythm, and metabolism. Nucl Receptor Res 2, 101185, 2015.
 112.Coomans CP, van den Berg SA, Lucassen EA, Houben T, Pronk AC, van der Spek RD, Kalsbeek A, Biermasz NR, Willems van Dijk K, Romijn JA, Meijer JH. The suprachiasmatic nucleus controls circadian energy metabolism and hepatic insulin sensitivity. Diabetes 62: 1102‐1108, 2013.
 113.Coomans CP, van den Berg SAA, Houben T, van Klinken J‐B, van den Berg R, Pronk ACM, Havekes LM, Romijn JA, van Dijk KW, Biermasz NR, Meijer JH. Detrimental effects of constant light exposure and high‐fat diet on circadian energy metabolism and insulin sensitivity. FASEB J 27: 1721‐1732, 2013.
 114.Coon SL, Del Olmo E, Young WS, Klein DC. Melatonin synthesis enzymes in Macaca mulatta: Focus on arylalkylamine N‐acetyltransferase (EC 2.3.1.87). J Clin Endocrinol Metab 87: 4699‐4706, 2002.
 115.Coppack SW. Pro‐inflammatory cytokines and adipose tissue. Proc Nutr Soc 60: 349‐356, 2001.
 116.Coppack SW, Patel JN, Lawrence VJ. Nutritional regulation of lipid metabolism in human adipose tissue. Exp Clin Endocrinol Diabetes 109(Suppl 2): S202‐214, 2001.
 117.Costa MJ, So AY, Kaasik K, Krueger KC, Pillsbury ML, Fu YH, Ptacek LJ, Yamamoto KR, Feldman BJ. Circadian rhythm gene period 3 is an inhibitor of the adipocyte cell fate. J Biol Chem 286: 9063‐9070, 2011.
 118.Cousin B, Casteilla L, Lafontan M, Ambid L, Langin D, Berthault MF, Pénicaud L. Local sympathetic denervation of white adipose tissue in rats induces preadipocyte proliferation without noticeable changes in metabolism. Endocrinology 133: 2255‐2262, 1993.
 119.Crispim CA, Padilha HG, Zimberg IZ, Waterhouse J, Dattilo M, Tufik S, Mello MTd. Adipokine levels are altered by shiftwork: A preliminary study. Chronobiol Int 29: 587‐594, 2012.
 120.Cristancho AG, Lazar MA. Forming functional fat: A growing understanding of adipocyte differentiation. Nat Rev Mol Cell Biol 12: 722‐734, 2011.
 121.Curtis AM, Bellet MM, Sassone‐Corsi P, O'Neill LA. Circadian clock proteins and immunity. Immunity 40: 178‐186, 2014.
 122.Cutolo M, Straub RH. Circadian rhythms in arthritis: Hormonal effects on the immune/inflammatory reaction. Autoimmun Rev 7: 223‐228, 2008.
 123.Cypess AM, Lehman S, Williams G, Tal I, Rodman D, Goldfine AB, Kuo FC, Palmer EL, Tseng Y‐H, Doria A, Kolodny GM, Kahn CR. Identification and importance of brown adipose tissue in adult humans. New Engl J Med 360: 1509‐1517, 2009.
 124.Dallmann R, Viola AU, Tarokh L, Cajochen C, Brown SA. The human circadian metabolome. PNAS 109: 2625‐2629, 2012.
 125.Dallmann R, Weaver DR. Altered body mass regulation in male mPeriod mutant mice on high‐fat diet. Chronobiol Int 27: 1317‐1328, 2010.
 126.Damiola F, Le Minh N, Preitner N, Kornmann B, Fleury‐Olela F, Schibler U. Restricted feeding uncouples circadian oscillators in peripheral tissues from the central pacemaker in the suprachiasmatic nucleus. Genes Dev 14: 2950‐2961, 2000.
 127.Dauchy RT, Dauchy EM, Tirrell RP, Hill CR, Davidson LK, Greene MW, Tirrell PC, Wu J, Sauer LA, Blask DE. Dark‐phase light contamination disrupts circadian rhythms in plasma measures of endocrine physiology and metabolism in rats. Comp Med 60: 348‐356, 2010.
 128.Davis S, Mirick DK, Stevens RG. Night shift work, light at night, and risk of breast cancer. J Natl Cancer Inst 93: 1557‐1562, 2001.
 129.de Farias Tda S, de Oliveira AC, Andreotti S, do Amaral FG, Chimin P, de Proenca AR, Leal FL, Sertie RA, Campana AB, Lopes AB, de Souza AH, Cipolla‐Neto J, Lima FB. Pinealectomy interferes with the circadian clock genes expression in white adipose tissue. J Pineal Res 58: 251‐261, 2015.
 130.De Rosa V, Procaccini C, Cali G, Pirozzi G, Fontana S, Zappacosta S, La Cava A, Matarese G. A key role of leptin in the control of regulatory T cell proliferation. Immunity 26: 241‐255, 2007.
 131.De Taeye BM, Novitskaya T, McGuinness OP, Gleaves L, Medda M, Covington JW, Vaughan DE. Macrophage TNF‐alpha contributes to insulin resistance and hepatic steatosis in diet‐induced obesity. Am J Physiol Endocrinol Metab 293: E713‐E725, 2007.
 132.DeBruyne JP, Weaver DR, Reppert SM. CLOCK and NPAS2 have overlapping roles in the suprachiasmatic circadian clock. Nat Neurosci 10: 543‐545, 2007.
 133.DeFuria J, Belkina AC, Jagannathan‐Bogdan M, Snyder‐Cappione J, Carr JD, Nersesova YR, Markham D, Strissel KJ, Watkins AA, Zhu M, Allen J, Bouchard J, Toraldo G, Jasuja R, Obin MS, McDonnell ME, Apovian C, Denis GV, Nikolajczyk BS. B cells promote inflammation in obesity and type 2 diabetes through regulation of T‐cell function and an inflammatory cytokine profile. Proc Natl Acad Sci U S A 110: 5133‐5138, 2013.
 134.Delezie J, Dumont S, Dardente H, Oudart H, Grechez‐Cassiau A, Klosen P, Teboul M, Delaunay F, Pevet P, Challet E. The nuclear receptor REV‐ERBalpha is required for the daily balance of carbohydrate and lipid metabolism. FASEB J 26: 3321‐3335, 2012.
 135.Denton RM, McCormack JG, Rutter GA, Burnett P, Edgell NJ, Moule SK, Diggle TA. Proceedings of the thirty‐sixth symposium on regulation of enzyme activity and synthesis in normal and neoplastic tissues held at Indiana University School of Medicine. The hormonal regulation of pyruvate dehydrogenase complex. Adv Enzyme Regul 36: 183‐198, 1996.
 136.Desantis AS, Kuzawa CW, Adam EK. Developmental origins of flatter cortisol rhythms: Socioeconomic status and adult cortisol activity. Am J Hum Biol 27: 458‐467, 2015.
 137.Despres JP. Body fat distribution and risk of cardiovascular disease: An update. Circulation 126: 1301‐1313, 2012.
 138.Després J‐P, Lemieux I. Abdominal obesity and metabolic syndrome. Nature 444: 881‐887, 2006.
 139.Di Lorenzo L, De Pergola G, Zocchetti C, L'Abbate N, Basso A, Pannacciulli N, Cignarelli M, Giorgino R, Soleo L. Effect of shift work on body mass index: Results of a study performed in 319 glucose‐tolerant men working in a Southern Italian industry. Int J Obesity 27: 1353‐1358, 2003.
 140.Dijk DJ, Roth C, Landolt HP, Werth E, Aeppli M, Achermann P, Borbely AA. Melatonin effect on daytime sleep in men: Suppression of EEG low frequency activity and enhancement of spindle frequency activity. Neurosci Lett 201: 13‐16, 1995.
 141.Dijk DJ, Shanahan TL, Duffy JF, Ronda JM, Czeisler CA. Variation of electroencephalographic activity during non‐rapid eye movement and rapid eye movement sleep with phase of circadian melatonin rhythm in humans. J Physiol 505(Pt 3): 851‐858, 1997.
 142.Dimitriadis G, Mitrou P, Lambadiari V, Boutati E, Maratou E, Koukkou E, Tzanela M, Thalassinos N, Raptis SA. Glucose and lipid fluxes in the adipose tissue after meal ingestion in hyperthyroidism. J Clin Endocrinol Metab 91: 1112‐1118, 2006.
 143.Dimitriadis G, Mitrou P, Lambadiari V, Maratou E, Raptis SA. Insulin effects in muscle and adipose tissue. Diabetes Res Clin Pract 93(Suppl 1): S52‐59, 2011.
 144.Dimitrov S, Benedict C, Heutling D, Westermann J, Born J, Lange T. Cortisol and epinephrine control opposing circadian rhythms in T cell subsets. Blood 113: 5134‐5143, 2009.
 145.DiSpirito JR, Mathis D. Immunological contributions to adipose tissue homeostasis. Semin Immunol 27: 315‐321, 2015.
 146.Divertie GD, Jensen MD, Miles JM. Stimulation of lipolysis in humans by physiological hypercortisolemia. Diabetes 40: 1228‐1232, 1991.
 147.Doi M, Hirayama J, Sassone‐Corsi P. Circadian regulator CLOCK is a histone acetyltransferase. Cell 125: 497‐508, 2006.
 148.Drake CL, Roehrs T, Richardson G, Walsh JK, Roth T. Shift work sleep disorder: Prevalence and consequences beyond that of symptomatic day workers. Sleep 27: 1453‐1462, 2004.
 149.Dubocovich ML, Hudson RL, Sumaya IC, Masana MI, Manna E. Effect of MT1 melatonin receptor deletion on melatonin‐mediated phase shift of circadian rhythms in the C57BL/6 mouse. J Pineal Res 39: 113‐120, 2005.
 150.Duffield GE, Best JD, Meurers BH, Bittner A, Loros JJ, Dunlap JC. Circadian programs of transcriptional activation, signaling, and protein turnover revealed by microarray analysis of mammalian cells. Curr Biol 12: 551‐557, 2002.
 151.Duncan RE, Ahmadian M, Jaworski K, Sarkadi‐Nagy E, Sul HS. Regulation of lipolysis in adipocytes. Annu Rev Nutr 27: 79‐101, 2007.
 152.Dupré SM, Burt DW, Talbot R, Downing A, Mouzaki D, Waddington D, Malpaux B, Davis JRE, Lincoln GA, Loudon ASI. Identification of melatonin‐regulated genes in the ovine pituitary pars tuberalis, a target site for seasonal hormone control. Endocrinology 149: 5527‐5539, 2008.
 153.Durgan DJ, Young ME. The cardiomyocyte circadian clock emerging roles in health and disease. Circul Res 106: 647‐658, 2010.
 154.Edgar RS, Green EW, Zhao Y, van Ooijen G, Olmedo M, Qin X, Xu Y, Pan M, Valekunja UK, Feeney KA, Maywood ES, Hastings MH, Baliga NS, Merrow M, Millar AJ, Johnson CH, Kyriacou CP, O'Neill JS, Reddy AB. Peroxiredoxins are conserved markers of circadian rhythms. Nature 485: 459‐464, 2012.
 155.Eide EJ, Woolf MF, Kang H, Woolf P, Hurst W, Camacho F, Vielhaber EL, Giovanni A, Virshup DM. Control of mammalian circadian rhythm by CKIepsilon‐regulated proteasome‐mediated PER2 degradation. Mol Cell Biol 25: 2795‐2807, 2005.
 156.Eissing L, Scherer T, Todter K, Knippschild U, Greve JW, Buurman WA, Pinnschmidt HO, Rensen SS, Wolf AM, Bartelt A, Heeren J, Buettner C, Scheja L. De novo lipogenesis in human fat and liver is linked to ChREBP‐beta and metabolic health. Nat Commun 4: 1528, 2013.
 157.El‐Jack AK, Hamm JK, Pilch PF, Farmer SR. Reconstitution of insulin‐sensitive glucose transport in fibroblasts requires expression of both PPARγ and C/EBPα. J Biol Chem 274: 7946‐7951, 1999.
 158.Eley J, Himms‐Hagen J. Brown adipose tissue of mice with GTG‐induced obesity: Altered circadian control. Am J Physiol 256: E773‐779, 1989.
 159.Elgazar‐Carmon V, Rudich A, Hadad N, Levy R. Neutrophils transiently infiltrate intra‐abdominal fat early in the course of high‐fat feeding. J Lipid Res 49: 1894‐1903, 2008.
 160.Ellingsen T, Bener A, Gehani AA. Study of shift work and risk of coronary events. J R Soc Promot Health 127: 265‐267, 2007.
 161.Enerbäck S. Human Brown Adipose Tissue. Cell Metab 11: 248‐252, 2010.
 162.Enerbäck S, Jacobsson A, Simpson EM, Guerra C, Yamashita H, Harper M‐E, Kozak LP. Mice lacking mitochondrial uncoupling protein are cold‐sensitive but not obese. Nature 387: 90‐94, 1997.
 163.Ericksen RE, Rose S, Westphalen CB, Shibata W, Muthupalani S, Tailor Y, Friedman RA, Han W, Fox JG, Ferrante AW, Jr, Wang TC. Obesity accelerates Helicobacter felis‐induced gastric carcinogenesis by enhancing immature myeloid cell trafficking and TH17 response. Gut 63: 385‐394, 2014.
 164.Esmaili S, Xu A, George J. The multifaceted and controversial immunometabolic actions of adiponectin. Trends Endocrinol Metab 25: 444‐451, 2014.
 165.Esquifino AI, Chacon F, Cano P, Marcos A, Cutrera RA, Cardinali DP. Twenty‐four‐hour rhythms of mitogenic responses, lymphocyte subset populations and amino acid content in submaxillary lymph nodes of growing male rats subjected to calorie restriction. J Neuroimmunol 156: 66‐73, 2004.
 166.Esquirol Y, Bongard V, Ferrieres J, Verdier H, Perret B. Shiftwork and higher pancreatic secretion: Early detection of an intermediate state of insulin resistance? Chronobiol Int 29: 1258‐1266, 2012.
 167.Etchegaray J‐P, Lee C, Wade PA, Reppert SM. Rhythmic histone acetylation underlies transcription in the mammalian circadian clock. Nature 421: 177‐182, 2003.
 168.Farez MF, Mascanfroni ID, Mendez‐Huergo SP, Yeste A, Murugaiyan G, Garo LP, Balbuena Aguirre ME, Patel B, Ysrraelit MC, Zhu C, Kuchroo VK, Rabinovich GA, Quintana FJ, Correale J. Melatonin contributes to the seasonality of multiple sclerosis relapses. Cell 162: 1338‐1352, 2015.
 169.Farooqi IS, Jebb SA, Langmack G, Lawrence E, Cheetham CH, Prentice AM, Hughes IA, McCamish MA, O'Rahilly S. Effects of recombinant leptin therapy in a child with congenital leptin deficiency. New Engl J Med 341: 879‐884, 1999.
 170.Farooqi IS, Matarese G, Lord GM, Keogh JM, Lawrence E, Agwu C, Sanna V, Jebb SA, Perna F, Fontana S, Lechler RI, DePaoli AM, O'Rahilly S. Beneficial effects of leptin on obesity, T cell hyporesponsiveness, and neuroendocrine/metabolic dysfunction of human congenital leptin deficiency. J Clin Invest 110: 1093‐1103, 2002.
 171.Favero G, Stacchiotti A, Castrezzati S, Bonomini F, Albanese M, Rezzani R, Rodella LF. Melatonin reduces obesity and restores adipokine patterns and metabolism in obese (ob/ob) mice. Nutr Res 35: 891‐900, 2015.
 172.Feldmann HM, Golozoubova V, Cannon B, Nedergaard J. UCP1 ablation induces obesity and abolishes diet‐induced thermogenesis in mice exempt from thermal stress by living at thermoneutrality. Cell Metab 9: 203‐209, 2009.
 173.Feuerer M, Herrero L, Cipolletta D, Naaz A, Wong J, Nayer A, Lee J, Goldfine AB, Benoist C, Shoelson S, Mathis D. Lean, but not obese, fat is enriched for a unique population of regulatory T cells that affect metabolic parameters. Nat Med 15: 930‐939, 2009.
 174.Field MD, Maywood ES, O'Brien JA, Weaver DR, Reppert SM, Hastings MH. Analysis of clock proteins in mouse SCN demonstrates phylogenetic divergence of the circadian clockwork and resetting mechanisms. Neuron 25: 437‐447, 2000.
 175.Filipski E, King VM, Li X, Granda TG, Mormont M‐C, Liu X, Claustrat B, Hastings MH, Lévi F. Host circadian clock as a control point in tumor progression. J Natl Cancer Inst 94: 690‐697, 2002.
 176.Filipski E, King VM, Li X, Granda TG, Mormont MC, Claustrat B, Hastings MH, Levi F. Disruption of circadian coordination accelerates malignant growth in mice. Pathol Biol (Paris) 51: 216‐219, 2003.
 177.Firth MA, Madera S, Beaulieu AM, Gasteiger G, Castillo EF, Schluns KS, Kubo M, Rothman PB, Vivier E, Sun JC. Nfil3‐independent lineage maintenance and antiviral response of natural killer cells. J Exp Med 210: 2981‐2990, 2013.
 178.Fonken LK, Lieberman RA, Weil ZM, Nelson RJ. Dim light at night exaggerates weight gain and inflammation associated with a high‐fat diet in male mice. Endocrinology 154: 3817‐3825, 2013.
 179.Fonken LK, Workman JL, Walton JC, Weil ZM, Morris JS, Haim A, Nelson RJ. Light at night increases body mass by shifting the time of food intake. PNAS 107: 18664‐18669, 2010.
 180.Fonseca DM, Hand TW, Han SJ, Gerner MY, Glatman Zaretsky A, Byrd AL, Harrison OJ, Ortiz AM, Quinones M, Trinchieri G, Brenchley JM, Brodsky IE, Germain RN, Randolph GJ, Belkaid Y. Microbiota‐dependent sequelae of acute infection compromise tissue‐specific immunity. Cell 163: 354‐366, 2015.
 181.Fontaine C, Dubois G, Duguay Y, Helledie T, Vu‐Dac N, Gervois P, Soncin F, Mandrup S, Fruchart JC, Fruchart‐Najib J, Staels B. The orphan nuclear receptor Rev‐Erbalpha is a peroxisome proliferator‐activated receptor (PPAR) gamma target gene and promotes PPARgamma‐induced adipocyte differentiation. J Biol Chem 278: 37672‐37680, 2003.
 182.Fontana L, Eagon JC, Trujillo ME, Scherer PE, Klein S. Visceral fat adipokine secretion is associated with systemic inflammation in obese humans. Diabetes 56: 1010‐1013, 2007.
 183.Fortier EE, Rooney J, Dardente H, Hardy MP, Labrecque N, Cermakian N. Circadian variation of the response of T cells to antigen. J Immunol 187: 6291‐6300, 2011.
 184.Foster MT, Bartness TJ. Sympathetic but not sensory denervation stimulates white adipocyte proliferation. Am J Physiol Regul Integr Comp Physiol 291: R1630‐R1637, 2006.
 185.Foster DO, Frydman ML. Tissue distribution of cold‐induced thermogenesis in conscious warm‐ or cold‐acclimated rats reevaluated from changes in tissue blood flow: The dominant role of brown adipose tissue in the replacement of shivering by nonshivering thermogenesis. Can J Physiol Pharmacol 57: 257‐270, 1979.
 186.Frayn KN. Adipose tissue as a buffer for daily lipid flux. Diabetologia 45: 1201‐1210, 2002.
 187.Freedman MR, Horwitz BA, Stern JS. Effect of adrenalectomy and glucocorticoid replacement on development of obesity. Am J Physiol 250: R595‐607, 1986.
 188.Freedman MS, Lucas RJ, Soni B, von Schantz M, Muñoz M, David‐Gray Z, Foster R. Regulation of mammalian circadian behavior by non‐rod, non‐cone, ocular photoreceptors. Science (New York, NY) 284: 502‐504, 1999.
 189.Friedman JM, Halaas JL. Leptin and the regulation of body weight in mammals. Nature 395: 763‐770, 1998.
 190.Frühbeck G, Méndez‐Giménez L, Fernández‐Formoso J‐A, Fernández S, Rodríguez A. Regulation of adipocyte lipolysis. Nutr Res Rev 27: 63‐93, 2014.
 191.Fuchs A, Vermi W, Lee JS, Lonardi S, Gilfillan S, Newberry RD, Cella M, Colonna M. Intraepithelial type 1 innate lymphoid cells are a unique subset of IL‐12‐ and IL‐15‐responsive IFN‐gamma‐producing cells. Immunity 38: 769‐781, 2013.
 192.Fustin JM, Dardente H, Wagner GC, Carter DA, Johnston JD, Lincoln GA, Hazlerigg DG. Egr1 involvement in evening gene regulation by melatonin. FASEB J 23: 764‐773, 2009.
 193.Fustin JM, O'Neill JS, Hastings MH, Hazlerigg DG, Dardente H. Cry1 circadian phase in vitro: Wrapped up with an E‐Box. J Biol Rhythms 24: 16‐24, 2009.
 194.Gan Y, Yang C, Tong X, Sun H, Cong Y, Yin X, Li L, Cao S, Dong X, Gong Y, Shi O, Deng J, Bi H, Lu Z. Shift work and diabetes mellitus: A meta‐analysis of observational studies. Occup Environ Med: oemed‐2014‐102150, 2014.
 195.Garaulet M, Ordovás JM, Gómez‐Abellán P, Martínez JA, Madrid JA. An approximation to the temporal order in endogenous circadian rhythms of genes implicated in human adipose tissue metabolism. J Cell Physiol 226: 2075‐2080, 2011.
 196.Garaulet M, Ordovas JM, Madrid JA. The chronobiology, etiology and pathophysiology of obesity. Int J Obes (2005) 34: 1667‐1683, 2010.
 197.Garidou L, Pomie C, Klopp P, Waget A, Charpentier J, Aloulou M, Giry A, Serino M, Stenman L, Lahtinen S, Dray C, Iacovoni JS, Courtney M, Collet X, Amar J, Servant F, Lelouvier B, Valet P, Eberl G, Fazilleau N, Douin‐Echinard V, Heymes C, Burcelin R. The gut microbiota regulates intestinal CD4 T cells expressing RORgamma and controls metabolic disease. Cell Metab 22: 100‐112, 2015.
 198.Gascoyne DM, Long E, Veiga‐Fernandes H, de Boer J, Williams O, Seddon B, Coles M, Kioussis D, Brady HJ. The basic leucine zipper transcription factor E4BP4 is essential for natural killer cell development. Nat Immunol 10: 1118‐1124, 2009.
 199.Gaston S, Menaker M. Pineal function: The biological clock in the sparrow? Science 160: 1125‐1127, 1968.
 200.Gatti G, Del Ponte D, Cavallo R, Sartori ML, Salvadori A, Carignola R, Carandente F, Angeli A. Circadian changes in human natural killer‐cell activity. Prog Clin Biol Res 227A: 399‐409, 1987.
 201.Geer EB, Islam J, Buettner C. Mechanisms of glucocorticoid‐induced insulin resistance: Focus on adipose tissue function and lipid metabolism. Endocrinol Metab Clin North Am 43: 75‐102, 2014.
 202.Geiger TL, Abt MC, Gasteiger G, Firth MA, O'Connor MH, Geary CD, O'Sullivan TE, van den Brink MR, Pamer EG, Hanash AM, Sun JC. Nfil3 is crucial for development of innate lymphoid cells and host protection against intestinal pathogens. J Exp Med 211: 1723‐1731, 2014.
 203.Gekakis N, Staknis D, Nguyen HB, Davis FC, Wilsbacher LD, King DP, Takahashi JS, Weitz CJ. Role of the CLOCK protein in the mammalian circadian mechanism. Science (New York, NY) 280: 1564‐1569, 1998.
 204.Geliebter A, Gluck ME, Tanowitz M, Aronoff NJ, Zammit GK. Work‐shift period and weight change. Nutrition 16: 27‐29, 2000.
 205.Gerhart‐Hines Z, Feng D, Emmett MJ, Everett LJ, Loro E, Briggs ER, Bugge A, Hou C, Ferrara C, Seale P, Pryma DA, Khurana TS, Lazar MA. The nuclear receptor Rev‐erbalpha controls circadian thermogenic plasticity. Nature 503: 410‐413, 2013.
 206.Gesta S, Blüher M, Yamamoto Y, Norris AW, Berndt J, Kralisch S, Boucher J, Lewis C, Kahn CR. Evidence for a role of developmental genes in the origin of obesity and body fat distribution. PNAS 103: 6676‐6681, 2006.
 207.Gibbs JE, Blaikley J, Beesley S, Matthews L, Simpson KD, Boyce SH, Farrow SN, Else KJ, Singh D, Ray DW, Loudon AS. The nuclear receptor REV‐ERBalpha mediates circadian regulation of innate immunity through selective regulation of inflammatory cytokines. Proc Natl Acad Sci U S A 109: 582‐587, 2012.
 208.Gibbs J, Ince L, Matthews L, Mei J, Bell T, Yang N, Saer B, Begley N, Poolman T, Pariollaud M, Farrow S, DeMayo F, Hussell T, Worthen GS, Ray D, Loudon A. An epithelial circadian clock controls pulmonary inflammation and glucocorticoid action. Nat Med 20: 919‐926, 2014.
 209.Gillette MU, McArthur AJ. Circadian actions of melatonin at the suprachiasmatic nucleus. Behav Brain Res 73: 135‐139, 1996.
 210.Ginty DD, Kornhauser JM, Thompson MA, Bading H, Mayo KE, Takahashi JS, Greenberg ME. Regulation of CREB phosphorylation in the suprachiasmatic nucleus by light and a circadian clock. Science (New York, NY) 260: 238‐241, 1993.
 211.Glass JD, Lynch GR. Evidence for a brain site of melatonin action in the white‐footed mouse, Peromyscus leucopus. Neuroendocrinology 34: 1‐6, 1982.
 212.Golombek DA, Agostino PV, Plano SA, Ferreyra GA. Signaling in the mammalian circadian clock: The NO/cGMP pathway. Neurochem Int 45: 929‐936, 2004.
 213.Golombek DA, Pandi‐Perumal SR, Brown GM, Cardinali DP. Some implications of melatonin use in chronopharmacology of insomnia. Eur J Pharmacol 762: 42‐48, 2015.
 214.Golozoubova V, Hohtola E, Matthias A, Jacobsson A, Cannon B, Nedergaard J. Only UCP1 can mediate adaptive nonshivering thermogenesis in the cold. FASEB J 15: 2048‐2050, 2001.
 215.Gómez‐Abellán P, Gómez‐Santos C, Madrid JA, Milagro FI, Campion J, Martínez JA, Ordovás JM, Garaulet M. Circadian expression of adiponectin and its receptors in human adipose tissue. Endocrinology 151: 115‐122, 2010.
 216.Gomez Abellan P, Gomez Santos C, Madrid JA, Milagro FI, Campion J, Martinez JA, Lujan JA, Ordovas JM, Garaulet M. Site‐specific circadian expression of leptin and its receptor in human adipose tissue. Nutr Hosp 26: 1394‐1401, 2011.
 217.Gomez‐Santos C, Gomez‐Abellan P, Madrid JA, Hernandez‐Morante JJ, Lujan JA, Ordovas JM, Garaulet M. Circadian rhythm of clock genes in human adipose explants. Obesity (Silver Spring) 17: 1481‐1485, 2009.
 218.Goto M, Oshima I, Tomita T, Ebihara S. Melatonin content of the pineal gland in different mouse strains. J Pineal Res 7: 195‐204, 1989.
 219.Grimaldi B, Bellet MM, Katada S, Astarita G, Hirayama J, Amin RH, Granneman JG, Piomelli D, Leff T, Sassone‐Corsi P. PER2 controls lipid metabolism by direct regulation of PPARgamma. Cell Metab 12: 509‐520, 2010.
 220.Grundy SM. Obesity, metabolic syndrome, and cardiovascular disease. J Clin Endocrinol Metab 89: 2595‐2600, 2004.
 221.Guan XM, Hess JF, Yu H, Hey PJ, van der Ploeg LH. Differential expression of mRNA for leptin receptor isoforms in the rat brain. Mol Cell Endocrinol 133: 1‐7, 1997.
 222.Guan Z, Vgontzas AN, Omori T, Peng X, Bixler EO, Fang J. Interleukin‐6 levels fluctuate with the light‐dark cycle in the brain and peripheral tissues in rats. Brain Behav Immun 19: 526‐529, 2005.
 223.Guillaumond F, Dardente H, Giguère V, Cermakian N. Differential control of Bmal1 circadian transcription by REV‐ERB and ROR nuclear receptors. J Biol Rhythms 20: 391‐403, 2005.
 224.Guo B, Chatterjee S, Li L, Kim JM, Lee J, Yechoor VK, Minze LJ, Hsueh W, Ma K. The clock gene, brain and muscle Arnt‐like 1, regulates adipogenesis via Wnt signaling pathway. FASEB J 26: 3453‐3463, 2012.
 225.Ha M, Park J. Shiftwork and metabolic risk factors of cardiovascular disease. J Occup Health 47: 89‐95, 2005.
 226.Haack M, Kraus T, Schuld A, Dalal M, Koethe D, Pollmächer T. Diurnal variations of interleukin‐6 plasma levels are confounded by blood drawing procedures. Psychoneuroendocrinology 27: 921‐931, 2002.
 227.Haimovich B, Calvano J, Haimovich AD, Calvano SE, Coyle SM, Lowry SF. In vivo endotoxin synchronizes and suppresses clock gene expression in human peripheral blood leukocytes. Crit Care Med 38: 751‐758, 2010.
 228.Halberg F, Visscher MB, Bittner JJ. Eosinophil rhythm in mice: Range of occurrence; effects of illumination, feeding, and adrenalectomy. Am J Physiol 174: 109‐122, 1953.
 229.Halim TY, MacLaren A, Romanish MT, Gold MJ, McNagny KM, Takei F. Retinoic‐acid‐receptor‐related orphan nuclear receptor alpha is required for natural helper cell development and allergic inflammation. Immunity 37: 463‐474, 2012.
 230.Han S, Zhang R, Jain R, Shi H, Zhang L, Zhou G, Sangwung P, Tugal D, Atkins GB, Prosdocimo DA, Lu Y, Han X, Tso P, Liao X, Epstein JA, Jain MK. Circadian control of bile acid synthesis by a KLF15‐Fgf15 axis. Nat Commun 6: 7231, 2015.
 231.Harada Y, Sakai M, Kurabayashi N, Hirota T, Fukada Y. Ser‐557‐phosphorylated mCRY2 is degraded upon synergistic phosphorylation by glycogen synthase kinase‐3 beta. J Biol Chem 280: 31714‐31721, 2005.
 232.Hardeland R, Madrid JA, Tan DX, Reiter RJ. Melatonin, the circadian multioscillator system and health: The need for detailed analyses of peripheral melatonin signaling. J Pineal Res 52: 139‐166, 2012.
 233.Harmelen Vv, Dicker A, Rydén M, Hauner H, Lönnqvist F, Näslund E, Arner P. Increased lipolysis and decreased leptin production by human omental as compared with subcutaneous preadipocytes. Diabetes 51: 2029‐2036, 2002.
 234.Hattar S, Liao HW, Takao M, Berson DM, Yau KW. Melanopsin‐containing retinal ganglion cells: Architecture, projections, and intrinsic photosensitivity. Science (New York, NY) 295: 1065‐1070, 2002.
 235.Hayashi M, Shimba S, Tezuka M. Characterization of the molecular clock in mouse peritoneal macrophages. Biol Pharm Bull 30: 621‐626, 2007.
 236.Hayashida S, Kuramoto Y, Koyanagi S, Oishi K, Fujiki J, Matsunaga N, Ikeda E, Ohdo S, Shimeno H, Soeda S. Proxisome proliferator‐activated receptor‐alpha mediates high‐fat, diet‐enhanced daily oscillation of plasminogen activator inhibitor‐1 activity in mice. Chronobiol Int 27: 1735‐1753, 2010.
 237.Heery DM, Kalkhoven E, Hoare S, Parker MG. A signature motif in transcriptional co‐activators mediates binding to nuclear receptors. Nature 387: 733‐736, 1997.
 238.Heldmaier G, Steinlechner S, Rafael J, Vsiansky P. Photoperiodic control and effects of melatonin on nonshivering thermogenesis and brown adipose tissue. Science 212: 917‐919, 1981.
 239.Hemmers S, Rudensky AY. The cell‐intrinsic circadian clock is dispensable for lymphocyte differentiation and function. Cell Rep 11: 1339‐1349, 2015.
 240.Henry BA, Clarke IJ. Adipose tissue hormones and the regulation of food intake. J Neuroendocrinol 20: 842‐849, 2008.
 241.Herrero L, Valcarcel L, da Silva CA, Albert N, Diez‐Noguera A, Cambras T, Serra D. Altered circadian rhythm and metabolic gene profile in rats subjected to advanced light phase shifts. PLoS One 10: e0122570, 2015.
 242.Hilderbrand GV, Jenkins SG, Schwartz CC, Hanley TA, Robbins CT. Effect of seasonal differences in dietary meat intake on changes in body mass and composition in wild and captive brown bears. Can J Zool 77: 1623‐1630, 1999.
 243.Hirsch J, Batchelor B. Adipose tissue cellularity in human obesity. Clin Endocrinol Metab 5: 299‐311, 1976.
 244.Hogenesch JB, Gu Y‐Z, Jain S, Bradfield CA. The basic‐helix–loop–helix‐PAS orphan MOP3 forms transcriptionally active complexes with circadian and hypoxia factors. PNAS 95: 5474‐5479, 1998.
 245.Honma S, Kawamoto T, Takagi Y, Fujimoto K, Sato F, Noshiro M, Kato Y, Honma K‐i. Dec1 and Dec2 are regulators of the mammalian molecular clock. Nature 419: 841‐844, 2002.
 246.Hotamisligil GS. Inflammation and metabolic disorders. Nature 444: 860‐867, 2006.
 247.Hotamisligil GS, Erbay E. Nutrient sensing and inflammation in metabolic diseases. Nat Rev Immunol 8: 923‐934, 2008.
 248.Hotamisligil GS, Shargill NS, Spiegelman BM. Adipose expression of tumor necrosis factor‐alpha: Direct role in obesity‐linked insulin resistance. Science 259: 87‐91, 1993.
 249.Hryhorczuk C, Sharma S, Fulton SE. Metabolic disturbances connecting obesity and depression. Front Neurosci 7: 177, 2013.
 250.Hu X, Lazar MA. The CoRNR motif controls the recruitment of corepressors by nuclear hormone receptors. Nature 402: 93‐96, 1999.
 251.Hu E, Liang P, Spiegelman BM. AdipoQ is a novel adipose‐specific gene dysregulated in obesity. J Biol Chem 271: 10697‐10703, 1996.
 252.Huang T‐S, Grodeland G, Sleire L, Wang MY, Kvalheim G, Laerum OD. Induction of circadian rhythm in cultured human mesenchymal stem cells by serum shock and cAMP analogs in vitro. Chronobiol Int 26: 242‐257, 2009.
 253.Hudgins LC, Parker TS, Levine DM, Hellerstein MK. A dual sugar challenge test for lipogenic sensitivity to dietary fructose. J Clin Endocrinol Metab 96: 861‐868, 2011.
 254.Hummel KP, Dickie MM, Coleman DL. Diabetes, a new mutafton in the mouse. Science 153: 1127‐1128, 1966.
 255.Hunt AE, Al‐Ghoul WM, Gillette MU, Dubocovich ML. Activation of MT(2) melatonin receptors in rat suprachiasmatic nucleus phase advances the circadian clock. Am J Physiol Cell Physiol 280: C110‐C118, 2001.
 256.Husse J, Hintze SC, Eichele G, Lehnert H, Oster H. Circadian clock genes Per1 and Per2 regulate the response of metabolism‐associated transcripts to sleep disruption. PLoS One 7: e52983, 2012.
 257.Ingalls AM, Dickie MM, Snell GD. Obese, a new mutation in the house mouse. J Hered 41: 317‐318, 1950.
 258.Irie M, Endo Y. Lesions in the suprachiasmatic nuclei suppress inflammatory mediators in sensitized rats. Int Arch Allergy Immunol 139: 299‐305, 2006.
 259.Ishida A, Mutoh T, Ueyama T, Bando H, Masubuchi S, Nakahara D, Tsujimoto G, Okamura H. Light activates the adrenal gland: Timing of gene expression and glucocorticoid release. Cell Metab 2: 297‐307, 2005.
 260.Izawa S, Miki K, Liu X, Ogawa N. The diurnal patterns of salivary interleukin‐6 and C‐reactive protein in healthy young adults. Brain Behav Immun 27: 38‐41, 2013.
 261.Jakubcakova V, Oster H, Tamanini F, Cadenas C, Leitges M, van der Horst GTJ, Eichele G. Light entrainment of the mammalian circadian clock by a PRKCA‐dependent posttranslational mechanism. Neuron 54: 831‐843, 2007.
 262.Jaradat M, Stapleton C, Tilley SL, Dixon D, Erikson CJ, McCaskill JG, Kang HS, Angers M, Liao G, Collins J, Grissom S, Jetten AM. Modulatory role for retinoid‐related orphan receptor alpha in allergen‐induced lung inflammation. Am J Respir Crit Care Med 174: 1299‐1309, 2006.
 263.Jasper MS, Engeland WC. Splanchnicotomy increases adrenal sensitivity to ACTH in nonstressed rats. Am J Physiol 273: E363‐E368, 1997.
 264.Jeffery E, Berry R, Church CD, Yu S, Shook BA, Horsley V, Rosen ED, Rodeheffer MS. Characterization of Cre recombinase models for the study of adipose tissue. Adipocyte 3: 206‐211, 2014.
 265.Jespersen Naja Z, Larsen Therese J, Peijs L, Daugaard S, Homøe P, Loft A, de Jong J, Mathur N, Cannon B, Nedergaard J, Pedersen Bente K, Møller K, Scheele C. A classical brown adipose tissue mRNA signature partly overlaps with Brite in the supraclavicular region of adult humans. Cell Metab 17: 798‐805, 2013.
 266.Jetten AM, Kang HS, Takeda Y. Retinoic acid‐related orphan receptors alpha and gamma: Key regulators of lipid/glucose metabolism, inflammation, and insulin sensitivity. Front Endocrinol (Lausanne) 4: 1, 2013.
 267.Jimenez‐Aranda A, Fernandez‐Vazquez G, Campos D, Tassi M, Velasco‐Perez L, Tan DX, Reiter RJ, Agil A. Melatonin induces browning of inguinal white adipose tissue in Zucker diabetic fatty rats. J Pineal Res 55: 416‐423, 2013.
 268.Joe AWB, Yi L, Even Y, Vogl AW, Rossi FMV. Depot‐specific differences in adipogenic progenitor abundance and proliferative response to high‐fat diet. Stem Cells 27: 2563‐2570, 2009.
 269.Johnston JD, Bashforth R, Diack A, Andersson H, Lincoln GA, Hazlerigg DG. Rhythmic melatonin secretion does not correlate with the expression of arylalkylamine N‐acetyltransferase, inducible cyclic amp early repressor, period1 or cryptochrome1 mRNA in the sheep pineal. Neuroscience 124: 789‐795, 2004.
 270.Johnston JD, Tournier BB, Andersson H, Masson‐Pévet M, Lincoln GA, Hazlerigg DG. Multiple effects of melatonin on rhythmic clock gene expression in the mammalian pars tuberalis. Endocrinology 147: 959‐965, 2006.
 271.Jong JMAd, Larsson O, Cannon B, Nedergaard J. A stringent validation of mouse adipose tissue identity markers. Am J Physiol Endocrinol Metab 308: E1085‐E1105, 2015.
 272.Kajimura S, Seale P, Kubota K, Lunsford E, Frangioni JV, Gygi SP, Spiegelman BM. Initiation of myoblast to brown fat switch by a PRDM16–C/EBP‐β transcriptional complex. Nature 460: 1154‐1158, 2009.
 273.Kalsbeek A, Garidou ML, Palm IF, Van Der Vliet J, Simonneaux V, Pevet P, Buijs RM. Melatonin sees the light: Blocking GABA‐ergic transmission in the paraventricular nucleus induces daytime secretion of melatonin. Eur J Neurosci 12: 3146‐3154, 2000.
 274.Kamizono S, Duncan GS, Seidel MG, Morimoto A, Hamada K, Grosveld G, Akashi K, Lind EF, Haight JP, Ohashi PS, Look AT, Mak TW. Nfil3/E4bp4 is required for the development and maturation of NK cells in vivo. J Exp Med 206: 2977‐2986, 2009.
 275.Kanda H, Tateya S, Tamori Y, Kotani K, Hiasa K, Kitazawa R, Kitazawa S, Miyachi H, Maeda S, Egashira K, Kasuga M. MCP‐1 contributes to macrophage infiltration into adipose tissue, insulin resistance, and hepatic steatosis in obesity. J Clin Invest 116: 1494‐1505, 2006.
 276.Karatsoreos IN, Bhagat S, Bloss EB, Morrison JH, McEwen BS. Disruption of circadian clocks has ramifications for metabolism, brain, and behavior. PNAS 108: 1657‐1662, 2011.
 277.Kargi AY, Iacobellis G. Adipose tissue and adrenal glands: Novel pathophysiological mechanisms and clinical applications. Int J Endocrinol 2014: 614074, 2014.
 278.Karlsson B, Knutsson A, Lindahl B. Is there an association between shift work and having a metabolic syndrome? Results from a population based study of 27 485 people. Occup Environ Med 58: 747‐752, 2001.
 279.Karlsson BH, Knutsson AK, Lindahl BO, Alfredsson LS. Metabolic disturbances in male workers with rotating three‐shift work. Results of the WOLF study. Int Arch Occup Environ Health 76: 424‐430, 2003.
 280.Karolczak M, Burbach GJ, Sties G, Korf H‐W, Stehle JH. Clock gene mRNA and protein rhythms in the pineal gland of mice. Eur J Neurosci 19: 3382‐3388, 2004.
 281.Karolczak M, Korf H‐W, Stehle JH. The rhythm and blues of gene expression in the rodent pineal gland. Endocr 27: 89‐100.
 282.Kashiwada M, Cassel SL, Colgan JD, Rothman PB. NFIL3/E4BP4 controls type 2 T helper cell cytokine expression. EMBO J 30: 2071‐2082, 2011.
 283.Kashiwada M, Levy DM, McKeag L, Murray K, Schroder AJ, Canfield SM, Traver G, Rothman PB. IL‐4‐induced transcription factor NFIL3/E4BP4 controls IgE class switching. Proc Natl Acad Sci U S A 107: 821‐826, 2010.
 284.Kashiwada M, Pham NL, Pewe LL, Harty JT, Rothman PB. NFIL3/E4BP4 is a key transcription factor for CD8alpha(+) dendritic cell development. Blood 117: 6193‐6197, 2011.
 285.Katada S, Sassone‐Corsi P. The histone methyltransferase MLL1 permits the oscillation of circadian gene expression. Nat Struct Mol Biol 17: 1414‐1421, 2010.
 286.Kaur J. A comprehensive review on metabolic syndrome. Cardiol Res Pract, 2014: e943162.
 287.Kawachi I, Colditz GA, Stampfer MJ, Willett WC, Manson JE, Speizer FE, Hennekens CH. Prospective study of shift work and risk of coronary heart disease in women. Circulation 92: 3178‐3182, 1995.
 288.Kawamoto T, Noshiro M, Sato F, Maemura K, Takeda N, Nagai R, Iwata T, Fujimoto K, Furukawa M, Miyazaki K, Honma S, Honma Ki, Kato Y. A novel autofeedback loop of Dec1 transcription involved in circadian rhythm regulation. Biochem Biophys Res Commun 313: 117‐124, 2004.
 289.Kawasaki H, Doi R, Ito K, Shimoda M, Ishida N. The circadian binding of CLOCK protein to the promoter of C/ebpα gene in mouse cells. PLoS One 8: e58221, 2013.
 290.Kawate T, Abo T, Hinuma S, Kumagai K. Studies of the bioperiodicity of the immune response. II. Co‐variations of murine T and B cells and a role of corticosteroid. J Immunol 126: 1364‐1367, 1981.
 291.Keller M, Mazuch J, Abraham U, Eom GD, Herzog ED, Volk HD, Kramer A, Maier B. A circadian clock in macrophages controls inflammatory immune responses. Proc Natl Acad Sci U S A 106: 21407‐21412, 2009.
 292.Kennaway DJ, Owens JA, Voultsios A, Varcoe TJ. Functional central rhythmicity and light entrainment, but not liver and muscle rhythmicity, are clock independent. Am J Physiol Regul Integr Comp Physiol 291: R1172‐R1180, 2006.
 293.Kennaway DJ, Varcoe TJ, Voultsios A, Boden MJ. Global loss of Bmal1 expression alters adipose tissue hormones, gene expression and glucose metabolism. PLoS One 8: e65255, 2013.
 294.Kennaway DJ, Voultsios A, Varcoe TJ, Moyer RW. Melatonin and activity rhythm responses to light pulses in mice with the clock mutation. Am J Physiol Regul Integr Comp Physiol 284: R1231‐R1240, 2003.
 295.Kettner NM, Mayo SA, Hua J, Lee C, Moore DD, Fu L. Circadian dysfunction induces leptin resistance in mice. Cell Metab 22: 448‐459, 2015.
 296.Khandekar MJ, Cohen P, Spiegelman BM. Molecular mechanisms of cancer development in obesity. Nat Rev Cancer 11: 886‐895, 2011.
 297.Kiessling S, Eichele G, Oster H. Adrenal glucocorticoids have a key role in circadian resynchronization in a mouse model of jet lag. J Clin Invest 120: 2600‐2609, 2010.
 298.Kim KY, Kim JK, Han SH, Lim JS, Kim KI, Cho DH, Lee MS, Lee JH, Yoon DY, Yoon SR, Chung JW, Choi I, Kim E, Yang Y. Adiponectin is a negative regulator of NK cell cytotoxicity. J Immunol 176: 5958‐5964, 2006.
 299.King DP, Zhao Y, Sangoram AM, Wilsbacher LD, Tanaka M, Antoch MP, Steeves TD, Vitaterna MH, Kornhauser JM, Lowrey PL, Turek FW, Takahashi JS. Positional cloning of the mouse circadian clock gene. Cell 89: 641‐653, 1997.
 300.Kirsch S, Thijssen S, Alarcon Salvador S, Heine GH, van Bentum K, Fliser D, Sester M, Sester U. T‐cell numbers and antigen‐specific T‐cell function follow different circadian rhythms. J Clin Immunol 32: 1381‐1389, 2012.
 301.Kita Y, Shiozawa M, Jin W, Majewski RR, Besharse JC, Greene AS, Jacob HJ. Implications of circadian gene expression in kidney, liver and the effects of fasting on pharmacogenomic studies. Pharmacogenetics 12: 55‐65, 2002.
 302.Klein DC, Coon SL, Roseboom PH, Weller JL, Bernard M, Gastel JA, Zatz M, Iuvone PM, Rodriguez IR, Bégay V, Falcón J, Cahill GM, Cassone VM, Baler R. The melatonin rhythm‐generating enzyme: Molecular regulation of serotonin N‐acetyltransferase in the pineal gland. Recent Prog Horm Res 52: 307‐357; discussion 357‐358, 1997.
 303.Klein DC, Moore RY. Pineal N‐acetyltransferase and hydroxyindole‐O‐methyltransferase: Control by the retinohypothalamic tract and the suprachiasmatic nucleus. Brain Res 174: 245‐262, 1979.
 304.Kobayashi T, Matsuoka K, Sheikh SZ, Elloumi HZ, Kamada N, Hisamatsu T, Hansen JJ, Doty KR, Pope SD, Smale ST, Hibi T, Rothman PB, Kashiwada M, Plevy SE. NFIL3 is a regulator of IL‐12 p40 in macrophages and mucosal immunity. J Immunol 186: 4649‐4655, 2011.
 305.Koike N, Yoo SH, Huang HC, Kumar V, Lee C, Kim TK, Takahashi JS. Transcriptional architecture and chromatin landscape of the core circadian clock in mammals. Science 338: 349‐354, 2012.
 306.Kojetin DJ, Burris TP. A role for rev‐erbalpha ligands in regulation of adipogenesis. Curr Pharm Des 17: 320‐324, 2011.
 307.Kondratov RV, Kondratova AA, Gorbacheva VY, Vykhovanets OV, Antoch MP. Early aging and age‐related pathologies in mice deficient in BMAL1, the core componentof the circadian clock. Genes Dev 20: 1868‐1873, 2006.
 308.Koppaka S, Kehlenbrink S, Carey M, Li W, Sanchez E, Lee DE, Lee H, Chen J, Carrasco E, Kishore P, Zhang K, Hawkins M. Reduced adipose tissue macrophage content is associated with improved insulin sensitivity in thiazolidinedione‐treated diabetic humans. Diabetes 62: 1843‐1854, 2013.
 309.Kornhauser JM, Cowan CW, Shaywitz AJ, Dolmetsch RE, Griffith EC, Hu LS, Haddad C, Xia Z, Greenberg ME. CREB transcriptional activity in neurons is regulated by multiple, calcium‐specific phosphorylation events. Neuron 34: 221‐233, 2002.
 310.Kornmann B, Preitner N, Rifat D, Fleury‐Olela F, Schibler U. Analysis of circadian liver gene expression by ADDER, a highly sensitive method for the display of differentially expressed mRNAs. Nucleic Acids Res 29: E51‐E51, 2001.
 311.Kraakman MJ, Kammoun HL, Allen TL, Deswaerte V, Henstridge DC, Estevez E, Matthews VB, Neill B, White DA, Murphy AJ, Peijs L, Yang C, Risis S, Bruce CR, Du XJ, Bobik A, Lee‐Young RS, Kingwell BA, Vasanthakumar A, Shi W, Kallies A, Lancaster GI, Rose‐John S, Febbraio MA. Blocking IL‐6 trans‐signaling prevents high‐fat diet‐induced adipose tissue macrophage recruitment but does not improve insulin resistance. Cell Metab 21: 403‐416, 2015.
 312.Kratz M, Coats BR, Hisert KB, Hagman D, Mutskov V, Peris E, Schoenfelt KQ, Kuzma JN, Larson I, Billing PS, Landerholm RW, Crouthamel M, Gozal D, Hwang S, Singh PK, Becker L. Metabolic dysfunction drives a mechanistically distinct proinflammatory phenotype in adipose tissue macrophages. Cell Metab 20: 614‐625, 2014.
 313.Kronfol Z, Nair M, Zhang Q, Hill EE, Brown MB. Circadian immune measures in healthy volunteers: Relationship to hypothalamic‐pituitary‐adrenal axis hormones and sympathetic neurotransmitters. Psychosom Med 59: 42‐50, 1997.
 314.Kume K, Zylka MJ, Sriram S, Shearman LP, Weaver DR, Jin X, Maywood ES, Hastings MH, Reppert SM. mCRY1 and mCRY2 are essential components of the negative limb of the circadian clock feedback loop. Cell 98: 193‐205, 1999.
 315.La Cava A, Matarese G. The weight of leptin in immunity. Nat Rev Immunol 4: 371‐379, 2004.
 316.La Fleur SE, Kalsbeek A, Wortel J, Buijs RM. A suprachiasmatic nucleus generated rhythm in basal glucose concentrations. J Neuroendocrinol 11: 643‐652, 1999.
 317.Labbé SM, Caron A, Bakan I, Laplante M, Carpentier AC, Lecomte R, Richard D. In vivo measurement of energy substrate contribution to cold‐induced brown adipose tissue thermogenesis. FASEB J 29: 2046‐2058, 2015.
 318.Labrecque N, Cermakian N. Circadian clocks in the immune system. J Biol Rhythms 30: 277‐290, 2015.
 319.Lam TK, Pocai A, Gutierrez‐Juarez R, Obici S, Bryan J, Aguilar‐Bryan L, Schwartz GJ, Rossetti L. Hypothalamic sensing of circulating fatty acids is required for glucose homeostasis. Nat Med 11: 320‐327, 2005.
 320.Lam QL, Wang S, Ko OK, Kincade PW, Lu L. Leptin signaling maintains B‐cell homeostasis via induction of Bcl‐2 and Cyclin D1. Proc Natl Acad Sci U S A 107: 13812‐13817, 2010.
 321.Lamia KA, Papp SJ, Yu RT, Barish GD, Uhlenhaut NH, Jonker JW, Downes M, Evans RM. Cryptochromes mediate rhythmic repression of the glucocorticoid receptor. Nature 480: 552‐556, 2011.
 322.Lamia KA, Sachdeva UM, DiTacchio L, Williams EC, Alvarez JG, Egan DF, Vasquez DS, Juguilon H, Panda S, Shaw RJ, Thompson CB, Evans RM. AMPK regulates the circadian clock by cryptochrome phosphorylation and degradation. Science (New York, NY) 326: 437‐440, 2009.
 323.Lamia KA, Storch KF, Weitz CJ. Physiological significance of a peripheral tissue circadian clock. Proc Natl Acad Sci U S A 105: 15172‐15177, 2008.
 324.Landgraf D, Wang LL, Diemer T, Welsh DK. NPAS2 compensates for loss of CLOCK in peripheral circadian oscillators. PLoS Genet 12: e1005882, 2016.
 325.Larsen PJ, Enquist LW, Card JP. Characterization of the multisynaptic neuronal control of the rat pineal gland using viral transneuronal tracing. Eur J Neurosci 10: 128‐145, 1998.
 326.Lasikiewicz N, Hendrickx H, Talbot D, Dye L. Exploration of basal diurnal salivary cortisol profiles in middle‐aged adults: Associations with sleep quality and metabolic parameters. Psychoneuroendocrinology 33: 143‐151, 2008.
 327.Lau DCW, Dhillon B, Yan H, Szmitko PE, Verma S. Adipokines: Molecular links between obesity and atheroslcerosis. Am J Physiol Heart Circ Physiol 288: H2031‐H2041, 2005.
 328.Laue T, Wrann CD, Hoffmann‐Castendiek B, Pietsch D, Hubner L, Kielstein H. Altered NK cell function in obese healthy humans. BMC Obes 2: 1, 2015.
 329.Lee C, Etchegaray J‐P, Cagampang FRA, Loudon ASI, Reppert SM. Posttranslational mechanisms regulate the mammalian circadian clock. Cell 107: 855‐867, 2001.
 330.Lee MJ, Fried SK. Integration of hormonal and nutrient signals that regulate leptin synthesis and secretion. Am J Physiol Endocrinol Metab 296: E1230‐E1238, 2009.
 331.Lee MJ, Gong DW, Burkey BF, Fried SK. Pathways regulated by glucocorticoids in omental and subcutaneous human adipose tissues: A microarray study. Am J Physiol Endocrinol Metab 300: E571‐580, 2011.
 332.Lee BC, Kim MS, Pae M, Yamamoto Y, Eberle D, Shimada T, Kamei N, Park HS, Sasorith S, Woo JR, You J, Mosher W, Brady HJ, Shoelson SE, Lee J. Adipose natural killer cells regulate adipose tissue macrophages to promote insulin resistance in obesity. Cell Metab 23: 685‐698, 2016.
 333.Lee MW, Odegaard JI, Mukundan L, Qiu Y, Molofsky AB, Nussbaum JC, Yun K, Locksley RM, Chawla A. Activated type 2 innate lymphoid cells regulate beige fat biogenesis. Cell 160: 74‐87, 2015.
 334.Lee MJ, Pramyothin P, Karastergiou K, Fried SK. Deconstructing the roles of glucocorticoids in adipose tissue biology and the development of central obesity. Biochim Biophys Acta 1842: 473‐481, 2014.
 335.Lee G‐H, Proenca R, Montez JM, Carroll KM, Darvishzadeh JG, Lee JI, Friedman JM. Abnormal splicing of the leptin receptor in diabetic mice. Nature 379: 632‐635, 1996.
 336.Lee P, Smith S, Linderman J, Courville AB, Brychta RJ, Dieckmann W, Werner CD, Chen KY, Celi FS. Temperature‐acclimated brown adipose tissue modulates insulin sensitivity in humans. Diabetes 63: 3686‐3698, 2014.
 337.Lee KH, Thrall T, Kim KH. Hormonal regulation of acetyl CoA carboxylase effect of insulin and epinephrine. Biochem Biophys Res Commun 54: 1133‐1140, 1973.
 338.Lee P, Werner CD, Kebebew E, Celi FS. Functional thermogenic beige adipogenesis is inducible in human neck fat. Int J Obesity 38: 170‐176, 2014.
 339.LeGates TA, Altimus CM, Wang H, Lee HK, Yang S, Zhao H, Kirkwood A, Weber ET, Hattar S. Aberrant light directly impairs mood and learning through melanopsin‐expressing neurons. Nature 491: 594‐598, 2012.
 340.Leliavski A, Dumbell R, Ott V, Oster H. Adrenal clocks and the role of adrenal hormones in the regulation of circadian physiology. J Biol Rhythms 30: 20‐34, 2015.
 341.Leliavski A, Shostak A, Husse J, Oster H. Impaired glucocorticoid production and response to stress in Arntl‐deficient male mice. Endocrinology 155: 133‐142, 2014.
 342.Lewy AJ, Ahmed S, Sack RL. Phase shifting the human circadian clock using melatonin. Behav Brain Res 73: 131‐134, 1996.
 343.Li P, Oh da Y, Bandyopadhyay G, Lagakos WS, Talukdar S, Osborn O, Johnson A, Chung H, Mayoral R, Maris M, Ofrecio JM, Taguchi S, Lu M, Olefsky JM. LTB4 promotes insulin resistance in obese mice by acting on macrophages, hepatocytes and myocytes. Nat Med 21: 239‐247, 2015.
 344.Li S, Yu Q, Wang GX, Lin JD. The biological clock is regulated by adrenergic signaling in brown fat but is dispensable for cold‐induced thermogenesis. PLoS One 8: e70109, 2013.
 345.Lidell ME, Betz MJ, Leinhard OD, Heglind M, Elander L, Slawik M, Mussack T, Nilsson D, Romu T, Nuutila P, Virtanen KA, Beuschlein F, Persson A, Borga M, Enerbäck S. Evidence for two types of brown adipose tissue in humans. Nat Med 19: 631‐634, 2013.
 346.Lin Y‐C, Hsiao T‐J, Chen P‐C. Persistent rotating shift‐work exposure accelerates development of metabolic syndrome among middle‐aged female employees: A five‐year follow‐up. Chronobiol Int 26: 740‐755, 2009.
 347.Liu S, Cai Y, Sothern RB, Guan Y, Chan P. Chronobiological analysis of circadian patterns in transcription of seven key clock genes in six peripheral tissues in mice. Chronobiol Int 24: 793‐820, 2007.
 348.Liu J, Divoux A, Sun J, Zhang J, Clement K, Glickman JN, Sukhova GK, Wolters PJ, Du J, Gorgun CZ, Doria A, Libby P, Blumberg RS, Kahn BB, Hotamisligil GS, Shi GP. Genetic deficiency and pharmacological stabilization of mast cells reduce diet‐induced obesity and diabetes in mice. Nat Med 15: 940‐945, 2009.
 349.Liu L, Li Q, Xiao X, Wu C, Gao R, Peng C, Li D, Zhang W, Du T, Wang Y, Yang S, Zhen Q, Ge Q. miR‐1934, downregulated in obesity, protects against low‐grade inflammation in adipocytes. Mol Cell Endocrinol 428: 109‐117, 2016.
 350.Liu AC, Tran HG, Zhang EE, Priest AA, Welsh DK, Kay SA. Redundant function of REV‐ERBalpha and beta and non‐essential role for Bmal1 cycling in transcriptional regulation of intracellular circadian rhythms. PLoS Genet 4: e1000023, 2008.
 351.Liu C, Weaver DR, Jin X, Shearman LP, Pieschl RL, Gribkoff VK, Reppert SM. Molecular dissection of two distinct actions of melatonin on the suprachiasmatic circadian clock. Neuron 19: 91‐102, 1997.
 352.Loboda A, Kraft WK, Fine B, Joseph J, Nebozhyn M, Zhang C, He Y, Yang X, Wright C, Morris M, Chalikonda I, Ferguson M, Emilsson V, Leonardson A, Lamb J, Dai H, Schadt E, Greenberg HE, Lum PY. Diurnal variation of the human adipose transcriptome and the link to metabolic disease. BMC Med Genomics 2: 7, 2009.
 353.Locke RM, Rial E, Scott ID, Nicholls DG. Fatty acids as acute regulators of the proton conductance of hamster brown‐fat mitochondria. Eur J Biochem 129: 373‐380, 1982.
 354.Löfgren P, Andersson I, Adolfsson B, Leijonhufvud B‐M, Hertel K, Hoffstedt J, Arner P. Long‐term prospective and controlled studies demonstrate adipose tissue hypercellularity and relative leptin deficiency in the postobese state. J Clin Endocrinol Metab 90: 6207‐6213, 2005.
 355.Logan RW, Arjona A, Sarkar DK. Role of sympathetic nervous system in the entrainment of circadian natural‐killer cell function. Brain Behav Immun 25: 101‐109, 2011.
 356.Logan RW, Sarkar DK. Circadian nature of immune function. Mol Cell Endocrinol 349: 82‐90, 2012.
 357.Logan RW, Wynne O, Levitt D, Price D, Sarkar DK. Altered circadian expression of cytokines and cytolytic factors in splenic natural killer cells of Per1(−/−) mutant mice. J Interferon Cytokine Res 33: 108‐114, 2013.
 358.Logan RW, Zhang C, Murugan S, O'Connell S, Levitt D, Rosenwasser AM, Sarkar DK. Chronic shift‐lag alters the circadian clock of NK cells and promotes lung cancer growth in rats. J Immunol 188: 2583‐2591, 2012.
 359.Long Jonathan Z, Svensson Katrin J, Tsai L, Zeng X, Roh Hyun C, Kong X, Rao Rajesh R, Lou J, Lokurkar I, Baur W, Castellot John J, Jr, Rosen Evan D, Spiegelman Bruce M. A smooth muscle‐like origin for Beige adipocytes. Cell Metab 19: 810‐820, 2014.
 360.Lönnqvist F, Nordfors L, Jansson M, Thörne A, Schalling M, Arner P. Leptin secretion from adipose tissue in women. Relationship to plasma levels and gene expression. J Clin Invest 99: 2398‐2404, 1997.
 361.Lord GM, Matarese G, Howard JK, Baker RJ, Bloom SR, Lechler RI. Leptin modulates the T‐cell immune response and reverses starvation‐induced immunosuppression. Nature 394: 897‐901, 1998.
 362.Lowe CE, O'Rahilly S, Rochford JJ. Adipogenesis at a glance. J Cell Sci 124: 2681‐2686, 2011.
 363.Lowell BB, S‐Susulic V, Hamann A, Lawitts JA, Himms‐Hagen J, Boyer BB, Kozak LP, Flier JS. Development of obesity in transgenic mice after genetic ablation of brown adipose tissue. Nature 366: 740‐742, 1993.
 364.Lowrey PL, Shimomura K, Antoch MP, Yamazaki S, Zemenides PD, Ralph MR, Menaker M, Takahashi JS. Positional syntenic cloning and functional characterization of the mammalian circadian mutation tau. Science (New York, NY) 288: 483‐492, 2000.
 365.Lu X‐Y, Kim CS, Frazer A, Zhang W. Leptin: A potential novel antidepressant. PNAS 103: 1593‐1598, 2006.
 366.Lumeng CN, Bodzin JL, Saltiel AR. Obesity induces a phenotypic switch in adipose tissue macrophage polarization. J Clin Invest 117: 175‐184, 2007.
 367.Lumeng CN, Saltiel AR. Inflammatory links between obesity and metabolic disease. J Clin Invest 121: 2111‐2117, 2011.
 368.Luo Y, Liu M. Adiponectin: A versatile player of innate immunity. J Mol Cell Biol 8: 120‐128, 2016.
 369.Lynch L, Nowak M, Varghese B, Clark J, Hogan AE, Toxavidis V, Balk SP, O'Shea D, O'Farrelly C, Exley MA. Adipose tissue invariant NKT cells protect against diet‐induced obesity and metabolic disorder through regulatory cytokine production. Immunity 37: 574‐587, 2012.
 370.Macfarlane DP, Forbes S, Walker BR. Glucocorticoids and fatty acid metabolism in humans: Fuelling fat redistribution in the metabolic syndrome. J Endocrinol 197: 189‐204, 2008.
 371.Macotela Y, Emanuelli B, Mori MA, Gesta S, Schulz TJ, Tseng Y‐H, Kahn CR. Intrinsic differences in adipocyte precursor cells from different white fat depots. Diabetes 61: 1691‐1699, 2012.
 372.Maeda K, Okubo K, Shimomura I, Funahashi T, Matsuzawa Y, Matsubara K. cDNA cloning and expression of a novel adipose specific collagen‐like factor, apM1 (adiposemost abundant gene transcript 1). Biochem Biophys Res Commun 221: 286‐289, 1996.
 373.Maffei M, Halaas J, Ravussin E, Pratley RE, Lee GH, Zhang Y, Fei H, Kim S, Lallone R, Ranganathan S. Leptin levels in human and rodent: Measurement of plasma leptin and ob RNA in obese and weight‐reduced subjects. Nat Med 1: 1155‐1161, 1995.
 374.Male V, Nisoli I, Gascoyne DM, Brady HJ. E4BP4: An unexpected player in the immune response. Trends Immunol 33: 98‐102, 2012.
 375.Mancuso P, Myers MG, Jr, Goel D, Serezani CH, O'Brien E, Goldberg J, Aronoff DM, Peters‐Golden M. Ablation of leptin receptor‐mediated ERK activation impairs host defense against Gram‐negative pneumonia. J Immunol 189: 867‐875, 2012.
 376.Marcheva B, Ramsey KM, Buhr ED, Kobayashi Y, Su H, Ko CH, Ivanova G, Omura C, Mo S, Vitaterna MH, Lopez JP, Philipson LH, Bradfield CA, Crosby SD, JeBailey L, Wang X, Takahashi JS, Bass J. Disruption of the clock components CLOCK and BMAL1 leads to hypoinsulinaemia and diabetes. Nature 466: 627‐631, 2010.
 377.Maronde E, Pfeffer M, Olcese J, Molina CA, Schlotter F, Dehghani F, Korf H‐W, Stehle JH. Transcription factors in neuroendocrine regulation: Rhythmic changes in pCREB and ICER levels frame melatonin synthesis. J Neurosci 19: 3326‐3336, 1999.
 378.Maronde E, Schomerus C, Stehle JH, Korf H‐W. Control of CREB phosphorylation and its role for induction of melatonin synthesis in rat pinealocytes*. Biol Cell 89: 505‐511, 1997.
 379.Marotte H, Timbal J. Circadian rhythm of thermoregulating responses in man exposed to thermal stimuli. Chronobiologia 9: 375‐387, 1982.
 380.Martelot GL, Claudel T, Gatfield D, Schaad O, Kornmann B, Sasso GL, Moschetta A, Schibler U. REV‐ERBα participates in circadian SREBP signaling and bile acid homeostasis. PLOS Biol 7: e1000181, 2009.
 381.Masuzaki H, Ogawa Y, Sagawa N, Hosoda K, Matsumoto T, Mise H, Nishimura H, Yoshimasa Y, Tanaka I, Mori T, Nakao K. Nonadipose tissue production of leptin: Leptin as a novel placenta‐derived hormone in humans. Nat Med 3: 1029‐1033, 1997.
 382.Matarese G, Di Giacomo A, Sanna V, Lord GM, Howard JK, Di Tuoro A, Bloom SR, Lechler RI, Zappacosta S, Fontana S. Requirement for leptin in the induction and progression of autoimmune encephalomyelitis. J Immunol 166: 5909‐5916, 2001.
 383.Matarese G, Leiter EH, La Cava A. Leptin in autoimmunity: Many questions, some answers. Tissue Antigens 70: 87‐95, 2007.
 384.Matarese G, Procaccini C, De Rosa V. At the crossroad of T cells, adipose tissue, and diabetes. Immunol Rev 249: 116‐134, 2012.
 385.Matarese G, Procaccini C, De Rosa V, Horvath TL, La Cava A. Regulatory T cells in obesity: The leptin connection. Trends Mol Med 16: 247‐256, 2010.
 386.Mathis D. Immunological goings‐on in visceral adipose tissue. Cell Metab 17: 851‐859, 2013.
 387.Mauer J, Chaurasia B, Goldau J, Vogt MC, Ruud J, Nguyen KD, Theurich S, Hausen AC, Schmitz J, Bronneke HS, Estevez E, Allen TL, Mesaros A, Partridge L, Febbraio MA, Chawla A, Wunderlich FT, Bruning JC. Signaling by IL‐6 promotes alternative activation of macrophages to limit endotoxemia and obesity‐associated resistance to insulin. Nat Immunol 15: 423‐430, 2014.
 388.McDearmon EL, Patel KN, Ko CH, Walisser JA, Schook AC, Chong JL, Wilsbacher LD, Song EJ, Hong H‐K, Bradfield CA, Takahashi JS. Dissecting the functions of the mammalian clock protein BMAL1 by tissue‐specific rescue in mice. Science 314: 1304‐1308, 2006.
 389.McHill AW, Melanson EL, Higgins J, Connick E, Moehlman TM, Stothard ER, Wright KP. Impact of circadian misalignment on energy metabolism during simulated nightshift work. PNAS 111: 17302‐17307, 2014.
 390.McMenamin TM. Time to work: Recent trends in shift work and flexible schedules, A. Mon Labor Rev 130: 3, 2007.
 391.McNelis JC, Olefsky JM. Macrophages, immunity, and metabolic disease. Immunity 41: 36‐48, 2014.
 392.Medoff BD, Okamoto Y, Leyton P, Weng M, Sandall BP, Raher MJ, Kihara S, Bloch KD, Libby P, Luster AD. Adiponectin deficiency increases allergic airway inflammation and pulmonary vascular remodeling. Am J Respir Cell Mol Biol 41: 397‐406, 2009.
 393.Medzhitov R. Origin and physiological roles of inflammation. Nature 454: 428‐435, 2008.
 394.Mitsui S, Yamaguchi S, Matsuo T, Ishida Y, Okamura H. Antagonistic role of E4BP4 and PAR proteins in the circadian oscillatory mechanism. Genes Dev 15: 995‐1006, 2001.
 395.Miyazaki K, Wakabayashi M, Chikahisa S, Sei H, Ishida N. PER2 controls circadian periods through nuclear localization in the suprachiasmatic nucleus. Genes Cells 12: 1225‐1234, 2007.
 396.Mokdad AH, Ford ES, Bowman BA, et al. PRevalence of obesity, diabetes, and obesity‐related health risk factors, 2001. JAMA 289: 76‐79, 2003.
 397.Molofsky AB, Nussbaum JC, Liang HE, Van Dyken SJ, Cheng LE, Mohapatra A, Chawla A, Locksley RM. Innate lymphoid type 2 cells sustain visceral adipose tissue eosinophils and alternatively activated macrophages. J Exp Med 210: 535‐549, 2013.
 398.Monk TH, Buysse DJ. Exposure to shift work as a risk factor for diabetes. J Biol Rhythms 28: 356‐359, 2013.
 399.Moore RY. Neural control of the pineal gland. Behav Brain Res 73: 125‐130, 1996.
 400.Moore RY, Eichler VB. Loss of a circadian adrenal corticosterone rhythm following suprachiasmatic lesions in the rat. Brain Res 42: 201‐206, 1972.
 401.Moore RY, Lenn NJ. A retinohypothalamic projection in the rat. J Comp Neurol 146: 1‐14, 1972.
 402.Morikawa Y, Nakagawa H, Miura K, Soyama Y, Ishizaki M, Kido T, Naruse Y, Suwazono Y, Nogawa K. Effect of shift work on body mass index and metabolic parameters. Scand J Work Environ Health 33: 45‐50, 2007.
 403.Morris CJ, Purvis TE, Mistretta J, Scheer FAJL. Effects of the internal circadian system and circadian misalignment on glucose tolerance in chronic shift workers. J Clin Endocrinol Metab 101: 1066‐1074, 2016.
 404.Motomura Y, Kitamura H, Hijikata A, Matsunaga Y, Matsumoto K, Inoue H, Atarashi K, Hori S, Watarai H, Zhu J, Taniguchi M, Kubo M. The transcription factor E4BP4 regulates the production of IL‐10 and IL‐13 in CD4+ T cells. Nat Immunol 12: 450‐459, 2011.
 405.Mujica‐Parodi LR, Renelique R, Taylor MK. Higher body fat percentage is associated with increased cortisol reactivity and impaired cognitive resilience in response to acute emotional stress. Int J Obes (2005) 33: 157‐165, 2009.
 406.Myers Martin G, Jr, Heymsfield Steven B, Haft C, Kahn Barbara B, Laughlin M, Leibel Rudolph L, Tschöp Matthias H, Yanovski Jack A. Challenges and opportunities of defining clinical leptin resistance. Cell Metab 15: 150‐156, 2012.
 407.Na HN, Nam JH. Adenovirus 36 as an obesity agent maintains the obesity state by increasing MCP‐1 and inducing inflammation. J Infect Dis 205: 914‐922, 2012.
 408.Nader N, Chrousos GP, Kino T. Circadian rhythm transcription factor CLOCK regulates the transcriptional activity of the glucocorticoid receptor by acetylating its hinge region lysine cluster: Potential physiological implications. FASEB J 23: 1572‐1583, 2009.
 409.Nagajyothi F, Desruisseaux MS, Machado FS, Upadhya R, Zhao D, Schwartz GJ, Teixeira MM, Albanese C, Lisanti MP, Chua SC, Jr, Weiss LM, Scherer PE, Tanowitz HB. Response of adipose tissue to early infection with Trypanosoma cruzi (Brazil strain). J Infect Dis 205: 830‐840, 2012.
 410.Nagashima K, Matsue K, Konishi M, Iidaka C, Miyazaki K, Ishida N, Kanosue K. The involvement of Cry1 and Cry2 genes in the regulation of the circadian body temperature rhythm in mice. Am J Physiol Regul Integr Comp Physiol 288: R329‐R335, 2005.
 411.Nakahata Y, Kaluzova M, Grimaldi B, Sahar S, Hirayama J, Chen D, Guarente LP, Sassone‐Corsi P. The NAD+‐dependent deacetylase SIRT1 modulates clock‐mediated chromatin remodeling and circadian control. Cell 134: 329‐340, 2008.
 412.Nakashima A, Kawamoto T, Honda KK, Ueshima T, Noshiro M, Iwata T, Fujimoto K, Kubo H, Honma S, Yorioka N, Kohno N, Kato Y. DEC1 modulates the circadian phase of clock gene expression. Mol Cell Biol 28: 4080‐4092, 2008.
 413.Nam D, Guo B, Chatterjee S, Chen MH, Nelson D, Yechoor VK, Ma K. The adipocyte clock controls brown adipogenesis through the TGF‐beta and BMP signaling pathways. J Cell Sci 128: 1835‐1847, 2015.
 414.Natesan A, Geetha L, Zatz M. Rhythm and soul in the avian pineal. Cell Tissue Res 309: 35‐45, 2014.
 415.Nawrocki AR, Rajala MW, Tomas E, Pajvani UB, Saha AK, Trumbauer ME, Pang Z, Chen AS, Ruderman NB, Chen H, Rossetti L, Scherer PE. Mice lacking adiponectin show decreased hepatic insulin sensitivity and reduced responsiveness to peroxisome proliferator‐activated receptor γ agonists. J Biol Chem 281: 2654‐2660, 2006.
 416.Naylor C, Petri WA, Jr. Leptin regulation of immune responses. Trends Mol Med 22: 88‐98, 2016.
 417.Nduhirabandi F, du Toit EF, Lochner A. Melatonin and the metabolic syndrome: A tool for effective therapy in obesity‐associated abnormalities? Acta Physiol (Oxf) 205: 209‐223, 2012.
 418.Nedergaard J, Bengtsson T, Cannon B. Unexpected evidence for active brown adipose tissue in adult humans. Am J Physiol Endocrinol Metab 293: E444‐E452, 2007.
 419.Nedergaard J, Golozoubova V, Matthias A, Asadi A, Jacobsson A, Cannon B. UCP1: The only protein able to mediate adaptive non‐shivering thermogenesis and metabolic inefficiency. Biochim Biophys Acta ‐ Bioenergetics 1504: 82‐106, 2001.
 420.Nguyen KD, Fentress SJ, Qiu Y, Yun K, Cox JS, Chawla A. Circadian gene Bmal1 regulates diurnal oscillations of Ly6C(hi) inflammatory monocytes. Science 341: 1483‐1488, 2013.
 421.Nguyen KD, Qiu Y, Cui X, Goh YP, Mwangi J, David T, Mukundan L, Brombacher F, Locksley RM, Chawla A. Alternatively activated macrophages produce catecholamines to sustain adaptive thermogenesis. Nature 480: 104‐108, 2011.
 422.Niedhammer I, Lert F, Marne MJ. Prevalence of overweight and weight gain in relation to night work in a nurses' cohort. Int J Obes Relat Metab Disord 20: 625‐633, 1996.
 423.Nieminen P, Mustonen A‐M, Asikainen J, Hyvärinen H. Seasonal weight regulation of the Raccoon Dog (Nyctereutes procyonoides): Interactions between melatonin, leptin, ghrelin, and growth hormone. J Biol Rhythms 17: 155‐163, 2002.
 424.Nishimura S, Manabe I, Nagasaki M, Eto K, Yamashita H, Ohsugi M, Otsu M, Hara K, Ueki K, Sugiura S, Yoshimura K, Kadowaki T, Nagai R. CD8+ effector T cells contribute to macrophage recruitment and adipose tissue inflammation in obesity. Nat Med 15: 914‐920, 2009.
 425.Nishimura S, Manabe I, Takaki S, Nagasaki M, Otsu M, Yamashita H, Sugita J, Yoshimura K, Eto K, Komuro I, Kadowaki T, Nagai R. Adipose natural regulatory B cells negatively control adipose tissue inflammation. Cell Metab 2013 [Epub ahead of print].
 426.Nogueiras R, Wiedmer P, Perez‐Tilve D, Veyrat‐Durebex C, Keogh JM, Sutton GM, Pfluger PT, Castaneda TR, Neschen S, Hofmann SM, Howles PN, Morgan DA, Benoit SC, Szanto I, Schrott B, Schürmann A, Joost H-G, Hammond C, Hui DY, Woods SC, Rahmouni K, Butler AA, Farooqi IS, O'Rahilly S, Rohner‐Jeanrenaud F, Tschöp MH. The central melanocortin system directly controls peripheral lipid metabolism. J Clin Invest 117: 3475‐3488, 2007.
 427.Nussbaum JC, Van Dyken SJ, von Moltke J, Cheng LE, Mohapatra A, Molofsky AB, Thornton EE, Krummel MF, Chawla A, Liang HE, Locksley RM. Type 2 innate lymphoid cells control eosinophil homeostasis. Nature 502: 245‐248, 2013.
 428.O'Neill JS, Maywood ES, Chesham JE, Takahashi JS, Hastings MH. cAMP‐dependent signaling as a core component of the mammalian circadian pacemaker. Science (New York, NY) 320: 949‐953, 2008.
 429.O'Neill JS, Reddy AB. Circadian clocks in human red blood cells. Nature 469: 498‐503, 2011.
 430.O'Rourke RW, Meyer KA, Neeley CK, Gaston GD, Sekhri P, Szumowski M, Zamarron B, Lumeng CN, Marks DL. Systemic NK cell ablation attenuates intra‐abdominal adipose tissue macrophage infiltration in murine obesity. Obesity (Silver Spring) 22: 2109‐2114, 2014.
 431.Odegaard JI, Chawla A. Pleiotropic actions of insulin resistance and inflammation in metabolic homeostasis. Science 339: 172‐177, 2013.
 432.Oh DY, Talukdar S, Bae EJ, Imamura T, Morinaga H, Fan W, Li P, Lu WJ, Watkins SM, Olefsky JM. GPR120 is an omega‐3 fatty acid receptor mediating potent anti‐inflammatory and insulin‐sensitizing effects. Cell 142: 687‐698, 2010.
 433.Ohashi K, Ouchi N, Kihara S, Funahashi T, Nakamura T, Sumitsuji S, Kawamoto T, Matsumoto S, Nagaretani H, Kumada M, Okamoto Y, Nishizawa H, Kishida K, Maeda N, Hiraoka H, Iwashima Y, Ishikawa K, Ohishi M, Katsuya T, Rakugi H, Ogihara T, Matsuzawa Y. Adiponectin I164T mutation is associated with the metabolic syndrome and coronary artery disease. J Am Coll Cardiol 43: 1195‐1200, 2004.
 434.Ohno T, Onishi Y, Ishida N. A novel E4BP4 element drives circadian expression of mPeriod2. Nucleic Acids Res 35: 648‐655, 2007.
 435.Oike H, Sakurai M, Ippoushi K, Kobori M. Time‐fixed feeding prevents obesity induced by chronic advances of light/dark cycles in mouse models of jet‐lag/shift work. Biochem Biophys Res Commun 465: 556‐561, 2015.
 436.Oishi K. Disrupted light‐dark cycle induces obesity with hyperglycemia in genetically intact animals. Neuro Endocrinol Lett 30: 458‐461, 2009.
 437.Oishi K. Plasminogen activator inhibitor‐1 and the circadian clock in metabolic disorders. Clin Exp Hypertens (New York, NY: 1993) 31: 208‐219, 2009.
 438.Oishi K, Itoh N. Disrupted daily light–dark cycle induces the expression of hepatic gluconeogenic regulatory genes and hyperglycemia with glucose intolerance in mice. Biochem Biophys Res Commun 432: 111‐115, 2013.
 439.Okabe Y, Medzhitov R. Tissue‐specific signals control reversible program of localization and functional polarization of macrophages. Cell 157: 832‐844, 2014.
 440.Olefsky JM, Glass CK. Macrophages, inflammation, and insulin resistance. Annu Rev Physiol 72: 219‐246, 2010.
 441.Oliver P, Ribot J, Rodriguez AM, Sanchez J, Pico C, Palou A. Resistin as a putative modulator of insulin action in the daily feeding/fasting rhythm. Pflugers Arch 452: 260‐267, 2006.
 442.Ootsuka Y, de Menezes RC, Zaretsky DV, Alimoradian A, Hunt J, Stefanidis A, Oldfield BJ, Blessing WW. Brown adipose tissue thermogenesis heats brain and body as part of the brain‐coordinated ultradian basic rest‐activity cycle. Neuroscience 164: 849‐861, 2009.
 443.Opperhuizen A‐L, van Kerkhof LWM, Proper KI, Rodenburg W, Kalsbeek A. Rodent models to study the metabolic effects of shiftwork in humans. Front Pharmacol 6: 50, 2015.
 444.Oster H, Damerow S, Hut RA, Eichele G. Transcriptional profiling in the adrenal gland reveals circadian regulation of hormone biosynthesis genes and nucleosome assembly genes. J Biol Rhythms 21: 350‐361, 2006.
 445.Oster H, Damerow S, Kiessling S, Jakubcakova V, Abraham D, Tian J, Hoffmann MW, Eichele G. The circadian rhythm of glucocorticoids is regulated by a gating mechanism residing in the adrenal cortical clock. Cell Metab 4: 163‐173, 2006.
 446.Otway DT, Mäntele S, Bretschneider S, Wright J, Trayhurn P, Skene DJ, Robertson MD, Johnston JD. Rhythmic diurnal gene expression in human adipose tissue from individuals who are lean, overweight, and type 2 diabetic. Diabetes 60: 1577‐1581, 2011.
 447.Ouellet V, Routhier‐Labadie A, Bellemare W, Lakhal‐Chaieb L, Turcotte E, Carpentier AC, Richard D. Outdoor temperature, age, sex, body mass index, and diabetic status determine the prevalence, mass, and glucose‐uptake activity of 18F‐FDG‐detected BAT in humans. J Clin Endocrinol Metab 96: 192‐199, 2011.
 448.Pajvani UB, Du X, Combs TP, Berg AH, Rajala MW, Schulthess T, Engel J, Brownlee M, Scherer PE. Structure‐function studies of the adipocyte‐secreted hormone Acrp30/adiponectin implications for metabolic regulation and bioactivity. J Biol Chem 278: 9073‐9085, 2003.
 449.Pajvani UB, Hawkins M, Combs TP, Rajala MW, Doebber T, Berger JP, Wagner JA, Wu M, Knopps A, Xiang AH, Utzschneider KM, Kahn SE, Olefsky JM, Buchanan TA, Scherer PE. Complex distribution, not absolute amount of adiponectin, correlates with thiazolidinedione‐mediated improvement in insulin sensitivity. J Biol Chem 279: 12152‐12162, 2004.
 450.Pan A, Schernhammer ES, Sun Q, Hu FB. Rotating night shift work and risk of type 2 diabetes: Two prospective cohort studies in women. PLOS Med 8: e1001141, 2011.
 451.Panda S, Hogenesch JB, Kay SA. Circadian rhythms from flies to human. Nature 417: 329‐335, 2002.
 452.Parlee SD, Ernst MC, Muruganandan S, Sinal CJ, Goralski KB. Serum chemerin levels vary with time of day and are modified by obesity and tumor necrosis factor‐{alpha}. Endocrinology 151: 2590‐2602, 2010.
 453.Paschos GK, Ibrahim S, Song WL, Kunieda T, Grant G, Reyes TM, Bradfield CA, Vaughan CH, Eiden M, Masoodi M, Griffin JL, Wang F, Lawson JA, Fitzgerald GA. Obesity in mice with adipocyte‐specific deletion of clock component Arntl. Nat Med 18: 1768‐1777, 2012.
 454.Pati AK, Chandrawanshi A, Reinberg A. Shift work: Consequences and management. Curr Sci 81: 32‐52, 2001.
 455.Patsouris D, Li PP, Thapar D, Chapman J, Olefsky JM, Neels JG. Ablation of CD11c‐positive cells normalizes insulin sensitivity in obese insulin resistant animals. Cell Metab 8: 301‐309, 2008.
 456.Patsouris D, Neels JG, Fan W, Li PP, Nguyen MT, Olefsky JM. Glucocorticoids and thiazolidinediones interfere with adipocyte‐mediated macrophage chemotaxis and recruitment. J Biol Chem 284: 31223‐31235, 2009.
 457.Pauly JE, Burns ER, Halberg F, Tsai S, Betterton HO, Scheving LE. Meal timing dominates the lighting regimen as a synchronizer of the eosinophil rhythm in mice. Acta Anat (Basel) 93: 60‐68, 1975.
 458.Peckett AJ, Wright DC, Riddell MC. The effects of glucocorticoids on adipose tissue lipid metabolism. Metabolism 60: 1500‐1510, 2011.
 459.Peplonska B, Bukowska A, Sobala W. Association of rotating night shift work with BMI and abdominal obesity among nurses and midwives. PLoS One 10: e0133761, 2015.
 460.Perelis M, Marcheva B, Ramsey KM, Schipma MJ, Hutchison AL, Taguchi A, Peek CB, Hong H, Huang W, Omura C, Allred AL, Bradfield CA, Dinner AR, Barish GD, Bass J. Pancreatic beta cell enhancers regulate rhythmic transcription of genes controlling insulin secretion. Science 350: aac4250, 2015.
 461.Perrin L, Loizides‐Mangold U, Skarupelova S, Pulimeno P, Chanon S, Robert M, Bouzakri K, Modoux C, Roux‐Lombard P, Vidal H, Lefai E, Dibner C. Human skeletal myotubes display a cell‐autonomous circadian clock implicated in basal myokine secretion. Mol Metab 4: 834‐845, 2015.
 462.Petrovic N, Walden TB, Shabalina IG, Timmons JA, Cannon B, Nedergaard J. Chronic peroxisome proliferator‐activated receptor γ (PPARγ) activation of epididymally derived white adipocyte cultures reveals a population of thermogenically competent, UCP1‐containing adipocytes molecularly distinct from classic brown adipocytes. J Biol Chem 285: 7153‐7164, 2010.
 463.Pfannenberg C, Werner MK, Ripkens S, Stef I, Deckert A, Schmadl M, Reimold M, Häring H‐U, Claussen CD, Stefan N. Impact of age on the relationships of brown adipose tissue with sex and adiposity in humans. Diabetes 59: 1789‐1793, 2010.
 464.Pfeffer M, Stehle JH. Ontogeny of a diurnal rhythm in arylalkylamine‐N‐acetyltransferase mRNA in rat pineal gland. Neurosci Lett 248: 163‐166, 1998.
 465.Pietilainen KH, Rog T, Seppanen‐Laakso T, Virtue S, Gopalacharyulu P, Tang J, Rodriguez‐Cuenca S, Maciejewski A, Naukkarinen J, Ruskeepaa AL, Niemela PS, Yetukuri L, Tan CY, Velagapudi V, Castillo S, Nygren H, Hyotylainen T, Rissanen A, Kaprio J, Yki‐Jarvinen H, Vattulainen I, Vidal‐Puig A, Oresic M. Association of lipidome remodeling in the adipocyte membrane with acquired obesity in humans. PLOS Biol 9: e1000623, 2011.
 466.Pittendrigh CS, Daan S. A functional analysis of circadian pacemakers in nocturnal rodents. J Comp Physiol 106: 223‐252, 1976.
 467.Postic C, Girard J. Contribution of de novo fatty acid synthesis to hepatic steatosis and insulin resistance: Lessons from genetically engineered mice. J Clin Invest 118: 829‐838, 2008.
 468.Preitner N, Damiola F, Lopez‐Molina L, Zakany J, Duboule D, Albrecht U, Schibler U. The orphan nuclear receptor REV‐ERBalpha controls circadian transcription within the positive limb of the mammalian circadian oscillator. Cell 110: 251‐260, 2002.
 469.Pritchett D, Reddy AB. Circadian clocks in the hematologic system. J Biol Rhythms 30: 374‐388, 2015.
 470.Prosser RA, Bergeron HE. Leptin phase‐advances the rat suprachiasmatic circadian clock in vitro. Neurosci Lett 336: 139‐142, 2003.
 471.Prunet‐Marcassus B, Desbazeille M, Bros A, Louche K, Delagrange P, Renard P, Casteilla L, Penicaud L. Melatonin reduces body weight gain in Sprague Dawley rats with diet‐induced obesity. Endocrinology 144: 5347‐5352, 2003.
 472.Qi Y, Takahashi N, Hileman SM, Patel HR, Berg AH, Pajvani UB, Scherer PE, Ahima RS. Adiponectin acts in the brain to decrease body weight. Nat Med 10: 524‐529, 2004.
 473.Qiu Y, Nguyen KD, Odegaard JI, Cui X, Tian X, Locksley RM, Palmiter RD, Chawla A. Eosinophils and type 2 cytokine signaling in macrophages orchestrate development of functional beige fat. Cell 157: 1292‐1308, 2014.
 474.Quay WB. Physiological significance of the pineal during adaptation to shifts in photoperiod. Physiol Behav 5: 353‐360, 1970.
 475.Quay WB. Pineal homeostatic regulation of shifts in the circadian activity rhythm during maturation and aging. Trans N Y Acad Sci 34: 239‐254, 1972.
 476.Radogna F, Diederich M, Ghibelli L. Melatonin: A pleiotropic molecule regulating inflammation. Biochem Pharmacol 80: 1844‐1852, 2010.
 477.Ralph MR, Foster RG, Davis FC, Menaker M. Transplanted suprachiasmatic nucleus determines circadian period. Science (New York, NY) 247: 975‐978, 1990.
 478.Ramanathan C, Xu H, Khan SK, Shen Y, Gitis PJ, Welsh DK, Hogenesch JB, Liu AC. Cell type‐specific functions of period genes revealed by novel adipocyte and hepatocyte circadian clock models. PLoS Genet 10: e1004244, 2014.
 479.Ramkhelawon B, Hennessy EJ, Menager M, Ray TD, Sheedy FJ, Hutchison S, Wanschel A, Oldebeken S, Geoffrion M, Spiro W, Miller G, McPherson R, Rayner KJ, Moore KJ. Netrin‐1 promotes adipose tissue macrophage retention and insulin resistance in obesity. Nat Med 20: 377‐384, 2014.
 480.Rao RR, Long JZ, White JP, Svensson KJ, Lou J, Lokurkar I, Jedrychowski MP, Ruas JL, Wrann CD, Lo JC, Camera DM, Lachey J, Gygi S, Seehra J, Hawley JA, Spiegelman BM. Meteorin‐like is a hormone that regulates immune‐adipose interactions to increase Beige fat thermogenesis. Cell 157: 1279‐1291, 2014.
 481.Rasmussen DD, Boldt BM, Wilkinson CW, Yellon SM, Matsumoto AM. Daily melatonin administration at middle age suppresses male rat visceral fat, plasma leptin, and plasma insulin to youthful levels. Endocrinology 140: 1009‐1012, 1999.
 482.Rasmussen MS, Lihn AS, Pedersen SB, Bruun JM, Rasmussen M, Richelsen B. Adiponectin receptors in human adipose tissue: Effects of obesity, weight loss, and fat depots. Obesity 14: 28‐35, 2006.
 483.Rayner DV. The sympathetic nervous system in white adipose tissue regulation. Proc Nutr Soc 60: 357‐364, 2001.
 484.Rebuffe‐Scrive M, Krotkiewski M, Elfverson J, Bjorntorp P. Muscle and adipose tissue morphology and metabolism in Cushing's syndrome. J Clin Endocrinol Metab 67: 1122‐1128, 1988.
 485.Reddy AB, Karp NA, Maywood ES, Sage EA, Deery M, O'Neill JS, Wong GK, Chesham J, Odell M, Lilley KS, Kyriacou CP, Hastings MH. Circadian orchestration of the hepatic proteome. Curr Biol 16: 1107‐1115, 2006.
 486.Reddy AB, Rey G. Metabolic and nontranscriptional circadian clocks: Eukaryotes. Annu Rev Biochem 83: 165‐189, 2014.
 487.Redman JR, Armstrong SM. Reentrainment of rat circadian activity rhythms: Effects of melatonin. J Pineal Res 5: 203‐215, 1988.
 488.Reis BS, Lee K, Fanok MH, Mascaraque C, Amoury M, Cohn LB, Rogoz A, Dallner OS, Moraes‐Vieira PM, Domingos AI, Mucida D. Leptin receptor signaling in T cells is required for Th17 differentiation. J Immunol 194: 5253‐5260, 2015.
 489.Reiter RJ. Changes in pituitary prolactin levels of female hamsters as a function of age, photoperiod, and pinealectomy. Acta Endocrinol (Copenh) 79: 43‐50, 1975.
 490.Reiter RJ. The ageing pineal gland and its physiological consequences. Bioessays 14: 169‐175, 1992.
 491.Reppert SM, Perlow MJ, Ungerleider LG, Mishkin M, Tamarkin L, Orloff DG, Hoffman HJ, Klein DC. Effects of damage to the suprachiasmatic area of the anterior hypothalamus on the daily melatonin and cortisol rhythms in the rhesus monkey. J Neurosci 1: 1414‐1425, 1981.
 492.Reznick J, Preston E, Wilks DL, Beale SM, Turner N, Cooney GJ. Altered feeding differentially regulates circadian rhythms and energy metabolism in liver and muscle of rats. Biochim Biophys Acta 1832: 228‐238, 2013.
 493.Ripperger JA, Schibler U. Rhythmic CLOCK‐BMAL1 binding to multiple E‐box motifs drives circadian Dbp transcription and chromatin transitions. Nat Genet 38: 369‐374, 2006.
 494.Roberts R, Hodson L, Dennis AL, Neville MJ, Humphreys SM, Harnden KE, Micklem KJ, Frayn KN. Markers of de novo lipogenesis in adipose tissue: Associations with small adipocytes and insulin sensitivity in humans. Diabetologia 52: 882‐890, 2009.
 495.Rodeheffer MS, Birsoy K, Friedman JM. Identification of white adipocyte progenitor cells in vivo. Cell 135: 240‐249, 2008.
 496.Rogers NH, Landa A, Park S, Smith RG. Aging leads to a programmed loss of brown adipocytes in murine subcutaneous white adipose tissue. Aging Cell 11: 1074‐1083, 2012.
 497.Roseboom PH, Namboodiri MA, Zimonjic DB, Popescu NC, Rodriguez IR, Gastel JA, Klein DC. Natural melatonin ‘knockdown’ in C57BL/6J mice: Rare mechanism truncates serotonin N‐acetyltransferase. Brain Res Mol Brain Res 63: 189‐197, 1998.
 498.Rosen ED, Hsu C‐H, Wang X, Sakai S, Freeman MW, Gonzalez FJ, Spiegelman BM. C/EBPα induces adipogenesis through PPARγ: A unified pathway. Genes Dev 16: 22‐26, 2002.
 499.Rosenfeld P, Van Eekelen JA, Levine S, De Kloet ER. Ontogeny of the type 2 glucocorticoid receptor in discrete rat brain regions: An immunocytochemical study. Brain Res 470: 119‐127, 1988.
 500.Rossi A, Lord J. Adiponectin inhibits neutrophil phagocytosis of Escherichia coli by inhibition of PKB and ERK 1/2 MAPK signalling and Mac‐1 activation. PLoS One 8: e69108, 2013.
 501.Rossi A, Lord JM. Adiponectin inhibits neutrophil apoptosis via activation of AMP kinase, PKB and ERK 1/2 MAP kinase. Apoptosis 18: 1469‐1480, 2013.
 502.Rossner MJ, Oster H, Wichert SP, Reinecke L, Wehr MC, Reinecke J, Eichele G, Taneja R, Nave KA. Disturbed clockwork resetting in Sharp‐1 and Sharp‐2 single and double mutant mice. PLoS One 3: e2762, 2008.
 503.Rudic RD, McNamara P, Curtis AM, Boston RC, Panda S, Hogenesch JB, Fitzgerald GA. BMAL1 and CLOCK, two essential components of the circadian clock, are involved in glucose homeostasis. PLOS Biol 2: e377, 2004.
 504.Rutter GA, Diggle TA, Denton RM. Regulation of pyruvate dehydrogenase by insulin and polyamines within electropermeabilized fat‐cells and isolated mitochondria. Biochem J 285: 435‐439, 1992.
 505.Rutter J, Reick M, Wu LC, McKnight SL. Regulation of clock and NPAS2 DNA binding by the redox state of NAD cofactors. Science (New York, NY) 293: 510‐514, 2001.
 506.Sack RL, Brandes RW, Kendall AR, Lewy AJ. Entrainment of free‐running circadian rhythms by melatonin in blind people. N Engl J Med 343: 1070‐1077, 2000.
 507.Sack RL, Hughes RJ, Edgar DM, Lewy AJ. Sleep‐promoting effects of melatonin: At what dose, in whom, under what conditions, and by what mechanisms? Sleep 20: 908‐915, 1997.
 508.Sadacca LA, Lamia KA, deLemos AS, Blum B, Weitz CJ. An intrinsic circadian clock of the pancreas is required for normal insulin release and glucose homeostasis in mice. Diabetologia 54: 120‐124, 2011.
 509.Sahar S, Sassone‐Corsi P. The epigenetic language of circadian clocks. Handb Exp Pharmacol 2013: 29‐44.
 510.Saini C, Petrenko V, Pulimeno P, Giovannoni L, Berney T, Hebrok M, Howald C, Dermitzakis ET, Dibner C. A functional circadian clock is required for proper insulin secretion by human pancreatic islet cells. Diabetes Obes Metab 18: 355‐365, 2016.
 511.Saito M, Okamatsu‐Ogura Y, Matsushita M, Watanabe K, Yoneshiro T, Nio‐Kobayashi J, Iwanaga T, Miyagawa M, Kameya T, Nakada K, Kawai Y, Tsujisaki M. High incidence of metabolically active brown adipose tissue in healthy adult humans: Effects of cold exposure and adiposity. Diabetes 58: 1526‐1531, 2009.
 512.Salgado‐Delgado R, Ángeles‐Castellanos M, Buijs MR, Escobar C. Internal desynchronization in a model of night‐work by forced activity in rats. Neuroscience 154: 922‐931, 2008.
 513.Salgado‐Delgado R, Angeles‐Castellanos M, Saderi N, Buijs RM, Escobar C. Food intake during the normal activity phase prevents obesity and circadian desynchrony in a rat model of night work. Endocrinology 151: 1019‐1029, 2010.
 514.Salgado‐Delgado RC, Saderi N, Basualdo MdC, Guerrero‐Vargas NN, Escobar C, Buijs RM. Shift work or food intake during the rest phase promotes metabolic disruption and desynchrony of liver genes in male rats. PLoS One 8: e60052, 2013.
 515.Salio M, Silk JD, Jones EY, Cerundolo V. Biology of CD1‐ and MR1‐restricted T cells. Annu Rev Immunol 32: 323‐366, 2014.
 516.Sanchez‐de‐la‐Torre M, Barcelo A, Pierola J, de la Pena M, Valls J, Barbe F. Impact of obstructive sleep apnea on the 24‐h metabolic hormone profile. Sleep Med 15: 625‐630, 2014.
 517.Sanchez‐Gurmaches J, Guertin DA. Adipocyte lineages: Tracing back the origins of fat. Biochim Biophys Acta 1842: 340‐351, 2014.
 518.Sanna V, Di Giacomo A, La Cava A, Lechler RI, Fontana S, Zappacosta S, Matarese G. Leptin surge precedes onset of autoimmune encephalomyelitis and correlates with development of pathogenic T cell responses. J Clin Invest 111: 241‐250, 2003.
 519.Sato TK, Panda S, Miraglia LJ, Reyes TM, Rudic RD, McNamara P, Naik KA, FitzGerald GA, Kay SA, Hogenesch JB. A functional genomics strategy reveals Rora as a component of the mammalian circadian clock. Neuron 43: 527‐537, 2004.
 520.Sato S, Sakurai T, Ogasawara J, Takahashi M, Izawa T, Imaizumi K, Taniguchi N, Ohno H, Kizaki T. A circadian clock gene, Rev‐erbalpha, modulates the inflammatory function of macrophages through the negative regulation of Ccl2 expression. J Immunol 192: 407‐417, 2014.
 521.Saucillo DC, Gerriets VA, Sheng J, Rathmell JC, Maciver NJ. Leptin metabolically licenses T cells for activation to link nutrition and immunity. J Immunol 192: 136‐144, 2014.
 522.Scheer FaJL, Chan JL, Fargnoli J, Chamberland J, Arampatzi K, Shea SA, Blackburn GL, Mantzoros CS. Day/night variations of high‐molecular‐weight adiponectin and lipocalin‐2 in healthy men studied under fed and fasted conditions. Diabetologia 53: 2401‐2405, 2010.
 523.Scheer FAJL, Hilton MF, Mantzoros CS, Shea SA. Adverse metabolic and cardiovascular consequences of circadian misalignment. Proc Natl Acad Sci U S A 106: 4453‐4458, 2009.
 524.Scheer FaJL, Pirovano C, Van Someren EJW, Buijs RM. Environmental light and suprachiasmatic nucleus interact in the regulation of body temperature. Neuroscience 132: 465‐477, 2005.
 525.Scheiermann C, Kunisaki Y, Frenette PS. Circadian control of the immune system. Nat Rev Immunol 13: 190‐198, 2013.
 526.Scheiermann C, Kunisaki Y, Lucas D, Chow A, Jang JE, Zhang D, Hashimoto D, Merad M, Frenette PS. Adrenergic nerves govern circadian leukocyte recruitment to tissues. Immunity 37: 290‐301, 2012.
 527.Scheller J, Chalaris A, Schmidt‐Arras D, Rose‐John S. The pro‐ and anti‐inflammatory properties of the cytokine interleukin‐6. Biochim Biophys Acta 1813: 878‐888, 2011.
 528.Scherer PE, Williams S, Fogliano M, Baldini G, Lodish HF. A novel serum protein similar to C1q, produced exclusively in adipocytes. J Biol Chem 270: 26746‐26749, 1995.
 529.Schernhammer ES, Laden F, Speizer FE, Willett WC, Hunter DJ, Kawachi I, Fuchs CS, Colditz GA. Night‐shift work and risk of colorectal cancer in the nurses' health study. J Natl Cancer Inst 95: 825‐828, 2003.
 530.Schipper HS, Prakken B, Kalkhoven E, Boes M. Adipose tissue‐resident immune cells: Key players in immunometabolism. Trends Endocrinol Metab 23: 407‐415, 2012.
 531.Schmutz I, Ripperger JA, Baeriswyl‐Aebischer S, Albrecht U. The mammalian clock component PERIOD2 coordinates circadian output by interaction with nuclear receptors. Genes Dev 24: 345‐357, 2010.
 532.Seale P, Bjork B, Yang W, Kajimura S, Chin S, Kuang S, Scimè A, Devarakonda S, Conroe HM, Erdjument‐Bromage H, Tempst P, Rudnicki MA, Beier DR, Spiegelman BM. PRDM16 controls a brown fat/skeletal muscle switch. Nature 454: 961‐967, 2008.
 533.Sennels HP, Jorgensen HL, Hansen AL, Goetze JP, Fahrenkrug J. Diurnal variation of hematology parameters in healthy young males: The Bispebjerg study of diurnal variations. Scand J Clin Lab Invest 71: 532‐541, 2011.
 534.Sethi JK, Hotamisligil GS. The role of TNF alpha in adipocyte metabolism. Semin Cell Dev Biol 10: 19‐29, 1999.
 535.Shabalina Irina G, Petrovic N, de Jong Jasper MA, Kalinovich Anastasia V, Cannon B, Nedergaard J. UCP1 in Brite/Beige adipose tissue mitochondria is functionally thermogenic. Cell Reports 5: 1196‐1203, 2013.
 536.Sharkey KM, Fogg LF, Eastman CI. Effects of melatonin administration on daytime sleep after simulated night shift work. J Sleep Res 10: 181‐192, 2001.
 537.Sharp LZ, Shinoda K, Ohno H, Scheel DW, Tomoda E, Ruiz L, Hu H, Wang L, Pavlova Z, Gilsanz V, Kajimura S. Human BAT possesses molecular signatures that resemble Beige/Brite cells. PLoS One 7: e49452, 2012.
 538.Shea SA, Hilton MF, Orlova C, Ayers RT, Mantzoros CS. Independent circadian and sleep/wake regulation of adipokines and glucose in humans. J Clin Endocrinol Metab 90: 2537‐2544, 2005.
 539.Sherman H, Genzer Y, Cohen R, Chapnik N, Madar Z, Froy O. Timed high‐fat diet resets circadian metabolism and prevents obesity. FASEB J 26: 3493‐3502, 2012.
 540.Shi SQ, Ansari TS, McGuinness OP, Wasserman DH, Johnson CH. Circadian disruption leads to insulin resistance and obesity. Curr Biol 23: 372‐381, 2013.
 541.Shi H, Kokoeva MV, Inouye K, Tzameli I, Yin H, Flier JS. TLR4 links innate immunity and fatty acid‐induced insulin resistance. J Clin Invest 116: 3015‐3025, 2006.
 542.Shi H, Song CK, Giordano A, Cinti S, Bartness TJ. Sensory or sympathetic white adipose tissue denervation differentially affects depot growth and cellularity. Am J Physiol Regul Integr Comp Physiol 288: R1028‐R1037, 2005.
 543.Shigeyoshi Y, Taguchi K, Yamamoto S, Takekida S, Yan L, Tei H, Moriya T, Shibata S, Loros JJ, Dunlap JC, Okamura H. Light‐induced resetting of a mammalian circadian clock is associated with rapid induction of the mPer1 transcript. Cell 91: 1043‐1053, 1997.
 544.Shimba S, Ishii N, Ohta Y, Ohno T, Watabe Y, Hayashi M, Wada T, Aoyagi T, Tezuka M. Brain and muscle Arnt‐like protein‐1 (BMAL1), a component of the molecular clock, regulates adipogenesis. Proc Natl Acad Sci U S A 102: 12071‐12076, 2005.
 545.Shimba S, Ogawa T, Hitosugi S, Ichihashi Y, Nakadaira Y, Kobayashi M, Tezuka M, Kosuge Y, Ishige K, Ito Y, Komiyama K, Okamatsu‐Ogura Y, Kimura K, Saito M. Deficient of a clock gene, brain and muscle Arnt‐like protein‐1 (BMAL1), induces dyslipidemia and ectopic fat formation. PLoS One 6: e25231, 2011.
 546.Shimomura K, Lowrey PL, Vitaterna MH, Buhr ED, Kumar V, Hanna P, Omura C, Izumo M, Low SS, Barrett RK, LaRue SI, Green CB, Takahashi JS. Genetic suppression of the circadian clock mutation by the melatonin biosynthesis pathway. Proc Natl Acad Sci U S A 107: 8399‐8403, 2010.
 547.Shirogane T, Jin J, Ang XL, Harper JW. SCFbeta‐TRCP controls clock‐dependent transcription via casein kinase 1‐dependent degradation of the mammalian period‐1 (Per1) protein. J Biol Chem 280: 26863‐26872, 2005.
 548.Shostak A, Meyer‐Kovac J, Oster H. Circadian regulation of lipid mobilization in white adipose tissues. Diabetes 62: 2195‐2203, 2013.
 549.Shrestha YB, Vaughan CH, Smith BJ, Jr, Song CK, Baro DJ, Bartness TJ. Central melanocortin stimulation increases phosphorylated perilipin A and hormone‐sensitive lipase in adipose tissues. Am J Physiol Regul Integr Comp Physiol 299: R140‐R149, 2010.
 550.Sidossis L, Kajimura S. Brown and beige fat in humans: Thermogenic adipocytes that control energy and glucose homeostasis. J Clin Invest 125: 478‐486, 2015.
 551.Siegl D, Annecke T, Johnson BL, III, Schlag C, Martignoni A, Huber N, Conzen P, Caldwell CC, Tschop J. Obesity‐induced hyperleptinemia improves survival and immune response in a murine model of sepsis. Anesthesiology 121: 98‐114, 2014.
 552.Siepka SM, Yoo S‐H, Park J, Song W, Kumar V, Hu Y, Lee C, Takahashi JS. Circadian mutant Overtime reveals F‐box protein FBXL3 regulation of cryptochrome and period gene expression. Cell 129: 1011‐1023, 2007.
 553.Sinha R, Jastreboff AM. Stress as a common risk factor for obesity and addiction. Biol Psychiatry 73: 827‐835, 2013.
 554.Sinha MK, Ohannesian JP, Heiman ML, Kriauciunas A, Stephens TW, Magosin S, Marco C, Caro JF. Nocturnal rise of leptin in lean, obese, and non‐insulin‐dependent diabetes mellitus subjects. J Clin Invest 97: 1344‐1347, 1996.
 555.Slavin BG, Ballard KW. Morphological studies on the adrenergic innervation of white adipose tissue. Anat Rec 191: 377‐389, 1978.
 556.Solt LA, Wang Y, Banerjee S, Hughes T, Kojetin DJ, Lundasen T, Shin Y, Liu J, Cameron MD, Noel R, Yoo SH, Takahashi JS, Butler AA, Kamenecka TM, Burris TP. Regulation of circadian behaviour and metabolism by synthetic REV‐ERB agonists. Nature 485: 62‐68, 2012.
 557.Son GH, Chung S, Choe HK, Kim HD, Baik SM, Lee H, Lee HW, Choi S, Sun W, Kim H, Cho S, Lee KH, Kim K. Adrenal peripheral clock controls the autonomous circadian rhythm of glucocorticoid by causing rhythmic steroid production. Proc Natl Acad Sci U S A 105: 20970‐20975, 2008.
 558.Sookoian S, Gemma C, Fernández Gianotti T, Burgueño A, Alvarez A, González CD, Pirola CJ. Effects of rotating shift work on biomarkers of metabolic syndrome and inflammation. J Intern Med 261: 285‐292, 2007.
 559.Sotak M, Bryndova J, Ergang P, Vagnerova K, Kvapilova P, Vodicka M, Pacha J, Sumova A. Peripheral circadian clocks are diversely affected by adrenalectomy. Chronobiol Int 33: 520‐529, 2016.
 560.Spalding KL, Arner E, Westermark PO, Bernard S, Buchholz BA, Bergmann O, Blomqvist L, Hoffstedt J, Näslund E, Britton T, Concha H, Hassan M, Rydén M, Frisén J, Arner P. Dynamics of fat cell turnover in humans. Nature 453: 783‐787, 2008.
 561.Spiga F, Walker JJ, Terry JR, Lightman SL. HPA axis‐rhythms. Compr Physiol 4: 1273‐1298, 2014.
 562.Srinivasan V, De Berardis D, Shillcutt SD, Brzezinski A. Role of melatonin in mood disorders and the antidepressant effects of agomelatine. Expert Opin Investig Drugs 21: 1503‐1522, 2012.
 563.Srinivasan V, Pandi‐Perumal SR, Brzezinski A, Bhatnagar KP, Cardinali DP. Melatonin, immune function and cancer. Recent Pat Endocr Metab Immune Drug Discov 5: 109‐123, 2011.
 564.Stephan FK, Zucker I. Circadian rhythms in drinking behavior and locomotor activity of rats are eliminated by hypothalamic lesions. Proc Natl Acad Sci U S A 69: 1583‐1586, 1972.
 565.Stokkan KA, Yamazaki S, Tei H, Sakaki Y, Menaker M. Entrainment of the circadian clock in the liver by feeding. Science (New York, NY) 291: 490‐493, 2001.
 566.Storch KF, Lipan O, Leykin I, Viswanathan N, Davis FC, Wong WH, Weitz CJ. Extensive and divergent circadian gene expression in liver and heart. Nature 417: 78‐83, 2002.
 567.Strawford A, Antelo F, Christiansen M, Hellerstein MK. Adipose tissue triglyceride turnover, de novo lipogenesis, and cell proliferation in humans measured with 2H2O. Am J Physiol Endocrinol Metab 286: E577‐588, 2004.
 568.Sukumaran S, Dubois DC, Jusko WJ, Almon RR. Glucocorticoid effects on adiponectin expression. Vitam Horm 90: 163‐186, 2012.
 569.Sukumaran S, Xue B, Jusko WJ, Dubois DC, Almon RR. Circadian variations in gene expression in rat abdominal adipose tissue and relationship to physiology. Physiol Genomics 42A: 141‐152, 2010.
 570.Surjit M, Ganti KP, Mukherji A, Ye T, Hua G, Metzger D, Li M, Chambon P. Widespread negative response elements mediate direct repression by agonist‐liganded glucocorticoid receptor. Cell 145: 224‐241, 2011.
 571.Suwazono Y, Dochi M, Sakata K, Okubo Y, Oishi M, Tanaka K, Kobayashi E, Kido T, Nogawa K. A longitudinal study on the effect of shift work on weight gain in male Japanese workers. Obesity 16: 1887‐1893, 2008.
 572.Suzuki M, Shimomura Y, Satoh Y. Diurnal changes in lipolytic activity of isolated fat cells and their increased responsiveness to epinephrine and theophylline with meal feeding in rats. J Nutr Sci Vitaminol (Tokyo) 29: 399‐411, 1983.
 573.Symonds ME, Pope M, Budge H. The ontogeny of brown adipose tissue. Annu Rev Nutr 35: 295‐320, 2015.
 574.Szewczyk‐Golec K, Wozniak A, Reiter RJ. Inter‐relationships of the chronobiotic, melatonin, with leptin and adiponectin: Implications for obesity. J Pineal Res 59: 277‐291, 2015.
 575.Tahara Y, Otsuka M, Fuse Y, Hirao A, Shibata S. Refeeding after fasting elicits insulin‐dependent regulation of Per2 and Rev‐erbalpha with shifts in the liver clock. J Biol Rhythms 26: 230‐240, 2011.
 576.Taheri S, Lin L, Austin D, Young T, Mignot E. Short sleep duration is associated with reduced leptin, elevated ghrelin, and increased body mass index. PLoS Med 1: e62, 2004.
 577.Takahashi K, Mizuarai S, Araki H, Mashiko S, Ishihara A, Kanatani A, Itadani H, Kotani H. Adiposity elevates plasma MCP‐1 levels leading to the increased CD11b‐positive monocytes in mice. J Biol Chem 278: 46654‐46660, 2003.
 578.Takeda M, Ueki S, Kato H, Konno Y, Chihara M, Itoga M, Kobayashi Y, Moritoki Y, Ito W, Kayaba H, Chihara J. Obesity and eosinophilic inflammation: Does leptin play a role. Int Arch Allergy Immunol 158(Suppl 1): 87‐91, 2012.
 579.Takekida S, Yan L, Maywood ES, Hastings MH, Okamura H. Differential adrenergic regulation of the circadian expression of the clock genes Period1 and Period2 in the rat pineal gland. Eur J Neurosci 12: 4557‐4561, 2000.
 580.Talukdar S, Oh da Y, Bandyopadhyay G, Li D, Xu J, McNelis J, Lu M, Li P, Yan Q, Zhu Y, Ofrecio J, Lin M, Brenner MB, Olefsky JM. Neutrophils mediate insulin resistance in mice fed a high‐fat diet through secreted elastase. Nat Med 18: 1407‐1412, 2012.
 581.Tan DX, Manchester LC, Fuentes‐Broto L, Paredes SD, Reiter RJ. Significance and application of melatonin in the regulation of brown adipose tissue metabolism: Relation to human obesity. Obes Rev 12: 167‐188, 2011.
 582.Tang L, Okamoto S, Shiuchi T, Toda C, Takagi K, Sato T, Saito K, Yokota S, Minokoshi Y. Sympathetic nerve activity maintains an anti‐inflammatory state in adipose tissue in male mice by inhibiting TNF‐alpha gene expression in macrophages. Endocrinology 156: 3680‐3694, 2015.
 583.Tang W, Zeve D, Suh JM, Bosnakovski D, Kyba M, Hammer RE, Tallquist MD, Graff JM. White fat progenitor cells reside in the adipose vasculature. Science 322: 583‐586, 2008.
 584.Tchkonia T, Giorgadze N, Pirtskhalava T, Thomou T, DePonte M, Koo A, Forse RA, Chinnappan D, Martin‐Ruiz C, Zglinicki T, Kirkland JL. Fat depot–specific characteristics are retained in strains derived from single human preadipocytes. Diabetes 55: 2571‐2578, 2006.
 585.Teclemariam‐Mesbah R, Ter Horst GJ, Postema F, Wortel J, Buijs RM. Anatomical demonstration of the suprachiasmatic nucleus‐pineal pathway. J Comp Neurol 406: 171‐182, 1999.
 586.Teixeira L, Marques RM, Ferreirinha P, Bezerra F, Melo J, Moreira J, Pinto A, Correia A, Ferreira PG, Vilanova M. Enrichment of IFN‐gamma producing cells in different murine adipose tissue depots upon infection with an apicomplexan parasite. Sci Rep 6: 23475, 2016.
 587.Therrien F, Drapeau V, Lalonde J, Lupien SJ, Beaulieu S, Tremblay A, Richard D. Awakening cortisol response in lean, obese, and reduced obese individuals: Effect of gender and fat distribution. Obesity (Silver Spring) 15: 377‐385, 2007.
 588.Thonberg H, Fredriksson JM, Nedergaard J, Cannon B. A novel pathway for adrenergic stimulation of cAMP‐response‐element‐binding protein (CREB) phosphorylation: Mediation via alpha1‐adrenoceptors and protein kinase C activation. Biochem J 364: 73‐79, 2002.
 589.Tian Z, Sun R, Wei H, Gao B. Impaired natural killer (NK) cell activity in leptin receptor deficient mice: Leptin as a critical regulator in NK cell development and activation. Biochem Biophys Res Commun 298: 297‐302, 2002.
 590.Timmons JA, Wennmalm K, Larsson O, Walden TB, Lassmann T, Petrovic N, Hamilton DL, Gimeno RE, Wahlestedt C, Baar K, Nedergaard J, Cannon B. Myogenic gene expression signature establishes that brown and white adipocytes originate from distinct cell lineages. PNAS 104: 4401‐4406, 2007.
 591.To H, Irie S, Tomonari M, Watanabe Y, Kitahara T, Sasaki H. Therapeutic index of methotrexate depends on circadian cycling of tumour necrosis factor‐alpha in collagen‐induced arthritic rats and mice. J Pharm Pharmacol 61: 1333‐1338, 2009.
 592.Torres‐Farfan C, Mendez N, Abarzua‐Catalan L, Vilches N, Valenzuela GJ, Seron‐Ferre M. A circadian clock entrained by melatonin is ticking in the rat fetal adrenal. Endocrinology 152: 1891‐1900, 2011.
 593.Torres‐Farfan C, Richter HG, Rojas‐Garcia P, Vergara M, Forcelledo ML, Valladares LE, Torrealba F, Valenzuela GJ, Seron‐Ferre M. mt1 Melatonin receptor in the primate adrenal gland: Inhibition of adrenocorticotropin‐stimulated cortisol production by melatonin. J Clin Endocrinol Metab 88: 450‐458, 2003.
 594.Torres‐Farfan C, Seron‐Ferre M, Dinet V, Korf HW. Immunocytochemical demonstration of day/night changes of clock gene protein levels in the murine adrenal gland: Differences between melatonin‐proficient (C3H) and melatonin‐deficient (C57BL) mice. J Pineal Res 40: 64‐70, 2006.
 595.Torsvall L, Akerstedt T, Gillander K, Knutsson A. Sleep on the night shift: 24‐hour EEG monitoring of spontaneous sleep/wake behavior. Psychophysiology 26: 352‐358, 1989.
 596.Tosini G, Menaker M. Multioscillatory circadian organization in a vertebrate, iguana iguana. J Neurosci 18: 1105‐1114, 1998.
 597.Travnickova‐Bendova Z, Cermakian N, Reppert SM, Sassone‐Corsi P. Bimodal regulation of mPeriod promoters by CREB‐dependent signaling and CLOCK/BMAL1 activity. Proc Natl Acad Sci U S A 99: 7728‐7733, 2002.
 598.Triqueneaux G, Thenot S, Kakizawa T, Antoch MP, Safi R, Takahashi JS, Delaunay F, Laudet V. The orphan receptor Rev‐erbα gene is a target of the circadian clock pacemaker. J Mol Endocrinol 33: 585‐608, 2004.
 599.Trujillo ME, Scherer PE. Adipose tissue‐derived factors: Impact on health and disease. Endocr Rev 27: 762‐778, 2006.
 600.Tsang AH, Sanchez‐Moreno C, Bode B, Rossner MJ, Garaulet M, Oster H. Tissue‐specific interaction of Per1/2 and Dec2 in the regulation of fibroblast circadian rhythms. J Biol Rhythms 27: 478‐489, 2012.
 601.Tschop J, Nogueiras R, Haas‐Lockie S, Kasten KR, Castaneda TR, Huber N, Guanciale K, Perez‐Tilve D, Habegger K, Ottaway N, Woods SC, Oldfield B, Clarke I, Chua S, Jr, Farooqi IS, O'Rahilly S, Caldwell CC, Tschop MH. CNS leptin action modulates immune response and survival in sepsis. J Neurosci 30: 6036‐6047, 2010.
 602.Tsiotra PC, Boutati E, Dimitriadis G, Raptis SA. High insulin and leptin increase resistin and inflammatory cytokine production from human mononuclear cells. Biomed Res Int 2013: 487081, 2013.
 603.Turek FW, Joshu C, Kohsaka A, Lin E, Ivanova G, McDearmon E, Laposky A, Losee‐Olson S, Easton A, Jensen DR, Eckel RH, Takahashi JS, Bass J. Obesity and metabolic syndrome in circadian clock mutant mice. Science 308: 1043‐1045, 2005.
 604.Unfried C, Burbach G, Korf H‐W, Von Gall C. Melatonin receptor 1‐dependent gene expression in the mouse pars tuberalis as revealed by cDNA microarray analysis and in situ hybridization. J Pineal Res 48: 148‐156, 2010.
 605.Uysal KT, Wiesbrock SM, Marino MW, Hotamisligil GS. Protection from obesity‐induced insulin resistance in mice lacking TNF‐alpha function. Nature 389: 610‐614, 1997.
 606.van Amelsvoort LG, Schouten EG, Kok FJ. Duration of shiftwork related to body mass index and waist to hip ratio. Int J Obes Relat Metab Disord 23: 973‐978, 1999.
 607.Van Den Heuvel CJ, Reid KJ, Dawson D. Effect of atenolol on nocturnal sleep and temperature in young men: Reversal by pharmacological doses of melatonin. Physiol Behav 61: 795‐802, 1997.
 608.van Eekelen JA, Bohn MC, de Kloet ER. Postnatal ontogeny of mineralocorticoid and glucocorticoid receptor gene expression in regions of the rat tel‐ and diencephalon. Brain Res Dev Brain Res 61: 33‐43, 1991.
 609.van Marken Lichtenbelt WD, Vanhommerig JW, Smulders NM, Drossaerts JMAFL, Kemerink GJ, Bouvy ND, Schrauwen P, Teule GJJ. Cold‐activated brown adipose tissue in healthy men. New Engl J Med 360: 1500‐1508, 2009.
 610.Vasanthakumar A, Moro K, Xin A, Liao Y, Gloury R, Kawamoto S, Fagarasan S, Mielke LA, Afshar‐Sterle S, Masters SL, Nakae S, Saito H, Wentworth JM, Li P, Liao W, Leonard WJ, Smyth GK, Shi W, Nutt SL, Koyasu S, Kallies A. The transcriptional regulators IRF4, BATF and IL‐33 orchestrate development and maintenance of adipose tissue‐resident regulatory T cells. Nat Immunol 16: 276‐285, 2015.
 611.Vaughan MK, Richardson BA, Johnson LY, Petterborg LJ, Powanda MC, Reiter RJ, Smith I. Natural and synthetic analogues of melatonin and related compounds. II. Effects on plasma thyroid hormones and cholesterol levels in male Syrian hamsters. J Neural Transm 56: 279‐291, 1983.
 612.Vgontzas AN, Bixler EO, Lin HM, Prolo P, Trakada G, Chrousos GP. IL‐6 and its circadian secretion in humans. Neuroimmunomodulation 12: 131‐140, 2005.
 613.Virtanen KA, Lidell ME, Orava J, Heglind M, Westergren R, Niemi T, Taittonen M, Laine J, Savisto N‐J, Enerbäck S, Nuutila P. Functional brown adipose tissue in healthy adults. New Engl J Med 360: 1518‐1525, 2009.
 614.Vivien‐Roels B, Malan A, Rettori MC, Delagrange P, Jeanniot JP, Pevet P. Daily variations in pineal melatonin concentrations in inbred and outbred mice. J Biol Rhythms 13: 403‐409, 1998.
 615.Vollmers C, Gill S, DiTacchio L, Pulivarthy SR, Le HD, Panda S. Time of feeding and the intrinsic circadian clock drive rhythms in hepatic gene expression. Proc Natl Acad Sci U S A 106: 21453‐21458, 2009.
 616.Wade GN, Bartness TJ. Seasonal obesity in Syrian hamsters: Effects of age, diet, photoperiod, and melatonin. Am J Physiol 247: R328‐334, 1984.
 617.Wang JC, Gray NE, Kuo T, Harris CA. Regulation of triglyceride metabolism by glucocorticoid receptor. Cell Biosci 2: 19, 2012.
 618.Wang J, Lazar MA. Bifunctional role of Rev‐erbalpha in adipocyte differentiation. Mol Cell Biol 28: 2213‐2220, 2008.
 619.Wang X, Reece SP, Van Scott MR, Brown JM. A circadian clock in murine bone marrow‐derived mast cells modulates IgE‐dependent activation in vitro. Brain Behav Immun 25: 127‐134, 2011.
 620.Wang ZV, Scherer PE. Adiponectin, the past two decades. J Mol Cell Biol 8: 93‐100, 2016.
 621.Wang Y, Wang X, Lau WB, Yuan Y, Booth D, Li J‐J, Scalia R, Preston K, Gao E, Koch W, Ma X‐L. Adiponectin inhibits tumor necrosis factor‐α–induced vascular inflammatory response via caveolin‐mediated ceramidase recruitment and activation. Circul Res 114: 792‐805, 2014.
 622.Wang Q, Zhang M, Xu M, Gu W, Xi Y, Qi L, Li B, Wang W. Brown adipose tissue activation is inversely related to central obesity and metabolic parameters in adult human. PLoS One 10: e0123795, 2015.
 623.Wardlaw SL, Burant CF, Klein S, Meece K, White A, Kasten T, Lucey BP, Bateman RJ. Continuous 24‐hour leptin, proopiomelanocortin, and amino acid measurements in human cerebrospinal fluid: Correlations with plasma leptin, soluble leptin receptor, and amino acid levels. J Clin Endocrinol Metab 99: 2540‐2548, 2014.
 624.Wei E, Ben Ali Y, Lyon J, Wang H, Nelson R, Dolinsky VW, Dyck JR, Mitchell G, Korbutt GS, Lehner R. Loss of TGH/Ces3 in mice decreases blood lipids, improves glucose tolerance, and increases energy expenditure. Cell Metab 11: 183‐193, 2010.
 625.Weisberg SP, McCann D, Desai M, Rosenbaum M, Leibel RL, Ferrante AW, Jr. Obesity is associated with macrophage accumulation in adipose tissue. J Clin Invest 112: 1796‐1808, 2003.
 626.Wellen KE, Hotamisligil GS. Inflammation, stress, and diabetes. J Clin Invest 115: 1111‐1119, 2005.
 627.Wensveen FM, Jelencic V, Valentic S, Sestan M, Wensveen TT, Theurich S, Glasner A, Mendrila D, Stimac D, Wunderlich FT, Bruning JC, Mandelboim O, Polic B. NK cells link obesity‐induced adipose stress to inflammation and insulin resistance. Nat Immunol 16: 376‐385, 2015.
 628.Wensveen FM, Valentic S, Sestan M, Turk Wensveen T, Polic B. The “Big Bang” in obese fat: Events initiating obesity‐induced adipose tissue inflammation. Eur J Immunol 45: 2446‐2456, 2015.
 629.Westgate EJ, Cheng Y, Reilly DF, Price TS, Walisser JA, Bradfield CA, FitzGerald GA. Genetic components of the circadian clock regulate thrombogenesis in vivo. Circulation 117: 2087‐2095, 2008.
 630.Weyer C, Funahashi T, Tanaka S, Hotta K, Matsuzawa Y, Pratley RE, Tataranni PA. Hypoadiponectinemia in obesity and type 2 diabetes: Close association with insulin resistance and hyperinsulinemia. J Clin Endocrinol Metab 86: 1930‐1935, 2001.
 631.Wilk S, Jenke A, Stehr J, Yang CA, Bauer S, Goldner K, Kotsch K, Volk HD, Poller W, Schultheiss HP, Skurk C, Scheibenbogen C. Adiponectin modulates NK‐cell function. Eur J Immunol 43: 1024‐1033, 2013.
 632.Williams BH, Berdanier CD. Effects of diet composition and adrenalectomy on the lipogenic responses of rats to starvation‐refeeding. J Nutr 112: 534‐541, 1982.
 633.Winer S, Chan Y, Paltser G, Truong D, Tsui H, Bahrami J, Dorfman R, Wang Y, Zielenski J, Mastronardi F, Maezawa Y, Drucker DJ, Engleman E, Winer D, Dosch HM. Normalization of obesity‐associated insulin resistance through immunotherapy. Nat Med 15: 921‐929, 2009.
 634.Winer S, Paltser G, Chan Y, Tsui H, Engleman E, Winer D, Dosch HM. Obesity predisposes to Th17 bias. Eur J Immunol 39: 2629‐2635, 2009.
 635.Winer DA, Winer S, Shen L, Wadia PP, Yantha J, Paltser G, Tsui H, Wu P, Davidson MG, Alonso MN, Leong HX, Glassford A, Caimol M, Kenkel JA, Tedder TF, McLaughlin T, Miklos DB, Dosch HM, Engleman EG. B cells promote insulin resistance through modulation of T cells and production of pathogenic IgG antibodies. Nat Med 17: 610‐617, 2011.
 636.Wiper‐Bergeron N, Salem HA, Tomlinson JJ, Wu D, Hache RJ. Glucocorticoid‐stimulated preadipocyte differentiation is mediated through acetylation of C/EBPbeta by GCN5. Proc Natl Acad Sci U S A 104: 2703‐2708, 2007.
 637.Wolden‐Hanson T, Mitton DR, McCants RL, Yellon SM, Wilkinson CW, Matsumoto AM, Rasmussen DD. Daily melatonin administration to middle‐aged male rats suppresses body weight, intraabdominal adiposity, and plasma leptin and insulin independent of food intake and total body fat. Endocrinology 141: 487‐497, 2000.
 638.Wolf AM, Wolf D, Rumpold H, Enrich B, Tilg H. Adiponectin induces the anti‐inflammatory cytokines IL‐10 and IL‐1RA in human leukocytes. Biochem Biophys Res Commun 323: 630‐635, 2004.
 639.Wong SH, Walker JA, Jolin HE, Drynan LF, Hams E, Camelo A, Barlow JL, Neill DR, Panova V, Koch U, Radtke F, Hardman CS, Hwang YY, Fallon PG, McKenzie AN. Transcription factor RORalpha is critical for nuocyte development. Nat Immunol 13: 229‐236, 2012.
 640.Wrann CD, Laue T, Hubner L, Kuhlmann S, Jacobs R, Goudeva L, Nave H. Short‐term and long‐term leptin exposure differentially affect human natural killer cell immune functions. Am J Physiol Endocrinol Metab 302: E108‐116, 2012.
 641.Wronska A, Kmiec Z. Structural and biochemical characteristics of various white adipose tissue depots. Acta Physiologica 205: 194‐208, 2012.
 642.Wu D, Molofsky AB, Liang HE, Ricardo‐Gonzalez RR, Jouihan HA, Bando JK, Chawla A, Locksley RM. Eosinophils sustain adipose alternatively activated macrophages associated with glucose homeostasis. Science 332: 243‐247, 2011.
 643.Wu Z, Rosen ED, Brun R, Hauser S, Adelmant G, Troy AE, McKeon C, Darlington GJ, Spiegelman BM. Cross‐regulation of C/EBPα and PPARγ controls the transcriptional pathway of adipogenesis and insulin sensitivity. Mol Cell 3: 151‐158, 1999.
 644.Wu X, Zvonic S, Floyd ZE, Kilroy G, Goh BC, Hernandez TL, Eckel RH, Mynatt RL, Gimble JM. Induction of circadian gene expression in human subcutaneous adipose‐derived stem cells. Obesity (Silver Spring) 15: 2560‐2570, 2007.
 645.Wulster‐Radcliffe MC, Ajuwon KM, Wang J, Christian JA, Spurlock ME. Adiponectin differentially regulates cytokines in porcine macrophages. Biochem Biophys Res Commun 316: 924‐929, 2004.
 646.Xu H, Barnes GT, Yang Q, Tan G, Yang D, Chou CJ, Sole J, Nichols A, Ross JS, Tartaglia LA, Chen H. Chronic inflammation in fat plays a crucial role in the development of obesity‐related insulin resistance. J Clin Invest 112: 1821‐1830, 2003.
 647.Xu X, Grijalva A, Skowronski A, van Eijk M, Serlie MJ, Ferrante AW, Jr. Obesity activates a program of lysosomal‐dependent lipid metabolism in adipose tissue macrophages independently of classic activation. Cell Metab 18: 816‐830, 2013.
 648.Xu H, Li H, Woo SL, Kim SM, Shende VR, Neuendorff N, Guo X, Guo T, Qi T, Pei Y, Zhao Y, Hu X, Zhao J, Chen L, Chen L, Ji JY, Alaniz RC, Earnest DJ, Wu C. Myeloid cell‐specific disruption of Period1 and Period2 exacerbates diet‐induced inflammation and insulin resistance. J Biol Chem 289: 16374‐16388, 2014.
 649.Yamaguchi S, Isejima H, Matsuo T, Okura R, Yagita K, Kobayashi M, Okamura H. Synchronization of cellular clocks in the suprachiasmatic nucleus. Science (New York, NY) 302: 1408‐1412, 2003.
 650.Yamaguchi S, Mitsui S, Yan L, Yagita K, Miyake S, Okamura H. Role of DBP in the circadian oscillatory mechanism. Mol Cell Biol 20: 4773‐4781, 2000.
 651.Yamajuku D, Inagaki T, Haruma T, Okubo S, Kataoka Y, Kobayashi S, Ikegami K, Laurent T, Kojima T, Noutomi K, Hashimoto S, Oda H. Real‐time monitoring in three‐dimensional hepatocytes reveals that insulin acts as a synchronizer for liver clock. Sci Rep 2: 439, 2012.
 652.Yamamoto Y, Gesta S, Lee KY, Tran TT, Saadatirad P, Kahn CR. Adipose depots possess unique developmental gene signatures. Obesity 18: 872‐878, 2010.
 653.Yamanaka Y, Suzuki Y, Todo T, Honma K, Honma S. Loss of circadian rhythm and light‐induced suppression of pineal melatonin levels in Cry1 and Cry2 double‐deficient mice. Genes Cells 15: 1063‐1071, 2010.
 654.Yamauchi T, Kamon J, Waki H, Terauchi Y, Kubota N, Hara K, Mori Y, Ide T, Murakami K, Tsuboyama‐Kasaoka N, Ezaki O, Akanuma Y, Gavrilova O, Vinson C, Reitman ML, Kagechika H, Shudo K, Yoda M, Nakano Y, Tobe K, Nagai R, Kimura S, Tomita M, Froguel P, Kadowaki T. The fat‐derived hormone adiponectin reverses insulin resistance associated with both lipoatrophy and obesity. Nat Med 7: 941‐946, 2001.
 655.Yamazaki S, Numano R, Abe M, Hida A, Takahashi R, Ueda M, Block GD, Sakaki Y, Menaker M, Tei H. Resetting central and peripheral circadian oscillators in transgenic rats. Science (New York, NY) 288: 682‐685, 2000.
 656.Yamazaki S, Yoshikawa T, Biscoe EW, Numano R, Gallaspy LM, Soulsby S, Papadimas E, Pezuk P, Doyle SE, Tei H, Sakaki Y, Block GD, Menaker M. Ontogeny of circadian organization in the rat. J Biol Rhythms 24: 55‐63, 2009.
 657.Yang Y‐K, Chen M, Clements R, Abrams G, Aprahamian C, Harmon C. Human mesenteric adipose tissue plays unique role versus subcutaneous and omental Fat in obesity related diabetes. Cell Physiol Biochem 22: 531‐538, 2008.
 658.Yang S, Liu A, Weidenhammer A, Cooksey RC, McClain D, Kim MK, Aguilera G, Abel ED, Chung JH. The role of mPer2 clock gene in glucocorticoid and feeding rhythms. Endocrinology 150: 2153‐2160, 2009.
 659.Yang XO, Pappu BP, Nurieva R, Akimzhanov A, Kang HS, Chung Y, Ma L, Shah B, Panopoulos AD, Schluns KS, Watowich SS, Tian Q, Jetten AM, Dong C. T helper 17 lineage differentiation is programmed by orphan nuclear receptors ROR alpha and ROR gamma. Immunity 28: 29‐39, 2008.
 660.Yasumoto Y, Hashimoto C, Nakao R, Yamazaki H, Hiroyama H, Nemoto T, Yamamoto S, Sakurai M, Oike H, Wada N. Short‐term feeding at the wrong time is sufficient to desynchronize peripheral clocks and induce obesity with hyperphagia, physical inactivity and metabolic disorders in mice. Metabolism 65: 714‐727, 2016.
 661.Yi CX, van der Vliet J, Dai J, Yin G, Ru L, Buijs RM. Ventromedial arcuate nucleus communicates peripheral metabolic information to the suprachiasmatic nucleus. Endocrinology 147: 283‐294, 2006.
 662.Yoda‐Murakami M, Taniguchi M, Takahashi K, Kawamata S, Saito K, Choi‐Miura N‐H, Tomita M. Change in expression of GBP28/adiponectin in carbon tetrachloride‐administrated mouse liver. Biochem Biophys Res Commun 285: 372‐377, 2001.
 663.Yokota T, Oritani K, Takahashi I, Ishikawa J, Matsuyama A, Ouchi N, Kihara S, Funahashi T, Tenner AJ, Tomiyama Y, Matsuzawa Y. Adiponectin, a new member of the family of soluble defense collagens, negatively regulates the growth of myelomonocytic progenitors and the functions of macrophages. Blood 96: 1723‐1732, 2000.
 664.Yoo S‐H, Ko CH, Lowrey PL, Buhr ED, Song E‐j, Chang S, Yoo OJ, Yamazaki S, Lee C, Takahashi JS. A noncanonical E‐box enhancer drives mouse Period2 circadian oscillations in vivo. Proc Natl Acad Sci U S A 102: 2608‐2613, 2005.
 665.Yoo S‐H, Yamazaki S, Lowrey PL, Shimomura K, Ko CH, Buhr ED, Siepka SM, Hong H‐K, Oh WJ, Yoo OJ, Menaker M, Takahashi JS. PERIOD2::LUCIFERASE real‐time reporting of circadian dynamics reveals persistent circadian oscillations in mouse peripheral tissues. Proc Natl Acad Sci U S A 101: 5339‐5346, 2004.
 666.Young ME. The circadian clock within the heart: Potential influence on myocardial gene expression, metabolism, and function. Am J Physiol Heart Circ Physiol 290: H1‐16, 2006.
 667.Yu X, Rollins D, Ruhn KA, Stubblefield JJ, Green CB, Kashiwada M, Rothman PB, Takahashi JS, Hooper LV. TH17 cell differentiation is regulated by the circadian clock. Science 342: 727‐730, 2013.
 668.Zalatan F, Krause JA, Blask DE. Inhibition of isoproterenol‐induced lipolysis in rat inguinal adipocytes in vitro by physiological melatonin via a receptor‐mediated mechanism. Endocrinology 142: 3783‐3790, 2001.
 669.Zhang R, Lahens NF, Ballance HI, Hughes ME, Hogenesch JB. A circadian gene expression atlas in mammals: Implications for biology and medicine. PNAS 111: 16219‐16224, 2014.
 670.Zhang Y, Proenca R, Maffei M, Barone M, Leopold L, Friedman JM. Positional cloning of the mouse obese gene and its human homologue. Nature 372: 425‐432, 1994.
 671.Zhang X, Zhang G, Zhang H, Karin M, Bai H, Cai D. Hypothalamic IKKβ/NF‐κB and ER stress link overnutrition to energy imbalance and obesity. Cell 135: 61‐73, 2008.
 672.Zhao Y, Zhang Y, Zhou M, Wang S, Hua Z, Zhang J. Loss of mPer2 increases plasma insulin levels by enhanced glucose‐stimulated insulin secretion and impaired insulin clearance in mice. FEBS Lett 586: 1306‐1311, 2012.
 673.Zheng B, Larkin DW, Albrecht U, Sun ZS, Sage M, Eichele G, Lee CC, Bradley A. The mPer2 gene encodes a functional component of the mammalian circadian clock. Nature 400: 169‐173, 1999.
 674.Zhou Y, Yu X, Chen H, Sjoberg S, Roux J, Zhang L, Ivoulsou AH, Bensaid F, Liu CL, Liu J, Tordjman J, Clement K, Lee CH, Hotamisligil GS, Libby P, Shi GP. Leptin deficiency shifts mast cells toward anti‐inflammatory actions and protects mice from obesity and diabetes by polarizing M2 macrophages. Cell Metab 22: 1045‐1058, 2015.
 675.Zingaretti MC, Crosta F, Vitali A, Guerrieri M, Frontini A, Cannon B, Nedergaard J, Cinti S. The presence of UCP1 demonstrates that metabolically active adipose tissue in the neck of adult humans truly represents brown adipose tissue. FASEB J 23: 3113‐3120, 2009.
 676.Zuniga LA, Shen WJ, Joyce‐Shaikh B, Pyatnova EA, Richards AG, Thom C, Andrade SM, Cua DJ, Kraemer FB, Butcher EC. IL‐17 regulates adipogenesis, glucose homeostasis, and obesity. J Immunol 185: 6947‐6959, 2010.
 677.Zvonic S, Ptitsyn AA, Conrad SA, Scott LK, Floyd ZE, Kilroy G, Wu X, Goh BC, Mynatt RL, Gimble JM. Characterization of peripheral circadian clocks in adipose tissues. Diabetes 55: 962‐970, 2006.
 678.Zylka MJ, Shearman LP, Weaver DR, Reppert SM. Three period homologs in mammals: Differential light responses in the suprachiasmatic circadian clock and oscillating transcripts outside of brain. Neuron 20: 1103‐1110, 1998.

Contact Editor

Submit a note to the editor about this article by filling in the form below.

* Required Field

How to Cite

Jana‐Thabea Kiehn, Anthony H. Tsang, Isabel Heyde, Brinja Leinweber, Isa Kolbe, Alexei Leliavski, Henrik Oster. Circadian Rhythms in Adipose Tissue Physiology. Compr Physiol 2017, 7: 383-427. doi: 10.1002/cphy.c160017