Comprehensive Physiology Wiley Online Library

Overview of the Muscle Cytoskeleton

Full Article on Wiley Online Library



ABSTRACT

Cardiac and skeletal striated muscles are intricately designed machines responsible for muscle contraction. Coordination of the basic contractile unit, the sarcomere, and the complex cytoskeletal networks are critical for contractile activity. The sarcomere is comprised of precisely organized individual filament systems that include thin (actin), thick (myosin), titin, and nebulin. Connecting the sarcomere to other organelles (e.g., mitochondria and nucleus) and serving as the scaffold to maintain cellular integrity are the intermediate filaments. The costamere, on the other hand, tethers the sarcomere to the cell membrane. Unique structures like the intercalated disc in cardiac muscle and the myotendinous junction in skeletal muscle help synchronize and transmit force. Intense investigation has been done on many of the proteins that make up these cytoskeletal assemblies. Yet the details of their function and how they interconnect have just started to be elucidated. A vast number of human myopathies are contributed to mutations in muscle proteins; thus understanding their basic function provides a mechanistic understanding of muscle disorders. In this review, we highlight the components of striated muscle with respect to their interactions, signaling pathways, functions, and connections to disease. © 2017 American Physiological Society. Compr Physiol 7:891‐944, 2017.

Comprehensive Physiology offers downloadable PowerPoint presentations of figures for non-profit, educational use, provided the content is not modified and full credit is given to the author and publication.

Download a PowerPoint presentation of all images


Figure 1. Figure 1. (A) Schematic representation of a cardiac sarcomere (lacking nebulin) illustrating the three major filament systems: actin‐based thin filaments (gray), myosin‐based thick filaments (blue), and titin (pink). The lateral boundaries of the sarcomere are the Z‐discs. The I‐bands surrounds the Z‐disc and is a region where thin filaments are not superimposed by thick filaments. The A‐band region contains thin filaments and thick filaments. The M‐band falls within the H‐zone, where thick filaments do not interdigitate with thick filaments. (B) Electron micrograph of skeletal muscle sarcomere. (C) Enlarged view of the M‐band region. The M‐band is composed of a series of three to five electron‐dense M‐lines: M6’, M4’, M1, M4, and M6. [Part A modified, with permission, from (255); Parts B and C modified, with permission, from (9).]
Figure 2. Figure 2. Z‐discs define the lateral edge of the sarcomere, and also participate in numerous cellular processes including signal transduction and protein turnover. Abbreviations: FAK, focal adhesion kinase; γ‐filamin, also known as Filamin C; FHL, four‐and‐a‐half LIM domains protein; ERK, extracellular signal‐regulated kinase; MLP, muscle LIM protein; ALP, actin‐associated LIM protein; PKCϵ, protein kinase C epsilon; MuRF, muscle‐ring‐finger protein; ENH, enigma‐homolog protein; NFAT, nuclear factor of activated T‐cells; MAFbx, muscle atrophy F‐box (striated muscle‐specific E3 ubiquitin ligase) protein; GATA4, GATA sequence‐binding zinc‐finger transcription factor 4. [Fig. modified, with permission, from (175).]
Figure 3. Figure 3. Schematic representation of the intermediate filament (IF) scaffold in striated muscle. The IF scaffold, predominantly composed of desmin (yellow), links the entire contractile apparatus to the sarcolemma and other organelles, such as the nucleus, mitochondria, lysosomes, and potentially the sarcoplasmic reticulum (SR). Desmin interacts with many other proteins including synemin, paranemin, syncoilin, and myospryn. Keratins (K8/K19) link the contractile apparatus to the sarcolemma and interact with the dystrophin‐dystroglycan (DG) complex. Overall, the IF scaffold helps maintain the integrity of muscle cytoarchitecture and provide mechanical strength to the cell. Abbreviations: MLP, striated muscle‐specific LIM protein; SG, sarcoglycan. [Fig. modified, with permission, from (88).]
Figure 4. Figure 4. MLP (muscle LIM protein) is a functionally diverse, multicompartment protein. MLP interacts with β1 spectrin, zyxin, and integrin‐linked kinase (ILK) in costameres and plays a role in force transmission. MLP also binds to α‐actinin to help stabilize the Z‐disc. At the intercalated discs, MLP binds to N‐RAP. MLP acetylated by HDAC4 [histone acetyltransferases (HATs) and deacetylases] and PCAF (P300/CBP‐associated factor) enhance calcium sensitivity and increase contractile function. In addition, MLP and cofilin form a complex and regulate actin dynamics. MLP is an important stretch sensor. The MLP/titin/telethonin (T‐Cap) complex plays a key role in stretch‐induced signaling. MLP translocates to the nucleus and interacts with transcription factors, which regulate myogenesis [e.g., MyoD, myogenin and MRF4 (muscle‐specific regulatory factor 4)]. [Fig. reprinted, with permission, from (84).]
Figure 5. Figure 5. Schematic representation of the titin domain structure and localization of its binding partners in striated muscle. Titin is a huge protein that spans half a sarcomere from the Z‐disc to the M‐line region. The N‐terminal region of titin inserts into the Z‐disc, and many of the interaction in this region contribute to mechanosensing, structural integrity, and force transmission. I‐band titin contains elastic elements, which play a critical role in passive tension. The A‐band region binds to myosin and MyBPc, linking the myosin‐based thick filaments to titin. M‐band titin is important to both structural support and signaling. Abbreviations: sAnk1, small‐ankyrin‐1 isoform; FHL1 and 2, four‐and‐a‐half‐LIM‐domain protein‐1 and ‐2; PKG and PKA, protein kinase‐G and ‐A; MARPs, muscle ankyrin repeat proteins; CARP, cardiac ankyrin repeat protein; ankrd‐2/Arpp, ankyrin repeat domain 2; DARP, diabetes‐related ankyrin repeat protein; S100A1, S100 calcium‐binding protein A1; MyBPC, myosin‐binding protein‐C; MURF‐1 and MURF‐2, muscle‐specific RING‐finger protein‐1 and ‐2; FN3, fibronectin type 3 like domain; Ig‐like, immunoglobulin‐like domain; N2‐bus, N2‐B‐unique sequence; PEVK, titin region rich in proline (P), glutamate (E), valine (V), and lysine (K). The following titin‐binding proteins were not discussed in this review: HSP27, heat shock protein‐27; Smyd2, SET and MYND domain‐containing protein‐2; mHSP90, methylated heat shock protein‐90; Nbr1, neighbor of BRCA1 gene‐1; Bin‐1, bridging integrator‐1 [see (105) for discussion of these proteins]. [Fig. reprinted, with permission, from (105).]
Figure 6. Figure 6. Schematic representation of nebulin domain structure and localization of binding partners in striated muscle. Nebulin is a large protein that interacts with a multitude of sarcomeric proteins including: capZ, titin, myopalladin, α‐actinin, and desmin at its C‐terminus in the Z‐disc; tropomyosin, troponins, myosin, calmodulin, actin, and myosin‐binding protein C (MyBPC) along its 22 seven‐module super‐repeats (blue); and tropomodulin at its N‐terminus, though this interaction is likely transient. These protein interactions have given rise to two similar yet distinct functional models—as a molecular ruler and as an actin stabilizer. Archvillin is not discussed in this review. [Fig. modified, with permission, from (330).]
Figure 7. Figure 7. Schematic drawing of thin and thick filament interactions in striated muscle highlighting the major myosin regulatory proteins. Muscle contraction is dependent on the interactions between myosin‐based thick filament via the head domain and actin‐based thin filament. Thick filament regulatory proteins—myosin essential light chain (ELC), myosin regulatory light chain‐2 (MLC2v), and myosin‐binding protein C (MyBP‐C)—control muscle contraction. MyBP‐C interactions with actin, the myosin rod domain, MLC2v, and titin are depicted. The dashed circle is a magnified view highlighting (i) MyBP‐C interaction with MLC2v located in the neck domain of myosin, (ii) the actin and MgATP‐binding sites located within the myosin head domain, and (iii) MLC2v phosphorylation (Ser14/15) site important in promoting actin‐myosin interactions. Abbreviations: Tm, tropomyosin; TnT, Troponin T; TnI, Troponin I; TnC, Troponin C. [Fig. modified, with permission, from (633).]
Figure 8. Figure 8. The sarcomeric M‐band contains components important for mechanosensing, proteosomal degradation, actin dynamics, metabolism, and signal transduction. Myomesin is a key structural protein of the M‐band. MURFs (muscle‐specific ring finger protein) are multifunctional proteins that ubiquitinate certain myofibrillar proteins, play a key role in muscle atrophy and regulate hypertrophic signaling. Obscurin interacts with ankyrin and anchors the sarcomere to the sarcoplasmic reticulum; ankyrin and obscurin also sequester PP2A (protein phosphatase 2A) to the M‐band. FHLs (four‐and‐a‐half LIM proteins) bind to titin's N2B spring region and activate downstream signaling pathways, thus serving as an important mechanosensor that triggers hypertrophy in response to strain. FHL2 also docks important metabolic enzymes such as the metabolic enzymes muscle‐specific M‐CK (creatine kinase), AK (adenylate kinase), and PFK (phosphofructokinase). M‐CK anchors the glycolytic enzyme β/α‐enolase to the M‐band. The muscle isoform of AMPD (adenosine monophosphate deaminase) works with M‐CK and AK to monitor local ATP levels. Other proteins identified at the M‐band, but not discussed in this review include SmyD1, SCPL‐1 (Caenorhabditis elegans), UNC‐82 (C. elegans), p62, rhoA, CRIK, and active ROCK1. [Fig. reprinted, with permission, from (277).]
Figure 9. Figure 9. (Right) Longitudinal view of myosin (blue), myomesin (red) and titin (green). The M‐band is composed of a series of electron‐dense M‐lines: M4, M1, and M4’ (see Fig. 1C for an electron micrograph of M‐lines). Myomesin family members form antiparallel homodimers through interactions called M‐bridges between the C‐terminal immunoglobulin domain (labeled 13), and bind to myosin at the N‐terminal domain. (Left) Cross‐sectional view highlighting myomesin forming an antiparallel dimer. Myomesin acts as a thick filament cross‐linking protein. [Fig. reprinted, with permission, from (9).]
Figure 10. Figure 10. Tropomyosin positions on the surface of F‐actin in the presence (green) and absence (red) of myosin. Ten actin‐pairs (alternately colored blue and cyan) are shown with the pointed end facing up. Two tropomyosin α‐helical chains form coiled‐coils that interact with the positively charged groove of actin filaments and form dimers that span seven actin monomers. Tropomyosin regulates interactions between actin‐based thin filaments and myosin‐based thick filaments to control cross‐bridge cycling. Depicted in ribbon representation are tropomyosin coiled‐coils in either in the troponin and myosin‐free (red), or the myosin head (S1)‐decorated (green). Tropomyosin residue 125 is shown in black as a reference point, highlighting the relative sliding between the positions. Scale equals 50Å. Actin is numbered ‐1 to 8. [Fig. reprinted, with permission, from (523).]
Figure 11. Figure 11. Ribbon structure of globular actin in the ADP‐bound state. Actin is an asymmetrical protein composed of four subdomains (subdomain 1 shown in purple, subdomain 2 shown in green, subdomain 3 shown in red, and subdomain 4 shown in yellow) connected via two “hinge” strands. The representation is oriented with the pointed (minus end) at the top and the barbed (plus end) at the bottom. ADP is shown in stick representation bound in the cleft. Shown in cyan in stick representation is tetramethylrhodamine‐5‐maleimide (TMR), a fluorescent probe that inhibits actin polymerization. [Fig. reprinted, with permission, from (534).]
Figure 12. Figure 12. CapZ dynamics at the barbed end of F‐actin. (A) CapZ has two subunits: α1 and β1 each with a tentacle that binds one terminal actin. Tightly capped F‐actin has a low actin off rate. (B) Following mechanical stimulation (to simulate exercise), the β tentacle undergoes a structural change via post‐translation modification (PTM) including phosphorylation on serine‐204 and acetylation on lysine‐199. The β tentacle shifts off the terminal actin, which increases actin monomer exchange. Regulation of actin dynamics at the barbed end may also play a key role in both skeletal and cardiac hypertrophy. [Fig. modified, with permission, from (381).]
Figure 13. Figure 13. Tropomyosin and the troponin complex regulate striated muscle contraction. Each tropomyosin (orange chain) molecule is associated with one troponin complex [TnI (inhibitory‐blocks myosin binding to actin; green), TnC (binds calcium; red barbells), and TnT (binds tropomyosin; blue)] and seven actin monomers. In the relaxed state tropomyosin blocks the myosin‐binding site on actin. TnC is weakly bound to TnI; TnI binds to actin (TnI‐actin binding) and inhibits myosin from binding to actin. Following the release of calcium (Ca2+), calcium binds to TnC and a patch of residues in the N‐terminal domain of TnC is exposed and the interaction of TnC with TnI is enhanced. TnI then dissociates its inhibitory region from actin, and forms a complex with TnT and tropomyosin. Following the conformational change in the troponin complex, tropomyosin shifts and the myosin head binds to actin. [Fig. reprinted, with permission, from (642).]
Figure 14. Figure 14. Schematic drawing of the cardiac cross‐bridge cycle. Thin‐filaments are shown with actin, tropomyosin (Tm) and the troponin (Tn) complex with the Ca2+‐binding unit (cTnC) in pink, the Tm‐binding unit (cTnT) in blue, and the inhibitory unit (cTnI) in light green. Thick‐filament cross‐bridges (XB) are shown with myosin heavy chain (MHC; figure illustrating one MHC) in red, myosin light chains (LC) in green, along with myosin‐binding protein C (MyBP‐C) in purple and titin in orange. Cross‐bridges are initially in a rest state (1) where they are weakly bound and do not generate force. Cross‐bridges enter a transition state (2) determined by the on (kCa) and off rates (kCa‐1) for Ca2+ exchange with cTnC. During this transition state, cross‐bridges are weakly bound (kXB‐1) and do not generate force. In the active state (3), the cTnT‐dependent shift of Tm from its blocking position on actin filaments allows strong cross‐bridge binding (kXB) and induces cooperative activation of the thin filament (e.g., increase Ca2+ affinity of cTnC; kCa‐XB‐1). In the active state (4) with loss of bound Ca2+, the cooperative mechanisms allow a population of cross‐bridges to remain active and force generating (kCa‐XB). Mechanical feedback termed shortening‐induced deactivation (kvel) will transition active cross‐bridges back to the resting state. [Fig. modified, with permission, from (265).]
Figure 15. Figure 15. Myosin‐binding proteins (MyBP). (A) Schematic drawing of MyBP domain organization. MyBPs are composed of a series of immunoglobulin (Igl‐like in pink) and fibronectin type III (Fn3 in green) repeat domains. Domains termed C1 through C10 and a 105‐residue linker between C1 and C2 termed the MyBP‐C motif (in blue) make up the core structure of MyBP‐C isoforms. Cardiac MyBP‐C has the addition of an eight IgI‐like domain termed C0, a unique amino acid sequence—LAGGGRRIS—insertion (in light blue) in the MyBP‐C motif, and a 28 amino acid insertion (in dark pink) in the C5 domain. Slow skeletal MyBP‐C differs from the fast isoform with an extended Pro/Ala‐rich region at the N‐terminus. MyBP‐H is the smallest isoform with four domains similar to C7 through C10 of MyBP‐C and a unique Pro/Ala‐rich linker (in black) region. (B) Example electron micrograph of frog skeletal muscle showing MyBP‐C transverse stripes located in the C‐Zone. [Part A modified, with permission, from (167); Part B modified, with permission, from (406).]
Figure 16. Figure 16. Schematic representation of costameric proteins, which bidirectionally link the extracellular matrix to the sarcomere. There are two major components of the costamere: the vinculin‐talin‐integrin complex and the dystrophin glycoprotein complex (DGC). The DGC includes dystrophin, sarcoglycans, α/β dystroglycans, dystrobrevin and syntrophin. Additional integrin‐associated proteins include melusin, FAK (focal adhesion kinase), ILK (integrin‐linked kinase, PINCH (particularly interesting new cysteine‐histidine‐rich protein), and kindlin. [Fig. reprinted, with permission, from (292).]
Figure 17. Figure 17. Schematic representation of the dystrophin associated protein complex in muscle. The three subcomplexes are shown: the dystroglycan subcomplex (blue), the dystrobrevin:syntrophin subcomplex (red) and the sarcoglycan:sarcospan subcomplex (green). Also indicated are the muscular dystrophies caused due to defects or deficiencies of proteins within the dystrophin associated protein complex. Abbreviations: BMD, Becker muscular dystrophy; CMD1C‐1D, congenital muscular dystrophy type 1C‐1D; DMD, Duchenne muscular dystrophy; FCMD, Fukuyama; CMD, LGMD2C‐2F, limb‐girdle muscular dystrophy type 2C‐2F; LAMA2, laminin alpha 2 chain or merosin‐deficient muscular dystrophy; MEB, muscle‐eye‐brain disease; WWS, Walker–Warburg syndrome. [Fig. reprinted, with permission, from (583).]
Figure 18. Figure 18. Structural organization and molecular components of the intercalated disc (ICD). Low‐magnification transmission electron micrograph (A) and schematic drawing of cardiac myocardium (B) exhibit characteristic step‐like structures of intercalated discs (A, arrowheads) formed through syncytial interconnection of rod‐shaped cardiomyocytes. (C and D) Higher magnification view of areas enclosed in A and B, respectively, show three specialized substructures of intercalated discs—fascia adherens (adherens junction), desmosome (desmosomal junction, arrowhead), and gap junction. The ends of gap junction here connect to two adherens junctions (arrows). (D) Molecular components of ICD substructures not only serve as mechanical and electrochemical coupling platforms between adjacent cardiomyocytes, but also interact with major cytoskeletal filament systems (e.g., actin and microtubule cytoskeletons). The following proteins are not discussed in texts: p120, p150, EB1, and protein 4.3). [Parts A and C reprinted, with permission, from (626); B and D reprinted, with permission, from (38).]
Figure 19. Figure 19. Nuclear lamins. (A) Schematic drawing of nuclear lamins and their nearby protein interactions. Nuclear lamins localizes underneath the inner nuclear membrane where they directly bind lamina‐associated proteins (e.g., emerin, nesprin‐1, and nesprin‐2). Nesprin‐1 and emerin both interact with nuclear actin and mediate the cortical actin cytoskeleton assembly at the nuclear envelope. The integral membrane protein MAN1 allows lamins to associate with transcription factors (e.g., SMAD), while SUN1/2 allows lamins to associate with microtubules and anchors nesprin‐2 to the nuclear envelope. Interactions with barrier‐to‐autointegration factor (BAF) and lamin B receptor (LBR), as well as directly to chromatin, allows lamins to influence chromatin organization and gene expression. (B) Electron micrograph of the nuclear lamina composed of lamin intermediate filaments and associated proteins that extend between the nuclear pore complexes (NPCs). [Parts A and B modified, with permission, from (80).]


Figure 1. (A) Schematic representation of a cardiac sarcomere (lacking nebulin) illustrating the three major filament systems: actin‐based thin filaments (gray), myosin‐based thick filaments (blue), and titin (pink). The lateral boundaries of the sarcomere are the Z‐discs. The I‐bands surrounds the Z‐disc and is a region where thin filaments are not superimposed by thick filaments. The A‐band region contains thin filaments and thick filaments. The M‐band falls within the H‐zone, where thick filaments do not interdigitate with thick filaments. (B) Electron micrograph of skeletal muscle sarcomere. (C) Enlarged view of the M‐band region. The M‐band is composed of a series of three to five electron‐dense M‐lines: M6’, M4’, M1, M4, and M6. [Part A modified, with permission, from (255); Parts B and C modified, with permission, from (9).]


Figure 2. Z‐discs define the lateral edge of the sarcomere, and also participate in numerous cellular processes including signal transduction and protein turnover. Abbreviations: FAK, focal adhesion kinase; γ‐filamin, also known as Filamin C; FHL, four‐and‐a‐half LIM domains protein; ERK, extracellular signal‐regulated kinase; MLP, muscle LIM protein; ALP, actin‐associated LIM protein; PKCϵ, protein kinase C epsilon; MuRF, muscle‐ring‐finger protein; ENH, enigma‐homolog protein; NFAT, nuclear factor of activated T‐cells; MAFbx, muscle atrophy F‐box (striated muscle‐specific E3 ubiquitin ligase) protein; GATA4, GATA sequence‐binding zinc‐finger transcription factor 4. [Fig. modified, with permission, from (175).]


Figure 3. Schematic representation of the intermediate filament (IF) scaffold in striated muscle. The IF scaffold, predominantly composed of desmin (yellow), links the entire contractile apparatus to the sarcolemma and other organelles, such as the nucleus, mitochondria, lysosomes, and potentially the sarcoplasmic reticulum (SR). Desmin interacts with many other proteins including synemin, paranemin, syncoilin, and myospryn. Keratins (K8/K19) link the contractile apparatus to the sarcolemma and interact with the dystrophin‐dystroglycan (DG) complex. Overall, the IF scaffold helps maintain the integrity of muscle cytoarchitecture and provide mechanical strength to the cell. Abbreviations: MLP, striated muscle‐specific LIM protein; SG, sarcoglycan. [Fig. modified, with permission, from (88).]


Figure 4. MLP (muscle LIM protein) is a functionally diverse, multicompartment protein. MLP interacts with β1 spectrin, zyxin, and integrin‐linked kinase (ILK) in costameres and plays a role in force transmission. MLP also binds to α‐actinin to help stabilize the Z‐disc. At the intercalated discs, MLP binds to N‐RAP. MLP acetylated by HDAC4 [histone acetyltransferases (HATs) and deacetylases] and PCAF (P300/CBP‐associated factor) enhance calcium sensitivity and increase contractile function. In addition, MLP and cofilin form a complex and regulate actin dynamics. MLP is an important stretch sensor. The MLP/titin/telethonin (T‐Cap) complex plays a key role in stretch‐induced signaling. MLP translocates to the nucleus and interacts with transcription factors, which regulate myogenesis [e.g., MyoD, myogenin and MRF4 (muscle‐specific regulatory factor 4)]. [Fig. reprinted, with permission, from (84).]


Figure 5. Schematic representation of the titin domain structure and localization of its binding partners in striated muscle. Titin is a huge protein that spans half a sarcomere from the Z‐disc to the M‐line region. The N‐terminal region of titin inserts into the Z‐disc, and many of the interaction in this region contribute to mechanosensing, structural integrity, and force transmission. I‐band titin contains elastic elements, which play a critical role in passive tension. The A‐band region binds to myosin and MyBPc, linking the myosin‐based thick filaments to titin. M‐band titin is important to both structural support and signaling. Abbreviations: sAnk1, small‐ankyrin‐1 isoform; FHL1 and 2, four‐and‐a‐half‐LIM‐domain protein‐1 and ‐2; PKG and PKA, protein kinase‐G and ‐A; MARPs, muscle ankyrin repeat proteins; CARP, cardiac ankyrin repeat protein; ankrd‐2/Arpp, ankyrin repeat domain 2; DARP, diabetes‐related ankyrin repeat protein; S100A1, S100 calcium‐binding protein A1; MyBPC, myosin‐binding protein‐C; MURF‐1 and MURF‐2, muscle‐specific RING‐finger protein‐1 and ‐2; FN3, fibronectin type 3 like domain; Ig‐like, immunoglobulin‐like domain; N2‐bus, N2‐B‐unique sequence; PEVK, titin region rich in proline (P), glutamate (E), valine (V), and lysine (K). The following titin‐binding proteins were not discussed in this review: HSP27, heat shock protein‐27; Smyd2, SET and MYND domain‐containing protein‐2; mHSP90, methylated heat shock protein‐90; Nbr1, neighbor of BRCA1 gene‐1; Bin‐1, bridging integrator‐1 [see (105) for discussion of these proteins]. [Fig. reprinted, with permission, from (105).]


Figure 6. Schematic representation of nebulin domain structure and localization of binding partners in striated muscle. Nebulin is a large protein that interacts with a multitude of sarcomeric proteins including: capZ, titin, myopalladin, α‐actinin, and desmin at its C‐terminus in the Z‐disc; tropomyosin, troponins, myosin, calmodulin, actin, and myosin‐binding protein C (MyBPC) along its 22 seven‐module super‐repeats (blue); and tropomodulin at its N‐terminus, though this interaction is likely transient. These protein interactions have given rise to two similar yet distinct functional models—as a molecular ruler and as an actin stabilizer. Archvillin is not discussed in this review. [Fig. modified, with permission, from (330).]


Figure 7. Schematic drawing of thin and thick filament interactions in striated muscle highlighting the major myosin regulatory proteins. Muscle contraction is dependent on the interactions between myosin‐based thick filament via the head domain and actin‐based thin filament. Thick filament regulatory proteins—myosin essential light chain (ELC), myosin regulatory light chain‐2 (MLC2v), and myosin‐binding protein C (MyBP‐C)—control muscle contraction. MyBP‐C interactions with actin, the myosin rod domain, MLC2v, and titin are depicted. The dashed circle is a magnified view highlighting (i) MyBP‐C interaction with MLC2v located in the neck domain of myosin, (ii) the actin and MgATP‐binding sites located within the myosin head domain, and (iii) MLC2v phosphorylation (Ser14/15) site important in promoting actin‐myosin interactions. Abbreviations: Tm, tropomyosin; TnT, Troponin T; TnI, Troponin I; TnC, Troponin C. [Fig. modified, with permission, from (633).]


Figure 8. The sarcomeric M‐band contains components important for mechanosensing, proteosomal degradation, actin dynamics, metabolism, and signal transduction. Myomesin is a key structural protein of the M‐band. MURFs (muscle‐specific ring finger protein) are multifunctional proteins that ubiquitinate certain myofibrillar proteins, play a key role in muscle atrophy and regulate hypertrophic signaling. Obscurin interacts with ankyrin and anchors the sarcomere to the sarcoplasmic reticulum; ankyrin and obscurin also sequester PP2A (protein phosphatase 2A) to the M‐band. FHLs (four‐and‐a‐half LIM proteins) bind to titin's N2B spring region and activate downstream signaling pathways, thus serving as an important mechanosensor that triggers hypertrophy in response to strain. FHL2 also docks important metabolic enzymes such as the metabolic enzymes muscle‐specific M‐CK (creatine kinase), AK (adenylate kinase), and PFK (phosphofructokinase). M‐CK anchors the glycolytic enzyme β/α‐enolase to the M‐band. The muscle isoform of AMPD (adenosine monophosphate deaminase) works with M‐CK and AK to monitor local ATP levels. Other proteins identified at the M‐band, but not discussed in this review include SmyD1, SCPL‐1 (Caenorhabditis elegans), UNC‐82 (C. elegans), p62, rhoA, CRIK, and active ROCK1. [Fig. reprinted, with permission, from (277).]


Figure 9. (Right) Longitudinal view of myosin (blue), myomesin (red) and titin (green). The M‐band is composed of a series of electron‐dense M‐lines: M4, M1, and M4’ (see Fig. 1C for an electron micrograph of M‐lines). Myomesin family members form antiparallel homodimers through interactions called M‐bridges between the C‐terminal immunoglobulin domain (labeled 13), and bind to myosin at the N‐terminal domain. (Left) Cross‐sectional view highlighting myomesin forming an antiparallel dimer. Myomesin acts as a thick filament cross‐linking protein. [Fig. reprinted, with permission, from (9).]


Figure 10. Tropomyosin positions on the surface of F‐actin in the presence (green) and absence (red) of myosin. Ten actin‐pairs (alternately colored blue and cyan) are shown with the pointed end facing up. Two tropomyosin α‐helical chains form coiled‐coils that interact with the positively charged groove of actin filaments and form dimers that span seven actin monomers. Tropomyosin regulates interactions between actin‐based thin filaments and myosin‐based thick filaments to control cross‐bridge cycling. Depicted in ribbon representation are tropomyosin coiled‐coils in either in the troponin and myosin‐free (red), or the myosin head (S1)‐decorated (green). Tropomyosin residue 125 is shown in black as a reference point, highlighting the relative sliding between the positions. Scale equals 50Å. Actin is numbered ‐1 to 8. [Fig. reprinted, with permission, from (523).]


Figure 11. Ribbon structure of globular actin in the ADP‐bound state. Actin is an asymmetrical protein composed of four subdomains (subdomain 1 shown in purple, subdomain 2 shown in green, subdomain 3 shown in red, and subdomain 4 shown in yellow) connected via two “hinge” strands. The representation is oriented with the pointed (minus end) at the top and the barbed (plus end) at the bottom. ADP is shown in stick representation bound in the cleft. Shown in cyan in stick representation is tetramethylrhodamine‐5‐maleimide (TMR), a fluorescent probe that inhibits actin polymerization. [Fig. reprinted, with permission, from (534).]


Figure 12. CapZ dynamics at the barbed end of F‐actin. (A) CapZ has two subunits: α1 and β1 each with a tentacle that binds one terminal actin. Tightly capped F‐actin has a low actin off rate. (B) Following mechanical stimulation (to simulate exercise), the β tentacle undergoes a structural change via post‐translation modification (PTM) including phosphorylation on serine‐204 and acetylation on lysine‐199. The β tentacle shifts off the terminal actin, which increases actin monomer exchange. Regulation of actin dynamics at the barbed end may also play a key role in both skeletal and cardiac hypertrophy. [Fig. modified, with permission, from (381).]


Figure 13. Tropomyosin and the troponin complex regulate striated muscle contraction. Each tropomyosin (orange chain) molecule is associated with one troponin complex [TnI (inhibitory‐blocks myosin binding to actin; green), TnC (binds calcium; red barbells), and TnT (binds tropomyosin; blue)] and seven actin monomers. In the relaxed state tropomyosin blocks the myosin‐binding site on actin. TnC is weakly bound to TnI; TnI binds to actin (TnI‐actin binding) and inhibits myosin from binding to actin. Following the release of calcium (Ca2+), calcium binds to TnC and a patch of residues in the N‐terminal domain of TnC is exposed and the interaction of TnC with TnI is enhanced. TnI then dissociates its inhibitory region from actin, and forms a complex with TnT and tropomyosin. Following the conformational change in the troponin complex, tropomyosin shifts and the myosin head binds to actin. [Fig. reprinted, with permission, from (642).]


Figure 14. Schematic drawing of the cardiac cross‐bridge cycle. Thin‐filaments are shown with actin, tropomyosin (Tm) and the troponin (Tn) complex with the Ca2+‐binding unit (cTnC) in pink, the Tm‐binding unit (cTnT) in blue, and the inhibitory unit (cTnI) in light green. Thick‐filament cross‐bridges (XB) are shown with myosin heavy chain (MHC; figure illustrating one MHC) in red, myosin light chains (LC) in green, along with myosin‐binding protein C (MyBP‐C) in purple and titin in orange. Cross‐bridges are initially in a rest state (1) where they are weakly bound and do not generate force. Cross‐bridges enter a transition state (2) determined by the on (kCa) and off rates (kCa‐1) for Ca2+ exchange with cTnC. During this transition state, cross‐bridges are weakly bound (kXB‐1) and do not generate force. In the active state (3), the cTnT‐dependent shift of Tm from its blocking position on actin filaments allows strong cross‐bridge binding (kXB) and induces cooperative activation of the thin filament (e.g., increase Ca2+ affinity of cTnC; kCa‐XB‐1). In the active state (4) with loss of bound Ca2+, the cooperative mechanisms allow a population of cross‐bridges to remain active and force generating (kCa‐XB). Mechanical feedback termed shortening‐induced deactivation (kvel) will transition active cross‐bridges back to the resting state. [Fig. modified, with permission, from (265).]


Figure 15. Myosin‐binding proteins (MyBP). (A) Schematic drawing of MyBP domain organization. MyBPs are composed of a series of immunoglobulin (Igl‐like in pink) and fibronectin type III (Fn3 in green) repeat domains. Domains termed C1 through C10 and a 105‐residue linker between C1 and C2 termed the MyBP‐C motif (in blue) make up the core structure of MyBP‐C isoforms. Cardiac MyBP‐C has the addition of an eight IgI‐like domain termed C0, a unique amino acid sequence—LAGGGRRIS—insertion (in light blue) in the MyBP‐C motif, and a 28 amino acid insertion (in dark pink) in the C5 domain. Slow skeletal MyBP‐C differs from the fast isoform with an extended Pro/Ala‐rich region at the N‐terminus. MyBP‐H is the smallest isoform with four domains similar to C7 through C10 of MyBP‐C and a unique Pro/Ala‐rich linker (in black) region. (B) Example electron micrograph of frog skeletal muscle showing MyBP‐C transverse stripes located in the C‐Zone. [Part A modified, with permission, from (167); Part B modified, with permission, from (406).]


Figure 16. Schematic representation of costameric proteins, which bidirectionally link the extracellular matrix to the sarcomere. There are two major components of the costamere: the vinculin‐talin‐integrin complex and the dystrophin glycoprotein complex (DGC). The DGC includes dystrophin, sarcoglycans, α/β dystroglycans, dystrobrevin and syntrophin. Additional integrin‐associated proteins include melusin, FAK (focal adhesion kinase), ILK (integrin‐linked kinase, PINCH (particularly interesting new cysteine‐histidine‐rich protein), and kindlin. [Fig. reprinted, with permission, from (292).]


Figure 17. Schematic representation of the dystrophin associated protein complex in muscle. The three subcomplexes are shown: the dystroglycan subcomplex (blue), the dystrobrevin:syntrophin subcomplex (red) and the sarcoglycan:sarcospan subcomplex (green). Also indicated are the muscular dystrophies caused due to defects or deficiencies of proteins within the dystrophin associated protein complex. Abbreviations: BMD, Becker muscular dystrophy; CMD1C‐1D, congenital muscular dystrophy type 1C‐1D; DMD, Duchenne muscular dystrophy; FCMD, Fukuyama; CMD, LGMD2C‐2F, limb‐girdle muscular dystrophy type 2C‐2F; LAMA2, laminin alpha 2 chain or merosin‐deficient muscular dystrophy; MEB, muscle‐eye‐brain disease; WWS, Walker–Warburg syndrome. [Fig. reprinted, with permission, from (583).]


Figure 18. Structural organization and molecular components of the intercalated disc (ICD). Low‐magnification transmission electron micrograph (A) and schematic drawing of cardiac myocardium (B) exhibit characteristic step‐like structures of intercalated discs (A, arrowheads) formed through syncytial interconnection of rod‐shaped cardiomyocytes. (C and D) Higher magnification view of areas enclosed in A and B, respectively, show three specialized substructures of intercalated discs—fascia adherens (adherens junction), desmosome (desmosomal junction, arrowhead), and gap junction. The ends of gap junction here connect to two adherens junctions (arrows). (D) Molecular components of ICD substructures not only serve as mechanical and electrochemical coupling platforms between adjacent cardiomyocytes, but also interact with major cytoskeletal filament systems (e.g., actin and microtubule cytoskeletons). The following proteins are not discussed in texts: p120, p150, EB1, and protein 4.3). [Parts A and C reprinted, with permission, from (626); B and D reprinted, with permission, from (38).]


Figure 19. Nuclear lamins. (A) Schematic drawing of nuclear lamins and their nearby protein interactions. Nuclear lamins localizes underneath the inner nuclear membrane where they directly bind lamina‐associated proteins (e.g., emerin, nesprin‐1, and nesprin‐2). Nesprin‐1 and emerin both interact with nuclear actin and mediate the cortical actin cytoskeleton assembly at the nuclear envelope. The integral membrane protein MAN1 allows lamins to associate with transcription factors (e.g., SMAD), while SUN1/2 allows lamins to associate with microtubules and anchors nesprin‐2 to the nuclear envelope. Interactions with barrier‐to‐autointegration factor (BAF) and lamin B receptor (LBR), as well as directly to chromatin, allows lamins to influence chromatin organization and gene expression. (B) Electron micrograph of the nuclear lamina composed of lamin intermediate filaments and associated proteins that extend between the nuclear pore complexes (NPCs). [Parts A and B modified, with permission, from (80).]
References
 1.Ackermann MA, Kontrogianni‐Konstantopoulos A. Myosin binding protein‐C slow is a novel substrate for protein kinase A (PKA) and C (PKC) in skeletal muscle. J Proteome Res 10: 4547‐4555, 2011. 10.1021/pr200355w.
 2.Ackermann MA, Kontrogianni‐Konstantopoulos A. Myosin binding protein‐C slow: An intricate subfamily of proteins. J Biomed Biotechnol 2010: 1‐10, 2010. 10.1155/2010/652065.
 3.Ackermann MA, Kontrogianni‐Konstantopoulos A. Myosin binding protein‐C: A regulator of actomyosin interaction in striated muscle. Biomed Res Int 2011: 1‐9, 2011. 10.1155/2011/636403.
 4.Ackermann MA, Ward CW, Gurnett C, Kontrogianni‐Konstantopoulos A. Myosin binding protein‐c slow phosphorylation is altered in Duchenne dystrophy and arthrogryposis myopathy in fast‐twitch skeletal muscles. Sci Rep 19: 13235‐13250, 2015. 10.1038/srep13235.
 5.Adams ME, Butler MH, Dwyer TM, Peters MF, Murnane AA, Froehner SC. Two forms of mouse syntrophin, a 58 kd dystrophin‐associated protein, differ in primary structure and tissue distribution. Neuron 11: 531‐540, 1993. 10.1016/0896‐6273(93)90157‐M.
 6.Adams ME, Dwyer TM, Dowler LL, White RA, Froehner SC. Mouse α1‐ and β2‐syntrophin gene structure, chromosome localization, and homology with a discs large domain. J Biol Chem 270: 25859‐25865, 1995. 10.1074/jbc.270.43.25859.
 7.Agarkova I, Auerbach D, Ehler E, Perriard J‐C. A novel marker for vertebrate embryonic heart, the EH‐myomesin isoform. J Biol Chem 275: 10256‐10264, 2000. 10.1074/jbc.275.14.10256.
 8.Agarkova I, Ehler E, Lange S, Schoenauer R, Perriard J‐C. M‐band: A safeguard for sarcomere stability? J Muscle Res Cell Motil 24: 191‐203, 2003. 10.1023/A:1026094924677.
 9.Agarkova I, Perriard JC. The M‐band: An elastic web that crosslinks thick filaments in the center of the sarcomere. Trends Cell Biol 15: 477‐485, 2005. 10.1016/j.tcb.2005.07.001.
 10.Agarkova I, Schoenauer R, Ehler E, Carlsson L, Carlsson E, Thornell LE, Perriard JC. The molecular composition of the sarcomeric M‐band correlates with muscle fiber type. Eur J Cell Biol 83: 193‐204, 2004. 10.1078/0171‐9335‐00383.
 11.Agrawal PB, Greenleaf RS, Tomczak KK, Lehtokari VL, Wallgren‐Pettersson C, Wallefeld W, Laing NG, Darras BT, Maciver SK, Dormitzer PR, Beggs AH. Nemaline myopathy with minicores caused by mutation of the CFL2 gene encoding the skeletal muscle actin‐binding protein, cofilin‐2. Am J Hum Genet 80: 162‐167, 2007. 10.1086/510402.
 12.Agrawal PB, Joshi M, Savic T, Chen Z, Beggs AH. Normal myofibrillar development followed by progressive sarcomeric disruption with actin accumulations in a mouse Cfl2 knockout demonstrates requirement of cofilin‐2 for muscle maintenance. Hum Mol Genet 21: 2341‐2356, 2012. 10.1093/hmg/dds053.
 13.Ahn AH, Freener CA, Gussoni E, Yoshida M, Ozawa E, Kunkel LM. The three human syntrophin genes are expressed in diverse tissues, have distinct chromosomal locations, and each bind to dystrophin and its relatives. J Biol Chem 271: 2724‐2730, 1996. 10.1074/jbc.271.5.2724.
 14.Ahn AH, Yoshida M, Anderson MS, Feener CA, Selig S, Hagiwara Y, Ozawa E, Kunkel LM. Cloning of human basic A1, a distinct 59‐kDa dystrophin‐associated protein encoded on chromosome 8q23‐24. Proc Natl Acad Sci U S A 91: 4446‐4450, 1994. 10.1073/pnas.91.10.4446.
 15.Aihara Y, Kurabayashi M, Saito Y, Ohyama Y, Tanaka T, Takeda S, Tomaru K, Sekiguchi K, Arai M, Nakamura T, Nagai R. Cardiac ankyrin repeat protein is a novel marker of cardiac hypertrophy: Role of M‐CAT element within the promoter. Hypertension 36: 48‐53, 2000. 10.1161/01.HYP.36.1.48.
 16.Ajima R, Akazawa H, Kodama M, Takeshita F, Otsuka A, Kohno T, Komuro I, Ochiya T, Yokota J. Deficiency of Myo18B in mice results in embryonic lethality with cardiac myofibrillar aberrations. Genes Cells 13: 987‐999, 2008. 10.1111/j.1365‐2443.2008.01226.x.
 17.Ajiri T, Kimura T, Ito R, Inokuchi S. Microfibrils in the myotendon junctions. Acta Anat (Basel) 102: 433‐439, 1978. 10.1159/000145668.
 18.Al‐Sajee D, Nissar AA, Coleman SK, Rebalka IA, Chiang A, Wathra R, van der Ven PF, Orfanos Z, Hawke TJ. Xin‐deficient mice display myopathy, impaired contractility, attenuated muscle repair and altered satellite cell functionality. Acta Physiol (Oxf) 214: 248‐260, 2015. 10.1111/apha.12455.
 19.Almenar‐Queralt A, Lee A, Conley CA, Ribas de Pouplana L, Fowler VM. Identification of a novel tropomodulin isoform, skeletal tropomodulin, that caps actin filament pointed ends in fast skeletal muscle. J Biol Chem 274: 28466‐28475, 1999. 10.1074/jbc.274.40.28466.
 20.Alyonycheva T, Cohen‐Gould L, Siewert C, Fischman DA, Mikawa T. Skeletal muscle‐specific myosin binding protein‐H is expressed in Purkinje fibers of the cardiac conduction system. Circ Res 80: 665‐672, 1997. 10.1161/01.res.80.5.665.
 21.Anderson PA, Malouf NN, Oakeley AE, Pagani ED, Allen PD. Troponin T isoform expression in humans. A comparison among normal and failing adult heart, fetal heart, and adult and fetal skeletal muscle. Circ Res 69: 1226‐1233, 1991. 10.1161/01.RES.69.5.1226.
 22.Anthis NJ, Wegener KL, Ye F, Kim C, Goult BT, Lowe ED, Vakonakis I, Bate N, Critchley DR, Ginsberg MH, Campbell ID. The structure of an integrin/talin complex reveals the basis of inside‐out signal transduction. Embo j 28: 3623‐3632, 2009. 10.1038/emboj.2009.287.
 23.Arad M, Penas‐Lado M, Monserrat L, Maron BJ, Sherrid M, Ho CY, Barr S, Karim A, Olson TM, Kamisago M, Seidman JG, Seidman CE. Gene mutations in apical hypertrophic cardiomyopathy. Circulation 112: 2805‐2811, 2005. 10.1161/circulationaha.105.547448.
 24.Arber S, Barbayannis FA, Hanser H, Schneider C, Stanyon CA, Bernard O, Caroni P. Regulation of actin dynamics through phosphorylation of cofilin by LIM‐kinase. Nature 393: 805‐809, 1998. 10.1038/31729.
 25.Arber S, Halder G, Caroni P. Muscle LIM protein, a novel essential regulator of myogenesis, promotes myogenic differentiation. Cell 79: 221‐231, 1994. 10.1016/0092‐8674(94)90192‐9.
 26.Arber S, Hunter JJ, Ross J, Hongo M, Sansig G, Borg J, Perriard JC, Chien KR, Caroni P. MLP‐deficient mice exhibit a disruption of cardiac cytoarchitectural organization, dilated cardiomyopathy, and heart failure. Cell 88: 393‐403, 1997. 10.1016/S0092‐8674(00)81878‐4.
 27.Arimura T, Bos JM, Sato A, Kubo T, Okamoto H, Nishi H, Harada H, Koga Y, Moulik M, Doi YL, Towbin JA, Ackerman MJ, Kimura A. Cardiac ankyrin repeat protein gene (ANKRD1) mutations in hypertrophic cardiomyopathy. J Am Coll Cardiol 54: 334‐342, 2009. 10.1016/j.jacc.2008.12.082.
 28.Arimura T, Matsumoto Y, Okazaki O, Hayashi T, Takahashi M, Inagaki N, Hinohara K, Ashizawa N, Yano K, Kimura A. Structural analysis of obscurin gene in hypertrophic cardiomyopathy. Biochem Biophys Res Commun 362: 281‐287, 2007. 10.1016/j.bbrc.2007.07.183.
 29.Arimura T, Takeya R, Ishikawa T, Yamano T, Matsuo A, Tatsumi T, Nomura T, Sumimoto H, Kimura A. Dilated cardiomyopathy‐associated FHOD3 variant impairs the ability to induce activation of transcription factor serum response factor. Circ J 77: 2990‐2996, 2013. 10.1253/circj.CJ‐13‐0255.
 30.Arya R, Kedar V, Hwang JR, McDonough H, Li HH, Taylor J, Patterson C. Muscle ring finger protein‐1 inhibits PKCepsilon activation and prevents cardiomyocyte hypertrophy. J Cell Biol 167: 1147‐1159, 2004. 10.1083/jcb.200402033.
 31.Aumailley M, Smyth N. The role of laminins in basement membrane function. J Anat 193: 1‐21, 1998. 10.1046/j.1469‐7580.1998.19310001.x.
 32.Avraham KB, Hasson T, Sobe T, Balsara B, Testa JR, Skvorak AB, Morton CC, Copeland NG, Jenkins NA. Characterization of unconventional MYO6, the human homologue of the gene responsible for deafness in Snell's waltzer mice. Hum Mol Genet 6: 1225‐1231, 1997. 10.1093/hmg/6.8.1225.
 33.Awad MM, Dalal D, Cho E, Amat‐Alarcon N, James C, Tichnell C, Tucker A, Russell SD, Bluemke DA, Dietz HC, Calkins H, Judge DP. DSG2 mutations contribute to arrhythmogenic right ventricular dysplasia/cardiomyopathy. Am J Hum Genet 79: 136‐142, 2006. 10.1086/504393.
 34.Azzimato V, Genneback N, Tabish AM, Buyandelger B, Knoll R. Desmin, desminopathy and the complexity of genetics. J Mol Cell Cardiol 92: 93‐95, 2016. 10.1016/j.yjmcc.2016.01.017.
 35.Bahler M, Eppenberger HM, Wallimann T. Novel thick filament protein of chicken pectoralis muscle: The 86 kd protein. I. Purification and characterization. J Mol Biol 186: 381‐391, 1985. 10.1016/0022‐2836(85)90112‐3.
 36.Bakolitsa C, Cohen DM, Bankston LA, Bobkov AA, Cadwell GW, Jennings L, Critchley DR, Craig SW, Liddington RC. Structural basis for vinculin activation at sites of cell adhesion. Nature 430: 583‐586, 2004. 10.1038/nature02610.
 37.Balogh J, Merisckay M, Li Z, Paulin D, Arner A. Hearts from mice lacking desmin have a myopathy with impaired active force generation and unaltered wall compliance. Cardiovasc Res 53: 439‐450, 2002. 10.1016/s0008‐6363(01)00500‐4.
 38.Balse E, Steele DF, Abriel H, Coulombe A, Fedida D, Hatem SN. Dynamic of ion channel expression at the plasma membrane of cardiomyocytes. Physiol Rev 92: 1317‐1358, 2012. 10.1152/physrev.00041.2011.
 39.Baltgalvis KA, Call JA, Nikas JB, Lowe DA. Effects of prednisolone on skeletal muscle contractility in mdx mice. Muscle Nerve 40: 443‐454, 2009. 10.1002/mus.21327.
 40.Bang ML. Animal models of congenital cardiomyopathies associated with mutations in Z‐line proteins. J Cell Physiol 9999: 1‐15, 2016. 10.1002/jcp.25424.
 41.Bang ML, Caremani M, Brunello E, Littlefield R, Lieber RL, Chen J, Lombardi V, Linari M. Nebulin plays a direct role in promoting strong actin‐myosin interactions. FASEB J 23: 4117‐4125, 2009. 10.1096/fj.09‐137729.
 42.Bang ML, Chen J. Roles of nebulin family members in the heart. Circ J 79: 2081‐2087, 2015. 10.1253/circj.CJ‐15‐0854.
 43.Bang ML, Gu Y, Dalton ND, Peterson KL, Chien KR, Chen J. The muscle ankyrin repeat proteins CARP, Ankrd2, and DARP are not essential for normal cardiac development and function at basal conditions and in response to pressure overload. PLoS One 9: e93638, 2014. 10.1371/journal.pone.0093638.
 44.Bang ML, Mudry RE, McElhinny AS, Trombitas K, Geach AJ, Yamasaki R, Sorimachi H, Granzier H, Gregorio CC, Labeit S. Myopalladin, a novel 145‐kilodalton sarcomeric protein with multiple roles in Z‐disc and I‐band protein assemblies. J Cell Biol 153: 413‐427, 2001. 10.1083/jcb.153.2.413.
 45.Bao ZZ, Lakonishok M, Kaufman S, Horwitz AF. α7β1 integrin is a component of the myotendinous junction on skeletal muscle. J Cell Sci 106 579‐589, 1993.
 46.Barash IA, Mathew L, Ryan AF, Chen J, Lieber RL. Rapid muscle‐specific gene expression changes after a single bout of eccentric contractions in the mouse. Am J Physiol Cell Physiol 286: C355‐C364, 2004. 10.1152/ajpcell.00211.2003.
 47.Baron CP, Jacobsen S, Purslow PP. Cleavage of desmin by cysteine proteases: Calpains and cathepsin B. Meat Sci 68: 447‐456, 2004. 10.1016/j.meatsci.2004.03.019.
 48.Baryshnikova OK, Li MX, Sykes BD. Modulation of cardiac troponin C function by the cardiac‐specific N‐terminus of troponin I: Influence of PKA phosphorylation and involvement in cardiomyopathies. J Mol Biol 375: 735‐751, 2008. 10.1016/j.jmb.2007.10.062.
 49.Bates G, Sigurdardottir S, Kachmar L, Zitouni NB, Benedetti A, Petrof BJ, Rassier D, Lauzon AM. Molecular, cellular, and muscle strip mechanics of the mdx mouse diaphragm. Am J Physiol Cell Physiol 304: C873‐C880, 2013. 10.1152/ajpcell.00220.2012.
 50.Bean C, Verma NK, Yamamoto DL, Chemello F, Cenni V, Filomena MC, Chen J, Bang ML, Lanfranchi G. Ankrd2 is a modulator of NF‐κB‐mediated inflammatory responses during muscle differentiation. Cell Death Dis 5: 1‐13, 2014. 10.1038/cddis.2013.525.
 51.Beggs AH, Byers TJ, Knoll JH, Boyce FM, Bruns GA, Kunkel LM. Cloning and characterization of two human skeletal muscle α‐actinin genes located on chromosomes 1 and 11. J Biol Chem 267: 9281‐9288, 1992.
 52.Belkin AM, Zhidkova NI, Balzac F, Altruda F, Tomatis D, Maier A, Tarone G, Koteliansky VE, Burridge K. β1D integrin displaces the β1A isoform in striated muscles: localization at junctional structures and signaling potential in nonmuscle cells. J Cell Biol 132: 211‐226, 1996. 10.1083/jcb.132.1.211.
 53.Bellin RM, Huiatt TW, Critchley DR, Robson RM. Synemin may function to directly link muscle cell intermediate filaments to both myofibrillar Z‐lines and costameres. J Biol Chem 276: 32330‐32337, 2001. 10.1074/jbc.M104005200.
 54.Bellin RM, Sernett SW, Becker B, Ip W, Huiatt TW, Robson RM. Molecular characteristics and interactions of the intermediate filament protein synemin. Interactions with α‐actinin may anchor synemin‐containing heterofilaments. J Biol Chem 274: 29493‐29499, 1999. 10.1074/jbc.274.41.29493.
 55.Bennett P, Craig R, Starr R, Offer G. The ultrastructural location of C‐protein, X‐protein and H‐protein in rabbit muscle. J Muscle Res Cell Motil 7: 550‐567, 1986. 10.1007/b1753571.
 56.Benson MA, Newey SE, Martin‐Rendon E, Hawkes R, Blake DJ. Dysbindin, a novel coiled‐coil‐containing protein that interacts with the dystrobrevins in muscle and brain. J Biol Chem 276: 24232‐24241, 2001. 10.1074/jbc.M010418200.
 57.Bergen HR, 3rd, Ajtai K, Burghardt TP, Nepomuceno AI, Muddiman DC. Mass spectral determination of skeletal/cardiac actin isoform ratios in cardiac muscle. Rapid Commun Mass Spectrom 17: 1467‐1471, 2003. 10.1002/rcm.1075.
 58.Berry SE, Andruszkiewicz P, Chun JL, Hong J. Nestin expression in end‐stage disease in dystrophin‐deficient heart: Implications for regeneration from endogenous cardiac stem cells. Stem Cells Transl Med 2: 848‐861, 2013. 10.5966/sctm.2012‐0174.
 59.Bhavsar PK, Brand NJ, Yacoub MH, Barton PJR. Isolation and characterization of the human cardiac troponin I gene (TNNI3). Genomics 35: 11‐23, 1996. 10.1006/geno.1996.0317.
 60.Bhuiyan ZA, Jongbloed JD, van der Smagt J, Lombardi PM, Wiesfeld AC, Nelen M, Schouten M, Jongbloed R, Cox MG, van Wolferen M, Rodriguez LM, van Gelder IC, Bikker H, Suurmeijer AJ, van den Berg MP, Mannens MM, Hauer RN, Wilde AA, van Tintelen JP. Desmoglein‐2 and desmocollin‐2 mutations in dutch arrhythmogenic right ventricular dysplasia/cardiomypathy patients: Results from a multicenter study. Circ Cardiovasc Genet 2: 418‐427, 2009. 10.1161/circgenetics.108.839829.
 61.Bione S, Maestrini E, Rivella S, Mancini M, Regis S, Romeo G, Toniolo D. Identification of a novel X‐linked gene responsible for Emery‐Dreifuss muscular dystrophy. Nat Genet 8: 323‐327, 1994. 10.1038/ng1294‐323.
 62.Blake DJ, Nawrotzki R, Peters MF, Froehner SC, Davies KE. Isoform diversity of dystrobrevin, the murine 87‐kDa postsynaptic protein. J Biol Chem 271: 7802‐7810, 1996. 10.1074/jbc.271.13.7802.
 63.Blake DJ, Tinsley JM, Davies KE. Utrophin: A structural and functional comparison to dystrophin. Brain Pathol 6: 37‐47, 1996. 10.1111/j.1750‐3639.1996.tb00781.x.
 64.Blake DJ, Weir A, Newey SE, Davies KE. Function and genetics of dystrophin and dystrophin‐related proteins in muscle. Physiol Rev 82: 291‐329, 2002. 10.1152/physrev.00028.2001.
 65.Boateng SY, Senyo SE, Qi L, Goldspink PH, Russell B. Myocyte remodeling in response to hypertrophic stimuli requires nucleocytoplasmic shuttling of muscle LIM protein. J Mol Cell Cardiol 47: 426‐435, 2009. 10.1016/j.yjmcc.2009.04.006.
 66.Bodine SC, Latres E, Baumhueter S, Lai VK, Nunez L, Clarke BA, Poueymirou WT, Panaro FJ, Na E, Dharmarajan K, Pan ZQ, Valenzuela DM, DeChiara TM, Stitt TN, Yancopoulos GD, Glass DJ. Identification of ubiquitin ligases required for skeletal muscle atrophy. Science 294: 1704‐1708, 2001. 10.1126/science.1065874.
 67.Bonne G, Carrier L, Bercovici J, Cruaud C, Richard P, Hainque B, Gautel M, Labeit S, James M, Beckmann J, Weissenbach J, Vosberg HP, Fiszman M, Komajda M, Schwartz K. Cardiac myosin binding protein‐C gene splice acceptor site mutation is associated with familial hypertrophic cardiomyopathy. Nat Genet 11: 438‐440, 1995. 10.1038/ng1295‐438.
 68.Bonne G, Di Barletta MR, Varnous S, Becane HM, Hammouda EH, Merlini L, Muntoni F, Greenberg CR, Gary F, Urtizberea JA, Duboc D, Fardeau M, Toniolo D, Schwartz K. Mutations in the gene encoding lamin A/C cause autosomal dominant Emery‐Dreifuss muscular dystrophy. Nat Genet 21: 285‐288, 1999. 10.1038/6799.
 69.Bonne G, Quijano‐Roy S. Emery‐Dreifuss muscular dystrophy, laminopathies, and other nuclear envelopathies. Handb Clin Neurol 113: 1367‐1376, 2013. 10.1016/b978‐0‐444‐59565‐2.00007‐1.
 70.Bönnemann CG, Modi R, Noguchi S, Mizuno Y, Yoshida M, Gussoni E, McNally EM, Duggan DJ, Angelini C, Hoffman EP, Ozawa E, Kunkel LM. β‐sarcoglycan (A3b) mutations cause autosomal recessive muscular dystrophy with loss of the sarcoglycan complex. Nat Genet 11: 266‐273, 1995. 10.1038/ng1195‐266.
 71.Bönnemann CG, Wong J, Hamida CB, Hamida MB, Hentati F, Kunkel LM. LGMD 2E in Tunisia is caused by a homozygous missense mutation in β‐sarcoglycan exon 3. Neuromuscul Disord 8: 193‐197, 1998. 10.1016/S0960‐8966(98)00014‐5.
 72.Borgon RA, Vonrhein C, Bricogne G, Bois PR, Izard T. Crystal structure of human vinculin. Structure 12: 1189‐1197, 2004. 10.1016/j.str.2004.05.009.
 73.Bork P, Sudol M. The WW domain: A signalling site in dystrophin? Trends Biochem Sci 19: 531‐533, 1994. 10.1016/0968‐0004(94)90053‐1.
 74.Bornemann A, Schmalbruch H. Anti‐vimentin staining in muscle pathology. Neuropathol Appl Neurobiol 19: 414‐419, 1993. 10.1111/j.1365‐2990.1993.tb00463.x.
 75.Bornslaeger EA, Godsel LM, Corcoran CM, Park JK, Hatzfeld M, Kowalczyk AP, Green KJ. Plakophilin 1 interferes with plakoglobin binding to desmoplakin, yet together with plakoglobin promotes clustering of desmosomal plaque complexes at cell‐cell borders. J Cell Sci 114: 727‐738, 2001.
 76.Borrmann CM, Grund C, Kuhn C, Hofmann I, Pieperhoff S, Franke WW. The area composita of adhering junctions connecting heart muscle cells of vertebrates. II. Colocalizations of desmosomal and fascia adhaerens molecules in the intercalated disk. Eur J Cell Biol 85: 469‐485, 2006. 10.1016/j.ejcb.2006.02.009.
 77.Bovill E, Westaby S, Crisp A, Jacobs S, Shaw T. Reduction of four‐and‐a‐half LIM‐protein 2 expression occurs in human left ventricular failure and leads to altered localization and reduced activity of metabolic enzymes. J Thorac Cardiovasc Surg 137: 853‐861, 2009. 10.1016/j.jtcvs.2008.09.006.
 78.Brancaccio M, Cabodi S, Belkin AM, Collo G, Koteliansky VE, Tomatis D, Altruda F, Silengo L, Tarone G. Differential onset of expression of α7 and β1D integrins during mouse heart and skeletal muscle development. Cell Adhes Commun 5: 193‐205, 1998. 10.3109/15419069809040291.
 79.Brieger A, Adryan B, Wolpert F, Passmann S, Zeuzem S, Trojan J. Cytoskeletal scaffolding proteins interact with Lynch‐Syndrome associated mismatch repair protein MLH1. Proteomics 10: 3343‐3355, 2010. 10.1002/pmic.200900672.
 80.Broers JL, Ramaekers FC, Bonne G, Yaou RB, Hutchison CJ. Nuclear lamins: Laminopathies and their role in premature ageing. Physiol Rev 86: 967‐1008, 2006. 10.1152/physrev.00047.2005.
 81.Brokat S, Thomas J, Herda LR, Knosalla C, Pregla R, Brancaccio M, Accornero F, Tarone G, Hetzer R, Regitz‐Zagrosek V. Altered melusin expression in the hearts of aortic stenosis patients. Eur J Heart Fail 9: 568‐573, 2007. 10.1016/j.ejheart.2007.02.009.
 82.Bulfield G, Siller WG, Wight PA, Moore KJ. X chromosome‐linked muscular dystrophy (mdx) in the mouse. Proc Natl Acad Sci U S A 81: 1189‐1192, 1984. 10.1073/pnas.81.4.1189.
 83.Burridge K, Mangeat P. An interaction between vinculin and talin. Nature 308: 744‐746, 1984. 10.1038/308744a0.
 84.Buyandelger B, Ng KE, Miocic S, Piotrowska I, Gunkel S, Ku CH, Knoll R. MLP (muscle LIM protein) as a stress sensor in the heart. Pflugers Arch 462: 135‐142, 2011. 10.1007/s00424‐011‐0961‐2.
 85.Calderwood DA, Zent R, Grant R, Rees DJ, Hynes RO, Ginsberg MH. The Talin head domain binds to integrin β subunit cytoplasmic tails and regulates integrin activation. J Biol Chem 274: 28071‐28074, 1999. 10.1074/jbc.274.40.28071.
 86.Calkins H. Arrhythmogenic right ventricular dysplasia/cardiomyopathy‐three decades of progress. Circ J 79: 901‐913, 2015. 10.1253/circj.CJ‐15‐0288.
 87.Candasamy AJ, Haworth RS, Cuello F, Ibrahim M, Aravamudhan S, Kruger M, Holt MR, Terracciano CM, Mayr M, Gautel M, Avkiran M. Phosphoregulation of the titin‐cap protein telethonin in cardiac myocytes. J Biol Chem 289: 1282‐1293, 2014. 10.1074/jbc.M113.479030.
 88.Capetanaki Y, Bloch RJ, Kouloumenta A, Mavroidis M, Psarras S. Muscle intermediate filaments and their links to membranes and membranous organelles. Exp Cell Res 313: 2063‐2076, 2007. 10.1016/j.yexcr.2007.03.033.
 89.Carniel E, Taylor MR, Sinagra G, Di Lenarda A, Ku L, Fain PR, Boucek MM, Cavanaugh J, Miocic S, Slavov D, Graw SL, Feiger J, Zhu XZ, Dao D, Ferguson DA, Bristow MR, Mestroni L. α‐myosin heavy chain: a sarcomeric gene associated with dilated and hypertrophic phenotypes of cardiomyopathy. Circulation 112: 54‐59, 2005. 10.1161/circulationaha.104.507699.
 90.Carrier L, Mearini G, Stathopoulou K, Cuello F. Cardiac myosin‐binding protein C (MYBPC3) in cardiac pathophysiology. Gene 573: 188‐197, 2015. 10.1016/j.gene.2015.09.008.
 91.Carroll S, Lu S, Herrera AH, Horowits R. N‐RAP scaffolds I‐Z‐I assembly during myofibrillogenesis in cultured chick cardiomyocytes. J Cell Sci 117: 105‐114, 2004. 10.1242/jcs.00847.
 92.Cartwright S, Karakesisoglou I. Nesprins in health and disease. Semin Cell Dev Biol 29: 169‐179, 2014. 10.1016/j.semcdb.2013.12.010.
 93.Casella JF, Craig SW, Maack DJ, Brown AE. Cap Z(36/32), a barbed end actin‐capping protein, is a component of the Z‐line of skeletal muscle. J Cell Biol 105: 371‐379, 1987. 10.1083/jcb.105.1.371.
 94.Casella JF, Maack DJ, Lin S. Purification and initial characterization of a protein from skeletal muscle that caps the barbed ends of actin filaments. J Biol Chem 261: 10915‐10921, 1986.
 95.Castillo A, Nowak R, Littlefield KP, Fowler VM, Littlefield RS. A nebulin ruler does not dictate thin filament lengths. Biophys J 96: 1856‐1865, 2009. 10.1016/j.bpj.2008.10.053.
 96.Centner T, Yano J, Kimura E, McElhinny AS, Pelin K, Witt CC, Bang ML, Trombitas K, Granzier H, Gregorio CC, Sorimachi H, Labeit S. Identification of muscle specific ring finger proteins as potential regulators of the titin kinase domain. J Mol Biol 306: 717‐726, 2001. 10.1006/jmbi.2001.4448.
 97.Ceyhan‐Birsoy O, Agrawal PB, Hidalgo C, Schmitz‐Abe K, DeChene ET, Swanson LC, Soemedi R, Vasli N, Iannaccone ST, Shieh PB, Shur N, Dennison JM, Lawlor MW, Laporte J, Markianos K, Fairbrother WG, Granzier H, Beggs AH. Recessive truncating titin gene, TTN, mutations presenting as centronuclear myopathy. Neurology 81: 1205‐1214, 2013. 10.1212/WNL.0b013e3182a6ca62.
 98.Chalkia D, Nikolaidis N, Makalowski W, Klein J, Nei M. Origins and evolution of the formin multigene family that is involved in the formation of actin filaments. Mol Biol Evol 25: 2717‐2733, 2008. 10.1093/molbev/msn215.
 99.Chan JY, Takeda M, Briggs LE, Graham ML, Lu JT, Horikoshi N, Weinberg EO, Aoki H, Sato N, Chien KR, Kasahara H. Identification of cardiac‐specific myosin light chain kinase. Circ Res 102: 571‐580, 2008. 10.1161/circresaha.107.161687.
 100.Chan KK, Tsui SK, Lee SM, Luk SC, Liew CC, Fung KP, Waye MM, Lee CY. Molecular cloning and characterization of FHL2, a novel LIM domain protein preferentially expressed in human heart. Gene 210: 345‐350, 1998. 10.1016/S0378‐1119(97)00644‐6.
 101.Chandy IK, Lo JC, Ludescher RD. Differential mobility of skeletal and cardiac tropomyosin on the surface of F‐actin. Biochemistry 38: 9286‐9294, 1999. 10.1021/bi983073s.
 102.Charvet B, Ruggiero F, Le Guellec D. The development of the myotendinous junction. A review. Muscles Ligaments Tendons J 2: 53‐63, 2012.
 103.Chatzifrangkeskou M, Bonne G, Muchir A. Nuclear envelope and striated muscle diseases. Curr Opin Cell Biol 32: 1‐6, 2015. 10.1016/j.ceb.2014.09.007.
 104.Chauveau C, Bonnemann CG, Julien C, Kho AL, Marks H, Talim B, Maury P, Arne‐Bes MC, Uro‐Coste E, Alexandrovich A, Vihola A, Schafer S, Kaufmann B, Medne L, Hübner N, Foley AR, Santi M, Udd B, Topaloglu H, Moore SA, Gotthardt M, Samuels ME, Gautel M, Ferreiro A. Recessive TTN truncating mutations define novel forms of core myopathy with heart disease. Hum Mol Genet 23: 980‐991, 2014. 10.1093/hmg/ddt494.
 105.Chauveau C, Rowell J, Ferreiro A. A rising titan: TTN review and mutation update. Hum Mutat 35: 1046‐1059, 2014. 10.1002/humu.22611.
 106.Chen F, Chang R, Trivedi M, Capetanaki Y, Cryns VL. Caspase proteolysis of desmin produces a dominant‐negative inhibitor of intermediate filaments and promotes apoptosis. J Biol Chem 278: 6848‐6853, 2003. 10.1074/jbc.M212021200.
 107.Chen H, Huang XN, Yan W, Chen K, Guo L, Tummalapali L, Dedhar S, St‐Arnaud R, Wu C, Sepulveda JL. Role of the integrin‐linked kinase/PINCH1/α‐parvin complex in cardiac myocyte hypertrophy. Lab Invest 85: 1342‐1356, 2005. 10.1038/labinvest.3700345.
 108.Chen NT, Lo SH. The N‐terminal half of talin2 is sufficient for mouse development and survival. Biochem Biophys Res Commun 337: 670‐676, 2005. 10.1016/j.bbrc.2005.09.100.
 109.Chen X, Ni F, Kondrashkina E, Ma J, Wang Q. Mechanisms of leiomodin 2‐mediated regulation of actin filament in muscle cells. Proc Natl Acad Sci U S A 112: 12687‐12692, 2015. 10.1073/pnas.1512464112.
 110.Cheng H, Kimura K, Peter AK, Cui L, Ouyang K, Shen T, Liu Y, Gu Y, Dalton ND, Evans SM, Knowlton KU, Peterson KL, Chen J. Loss of enigma homolog protein results in dilated cardiomyopathy. Circ Res 107: 348‐356, 2010. 10.1161/circresaha.110.218735.
 111.Chereau D, Boczkowska M, Skwarek‐Maruszewska A, Fujiwara I, Hayes DB, Rebowski G, Lappalainen P, Pollard TD, Dominguez R. Leiomodin is an actin filament nucleator in muscle cells. Science 320: 239‐243, 2008. 10.1126/science.1155313.
 112.Chew CS, Chen X, Parente JA, Jr., Tarrer S, Okamoto C, Qin HY. Lasp‐1 binds to non‐muscle F‐actin in vitro and is localized within multiple sites of dynamic actin assembly in vivo. J Cell Sci 115: 4787‐4799, 2002. 10.1242/jcs.00174.
 113.Chitaev NA, Leube RE, Troyanovsky RB, Eshkind LG, Franke WW, Troyanovsky SM. The binding of plakoglobin to desmosomal cadherins: Patterns of binding sites and topogenic potential. J Cell Biol 133: 359‐369, 1996. 10.1083/jcb.133.2.359.
 114.Choi H‐J, Weis WI. Structure of the armadillo repeat domain of plakophilin 1. J Mol Biol 346: 367‐376, 2005. 10.1016/j.jmb.2004.11.048.
 115.Choi HJ, Park‐Snyder S, Pascoe LT, Green KJ, Weis WI. Structures of two intermediate filament‐binding fragments of desmoplakin reveal a unique repeat motif structure. Nat Struct Biol 9: 612‐620, 2002. 10.1038/nsb818.
 116.Chowrashi P, Mittal B, Sanger JM, Sanger JW. Amorphin is phosphorylase; phosphorylase is an α‐actinin‐binding protein. Cell Motil Cytoskeleton 53: 125‐135, 2002. 10.1002/cm.10059.
 117.Chu X, Chen J, Reedy MC, Vera C, Sung KLP, Sung LA. E‐Tmod capping of actin filaments at the slow‐growing end is required to establish mouse embryonic circulation. Am J Physiol Heart Circ Physiol 284: 1827‐1838, 2003. 10.1152/ajpheart.00947.2002.
 118.Clark E, Brugge J. Integrins and signal transduction pathways: the road taken. Science 268: 233‐239, 1995. 10.1126/science.7716514.
 119.Clarke BA, Drujan D, Willis MS, Murphy LO, Corpina RA, Burova E, Rakhilin SV, Stitt TN, Patterson C, Latres E, Glass DJ. The E3 Ligase MuRF1 degrades myosin heavy chain protein in dexamethasone‐treated skeletal muscle. Cell Metab 6: 376‐385, 2007. 10.1016/j.cmet.2007.09.009.
 120.Clemen CS, Herrmann H, Strelkov SV, Schroder R. Desminopathies: pathology and mechanisms. Acta Neuropathol 125: 47‐75, 2013. 10.1007/s00401‐012‐1057‐6.
 121.Coghill ID, Brown S, Cottle DL, McGrath MJ, Robinson PA, Nandurkar HH, Dyson JM, Mitchell CA. FHL3 is an actin‐binding protein that regulates α‐actinin‐mediated actin bundling: FHL3 localizes to actin stress fibers and enhances cell spreading and stress fiber disassembly. J Biol Chem 278: 24139‐24152, 2003. 10.1074/jbc.M213259200.
 122.Conley CA, Fritz‐Six KL, Almenar‐Queralt A, Fowler VM. Leiomodins: larger members of the tropomodulin (Tmod) gene family. Genomics 73: 127‐139, 2001. 10.1006/geno.2000.6501.
 123.Conti A, Riva N, Pesca M, Iannaccone S, Cannistraci CV, Corbo M, Previtali SC, Quattrini A, Alessio M. Increased expression of myosin binding protein H in the skeletal muscle of amyotrophic lateral sclerosis patients. Biochim Biophys Acta 1842: 99‐106, 2014. 10.1016/j.bbadis.2013.10.013.
 124.Conti FJ, Felder A, Monkley S, Schwander M, Wood MR, Lieber R, Critchley D, Muller U. Progressive myopathy and defects in the maintenance of myotendinous junctions in mice that lack talin 1 in skeletal muscle. Development 135: 2043‐2053, 2008. 10.1242/dev.015818.
 125.Cottle DL, McGrath MJ, Cowling BS, Coghill ID, Brown S, Mitchell CA. FHL3 binds MyoD and negatively regulates myotube formation. J Cell Sci 120: 1423‐1435, 2007. 10.1242/jcs.004739.
 126.Cowling BS, Cottle DL, Wilding BR, D'Arcy CE, Mitchell CA, McGrath MJ. Four and a half LIM protein 1 gene mutations cause four distinct human myopathies: A comprehensive review of the clinical, histological and pathological features. Neuromuscul Disord 21: 237‐251, 2011. 10.1016/j.nmd.2011.01.001.
 127.Cowling BS, McGrath MJ, Nguyen MA, Cottle DL, Kee AJ, Brown S, Schessl J, Zou Y, Joya J, Bonnemann CG, Hardeman EC, Mitchell CA. Identification of FHL1 as a regulator of skeletal muscle mass: Implications for human myopathy. J Cell Biol 183: 1033‐1048, 2008. 10.1083/jcb.200804077.
 128.Cox PR, Zoghbi HY. Sequencing, expression analysis, and mapping of three unique human tropomodulin genes and their mouse orthologs. Genomics 63: 97‐107, 2000. 10.1006/geno.1999.6061.
 129.Craig R, Lehman W. Crossbridge and tropomyosin positions observed in native, interacting thick and thin filaments. J Mol Biol 311: 1027‐1036, 2001. 10.1006/jmbi.2001.4897.
 130.Craig R, Offer G. The location of C‐protein in rabbit skeletal muscle. Proc R Soc Lond B Biol Sci 192: 451‐461, 1976. 10.1098/rspb.1976.0023.
 131.Crawford AW, Michelsen JW, Beckerle MC. An interaction between zyxin and α‐actinin. J Cell Biol 116: 1381‐1393, 1992. 10.1083/jcb.116.6.1381.
 132.Crawford K, Flick R, Close L, Shelly D, Paul R, Bove K, Kumar A, Lessard J. Mice lacking skeletal muscle actin show reduced muscle strength and growth deficits and die during the neonatal period. Mol Cell Biol 22: 5887‐5896, 2002. 10.1128/MCB.22.16.5887‐5896.2002.
 133.Crosbie RH, Heighway J, Venzke DP, Lee JC, Campbell KP. Sarcospan, the 25‐kDa transmembrane component of the dystrophin‐glycoprotein complex. J Biol Chem 272: 31221‐31224, 1997. 10.1074/jbc.272.50.31221.
 134.Crosbie RH, Lebakken CS, Holt KH, Venzke DP, Straub V, Lee JC, Grady RM, Chamberlain JS, Sanes JR, Campbell KP. Membrane targeting and stabilization of sarcospan is mediated by the sarcoglycan subcomplex. J Cell Biol 145: 153‐165, 1999. 10.1083/jcb.145.1.153.
 135.Cunha SR, Mohler PJ. Obscurin targets ankyrin‐B and protein phosphatase 2A to the cardiac M‐line. J Biol Chem 283: 31968‐31980, 2008. 10.1074/jbc.M806050200.
 136.D'Arcy CE, Feeney SJ, McLean CA, Gehrig SM, Lynch GS, Smith JE, Cowling BS, Mitchell CA, McGrath MJ. Identification of FHL1 as a therapeutic target for Duchenne muscular dystrophy. Hum Mol Genet 23: 618‐636, 2014. 10.1093/hmg/ddt449.
 137.Davis JS, Hassanzadeh S, Winitsky S, Lin H, Satorius C, Vemuri R, Aletras AH, Wen H, Epstein ND. The overall pattern of cardiac contraction depends on a spatial gradient of myosin regulatory light chain phosphorylation. Cell 107: 631‐641, 2001. 10.1016/s0092‐8674(01)00586‐4.
 138.De Acetis M, Notte A, Accornero F, Selvetella G, Brancaccio M, Vecchione C, Sbroggio M, Collino F, Pacchioni B, Lanfranchi G, Aretini A, Ferretti R, Maffei A, Altruda F, Silengo L, Tarone G, Lembo G. Cardiac overexpression of melusin protects from dilated cardiomyopathy due to long‐standing pressure overload. Circ Res 96: 1087‐1094, 2005. 10.1161/01.RES.0000168028.36081.e0.
 139.Delva E, Tucker DK, Kowalczyk AP. The desmosome. Cold Spring Harb Perspect Biol 1: 1‐17, 2009. 10.1101/cshperspect.a002543.
 140.Dennis JE, Shimizu T, Reinach FC, Fischman DA. Localization of C‐protein isoforms in chicken skeletal muscle: Ultrastructural detection using monoclonal antibodies. J Cell Biol 98: 1514‐1522, 1984. 10.1083/jcb.98.4.1514.
 141.Dhoot GK, Hales MC, Grail BM, Perry SV. The isoforms of C protein and their distribution in mammalian skeletal muscle. J Muscle Res Cell Motil 6: 487‐505, 1985. 10.1007/b0712585.
 142.Dhume A, Lu S, Horowits R. Targeted disruption of N‐RAP gene function by RNA interference: A role for N‐RAP in myofibril organization. Cell Motil Cytoskeleton 63: 493‐511, 2006. 10.1002/cm.20141.
 143.Diguet N, Mallat Y, Ladouce R, Clodic G, Prola A, Tritsch E, Blanc J, Larcher JC, Delcayre C, Samuel JL, Friguet B, Bolbach G, Li Z, Mericskay M. Muscle creatine kinase deficiency triggers both actin depolymerization and desmin disorganization by advanced glycation end products in dilated cardiomyopathy. J Biol Chem 286: 35007‐35019, 2011. 10.1074/jbc.M111.252395.
 144.Dirkx E, da Costa Martins PA, De Windt LJ. Regulation of fetal gene expression in heart failure. Biochim Biophys Acta 1832: 2414‐2424, 2013. 10.1016/j.bbadis.2013.07.023.
 145.Docheva D, Popov C, Alberton P, Aszodi A. Integrin signaling in skeletal development and function. Birth Defects Res C Embryo Today 102: 13‐36, 2014. 10.1002/bdrc.21059.
 146.Dolken G, Leisner E, Pette D. Immunofluorescent localization of glycogenolytic and glycolytic enzyme proteins and of malate dehydrogenase isozymes in cross‐striated skeletal muscle and heart of the rabbit. Histochemistry 43: 113‐121, 1975. 10.1007/B0492440.
 147.Domenighetti AA, Chu PH, Wu T, Sheikh F, Gokhin DS, Guo LT, Cui Z, Peter AK, Christodoulou DC, Parfenov MG, Gorham JM, Li DY, Banerjee I, Lai X, Witzmann FA, Seidman CE, Seidman JG, Gomes AV, Shelton GD, Lieber RL, Chen J. Loss of FHL1 induces an age‐dependent skeletal muscle myopathy associated with myofibrillar and intermyofibrillar disorganization in mice. Hum Mol Genet 23: 209‐225, 2014. 10.1093/hmg/ddt412.
 148.Donker DW, Maessen JG, Verheyen F, Ramaekers FC, Spatjens RL, Kuijpers H, Ramakers C, Schiffers PM, Vos MA, Crijns HJ, Volders PG. Impact of acute and enduring volume overload on mechanotransduction and cytoskeletal integrity of canine left ventricular myocardium. Am J Physiol Heart Circ Physiol 292: H2324‐H2332, 2007. 10.1152/ajpheart.00392.2006.
 149.Donner K, Ollikainen M, Ridanpaa M, Christen HJ, Goebel HH, de Visser M, Pelin K, Wallgren‐Pettersson C. Mutations in the β‐tropomyosin (TPM2) gene—a rare cause of nemaline myopathy. Neuromuscul Disord 12: 151‐158, 2002. 10.1016/S0960‐8966(01)00252‐8.
 150.Dupont E, Matsushita T, Kaba RA, Vozzi C, Coppen SR, Khan N, Kaprielian R, Yacoub MH, Severs NJ. Altered connexin expression in human congestive heart failure. J Mol Cell Cardiol 33: 359‐371, 2001. 10.1006/jmcc.2000.1308.
 151.Duygu B, de Windt LJ, da Costa Martins PA. Targeting microRNAs in heart failure. Trends Cardiovasc Med 26: 99‐110, 2015. 10.1016/j.tcm.2015.05.008.
 152.Egelman EH. The structure of F‐actin. J Muscle Res Cell Motil 6: 129‐151, 1985. 10.1007/B0713056.
 153.Ehler E, Horowits R, Zuppinger C, Price RL, Perriard E, Leu M, Caroni P, Sussman M, Eppenberger HM, Perriard JC. Alterations at the intercalated disk associated with the absence of muscle LIM protein. J Cell Biol 153: 763‐772, 2001. 10.1083/jcb.153.4.763.
 154.Ehrig K, Leivo I, Argraves WS, Ruoslahti E, Engvall E. Merosin, a tissue‐specific basement membrane protein, is a laminin‐like protein. Proc Natl Acad Sci U S A 87: 3264‐3268, 1990. 10.1073/pnas.87.9.3264.
 155.Einheber S, Fischman DA. Isolation and characterization of a cDNA clone encoding avian skeletal muscle C‐protein: an intracellular member of the immunoglobulin superfamily. Proc Natl Acad Sci U S A 87: 2157‐2161, 1990. 10.1073/pnas.87.6.2157.
 156.Ervasti J, Campbell K. A role for the dystrophin‐glycoprotein complex as a transmembrane linker between laminin and actin. J Cell Biol 122: 809‐823, 1993. 10.1083/jcb.122.4.809.
 157.Esham M, Bryan K, Milnes J, Holmes WB, Moncman CL. Expression of nebulette during early cardiac development. Cell Motil Cytoskeleton 64: 258‐273, 2007. 10.1002/cm.20180.
 158.Ettinger AJ, Feng G, Sanes JR. ϵ‐Sarcoglycan, a broadly expressed homologue of the gene mutated in Limb‐Girdle Muscular Dystrophy 2D. J Biol Chem 272: 32534‐32538, 1997. 10.1074/jbc.272.51.32534.
 159.Fatkin D, MacRae C, Sasaki T, Wolff MR, Porcu M, Frenneaux M, Atherton J, Vidaillet HJ, Jr., Spudich S, De Girolami U, Seidman JG, Seidman C, Muntoni F, Muehle G, Johnson W, McDonough B. Missense mutations in the rod domain of the lamin A/C gene as causes of dilated cardiomyopathy and conduction‐system disease. N Engl J Med 341: 1715‐1724, 1999. 10.1056/nejm199912023412302.
 160.Faul C, Dhume A, Schecter AD, Mundel P. Protein kinase A, Ca2+/calmodulin‐dependent kinase II, and calcineurin regulate the intracellular trafficking of myopodin between the Z‐disc and the nucleus of cardiac myocytes. Mol Cell Biol 27: 8215‐8227, 2007. 10.1128/mcb.00950‐07.
 161.Faulkner G, Pallavicini A, Comelli A, Salamon M, Bortoletto G, Ievolella C, Trevisan S, Kojic S, Dalla Vecchia F, Laveder P, Valle G, Lanfranchi G. FATZ, a filamin‐, actinin‐, and telethonin‐binding protein of the Z‐disc of skeletal muscle. J Biol Chem 275: 41234‐41242, 2000. 10.1074/jbc.M007493200.
 162.Fernandes I, Schock F. The nebulin repeat protein Lasp regulates I‐band architecture and filament spacing in myofibrils. J Cell Biol 206: 559‐572, 2014. 10.1083/jcb.201401094.
 163.Ferreiro A, Mezmezian M, Olive M, Herlicoviez D, Fardeau M, Richard P, Romero NB. Telethonin‐deficiency initially presenting as a congenital muscular dystrophy. Neuromuscul Disord 21: 433‐438, 2011. 10.1016/j.nmd.2011.03.005.
 164.Fielitz J, Kim MS, Shelton JM, Latif S, Spencer JA, Glass DJ, Richardson JA, Bassel‐Duby R, Olson EN. Myosin accumulation and striated muscle myopathy result from the loss of muscle RING finger 1 and 3. J Clin Invest 117: 2486‐2495, 2007. 10.1172/jci32827.
 165.Finsterer J, Ramaciotti C, Wang CH, Wahbi K, Rosenthal D, Duboc D, Melacini P. Cardiac findings in congenital muscular dystrophies. Pediatrics 126: 538‐545, 2010. 10.1542/peds.2010‐0208.
 166.Fisher DZ, Chaudhary N, Blobel G. cDNA sequencing of nuclear lamins A and C reveals primary and secondary structural homology to intermediate filament proteins. Proc Natl Acad Sci U S A 83: 6450‐6454, 1986. 10.1073/pnas.83.17.6450.
 167.Flashman E, Redwood C, Moolman‐Smook J, Watkins H. Cardiac myosin binding protein C: Its role in physiology and disease. Circ Res 94: 1279‐1289, 2004. 10.1161/01.res.0000127175.21818.c2.
 168.Flick MJ, Konieczny SF. The muscle regulatory and structural protein MLP is a cytoskeletal binding partner of βI‐spectrin. J Cell Sci 113: 1553‐1564, 2000.
 169.Fontes MS, van Veen TA, de Bakker JM, van Rijen HV. Functional consequences of abnormal Cx43 expression in the heart. Biochim Biophys Acta 1818: 2020‐2029, 2012. 10.1016/j.bbamem.2011.07.039.
 170.Forbes MS, Sperelakis N. Intercalated discs of mammalian heart: A review of structure and function. Tissue Cell 17: 605‐648, 1985. 10.1016/0040‐8166(85)90001‐1.
 171.Foth BJ, Goedecke MC, Soldati D. New insights into myosin evolution and classification. Proc Natl Acad Sci U S A 103: 3681‐3686, 2006. 10.1073/pnas.0506307103.
 172.Foucault G, Vacher M, Merkulova T, Keller A, Arrio‐Dupont M. Presence of enolase in the M‐band of skeletal muscle and possible indirect interaction with the cytosolic muscle isoform of creatine kinase. Biochem J 338: 115‐121, 1999. 10.1042/bj3380115.
 173.Fowler VM. Identification and purification of a novel Mr 43,000 tropomyosin‐binding protein from human erythrocyte membranes. J Biol Chem 262: 12792‐12800, 1987.
 174.Frank D, Frey N. Cardiac Z‐disc signaling network. J Biol Chem 286: 9897‐9904, 2011. 10.1074/jbc.R110.174268.
 175.Frank D, Kuhn C, Katus HA, Frey N. The sarcomeric Z‐disc: A nodal point in signalling and disease. J Mol Med (Berl) 84: 446‐468, 2006. 10.1007/s00109‐005‐0033‐1.
 176.Franke WW, Borrmann CM, Grund C, Pieperhoff S. The area composita of adhering junctions connecting heart muscle cells of vertebrates. I. Molecular definition in intercalated disks of cardiomyocytes by immunoelectron microscopy of desmosomal proteins. Eur J Cell Biol 85: 69‐82, 2006. 10.1016/j.ejcb.2005.11.003.
 177.Franklin AJ, Baxley T, Kobayashi T, Chalovich JM. The C‐terminus of troponin T is essential for maintaining the inactive state of regulated actin. Biophys J 102: 2536‐2544, 2012. 10.1016/j.bpj.2012.04.037.
 178.Freiburg A, Gautel M. A molecular map of the interactions between titin and myosin‐binding protein C. Implications for sarcomeric assembly in familial hypertrophic cardiomyopathy. Eur J Biochem 235: 317‐323, 1996. 10.1111/j.1432‐1033.1996.00317.x.
 179.Freiburg A, Trombitas K, Hell W, Cazorla O, Fougerousse F, Centner T, Kolmerer B, Witt C, Beckmann JS, Gregorio CC, Granzier H, Labeit S. Series of exon‐skipping events in the elastic spring region of titin as the structural basis for myofibrillar elastic diversity. Circ Res 86: 1114‐1121, 2000. 10.1161/01.RES.86.11.1114.
 180.Frenette J, Tidball JG. Mechanical loading regulates expression of talin and its mRNA, which are concentrated at myotendinous junctions. Am J Physiol 275: C818‐C825, 1998. 10.1242/jcs.00303.
 181.Frey N, Barrientos T, Shelton JM, Frank D, Rutten H, Gehring D, Kuhn C, Lutz M, Rothermel B, Bassel‐Duby R, Richardson JA, Katus HA, Hill JA, Olson EN. Mice lacking calsarcin‐1 are sensitized to calcineurin signaling and show accelerated cardiomyopathy in response to pathological biomechanical stress. Nat Med 10: 1336‐1343, 2004. 10.1038/nm1132.
 182.Frey N, Olson EN. Calsarcin‐3, a novel skeletal muscle‐specific member of the calsarcin family, interacts with multiple Z‐disc proteins. J Biol Chem 277: 13998‐14004, 2002. 10.1074/jbc.M200712200.
 183.Frey N, Richardson JA, Olson EN. Calsarcins, a novel family of sarcomeric calcineurin‐binding proteins. Proc Natl Acad Sci U S A 97: 14632‐14637, 2000. 10.1073/pnas.260501097.
 184.Fritz‐Six KL, Cox PR, Fischer RS, Xu B, Gregorio CC, Zoghbi HY, Fowler VM. Aberrant myofibril assembly in tropomodulin1 null mice leads to aborted heart development and embryonic lethality. J Cell Biol 163: 1033‐1044, 2003. 10.1083/jcb.200308164.
 185.Fukuda N, Wu Y, Nair P, Granzier HL. Phosphorylation of titin modulates passive stiffness of cardiac muscle in a titin isoform‐dependent manner. J Gen Physiol 125: 257‐271, 2005. 10.1085/jgp.200409177.
 186.Fukuzawa A, Lange S, Holt M, Vihola A, Carmignac V, Ferreiro A, Udd B, Gautel M. Interactions with titin and myomesin target obscurin and obscurin‐like 1 to the M‐band–implications for hereditary myopathies. J Cell Sci 121: 1841‐1851, 2008. 10.1242/jcs.028019.
 187.Furst DO, Osborn M, Weber K. Myogenesis in the mouse embryo: Differential onset of expression of myogenic proteins and the involvement of titin in myofibril assembly. J Cell Biol 109: 517‐527, 1989. 10.1083/jcb.109.2.517.
 188.Furst DO, Vinkemeier U, Weber K. Mammalian skeletal muscle C‐protein: Purification from bovine muscle, binding to titin and the characterization of a full‐length human cDNA. J Cell Sci 102: 769‐778, 1992.
 189.Furukawa T, Ono Y, Tsuchiya H, Katayama Y, Bang ML, Labeit D, Labeit S, Inagaki N, Gregorio CC. Specific interaction of the potassium channel β‐subunit minK with the sarcomeric protein T‐cap suggests a T‐tubule‐myofibril linking system. J Mol Biol 313: 775‐784, 2001. 10.1006/jmbi.2001.5053.
 190.Gahlmann R, Kedes L. Cloning, structural analysis, and expression of the human fast twitch skeletal muscle troponin C gene. J Biol Chem 265: 12520‐12528, 1990. 10.1016/j.egypro.2011.10.601.
 191.Gaikis L, Stewart D, Johnson R, Pyle WG. Identifying a role of the actin capping protein CapZ in β‐adrenergic receptor signalling. Acta Physiol (Oxf) 207: 173‐182, 2013. 10.1111/j.1748‐1716.2012.02470.x.
 192.Gallanti A, Prelle A, Moggio M, Ciscato P, Checcarelli N, Sciacco M, Comini A, Scarlato G. Desmin and vimentin as markers of regeneration in muscle diseases. Acta Neuropathol 85: 88‐92, 1992. 10.1007/bf00304637.
 193.Garbuglia M, Verzini M, Sorci G, Bianchi R, Giambanco I, Agneletti AL, Donato R. The calcium‐modulated proteins, S100A1 and S100B, as potential regulators of the dynamics of type III intermediate filaments. Braz J Med Biol Res 32: 1177‐1185, 1999. 10.1590/S0100‐879X1999001000001.
 194.Garcia M, Pujol A, Ruzo A, Riu E, Ruberte J, Arbos A, Serafin A, Albella B, Feliu JE, Bosch F. Phosphofructo‐1‐kinase deficiency leads to a severe cardiac and hematological disorder in addition to skeletal muscle glycogenosis. PLoS Genet 5: e1000615, 2009. 10.1371/journal.pgen.1000615.
 195.Gaussin V, Tomlinson JE, Depre C, Engelhardt S, Antos CL, Takagi G, Hein L, Topper JN, Liggett SB, Olson EN, Lohse MJ, Vatner SF, Vatner DE. Common genomic response in different mouse models of β‐adrenergic‐induced cardiomyopathy. Circulation 108: 2926‐2933, 2003. 10.1161/01.cir.0000101922.18151.7b.
 196.Gautel M. The sarcomeric cytoskeleton: Who picks up the strain? Curr Opin Cell Biol 23: 39‐46, 2011. 10.1016/j.ceb.2010.12.001.
 197.Gautel M, Furst DO, Cocco A, Schiaffino S. Isoform transitions of the myosin binding protein C family in developing human and mouse muscles: lack of isoform transcomplementation in cardiac muscle. Circ Res 82: 124‐129, 1998. 10.1161/01.res.82.1.124.
 198.Gautel M, Goulding D, Bullard B, Weber K, Furst DO. The central Z‐disk region of titin is assembled from a novel repeat in variable copy numbers. J Cell Sci 109: 2747‐2754, 1996.
 199.Geeves MA, Hitchcock‐DeGregori SE, Gunning PW. A systematic nomenclature for mammalian tropomyosin isoforms. J Muscle Res Cell Motil 36: 147‐153, 2015. 10.1007/s10974‐014‐9389‐6.
 200.Gehrig SM, Ryall JG, Schertzer JD, Lynch GS. Insulin‐like growth factor‐I analogue protects muscles of dystrophic mdx mice from contraction‐mediated damage. Exp Physiol 93: 1190‐1198, 2008. 10.1113/expphysiol.2008.042838.
 201.Geisterfer‐Lowrance AA, Kass S, Tanigawa G, Vosberg HP, McKenna W, Seidman CE, Seidman JG. A molecular basis for familial hypertrophic cardiomyopathy: A β cardiac myosin heavy chain gene missense mutation. Cell 62: 999‐1006, 1990. 10.1016/0092‐8674(90)90274‐I.
 202.Genini M, Schwalbe P, Scholl FA, Remppis A, Mattei MG, Schafer BW. Subtractive cloning and characterization of DRAL, a novel LIM‐domain protein down‐regulated in rhabdomyosarcoma. DNA Cell Biol 16: 433‐442, 1997. 10.1089/dna.1997.16.433.
 203.Gerull B, Heuser A, Wichter T, Paul M, Basson CT, McDermott DA, Lerman BB, Markowitz SM, Ellinor PT, MacRae CA, Peters S, Grossmann KS, Michely B, Sasse‐Klaassen S, Birchmeier W, Dietz R, Breithardt G, Schulze‐Bahr E, Thierfelder L. Mutations in the desmosomal protein plakophilin‐2 are common in arrhythmogenic right ventricular cardiomyopathy. Nat Genet 36: 1162‐1164, 2004. 10.1038/ng1461.
 204.Giepmans BN. Gap junctions and connexin‐interacting proteins. Cardiovasc Res 62: 233‐245, 2004. 10.1016/j.cardiores.2003.12.009.
 205.Gilbert R, Cohen JA, Pardo S, Basu A, Fischman DA. Identification of the A‐band localization domain of myosin binding proteins C and H (MyBP‐C, MyBP‐H) in skeletal muscle. J Cell Sci 112 69‐79, 1999.
 206.Gilbert R, Kelly MG, Mikawa T, Fischman DA. The carboxyl terminus of myosin binding protein C (MyBP‐C, C‐protein) specifies incorporation into the A‐band of striated muscle. J Cell Sci 109: 101‐111, 1996.
 207.Gilbert R, Nalbantoglu J, Petrof BJ, Ebihara S, Guibinga GH, Tinsley JM, Kamen A, Massie B, Davies KE, Karpati G. Adenovirus‐mediated utrophin gene transfer mitigates the dystrophic phenotype of mdx mouse muscles. Hum Gene Ther 10: 1299‐1310, 1999. 10.1089/10430349950017987.
 208.Gingras AR, Bate N, Goult BT, Hazelwood L, Canestrelli I, Grossmann JG, Liu H, Putz NS, Roberts GC, Volkmann N, Hanein D, Barsukov IL, Critchley DR. The structure of the C‐terminal actin‐binding domain of talin. Embo j 27: 458‐469, 2008. 10.1038/sj.emboj.7601965.
 209.Gokhin DS, Fowler VM. Cytoplasmic γ‐actin and tropomodulin isoforms link to the sarcoplasmic reticulum in skeletal muscle fibers. J Cell Biol 194: 105‐120, 2011. 10.1083/jcb.201011128.
 210.Gokhin DS, Fowler VM. A two‐segment model for thin filament architecture in skeletal muscle. Nat Rev Mol Cell Biol 14: 113‐119, 2013. 10.1038/nrm3510.
 211.Gokhin DS, Lewis RA, McKeown CR, Nowak RB, Kim NE, Littlefield RS, Lieber RL, Fowler VM. Tropomodulin isoforms regulate thin filament pointed‐end capping and skeletal muscle physiology. J Cell Biol 189: 95‐109, 2010. 10.1083/jcb.201001125.
 212.Gokhin DS, Ochala J, Domenighetti AA, Fowler VM. Tropomodulin1 directly controls thin filament length in both wild‐type and tropomodulin4‐deficient skeletal muscle. Development 142: 4351‐4362, 2015. 10.1242/dev.129171.
 213.Goldfarb LG, Park KY, Cervenakova L, Gorokhova S, Lee HS, Vasconcelos O, Nagle JW, Semino‐Mora C, Sivakumar K, Dalakas MC. Missense mutations in desmin associated with familial cardiac and skeletal myopathy. Nat Genet 19: 402‐403, 1998. 10.1038/1300.
 214.Gontier Y, Taivainen A, Fontao L, Sonnenberg A, van der Flier A, Carpen O, Faulkner G, Borradori L. The Z‐disc proteins myotilin and FATZ‐1 interact with each other and are connected to the sarcolemma via muscle‐specific filamins. J Cell Sci 118: 3739‐3749, 2005. 10.1242/jcs.02484.
 215.Good MC, Zalatan JG, Lim WA. Scaffold proteins: Hubs for controlling the flow of cellular information. Science 332: 680‐686, 2011. 10.1126/science.1198701.
 216.Goode BL, Eck MJ. Mechanism and function of formins in the control of actin assembly. Annu Rev Biochem 76: 593‐627, 2007. 10.1146/annurev.biochem.75.103004.142647.
 217.Goodenough DA, Paul DL. Gap junctions. Cold Spring Harb Perspect Biol 1: 1‐19, 2009. 10.1101/cshperspect.a002576.
 218.Gosselin LE, Williams JE. Pentoxifylline fails to attenuate fibrosis in dystrophic (mdx) diaphragm muscle. Muscle Nerve 33: 820‐823, 2006. 10.1002/mus.20523.
 219.Graham ZA, Gallagher PM, Cardozo CP. Focal adhesion kinase and its role in skeletal muscle. J Muscle Res Cell Motil 36: 305‐315, 2015. 10.1007/s10974‐015‐9415‐3.
 220.Granger BL, Lazarides E. Desmin and vimentin coexist at the periphery of the myofibril Z disc. Cell 18: 1053‐1063, 1979. 10.1016/0092‐8674(79)90218‐6.
 221.Granger BL, Lazarides E. Synemin: a new high molecular weight protein associated with desmin and vimentin filaments in muscle. Cell 22: 727‐738, 1980. 10.1016/0092‐8674(80)90549‐8.
 222.Granzier H, Kellermayer M, Helmes M, Trombitás K. Titin elasticity and mechanism of passive force development in rat cardiac myocytes probed by thin‐filament extraction. Biophys J 73: 2043‐2053, 1997. 10.1016/S0006‐3495(97)78234‐1.
 223.Granzier HL, Radke MH, Peng J, Westermann D, Nelson OL, Rost K, King NM, Yu Q, Tschope C, McNabb M, Larson DF, Labeit S, Gotthardt M. Truncation of titin's elastic PEVK region leads to cardiomyopathy with diastolic dysfunction. Circ Res 105: 557‐564, 2009. 10.1161/circresaha.109.200964.
 224.Green KJ, Simpson CL. Desmosomes: New perspectives on a classic. J Invest Dermatol 127: 2499‐2515, 2007. 10.1038/sj.jid.5701015.
 225.Gregorio CC, Trombitas K, Centner T, Kolmerer B, Stier G, Kunke K, Suzuki K, Obermayr F, Herrmann B, Granzier H, Sorimachi H, Labeit S. The NH2 terminus of titin spans the Z‐disc: Its interaction with a novel 19‐kD ligand (T‐cap) is required for sarcomeric integrity. J Cell Biol 143: 1013‐1027, 1998. 10.1083/jcb.143.4.1013.
 226.Griggs R, Vihola A, Hackman P, Talvinen K, Haravuori H, Faulkner G, Eymard B, Richard I, Selcen D, Engel A, Carpen O, Udd B. Zaspopathy in a large classic late‐onset distal myopathy family. Brain 130: 1477‐1484, 2007. 10.1093/brain/awm006.
 227.Grove BK, Cerny L, Perriard JC, Eppenberger HM, Thornell LE. Fiber type‐specific distribution of M‐band proteins in chicken muscle. J Histochem Cytochem 37: 447‐454, 1989. 10.1177/37.4.2926123.
 228.Gruen M, Gautel M. Mutations in β‐myosin S2 that cause familial hypertrophic cardiomyopathy (FHC) abolish the interaction with the regulatory domain of myosin‐binding protein‐C. J Mol Biol 286: 933‐949, 1999. 10.1006/jmbi.1998.2522.
 229.Gunning PW, Ghoshdastider U, Whitaker S, Popp D, Robinson RC. The evolution of compositionally and functionally distinct actin filaments. J Cell Sci 128: 2009‐2019, 2015. 10.1242/jcs.165563.
 230.Gupta MP, Samant SA, Smith SH, Shroff SG. HDAC4 and PCAF bind to cardiac sarcomeres and play a role in regulating myofilament contractile activity. J Biol Chem 283: 10135‐10146, 2008. 10.1074/jbc.M710277200.
 231.Gurnett CA, Desruisseau DM, McCall K, Choi R, Meyer ZI, Talerico M, Miller SE, Ju JS, Pestronk A, Connolly AM, Druley TE, Weihl CC, Dobbs MB. Myosin binding protein C1: A novel gene for autosomal dominant distal arthrogryposis type 1. Hum Mol Genet 19: 1165‐1173, 2010. 10.1093/hmg/ddp587.
 232.Gustafson‐Wagner EA, Sinn HW, Chen YL, Wang DZ, Reiter RS, Lin JL, Yang B, Williamson RA, Chen J, Lin CI, Lin JJ. Loss of mXinα, an intercalated disk protein, results in cardiac hypertrophy and cardiomyopathy with conduction defects. Am J Physiol Heart Circ Physiol 293: H2680‐H2692, 2007. 10.1152/ajpheart.00806.2007.
 233.Guy PM, Kenny DA, Gill GN. The PDZ domain of the LIM protein enigma binds to β‐tropomyosin. Mol Biol Cell 10: 1973‐1984, 1999. 10.1091/mbc.10.6.1973.
 234.Guyon JR, Kudryashova E, Potts A, Dalkilic I, Brosius MA, Thompson TG, Beckmann JS, Kunkel LM, Spencer MJ. Calpain 3 cleaves filamin C and regulates its ability to interact with γ‐ and δ‐sarcoglycans. Muscle Nerve 28: 472‐483, 2003. 10.1002/mus.10465.
 235.Hackman P, Vihola A, Haravuori H, Marchand S, Sarparanta J, De Seze J, Labeit S, Witt C, Peltonen L, Richard I, Udd B. Tibial muscular dystrophy is a titinopathy caused by mutations in TTN, the gene encoding the giant skeletal‐muscle protein titin. Am J Hum Genet 71: 492‐500, 2002. 10.1086/342380.
 236.Haegel H, Larue L, Ohsugi M, Fedorov L, Herrenknecht K, Kemler R. Lack of β‐catenin affects mouse development at gastrulation. Development 121: 3529‐3537, 1995.
 237.Hall TE, Bryson‐Richardson RJ, Berger S, Jacoby AS, Cole NJ, Hollway GE, Berger J, Currie PD. The zebrafish candyfloss mutant implicates extracellular matrix adhesion failure in laminin α2‐deficient congenital muscular dystrophy. Proc Natl Acad Sci U S A 104: 7092‐7097, 2007. 10.1073/pnas.0700942104.
 238.Hancock CR, Brault JJ, Terjung RL. Protecting the cellular energy state during contractions: Role of AMP deaminase. J Physiol Pharmacol 57 17‐29, 2006.
 239.Haque F, Lloyd DJ, Smallwood DT, Dent CL, Shanahan CM, Fry AM, Trembath RC, Shackleton S. SUN1 interacts with nuclear lamin A and cytoplasmic nesprins to provide a physical connection between the nuclear lamina and the cytoskeleton. Mol Cell Biol 26: 3738‐3751, 2006. 10.1128/mcb.26.10.3738‐3751.2006.
 240.Haravuori H, Vihola A, Straub V, Auranen M, Richard I, Marchand S, Voit T, Labeit S, Somer H, Peltonen L, Beckmann JS, Udd B. Secondary calpain3 deficiency in 2q‐linked muscular dystrophy: Titin is the candidate gene. Neurology 56: 869‐877, 2001. 10.1212/WNL.56.7.869.
 241.Harris SP, Bartley CR, Hacker TA, McDonald KS, Douglas PS, Greaser ML, Powers PA, Moss RL. Hypertrophic cardiomyopathy in cardiac myosin binding protein‐C knockout mice. Circ Res 90: 594‐601, 2002. 10.1161/01.res.0000012222.70819.64.
 242.Harrison BC, Allen DL, Leinwand LA. IIb or not IIb? Regulation of myosin heavy chain gene expression in mice and men. Skelet Muscle 1: 1‐9, 2011. 10.1186/2044‐5040‐1‐5.
 243.Hart MC, Cooper JA. Vertebrate isoforms of actin capping protein β have distinct functions in vivo. J Cell Biol 147: 1287‐1298, 1999. 10.1083/jcb.147.6.1287.
 244.Hart MC, Korshunova YO, Cooper JA. Vertebrates have conserved capping protein α isoforms with specific expression patterns. Cell Motil Cytoskeleton 38: 120‐132, 1997. 10.1002/(sici)1097‐0169(1997)38:2<120::aid‐cm2>3.0.co;2‐b.
 245.Hartman TJ, Martin JL, Solaro RJ, Samarel AM, Russell B. CapZ dynamics are altered by endothelin‐1 and phenylephrine via PIP2‐and PKC‐dependent mechanisms. Am J Physiol Cell Physiol 296: C1034‐C1039, 2009. 10.1152/ajpcell.00544.2008.
 246.Hartzell HC. Effects of phosphorylated and unphosphorylated C‐protein on cardiac actomyosin ATPase. J Mol Biol 186: 185‐195, 1985. 10.1016/0022‐2836(85)90268‐2.
 247.Hauerslev S, Sveen M‐L, Duno M, Angelini C, Vissing J, Krag TO. Calpain 3 is important for muscle regeneration: Evidence from patients with limb girdle muscular dystrophies. BMC Musculoskelet Disord 13: 1‐11, 2012. 10.1186/1471‐2474‐13‐43.
 248.Haugaa KH, Haland TF, Leren IS, Saberniak J, Edvardsen T. Arrhythmogenic right ventricular cardiomyopathy, clinical manifestations, and diagnosis. Europace 18: 965‐972, 2015. 10.1093/europace/euv340.
 249.Hayashi C, Ono Y, Doi N, Kitamura F, Tagami M, Mineki R, Arai T, Taguchi H, Yanagida M, Hirner S, Labeit D, Labeit S, Sorimachi H. Multiple molecular interactions implicate the connectin/titin N2A region as a modulating scaffold for p94/calpain 3 activity in skeletal muscle. J Biol Chem 283: 14801‐14814, 2008. 10.1074/jbc.M708262200.
 250.Hayashi T, Arimura T, Itoh‐Satoh M, Ueda K, Hohda S, Inagaki N, Takahashi M, Hori H, Yasunami M, Nishi H, Koga Y, Nakamura H, Matsuzaki M, Choi BY, Bae SW, You CW, Han KH, Park JE, Knoll R, Hoshijima M, Chien KR, Kimura A. Tcap gene mutations in hypertrophic cardiomyopathy and dilated cardiomyopathy. J Am Coll Cardiol 44: 2192‐2201, 2004. 10.1016/j.jacc.2004.08.058.
 251.Hayashi YK, Chou FL, Engvall E, Ogawa M, Matsuda C, Hirabayashi S, Yokochi K, Ziober BL, Kramer RH, Kaufman SJ, Ozawa E, Goto Y, Nonaka I, Tsukahara T, Wang JZ, Hoffman EP, Arahata K. Mutations in the integrin α7 gene cause congenital myopathy. Nat Genet 19: 94‐97, 1998. 10.1038/ng0598‐94.
 252.Heineke J, Ruetten H, Willenbockel C, Gross SC, Naguib M, Schaefer A, Kempf T, Hilfiker‐Kleiner D, Caroni P, Kraft T. Attenuation of cardiac remodeling after myocardial infarction by muscle LIM protein‐calcineurin signaling at the sarcomeric Z‐disc. Proc Natl Acad Sci U S A 102: 1655‐1660, 2005. 10.1073/pnas.0405488102.
 253.Helbling‐Leclerc A, Zhang X, Topaloglu H, Cruaud C, Tesson F, Weissenbach J, Tome FM, Schwartz K, Fardeau M, Tryggvason K, et al. Mutations in the laminin α 2‐chain gene (LAMA2) cause merosin‐deficient congenital muscular dystrophy. Nat Genet 11: 216‐218, 1995. 10.1038/ng1095‐216.
 254.Hemken PM, Bellin RM, Sernett SW, Becker B, Huiatt TW, Robson RM. Molecular characteristics of the novel intermediate filament protein paranemin. Sequence reveals EAP‐300 and IFAPa‐400 are highly homologous to paranemin. J Biol Chem 272: 32489‐32499, 1997. 10.1074/jbc.272.51.32489.
 255.Henderson CA, Gregorio CC. Dynamics of actin in the heart: defining thin filament length. In: Ehler E, editor. Cardiac Cytoarchitecture. Springer: Springer, 2015, pp. 71‐88.
 256.Hentzen ER, Lahey M, Peters D, Mathew L, Barash IA, Friden J, Lieber RL. Stress‐dependent and ‐independent expression of the myogenic regulatory factors and the MARP genes after eccentric contractions in rats. J Physiol 570: 157‐167, 2006. 10.1113/jphysiol.2005.093005.
 257.Herman DS, Lam L, Taylor MR, Wang L, Teekakirikul P, Christodoulou D, Conner L, DePalma SR, McDonough B, Sparks E, Teodorescu DL, Cirino AL, Banner NR, Pennell DJ, Graw S, Merlo M, Di Lenarda A, Sinagra G, Bos JM, Ackerman MJ, Mitchell RN, Murry CE, Lakdawala NK, Ho CY, Barton PJ, Cook SA, Mestroni L, Seidman JG, Seidman CE. Truncations of titin causing dilated cardiomyopathy. N Engl J Med 366: 619‐628, 2012. 10.1056/NEJMoa1110186.
 258.Herrera AH, Elzey B, Law DJ, Horowits R. Terminal regions of mouse nebulin: sequence analysis and complementary localization with N‐RAP. Cell Motil Cytoskeleton 45: 211‐222, 2000. 10.1002/(sici)1097‐0169(200003)45:3<211::aid‐cm4>3.0.co;2‐y.
 259.Herrmann H, Fouquet B, Franke WW. Expression of intermediate filament proteins during development of Xenopus laevis. II. Identification and molecular characterization of desmin. Development 105: 299‐307, 1989.
 260.Herron TJ, Rostkova E, Kunst G, Chaturvedi R, Gautel M, Kentish JC. Activation of myocardial contraction by the N‐terminal domains of myosin binding protein‐C. Circ Res 98: 1290‐1298, 2006. 10.1161/01.RES.0000222059.54917.ef.
 261.Heuser A, Plovie ER, Ellinor PT, Grossmann KS, Shin JT, Wichter T, Basson CT, Lerman BB, Sasse‐Klaassen S, Thierfelder L, MacRae CA, Gerull B. Mutant desmocollin‐2 causes arrhythmogenic right ventricular cardiomyopathy. Am J Hum Genet 79: 1081‐1088, 2006. 10.1086/509044.
 262.Higgs HN, Peterson KJ. Phylogenetic analysis of the formin homology 2 domain. Mol Biol Cell 16: 1‐13, 2005. 10.1091/mbc.E04‐07‐0565.
 263.Hillier BJ, Christopherson KS, Prehoda KE, Bredt DS, Lim WA. Unexpected modes of PDZ domain scaffolding revealed by structure of nNOS‐syntrophin complex. Science 284: 812‐815, 1999. 10.2210/pdb1qau/pdb.
 264.Himmel M, Van Der Ven PF, Stocklein W, Furst DO. The limits of promiscuity: Isoform‐specific dimerization of filamins. Biochemistry 42: 430‐439, 2003. 10.1021/bi026501+.
 265.Hinken AC, Solaro RJ. A dominant role of cardiac molecular motors in the intrinsic regulation of ventricular ejection and relaxation. Physiology (Bethesda) 22: 73‐80, 2007. 10.1152/physiol.00043.2006.
 266.Hitchcock‐DeGregori SE. Tropomyosin: Function follows structure. Adv Exp Med Biol 644: 60‐72, 2008. 10.1007/978‐0‐387‐85766‐4_5.
 267.Hnia K, Ramspacher C, Vermot J, Laporte J. Desmin in muscle and associated diseases: Beyond the structural function. Cell Tissue Res 360: 591‐608, 2015. 10.1007/s00441‐014‐2016‐4.
 268.Ho CY, Charron P, Richard P, Girolami F, Van Spaendonck‐Zwarts KY, Pinto Y. Genetic advances in sarcomeric cardiomyopathies: State of the art. Cardiovasc Res 105: 397‐408, 2015. 10.1093/cvr/cvv025.
 269.Hoffman EP, Brown RH, Jr., Kunkel LM. Dystrophin: the protein product of the Duchenne muscular dystrophy locus. Cell 51: 919‐928, 1987. 10.1016/0092‐8674(87)90579‐4.
 270.Hojayev B, Rothermel BA, Gillette TG, Hill JA. FHL2 binds calcineurin and represses pathological cardiac growth. Mol Cell Biol 32: 4025‐4034, 2012. 10.1128/mcb.05948‐11.
 271.Holmes WB, Moncman CL. Nebulette interacts with filamin C. Cell Motil Cytoskeleton 65: 130‐142, 2008. 10.1002/cm.20249.
 272.Honda K, Yamada T, Endo R, Ino Y, Gotoh M, Tsuda H, Yamada Y, Chiba H, Hirohashi S. Actinin‐4, a novel actin‐bundling protein associated with cell motility and cancer invasion. J Cell Biol 140: 1383‐1393, 1998. 10.1083/jcb.140.6.1383.
 273.Honda S, Shirotani‐Ikejima H, Tadokoro S, Tomiyama Y, Miyata T. The integrin‐linked kinase‐PINCH‐parvin complex supports integrin αIIbβ3 activation. PLoS One 8: e85498, 2013. 10.1371/journal.pone.0085498.
 274.Hornemann T, Kempa S, Himmel M, Hayess K, Furst DO, Wallimann T. Muscle‐type creatine kinase interacts with central domains of the M‐band proteins myomesin and M‐protein. J Mol Biol 332: 877‐887, 2003. 10.1016/S0022‐2836(03)00921‐5.
 275.Houmeida A, Holt J, Tskhovrebova L, Trinick J. Studies of the interaction between titin and myosin. J Cell Biol 131: 1471‐1481, 1995. 10.1083/jcb.131.6.1471.
 276.Howman EV, Sullivan N, Poon EP, Britton JE, Hilton‐Jones D, Davies KE. Syncoilin accumulation in two patients with desmin‐related myopathy. Neuromuscul Disord 13: 42‐48, 2003. 10.1016/S0960‐8966(02)00181‐5.
 277.Hu L‐YR, Ackermann MA, Kontrogianni‐Konstantopoulos A. The sarcomeric M‐Region: A molecular command center for diverse cellular processes. Biomed Res Int 2015: 1‐25, 2015. 10.1155/2015/714197.
 278.Huang P, Zhao XS, Fields M, Ransohoff RM, Zhou L. Imatinib attenuates skeletal muscle dystrophy in mdx mice. FASEB J 23: 2539‐2548, 2009. 10.1096/fj.09‐129833.
 279.Huber AH, Nelson WJ, Weis WI. Three‐dimensional structure of the armadillo repeat region of β‐catenin. Cell 90: 871‐882, 1997. 10.1016/s0092‐8674(00)80352‐9.
 280.Huby AC, Mendsaikhan U, Takagi K, Martherus R, Wansapura J, Gong N, Osinska H, James JF, Kramer K, Saito K, Robbins J, Khuchua Z, Towbin JA, Purevjav E. Disturbance in Z‐disk mechanosensitive proteins induced by a persistent mutant myopalladin causes familial restrictive cardiomyopathy. J Am Coll Cardiol 64: 2765‐2776, 2014. 10.1016/j.jacc.2014.09.071.
 281.Huxley H. The crossbridge mechanism of muscular contraction and its implications. J Exp Biol 115: 17‐30, 1985.
 282.Huxley H, Hanson J. Changes in the cross‐striations of muscle during contraction and stretch and their structural interpretation. Nature 173: 973‐976, 1954. 10.1038/173973a0.
 283.Huxley HE. Electron microscope studies on the structure of natural and synthetic protein filaments from striated muscle. J Mol Biol 7: 281‐308, 1963.
 284.Hynes RO. Integrins: Bidirectional, allosteric signaling machines. Cell 110: 673‐687, 2002.
 285.Ibraghimov‐Beskrovnaya O, Ervasti JM, Leveille CJ, Slaughter CA, Sernett SW, Campbell KP. Primary structure of dystrophin‐associated glycoproteins linking dystrophin to the extracellular matrix. Nature 355: 696‐702, 1992. 10.1038/355696a0.
 286.Ikeda K, Emoto N, Matsuo M, Yokoyama M. Molecular identification and characterization of a novel nuclear protein whose expression is up‐regulated in insulin‐resistant animals. J Biol Chem 278: 3514‐3520, 2003. 10.1074/jbc.M204563200.
 287.Irving T, Wu Y, Bekyarova T, Farman GP, Fukuda N, Granzier H. Thick‐filament strain and interfilament spacing in passive muscle: Effect of titin‐based passive tension. Biophys J 100: 1499‐1508, 2011. 10.1016/j.bpj.2011.01.059.
 288.Isenberg G, Leonard K, Jockusch BM. Structural aspects of vinculin‐actin interactions. J Mol Biol 158: 231‐249, 1982. 10.1016/0022‐2836(82)90431‐4.
 289.Ishiguro N, Baba T, Ishida T, Takeuchi K, Osaki M, Araki N, Okada E, Takahashi S, Saito M, Watanabe M, Nakada C, Tsukamoto Y, Sato K, Ito K, Fukayama M, Mori S, Ito H, Moriyama M. Carp, a cardiac ankyrin‐repeated protein, and its new homologue, Arpp, are differentially expressed in heart, skeletal muscle, and rhabdomyosarcomas. Am J Pathol 160: 1767‐1778, 2002. 10.1016/s0002‐9440(10)61123‐6.
 290.Iskratsch T, Lange S, Dwyer J, Kho AL, dos Remedios C, Ehler E. Formin follows function: A muscle‐specific isoform of FHOD3 is regulated by CK2 phosphorylation and promotes myofibril maintenance. J Cell Biol 191: 1159‐1172, 2010. 10.1083/jcb.201005060.
 291.Jahn D, Schramm S, Schnolzer M, Heilmann CJ, de Koster CG, Schutz W, Benavente R, Alsheimer M. A truncated lamin A in the Lmna‐/‐ mouse line: Implications for the understanding of laminopathies. Nucleus 3: 463‐474, 2012. 10.4161/nucl.21676.
 292.Jaka O, Casas‐Fraile L, Lopez de Munain A, Saenz A. Costamere proteins and their involvement in myopathic processes. Expert Rev Mol Med 17: e12‐e23, 2015. 10.1017/erm.2015.9.
 293.Jefferson JJ, Ciatto C, Shapiro L, Liem RK. Structural analysis of the plakin domain of bullous pemphigoid antigen1 (BPAG1) suggests that plakins are members of the spectrin superfamily. J Mol Biol 366: 244‐257, 2007. 10.1016/j.jmb.2006.11.036.
 294.Johannessen M, Moller S, Hansen T, Moens U, Van Ghelue M. The multifunctional roles of the four‐and‐a‐half‐LIM only protein FHL2. Cell Mol Life Sci 63: 268‐284, 2006. 10.1007/s00018‐005‐5438‐z.
 295.Jung D, Yang B, Meyer J, Chamberlain JS, Campbell KP. Identification and characterization of the dystrophin anchoring site on β‐dystroglycan. J Biol Chem 270: 27305‐27310, 1995. 10.1074/jbc.270.45.27305.
 296.Kaasik A, Veksler V, Boehm E, Novotova M, Minajeva A, Ventura‐Clapier R. Energetic crosstalk between organelles: Architectural integration of energy production and utilization. Circ Res 89: 153‐159, 2001. 10.1161/hh1401.093440.
 297.Kabsch W, Mannherz HG, Suck D, Pai EF, Holmes KC. Atomic structure of the actin: DNase I complex. Nature 347: 37‐44, 1990. 10.1038/347037a0.
 298.Kampourakis T, Yan Z, Gautel M, Sun YB, Irving M. Myosin binding protein‐C activates thin filaments and inhibits thick filaments in heart muscle cells. Proc Natl Acad Sci U S A 111: 18763‐18768, 2014. 10.1073/pnas.1413922112.
 299.Kan OM, Takeya R, Abe T, Kitajima N, Nishida M, Tominaga R, Kurose H, Sumimoto H. Mammalian formin Fhod3 plays an essential role in cardiogenesis by organizing myofibrillogenesis. Biol Open 1: 889‐896, 2012. 10.1242/bio.20121370.
 300.Karolczak J, Sobczak M, Majewski L, Yeghiazaryan M, Jakubiec‐Puka A, Ehler E, Slawinska U, Wilczynski GM, Redowicz MJ. Myosin VI in skeletal muscle: its localization in the sarcoplasmic reticulum, neuromuscular junction and muscle nuclei. Histochem Cell Biol 139: 873‐885, 2013. 10.1007/s00418‐012‐1070‐9.
 301.Kartenbeck J, Franke WW, Moser JG, Stoffels U. Specific attachment of desmin filaments to desmosomal plaques in cardiac myocytes. Embo j 2: 735‐742, 1983.
 302.Kartenbeck J, Schwechheimer K, Moll R, Franke WW. Attachment of vimentin filaments to desmosomal plaques in human meningiomal cells and arachnoidal tissue. J Cell Biol 98: 1072‐1081, 1984. 10.1083/jcb.98.3.1072.
 303.Kato T, Muraski J, Chen Y, Tsujita Y, Wall J, Glembotski CC, Schaefer E, Beckerle M, Sussman MA. Atrial natriuretic peptide promotes cardiomyocyte survival by cGMP‐dependent nuclear accumulation of zyxin and Akt. J Clin Invest 115: 2716‐2730, 2005. 10.1172/jci24280.
 304.Katrukha IA. Human cardiac troponin complex. Structure and functions. Biochemistry (Mosc) 78: 1447‐1465, 2013. 10.1134/s0006297913130063.
 305.Kaufman SJ, Foster RF. Replicating myoblasts express a muscle‐specific phenotype. Proc Natl Acad Sci U S A 85: 9606‐9610, 1988. 10.1073/pnas.85.24.9606.
 306.Kaushik G, Spenlehauer A, Sessions AO, Trujillo AS, Fuhrmann A, Fu Z, Venkatraman V, Pohl D, Tuler J, Wang M, Lakatta EG, Ocorr K, Bodmer R, Bernstein SI, Van Eyk JE, Cammarato A, Engler AJ. Vinculin network‐mediated cytoskeletal remodeling regulates contractile function in the aging heart. Sci Transl Med 7: 292ra299, 2015. 10.1126/scitranslmed.aaa5843.
 307.Kazmierski ST, Antin PB, Witt CC, Huebner N, McElhinny AS, Labeit S, Gregorio CC. The complete mouse nebulin gene sequence and the identification of cardiac nebulin. J Mol Biol 328: 835‐846, 2003. 10.1016/S0022‐2836(03)00348‐6.
 308.Kedar V, McDonough H, Arya R, Li HH, Rockman HA, Patterson C. Muscle‐specific RING finger 1 is a bona fide ubiquitin ligase that degrades cardiac troponin I. Proc Natl Acad Sci U S A 101: 18135‐18140, 2004. 10.1073/pnas.0404341102.
 309.Keira Y, Noguchi S, Minami N, Hayashi YK, Nishino I. Localization of calpain 3 in human skeletal muscle and its alteration in limb‐girdle muscular dystrophy 2A muscle. J Biochem 133: 659‐664, 2003. 10.1093/jb/mvg084.
 310.Keller A, Demeurie J, Merkulova T, Geraud G, Cywiner‐Golenzer C, Lucas M, Chatelet FP. Fibre‐type distribution and subcellular localisation of α and β enolase in mouse striated muscle. Biol Cell 92: 527‐535, 2000. 10.1016/S0248‐4900(00)01103‐5.
 311.Kemp TJ, Sadusky TJ, Saltisi F, Carey N, Moss J, Yang SY, Sassoon DA, Goldspink G, Coulton GR. Identification of Ankrd2, a novel skeletal muscle gene coding for a stretch‐responsive ankyrin‐repeat protein. Genomics 66: 229‐241, 2000. 10.1006/geno.2000.6213.
 312.Khairallah M, Khairallah R, Young ME, Dyck JR, Petrof BJ, Des Rosiers C. Metabolic and signaling alterations in dystrophin‐deficient hearts precede overt cardiomyopathy. J Mol Cell Cardiol 43: 119‐129, 2007. 10.1016/j.yjmcc.2007.05.015.
 313.Kielbasa OM, Reynolds JG, Wu CL, Snyder CM, Cho MY, Weiler H, Kandarian S, Naya FJ. Myospryn is a calcineurin‐interacting protein that negatively modulates slow‐fiber‐type transformation and skeletal muscle regeneration. FASEB J 25: 2276‐2286, 2011. 10.1096/fj.10‐169219.
 314.Kirby TJ, Chaillou T, McCarthy JJ. The role of microRNAs in skeletal muscle health and disease. Front Biosci (Landmark Ed) 20: 37‐77, 2015. 10.2741/4298.
 315.Kley RA, Hellenbroich Y, van der Ven PF, Furst DO, Huebner A, Bruchertseifer V, Peters SA, Heyer CM, Kirschner J, Schroder R, Fischer D, Muller K, Tolksdorf K, Eger K, Germing A, Brodherr T, Reum C, Walter MC, Lochmuller H, Ketelsen UP, Vorgerd M. Clinical and morphological phenotype of the filamin myopathy: A study of 31 German patients. Brain 130: 3250‐3264, 2007. 10.1093/brain/awm271.
 316.Knoll R, Buyandelger B. Z‐disc transcriptional coupling, sarcomeroptosis and mechanoptosis. Cell Biochem Biophys 66: 65‐71, 2013. 10.1007/s12013‐012‐9430‐6.
 317.Knoll R, Buyandelger B, Lab M. The sarcomeric Z‐disc and Z‐discopathies. J Biomed Biotechnol 2011: 1‐12, 2011. 10.1155/2011/569628.
 318.Knoll R, Hoshijima M, Hoffman HM, Person V, Lorenzen‐Schmidt I, Bang ML, Hayashi T, Shiga N, Yasukawa H, Schaper W, McKenna W, Yokoyama M, Schork NJ, Omens JH, McCulloch AD, Kimura A, Gregorio CC, Poller W, Schaper J, Schultheiss HP, Chien KR. The cardiac mechanical stretch sensor machinery involves a Z disc complex that is defective in a subset of human dilated cardiomyopathy. Cell 111: 943‐955, 2002. 10.1016/S0092‐8674(02)01226‐6.
 319.Knoll R, Kostin S, Klede S, Savvatis K, Klinge L, Stehle I, Gunkel S, Kotter S, Babicz K, Sohns M, Miocic S, Didie M, Knoll G, Zimmermann WH, Thelen P, Bickeboller H, Maier LS, Schaper W, Schaper J, Kraft T, Tschope C, Linke WA, Chien KR. A common MLP (muscle LIM protein) variant is associated with cardiomyopathy. Circ Res 106: 695‐704, 2010. 10.1161/circresaha.109.206243.
 320.Kobayashi T, Jin L, de Tombe PP. Cardiac thin filament regulation. Pflugers Arch 457: 37‐46, 2008. 10.1007/s00424‐008‐0511‐8.
 321.Koebis M, Ohsawa N, Kino Y, Sasagawa N, Nishino I, Ishiura S. Alternative splicing of myomesin 1 gene is aberrantly regulated in myotonic dystrophy type 1. Genes Cells 16: 961‐972, 2011. 10.1111/j.1365‐2443.2011.01542.x.
 322.Koenig M, Beggs AH, Moyer M, Scherpf S, Heindrich K, Bettecken T, Meng G, Müller CR, Lindlöf M, Kaariainen H, de la Chapelle A, Kiuru A, Savontaus ML, Gilgenkrantz H, Récan D, Chelly J, Kaplan JC, Covone AE, Archidiacono N, Romeo G, Liechti‐Gallati S, Schneider V, Braga S, Moser H, Darras BT, Murphy P, Francke U, Chen JD, Morgan G, Denton M, Greenberg CR, Wrogemann K, Blonden LAJ, van Paassen HMB, van Ommen GJB, Kunkel LM. The molecular basis for Duchenne versus Becker muscular dystrophy: Correlation of severity with type of deletion. Am J Hum Genet 45: 498‐506, 1989.
 323.Koenig M, Kunkel LM. Detailed analysis of the repeat domain of dystrophin reveals four potential hinge segments that may confer flexibility. J Biol Chem 265: 4560‐4566, 1990.
 324.Koenig M, Monaco AP, Kunkel LM. The complete sequence of dystrophin predicts a rod‐shaped cytoskeletal protein. Cell 53: 219‐228, 1988. 10.1016/0092‐8674(88)90383‐2.
 325.Kojic S, Nestorovic A, Rakicevic L, Belgrano A, Stankovic M, Divac A, Faulkner G. A novel role for cardiac ankyrin repeat protein Ankrd1/CARP as a co‐activator of the p53 tumor suppressor protein. Arch Biochem Biophys 502: 60‐67, 2010. 10.1016/j.abb.2010.06.029.
 326.Kolb J, Li F, Methawasin M, Adler M, Escobar YN, Nedrud J, Pappas CT, Harris SP, Granzier H. Thin filament length in the cardiac sarcomere varies with sarcomere length but is independent of titin and nebulin. J Mol Cell Cardiol 30: 286‐294, 2016. 10.1016/j.yjmcc.2016.04.013.
 327.Kong Y, Flick MJ, Kudla AJ, Konieczny SF. Muscle LIM protein promotes myogenesis by enhancing the activity of MyoD. Mol Cell Biol 17: 4750‐4760, 1997. 10.1128/mcb.17.8.4750.
 328.Kong Y, Shelton JM, Rothermel B, Li X, Richardson JA, Bassel‐Duby R, Williams RS. Cardiac‐specific LIM protein FHL2 modifies the hypertrophic response to β‐adrenergic stimulation. Circulation 103: 2731‐2738, 2001. 10.1161/01.CIR.103.22.2731.
 329.Konieczny P, Fuchs P, Reipert S, Kunz WS, Zeold A, Fischer I, Paulin D, Schroder R, Wiche G. Myofiber integrity depends on desmin network targeting to Z‐disks and costameres via distinct plectin isoforms. J Cell Biol 181: 667‐681, 2008. 10.1083/jcb.200711058.
 330.Kontrogianni‐Konstantopoulos A, Ackermann MA, Bowman AL, Yap SV, Bloch RJ. Muscle giants: Molecular scaffolds in sarcomerogenesis. Physiol Rev 89: 1217‐1267, 2009. 10.1152/physrev.00017.2009.
 331.Kontrogianni‐Konstantopoulos A, Bloch RJ. The hydrophilic domain of small ankyrin‐1 interacts with the two N‐terminal immunoglobulin domains of titin. J Biol Chem 278: 3985‐3991, 2003. 10.1074/jbc.M209012200.
 332.Kontrogianni‐Konstantopoulos A, Catino DH, Strong JC, Sutter S, Borisov AB, Pumplin DW, Russell MW, Bloch RJ. Obscurin modulates the assembly and organization of sarcomeres and the sarcoplasmic reticulum. FASEB J 20: 2102‐2111, 2006. 10.1096/fj.06‐5761com.
 333.Kostetskii I, Li J, Xiong Y, Zhou R, Ferrari VA, Patel VV, Molkentin JD, Radice GL. Induced deletion of the N‐cadherin gene in the heart leads to dissolution of the intercalated disc structure. Circ Res 96: 346‐354, 2005. 10.1161/01.RES.0000156274.72390.2c.
 334.Kostyukova AS. Tropomodulins and tropomodulin/tropomyosin interactions. Cell Mol Life Sci 65: 563‐569, 2008. 10.1007/s00018‐007‐7347‐9.
 335.Kotaka M, Kostin S, Ngai S, Chan K, Lau Y, Lee SM, Li H, Ng EK, Schaper J, Tsui SK, Fung K, Lee C, Waye MM. Interaction of hCLIM1, an enigma family protein, with α‐actinin 2. J Cell Biochem 78: 558‐565, 2000. 10.1002/1097‐4644(20000915)78:4<558::AID‐JCB5>3.0.CO;2‐I.
 336.Kotaka M, Lau YM, Cheung KK, Lee SM, Li HY, Chan WY, Fung KP, Lee CY, Waye MM, Tsui SK. Elfin is expressed during early heart development. J Cell Biochem 83: 463‐472, 2001. 10.1002/jcb.1244.
 337.Kouloumenta A, Mavroidis M, Capetanaki Y. Proper perinuclear localization of the TRIM‐like protein myospryn requires its binding partner desmin. J Biol Chem 282: 35211‐35221, 2007. 10.1074/jbc.M704733200.
 338.Krcmery J, Camarata T, Kulisz A, Simon HG. Nucleocytoplasmic functions of the PDZ‐LIM protein family: New insights into organ development. Bioessays 32: 100‐108, 2010. 10.1002/bies.200900148.
 339.Kremneva E, Makkonen MH, Skwarek‐Maruszewska A, Gateva G, Michelot A, Dominguez R, Lappalainen P. Cofilin‐2 controls actin filament length in muscle sarcomeres. Dev Cell 31: 215‐226, 2014. 10.1016/j.devcel.2014.09.002.
 340.Krenz M, Robbins J. Impact of β‐myosin heavy chain expression on cardiac function during stress. J Am Coll Cardiol 44: 2390‐2397, 2004. 10.1016/j.jacc.2004.09.044.
 341.Kruger M, Kotter S. Titin, a central mediator for hypertrophic signaling, exercise‐induced mechanosignaling and skeletal muscle remodeling. Front Physiol 7: 1‐8, 2016. 10.3389/fphys.2016.00076.
 342.Kruger M, Wright J, Wang K. Nebulin as a length regulator of thin filaments of vertebrate skeletal muscles: Correlation of thin filament length, nebulin size, and epitope profile. J Cell Biol 115: 97‐107, 1991. 10.1083/jcb.115.1.97.
 343.Kruger O, Maxeiner S, Kim JS, van Rijen HV, de Bakker JM, Eckardt D, Tiemann K, Lewalter T, Ghanem A, Luderitz B, Willecke K. Cardiac morphogenetic defects and conduction abnormalities in mice homozygously deficient for connexin40 and heterozygously deficient for connexin45. J Mol Cell Cardiol 41: 787‐797, 2006. 10.1016/j.yjmcc.2006.07.005.
 344.Kulikovskaya I, McClellan G, Flavigny J, Carrier L, Winegrad S. Effect of MyBP‐C binding to actin on contractility in heart muscle. J Gen Physiol 122: 761‐774, 2003. 10.1085/jgp.200308941.
 345.Kumar A, Crawford K, Close L, Madison M, Lorenz J, Doetschman T, Pawlowski S, Duffy J, Neumann J, Robbins J, Boivin GP, O'Toole BA, Lessard JL. Rescue of cardiac α‐actin‐deficient mice by enteric smooth muscle γ‐actin. Proc Natl Acad Sci U S A 94: 4406‐4411, 1997. 10.1073/pnas.94.9.4406.
 346.Kumar A, Khandelwal N, Malya R, Reid MB, Boriek AM. Loss of dystrophin causes aberrant mechanotransduction in skeletal muscle fibers. FASEB J 18: 102‐113, 2004. 10.1096/fj.03‐0453com.
 347.Kunst G, Kress KR, Gruen M, Uttenweiler D, Gautel M, Fink RH. Myosin binding protein C, a phosphorylation‐dependent force regulator in muscle that controls the attachment of myosin heads by its interaction with myosin S2. Circ Res 86: 51‐58, 2000. 10.1161/01.res.86.1.51.
 348.Kuo H, Chen J, Ruiz‐Lozano P, Zou Y, Nemer M, Chien KR. Control of segmental expression of the cardiac‐restricted ankyrin repeat protein gene by distinct regulatory pathways in murine cardiogenesis. Development 126: 4223‐4234, 1999.
 349.Kuroda S, Tokunaga C, Kiyohara Y, Higuchi O, Konishi H, Mizuno K, Gill GN, Kikkawa U. Protein‐protein interaction of zinc finger LIM domains with protein kinase C. J Biol Chem 271: 31029‐31032, 1996. 10.1074/jbc.271.49.31029.
 350.Labeit S, Gautel M, Lakey A, Trinick J. Towards a molecular understanding of titin. Embo j 11: 1711‐1716, 1992.
 351.Labeit S, Kolmerer B. The complete primary structure of human nebulin and its correlation to muscle structure. J Mol Biol 248: 308‐315, 1995. 10.1016/S0022‐2836(95)80052‐2.
 352.Labeit S, Kolmerer B. Titins: Giant proteins in charge of muscle ultrastructure and elasticity. Science 270: 293‐296, 1995. 10.1126/science.270.5234.293.
 353.Labeit S, Lahmers S, Burkart C, Fong C, McNabb M, Witt S, Witt C, Labeit D, Granzier H. Expression of distinct classes of titin isoforms in striated and smooth muscles by alternative splicing, and their conserved interaction with filamins. J Mol Biol 362: 664‐681, 2006. 10.1016/j.jmb.2006.07.077.
 354.Laing NG, Clarke NF, Dye DE, Liyanage K, Walker KR, Kobayashi Y, Shimakawa S, Hagiwara T, Ouvrier R, Sparrow JC, Nishino I, North KN, Nonaka I. Actin mutations are one cause of congenital fibre type disproportion. Ann Neurol 56: 689‐694, 2004. 10.1002/ana.20260.
 355.Laing NG, Nowak KJ. When contractile proteins go bad: the sarcomere and skeletal muscle disease. Bioessays 27: 809‐822, 2005. 10.1002/bies.20269.
 356.Lange S, Auerbach D, McLoughlin P, Perriard E, Schafer BW, Perriard JC, Ehler E. Subcellular targeting of metabolic enzymes to titin in heart muscle may be mediated by DRAL/FHL‐2. J Cell Sci 115: 4925‐4936, 2002. 10.1242/jcs.00181.
 357.Lange S, Himmel M, Auerbach D, Agarkova I, Hayess K, Fürst DO, Perriard J‐C, Ehler E. Dimerisation of myomesin: Implications for the structure of the sarcomeric M‐band. J Mol Biol 345: 289‐298, 2005. 10.1016/j.jmb.2004.10.040.
 358.Lange S, Ouyang K, Meyer G, Cui L, Cheng H, Lieber RL, Chen J. Obscurin determines the architecture of the longitudinal sarcoplasmic reticulum. J Cell Sci 122: 2640‐2650, 2009. 10.1242/jcs.046193.
 359.Larsen TH, Dalen H, Sommer JR, Boyle R, Lieberman M. Membrane skeleton in cultured chick cardiac myocytes revealed by high resolution immunocytochemistry. Histochem Cell Biol 112: 307‐316, 1999. 10.1007/s004180050452.
 360.Laure L, Daniele N, Suel L, Marchand S, Aubert S, Bourg N, Roudaut C, Duguez S, Bartoli M, Richard I. A new pathway encompassing calpain 3 and its newly identified substrate cardiac ankyrin repeat protein is involved in the regulation of the nuclear factor‐kappaB pathway in skeletal muscle. Febs j 277: 4322‐4337, 2010. 10.1111/j.1742‐4658.2010.07820.x.
 361.Lawlor MW, Ottenheijm CA, Lehtokari V‐L, Cho K, Pelin K, Wallgren‐Pettersson C, Granzier H, Beggs AH. Novel mutations in NEB cause abnormal nebulin expression and markedly impaired muscle force generation in severe nemaline myopathy. Skelet Muscle 1: 1‐12, 2011. 10.1186/2044‐5040‐1‐23.
 362.Lazarides E. The distribution of desmin (100 Å) filaments in primary cultures of embryonic chick cardiac cells. Exp Cell Res 112: 265‐273, 1978. 10.1016/0014‐4827(78)90209‐4.
 363.Leavis PC, Gergely J. Thin filament proteins and thin filament‐linked regulation of vertebrate muscle contraction. CRC Crit Rev Biochem 16: 235‐305, 1984. 10.3109/10409238409108717.
 364.Lebakken CS, Venzke DP, Hrstka RF, Consolino CM, Faulkner JA, Williamson RA, Campbell KP. Sarcospan‐deficient mice maintain normal muscle function. Mol Cell Biol 20: 1669‐1677, 2000. 10.1128/mcb.20.5.1669‐1677.2000.
 365.Lehman W, Hatch V, Korman V, Rosol M, Thomas L, Maytum R, Geeves MA, Van Eyk JE, Tobacman LS, Craig R. Tropomyosin and actin isoforms modulate the localization of tropomyosin strands on actin filaments. J Mol Biol 302: 593‐606, 2000. 10.1006/jmbi.2000.4080.
 366.Lehman W, Rosol M, Tobacman LS, Craig R. Troponin organization on relaxed and activated thin filaments revealed by electron microscopy and three‐dimensional reconstruction. J Mol Biol 307: 739‐744, 2001. 10.1006/jmbi.2001.4514.
 367.Lehti M, Kivela R, Komi P, Komulainen J, Kainulainen H, Kyrolainen H. Effects of fatiguing jumping exercise on mRNA expression of titin‐complex proteins and calpains. J Appl Physiol (1985) 106: 1419‐1424, 2009. 10.1152/japplphysiol.90660.2008.
 368.Lek M, Quinlan KG, North KN. The evolution of skeletal muscle performance: gene duplication and divergence of human sarcomeric α‐actinins. Bioessays 32: 17‐25, 2010. 10.1002/bies.200900110.
 369.Lendahl U, Zimmerman LB, McKay RD. CNS stem cells express a new class of intermediate filament protein. Cell 60: 585‐595, 1990. 10.1016/0092‐8674(90)90662‐x.
 370.LeWinter MM, Granzier HL. Titin is a major human disease gene. Circulation 127: 938‐944, 2013. 10.1161/circulationaha.112.139717.
 371.Li B, Zhuang L, Trueb B. Zyxin interacts with the SH3 domains of the cytoskeletal proteins LIM‐nebulette and Lasp‐1. J Biol Chem 279: 20401‐20410, 2004. 10.1074/jbc.M310304200.
 372.Li H, Choudhary SK, Milner DJ, Munir MI, Kuisk IR, Capetanaki Y. Inhibition of desmin expression blocks myoblast fusion and interferes with the myogenic regulators MyoD and myogenin. J Cell Biol 124: 827‐841, 1994. 10.1083/jcb.124.5.827.
 373.Li H, Linke WA, Oberhauser AF, Carrion‐Vazquez M, Kerkvliet JG, Lu H, Marszalek PE, Fernandez JM. Reverse engineering of the giant muscle protein titin. Nature 418: 998‐1002, 2002. 10.1038/nature00938.
 374.Li J, Goossens S, van Hengel J, Gao E, Cheng L, Tyberghein K, Shang X, De Rycke R, van Roy F, Radice GL. Loss of αT‐catenin alters the hybrid adhering junctions in the heart and leads to dilated cardiomyopathy and ventricular arrhythmia following acute ischemia. J Cell Sci 125: 1058‐1067, 2012. 10.1242/jcs.098640.
 375.Li M, Andersson‐Lendahl M, Sejersen T, Arner A. Knockdown of fast skeletal myosin‐binding protein C in zebrafish results in a severe skeletal myopathy. J Gen Physiol 147: 309‐322, 2016. 10.1085/jgp.201511452.
 376.Li Z, Colucci‐Guyon E, Pincon‐Raymond M, Mericskay M, Pournin S, Paulin D, Babinet C. Cardiovascular lesions and skeletal myopathy in mice lacking desmin. Dev Biol 175: 362‐366, 1996. 10.1006/dbio.1996.0122.
 377.Li Z, Parlakian A, Coletti D, Alonso‐Martin S, Hourde C, Joanne P, Gao‐Li J, Blanc J, Ferry A, Paulin D, Xue Z, Agbulut O. Synemin acts as a regulator of signalling molecules during skeletal muscle hypertrophy. J Cell Sci 127: 4589‐4601, 2014. 10.1242/jcs.143164.
 378.Lim LE, Duclos F, Broux O, Bourg N, Sunada Y, Allamand V, Meyer J, Richard I, Moomaw C, Slaughter C, Tome FMS, Fardeau M, Jackson CE, Beckmann JS, Campbell KP. β‐sarcoglycan: Characterization and role in limb‐girdle muscular dystrophy linked to 4q12. Nat Genet 11: 257‐265, 1995. 10.1016/0960‐8966(96)88965‐6.
 379.Lim MS, Sutherland C, Walsh MP. Phosphorylation of bovine cardiac C‐protein by protein kinase C. Biochem Biophys Res Commun 132: 1187‐1195, 1985. 10.1016/0006‐291x(85)91932‐1.
 380.Lin Y‐H, Warren CM, Li J, McKinsey TA, Russell B. Myofibril growth during cardiac hypertrophy is regulated through dual phosphorylation and acetylation of the actin capping protein CapZ. Cell Signal 28: 1015‐1024, 2016. 10.1016/j.cellsig.2016.05.011.
 381.Lin YH, Li J, Swanson ER, Russell B. CapZ and actin capping dynamics increase in myocytes after a bout of exercise and abates in hours after stimulation ends. J Appl Physiol (1985) 114: 1603‐1609, 2013. 10.1152/japplphysiol.01283.2012.
 382.Lin YH, Swanson ER, Li J, Mkrtschjan MA, Russell B. Cyclic mechanical strain of myocytes modifies CapZβ1 post translationally via PKCϵ;. J Muscle Res Cell Motil 36: 329‐337, 2015. 10.1007/s10974‐015‐9420‐6.
 383.Linden M, Li Z, Paulin D, Gotow T, Leterrier JF. Effects of desmin gene knockout on mice heart mitochondria. J Bioenerg Biomembr 33: 333‐341, 2001. 10.1023/A:1010611408007.
 384.Lindstrom NO, Neves C, McIntosh R, Miedzybrodzka Z, Vargesson N, Collinson JM. Tissue specific characterisation of Lim‐kinase 1 expression during mouse embryogenesis. Gene Expr Patterns 11: 221‐232, 2011. 10.1016/j.gep.2010.12.003.
 385.Linke WA, Hamdani N. Gigantic business: titin properties and function through thick and thin. Circ Res 114: 1052‐1068, 2014. 10.1161/circresaha.114.301286.
 386.Linke WA, Ivemeyer M, Labeit S, Hinssen H, Rüegg JC, Gautel M. Actin‐titin interaction in cardiac myofibrils: Probing a physiological role. Biophys J 73: 905‐919, 1997. 10.1016/S0006‐3495(97)78123‐2.
 387.Linke WA, Ivemeyer M, Olivieri N, Kolmerer B, Rüegg CJ, Labeit S. Towards a molecular understanding of the elasticity of titin. J Mol Biol 261: 62‐71, 1996. 10.1006/jmbi.1996.0441.
 388.Linke WA, Rudy DE, Centner T, Gautel M, Witt C, Labeit S, Gregorio CC. I‐band titin in cardiac muscle is a three‐element molecular spring and is critical for maintaining thin filament structure. J Cell Biol 146: 631‐644, 1999. 10.1083/jcb.146.3.631.
 389.Linnemann A, Vakeel P, Bezerra E, Orfanos Z, Djinovic‐Carugo K, van der Ven PF, Kirfel G, Furst DO. Myopodin is an F‐actin bundling protein with multiple independent actin‐binding regions. J Muscle Res Cell Motil 34: 61‐69, 2013. 10.1007/s10974‐012‐9334‐5.
 390.Linnemann A, van der Ven PF, Vakeel P, Albinus B, Simonis D, Bendas G, Schenk JA, Micheel B, Kley RA, Furst DO. The sarcomeric Z‐disc component myopodin is a multiadapter protein that interacts with filamin and α‐actinin. Eur J Cell Biol 89: 681‐692, 2010. 10.1016/j.ejcb.2010.04.004.
 391.Littlefield R, Almenar‐Queralt A, Fowler VM. Actin dynamics at pointed ends regulates thin filament length in striated muscle. Nat Cell Biol 3: 544‐551, 2001. 10.1038/35078517.
 392.Liu LA, Engvall E. Sarcoglycan isoforms in skeletal muscle. J Biol Chem 274: 38171‐38176, 1999. 10.1074/jbc.274.53.38171.
 393.Loh NY, Ambrose HJ, Guay‐Woodford LM, DasGupta S, Nawrotzki RA, Blake DJ, Davies KE. Genomic organization and refined mapping of the mouse β‐dystrobrevin gene. Mamm Genome 9: 857‐862, 1998. 10.1007/s003359900883.
 394.Lompre AM, Nadal‐Ginard B, Mahdavi V. Expression of the cardiac ventricular α‐ and β‐myosin heavy chain genes is developmentally and hormonally regulated. J Biol Chem 259: 6437‐6446, 1984.
 395.Long C, Amoasii L, Mireault AA, McAnally JR, Li H, Sanchez‐Ortiz E, Bhattacharyya S, Shelton JM, Bassel‐Duby R, Olson EN. Postnatal genome editing partially restores dystrophin expression in a mouse model of muscular dystrophy. Science 351: 400‐403, 2016. 10.1126/science.aad5725.
 396.Loong CK, Badr MA, Chase PB. Tropomyosin flexural rigidity and single ca(2+) regulatory unit dynamics: Implications for cooperative regulation of cardiac muscle contraction and cardiomyocyte hypertrophy. Front Physiol 3: 1‐10, 2012. 10.3389/fphys.2012.00080.
 397.Lopes LR, Elliott PM. A straightforward guide to the sarcomeric basis of cardiomyopathies. Heart 100: 1916‐1923, 2014. 10.1136/heartjnl‐2014‐305645.
 398.Louis HA, Pino JD, Schmeichel KL, Pomies P, Beckerle MC. Comparison of three members of the cysteine‐rich protein family reveals functional conservation and divergent patterns of gene expression. J Biol Chem 272: 27484‐27491, 1997. 10.1074/jbc.272.43.27484.
 399.Lovering RM, O'Neill A, Muriel JM, Prosser BL, Strong J, Bloch RJ. Physiology, structure, and susceptibility to injury of skeletal muscle in mice lacking keratin 19‐based and desmin‐based intermediate filaments. Am J Physiol Cell Physiol 300: C803‐C813, 2011. 10.1152/ajpcell.00394.2010.
 400.Lowes BD, Minobe W, Abraham WT, Rizeq MN, Bohlmeyer TJ, Quaife RA, Roden RL, Dutcher DL, Robertson AD, Voelkel NF, Badesch DB, Groves BM, Gilbert EM, Bristow MR. Changes in gene expression in the intact human heart. Downregulation of α‐myosin heavy chain in hypertrophied, failing ventricular myocardium. J Clin Invest 100: 2315‐2324, 1997. 10.1172/jci119770.
 401.Lu QW, Wu XY, Morimoto S. Inherited cardiomyopathies caused by troponin mutations. J Geriatr Cardiol 10: 91‐101, 2013. 10.3724/SP.J.1263.2012.07131.
 402.Lun AS, Chen J, Lange S. Probing muscle ankyrin‐repeat protein (MARP) structure and function. Anat Rec (Hoboken) 297: 1615‐1629, 2014. 10.1002/ar.22968.
 403.Luo G, Herrera AH, Horowits R. Molecular interactions of N‐RAP, a nebulin‐related protein of striated muscle myotendon junctions and intercalated disks. Biochemistry 38: 6135‐6143, 1999. 10.1021/bi982395t.
 404.Luo G, Zhang JQ, Nguyen TP, Herrera AH, Paterson B, Horowits R. Complete cDNA sequence and tissue localization of N‐RAP, a novel nebulin‐related protein of striated muscle. Cell Motil Cytoskeleton 38: 75‐90, 1997. 10.1002/(sici)1097‐0169(1997)38:1<75::aid‐cm7>3.0.co;2‐g.
 405.Luther PK. The vertebrate muscle Z‐disc: Sarcomere anchor for structure and signalling. J Muscle Res Cell Motil 30: 171‐185, 2009. 10.1007/s10974‐009‐9189‐6.
 406.Luther PK, Craig R. Modulation of striated muscle contraction by binding of myosin binding protein C to actin. Bioarchitecture 1: 277‐283, 2011. 10.4161/bioa.1.6.19341.
 407.Ma K, Wang K. Interaction of nebulin SH3 domain with titin PEVK and myopalladin: implications for the signaling and assembly role of titin and nebulin. FEBS Lett 532: 273‐278, 2002. 10.1016/S0014‐5793(02)03655‐4.
 408.Maatz H, Jens M, Liss M, Schafer S, Heinig M, Kirchner M, Adami E, Rintisch C, Dauksaite V, Radke MH, Selbach M, Barton PJ, Cook SA, Rajewsky N, Gotthardt M, Landthaler M, Hubner N. RNA‐binding protein RBM20 represses splicing to orchestrate cardiac pre‐mRNA processing. J Clin Invest 124: 3419‐3430, 2014. 10.1172/jci74523.
 409.MacArthur DG, Seto JT, Raftery JM, Quinlan KG, Huttley GA, Hook JW, Lemckert FA, Kee AJ, Edwards MR, Berman Y, Hardeman EC, Gunning PW, Easteal S, Yang N, North KN. Loss of ACTN3 gene function alters mouse muscle metabolism and shows evidence of positive selection in humans. Nat Genet 39: 1261‐1265, 2007. 10.1038/ng2122.
 410.Maiellaro‐Rafferty K, Wansapura JP, Mendsaikhan U, Osinska H, James JF, Taylor MD, Robbins J, Kranias EG, Towbin JA, Purevjav E. Altered regional cardiac wall mechanics are associated with differential cardiomyocyte calcium handling due to nebulette mutations in preclinical inherited dilated cardiomyopathy. J Mol Cell Cardiol 60: 151‐160, 2013. 10.1016/j.yjmcc.2013.04.021.
 411.Manisastry SM, Zaal KJ, Horowits R. Myofibril assembly visualized by imaging N‐RAP, α‐actinin, and actin in living cardiomyocytes. Exp Cell Res 315: 2126‐2139, 2009. 10.1016/j.yexcr.2009.02.006.
 412.Manning J, O'Malley D. What has the mdx mouse model of Duchenne muscular dystrophy contributed to our understanding of this disease? J Muscle Res Cell Motil 36: 155‐167, 2015. 10.1007/s10974‐015‐9406‐4.
 413.Manso AM, Li R, Monkley SJ, Cruz NM, Ong S, Lao DH, Koshman YE, Gu Y, Peterson KL, Chen J, Abel ED, Samarel AM, Critchley DR, Ross RS. Talin1 has unique expression versus talin 2 in the heart and modifies the hypertrophic response to pressure overload. J Biol Chem 288: 4252‐4264, 2013. 10.1074/jbc.M112.427484.
 414.Markert CD, Meaney MP, Voelker KA, Grange RW, Dalley HW, Cann JK, Ahmed M, Bishwokarma B, Walker SJ, Yu SX, Brown M, Lawlor MW, Beggs AH, Childers MK. Functional muscle analysis of the Tcap knockout mouse. Hum Mol Genet 19: 2268‐2283, 2010. 10.1093/hmg/ddq105.
 415.Marques MJ, Oggiam DS, Barbin IC, Ferretti R, Santo Neto H. Long‐term therapy with deflazacort decreases myocardial fibrosis in mdx mice. Muscle Nerve 40: 466‐468, 2009. 10.1002/mus.21341.
 416.Marrs JA, Andersson‐Fisone C, Jeong MC, Cohen‐Gould L, Zurzolo C, Nabi IR, Rodriguez‐Boulan E, Nelson WJ. Plasticity in epithelial cell phenotype: Modulation by expression of different cadherin cell adhesion molecules. J Cell Biol 129: 507‐519, 1995. 10.1083/jcb.129.2.507.
 417.Marston S, Copeland O, Jacques A, Livesey K, Tsang V, McKenna WJ, Jalilzadeh S, Carballo S, Redwood C, Watkins H. Evidence from human myectomy samples that MYBPC3 mutations cause hypertrophic cardiomyopathy through haploinsufficiency. Circ Res 105: 219‐222, 2009. 10.1161/circresaha.109.202440.
 418.Marston S, Montgiraud C, Munster AB, Copeland O, Choi O, Dos Remedios C, Messer AE, Ehler E, Knoll R. OBSCN mutations associated with dilated cardiomyopathy and haploinsufficiency. PLoS One 10: e0138568, 2015. 10.1371/journal.pone.0138568.
 419.Martinsson T, Oldfors A, Darin N, Berg K, Tajsharghi H, Kyllerman M, Wahlstrom J. Autosomal dominant myopathy: Missense mutation (Glu‐706 –>Lys) in the myosin heavy chain IIa gene. Proc Natl Acad Sci U S A 97: 14614‐14619, 2000. 10.1073/pnas.250289597.
 420.Maruyama K, Ebashi S. α‐Actinin, a new structural protein from striated muscle. II. Action on actin. J Biochem 58: 13‐19, 1965.
 421.Mastrototaro G, Liang X, Li X, Carullo P, Piroddi N, Tesi C, Gu Y, Dalton ND, Peterson KL, Poggesi C, Sheikh F, Chen J, Bang ML. Nebulette knockout mice have normal cardiac function, but show Z‐line widening and up‐regulation of cardiac stress markers. Cardiovasc Res 107: 216‐225, 2015. 10.1093/cvr/cvv156.
 422.Matsumura CY, Taniguti AP, Pertille A, Santo Neto H, Marques MJ. Stretch‐activated calcium channel protein TRPC1 is correlated with the different degrees of the dystrophic phenotype in mdx mice. Am J Physiol Cell Physiol 301: C1344‐C1350, 2011. 10.1152/ajpcell.00056.2011.
 423.Matsumura K, Ervasti JM, Ohlendieck K, Kahl SD, Campbell KP. Association of dystrophin‐related protein with dystrophin‐associated proteins in mdx mouse muscle. Nature 360: 588‐591, 1992. 10.1038/360588a0.
 424.Mayer U, Saher G, Fassler R, Bornemann A, Echtermeyer F, von der Mark H, Miosge N, Poschl E, von der Mark K. Absence of integrin α7 causes a novel form of muscular dystrophy. Nat Genet 17: 318‐323, 1997. 10.1038/ng1197‐318.
 425.McCullagh KJ, Edwards B, Poon E, Lovering RM, Paulin D, Davies KE. Intermediate filament‐like protein syncoilin in normal and myopathic striated muscle. Neuromuscul Disord 17: 970‐979, 2007. 10.1016/j.nmd.2007.06.004.
 426.McElhinny AS, Kakinuma K, Sorimachi H, Labeit S, Gregorio CC. Muscle‐specific RING finger‐1 interacts with titin to regulate sarcomeric M‐line and thick filament structure and may have nuclear functions via its interaction with glucocorticoid modulatory element binding protein‐1. J Cell Biol 157: 125‐136, 2002. 10.1083/jcb.200108089.
 427.McElhinny AS, Kolmerer B, Fowler VM, Labeit S, Gregorio CC. The N‐terminal end of nebulin interacts with tropomodulin at the pointed ends of the thin filaments. J Biol Chem 276: 583‐592, 2001. 10.1074/jbc.M005693200.
 428.McKay RT, Tripet BP, Hodges RS, Sykes BD. Interaction of the second binding region of troponin I with the regulatory domain of skeletal muscle troponin C as determined by NMR spectroscopy. J Biol Chem 272: 28494‐28500, 1997. 10.1074/jbc.272.45.28494.
 429.McKeon FD, Kirschner MW, Caput D. Homologies in both primary and secondary structure between nuclear envelope and intermediate filament proteins. Nature 319: 463‐468, 1986. 10.1038/319463a0.
 430.McKeown CR, Nowak RB, Moyer J, Sussman MA, Fowler VM. Tropomodulin1 is required in the heart but not the yolk sac for mouse embryonic development. Circ Res 103: 1241‐1248, 2008. 10.1161/circresaha.108.178749.
 431.McKillop DF, Geeves MA. Regulation of the interaction between actin and myosin subfragment 1: Evidence for three states of the thin filament. Biophys J 65: 693‐701, 1993. 10.1016/s0006‐3495(93)81110‐x.
 432.McKoy G, Protonotarios N, Crosby A, Tsatsopoulou A, Anastasakis A, Coonar A, Norman M, Baboonian C, Jeffery S, McKenna WJ. Identification of a deletion in plakoglobin in arrhythmogenic right ventricular cardiomyopathy with palmoplantar keratoderma and woolly hair (Naxos disease). Lancet 355: 2119‐2124, 2000. 10.1016/s0140‐6736(00)02379‐5.
 433.McNally EM, Duggan D, Rafael Gorospe J, Bönnemann CG, Fanin M, Pegoraro E, Lidov HGW, Noguchi S, Ozawa E, Finkel RS, Cruse RP, Angelini C, Kunkel LM, Hoffman EP. Mutations that disrupt the carboxyl‐terminus of γ‐sarcoglycan cause muscular dystrophy. Hum Mol Genet 5: 1841‐1847, 1996. 10.1093/hmg/5.11.1841.
 434.McNally EM, Ly CT, Kunkel LM. Human ε‐sarcoglycan is highly related to α‐sarcoglycan (adhalin), the limb girdle muscular dystrophy 2D gene1. FEBS Lett 422: 27‐32, 1998. 10.1016/S0014‐5793(97)01593‐7.
 435.McNally EM, Yoshida M, Mizuno Y, Ozawa E, Kunkel LM. Human adhalin is alternatively spliced and the gene is located on chromosome 17q21. Proc Natl Acad Sci U S A 91: 9690‐9694, 1994. 10.1073/pnas.91.21.9690.
 436.Meng W, Takeichi M. Adherens junction: Molecular architecture and regulation. Cold Spring Harb Perspect Biol 1: 1‐13, 2009. 10.1101/cshperspect.a002899.
 437.Meng Y, Zhang Y, Tregoubov V, Janus C, Cruz L, Jackson M, Lu WY, MacDonald JF, Wang JY, Falls DL, Jia Z. Abnormal spine morphology and enhanced LTP in LIMK‐1 knockout mice. Neuron 35: 121‐133, 2002. 10.1016/S0896‐6273(02)00758‐4.
 438.Mercuri E, Muntoni F. Muscular dystrophy: New challenges and review of the current clinical trials. Curr Opin Pediatr 25: 701‐707, 2013. 10.1097/MOP.0b013e328365ace5.
 439.Meredith C, Herrmann R, Parry C, Liyanage K, Dye DE, Durling HJ, Duff RM, Beckman K, de Visser M, van der Graaff MM, Hedera P, Fink JK, Petty EM, Lamont P, Fabian V, Bridges L, Voit T, Mastaglia FL, Laing NG. Mutations in the slow skeletal muscle fiber myosin heavy chain gene (MYH7) cause laing early‐onset distal myopathy (MPD1). Am J Hum Genet 75: 703‐708, 2004. 10.1086/424760.
 440.Mermelstein CS, Andrade LR, Portilho DM, Costa ML. Desmin filaments are stably associated with the outer nuclear surface in chick myoblasts. Cell Tissue Res 323: 351‐357, 2006. 10.1007/s00441‐005‐0063‐6.
 441.Mertens C, Kuhn C, Franke WW. Plakophilins 2a and 2b: constitutive proteins of dual location in the karyoplasm and the desmosomal plaque. J Cell Biol 135: 1009‐1025, 1996. 10.1083/jcb.135.4.1009.
 442.Mi‐Mi L, Votra S, Kemphues K, Bretscher A, Pruyne D. Z‐line formins promote contractile lattice growth and maintenance in striated muscles of C. elegans. J Cell Biol 198: 87‐102, 2012. 10.1083/jcb.201202053.
 443.Mikhailov AT, Torrado M. The enigmatic role of the ankyrin repeat domain 1 gene in heart development and disease. Int J Dev Biol 52: 811‐821, 2008. 10.1387/ijdb.082655am.
 444.Milam LM. Electron microscopy of rotary shadowed vinculin and vinculin complexes. J Mol Biol 184: 543‐545, 1985. 10.1016/0022‐2836(85)90301‐8.
 445.Miller G, Wang EL, Nassar KL, Peter AK, Crosbie RH. Structural and functional analysis of the sarcoglycan‐sarcospan subcomplex. Exp Cell Res 313: 639‐651, 2007. 10.1016/j.yexcr.2006.11.021.
 446.Miller MK, Bang M‐L, Witt CC, Labeit D, Trombitas C, Watanabe K, Granzier H, McElhinny AS, Gregorio CC, Labeit S. The muscle ankyrin repeat proteins: CARP, ankrd2/Arpp and DARP as a family of titin filament‐based stress response molecules. J Mol Biol 333: 951‐964, 2003. 10.1016/j.jmb.2003.09.012.
 447.Milner DJ, Mavroidis M, Weisleder N, Capetanaki Y. Desmin cytoskeleton linked to muscle mitochondrial distribution and respiratory function. J Cell Biol 150: 1283‐1298, 2000. 10.1083/jcb.150.6.1283.
 448.Milner DJ, Weitzer G, Tran D, Bradley A, Capetanaki Y. Disruption of muscle architecture and myocardial degeneration in mice lacking desmin. J Cell Biol 134: 1255‐1270, 1996. 10.1083/jcb.134.5.1255.
 449.Miosge N, Klenczar C, Herken R, Willem M, Mayer U. Organization of the myotendinous junction is dependent on the presence of α7β1 integrin. Lab Invest 79: 1591‐1599, 1999.
 450.Mizuno Y, Thompson TG, Guyon JR, Lidov HG, Brosius M, Imamura M, Ozawa E, Watkins SC, Kunkel LM. Desmuslin, an intermediate filament protein that interacts with α ‐dystrobrevin and desmin. Proc Natl Acad Sci U S A 98: 6156‐6161, 2001. 10.1073/pnas.111153298.
 451.Mogensen J, Hey T, Lambrecht S. A systematic review of phenotypic features associated with cardiac troponin i mutations in hereditary cardiomyopathies. Can J Cardiol 31: 1377‐1385, 2015. 10.1016/j.cjca.2015.06.015.
 452.Mogensen J, Perrot A, Andersen PS, Havndrup O, Klausen IC, Christiansen M, Bross P, Egeblad H, Bundgaard H, Osterziel KJ, Haltern G, Lapp H, Reinecke P, Gregersen N, Borglum AD. Clinical and genetic characteristics of α cardiac actin gene mutations in hypertrophic cardiomyopathy. J Med Genet 41: 1‐5, 2004. 10.1136/jmg.2003.010447.
 453.Mohiddin SA, Ahmed ZM, Griffith AJ, Tripodi D, Friedman TB, Fananapazir L, Morell RJ. Novel association of hypertrophic cardiomyopathy, sensorineural deafness, and a mutation in unconventional myosin VI (MYO6). J Med Genet 41: 309‐314, 2004. 10.1136/jmg.2003.011973.
 454.Mohiddin SA, Lu S, Cardoso JP, Carroll S, Jha S, Horowits R, Fananapazir L. Genomic organization, alternative splicing, and expression of human and mouse N‐RAP, a nebulin‐related LIM protein of striated muscle. Cell Motil Cytoskeleton 55: 200‐212, 2003. 10.1002/cm.10123.
 455.Molnar I, Migh E, Szikora S, Kalmar T, Vegh AG, Deak F, Barko S, Bugyi B, Orfanos Z, Kovacs J, Juhasz G, Varo G, Nyitrai M, Sparrow J, Mihaly J. DAAM is required for thin filament formation and Sarcomerogenesis during muscle development in Drosophila. PLoS Genet 10: e1004166, 2014. 10.1371/journal.pgen.1004166.
 456.Molony L, McCaslin D, Abernethy J, Paschal B, Burridge K. Properties of talin from chicken gizzard smooth muscle. J Biol Chem 262: 7790‐7795, 1987.
 457.Moncman CL, Wang K. Nebulette: A 107 kD nebulin‐like protein in cardiac muscle. Cell Motil Cytoskeleton 32: 205‐225, 1995. 10.1002/cm.970320305.
 458.Moncman CL, Wang K. Targeted disruption of nebulette protein expression alters cardiac myofibril assembly and function. Exp Cell Res 273: 204‐218, 2002. 10.1006/excr.2001.5423.
 459.Monkley SJ, Pritchard CA, Critchley DR. Analysis of the mammalian talin2 gene TLN2. Biochem Biophys Res Commun 286: 880‐885, 2001. 10.1006/bbrc.2001.5497.
 460.Monkley SJ, Zhou XH, Kinston SJ, Giblett SM, Hemmings L, Priddle H, Brown JE, Pritchard CA, Critchley DR, Fassler R. Disruption of the talin gene arrests mouse development at the gastrulation stage. Dev Dyn 219: 560‐574, 2000. 10.1002/1097‐0177(2000)9999:9999<::aid‐dvdy1079>3.0.co;2‐y.
 461.Moos C, Mason CM, Besterman JM, Feng IN, Dubin JH. The binding of skeletal muscle C‐protein to F‐actin, and its relation to the interaction of actin with myosin subfragment‐1. J Mol Biol 124: 571‐586, 1978. 10.1016/0022‐2836(78)90172‐9.
 462.Moos C, Offer G, Starr R, Bennett P. Interaction of C‐protein with myosin, myosin rod and light meromyosin. J Mol Biol 97: 1‐9, 1975. 10.1016/s0022‐2836(75)80017‐9.
 463.Moreira ES, Wiltshire TJ, Faulkner G, Nilforoushan A, Vainzof M, Suzuki OT, Valle G, Reeves R, Zatz M, Passos‐Bueno MR, Jenne DE. Limb‐girdle muscular dystrophy type 2G is caused by mutations in the gene encoding the sarcomeric protein telethonin. Nat Genet 24: 163‐166, 2000. 10.1038/72822.
 464.Morgan MJ, Madgwick AJ. The LIM proteins FHL1 and FHL3 are expressed differently in skeletal muscle. Biochem Biophys Res Commun 255: 245‐250, 1999. 10.1006/bbrc.1999.0179.
 465.Morgan MJ, Madgwick AJ. Slim defines a novel family of LIM‐proteins expressed in skeletal muscle. Biochem Biophys Res Commun 225: 632‐638, 1996. 10.1006/bbrc.1996.1222.
 466.Moriscot AS, Baptista IL, Bogomolovas J, Witt C, Hirner S, Granzier H, Labeit S. MuRF1 is a muscle fiber‐type II associated factor and together with MuRF2 regulates type‐II fiber trophicity and maintenance. J Struct Biol 170: 344‐353, 2010. 10.1016/j.jsb.2010.02.001.
 467.Moriyama M, Tsukamoto Y, Fujiwara M, Kondo G, Nakada C, Baba T, Ishiguro N, Miyazaki A, Nakamura K, Hori N, Sato K, Shomori K, Takeuchi K, Satoh H, Mori S, Ito H. Identification of a novel human ankyrin‐repeated protein homologous to CARP. Biochem Biophys Res Commun 285: 715‐723, 2001. 10.1006/bbrc.2001.5216.
 468.Moulik M, Vatta M, Witt SH, Arola AM, Murphy RT, McKenna WJ, Boriek AM, Oka K, Labeit S, Bowles NE, Arimura T, Kimura A, Towbin JA. ANKRD1, the gene encoding cardiac ankyrin repeat protein, is a novel dilated cardiomyopathy gene. J Am Coll Cardiol 54: 325‐333, 2009. 10.1016/j.jacc.2009.02.076.
 469.Mouton J, Loos B, Moolman‐Smook JC, Kinnear CJ. Ascribing novel functions to the sarcomeric protein, myosin binding protein H (MyBPH) in cardiac sarcomere contraction. Exp Cell Res 331: 338‐351, 2015. 10.1016/j.yexcr.2014.11.006.
 470.Mu Y, Jing R, Peter AK, Lange S, Lin L, Zhang J, Ouyang K, Fang X, Veevers J, Zhou X, Evans SM, Cheng H, Chen J. Cypher and Enigma homolog protein are essential for cardiac development and embryonic survival. J Am Heart Assoc 4: e001950‐e001961, 2015. 10.1161/jaha.115.001950.
 471.Muchir A, Bonne G, van der Kooi AJ, van Meegen M, Baas F, Bolhuis PA, de Visser M, Schwartz K. Identification of mutations in the gene encoding lamins A/C in autosomal dominant limb girdle muscular dystrophy with atrioventricular conduction disturbances (LGMD1B). Hum Mol Genet 9: 1453‐1459, 2000. 10.1093/hmg/9.9.1453.
 472.Mues A, van der Ven PF, Young P, Furst DO, Gautel M. Two immunoglobulin‐like domains of the Z‐disc portion of titin interact in a conformation‐dependent way with telethonin. FEBS Lett 428: 111‐114, 1998. 10.1016/S0014‐5793(98)00501‐8.
 473.Muhle‐Goll C, Habeck M, Cazorla O, Nilges M, Labeit S, Granzier H. Structural and functional studies of titin's fn3 modules reveal conserved surface patterns and binding to myosin S1–‐a possible role in the Frank‐Starling mechanism of the heart. J Mol Biol 313: 431‐447, 2001. 10.1006/jmbi.2001.5017.
 474.Murphy AC, Young PW. The actinin family of actin cross‐linking proteins—a genetic perspective. Cell Biosci 5: 1‐9, 2015. 10.1186/s13578‐015‐0029‐7.
 475.Muthuchamy M, Grupp IL, Grupp G, O'Toole BA, Kier AB, Boivin GP, Neumann J, Wieczorek DF. Molecular and physiological effects of overexpressing striated muscle β‐tropomyosin in the adult murine heart. J Biol Chem 270: 30593‐30603, 1995. 10.1074/jbc.270.51.30593.
 476.Muthuchamy M, Pajak L, Howles P, Doetschman T, Wieczorek DF. Developmental analysis of tropomyosin gene expression in embryonic stem cells and mouse embryos. Mol Cell Biol 13: 3311‐3323, 1993. 10.1128/MCB.13.6.3311.
 477.Nagueh SF, Shah G, Wu Y, Torre‐Amione G, King NM, Lahmers S, Witt CC, Becker K, Labeit S, Granzier HL. Altered titin expression, myocardial stiffness, and left ventricular function in patients with dilated cardiomyopathy. Circulation 110: 155‐162, 2004. 10.1161/01.cir.0000135591.37759.af.
 478.Nakada C, Tsukamoto Y, Oka A, Nonaka I, Sato K, Mori S, Ito H, Moriyama M. Altered expression of ARPP protein in skeletal muscles of patients with muscular dystrophy, congenital myopathy and spinal muscular atrophy. Pathobiology 71: 43‐51, 2004. 10.1159/000072961.
 479.Nakae Y, Hirasaka K, Goto J, Nikawa T, Shono M, Yoshida M, Stoward PJ. Subcutaneous injection, from birth, of epigallocatechin‐3‐gallate, a component of green tea, limits the onset of muscular dystrophy in mdx mice: A quantitative histological, immunohistochemical and electrophysiological study. Histochem Cell Biol 129: 489‐501, 2008. 10.1007/s00418‐008‐0390‐2.
 480.Nakamura K, Nakada C, Takeuchi K, Osaki M, Shomori K, Kato S, Ohama E, Sato K, Fukayama M, Mori S, Ito H, Moriyama M. Altered expression of cardiac ankyrin repeat protein and its homologue, ankyrin repeat protein with PEST and proline‐rich region, in atrophic muscles in amyotrophic lateral sclerosis. Pathobiology 70: 197‐203, 2002. 10.1159/000069329.
 481.Nakao T. Fine structure of the myotendinous junction and "terminal coupling" in the skeletal muscle of the lamprey, Lampetra japonica. Anat Rec 182: 321‐337, 1975. 10.1002/ar.1091820306.
 482.Nakao T. Some observations on the fine structure of the myotendinous junction in myotomal muscle of the tadpole tail. Cell Tissue Res 166: 241‐254, 1976. 10.1007/bf00227045.
 483.Nawata J, Ohno I, Isoyama S, Suzuki J, Miura S, Ikeda J, Shirato K. Differential expression of α1, α3 and α5 integrin subunits in acute and chronic stages of myocardial infarction in rats. Cardiovasc Res 43: 371‐381, 1999. 10.1016/s0008‐6363(99)00117‐0.
 484.Neagoe C, Kulke M, del Monte F, Gwathmey JK, de Tombe PP, Hajjar RJ, Linke WA. Titin isoform switch in ischemic human heart disease. Circulation 106: 1333‐1341, 2002. 10.1161/01.CIR.0000029803.93022.93.
 485.Neiva‐Sousa M, Almeida‐Coelho J, Falcao‐Pires I, Leite‐Moreira AF. Titin mutations: The fall of Goliath. Heart Fail Rev 20: 579‐588, 2015. 10.1007/s10741‐015‐9495‐6.
 486.Nelson CE, Hakim CH, Ousterout DG, Thakore PI, Moreb EA, Castellanos Rivera RM, Madhavan S, Pan X, Ran FA, Yan WX, Asokan A, Zhang F, Duan D, Gersbach CA. In vivo genome editing improves muscle function in a mouse model of Duchenne muscular dystrophy. Science 351: 403‐407, 2016. 10.1126/science.aad5143.
 487.Nelson WJ, Traub P. Proteolysis of vimentin and desmin by the Ca2+‐activated proteinase specific for these intermediate filament proteins. Mol Cell Biol 3: 1146‐1156, 1983. 10.1128/mcb.3.6.1146.
 488.Newey SE, Benson MA, Ponting CP, Davies KE, Blake DJ. Alternative splicing of dystrobrevin regulates the stoichiometry of syntrophin binding to the dystrophin protein complex. Curr Biol 10: 1295‐1298, 2000. 10.1016/s0960‐9822(00)00760‐0.
 489.Newey SE, Howman EV, Ponting CP, Benson MA, Nawrotzki R, Loh NY, Davies KE, Blake DJ. Syncoilin, a novel member of the intermediate filament superfamily that interacts with α‐dystrobrevin in skeletal muscle. J Biol Chem 276: 6645‐6655, 2001. 10.1074/jbc.M008305200.
 490.Nigro G, Comi LI, Politano L, Bain RJ. The incidence and evolution of cardiomyopathy in Duchenne muscular dystrophy. Int J Cardiol 26: 271‐277, 1990. 10.1016/0167‐5273(90)90082‐g.
 491.Niimura H, Bachinski LL, Sangwatanaroj S, Watkins H, Chudley AE, McKenna W, Kristinsson A, Roberts R, Sole M, Maron BJ, Seidman JG, Seidman CE. Mutations in the gene for cardiac myosin‐binding protein C and late‐onset familial hypertrophic cardiomyopathy. N Engl J Med 338: 1248‐1257, 1998. 10.1056/nejm199804303381802.
 492.Nikolova V, Leimena C, McMahon AC, Tan JC, Chandar S, Jogia D, Kesteven SH, Michalicek J, Otway R, Verheyen F, Rainer S, Stewart CL, Martin D, Feneley MP, Fatkin D. Defects in nuclear structure and function promote dilated cardiomyopathy in lamin A/C‐deficient mice. J Clin Invest 113: 357‐369, 2004. 10.1172/jci19448.
 493.Nilles LA, Parry DA, Powers EE, Angst BD, Wagner RM, Green KJ. Structural analysis and expression of human desmoglein: A cadherin‐like component of the desmosome. J Cell Sci 99: 809‐821, 1991.
 494.Nilsson MI, Nissar AA, Al‐Sajee D, Tarnopolsky MA, Parise G, Lach B, Furst DO, van der Ven PF, Kley RA, Hawke TJ. Xin is a marker of skeletal muscle damage severity in myopathies. Am J Pathol 183: 1703‐1709, 2013. 10.1016/j.ajpath.2013.08.010.
 495.Nix DA, Beckerle MC. Nuclear‐cytoplasmic shuttling of the focal contact protein, zyxin: A potential mechanism for communication between sites of cell adhesion and the nucleus. J Cell Biol 138: 1139‐1147, 1997. 10.1083/jcb.138.5.1139.
 496.Noorman M, van der Heyden MA, van Veen TA, Cox MG, Hauer RN, de Bakker JM, van Rijen HV. Cardiac cell‐cell junctions in health and disease: Electrical versus mechanical coupling. J Mol Cell Cardiol 47: 23‐31, 2009. 10.1016/j.yjmcc.2009.03.016.
 497.Norgett EE, Hatsell SJ, Carvajal‐Huerta L, Cabezas JC, Common J, Purkis PE, Whittock N, Leigh IM, Stevens HP, Kelsell DP. Recessive mutation in desmoplakin disrupts desmoplakin‐intermediate filament interactions and causes dilated cardiomyopathy, woolly hair and keratoderma. Hum Mol Genet 9: 2761‐2766, 2000. 10.1093/hmg/9.18.2761.
 498.North KN, Yang N, Wattanasirichaigoon D, Mills M, Easteal S, Beggs AH. A common nonsense mutation results in α‐actinin‐3 deficiency in the general population. Nat Genet 21: 353‐354, 1999. 10.1038/7675.
 499.Nowak KJ, Davis MR, Wallgren‐Pettersson C, Lamont PJ, Laing NG. Clinical utility gene card for: Nemaline myopathy ‐ update 2015. Eur J Hum Genet 23: e1‐e5, 2015. 10.1038/ejhg.2015.12.
 500.Nowak KJ, Ravenscroft G, Laing NG. Skeletal muscle α‐actin diseases (actinopathies): Pathology and mechanisms. Acta Neuropathol 125: 19‐32, 2013. 10.1007/s00401‐012‐1019‐z.
 501.Nunoue K, Ohashi K, Okano I, Mizuno K. LIMK‐1 and LIMK‐2, two members of a LIM motif‐containing protein kinase family. Oncogene 11: 701‐710, 1995.
 502.Nworu CU, Kraft R, Schnurr DC, Gregorio CC, Krieg PA. Leiomodin 3 and tropomodulin 4 have overlapping functions during skeletal myofibrillogenesis. J Cell Sci 128: 239‐250, 2015. 10.1242/jcs.152702.
 503.O'Neill A, Williams MW, Resneck WG, Milner DJ, Capetanaki Y, Bloch RJ. Sarcolemmal organization in skeletal muscle lacking desmin: Evidence for cytokeratins associated with the membrane skeleton at costameres. Mol Biol Cell 13: 2347‐2359, 2002. 10.1091/mbc.01‐12‐0576.
 504.Oakes PW, Gardel ML. Stressing the limits of focal adhesion mechanosensitivity. Curr Opin Cell Biol 30: 68‐73, 2014. 10.1016/j.ceb.2014.06.003.
 505.Obermann W, Gautel M, Steiner F, Van der Ven P, Weber K, Fürst DO. The structure of the sarcomeric M band: Localization of defined domains of myomesin, M‐protein, and the 250‐kD carboxy‐terminal region of titin by immunoelectron microscopy. J Cell Biol 134: 1441‐1453, 1996. 10.1083/jcb.134.6.1441.
 506.Obermann WM, Plessmann U, Weber K, Furst DO. Purification and biochemical characterization of myomesin, a myosin‐binding and titin‐binding protein, from bovine skeletal muscle. Eur J Biochem 233: 110‐115, 1995. 10.1111/j.1432‐1033.1995.110_1.x.
 507.Ockeloen CW, Gilhuis HJ, Pfundt R, Kamsteeg EJ, Agrawal PB, Beggs AH, Dara Hama‐Amin A, Diekstra A, Knoers NV, Lammens M, van Alfen N. Congenital myopathy caused by a novel missense mutation in the CFL2 gene. Neuromuscul Disord 22: 632‐639, 2012. 10.1016/j.nmd.2012.03.008.
 508.Offer G, Moos C, Starr R. A new protein of the thick filaments of vertebrate skeletal myofibrils: Extraction, purification and characterization. J Mol Biol 74: 653‐676, 1973. 10.1016/0022‐2836(73)90055‐7.
 509.Ohashi K. Roles of cofilin in development and its mechanisms of regulation. Dev Growth Differ 57: 275‐290, 2015. 10.1111/dgd.12213.
 510.Ojima K, Kawabata Y, Nakao H, Nakao K, Doi N, Kitamura F, Ono Y, Hata S, Suzuki H, Kawahara H. Dynamic distribution of muscle‐specific calpain in mice has a key role in physical‐stress adaptation and is impaired in muscular dystrophy. J Clin Invest 120: 2672‐2683, 2010. 10.1172/jci40658.
 511.Ojima K, Lin ZX, Zhang ZQ, Hijikata T, Holtzer S, Labeit S, Sweeney HL, Holtzer H. Initiation and maturation of I‐Z‐I bodies in the growth tips of transfected myotubes. J Cell Sci 112 4101‐4112, 1999.
 512.Ojima K, Ono Y, Doi N, Yoshioka K, Kawabata Y, Labeit S, Sorimachi H. Myogenic stage, sarcomere length, and protease activity modulate localization of muscle‐specific calpain. J Biol Chem 282: 14493‐14504, 2007. 10.1074/jbc.M610806200.
 513.Okagaki T, Weber FE, Fischman DA, Vaughan KT, Mikawa T, Reinach FC. The major myosin‐binding domain of skeletal muscle MyBP‐C (C protein) resides in the COOH‐terminal, immunoglobulin C2 motif. J Cell Biol 123: 619‐626, 1993. 10.1083/jcb.123.3.619.
 514.Okano I, Hiraoka J, Otera H, Nunoue K, Ohashi K, Iwashita S, Hirai M, Mizuno K. Identification and characterization of a novel family of serine/threonine kinases containing two N‐terminal LIM motifs. J Biol Chem 270: 31321‐31330, 1995. 10.1074/jbc.270.52.31321.
 515.Olive M, Goldfarb L, Dagvadorj A, Sambuughin N, Paulin D, Li Z, Goudeau B, Vicart P, Ferrer I. Expression of the intermediate filament protein synemin in myofibrillar myopathies and other muscle diseases. Acta Neuropathol 106: 1‐7, 2003. 10.1007/s00401‐003‐0695‐0.
 516.Olson TM, Doan TP, Kishimoto NY, Whitby FG, Ackerman MJ, Fananapazir L. Inherited and de novo mutations in the cardiac actin gene cause hypertrophic cardiomyopathy. J Mol Cell Cardiol 32: 1687‐1694, 2000. 10.1006/jmcc.2000.1204.
 517.Olsson MC, Palmer BM, Stauffer BL, Leinwand LA, Moore RL. Morphological and functional alterations in ventricular myocytes from male transgenic mice with hypertrophic cardiomyopathy. Circ Res 94: 201‐207, 2004. 10.1161/01.res.0000111521.40760.18.
 518.Ong RW, AlSaman A, Selcen D, Arabshahi A, Yau KS, Ravenscroft G, Duff RM, Atkinson V, Allcock RJ, Laing NG. Novel cofilin‐2 (CFL2) four base pair deletion causing nemaline myopathy. J Neurol Neurosurg Psychiatry 85: 1058‐1060, 2014. 10.1136/jnnp‐2014‐307608.
 519.Ono Y, Ojima K, Shinkai‐Ouchi F, Hata S, Sorimachi H. An eccentric calpain, CAPN3/p94/calpain‐3. Biochimie 122: 169‐187, 2016. 10.1016/j.biochi.2015.09.010.
 520.Ono Y, Ojima K, Torii F, Takaya E, Doi N, Nakagawa K, Hata S, Abe K, Sorimachi H. Skeletal muscle‐specific calpain is an intracellular Na+‐dependent protease. J Biol Chem 285: 22986‐22998, 2010. 10.1074/jbc.M110.126946.
 521.Ono Y, Torii F, Ojima K, Doi N, Yoshioka K, Kawabata Y, Labeit D, Labeit S, Suzuki K, Abe K, Maeda T, Sorimachi H. Suppressed disassembly of autolyzing p94/CAPN3 by N2A connectin/titin in a genetic reporter system. J Biol Chem 281: 18519‐18531, 2006. 10.1074/jbc.M601029200.
 522.Ooshio T, Irie K, Morimoto K, Fukuhara A, Imai T, Takai Y. Involvement of LMO7 in the association of two cell‐cell adhesion molecules, nectin and E‐cadherin, through afadin and α‐actinin in epithelial cells. J Biol Chem 279: 31365‐31373, 2004. 10.1074/jbc.M401957200.
 523.Orzechowski M, Moore JR, Fischer S, Lehman W. Tropomyosin movement on F‐actin during muscle activation explained by energy landscapes. Arch Biochem Biophys 545: 63‐68, 2014. 10.1016/j.abb.2014.01.001.
 524.Osinska HE, Lemanski LF. Immunofluorescent localization of desmin and vimentin in developing cardiac muscle of Syrian hamster. Anat Rec 223: 406‐413, 1989. 10.1002/ar.1092230409.
 525.Osio A, Tan L, Chen SN, Lombardi R, Nagueh SF, Shete S, Roberts R, Willerson JT, Marian AJ. Myozenin 2 is a novel gene for human hypertrophic cardiomyopathy. Circ Res 100: 766‐768, 2007. 10.1161/01.RES.0000263008.66799.aa.
 526.Otey CA, Dixon R, Stack C, Goicoechea SM. Cytoplasmic Ig‐domain proteins: Cytoskeletal regulators with a role in human disease. Cell Motil Cytoskeleton 66: 618‐634, 2009. 10.1002/cm.20385.
 527.Otey CA, Rachlin A, Moza M, Arneman D, Carpen O. The palladin/myotilin/myopalladin family of actin‐associated scaffolds. Int Rev Cytol 246: 31‐58, 2005. 10.1016/s0074‐7696(05)46002‐7.
 528.Otomo T, Tomchick DR, Otomo C, Panchal SC, Machius M, Rosen MK. Structural basis of actin filament nucleation and processive capping by a formin homology 2 domain. Nature 433: 488‐494, 2005. 10.1038/nature03251.
 529.Ott EB, van den Akker NM, Sakalis PA, Gittenberger‐de Groot AC, Te Velthuis AJ, Bagowski CP. The lim domain only protein 7 is important in zebrafish heart development. Dev Dyn 237: 3940‐3952, 2008. 10.1002/dvdy.21807.
 530.Otten J, van der Ven PF, Vakeel P, Eulitz S, Kirfel G, Brandau O, Boesl M, Schrickel JW, Linhart M, Hayess K, Naya FJ, Milting H, Meyer R, Furst DO. Complete loss of murine Xin results in a mild cardiac phenotype with altered distribution of intercalated discs. Cardiovasc Res 85: 739‐750, 2010. 10.1093/cvr/cvp345.
 531.Ottenheijm CA, Buck D, de Winter JM, Ferrara C, Piroddi N, Tesi C, Jasper JR, Malik FI, Meng H, Stienen GJ. Deleting exon 55 from the nebulin gene induces severe muscle weakness in a mouse model for nemaline myopathy. Brain 136: 1718‐1731, 2013. 10.1093/brain/awt113.
 532.Ottenheijm CA, Fong C, Vangheluwe P, Wuytack F, Babu GJ, Periasamy M, Witt CC, Labeit S, Granzier H. Sarcoplasmic reticulum calcium uptake and speed of relaxation are depressed in nebulin‐free skeletal muscle. FASEB J 22: 2912‐2919, 2008. 10.1096/fj.07‐104372.
 533.Ottenheijm CA, Witt CC, Stienen GJ, Labeit S, Beggs AH, Granzier H. Thin filament length dysregulation contributes to muscle weakness in nemaline myopathy patients with nebulin deficiency. Hum Mol Genet 18: 2359‐2369, 2009. 10.1093/hmg/ddp168.
 534.Otterbein LR, Graceffa P, Dominguez R. The crystal structure of uncomplexed actin in the ADP state. Science 293: 708‐711, 2001. 10.1126/science.1059700.
 535.Ozawa E, Mizuno Y, Hagiwara Y, Sasaoka T, Yoshida M. Molecular and cell biology of the sarcoglycan complex. Muscle Nerve 32: 563‐576, 2005. 10.1002/mus.20349.
 536.Ozawa E, Noguchi S, Mizuno Y, Hagiwara Y, Yoshida M. From dystrophinopathy to sarcoglycanopathy: Evolution of a concept of muscular dystrophy. Muscle Nerve 21: 421‐438, 1998. 10.1002/(sici)1097‐4598(199804)21:4<421::aid‐mus1>3.0.co;2‐b.
 537.Pallavicini A, Kojic S, Bean C, Vainzof M, Salamon M, Ievolella C, Bortoletto G, Pacchioni B, Zatz M, Lanfranchi G, Faulkner G, Valle G. Characterization of human skeletal muscle Ankrd2. Biochem Biophys Res Commun 285: 378‐386, 2001. 10.1006/bbrc.2001.5131.
 538.Panaviene Z, Moncman CL. Linker region of nebulin family members plays an important role in targeting these molecules to cellular structures. Cell Tissue Res 327: 353‐369, 2007. 10.1007/s00441‐006‐0305‐2.
 539.Papa I, Astier C, Kwiatek O, Raynaud F, Bonnal C, Lebart MC, Roustan C, Benyamin Y. α‐actinin‐CapZ, an anchoring complex for thin filaments in Z‐line. J Muscle Res Cell Motil 20: 187‐197, 1999. 10.1023/A:1005489319058.
 540.Papalouka V, Arvanitis DA, Vafiadaki E, Mavroidis M, Papadodima SA, Spiliopoulou CA, Kremastinos DT, Kranias EG, Sanoudou D. Muscle LIM protein interacts with cofilin 2 and regulates F‐actin dynamics in cardiac and skeletal muscle. Mol Cell Biol 29: 6046‐6058, 2009. 10.1128/mcb.00654‐09.
 541.Papathanasiou S, Rickelt S, Soriano ME, Schips TG, Maier HJ, Davos CH, Varela A, Kaklamanis L, Mann DL, Capetanaki Y. Tumor necrosis factor‐α confers cardioprotection through ectopic expression of keratins K8 and K18. Nat Med 21: 1076‐1084, 2015. 10.1038/nm.3925.
 542.Pappas CT, Bhattacharya N, Cooper JA, Gregorio CC. Nebulin interacts with CapZ and regulates thin filament architecture within the Z‐disc. Mol Biol Cell 19: 1837‐1847, 2008. 10.1091/mbc.E07‐07‐0690.
 543.Pappas CT, Bliss KT, Zieseniss A, Gregorio CC. The Nebulin family: An actin support group. Trends Cell Biol 21: 29‐37, 2011. 10.1016/j.tcb.2010.09.005.
 544.Pappas CT, Krieg PA, Gregorio CC. Nebulin regulates actin filament lengths by a stabilization mechanism. J Cell Biol 189: 859‐870, 2010. 10.1083/jcb.201001043.
 545.Pappas CT, Mayfield RM, Henderson C, Jamilpour N, Cover C, Hernandez Z, Hutchinson KR, Chu M, Nam KH, Valdez JM, Wong PK, Granzier HL, Gregorio CC. Knockout of Lmod2 results in shorter thin filaments followed by dilated cardiomyopathy and juvenile lethality. Proc Natl Acad Sci U S A 112: 3573‐3578, 2015. 10.1073/pnas.1508273112.
 546.Parry DA, Squire JM. Structural role of tropomyosin in muscle regulation: Analysis of the x‐ray diffraction patterns from relaxed and contracting muscles. J Mol Biol 75: 33‐55, 1973. 10.1016/0022‐2836(73)90527‐5.
 547.Pashmforoush M, Pomies P, Peterson KL, Kubalak S, Ross J, Jr., Hefti A, Aebi U, Beckerle MC, Chien KR. Adult mice deficient in actinin‐associated LIM‐domain protein reveal a developmental pathway for right ventricular cardiomyopathy. Nat Med 7: 591‐597, 2001. 10.1038/87920.
 548.Payne ET, Yasuda N, Bourgeois JM, Devries MC, Rodriguez MC, Yousuf J, Tarnopolsky MA. Nutritional therapy improves function and complements corticosteroid intervention in mdx mice. Muscle Nerve 33: 66‐77, 2006. 10.1002/mus.20436.
 549.Peche V, Shekar S, Leichter M, Korte H, Schröder R, Schleicher M, Holak T, Clemen C, Ramanath‐Y B, Pfitzer G. CAP2, cyclase‐associated protein 2, is a dual compartment protein. Cell Mol Life Sci 64: 2702‐2715, 2007. 10.1007/s00018‐007‐7316‐3.
 550.Peche VS, Holak TA, Burgute BD, Kosmas K, Kale SP, Wunderlich FT, Elhamine F, Stehle R, Pfitzer G, Nohroudi K. Ablation of cyclase‐associated protein 2 (CAP2) leads to cardiomyopathy. Cell Mol Life Sci 70: 527‐543, 2013. 10.1007/s00018‐012‐1142‐y.
 551.Peter AK, Marshall JL, Crosbie RH. Sarcospan reduces dystrophic pathology: Stabilization of the utrophin‐glycoprotein complex. J Cell Biol 183: 419‐427, 2008. 10.1083/jcb.200808027.
 552.Peter AK, Miller G, Crosbie RH. Disrupted mechanical stability of the dystrophin‐glycoprotein complex causes severe muscular dystrophy in sarcospan transgenic mice. J Cell Sci 120: 996‐1008, 2007. 10.1242/jcs.03360.
 553.Peter M, Kitten GT, Lehner CF, Vorburger K, Bailer SM, Maridor G, Nigg EA. Cloning and sequencing of cDNA clones encoding chicken lamins A and B1 and comparison of the primary structures of vertebrate A‐ and B‐type lamins. J Mol Biol 208: 393‐404, 1989. 10.1016/0022‐2836(89)90504‐4.
 554.Peters MF, O'Brien KF, Sadoulet‐Puccio HM, Kunkel LM, Adams ME, Froehner SC. β‐Dystrobrevin, a new member of the dystrophin family: Identification, cloning, and protein associations. J Biol Chem 272: 31561‐31569, 1997. 10.1074/jbc.272.50.31561.
 555.Pfeffer G, Barresi R, Wilson IJ, Hardy SA, Griffin H, Hudson J, Elliott HR, Ramesh AV, Radunovic A, Winer JB, Vaidya S, Raman A, Busby M, Farrugia ME, Ming A, Everett C, Emsley HCA, Horvath R, Straub V, Bushby K, Lochmüller H, Chinnery PF, Sarkozy A. Titin founder mutation is a common cause of myofibrillar myopathy with early respiratory failure. J Neurol Neurosurg Psychiatry 85: 331‐338, 2014. 10.1136/jnnp‐2012‐304728.
 556.Piccolo F, Roberds SL, Jeanpierre M, Leturcq F, Azibi K, Beldjord C, Carrie A, Recan D, Chaouch M, Reghis A, El Kerch F, Sefiani A, Voit T, Merlini L, Collin H, Eymard B, Beckmann JS, Romero NB, Tome FMS, Fardeau M, Campbell KP, Kaplan JC. Primary adhalinopathy: A common cause of autosomal recessive muscular dystrophy of variable severity. Nat Genet 10: 243‐245, 1995. 10.1038/ng0695‐243.
 557.Pieperhoff S, Franke WW. The area composita of adhering junctions connecting heart muscle cells of vertebrates. IV: Coalescence and amalgamation of desmosomal and adhaerens junction components—late processes in mammalian heart development. Eur J Cell Biol 86: 377‐391, 2007. 10.1016/j.ejcb.2007.04.001.
 558.Pieperhoff S, Franke WW. The area composita of adhering junctions connecting heart muscle cells of vertebrates. VI. Different precursor structures in non‐mammalian species. Eur J Cell Biol 87: 413‐430, 2008. 10.1016/j.ejcb.2008.02.005.
 559.Pilichou K, Nava A, Basso C, Beffagna G, Bauce B, Lorenzon A, Frigo G, Vettori A, Valente M, Towbin J, Thiene G, Danieli GA, Rampazzo A. Mutations in desmoglein‐2 gene are associated with arrhythmogenic right ventricular cardiomyopathy. Circulation 113: 1171‐1179, 2006. 10.1161/circulationaha.105.583674.
 560.Piluso G, Mirabella M, Ricci E, Belsito A, Abbondanza C, Servidei S, Puca AA, Tonali P, Puca GA, Nigro V. γ1‐ and γ2‐Syntrophins, two novel dystrophin‐binding proteins localized in neuronal cells. J Biol Chem 275: 15851‐15860, 2000. 10.1074/jbc.M000439200.
 561.Pinotsis N, Petoukhov M, Lange S, Svergun D, Zou P, Gautel M, Wilmanns M. Evidence for a dimeric assembly of two titin/telethonin complexes induced by the telethonin C‐terminus. J Struct Biol 155: 239‐250, 2006. 10.1016/j.jsb.2006.03.028.
 562.Pirani A, Vinogradova MV, Curmi PM, King WA, Fletterick RJ, Craig R, Tobacman LS, Xu C, Hatch V, Lehman W. An atomic model of the thin filament in the relaxed and Ca2+‐activated states. J Mol Biol 357: 707‐717, 2006. 10.1016/j.jmb.2005.12.050.
 563.Poetter K, Jiang H, Hassanzadeh S, Master SR, Chang A, Dalakas MC, Rayment I, Sellers JR, Fananapazir L, Epstein ND. Mutations in either the essential or regulatory light chains of myosin are associated with a rare myopathy in human heart and skeletal muscle. Nat Genet 13: 63‐69, 1996. 10.1038/ng0596‐63.
 564.Ponting CP, Blake DJ, Davies KE, Kendrick‐Jones J, Winder SJ. ZZ and TAZ: New putative zinc fingers in dystrophin and other proteins. Trends Biochem Sci 21: 11‐13, 1996. 10.1016/0968‐0004(96)80878‐4.
 565.Poon E, Howman EV, Newey SE, Davies KE. Association of syncoilin and desmin: Linking intermediate filament proteins to the dystrophin‐associated protein complex. J Biol Chem 277: 3433‐3439, 2002. 10.1074/jbc.M105273200.
 566.Postel R, Vakeel P, Topczewski J, Knoll R, Bakkers J. Zebrafish integrin‐linked kinase is required in skeletal muscles for strengthening the integrin‐ECM adhesion complex. Dev Biol 318: 92‐101, 2008. 10.1016/j.ydbio.2008.03.024.
 567.Potter JD, Sheng Z, Pan BS, Zhao J. A direct regulatory role for troponin T and a dual role for troponin C in the Ca2+ regulation of muscle contraction. J Biol Chem 270: 2557‐2562, 1995. 10.1074/jbc.270.6.2557.
 568.Price MG. Molecular analysis of intermediate filament cytoskeleton–‐a putative load‐bearing structure. Am J Physiol 246: H566‐H572, 1984.
 569.Price MG. Skelemins: Cytoskeletal proteins located at the periphery of M‐discs in mammalian striated muscle. J Cell Biol 104: 1325‐1336, 1987. 10.1083/jcb.104.5.1325.
 570.Pring M, Evangelista M, Boone C, Yang C, Zigmond SH. Mechanism of formin‐induced nucleation of actin filaments. Biochemistry 42: 486‐496, 2003. 10.1021/bi026520j.
 571.Prosser BL, Wright NT, Hernandez‐Ochoa EO, Varney KM, Liu Y, Olojo RO, Zimmer DB, Weber DJ, Schneider MF. S100A1 binds to the calmodulin‐binding site of ryanodine receptor and modulates skeletal muscle excitation‐contraction coupling. J Biol Chem 283: 5046‐5057, 2008. 10.1074/jbc.M709231200.
 572.Pruyne D, Evangelista M, Yang C, Bi E, Zigmond S, Bretscher A, Boone C. Role of formins in actin assembly: Nucleation and barbed‐end association. Science 297: 612‐615, 2002. 10.1126/science.1072309.
 573.Puckelwartz MJ, Depreux FF, McNally EM. Gene expression, chromosome position and lamin A/C mutations. Nucleus 2: 162‐167, 2011. 10.4161/nucl.2.3.16003.
 574.Purevjav E, Arimura T, Augustin S, Huby AC, Takagi K, Nunoda S, Kearney DL, Taylor MD, Terasaki F, Bos JM, Ommen SR, Shibata H, Takahashi M, Itoh‐Satoh M, McKenna WJ, Murphy RT, Labeit S, Yamanaka Y, Machida N, Park JE, Alexander PM, Weintraub RG, Kitaura Y, Ackerman MJ, Kimura A, Towbin JA. Molecular basis for clinical heterogeneity in inherited cardiomyopathies due to myopalladin mutations. Hum Mol Genet 21: 2039‐2053, 2012. 10.1093/hmg/dds022.
 575.Purevjav E, Varela J, Morgado M, Kearney DL, Li H, Taylor MD, Arimura T, Moncman CL, McKenna W, Murphy RT, Labeit S, Vatta M, Bowles NE, Kimura A, Boriek AM, Towbin JA. Nebulette mutations are associated with dilated cardiomyopathy and endocardial fibroelastosis. J Am Coll Cardiol 56: 1493‐1502, 2010. 10.1016/j.jacc.2010.05.045.
 576.Putilina T, Jaworski C, Gentleman S, McDonald B, Kadiri M, Wong P. Analysis of a human cDNA containing a tissue‐specific alternatively spliced LIM domain. Biochem Biophys Res Commun 252: 433‐439, 1998. 10.1006/bbrc.1998.9656.
 577.Quijano‐Roy S, Mbieleu B, Bonnemann CG, Jeannet PY, Colomer J, Clarke NF, Cuisset JM, Roper H, De Meirleir L, D'Amico A, Ben Yaou R, Nascimento A, Barois A, Demay L, Bertini E, Ferreiro A, Sewry CA, Romero NB, Ryan M, Muntoni F, Guicheney P, Richard P, Bonne G, Estournet B. De novo LMNA mutations cause a new form of congenital muscular dystrophy. Ann Neurol 64: 177‐186, 2008. 10.1002/ana.21417.
 578.Rao JN, Madasu Y, Dominguez R. Mechanism of actin filament pointed‐end capping by tropomodulin. Science 345: 463‐467, 2014. 10.1126/science.1256159.
 579.Rayes RF, Kalai T, Hideg K, Geeves MA, Fajer PG. Dynamics of tropomyosin in muscle fibers as monitored by saturation transfer EPR of bi‐functional probe. PLoS One 6: e21277, 2011. 10.1371/journal.pone.0021277.
 580.Rayment I, Rypniewski WR, Schmidt‐Base K, Smith R, Tomchick DR, Benning MM, Winkelmann DA, Wesenberg G, Holden HM. Three‐dimensional structure of myosin subfragment‐1: A molecular motor. Science 261: 50‐58, 1993. 10.1126/science.8316857.
 581.Raynaud F, Astier C, Benyamin Y. Evidence for a direct but sequential binding of titin to tropomyosin and actin filaments. Biochim Biophys Acta 1700: 171‐178, 2004. 10.1016/j.bbapap.2004.05.001.
 582.Raynaud F, Fernandez E, Coulis G, Aubry L, Vignon X, Bleimling N, Gautel M, Benyamin Y, Ouali A. Calpain 1‐titin interactions concentrate calpain 1 in the Z‐band edges and in the N2‐line region within the skeletal myofibril. Febs j 272: 2578‐2590, 2005. 10.1111/j.1742‐4658.2005.04683.x.
 583.Rees MLJ, Lien C‐F, Górecki DC. Dystrobrevins in muscle and non‐muscle tissues. Neuromuscul Disord 17: 123‐134, 2007. 10.1016/j.nmd.2006.11.003.
 584.Reggiani C, Bottinelli R, Stienen GJ. Sarcomeric myosin isoforms: Fine tuning of a molecular motor. News Physiol Sci 15: 26‐33, 2000.
 585.Reinach FC, Masaki T, Shafiq S, Obinata T, Fischman DA. Isoforms of C‐protein in adult chicken skeletal muscle: Detection with monoclonal antibodies. J Cell Biol 95: 78‐84, 1982. 10.1083/jcb.95.1.78.
 586.Reipert S, Steinbock F, Fischer I, Bittner RE, Zeold A, Wiche G. Association of mitochondria with plectin and desmin intermediate filaments in striated muscle. Exp Cell Res 252: 479‐491, 1999. 10.1006/excr.1999.4626.
 587.Rethinasamy P, Muthuchamy M, Hewett T, Boivin G, Wolska BM, Evans C, Solaro RJ, Wieczorek DF. Molecular and physiological effects of α‐tropomyosin ablation in the mouse. Circ Res 82: 116‐123, 1998. 10.1161/01.RES.82.1.116.
 588.Ribeiro Ede A, Jr., Pinotsis N, Ghisleni A, Salmazo A, Konarev PV, Kostan J, Sjoblom B, Schreiner C, Polyansky AA, Gkougkoulia EA, Holt MR, Aachmann FL, Zagrovic B, Bordignon E, Pirker KF, Svergun DI, Gautel M, Djinovic‐Carugo K. The structure and regulation of human muscle α‐actinin. Cell 159: 1447‐1460, 2014. 10.1016/j.cell.2014.10.056.
 589.Richard I, Broux O, Allamand V, Fougerousse F, Chiannilkulchai N, Bourg N, Brenguier L, Devaud C, Pasturaud P, Roudaut C. Mutations in the proteolytic enzyme calpain 3 cause limb‐girdle muscular dystrophy type 2A. Cell 81: 27‐40, 1995. 10.1016/0092‐8674(95)90368‐2.
 590.Rickelt S, Pieperhoff S. Mutations with pathogenic potential in proteins located in or at the composite junctions of the intercalated disk connecting mammalian cardiomyocytes: A reference thesaurus for arrhythmogenic cardiomyopathies and for Naxos and Carvajal diseases. Cell Tissue Res 348: 325‐333, 2012. 10.1007/s00441‐012‐1365‐0.
 591.Rober RA, Weber K, Osborn M. Differential timing of nuclear lamin A/C expression in the various organs of the mouse embryo and the young animal: A developmental study. Development 105: 365‐378, 1989.
 592.Roberds SL, Anderson RD, Ibraghimov‐Beskrovnaya O, Campbell KP. Primary structure and muscle‐specific expression of the 50‐kDa dystrophin‐associated glycoprotein (adhalin). J Biol Chem 268: 23739‐23742, 1993.
 593.Romero NB, Sandaradura SA, Clarke NF. Recent advances in nemaline myopathy. Curr Opin Neurol 26: 519‐526, 2013. 10.1097/WCO.0b013e328364d681.
 594.Rosado M, Barber CF, Berciu C, Feldman S, Birren SJ, Nicastro D, Goode BL. Critical roles for multiple formins during cardiac myofibril development and repair. Mol Biol Cell 25: 811‐827, 2014. 10.1091/mbc.E13‐08‐0443.
 595.Ruggiero A, Chen SN, Lombardi R, Rodriguez G, Marian AJ. Pathogenesis of hypertrophic cardiomyopathy caused by myozenin 2 mutations is independent of calcineurin activity. Cardiovasc Res 97: 44‐54, 2013. 10.1093/cvr/cvs294.
 596.Ruiz P, Brinkmann V, Ledermann B, Behrend M, Grund C, Thalhammer C, Vogel F, Birchmeier C, Gunthert U, Franke WW, Birchmeier W. Targeted mutation of plakoglobin in mice reveals essential functions of desmosomes in the embryonic heart. J Cell Biol 135: 215‐225, 1996. 10.1083/jcb.135.1.215.
 597.Ruppel KM, Spudich JA. Structure‐function analysis of the motor domain of myosin. Annu Rev Cell Dev Biol 12: 543‐573, 1996. 10.1146/annurev.cellbio.12.1.543.
 598.Rybakova IN, Patel JR, Ervasti JM. The dystrophin complex forms a mechanically strong link between the sarcolemma and costameric actin. J Cell Biol 150: 1209‐1214, 2000. 10.1083/jcb.150.5.1209.
 599.Sadayappan S, Osinska H, Klevitsky R, Lorenz JN, Sargent M, Molkentin JD, Seidman CE, Seidman JG, Robbins J. Cardiac myosin binding protein C phosphorylation is cardioprotective. Proc Natl Acad Sci U S A 103: 16918‐16923, 2006. 10.1073/pnas.0607069103.
 600.Sadler I, Crawford AW, Michelsen JW, Beckerle MC. Zyxin and cCRP: Two interactive LIM domain proteins associated with the cytoskeleton. J Cell Biol 119: 1573‐1587, 1992. 10.1083/jcb.119.6.1573.
 601.Sadoulet‐Puccio HM, Rajala M, Kunkel LM. Dystrobrevin and dystrophin: An interaction through coiled‐coilmotifs. Proc Natl Acad Sci U S A 94: 12413‐12418, 1997. 10.1073/pnas.94.23.12413.
 602.Salmikangas P, Mykkanen OM, Gronholm M, Heiska L, Kere J, Carpen O. Myotilin, a novel sarcomeric protein with two Ig‐like domains, is encoded by a candidate gene for limb‐girdle muscular dystrophy. Hum Mol Genet 8: 1329‐1336, 1999. 10.1093/hmg/8.7.1329.
 603.Salmikangas P, van der Ven PF, Lalowski M, Taivainen A, Zhao F, Suila H, Schroder R, Lappalainen P, Furst DO, Carpen O. Myotilin, the limb‐girdle muscular dystrophy 1A (LGMD1A) protein, cross‐links actin filaments and controls sarcomere assembly. Hum Mol Genet 12: 189‐203, 2003. 10.1093/hmg/ddg020.
 604.Samarel AM. Focal adhesion signaling in heart failure. Pflugers Arch 466: 1101‐1111, 2014. 10.1007/s00424‐014‐1456‐8.
 605.Sanoudou D, Corbett MA, Han M, Ghoddusi M, Nguyen MA, Vlahovich N, Hardeman EC, Beggs AH. Skeletal muscle repair in a mouse model of nemaline myopathy. Hum Mol Genet 15: 2603‐2612, 2006. 10.1093/hmg/ddl186.
 606.Sasaki T, Giltay R, Talts U, Timpl R, Talts JF. Expression and distribution of laminin α1 and α2 chains in embryonic and adult mouse tissues: An immunochemical approach. Exp Cell Res 275: 185‐199, 2002. 10.1006/excr.2002.5499.
 607.Saupe KW, Spindler M, Tian R, Ingwall JS. Impaired cardiac energetics in mice lacking muscle‐specific isoenzymes of creatine kinase. Circ Res 82: 898‐907, 1998. 10.1161/01.res.82.8.898.
 608.Schaart G, Viebahn C, Langmann W, Ramaekers F. Desmin and titin expression in early postimplantation mouse embryos. Development 107: 585‐596, 1989.
 609.Schafer DA, Korshunova YO, Schroer TA, Cooper JA. Differential localization and sequence analysis of capping protein β‐subunit isoforms of vertebrates. J Cell Biol 127: 453‐465, 1994. 10.1083/jcb.127.2.453.
 610.Schiaffino S, Rossi AC, Smerdu V, Leinwand LA, Reggiani C. Developmental myosins: Expression patterns and functional significance. Skelet Muscle 5: 1‐14, 2015. 10.1186/s13395‐015‐0046‐6.
 611.Schoenauer R, Bertoncini P, Machaidze G, Aebi U, Perriard J‐C, Hegner M, Agarkova I. Myomesin is a molecular spring with adaptable elasticity. J Mol Biol 349: 367‐379, 2005. 10.1016/j.jmb.2005.03.055.
 612.Schoenauer R, Emmert MY, Felley A, Ehler E, Brokopp C, Weber B, Nemir M, Faggian GG, Pedrazzini T, Falk V, Hoerstrup SP, Agarkova I. EH‐myomesin splice isoform is a novel marker for dilated cardiomyopathy. Basic Res Cardiol 106: 233‐247, 2011. 10.1007/s00395‐010‐0131‐2.
 613.Schoenauer R, Lange S, Hirschy A, Ehler E, Perriard J‐C, Agarkova I. Myomesin 3, a novel structural component of the M‐band in striated muscle. J Mol Biol 376: 338‐351, 2008. 10.1016/j.jmb.2007.11.048.
 614.Schrickel JW, Stockigt F, Krzyzak W, Paulin D, Li Z, Lubkemeier I, Fleischmann B, Sasse P, Linhart M, Lewalter T, Nickenig G, Lickfett L, Schroder R, Clemen CS. Cardiac conduction disturbances and differential effects on atrial and ventricular electrophysiological properties in desmin deficient mice. J Interv Card Electrophysiol 28: 71‐80, 2010. 10.1007/s10840‐010‐9482‐8.
 615.Schroder JM, Durling H, Laing N. Actin myopathy with nemaline bodies, intranuclear rods, and a heterozygous mutation in ACTA1 (Asp154Asn). Acta Neuropathol 108: 250‐256, 2004. 10.1007/s00401‐004‐0888‐1.
 616.Schweitzer SC, Klymkowsky MW, Bellin RM, Robson RM, Capetanaki Y, Evans RM. Paranemin and the organization of desmin filament networks. J Cell Sci 114: 1079‐1089, 2001.
 617.Schweizer J, Bowden PE, Coulombe PA, Langbein L, Lane EB, Magin TM, Maltais L, Omary MB, Parry DA, Rogers MA, Wright MW. New consensus nomenclature for mammalian keratins. J Cell Biol 174: 169‐174, 2006. 10.1083/jcb.200603161.
 618.Seguchi O, Takashima S, Yamazaki S, Asakura M, Asano Y, Shintani Y, Wakeno M, Minamino T, Kondo H, Furukawa H, Nakamaru K, Naito A, Takahashi T, Ohtsuka T, Kawakami K, Isomura T, Kitamura S, Tomoike H, Mochizuki N, Kitakaze M. A cardiac myosin light chain kinase regulates sarcomere assembly in the vertebrate heart. J Clin Invest 117: 2812‐2824, 2007. 10.1172/jci30804.
 619.Sejersen T, Lendahl U. Transient expression of the intermediate filament nestin during skeletal muscle development. J Cell Sci 106 1291‐1300, 1993.
 620.Selcen D. Myofibrillar myopathies. Neuromuscul Disord 21: 161‐171, 2011. 10.1016/j.nmd.2010.12.007.
 621.Sellers JR. Myosins: A diverse superfamily. Biochim Biophys Acta 1496: 3‐22, 2000. 10.1016/s0167‐4889(00)00005‐7.
 622.Semenova E, Wang X, Jablonski MM, Levorse J, Tilghman SM. An engineered 800 kilobase deletion of Uchl3 and Lmo7 on mouse chromosome 14 causes defects in viability, postnatal growth and degeneration of muscle and retina. Hum Mol Genet 12: 1301‐1312, 2003. 10.1093/hmg/ddg140.
 623.Senetar MA, McCann RO. Gene duplication and functional divergence during evolution of the cytoskeletal linker protein talin. Gene 362: 141‐152, 2005. 10.1016/j.gene.2005.08.012.
 624.Seto JT, Quinlan KG, Lek M, Zheng XF, Garton F, MacArthur DG, Hogarth MW, Houweling PJ, Gregorevic P, Turner N, Cooney GJ, Yang N, North KN. ACTN3 genotype influences muscle performance through the regulation of calcineurin signaling. J Clin Invest 123: 4255‐4263, 2013. 10.1172/jci67691.
 625.Setzer SV, Calkins CC, Garner J, Summers S, Green KJ, Kowalczyk AP. Comparative analysis of armadillo family proteins in the regulation of a431 epithelial cell junction assembly, adhesion and migration. J Invest Dermatol 123: 426‐433, 2004. 10.1111/j.0022‐202X.2004.23319.x.
 626.Severs NJ, Bruce AF, Dupont E, Rothery S. Remodelling of gap junctions and connexin expression in diseased myocardium. Cardiovasc Res 80: 9‐19, 2008. 10.1093/cvr/cvn133.
 627.Shaffer JF, Kensler RW, Harris SP. The myosin‐binding protein C motif binds to F‐actin in a phosphorylation‐sensitive manner. J Biol Chem 284: 12318‐12327, 2009. 10.1074/jbc.M808850200.
 628.Shah SB, Love JM, O'Neill A, Lovering RM, Bloch RJ. Influences of desmin and keratin 19 on passive biomechanical properties of mouse skeletal muscle. J Biomed Biotechnol 2012: 1‐12, 2012. 10.1155/2012/704061.
 629.Shah SB, Su FC, Jordan K, Milner DJ, Friden J, Capetanaki Y, Lieber RL. Evidence for increased myofibrillar mobility in desmin‐null mouse skeletal muscle. J Exp Biol 205: 321‐325, 2002.
 630.Shapiro L, Weis WI. Structure and biochemistry of cadherins and catenins. Cold Spring Harb Perspect Biol 1: 1‐21, 2009. 10.1101/cshperspect.a003053.
 631.Sharp WW, Simpson DG, Borg TK, Samarel AM, Terracio L. Mechanical forces regulate focal adhesion and costamere assembly in cardiac myocytes. Am J Physiol 273: H546‐H556, 1997.
 632.Shathasivam T, Kislinger T, Gramolini AO. Genes, proteins and complexes: the multifaceted nature of FHL family proteins in diverse tissues. J Cell Mol Med 14: 2702‐2720, 2010. 10.1111/j.1582‐4934.2010.01176.x.
 633.Sheikh F, Lyon RC, Chen J. Getting the skinny on thick filament regulation in cardiac muscle biology and disease. Trends Cardiovasc Med 24: 133‐141, 2014. 10.1016/j.tcm.2013.07.004.
 634.Sheikh F, Raskin A, Chu P‐H, Lange S, Domenighetti AA, Zheng M, Liang X, Zhang T, Yajima T, Gu Y. An FHL1‐containing complex within the cardiomyocyte sarcomere mediates hypertrophic biomechanical stress responses in mice. J Clin Invest 118: 3870‐3880, 2008. 10.1172/JCI34472.
 635.Siegert R, Perrot A, Keller S, Behlke J, Michalewska‐Wludarczyk A, Wycisk A, Tendera M, Morano I, Ozcelik C. A myomesin mutation associated with hypertrophic cardiomyopathy deteriorates dimerisation properties. Biochem Biophys Res Commun 405: 473‐479, 2011. 10.1016/j.bbrc.2011.01.056.
 636.Sinn HW, Balsamo J, Lilien J, Lin JJ. Localization of the novel Xin protein to the adherens junction complex in cardiac and skeletal muscle during development. Dev Dyn 225: 1‐13, 2002. 10.1002/dvdy.10131.
 637.Sjoberg G, Edstrom L, Lendahl U, Sejersen T. Myofibers from Duchenne/Becker muscular dystrophy and myositis express the intermediate filament nestin. J Neuropathol Exp Neurol 53: 416‐423, 1994. 10.1097/00005072‐199407000‐00014.
 638.Sjoberg G, Jiang WQ, Ringertz NR, Lendahl U, Sejersen T. Colocalization of nestin and vimentin/desmin in skeletal muscle cells demonstrated by three‐dimensional fluorescence digital imaging microscopy. Exp Cell Res 214: 447‐458, 1994. 10.1006/excr.1994.1281.
 639.Sjöblom B, Salmazo A, Djinović‐Carugo K. α‐Actinin structure and regulation. Cell Mol Life Sci 65: 2688‐2701, 2008. 10.1007/s00018‐008‐8080‐8.
 640.Sjöström M, Squire JM. Fine structure of the A‐band in cryo‐sections: The structure of the A‐band of human skeletal muscle fibres from ultra‐thin cryo‐sections negatively stained. J Mol Biol 109: 49‐68, 1977. 10.1016/0889‐1605(88)90054‐7.
 641.Smith EA, Fuchs E. Defining the interactions between intermediate filaments and desmosomes. J Cell Biol 141: 1229‐1241, 1998. 10.1083/jcb.141.5.1229.
 642.Solaro RJ, Henze M, Kobayashi T. Integration of troponin I phosphorylation with cardiac regulatory networks. Circ Res 112: 355‐366, 2013. 10.1161/circresaha.112.268672.
 643.Solaro RJ, Rosevear P, Kobayashi T. The unique functions of cardiac troponin I in the control of cardiac muscle contraction and relaxation. Biochem Biophys Res Commun 369: 82‐87, 2008. 10.1016/j.bbrc.2007.12.114.
 644.Song WJ, Van Keuren ML, Drabkin HA, Cypser JR, Gemmill RM, Kurnit DM. Assignment of the human slow twitch skeletal muscle/cardiac troponin C gene (TNNC1) to human chromosome 3p21.3–>3p14.3 using somatic cell hybrids. Cytogenet Cell Genet 75: 36‐37, 1996. 10.1159/000134453.
 645.Sonnemann KJ, Fitzsimons DP, Patel JR, Liu Y, Schneider Martin F, Moss RL, Ervasti James M. Cytoplasmic γ‐actin is not required for skeletal muscle development but its absence leads to a progressive myopathy. Dev Cell 11: 387‐397, 2006. 10.1016/j.devcel.2006.07.001.
 646.Sorimachi H, Imajoh‐Ohmi S, Emori Y, Kawasaki H, Ohno S, Minami Y, Suzuki K. Molecular cloning of a novel mammalian calcium‐dependent protease distinct from both m‐ and mu‐types. Specific expression of the mRNA in skeletal muscle. J Biol Chem 264: 20106‐20111, 1989.
 647.Sorimachi H, Tsukahara T, Okada‐Ban M, Sugita H, Ishiura S, Suzuki K. Identification of a third ubiquitous calpain species–chicken muscle expresses four distinct calpains. Biochim Biophys Acta 1261: 381‐393, 1995. 10.1016/0167‐4781(95)00027‐e.
 648.Soteriou A, Gamage M, Trinick J. A survey of interactions made by the giant protein titin. J Cell Sci 104 119‐123, 1993.
 649.Spencer JA, Eliazer S, Ilaria RL, Jr., Richardson JA, Olson EN. Regulation of microtubule dynamics and myogenic differentiation by MURF, a striated muscle RING‐finger protein. J Cell Biol 150: 771‐784, 2000. 10.1083/jcb.150.4.771.
 650.Squire JM, Luther PK, Knupp C. Structural evidence for the interaction of C‐protein (MyBP‐C) with actin and sequence identification of a possible actin‐binding domain. J Mol Biol 331: 713‐724, 2003. 10.1016/s0022‐2836(03)00781‐2.
 651.Starr R, Offer G. H‐protein and X‐protein. Two new components of the thick filaments of vertebrate skeletal muscle. J Mol Biol 170: 675‐698, 1983. 10.1016/S0022‐2836(83)80127‐2.
 652.Starr R, Offer G. The interaction of C‐protein with heavy meromyosin and subfragment‐2. Biochem J 171: 813‐816, 1978. 10.1042/bj1710813.
 653.Stedman HH, Sweeney HL, Shrager JB, Maguire HC, Panettieri RA, Petrof B, Narusawa M, Leferovich JM, Sladky JT, Kelly AM. The mdx mouse diaphragm reproduces the degenerative changes of Duchenne muscular dystrophy. Nature 352: 536‐539, 1991. 10.1038/352536a0.
 654.Stone MR, O'Neill A, Catino D, Bloch RJ. Specific interaction of the actin‐binding domain of dystrophin with intermediate filaments containing keratin 19. Mol Biol Cell 16: 4280‐4293, 2005. 10.1091/mbc.E05‐02‐0112.
 655.Stone MR, O'Neill A, Lovering RM, Strong J, Resneck WG, Reed PW, Toivola DM, Ursitti JA, Omary MB, Bloch RJ. Absence of keratin 19 in mice causes skeletal myopathy with mitochondrial and sarcolemmal reorganization. J Cell Sci 120: 3999‐4008, 2007. 10.1242/jcs.009241.
 656.Strach K, Reimann J, Thomas D, Naehle CP, Kress W, Kornblum C. ZASPopathy with childhood‐onset distal myopathy. J Neurol 259: 1494‐1496, 2012. 10.1007/s00415‐012‐6543‐1.
 657.Straub V, Ettinger AJ, Durbeej M, Venzke DP, Cutshall S, Sanes JR, Campbell KP. ϵ‐Sarcoglycan replaces α‐sarcoglycan in smooth muscle to form a unique dystrophin‐glycoprotein complex. J Biol Chem 274: 27989‐27996, 1999. 10.1074/jbc.274.39.27989.
 658.Su M, Wang J, Kang L, Wang Y, Zou Y, Feng X, Wang D, Ahmad F, Zhou X, Hui R, Song L. Rare variants in genes encoding MuRF1 and MuRF2 are modifiers of hypertrophic cardiomyopathy. Int J Mol Sci 15: 9302‐9313, 2014. 10.3390/ijms15069302.
 659.Sullivan T, Escalante‐Alcalde D, Bhatt H, Anver M, Bhat N, Nagashima K, Stewart CL, Burke B. Loss of A‐type lamin expression compromises nuclear envelope integrity leading to muscular dystrophy. J Cell Biol 147: 913‐920, 1999. 10.1083/jcb.147.5.913.
 660.Sun M, Opavsky MA, Stewart DJ, Rabinovitch M, Dawood F, Wen WH, Liu PP. Temporal response and localization of integrins β1 and β3 in the heart after myocardial infarction: regulation by cytokines. Circulation 107: 1046‐1052, 2003. 10.1161/01.cir.0000051363.86009.3c.
 661.Sussman MA, Baque S, Uhm C‐S, Daniels MP, Price RL, Simpson D, Terracio L, Kedes L. Altered expression of tropomodulin in cardiomyocytes disrupts the sarcomeric structure of myofibrils. Circ Res 82: 94‐105, 1998. 10.1161/01.RES.82.1.94.
 662.Sussman MA, Welch S, Cambon N, Klevitsky R, Hewett TE, Price R, Witt SA, Kimball TR. Myofibril degeneration caused by tropomodulin overexpression leads to dilated cardiomyopathy in juvenile mice. J Clin Invest 101: 51‐61, 1998. 10.1172/JCI1167.
 663.Sweeney HL, Houdusse A. Structural and functional insights into the Myosin motor mechanism. Annu Rev Biophys 39: 539‐557, 2010. 10.1146/annurev.biophys.050708.133751.
 664.Swope D, Cheng L, Gao E, Li J, Radice GL. Loss of cadherin‐binding proteins β‐catenin and plakoglobin in the heart leads to gap junction remodeling and arrhythmogenesis. Mol Cell Biol 32: 1056‐1067, 2012. 10.1128/mcb.06188‐11.
 665.Syrris P, Ward D, Asimaki A, Sen‐Chowdhry S, Ebrahim HY, Evans A, Hitomi N, Norman M, Pantazis A, Shaw AL, Elliott PM, McKenna WJ. Clinical expression of plakophilin‐2 mutations in familial arrhythmogenic right ventricular cardiomyopathy. Circulation 113: 356‐364, 2006. 10.1161/circulationaha.105.561654.
 666.Tabebordbar M, Zhu K, Cheng JK, Chew WL, Widrick JJ, Yan WX, Maesner C, Wu EY, Xiao R, Ran FA, Cong L, Zhang F, Vandenberghe LH, Church GM, Wagers AJ. In vivo gene editing in dystrophic mouse muscle and muscle stem cells. Science 351: 407‐411, 2016. 10.1126/science.aad5177.
 667.Tadokoro S, Shattil SJ, Eto K, Tai V, Liddington RC, de Pereda JM, Ginsberg MH, Calderwood DA. Talin binding to integrin β tails: A final common step in integrin activation. Science 302: 103‐106, 2003. 10.1126/science.1086652.
 668.Tajsharghi H, Kimber E, Kroksmark AK, Jerre R, Tulinius M, Oldfors A. Embryonic myosin heavy‐chain mutations cause distal arthrogryposis and developmental myosin myopathy that persists postnatally. Arch Neurol 65: 1083‐1090, 2008. 10.1001/archneur.65.8.1083.
 669.Tajsharghi H, Oldfors A. Myosinopathies: pathology and mechanisms. Acta Neuropathol 125: 3‐18, 2013. 10.1007/s00401‐012‐1024‐2.
 670.Tajsharghi H, Thornell LE, Lindberg C, Lindvall B, Henriksson KG, Oldfors A. Myosin storage myopathy associated with a heterozygous missense mutation in MYH7. Ann Neurol 54: 494‐500, 2003. 10.1002/ana.10693.
 671.Takada F, Vander Woude DL, Tong HQ, Thompson TG, Watkins SC, Kunkel LM, Beggs AH. Myozenin: An α‐actinin‐ and γ‐filamin‐binding protein of skeletal muscle Z lines. Proc Natl Acad Sci U S A 98: 1595‐1600, 2001. 10.1073/pnas.041609698.
 672.Takano K, Watanabe‐Takano H, Suetsugu S, Kurita S, Tsujita K, Kimura S, Karatsu T, Takenawa T, Endo T. Nebulin and N‐WASP cooperate to cause IGF‐1‐induced sarcomeric actin filament formation. Science 330: 1536‐1540, 2010. 10.1126/science.1197767.
 673.Tangney JR, Chuang JS, Janssen MS, Krishnamurthy A, Liao P, Hoshijima M, Wu X, Meininger GA, Muthuchamy M, Zemljic‐Harpf A, Ross RS, Frank LR, McCulloch AD, Omens JH. Novel role for vinculin in ventricular myocyte mechanics and dysfunction. Biophys J 104: 1623‐1633, 2013. 10.1016/j.bpj.2013.02.021.
 674.Tanokura M, Tawada Y, Ono A, Ohtsuki I. Chymotryptic subfragments of troponin T from rabbit skeletal muscle. Interaction with tropomyosin, troponin I and troponin C. J Biochem 93: 331‐337, 1983.
 675.Tardiff JC. It's never too early to look subclinical disease in sarcomeric dilated cardiomyopathy. Circ Cardiovasc Genet 5: 483‐486, 2012. 10.1161/circgenetics.112.964817.
 676.Tardiff JC. Thin filament mutations: developing an integrative approach to a complex disorder. Circ Res 108: 765‐782, 2011. 10.1161/CIRCRESAHA.110.224170.
 677.Tardiff JC. Tropomyosin and dilated cardiomyopathy: revenge of the actinomyosin "gatekeeper". J Am Coll Cardiol 55: 330‐332, 2010. 10.1016/j.jacc.2009.11.018.
 678.Tarone G, Brancaccio M. The muscle‐specific chaperone protein melusin is a potent cardioprotective agent. Basic Res Cardiol 110: 1‐10, 2015. 10.1007/s00395‐015‐0466‐9.
 679.Tarui S, Okuno G, Ikura Y, Tanaka T, Suda M, Nishikawa M. Phosphofructokinase deficiency in skeletal muscle. A new type of glycogenosis. Biochem Biophys Res Commun 19: 517‐523, 1965. 10.1016/0006‐291x(65)90156‐7.
 680.Taveau M, Bourg N, Sillon G, Roudaut C, Bartoli M, Richard I. Calpain 3 is activated through autolysis within the active site and lyses sarcomeric and sarcolemmal components. Mol Cell Biol 23: 9127‐9135, 2003. 10.1128/mcb.23.24.9127‐9135.2003.
 681.Thompson TG, Chan YM, Hack AA, Brosius M, Rajala M, Lidov HG, McNally EM, Watkins S, Kunkel LM. Filamin 2 (FLN2): A muscle‐specific sarcoglycan interacting protein. J Cell Biol 148: 115‐126, 2000. 10.1083/jcb.148.1.115.
 682.Thornell L, Carlsson L, Li Z, Mericskay M, Paulin D. Null mutation in the desmin gene gives rise to a cardiomyopathy. J Mol Cell Cardiol 29: 2107‐2124, 1997. 10.1006/jmcc.1997.0446.
 683.Tian L, Ding S, You Y, Li TR, Liu Y, Wu X, Sun L, Xu T. Leiomodin‐3‐deficient mice display nemaline myopathy with fast‐myofiber atrophy. Dis Model Mech 8: 635‐641, 2015. 10.1242/dmm.019430.
 684.Tian LF, Li HY, Jin BF, Pan X, Man JH, Zhang PJ, Li WH, Liang B, Liu H, Zhao J, Gong WL, Zhou T, Zhang XM. MDM2 interacts with and downregulates a sarcomeric protein, TCAP. Biochem Biophys Res Commun 345: 355‐361, 2006. 10.1016/j.bbrc.2006.04.108.
 685.Tiso N, Rampoldi L, Pallavicini A, Zimbello R, Pandolfo D, Valle G, Lanfranchi G, Danieli GA. Fine mapping of five human skeletal muscle genes: α‐Tropomyosin, β‐tropomyosin, troponin‐I slow‐twitch, troponin‐I fast‐twitch, and troponin‐C fast. Biochem Biophys Res Commun 230: 347‐350, 1997. 10.1006/bbrc.1996.5958.
 686.Tonino P, Pappas CT, Hudson BD, Labeit S, Gregorio CC, Granzier H. Reduced myofibrillar connectivity and increased Z‐disk width in nebulin‐deficient skeletal muscle. J Cell Sci 123: 384‐391, 2010. 10.1242/jcs.042234.
 687.Torrado M, Nespereira B, Lopez E, Centeno A, Castro‐Beiras A, Mikhailov AT. ANKRD1 specifically binds CASQ2 in heart extracts and both proteins are co‐enriched in piglet cardiac Purkinje cells. J Mol Cell Cardiol 38: 353‐365, 2005. 10.1016/j.yjmcc.2004.11.034.
 688.Townsend D. Finding the sweet spot: assembly and glycosylation of the dystrophin‐associated glycoprotein complex. Anat Rec (Hoboken) 297: 1694‐1705, 2014. 10.1002/ar.22974.
 689.Townsend PJ, Barton PJ, Yacoub MH, Farza H. Molecular cloning of human cardiac troponin T isoforms: Expression in developing and failing heart. J Mol Cell Cardiol 27: 2223‐2236, 1995. 10.1016/S0022‐2828(95)91587‐7.
 690.Toydemir RM, Rutherford A, Whitby FG, Jorde LB, Carey JC, Bamshad MJ. Mutations in embryonic myosin heavy chain (MYH3) cause Freeman‐Sheldon syndrome and Sheldon‐Hall syndrome. Nat Genet 38: 561‐565, 2006. 10.1038/ng1775.
 691.Trombitas K, Redkar A, Centner T, Wu Y, Labeit S, Granzier H. Extensibility of isoforms of cardiac titin: Variation in contour length of molecular subsegments provides a basis for cellular passive stiffness diversity. Biophys J 79: 3226‐3234, 2000. 10.1016/s0006‐3495(00)76555‐6.
 692.Trotter JA, Samora A, Baca J. Three‐dimensional structure of the murine muscle‐tendon junction. Anat Rec 213: 16‐25, 1985. 10.1002/ar.1092130104.
 693.Troyanovsky SM, Troyanovsky RB, Eshkind LG, Leube RE, Franke WW. Identification of amino acid sequence motifs in desmocollin, a desmosomal glycoprotein, that are required for plakoglobin binding and plaque formation. Proc Natl Acad Sci U S A 91: 10790‐10794, 1994. 10.1073/pnas.91.23.10790.
 694.Tskhovrebova L, Trinick J. Making muscle elastic: the structural basis of myomesin stretching. PLoS‐Biology 10: e1001264‐e1001267, 2012. 10.1371/journal.pbio.1001264.
 695.Tsukada T, Pappas CT, Moroz N, Antin PB, Kostyukova AS, Gregorio CC. Leiomodin‐2 is an antagonist of tropomodulin‐1 at the pointed end of the thin filaments in cardiac muscle. J Cell Sci 123: 3136‐3145, 2010. 10.1242/jcs.071837.
 696.Tsukamoto Y, Hijiya N, Yano S, Yokoyama S, Nakada C, Uchida T, Matsuura K, Moriyama M. Arpp/Ankrd2, a member of the muscle ankyrin repeat proteins (MARPs), translocates from the I‐band to the nucleus after muscle injury. Histochem Cell Biol 129: 55‐64, 2008. 10.1007/s00418‐007‐0348‐9.
 697.Tsukamoto Y, Senda T, Nakano T, Nakada C, Hida T, Ishiguro N, Kondo G, Baba T, Sato K, Osaki M, Mori S, Ito H, Moriyama M. Arpp, a new homolog of carp, is preferentially expressed in type 1 skeletal muscle fibers and is markedly induced by denervation. Lab Invest 82: 645‐655, 2002. 10.1038/labinvest.3780459.
 698.Turner DC, Wallimann T, Eppenberger HM. A protein that binds specifically to the M‐line of skeletal muscle is identified as the muscle form of creatine kinase. Proc Natl Acad Sci U S A 70: 702‐705, 1973. 10.1073/pnas.70.3.702.
 699.Unsold B, Kaul A, Sbroggio M, Schubert C, Regitz‐Zagrosek V, Brancaccio M, Damilano F, Hirsch E, Van Bilsen M, Munts C, Sipido K, Bito V, Detre E, Wagner NM, Schafer K, Seidler T, Vogt J, Neef S, Bleckmann A, Maier LS, Balligand JL, Bouzin C, Ventura‐Clapier R, Garnier A, Eschenhagen T, El‐Armouche A, Knoll R, Tarone G, Hasenfuss G. Melusin protects from cardiac rupture and improves functional remodelling after myocardial infarction. Cardiovasc Res 101: 97‐107, 2014. 10.1093/cvr/cvt235.
 700.Ursitti JA, Lee PC, Resneck WG, McNally MM, Bowman AL, O'Neill A, Stone MR, Bloch RJ. Cloning and characterization of cytokeratins 8 and 19 in adult rat striated muscle. Interaction with the dystrophin glycoprotein complex. J Biol Chem 279: 41830‐41838, 2004. 10.1074/jbc.M400128200.
 701.Vafiadaki E, Arvanitis DA, Papalouka V, Terzis G, Roumeliotis TI, Spengos K, Garbis SD, Manta P, Kranias EG, Sanoudou D. Muscle LIM protein isoform negatively regulates striated muscle actin dynamics and differentiation. Febs j 281: 3261‐3279, 2014. 10.1111/febs.12859.
 702.Vafiadaki E, Arvanitis DA, Sanoudou D. Muscle LIM protein: Master regulator of cardiac and skeletal muscle functions. Gene 566: 1‐7, 2015. 10.1016/j.gene.2015.04.077.
 703.Vaittinen S, Lukka R, Sahlgren C, Hurme T, Rantanen J, Lendahl U, Eriksson JE, Kalimo H. The expression of intermediate filament protein nestin as related to vimentin and desmin in regenerating skeletal muscle. J Neuropathol Exp Neurol 60: 588‐597, 2001. 10.1093/jnen/60.6.588.
 704.Valle G, Faulkner G, De Antoni A, Pacchioni B, Pallavicini A, Pandolfo D, Tiso N, Toppo S, Trevisan S, Lanfranchi G. Telethonin, a novel sarcomeric protein of heart and skeletal muscle. FEBS Lett 415: 163‐168, 1997. 10.1016/S0014‐5793(97)01108‐3.
 705.van der Flier A, Gaspar AC, Thorsteinsdottir S, Baudoin C, Groeneveld E, Mummery CL, Sonnenberg A. Spatial and temporal expression of the β1D integrin during mouse development. Dev Dyn 210: 472‐486, 1997. 10.1002/(sici)1097‐0177(199712)210:4<472::aid‐aja10>3.0.co;2‐9.
 706.van der Flier A, Sonnenberg A. Structural and functional aspects of filamins. Biochim Biophys Acta 1538: 99‐117, 2001. 10.1016/S0167‐4889(01)00072‐6.
 707.van der Ven PF, Ehler E, Vakeel P, Eulitz S, Schenk JA, Milting H, Micheel B, Furst DO. Unusual splicing events result in distinct Xin isoforms that associate differentially with filamin c and Mena/VASP. Exp Cell Res 312: 2154‐2167, 2006. 10.1016/j.yexcr.2006.03.015.
 708.van der Ven PF, Wiesner S, Salmikangas P, Auerbach D, Himmel M, Kempa S, Hayess K, Pacholsky D, Taivainen A, Schroder R, Carpen O, Furst DO. Indications for a novel muscular dystrophy pathway. γ‐Filamin, the muscle‐specific filamin isoform, interacts with myotilin. J Cell Biol 151: 235‐248, 2000. 10.1083/jcb.151.2.235.
 709.van Dijk SJ, Bezold KL, Harris SP. Earning stripes: myosin binding protein‐C interactions with actin. Pflugers Arch 466: 445‐450, 2014. 10.1007/s00424‐013‐1432‐8.
 710.van Tintelen JP, Entius MM, Bhuiyan ZA, Jongbloed R, Wiesfeld AC, Wilde AA, van der Smagt J, Boven LG, Mannens MM, van Langen IM, Hofstra RM, Otterspoor LC, Doevendans PA, Rodriguez LM, van Gelder IC, Hauer RN. Plakophilin‐2 mutations are the major determinant of familial arrhythmogenic right ventricular dysplasia/cardiomyopathy. Circulation 113: 1650‐1658, 2006. 10.1161/circulationaha.105.609719.
 711.Van Troys M, Huyck L, Leyman S, Dhaese S, Vandekerkhove J, Ampe C. Ins and outs of ADF/cofilin activity and regulation. Eur J Cell Biol 87: 649‐667, 2008. 10.1016/j.ejcb.2008.04.001.
 712.Vaughan A, Alvarez‐Reyes M, Bridger JM, Broers JL, Ramaekers FC, Wehnert M, Morris GE, Whitfield WGF, Hutchison CJ. Both emerin and lamin C depend on lamin A for localization at the nuclear envelope. J Cell Sci 114: 2577‐2590, 2001.
 713.Vaughan KT, Weber FE, Ried T, Ward DC, Reinach FC, Fischman DA. Human myosin‐binding protein H (MyBP‐H): Complete primary sequence, genomic organization, and chromosomal localization. Genomics 16: 34‐40, 1993. 10.1006/geno.1993.1136.
 714.Vibert P, Craig R, Lehman W. Steric‐model for activation of muscle thin filaments. J Mol Biol 266: 8‐14, 1997. 10.1006/jmbi.1996.0800.
 715.Vite A, Li J, Radice GL. New functions for α‐catenins in health and disease: From cancer to heart regeneration. Cell Tissue Res 360: 773‐783, 2015. 10.1007/s00441‐015‐2123‐x.
 716.Vite A, Radice GL. N‐cadherin/catenin complex as a master regulator of intercalated disc function. Cell Commun Adhes 21: 169‐179, 2014. 10.3109/15419061.2014.908853.
 717.Volkers M, Rohde D, Goodman C, Most P. S100A1: a regulator of striated muscle sarcoplasmic reticulum Ca2+ handling, sarcomeric, and mitochondrial function. J Biomed Biotechnol 2010: 1‐10, 2010. 10.1155/2010/178614.
 718.von der Ecken J, Muller M, Lehman W, Manstein DJ, Penczek PA, Raunser S. Structure of the F‐actin‐tropomyosin complex. Nature 519: 114‐117, 2015. 10.1038/nature14033.
 719.von der Hagen M, Laval SH, Cree LM, Haldane F, Pocock M, Wappler I, Peters H, Reitsamer HA, Hoger H, Wiedner M, Oberndorfer F, Anderson LV, Straub V, Bittner RE, Bushby KM. The differential gene expression profiles of proximal and distal muscle groups are altered in pre‐pathological dysferlin‐deficient mice. Neuromuscul Disord 15: 863‐877, 2005. 10.1016/j.nmd.2005.09.002.
 720.von Lampe B, Stallmach A, Riecken EO. Altered glycosylation of integrin adhesion molecules in colorectal cancer cells and decreased adhesion to the extracellular matrix. Gut 34: 829‐836, 1993. 10.1136/gut.34.6.829.
 721.Vorburger K, Lehner CF, Kitten GT, Eppenberger HM, Nigg EA. A second higher vertebrate B‐type lamin. cDNA sequence determination and in vitro processing of chicken lamin B2. J Mol Biol 208: 405‐415, 1989. 10.1016/0022‐2836(89)90505‐6.
 722.Vorgerd M, van der Ven PF, Bruchertseifer V, Lowe T, Kley RA, Schroder R, Lochmuller H, Himmel M, Koehler K, Furst DO, Huebner A. A mutation in the dimerization domain of filamin c causes a novel type of autosomal dominant myofibrillar myopathy. Am J Hum Genet 77: 297‐304, 2005. 10.1086/431959.
 723.Wachsstock DH, Wilkins JA, Lin S. Specific interaction of vinculin with α‐actinin. Biochem Biophys Res Commun 146: 554‐560, 1987. 10.1016/0006‐291x(87)90564‐x.
 724.Wade M. High‐throughput silencing using the CRISPR‐Cas9 System: A review of the benefits and challenges. J Biomol Screen 20: 1027‐1039, 2015. 10.1177/1087057115587916.
 725.Wade R, Eddy R, Shows TB, Kedes L. cDNA sequence, tissue‐specific expression, and chromosomal mapping of the human slow‐twitch skeletal muscle isoform of troponin I. Genomics 7: 346‐357, 1990. 10.1016/0888‐7543(90)90168‐T.
 726.Wagner KR, Cohen JB, Huganir RL. The 87K postsynaptic membrane protein from Torpedo is a protein‐tyrosine kinase substrate homologous to dystrophin. Neuron 10: 511‐522, 1993. 10.1016/0896‐6273(93)90338‐r.
 727.Wahl JK, Sacco PA, McGranahan‐Sadler TM, Sauppe LM, Wheelock MJ, Johnson KR. Plakoglobin domains that define its association with the desmosomal cadherins and the classical cadherins: Identification of unique and shared domains. J Cell Sci 109: 1143‐1154, 1996.
 728.Walklate J, Ujfalusi Z, Geeves MA. Myosin isoforms and the mechanochemical cross‐bridge cycle. J Exp Biol 219: 168‐174, 2016. 10.1242/jeb.124594.
 729.Wallimann T, Tokarska‐Schlattner M, Schlattner U. The creatine kinase system and pleiotropic effects of creatine. Amino Acids 40: 1271‐1296, 2011. 10.1007/s00726‐011‐0877‐3.
 730.Watkins H, Conner D, Thierfelder L, Jarcho JA, MacRae C, McKenna WJ, Maron BJ, Seidman JG, Seidman CE. Mutations in the cardiac myosin binding protein‐C gene on chromosome 11 cause familial hypertrophic cardiomyopathy. Nat Genet 11: 434‐437, 1995. 10.1038/ng1295‐434.
 731.Wear MA, Yamashita A, Kim K, Maéda Y, Cooper JA. How capping protein binds the barbed end of the actin filament. Curr Biol 13: 1531‐1537, 2003. 10.1016/S0960‐9822(03)00559‐1.
 732.Weber A, Pennise CR, Babcock GG, Fowler VM. Tropomodulin caps the pointed ends of actin filaments. J Cell Biol 127: 1627‐1635, 1994. 10.1083/jcb.127.6.1627.
 733.Weber FE, Vaughan KT, Reinach FC, Fischman DA. Complete sequence of human fast‐type and slow‐type muscle myosin‐binding‐protein C (MyBP‐C). Differential expression, conserved domain structure and chromosome assignment. Eur J Biochem 216: 661‐669, 1993. 10.1111/j.1432‐1033.1993.tb18186.x.
 734.Wegner A. Equilibrium of the actin‐tropomyosin interaction. J Mol Biol 131: 839‐853, 1979. 10.1016/0022‐2836(79)90204‐3.
 735.Wegner A. Kinetic analysis of actin assembly suggests that tropomyosin inhibits spontaneous fragmentation of actin filaments. J Mol Biol 161: 217‐227, 1982. 10.1016/0022‐2836(82)90149‐8.
 736.Wei YJ, Cui CJ, Huang YX, Zhang XL, Zhang H, Hu SS. Upregulated expression of cardiac ankyrin repeat protein in human failing hearts due to arrhythmogenic right ventricular cardiomyopathy. Eur J Heart Fail 11: 559‐566, 2009. 10.1093/eurjhf/hfp049.
 737.Weins A, Schwarz K, Faul C, Barisoni L, Linke WA, Mundel P. Differentiation‐ and stress‐dependent nuclear cytoplasmic redistribution of myopodin, a novel actin‐bundling protein. J Cell Biol 155: 393‐404, 2001. 10.1083/jcb.200012039.
 738.Weiskirchen R, Pino JD, Macalma T, Bister K, Beckerle MC. The cysteine‐rich protein family of highly related LIM domain proteins. J Biol Chem 270: 28946‐28954, 1995. 10.1074/jbc.270.48.28946.
 739.Weisleder N, Soumaka E, Abbasi S, Taegtmeyer H, Capetanaki Y. Cardiomyocyte‐specific desmin rescue of desmin null cardiomyopathy excludes vascular involvement. J Mol Cell Cardiol 36: 121‐128, 2004. 10.1016/j.yjmcc.2003.10.010.
 740.Weiss A, Leinwand LA. The mammalian myosin heavy chain gene family. Annu Rev Cell Dev Biol 12: 417‐439, 1996. 10.1146/annurev.cellbio.12.1.417.
 741.Weith AE, Previs MJ, Hoeprich GJ, Previs SB, Gulick J, Robbins J, Warshaw DM. The extent of cardiac myosin binding protein‐C phosphorylation modulates actomyosin function in a graded manner. J Muscle Res Cell Motil 33: 449‐459, 2012. 10.1007/s10974‐012‐9312‐y.
 742.Wells AL, Lin AW, Chen LQ, Safer D, Cain SM, Hasson T, Carragher BO, Milligan RA, Sweeney HL. Myosin VI is an actin‐based motor that moves backwards. Nature 401: 505‐508, 1999. 10.1038/46835.
 743.Whitmore C, Morgan J. What do mouse models of muscular dystrophy tell us about the DAPC and its components? Int J Exp Pathol 95: 365‐377, 2014. 10.1111/iep.12095.
 744.Willis MS, Ike C, Li L, Wang D‐Z, Glass DJ, Patterson C. Muscle Ring Finger 1, but not Muscle Ring Finger 2, regulates cardiac hypertrophy in vivo. Circ Res 100: 456‐459, 2007. 10.1161/01.res.0000259559.48597.32.
 745.Willott RH, Gomes AV, Chang AN, Parvatiyar MS, Pinto JR, Potter JD. Mutations in troponin that cause HCM, DCM AND RCM: What can we learn about thin filament function? J Mol Cell Cardiol 48: 882‐892, 2010. 10.1016/j.yjmcc.2009.10.031.
 746.Winokur ST, Chen YW, Masny PS, Martin JH, Ehmsen JT, Tapscott SJ, van der Maarel SM, Hayashi Y, Flanigan KM. Expression profiling of FSHD muscle supports a defect in specific stages of myogenic differentiation. Hum Mol Genet 12: 2895‐2907, 2003. 10.1093/hmg/ddg327.
 747.Witt CC, Burkart C, Labeit D, McNabb M, Wu Y, Granzier H, Labeit S. Nebulin regulates thin filament length, contractility, and Z‐disk structure in vivo. Embo j 25: 3843‐3855, 2006. 10.1038/sj.emboj.7601242.
 748.Witt CC, Witt SH, Lerche S, Labeit D, Back W, Labeit S. Cooperative control of striated muscle mass and metabolism by MuRF1 and MuRF2. Embo j 27: 350‐360, 2008. 10.1038/sj.emboj.7601952.
 749.Witt SH, Granzier H, Witt CC, Labeit S. MURF‐1 and MURF‐2 target a specific subset of myofibrillar proteins redundantly: Towards understanding MURF‐dependent muscle ubiquitination. J Mol Biol 350: 713‐722, 2005. 10.1016/j.jmb.2005.05.021.
 750.Witt SH, Labeit D, Granzier H, Labeit S, Witt CC. Dimerization of the cardiac ankyrin protein CARP: Implications for MARP titin‐based signaling. J Muscle Res Cell Motil 26: 401‐408, 2005. 10.1007/s10974‐005‐9022‐9.
 751.Wooten EC, Hebl VB, Wolf MJ, Greytak SR, Orr NM, Draper I, Calvino JE, Kapur NK, Maron MS, Kullo IJ, Ommen SR, Bos JM, Ackerman MJ, Huggins GS. Formin homology 2 domain containing 3 variants associated with hypertrophic cardiomyopathy. Circ Cardiovasc Genet 6: 10‐18, 2013. 10.1161/circgenetics.112.965277.
 752.Xia H, Winokur ST, Kuo WL, Altherr MR, Bredt DS. Actinin‐associated LIM protein: identification of a domain interaction between PDZ and spectrin‐like repeat motifs. J Cell Biol 139: 507‐515, 1997. 10.1083/jcb.139.2.507.
 753.Xu H, Wu XR, Wewer UM, Engvall E. Murine muscular dystrophy caused by a mutation in the laminin α 2 (Lama2) gene. Nat Genet 8: 297‐302, 1994. 10.1038/ng1194‐297.
 754.Xu L, Park KH, Zhao L, Xu J, El Refaey M, Gao Y, Zhu H, Ma J, Han R. CRISPR‐mediated genome editing restores dystrophin expression and function in mdx mice. Mol Ther 24: 564‐569, 2016. 10.1038/mt.2015.192.
 755.Xu W, Baribault H, Adamson ED. Vinculin knockout results in heart and brain defects during embryonic development. Development 125: 327‐337, 1998.
 756.Yamamoto K. Characterization of H‐protein, a component of skeletal muscle myofibrils. J Biol Chem 259: 7163‐7168, 1984.
 757.Yamasaki R, Wu Y, McNabb M, Greaser M, Labeit S, Granzier H. Protein kinase A phosphorylates titin's cardiac‐specific N2B domain and reduces passive tension in rat cardiac myocytes. Circ Res 90: 1181‐1188, 2002. 10.1161/01.RES.0000021115.24712.99.
 758.Yamashiro S, Gokhin DS, Kimura S, Nowak RB, Fowler VM. Tropomodulins: Pointed‐end capping proteins that regulate actin filament architecture in diverse cell types. Cytoskeleton 69: 337‐370, 2012. 10.1002/cm.21031.
 759.Yamashita A, Maeda K, Maéda Y. Crystal structure of CapZ: Structural basis for actin filament barbed end capping. Embo j 22: 1529‐1538, 2003. 10.1093/emboj/cdg167.
 760.Yang Q, Hewett TE, Klevitsky R, Sanbe A, Wang X, Robbins J. PKA‐dependent phosphorylation of cardiac myosin binding protein C in transgenic mice. Cardiovasc Res 51: 80‐88, 2001. 10.1016/s0008‐6363(01)00273‐5.
 761.Yang YG, Makita T. Immunocytochemical localization of desmin in skeletal muscle of swine. J Vet Med Sci 57: 475‐479, 1995. 10.1267/ahc.30.157.
 762.Yar S, Chowdhury SA, Davis RT, 3rd, Kobayashi M, Monasky MM, Rajan S, Wolska BM, Gaponenko V, Kobayashi T, Wieczorek DF, Solaro RJ. Conserved Asp‐137 is important for both structure and regulatory functions of cardiac α‐tropomyosin (α‐TM) in a novel transgenic mouse model expressing α‐TM‐D137L. J Biol Chem 288: 16235‐16246, 2013. 10.1074/jbc.M113.458695.
 763.Yasuda M, Koshida S, Sato N, Obinata T. Complete primary structure of chicken cardiac C‐protein (MyBP‐C) and its expression in developing striated muscles. J Mol Cell Cardiol 27: 2275‐2286, 1995. 10.1016/s0022‐2828(95)91731‐4.
 764.Young P, Ehler E, Gautel M. Obscurin, a giant sarcomeric Rho guanine nucleotide exchange factor protein involved in sarcomere assembly. J Cell Biol 154: 123‐136, 2001. 10.1083/jcb.200102110.
 765.Young P, Ferguson C, Banuelos S, Gautel M. Molecular structure of the sarcomeric Z‐disk: Two types of titin interactions lead to an asymmetrical sorting of α‐actinin. Embo j 17: 1614‐1624, 1998. 10.1093/emboj/17.6.1614.
 766.Yuen M, Sandaradura SA, Dowling JJ, Kostyukova AS, Moroz N, Quinlan KG, Lehtokari VL, Ravenscroft G, Todd EJ, Ceyhan‐Birsoy O, Gokhin DS, Maluenda J, Lek M, Nolent F, Pappas CT, Novak SM, D'Amico A, Malfatti E, Thomas BP, Gabriel SB, Gupta N, Daly MJ, Ilkovski B, Houweling PJ, Davidson AE, Swanson LC, Brownstein CA, Gupta VA, Medne L, Shannon P, Martin N, Bick DP, Flisberg A, Holmberg E, Van den Bergh P, Lapunzina P, Waddell LB, Sioboda DD, Bertini E, Chitayat D, Telfer WR, Laquerriere A, Gregorio CC, Ottenheijm CAC, Bonnemann CG, Pelin K, Beggs AH, Hayashi YK, Romero NB, Laing NG, Nishino I, Wallgren‐Pettersson C, Melki J, Fowler VM, MacArthur DG, North KN, Clarke NF. Leiomodin‐3 dysfunction results in thin filament disorganization and nemaline myopathy. J Clin Invest 124: 4693‐4708, 2014. 10.1172/JCI75199.
 767.Zemljic‐Harpf AE, Miller JC, Henderson SA, Wright AT, Manso AM, Elsherif L, Dalton ND, Thor AK, Perkins GA, McCulloch AD, Ross RS. Cardiac‐myocyte‐specific excision of the vinculin gene disrupts cellular junctions, causing sudden death or dilated cardiomyopathy. Mol Cell Biol 27: 7522‐7537, 2007. 10.1128/mcb.00728‐07.
 768.Zemljic‐Harpf AE, Ponrartana S, Avalos RT, Jordan MC, Roos KP, Dalton ND, Phan VQ, Adamson ED, Ross RS. Heterozygous inactivation of the vinculin gene predisposes to stress‐induced cardiomyopathy. Am J Pathol 165: 1033‐1044, 2004. 10.1016/s0002‐9440(10)63364‐0.
 769.Zhang X, Xu R, Zhu B, Yang X, Ding X, Duan S, Xu T, Zhuang Y, Han M. Syne‐1 and Syne‐2 play crucial roles in myonuclear anchorage and motor neuron innervation. Development 134: 901‐908, 2007. 10.1242/dev.02783.
 770.Zhang Z, Mu Y, Veevers J, Peter AK, Manso AM, Bradford WH, Dalton ND, Peterson KL, Knowlton KU, Ross RS, Zhou X, Chen J. Postnatal loss of kindlin‐2 leads to progressive heart failure. Circ Heart Fail 9: e003129, 2016. 10.1161/circheartfailure.116.003129.
 771.Zheng M, Cheng H, Banerjee I, Chen J. ALP/Enigma PDZ‐LIM domain proteins in the heart. J Mol Cell Biol 2: 96‐102, 2010. 10.1093/jmcb/mjp038.
 772.Zheng M, Cheng H, Li X, Zhang J, Cui L, Ouyang K, Han L, Zhao T, Gu Y, Dalton ND, Bang ML, Peterson KL, Chen J. Cardiac‐specific ablation of Cypher leads to a severe form of dilated cardiomyopathy with premature death. Hum Mol Genet 18: 701‐713, 2009. 10.1093/hmg/ddn400.
 773.Zhi G, Ryder JW, Huang J, Ding P, Chen Y, Zhao Y, Kamm KE, Stull JT. Myosin light chain kinase and myosin phosphorylation effect frequency‐dependent potentiation of skeletal muscle contraction. Proc Natl Acad Sci U S A 102: 17519‐17524, 2005. 10.1073/pnas.0506846102.
 774.Zhou J, Qu J, Yi XP, Graber K, Huber L, Wang X, Gerdes AM, Li F. Upregulation of γ‐catenin compensates for the loss of β‐catenin in adult cardiomyocytes. Am J Physiol Heart Circ Physiol 292: H270‐H276, 2007. 10.1152/ajpheart.00576.2006.
 775.Zhou Q, Chu PH, Huang C, Cheng CF, Martone ME, Knoll G, Shelton GD, Evans S, Chen J. Ablation of Cypher, a PDZ‐LIM domain Z‐line protein, causes a severe form of congenital myopathy. J Cell Biol 155: 605‐612, 2001. 10.1083/jcb.200107092.
 776.Zhou X, Boren J, Akyurek LM. Filamins in cardiovascular development. Trends Cardiovasc Med 17: 222‐229, 2007. 10.1016/j.tcm.2007.08.001.
 777.Zieseniss A, Terasaki AG, Gregorio CC. Lasp‐2 expression, localization, and ligand interactions: A new Z‐disc scaffolding protein. Cell Motil Cytoskeleton 65: 59‐72, 2008. 10.1002/cm.20244.
 778.Zolk O, Caroni P, Bohm M. Decreased expression of the cardiac LIM domain protein MLP in chronic human heart failure. Circulation 101: 2674‐2677, 2000. 10.1161/01.CIR.101.23.2674.
 779.Zolk O, Frohme M, Maurer A, Kluxen FW, Hentsch B, Zubakov D, Hoheisel JD, Zucker IH, Pepe S, Eschenhagen T. Cardiac ankyrin repeat protein, a negative regulator of cardiac gene expression, is augmented in human heart failure. Biochem Biophys Res Commun 293: 1377‐1382, 2002. 10.1016/s0006‐291x(02)00387‐x.
 780.Zou Y, Evans S, Chen J, Kuo HC, Harvey RP, Chien KR. CARP, a cardiac ankyrin repeat protein, is downstream in the Nkx2‐5 homeobox gene pathway. Development 124: 793‐804, 1997.
 781.Zubrzycka‐Gaarn EE, Bulman DE, Karpati G, Burghes AH, Belfall B, Klamut HJ, Talbot J, Hodges RS, Ray PN, Worton RG. The Duchenne muscular dystrophy gene product is localized in sarcolemma of human skeletal muscle. Nature 333: 466‐469, 1988. 10.1038/333466a0.

Teaching Material

 

C. A. Henderson, C. G. Gomez, S. M. Novak, L. Mi-Mi, C. C. Gregorio. Overview of the Muscle Cytoskeleton. Compr Physiol 7 2017, 891-944.

 

Didactic Synopsis

 

 

 

 

Major Teaching Points:

 

 

 

The major cytoskeletal assemblies are:

 

     

  • Sarcomere—basic contractile unit of striated muscle
  •  

     

  • Costamere—connects sarcomere to cell membrane and functions to protect against mechanical stress
  •  

     

  • Interacalated disc—specialized junction between cardiomyocytes that functions to coordinate contraction
  •  

     

  • Myotendinous junction—interface between skeletal muscle and tendon. Has role in force transmission
  •  

     

  • Intermediate filaments—scaffold that links the contractile apparatus to the sarcolemma and other organelles
  •  

 

 

Didactic Legends

 

The figures—in a freely downloadable PowerPoint format—can be found on the Images tab along with the formal legends published in the article. The following legends to the same figures are written to be useful for teaching.

 

Figure 1: Illustrates the cardiac sarcomere with (A) a schematic, (B) an image from an electron microscope (EM) followed by (C) an enlarged EM image of the M-band region.

Figure 2: Illustrates the Z-discs, which define the lateral edge of the sarcomere, and highlights the major signaling molecules found in the Z disc.

Figure 3: Illustrates the intermediate filament (IF) scaffold in striated muscle, with the major protein desmin (yellow) linking the contractile apparatus to the sarcolemma and other organelles.

Figure 4: Illustrates muscle LIM protein (MLP) is a nucleocytoplasmic shuttling protein that is a multifunctional protein: a plethora of binding proteins have been identified.

Figure 5: Illustrates the domain structure of titin and the localization of its binding partners in striated muscle.

Figure 6: Illustrates the domain structure of nebulin and localization of its binding partners in striated muscle.

Figure 7: Illustrates interactions between the thin and thick filament in striated muscle and highlights the major myosin regulatory proteins.

Figure 8: Illustrates the sarcomeric M-band and its components important for mechanosensing, proteosomal degradation, actin dynamics, metabolism, and signal transduction.

Figure 9: Illustrates the sarcomeric M-band with (Right) a longitudinal view of myosin (blue), myomesin (red), and titin (green) and (left) a cross-sectional view highlighting myomesin forming an antiparallel dimer.

Figure 10: Illustrates the position of tropomyosin coiled-coils (depicted in ribbon structures) on the surface of F-actin in the presence (green) and absence (red) of myosin.

Figure 11: Illustrates a ribbon structure of globular actin in the ADP-bound state. Actin is an asymmetrical protein composed of four subdomains (subdomain 1 shown in purple, subdomain 2 shown in green, subdomain 3 shown in red, and subdomain 4 shown in yellow) connected via two "hinge" strands.

Figure 12: Illustrates CapZ dynamics at the barbed end of F-actin during (A) normal conditions and (B) following mechanical stimulation (to simulate exercise).

Figure 13: Illustrates tropomyosin and the troponin complex in striated muscle contraction.

Figure 14: Illustrates the cardiac cross bridge cycle. Thin-filaments are shown with actin, tropomyosin (Tm) and the troponin (Tn) complex with the Ca2+-binding unit (cTnC) in pink, the Tm-binding unit (cTnT) in blue, and the inhibitory unit (cTnI) in light green. Thick-filament cross bridges (XB) are shown with myosin heavy chain (MHC; figure illustrating one MHC) in red, myosin light chains (LC) in green, along with myosin-binding protein C (MyBP-C) in purple and titin in orange.

Figure 15: Illustrates myosin-binding proteins (MyBP) with (A) a schematic drawing of MyBP domain organization and (B) an electron micrograph of frog skeletal muscle revealing MyBP-C transverse stripes located in the C-Zone.

Figure 16: Illustrates the costameric proteins, which bidirectionally link the extracellular matrix to the sarcomere. There are two major components of the costamere: the vinculin-talin-integrin complex and the dystrophin glycoprotein complex (DGC).

Figure 17: Illustrates the dystrophin-associated protein complex in muscle. The three subcomplexes are shown: dystroglycan (blue), dystrobrevin:syntrophin (red), and sarcoglycan:sarcospan (green) subcomplex. The muscular dystrophies caused by defects or deficiencies of proteins within the dystrophin-associated protein complex are shown.

Figure 18: Illustrates the structural organization and molecular components of the intercalated disc (ICD) with (A) a low-magnification transmission electron micrograph, (B) a schematic drawing of cardiac myocardium exhibiting characteristic step-like structures of intercalated discs, and (C and D) a higher magnification view of areas enclosed in (A) and (B), respectively.

Figure 19: Illustrates the nuclear lamins with (A) a schematic drawing of nuclear lamins and their nearby protein interactions, and (B) an electron micrograph of the nuclear lamina composed of lamin intermediate filaments and associated proteins that extend between the nuclear pore complexes (NPCs).

 

 

 


Contact Editor

Submit a note to the editor about this article by filling in the form below.

* Required Field

How to Cite

Christine A. Henderson, Christopher G. Gomez, Stefanie M. Novak, Lei Mi‐Mi, Carol C. Gregorio. Overview of the Muscle Cytoskeleton. Compr Physiol 2017, 7: 891-944. doi: 10.1002/cphy.c160033