References |
1. | Allard T, Clark SA, Jenkins WM, Merzenich MM. Reorganization of somatosensory area 3b representations in adult owl monkeys after digital syndactyly. J Neurophysiol 66: 1048‐1058, 1991. |
2. | Allen CB, Celikel T, Feldman DE. Long‐term depression induced by sensory deprivation during cortical map plasticity in vivo. Nat Neurosci 6: 291‐299, 2003. |
3. | Bakin JS, South DA, Weinberger NM. Induction of receptive field plasticity in the auditory cortex of the guinea pig during instrumental avoidance conditioning. Behav Neurosci 110: 905‐913, 1996. |
4. | Bakin JS, Weinberger NM. Classical conditioning induces CS‐specific receptive field plasticity in the auditory cortex of the guinea pig. Brain Res 536: 271‐286, 1990. |
5. | Bakin JS, Weinberger NM. Induction of a physiological memory in the cerebral cortex by stimulation of the nucleus basalis. Proc Nat Acad Sci USA 93: 11219‐11224, 1996. |
6. | Bao S, Chan VT, Merzenich MM. Cortical remodelling induced by activity of ventral tegmental dopamine neurons. Nature 412: 79‐83, 2001. |
7. | Bao S, Chan VT, Zhang LI, Merzenich MM. Suppression of cortical representation through backward conditioning. Proc Natl Acad Sci USA 100: 1405‐1408, 2003. |
8. | Bao S, Chang EF, Woods J, Merzenich MM. Temporal plasticity in the primary auditory cortex induced by operant perceptual learning. Nat Neurosci 7: 974‐981, 2004. |
9. | Basbaum AI, Wall PD. Chronic changes in the response of cells in adult cat dorsal horn following partial deafferentation: The appearance of responding cells in a previously non‐responsive region. Brain Res 116: 181‐204, 1976. |
10. | Bastos AM, Usrey WM, Adams RA, Mangun GR, Fries P, Friston KJ. Canonical microcircuits for predictive coding. Neuron 76: 695‐711, 2012. |
11. | Beitel RE, Schreiner CE, Cheung SW, Wang X, Merzenich MM. Reward‐dependent plasticity in the primary auditory cortex of adult monkeys trained to discriminate temporally modulated signals. Proc Nat Acad Sci USA 100: 11070‐11075, 2003. |
12. | Benedetti BL, Glazewski S, Barth AL. Reliable and precise neuronal firing during sensory plasticity in superficial layers of primary somatosensory cortex. J Neurosci 29: 11817‐11827, 2009. |
13. | Bishop KM, Goudreau G, O'Leary DDM. Regulation of area identity in the mammalian neocortex by Emx2 and Pax6. Science 80: 288, 2000. |
14. | Blair HT, Schafe GE, Bauer EP, Rodrigues SM, LeDoux JE. Synaptic plasticity in the lateral amygdala: A cellular hypothesis of fear conditioning. Learn Mem 8: 229‐242, 2001. |
15. | Blake DT, Spingath E. The most sensitive inputs to cutaneous representing regions of primary somatosensory cortex do not change with behavioral training. Physiol Rep 3(12): e12623, 2015. |
16. | Blake DT, Byl NN, Cheung S, Bedenbaugh P, Nagarajan S, Lamb M, Merzenich MM. Sensory representation abnormalities that parallel focal hand dystonia in a primate model. Somat Mot Res 19(4): 347‐357, 2002. |
17. | Blake DT, Heiser MA, Caywood M, Merzenich MM. Experience‐dependent adult cortical plasticity requires cognitive association between sensation and reward. Neuron 52: 371‐381, 2006. |
18. | Blake DT, Strata F, Churchland AK, Merzenich MM. Neural correlates of instrumental learning in primary auditory cortex. Proc Natl Acad Sci USA 99: 10114‐10119, 2002. |
19. | Blake DT, Strata F, Churchland AK, Merzenich MM. Neural correlates of instrumental learning in primary auditory cortex. Proc Natl Acad Sci USA 99: 10114‐10119, 2002. |
20. | Blake DT, Strata F, Kempter R, Merzenich MM. Experience‐dependent plasticity in S1 caused by noncoincident inputs. J Neurophysiol 94: 2239‐2250, 2005. |
21. | Brodmann K. Vergleichende Lokalisationslehre der Groshirnrinde [Online]. http://www.actaneuropathologicagateway.net/PDFDocuments/Books%255CBookID1578%255CChapter_frontmatter%255C978‐0‐387‐26919‐1_fm.pdf [29 Jul. 2016]. |
22. | Brown M, Irvine DR, Park VN. Perceptual learning on an auditory frequency discrimination task by cats: Association with changes in primary auditory cortex. Cereb Cortex 14: 952‐965, 2004. |
23. | Calford MB. Dynamic representational plasticity in sensory cortex. Neuroscience 111: 709‐738, 2002. |
24. | Calford MB, Wright LL, Metha AB, Taglianetti V. Topographic plasticity in primary visual cortex is mediated by local corticocortical connections. [Online]. J Neurosci 23: 6434‐6442, 2003. http://www.ncbi.nlm.nih.gov/pubmed/12878683 [26 Aug. 2016]. |
25. | Carpenter‐Hyland EP, Plummer TK, Vazdarjanova A, Blake DT. Arc expression and neuroplasticity in primary auditory cortex during initial learning are inversely related to neural activity. Proc Natl Acad Sci USA 107: 14828‐14832, 2010. |
26. | Chubbuck JG. Small motion biological stimulator. Johns Hopkins APL Tech Dig 5: 18‐23, 1966. |
27. | Collins CE, Airey DC, Young NA, Leitch DB, Kaas JH. Neuron densities vary across and within cortical areas in primates. Proc Nat Acad Sci USA 107: 15927‐15932, 2010. |
28. | Cooke DF, Goldring AB, Baldwin MKL, Recanzone GH, Chen A, Pan T, Simon SI, Krubitzer L. Reversible deactivation of higher‐order posterior parietal areas. I. Alterations of receptive field characteristics in early stages of neocortical processing. J Neurophysiol 112: 2529‐2544, 2014. |
29. | Coq J‐O, Xerri C. Environmental enrichment alters organizational features of the forepaw representation in the primary somatosensory cortex of adult rats. Exp Brain Res 121: 191‐204, 1998. |
30. | Coq J‐O, Xerri C. Tactile impoverishment and sensorimotor restriction deteriorate the forepaw cutaneous map in the primary somatosensory cortex of adult rats. Exp Brain Res 129: 0518‐0531, 1999. |
31. | Coq J‐O, Xerri C. Tactile impoverishment and sensorimotor restriction deteriorate the forepaw cutaneous map in the primary somatosensory cortex of adult rats. Exp Brain Res 129: 0518‐0531, 1999. |
32. | Dahmen JC, Hartley DE, King AJ. Stimulus‐timing‐dependent plasticity of cortical frequency representation. J Neurosci 28: 13629‐13639, 2008. |
33. | Dahmen JC, Hartley DEH, King AJ. Stimulus‐timing‐dependent plasticity of cortical frequency representation. J Neurosci 28: 13629‐13639, 2008. |
34. | Darian‐Smith C, Gilbert C. Axonal sprouting accompanies functional reorganization in adult cat striate cortex [Online]. Nature. http://www.neurosciences.us/courses/systems/CentralPlas/gilbert94.pdf [26 Aug. 2016]. |
35. | Darian‐Smith C, Gilbert C. Topographic reorganization in the striate cortex of the adult cat and monkey is cortically mediated [Online]. J Neurosci http://www.jneurosci.org/content/15/3/1631.short [26 Aug. 2016]. |
36. | Debanne D, Gahwiler BH, Thompson SM. Asynchronous pre‐ and postsynaptic activity induces associative long‐term depression in area CA1 of the rat hippocampus in vitro. Proc Natl Acad Sci 91: 1148‐1152, 1994. |
37. | DeLong MR. Activity of pallidal neurons during movement. J Neurophysiol 34: 414‐427, 1971. |
38. | Diamond ME, Armstrong‐James M, Ebner FF. Experience‐dependent plasticity in adult rat barrel cortex. Proc Natl Acad Sci 90: 2082‐2086, 1993. |
39. | Diamond ME, Huang W, Ebner FF. Laminar comparison of somatosensory cortical plasticity. Science 265: 1885‐1888, 1994. |
40. | Domjan M. The Principles of Learning and Behavior. 4th ed. Belmont, CA: Wadsworth, 1997. |
41. | Dostrovsky JO, Millar J, Wall PD. The immediate shift of afferent drive of dorsal column nucleus cells following deafferentation: A comparison of acute and chronic deafferentation in gracile nucleus and spinal cord. Exp Neurol 52: 480‐495, 1976. |
42. | Edeline J‐M, Pham P, Weinberger NM. Rapid development of learning‐induced receptive field plasticity in the auditory cortex. Behav Neurosci 107: 539‐551, 1993. |
43. | Edeline J‐M, Weinberger NM. Receptive field plasticity in the auditory cortex during frequency discrimination training: Selective retuning independent of task difficulty. Behav Neurosci 107: 82‐103, 1993. |
44. | Erwin E, Miller KD. Correlation‐based development of ocularly matched orientation and ocular dominance maps: Determination of required input activities. [Online]. J Neurosci 18: 9870‐9895, 1998. http://www.ncbi.nlm.nih.gov/pubmed/9822745 [26 Aug. 2016]. |
45. | Feldman DE. Timing‐based LTP and LTD at vertical inputs to layer II/III pyramidal cells in rat barrel cortex. Neuron 27: 45‐56, 2000. |
46. | Feldman DE, Brecht M. Map plasticity in somatosensory cortex. Science 310: 810‐815, 2005. |
47. | Felleman DJ, Van Essen DC. Distributed hierarchical processing in the primate cerebral cortex. Cereb Cortex 1: 1‐47, 1991. |
48. | Foldiak P. Forming sparse representations by local anti‐Hebbian learning. Biol Cybern 64: 165‐170, 1990. |
49. | Fox K. Anatomical pathways and molecular mechanisms for plasticity in the barrel cortex. Neurosci 111: 799‐814, 2002. |
50. | Freedman DJ, Assad JA. Experience‐dependent representation of visual categories in parietal cortex. Nature 443: 85‐88, 2006. |
51. | Froemke RC, Carcea I, Barker AJ, Yuan K, Seybold BA, Martins ARO, Zaika N, Bernstein H, Wachs M, Levis PA, Polley DB, Merzenich MM, Schreiner CE. Long‐term modification of cortical synapses improves sensory perception. Nat Neurosci 16: 79‐88, 2012. |
52. | Froemke RC, Merzenich MM, Schreiner CE. A synaptic memory trace for cortical receptive field plasticity. Nature 450: 425‐429, 2007. |
53. | Fu Y‐X, Djupsund K, Gao H, Hayden B, Shen K, Dan Y. Temporal specificity in the cortical plasticity of visual space representation. Science 296: 1999‐2003, 2002. |
54. | Galindo‐Leon EE, Lin FG, Liu RC. Inhibitory plasticity in a lateral band improves cortical detection of natural vocalizations. Neuron 62: 705‐716, 2009. |
55. | Galvan VV, Weinberger NM. Long‐term consolidation and retention of learning‐induced tuning plasticity in the auditory cortex of the guinea pig. Neurobiol Learn Mem 77: 78‐108, 2002. |
56. | Gao E, Suga N. Experience‐dependent plasticity in the auditory cortex and the inferior colliculus of bats: Role of the corticofugal system. Proc Natl Acad Sci USA 97: 8081‐8086, 2000. |
57. | Ghose GM, Yang T, Maunsell JH. Physiological correlates of perceptual learning in monkey V1 and V2. J Neurophysiol 87: 1867‐1888, 2002. |
58. | Gilbert CD, Li W. Top‐down influences on visual processing. Nat Rev Neurosci 14: 350‐363, 2013. |
59. | Gilbert CD, Wiesel TN. Receptive field dynamics in adult primary visual cortex. Nature 356: 150‐152, 1992. |
60. | Glazewski S, Chen CM, Silva A, Fox K. Requirement for alpha‐CaMKII in experience‐dependent plasticity of the barrel cortex. Science 272(5260): 421, 1996. |
61. | Glazewski S, Giese KP, Silva A, Fox K. The role of α‐CaMKII autophosphorylation in neocortical experience‐dependent plasticity. Nat Neurosci 3(9): 911‐918, 2000. |
62. | Goldring AB, Cooke DF, Baldwin MKL, Recanzone GH, Gordon AG, Pan T, Simon SI, Krubitzer L. Reversible deactivation of higher‐order posterior parietal areas. II. Alterations in response properties of neurons in areas 1 and 2. J Neurophysiol 112: 2545‐2560, 2014. |
63. | Guo F, Intskirveli I, Blake DT, Metherate R. Tone‐detection training enhances spectral integration mediated by intracortical pathways in primary auditory cortex. Neurobiol Learn Mem 101: 75‐84, 2013. |
64. | Hebb DO. The organization of behavior: A neuropsychological theory. Psychology Press, 2005. |
65. | Heeger DJ, Ress D, Backus BT. Activity in primary visual cortex predicts performance in a visual detectiontask. Nat Neurosci 3: 940‐945, 2000. |
66. | Heinen SJ, Skavenski AA. Recovery of visual responses in foveal V1 neurons following bilateral foveal lesions in adult monkey. Exp Brain Res 83: 670‐674, 1991. |
67. | van Hemmen JL. Hebbian learning, its correlation catastrophe, and unlearning. Netw Comput Neural Syst 8(3): V1‐V17, 2009. |
68. | Hernandez A, Zainos A, Romo R. Neuronal correlates of sensory discrimination in the somatosensory cortex. Proc Nat Acad Sci USA 97: 6191‐6196, 2000. |
69. | Hubel DH, Wiesel TN. Receptive fields of single neurones in the cat's striate cortex. J Physiol 148: 574‐591, 1959. |
70. | Hubel DH, Wiesel TN. Functional architecture of macaque monkey visual cortex. Proc Roy Soc B 198: 1‐59, 1972. |
71. | Izhikevich EM, Edelman GM. Large‐scale model of mammalian thalamocortical systems. Proc Natl Acad Sci USA 105: 3593‐3598, 2008. |
72. | Jenkins WM, Merzenich MM, Ochs MT, Allard T, Guic‐Robles E. Functional reorganization of primary somatosensory cortex in adult owl monkeys after behaviorally controlled tactile stimulation. J Neurophysiol 63: 82‐104, 1990. |
73. | Jenkins WM, Merzenich MM, Ochs MT, Allard T, Guíc‐Robles E. Functional reorganization of primary somatosensory cortex in adult owl monkeys after behaviorally controlled tactile stimulation. [Online]. J Neurophysiol 63: 82‐104, 1990. http://www.ncbi.nlm.nih.gov/pubmed/2299388 [30 Aug. 2016]. |
74. | Johnson KO, Hsiao SS. Neural mechanisms of tactual form and texture perception. Ann Rev Neurosci 15: 227‐250, 1992. |
75. | Johnson KO, Hsiao SS, Blake DT. Linearity as the basic law of psychophysics: Evidence from studies of the neural mechanisms of roughness magnitude estimation. In: Somesthesis and the Neurobiology of the Somatosensory Cortex, pp. 213‐228. |
76. | Jones EG. Pattern of cortical and thalamic connexions of the somatic sensory cortex. Nature 216(5116): 704‐705, 1967. |
77. | Jones EG, Huntley GW, Benson DL. Alpha calcium/calmodulin‐dependent protein kinase II selectively expressed in a subpopulation of excitatory neurons in monkey sensory‐motor cortex: Comparison with GAD‐67 expression. [Online]. J Neurosci 14: 611‐629, 1994. http://www.ncbi.nlm.nih.gov/pubmed/8301355 [7 Sep. 2016]. |
78. | Juliano SL, Ma W, Eslin D. Cholinergic depletion prevents expansion of topographic maps in somatosensory cortex. Proc Nat Acad Sci USA 88: 780‐784, 1991. |
79. | Kaas JH. What, if anything, is SI? Organization of first somatosensory area of cortex. [Online]. Physiol Rev 63: 206‐231, 1983. http://www.ncbi.nlm.nih.gov/pubmed/6401864 [29 Jul. 2016]. |
80. | Kaas JH, Hackett TA. Subdivisions of auditory cortex and processing streams in primates. Proc Natl Acad Sci USA 97: 11793‐11799, 2000. |
81. | Kaas JH, Krubitzer LA, Chino YM, Langston AL, Polley EH, Blair N. Reorganization of retinotopic cortical maps in adult mammals after lesions of the retina. Science 248(4952): 229, 1990. |
82. | Kaas JH, Merzenich MM, Killackey HP. The reorganization of somatosensory cortex following peripheral nerve damage in adult and developing mammals. Annu Rev Neurosci 6: 325‐356, 1983. |
83. | Kaas JH, Nelson RJ, Sur M, Lin CS, Merzenich MM. Multiple representations of the body within the primary somatosensory cortex of primates. Science 204: 521‐523, 1979. |
84. | Karmarkar UR, Dan Y. Experience‐dependent plasticity in adult visual cortex. Neuron 52: 577‐585, 2006. |
85. | Kilgard MP, Merzenich MM. Cortical map reorganization enabled by nucleus basalis activity [Online]. Science 279: 1714‐1718, 1998. http://www.ncbi.nlm.nih.gov/pubmed/9497289 [21 Mar. 2016]. |
86. | Kim J‐H, Jung A‐H, Jeong D, Choi I, Kim K, Shin S, Kim SJ, Lee S‐H. Selectivity of neuromodulatory projections from the basal forebrain and locus ceruleus to primary sensory cortices. J Neurosci 36: 5314‐5327, 2016. |
87. | King PD, Zylberberg J, DeWeese MR. Inhibitory interneurons decorrelate excitatory cells to drive sparse code formation in a spiking model of V1. J Neurosci 33: 5475‐5485, 2013. |
88. | Kisley MA, Gerstein GL. Daily variation and appetitive conditioning‐induced plasticity of auditory cortex receptive fields. Eur J Neurosci 13: 1993‐2003, 2001. |
89. | Knott GW, Quairiaux C, Genoud C, Welker E. Formation of dendritic spines with GABAergic synapses induced by whisker stimulation in adult mice. Neuron 34: 265‐273, 2002. |
90. | Kuhlman SJ, O'Connor DH, Fox K, Svoboda K. Structural plasticity within the barrel cortex during initial phases of whisker‐dependent learning. J Neurosci 34: 6078‐6083, 2014. |
91. | Law CT, Gold JI. Neural correlates of perceptual learning in a sensory‐motor, but not a sensory, cortical area. Nat Neurosci 11: 505‐513, 2008. |
92. | Law C‐T, Gold JI. Reinforcement learning can account for associative and perceptual learning on a visual‐decision task. Nat Neurosci 12: 655‐663, 2009. |
93. | LeCun Y, Bengio Y, Hinton G. Deep learning. Nature 521: 436‐444, 2015. |
94. | Letzkus JJ, Wolff SBE, Meyer EMM, Tovote P, Courtin J, Herry C, Lüthi A. A disinhibitory microcircuit for associative fear learning in the auditory cortex. Nature 480: 331‐335, 2011. |
95. | Lewis DA, Campbell MJ, Foote SL, Goldstein M, Morrison JH. The distribution of tyrosine hydroxylase‐immunoreactive fibers in primate neocortex is widespread but regionally specific. J Neurosci 7: 279‐290, 1987. |
96. | Liddell EGT, Sherrington C. Reflexes in response to stretch (myotatic reflexes). Proc R Soc B Biol Sci 96: 212‐242, 1924. |
97. | Liu RC, Linden JF, Schreiner CE. Improved cortical entrainment to infant communication calls in mothers compared with virgin mice. Eur J Neurosci 23: 3087‐3097, 2006. |
98. | Liu RC, Schreiner CE. Auditory cortical detection and discrimination correlates with communicative significance. PLoS Biol 5: e173, 2007. |
99. | Lu T, Liang L, Wang X. Temporal and rate representations of time‐varying signals in the auditory cortex of awake primates. Nat Neurosci 4: 1131‐1138, 2001. |
100. | Luna R, Hernandez A, Brody CD, Romo R. Neural codes for perceptual discrimination in primary somatosensory cortex. Nat Neurosci 8: 1210‐1219, 2005. |
101. | Malinow R, Schulman H, Tsien RW. Inhibition of postsynaptic PKC or CaMkII blocks induction but not expression of LTP. Science (80‐) 245, 1989. |
102. | Markram H, Lubke J, Frotscher M, Sakmann B. Regulation of synaptic efficacy by coincidence of postsynaptic APs and EPSPs. Science (80‐) 275: 213‐215, 1997. |
103. | Merzenich MM, Brugge JF. Representation of the cochlear partition of the superior temporal plane of the macaque monkey. Brain Res 50: 275‐296, 1973. |
104. | Merzenich MM, Kaas JH, Sur M, Lin CS. Double representation of the body surface within cytoarchitectonic areas 3b and 1 in SI in the owl monkey (Aotus trivirgatus). J Comp Neurol 181: 41‐73, 1978. |
105. | Merzenich MM, Kaas JH, Wall JT, Sur M, Nelson RJ, Felleman DJ. Progression of change following median nerve section in the cortical representation of the hand in areas 3b and 1 in adult owl and squirrel monkeys. Neurosci 10: 639‐665, 1983. |
106. | Merzenich MM, Nelson RJ, Stryker MP, Cynader MS, Schoppmann A, Zook JM. Somatosensory cortical map changes following digit amputation in adult monkeys. J Comp Neurol 224: 591‐605, 1984. |
107. | Metherate R. Nicotinic acetylcholine receptors in sensory cortex. Learn Mem 11: 50‐59, 2004. |
108. | Metherate R, Tremblay N, Dykes RW. Acetylcholine permits long‐term enhancement of neuronal responsiveness in cat primary somatosensory cortex. Neurosci 22: 75‐81, 1987. |
109. | Metherate R, Tremblay N, Dykes RW. Transient and prolonged effects of acetylcholine on responsiveness of cat somatosensory cortical neurons. J Neurophysiol 59: 1253‐1276, 1988. |
110. | Millar J, Basbaum AI, Wall PD. Restructuring of the somatotopic map and appearance of abnormal neuronal activity in the gracile nucleus after partial deafferentation. Exp Neurol 50: 658‐672, 1976. |
111. | Miller JM, Sutton D, Pfingst B, Ryan A, Beaton R, Gourevitch G. Single cell activity in the auditory cortex of Rhesus monkeys: Behavioral dependency. Science 177: 449‐451, 1972. |
112. | Miller LM, Escabí MA, Read HL, Schreiner CE. Functional convergence of response properties in the auditory thalamocortical system. Neuron 32: 151‐160, 2001. |
113. | Mountcastle V. Modality and topographic properties of single neurons of cat's somatic sensory cortex. [Online]. J Neurophysiol 20: 408‐434, 1957. http://www.ncbi.nlm.nih.gov/pubmed/13439410 [29 Jul. 2016]. |
114. | Mountcastle VB, Mountcastle VB. Central nervous mechanisms in mechanoreceptive sensibility. In: Comprehensive Physiology. John Wiley & Sons, 1984. |
115. | Mountcastle VB, Steinmetz MA, Romo R. Frequency discrimination in the sense of flutter: Psychophysical measurements correlated with postcentral events in behaving monkeys. J Neurosci 10: 3032‐3044, 1990. |
116. | Noudoost B, Chang MH, Steinmetz NA, Moore T. Top‐down control of visual attention. Curr Opin Neurobiol 20: 183‐190, 2010. |
117. | Ohl FW, Scheich H. Learning‐induced dynamic receptive field changes in primary auditory cortex of the unanaesthetized Mongolian gerbil. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 181(6): 685‐696, 1997. |
118. | Ohl FW, Scheich H. Differential frequency conditioning enhances spectral contrast sensitivity of units in auditory cortex (field Al) of the alert Mongolian Gerbil. Eur J Neurosci 8: 1001‐1017, 1996. |
119. | Olshausen BA, Field DJ. Emergence of simple‐cell receptive field properties by learning a sparse code for natural images. Nature 381: 607‐609, 1996. |
120. | Orduña I, Mercado EI, Gluck MA, Merzenich MM. Cortical responses in rats predict perceptual sensitivities to complex sounds. Behav Neurosci 119: 256‐264, 2005. |
121. | Pearson JC, Finkel LH, Edelman GM. Plasticity in the organization of adult cerebral cortical maps: A computer simulation based on neuronal group selection. J Neurosci 7: 4209‐4223, 1987. |
122. | Pei YC, Denchev P V, Hsiao SS, Craig JC, Bensmaia SJ. Convergence of submodality‐specific input onto neurons in primary somatosensory cortex. J Neurophysiol 102: 1843‐1853, 2009. |
123. | Polley DB, Chen‐Bee CH, Frostig RD. Two directions of plasticity in the sensory‐deprived adult cortex. Neuron 24: 623‐637, 1999. |
124. | Polley DB, Kvašňák E, Frostig RD. Naturalistic experience transforms sensory maps in the adult cortex of caged animals. Nature 429: 67‐71, 2004. |
125. | Polley DB, Steinberg EE, Merzenich MM. Perceptual learning directs auditory cortical map reorganization through top‐down influences. J Neurosci 26: 4970‐4982, 2006. |
126. | Popper K. The logic of scientific discovery. Hutchinson & Co., 1959. |
127. | Raiguel S, Vogels R, Mysore SG, Orban GA. Learning to see the difference specifically alters the most informative V4 neurons. J Neurosci 26: 6589‐6602, 2006. |
128. | Rajan R, Irvine DRF, Wise LZ, Heil P. Effect of unilateral partial cochlear lesions in adult cats on the representation of lesioned and unlesioned cochleas in primary auditory cortex. J Comp Neurol 338: 17‐49, 1993. |
129. | Recanzone GH, Jenkins WM, Hradek GT, Merzenich MM. Progressive improvement in discriminative abilities in adult owl monkeys performing a tactile frequency discrimination task. J Neurophysiol 67: 1015‐1030, 1992. |
130. | Recanzone GH, Merzenich MM, Jenkins WM. Frequency discrimination training engaging a restricted skin surface results in an emergence of a cutaneous response zone in cortical area 3a. J Neurophysiol 67: 1057‐1070, 1992. |
131. | Recanzone GH, Merzenich MM, Jenkins WM, Grajski KA, Dinse HR. Topographic reorganization of the hand representation in cortical area 3b owl monkeys trained in a frequency‐discrimination task. J Neurophysiol 67: 1031‐1056, 1992. |
132. | Recanzone GH, Merzenich MM, Schreiner CE. Changes in the distributed temporal response properties of SI cortical neurons reflect improvements in performance on a temporally based tactile discrimination task. J Neurophysiol 67: 1071‐1091, 1992. |
133. | Recanzone GH, Merzenich MM, Schreiner CE. Changes in the distributed temporal response properties of SI cortical neurons reflect improvements in performance on a temporally based tactile discrimination task. [Online]. J Neurophysiol 67: 1071‐1091, 1992. http://www.ncbi.nlm.nih.gov/pubmed/1597698 [1 Sep. 2016]. |
134. | Recanzone GH, Schreiner CE, Merzenich MM. Plasticity in the frequency representation of primary auditory cortex following discrimination training in adult owl monkeys. J Neurosci 13: 87‐103, 1993. |
135. | Reid RC, Alonso JM. Specificity of monosynaptic connections from thalamus to visual cortex. Nature 378: 281‐284, 1995. |
136. | Rescorla RA, Soloman RL. Two‐process learning theory: Relationships between Pavlovian conditioning and instrumental learning. Psychol Rev 74: 713‐713, 1967. |
137. | Richardson RT, DeLong MR. Electrophysiological studies of the functions of the nucleus basalis in primates. Adv Exp Med Biol 295: 233‐252, 1991. |
138. | Robertson D, Irvine DRF. Plasticity of frequency organization in auditory cortex of guinea pigs with partial unilateral deafness. J Comp Neurol 282: 456‐471, 1989. |
139. | Romanski LM, LeDoux JE. Bilateral destruction of neocortical and perirhinal projection targets of the acoustic thalamus does not disrupt auditory fear conditioning. Neurosci Lett 142: 228‐232, 1992. |
140. | Romanski LM, LeDoux JE. Information cascade from primary auditory cortex to the amygdala: Corticocortical and corticoamygdaloid projections of temporal cortex in the rat. Cereb Cortex 3: 515‐532, 1993. |
141. | Romanski LM, LeDoux JE. Organization of rodent auditory cortex: Anterograde transport of PHA‐L from MGv to temporal neocortex. Cereb Cortex 3: 499‐514, 1993. |
142. | Roy SA, Alloway KD. Coincidence detection or temporal integration? What the neurons in somatosensory cortex are doing. J Neurosci 21: 2462‐2473, 2001. |
143. | Rozell CJ, Johnson DH, Baraniuk RG, Olshausen BA. Sparse coding via thresholding and local competition in neural circuits. Neural Comput 20: 2526‐2563, 2008. |
144. | Rumelhart DE, Hinton GE, Williams RJ. Learning internal representations by error propagation (No. ICS‐8506). California Univ San Diego La Jolla Inst for Cognitive Science, 1985. |
145. | Rumelhart DE, Hinton GE, Williams RJ. Learning representations by back‐propagating errors. Cogn Model 5, 1988. |
146. | Rye DB, Wainer BH, Mesulam MM, Mufson EJ, Saper CB. Cortical projections arising from the basal forebrain: A study of cholinergic and noncholinergic components employing combined retrograde tracing and immunohistochemical localization of choline acetyltransferase. Neuroscience 13: 627‐643, 1984. |
147. | Ryugo DK, Weinberger NM. Differential plasticity of morphologically distinct neuron populations in the medical geniculate body of the cat during classical conditioning. Behav Biol 22: 275‐301, 1978. |
148. | Sachdev RN, Egli M, Stonecypher M, Wiley RG, Ebner FF. Enhancement of cortical plasticity by behavioral training in acetylcholine‐depleted adult rats. J Neurophysiol 84: 1971‐1981, 2000. |
149. | Sachdev RN, Lu SM, Wiley RG, Ebner FF. Role of the basal forebrain cholinergic projection in somatosensory cortical plasticity. J Neurophysiol 79: 3216‐3228, 1998. |
150. | Sakai K, Miyashita Y. Neuronal tuning to learned complex forms in vision. Neuroreport 5: 829‐832, 1994. |
151. | Schoups A, Vogels R, Qian N, Orban G. Practising orientation identification improves orientation coding in V1 neurons. Nature 412: 549‐553, 2001. |
152. | Schultz W, Dayan P, Montague PR. A neural substrate of prediction and reward. Science 275: 1593‐1599, 1997. |
153. | Seitz AR, Kim D, Watanabe T. Rewards evoke learning of unconsciously processed visual stimuli in adult humans. Neuron 61(5): 700‐707, 2009. |
154. | Seitz AR, Watanabe T. Psychophysics: Is subliminal learning really passive? Nature 422: 36‐36, 2003. |
155. | Siucinska E, Kossut M. Short‐lasting classical conditioning induces reversible changes of representational maps of vibrissae in mouse SI cortex‐a 2DG study. Cereb Cortex 6: 506‐513, 1996. |
156. | Siucinska E, Kossut M. Experience‐dependent changes in cortical whisker representation in the adult mouse: A 2‐deoxyglucose study. Neuroscience 127: 961‐971, 2004. |
157. | Spingath E, Kang H‐S, Blake DT. Task‐dependent modulation of SI physiological responses to targets and distractors. [Online]. J Neurophysiol 109: 1036‐1044, 2013. http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=3569122&tool=pmcentrez&rendertype=abstract. |
158. | Spingath EY, Kang HS, Plummer T, Blake DT. Different neuroplasticity for task targets and distractors. PLoS One 6(1): e15342, 2011. |
159. | Stevens SS. Neural events and the psychophysical law. Science (80‐) 170: 1043‐1050, 1970. |
160. | Stryker MP, Jenkins WM, Merzenich MM. Anesthetic state does not affect the map of the hand representation within area 3b somatosensory cortex in owl monkey. J Comp Neurol 258: 297‐303, 1987. |
161. | Suga N, Ma X. Multiparametric corticofugal modulation and plasticity in the auditory system. Nat Rev Neurosci 4: 783‐794, 2003. |
162. | Talbot WH, Darian‐Smith I, Kornhuber HH, Mountcastle VB. The sense of flutter‐vibration: Comparison of the human capacity with response patterns of mechanoreceptive afferents from the monkey hand. J Neurophysiol 31: 301‐334, 1968. |
163. | Talwar SK, Musial PG, Gerstein GL. Role of mammalian auditory cortex in the perception of elementary sound properties. J Neurophysiol 85: 2350‐2358, 2001. |
164. | Tighilet B, Hashikawa T, Jones EG. Cell‐ and lamina‐specific expression and activity‐dependent regulation of type II calcium/calmodulin‐dependent protein kinase isoforms in monkey visual cortex. [Online]. J Neurosci 18: 2129‐2146, 1998. http://www.ncbi.nlm.nih.gov/pubmed/9482799 [29 Aug. 2016]. |
165. | Trachtenberg JT, Chen BE, Knott GW, Feng G, Sanes JR, Welker E, Svoboda K. Long‐term in vivo imaging of experience‐dependent synaptic plasticity in adult cortex. Nature 420: 788‐794, 2002. |
166. | Trachtenberg JT, Stryker MP. Rapid anatomical plasticity of horizontal connections in the developing visual cortex. J Neurosci 21: 3476‐3482, 2001. |
167. | Trachtenberg JT, Trepel C, Stryker MP. Rapid extragranular plasticity in the absence of thalamocortical plasticity in the developing primary visual cortex. Science 287: 2029‐2032, 2000. |
168. | Tsushima Y, Seitz AR, Watanabe T. Task‐irrelevant learning occurs only when the irrelevant feature is weak. Curr Biol 18: R516‐R517, 2008. |
169. | Wall J., Xu J, Wang X. Human brain plasticity: An emerging view of the multiple substrates and mechanisms that cause cortical changes and related sensory dysfunctions after injuries of sensory inputs from the body. Brain Res Rev 39: 181‐215, 2002. |
170. | Wang X, Merzenich MM, Sameshima K, Jenkins WM. Remodelling of hand representation in adult cortex determined by timing of tactile stimulation. Nature 378: 71‐75, 1995. |
171. | Webster HH, Hanisch UK, Dykes RW, Biesold D. Basal forebrain lesions with or without reserpine injection inhibit cortical reorganization in rat hindpaw primary somatosensory cortex following sciatic nerve section. Somat Mot Res 8: 327‐346, 1991. |
172. | Weinberger NM, Javid R, Lepan B. Long‐term retention of learning‐induced receptive‐field plasticity in the auditory cortex. Proc Nat Acad Sci USA 90: 2394‐2398, 1993. |
173. | Welker E, Rao SB, Dorfl J, Melzer P, Van der Loos H. Plasticity in the barrel cortex of the adult mouse: Effects of chronic stimulation upon deoxyglucose uptake in the behaving animal. J Neurosci 12(1): 153‐170, 1992. |
174. | Wiesel TN, Hubel DH. Single‐cell responses in striate cortex of kittens deprived of vision in one eye. J Neurophysiol 26: 1003‐1017, 1963. |
175. | Woody CD, Swartz BE, Gruen E. Effects of acetylcholine and cyclic GMP on input resistance of cortical neurons in awake cats. Brain Res 158: 373‐395, 1978. |
176. | Woolsey TA, der Loos H. The structural organization of layer IV in the somatosensory region (SI) of mouse cerebral cortex. The description of a cortical field composed of discrete cytoarchitectonic units. Brain Res 17: 205‐242, 1970. |
177. | Xerri C, Merzenich MM, Jenkins W, Santucci S. Representational plasticity in cortical area 3b paralleling tactual‐motor skill acquisition in adult monkeys. Cereb Cortex 9: 264‐276, 1999. |
178. | Xerri C, Merzenich MM, Peterson BE, Jenkins W. Plasticity of primary somatosensory cortex paralleling sensorimotor skill recovery from stroke in adult monkeys. [Online]. J Neurophysiol 79: 2119‐2148, 1998. http://www.ncbi.nlm.nih.gov/pubmed/9535973 [26 Aug. 2016]. |
179. | Xerri C, Stern JM, Merzenich MM. Alterations of the cortical representation of the rat ventrum induced by nursing behavior. J Neurosci 14: 1710‐1721, 1994. |
180. | Yan Y, Rasch MJ, Chen M, Xiang X, Huang M, Wu S, Li W. Perceptual training continuously refines neuronal population codes in primary visual cortex. Nat Neurosci 17: 1380‐1387, 2014. |
181. | Yang T, Maunsell JH. The effect of perceptual learning on neuronal responses in monkey visual area V4. J Neurosci 24: 1617‐1626, 2004. |
182. | Yao H, Dan Y. Stimulus timing‐dependent plasticity in cortical processing of orientation. Neuron 32: 315‐323, 2001. |
183. | Zarzecki P, Witte S, Smits E, Gordon DC, Kirchberger P, Rasmusson DD. Synaptic mechanisms of cortical representational plasticity: Somatosensory and corticocortical EPSPs in reorganized raccoon SI cortex. J Neurophysiol 69: 1422‐1432, 1993. |
184. | Zhang LI, Tao HW, Holt CE, Harris WA, Poo M. A critical window for cooperation and competition among developing retinotectal synapses. Nature 395: 37‐44, 1998. |