References |
1. | Occupational Noise Exposure Cincinnati, OH: DHHS (NIOSH) Publication No. 98–126, 1998, p. 2‐3. |
2. | Ahmed ZM, Goodyear R, Riazuddin S, Lagziel A, Legan PK, Behra M, Burgess SM, Lilley KS, Wilcox ER, Riazuddin S, Griffith AJ, Frolenkov GI, Belyantseva IA, Richardson GP, Friedman TB. The tip‐link antigen, a protein associated with the transduction complex of sensory hair cells, is protocadherin‐15. J Neurosci 26: 7022‐7034, 2006. |
3. | Akinpelu OV, Peleva E, Funnell WR, Daniel SJ. Otoacoustic emissions in newborn hearing screening: A systematic review of the effects of different protocols on test outcomes. Int J Pediatr Otorhinolaryngol 78: 711‐717, 2014. |
4. | Andrade LR, Salles FT, Grati M, Manor U, Kachar B. Tectorins crosslink type II collagen fibrils and connect the tectorial membrane to the spiral limbus. J Struct Biol 194: 139‐146, 2016. |
5. | Art JJ, Fettiplace R. Variation of membrane properties in hair cells isolated from the turtle cochlea. J Physiol 385: 207‐242, 1987. |
6. | Ashmore J. Cochlear outer hair cell motility. Physiol Rev 88: 173‐210, 2008. |
7. | Ashmore JF. A fast motile response in guinea‐pig outer hair cells: The cellular basis of the cochlear amplifier. J Physiol 388: 323‐347, 1987. |
8. | Assad JA, Hacohen N, Corey DP. Voltage dependence of adaptation and active bundle movement in bullfrog saccular hair cells. Proc Natl Acad Sci U S A 86: 2918‐2922, 1989. |
9. | Assad JA, Shepherd GM, Corey DP. Tip‐link integrity and mechanical transduction in vertebrate hair cells. Neuron 7: 985‐994, 1991. |
10. | Atkinson PJ, Huarcaya Najarro E, Sayyid ZN, Cheng AG. Sensory hair cell development and regeneration: Similarities and differences. Development 142: 1561‐1571, 2015. |
11. | Bae C, Sachs F, Gottlieb PA. The mechanosensitive ion channel Piezo1 is inhibited by the peptide GsMTx4. Biochemistry 50: 6295‐6300, 2011. |
12. | Barr‐Gillespie PG. Assembly of hair bundles, an amazing problem for cell biology. Mol Biol Cell 26: 2727‐2732, 2015. |
13. | Bekesy Gv. Experiments in Hearing. New York: McGraw‐Hill, 1960. |
14. | Belyantseva IA, Boger ET, Naz S, Frolenkov GI, Sellers JR, Ahmed ZM, Griffith AJ, Friedman TB. Myosin‐XVa is required for tip localization of whirlin and differential elongation of hair‐cell stereocilia. Nat Cell Biol 7: 148‐156, 2005. |
15. | Ben‐Yosef T, Belyantseva IA, Saunders TL, Hughes ED, Kawamoto K, Van Itallie CM, Beyer LA, Halsey K, Gardner DJ, Wilcox ER, Rasmussen J, Anderson JM, Dolan DF, Forge A, Raphael Y, Camper SA, Friedman TB. Claudin 14 knockout mice, a model for autosomal recessive deafness DFNB29, are deaf due to cochlear hair cell degeneration. Hum Mol Genet 12: 2049‐2061, 2003. |
16. | Beurg M, Evans MG, Hackney CM, Fettiplace R. A large‐conductance calcium‐selective mechanotransducer channel in mammalian cochlear hair cells. J Neurosci 26: 10992‐11000, 2006. |
17. | Beurg M, Fettiplace R, Nam JH, Ricci AJ. Localization of inner hair cell mechanotransducer channels using high‐speed calcium imaging. Nat Neurosci 12: 553‐558, 2009. |
18. | Beurg M, Goldring AC, Fettiplace R. The effects of Tmc1 Beethoven mutation on mechanotransducer channel function in cochlear hair cells. J Gen Physiol 146: 233‐243, 2015. |
19. | Beurg M, Kim KX, Fettiplace R. Conductance and block of hair‐cell mechanotransducer channels in transmembrane channel‐like protein mutants. J Gen Physiol 144: 55‐69, 2014. |
20. | Beurg M, Nam JH, Chen Q, Fettiplace R. Calcium balance and mechanotransduction in rat cochlear hair cells. J Neurophysiol 104: 18‐34, 2010. |
21. | Beurg M, Nam JH, Crawford A, Fettiplace R. The actions of calcium on hair bundle mechanics in mammalian cochlear hair cells. Biophys J 94: 2639‐2653, 2008. |
22. | Beurg M, Tan X, Fettiplace R. A prestin motor in chicken auditory hair cells: Active force generation in a nonmammalian species. Neuron 79: 69‐81, 2013. |
23. | Beurg M, Xiong W, Zhao B, Muller U, Fettiplace R. Subunit determination of the conductance of hair‐cell mechanotransducer channels. Proc Natl Acad Sci U S A 112: 1589‐1594, 2015. |
24. | Beutner D, Voets T, Neher E, Moser T. Calcium dependence of exocytosis and endocytosis at the cochlear inner hair cell afferent synapse. Neuron 29: 681‐690, 2001. |
25. | Bohne BA, Carr CD. Morphometric analysis of hair cells in the chinchilla cochlea. J Acoust Soc Am 77: 153‐158, 1985. |
26. | Borst JG, Soria van Hoeve J. The calyx of Held synapse: From model synapse to auditory relay. Annu Rev Physiol 74: 199‐224, 2012. |
27. | Bosher SK. The nature of the negative endocochlear potentials produced by anoxia and ethacrynic acid in the rat and guinea‐pig. J Physiol 293: 329‐345, 1979. |
28. | Bosher SK, Warren RL. Very low calcium content of cochlear endolymph, an extracellular fluid. Nature 273: 377‐378, 1978. |
29. | Brandt A, Striessnig J, Moser T. CaV1.3 channels are essential for development and presynaptic activity of cochlear inner hair cells. J Neurosci 23: 10832‐10840, 2003. |
30. | Brown MC, Nuttall AL. Efferent control of cochlear inner hair cell responses in the guinea‐pig. J Physiol 354: 625‐646, 1984. |
31. | Brown MC, Nuttall AL, Masta RI, Lawrence M. Cochlear inner hair cells: Effects of transient asphyxia on intracellular potentials. Hear Res 9: 131‐144, 1983. |
32. | Brownell WE, Bader CR, Bertrand D, de Ribaupierre Y. Evoked mechanical responses of isolated cochlear outer hair cells. Science 227: 194‐196, 1985. |
33. | Chan DK, Hudspeth AJ. Ca2+ current‐driven nonlinear amplification by the mammalian cochlea in vitro. Nat Neurosci 8: 149‐155, 2005. |
34. | Chapman ER. How does synaptotagmin trigger neurotransmitter release? Annu Rev Biochem 77: 615‐641, 2008. |
35. | Chapochnikov NM, Takago H, Huang CH, Pangrsic T, Khimich D, Neef J, Auge E, Gottfert F, Hell SW, Wichmann C, Wolf F, Moser T. Uniquantal release through a dynamic fusion pore is a candidate mechanism of hair cell exocytosis. Neuron 83: 1389‐1403, 2014. |
36. | Chatzigeorgiou M, Bang S, Hwang SW, Schafer WR. tmc‐1 encodes a sodium‐sensitive channel required for salt chemosensation in C. elegans. Nature 494: 95‐99, 2013. |
37. | Cheatham MA, Goodyear RJ, Homma K, Legan PK, Korchagina J, Naskar S, Siegel JH, Dallos P, Zheng J, Richardson GP. Loss of the tectorial membrane protein CEACAM16 enhances spontaneous, stimulus‐frequency, and transiently evoked otoacoustic emissions. J Neurosci 34: 10325‐10338, 2014. |
38. | Chen F, Zha D, Fridberger A, Zheng J, Choudhury N, Jacques SL, Wang RK, Shi X, Nuttall AL. A differentially amplified motion in the ear for near‐threshold sound detection. Nat Neurosci 14: 770‐774, 2011. |
39. | Chen Q, Mahendrasingam S, Tickle JA, Hackney CM, Furness DN, Fettiplace R. The development, distribution and density of the plasma membrane calcium ATPase 2 calcium pump in rat cochlear hair cells. Eur J Neurosci 36: 2302‐2310, 2012. |
40. | Cheung EL, Corey DP. Ca2+ changes the force sensitivity of the hair‐cell transduction channel. Biophys J 90: 124‐139, 2006. |
41. | Clark GM. The multichannel cochlear implant for severe‐to‐profound hearing loss. Nat Med 19: 1236‐1239, 2013. |
42. | Clark GM. The multi‐channel cochlear implant: Multi‐disciplinary development of electrical stimulation of the cochlea and the resulting clinical benefit. Hear Res 322: 4‐13, 2015. |
43. | Cohen‐Salmon M, Ott T, Michel V, Hardelin JP, Perfettini I, Eybalin M, Wu T, Marcus DC, Wangemann P, Willecke K, Petit C. Targeted ablation of connexin26 in the inner ear epithelial gap junction network causes hearing impairment and cell death. Curr Biol 12: 1106‐1111, 2002. |
44. | Cooper NP. An improved heterodyne laser interferometer for use in studies of cochlear mechanics. J Neurosci Methods 88: 93‐102, 1999. |
45. | Cooper NP, Rhode WS. Basilar membrane mechanics in the hook region of cat and guinea‐pig cochleae: Sharp tuning and nonlinearity in the absence of baseline position shifts. Hear Res 63: 163‐190, 1992. |
46. | Cooper NP, Rhode WS. Nonlinear mechanics at the apex of the guinea‐pig cochlea. Hear Res 82: 225‐243, 1995. |
47. | Corey DP, Hudspeth AJ. Kinetics of the receptor current in bullfrog saccular hair cells. J Neurosci 3: 962‐976, 1983. |
48. | Corns LF, Johnson SL, Kros CJ, Marcotti W. Calcium entry into stereocilia drives adaptation of the mechanoelectrical transducer current of mammalian cochlear hair cells. Proc Natl Acad Sci U S A 111: 14918‐14923, 2014. |
49. | Corns LF, Johnson SL, Kros CJ, Marcotti W. Tmc1 point mutation affects Ca2+ sensitivity and block by dihydrostreptomycin of the mechanoelectrical transducer current of mouse outer hair cells. J Neurosci 36: 336‐349, 2016. |
50. | Coste B, Murthy SE, Mathur J, Schmidt M, Mechioukhi Y, Delmas P, Patapoutian A. Piezo1 ion channel pore properties are dictated by C‐terminal region. Nat Commun 6: 7223, 2015. |
51. | Crawford AC, Evans MG, Fettiplace R. Activation and adaptation of transducer currents in turtle hair cells. J Physiol 419: 405‐434, 1989. |
52. | Crawford AC, Evans MG, Fettiplace R. The actions of calcium on the mechano‐electrical transducer current of turtle hair cells. J Physiol 434: 369‐398, 1991. |
53. | Crawford AC, Fettiplace R. The frequency selectivity of auditory nerve fibres and hair cells in the cochlea of the turtle. J Physiol 306: 79‐125, 1980. |
54. | Crawford AC, Fettiplace R. An electrical tuning mechanism in turtle cochlear hair cells. J Physiol 312: 377‐412, 1981. |
55. | Crawford AC, Fettiplace R. The mechanical properties of ciliary bundles of turtle cochlear hair cells. J Physiol 364: 359‐379, 1985. |
56. | Dallos P. Peripheral mechanisms of hearing. In: Handbook of Physiology, The Nervous System, Sensory Processes: American Physiological Society, pp. 595‐637, 1984. |
57. | Dallos P. Response characteristics of mammalian cochlear hair cells. J Neurosci 5: 1591‐1608, 1985. |
58. | Dallos P, He DZ, Lin X, Sziklai I, Mehta S, Evans BN. Acetylcholine, outer hair cell electromotility, and the cochlear amplifier. J Neurosci 17: 2212‐2226, 1997. |
59. | Dallos P, Wu X, Cheatham MA, Gao J, Zheng J, Anderson CT, Jia S, Wang X, Cheng WH, Sengupta S, He DZ, Zuo J. Prestin‐based outer hair cell motility is necessary for mammalian cochlear amplification. Neuron 58: 333‐339, 2008. |
60. | Dannhof BJ, Roth B, Bruns V. Length of hair cells as a measure of frequency representation in the mammalian inner ear? Naturwissenschaften 78: 570‐573, 1991. |
61. | Davis H. An active process in cochlear mechanics. Hear Res 9: 79‐90, 1983. |
62. | Delprat B, Michel V, Goodyear R, Yamasaki Y, Michalski N, El‐Amraoui A, Perfettini I, Legrain P, Richardson G, Hardelin JP, Petit C. Myosin XVa and whirlin, two deafness gene products required for hair bundle growth, are located at the stereocilia tips and interact directly. Hum Mol Genet 14: 401‐410, 2005. |
63. | Dick O, Hack I, Altrock WD, Garner CC, Gundelfinger ED, Brandstatter JH. Localization of the presynaptic cytomatrix protein Piccolo at ribbon and conventional synapses in the rat retina: Comparison with Bassoon. J Comp Neurol 439: 224‐234, 2001. |
64. | Dixon MJ, Gazzard J, Chaudhry SS, Sampson N, Schulte BA, Steel KP. Mutation of the Na‐K‐Cl co‐transporter gene Slc12a2 results in deafness in mice. Hum Mol Genet 8: 1579‐1584, 1999. |
65. | Doll JC, Peng AW, Ricci AJ, Pruitt BL. Faster than the speed of hearing: Nanomechanical force probes enable the electromechanical observation of cochlear hair cells. Nano Lett 12: 6107‐6111, 2012. |
66. | Dong W, Cooper NP. An experimental study into the acousto‐mechanical effects of invading the cochlea. J R Soc Interface 3: 561‐571, 2006. |
67. | Dong W, Olson ES. Detection of cochlear amplification and its activation. Biophys J 105: 1067‐1078, 2013. |
68. | Dumont RA, Lins U, Filoteo AG, Penniston JT, Kachar B, Gillespie PG. Plasma membrane Ca2+‐ATPase isoform 2a is the PMCA of hair bundles. J Neurosci 21: 5066‐5078, 2001. |
69. | Eatock RA. Adaptation in hair cells. Annu Rev Neurosci 23: 285‐314, 2000. |
70. | Eatock RA, Corey DP, Hudspeth AJ. Adaptation of mechanoelectrical transduction in hair cells of the bullfrog's sacculus. J Neurosci 7: 2821‐2836, 1987. |
71. | Ebrahim S, Avenarius MR, Grati M, Krey JF, Windsor AM, Sousa AD, Ballesteros A, Cui R, Millis BA, Salles FT, Baird MA, Davidson MW, Jones SM, Choi D, Dong L, Raval MH, Yengo CM, Barr‐Gillespie PG, Kachar B. Stereocilia‐staircase spacing is influenced by myosin III motors and their cargos espin‐1 and espin‐like. Nat Commun 7: 10833, 2016. |
72. | Elgoyhen AB, Katz E, Fuchs PA. The nicotinic receptor of cochlear hair cells: A possible pharmacotherapeutic target? Biochem Pharmacol 78: 712‐719, 2009. |
73. | Emadi G, Richter CP, Dallos P. Stiffness of the gerbil basilar membrane: Radial and longitudinal variations. J Neurophysiol 91: 474‐488, 2004. |
74. | Evans EF, Klinke R. The effects of intracochlear and systemic furosemide on the properties of single cochlear nerve fibres in the cat. J Physiol 331: 409‐427, 1982. |
75. | Everett LA, Morsli H, Wu DK, Green ED. Expression pattern of the mouse ortholog of the Pendred's syndrome gene (Pds) suggests a key role for pendrin in the inner ear. Proc Natl Acad Sci U S A 96: 9727‐9732, 1999. |
76. | Farris HE, LeBlanc CL, Goswami J, Ricci AJ. Probing the pore of the auditory hair cell mechanotransducer channel in turtle. J Physiol 558: 769‐792, 2004. |
77. | Fay RR. Hearing in Vertebrates: A Psychophysics Databook. Winnetka, IL: Hill‐Fay Associates, 1988. |
78. | Fettiplace R. Is TMC1 the hair cell mechanotransducer channel? Biophys J 111: 3‐9, 2016. |
79. | Fettiplace R, Fuchs PA. Mechanisms of hair cell tuning. Annu Rev Physiol 61: 809‐834, 1999. |
80. | Fettiplace R, Kim KX. The physiology of mechanoelectrical transduction channels in hearing. Physiol Rev 94: 951‐986, 2014. |
81. | Fettiplace R, Ricci AJ. Mechanoelectrical transduction in auditory hair cells. In: Vertebrate Hair Cells, edited by Eatock RA, Fay RR and Popper AN. New York: Springer, pp. 154‐203, 2006. |
82. | Fisher JA, Nin F, Reichenbach T, Uthaiah RC, Hudspeth AJ. The spatial pattern of cochlear amplification. Neuron 76: 989‐997, 2012. |
83. | Flagella M, Clarke LL, Miller ML, Erway LC, Giannella RA, Andringa A, Gawenis LR, Kramer J, Duffy JJ, Doetschman T, Lorenz JN, Yamoah EN, Cardell EL, Shull GE. Mice lacking the basolateral Na‐K‐2Cl cotransporter have impaired epithelial chloride secretion and are profoundly deaf. J Biol Chem 274: 26946‐26955, 1999. |
84. | Frank G, Hemmert W, Gummer AW. Limiting dynamics of high‐frequency electromechanical transduction of outer hair cells. Proc Natl Acad Sci U S A 96: 4420‐4425, 1999. |
85. | Frank T, Rutherford MA, Strenzke N, Neef A, Pangrsic T, Khimich D, Fejtova A, Gundelfinger ED, Liberman MC, Harke B, Bryan KE, Lee A, Egner A, Riedel D, Moser T. Bassoon and the synaptic ribbon organize Ca(2)+ channels and vesicles to add release sites and promote refilling. Neuron 68: 724‐738, 2010. |
86. | Fridberger A, Tomo I, Ulfendahl M, Boutet de Monvel J. Imaging hair cell transduction at the speed of sound: dynamic behavior of mammalian stereocilia. Proc Natl Acad Sci U S A 103: 1918‐1923, 2006. |
87. | Frolenkov GI. Regulation of electromotility in the cochlear outer hair cell. J Physiol 576: 43‐48, 2006. |
88. | Fuchs PA. A ‘calcium capacitor’ shapes cholinergic inhibition of cochlear hair cells. J Physiol 592: 3393‐3401, 2014. |
89. | Fuchs PA, Glowatzki E. Synaptic studies inform the functional diversity of cochlear afferents. Hear Res 330: 18‐25, 2015. |
90. | Furman AC, Kujawa SG, Liberman MC. Noise‐induced cochlear neuropathy is selective for fibers with low spontaneous rates. J Neurophysiol 110: 577‐586, 2013. |
91. | Furness DN, Katori Y, Nirmal Kumar B, Hackney CM. The dimensions and structural attachments of tip links in mammalian cochlear hair cells and the effects of exposure to different levels of extracellular calcium. Neuroscience 154: 10‐21, 2008. |
92. | Gale JE, Marcotti W, Kennedy HJ, Kros CJ, Richardson GP. FM1‐43 dye behaves as a permeant blocker of the hair‐cell mechanotransducer channel. J Neurosci 21: 7013‐7025, 2001. |
93. | Geisler CD, Sang C. A cochlear model using feed‐forward outer‐hair‐cell forces. Hear Res 86: 132‐146, 1995. |
94. | Geleoc GS, Lennan GW, Richardson GP, Kros CJ. A quantitative comparison of mechanoelectrical transduction in vestibular and auditory hair cells of neonatal mice. Proc Biol Sci 264: 611‐621, 1997. |
95. | Ghaffari R, Aranyosi AJ, Richardson GP, Freeman DM. Tectorial membrane travelling waves underlie abnormal hearing in Tectb mutant mice. Nat Commun 1: 96, 2010. |
96. | Gill SS, Salt AN. Quantitative differences in endolymphatic calcium and endocochlear potential between pigmented and albino guinea pigs. Hear Res 113: 191‐197, 1997. |
97. | Gillespie PG, Cyr JL. Myosin‐1c, the hair cell's adaptation motor. Annu Rev Physiol 66: 521‐545, 2004. |
98. | Gleason MR, Nagiel A, Jamet S, Vologodskaia M, Lopez‐Schier H, Hudspeth AJ. The transmembrane inner ear (Tmie) protein is essential for normal hearing and balance in the zebrafish. Proc Natl Acad Sci U S A 106: 21347‐21352, 2009. |
99. | Glowatzki E, Fuchs PA. Transmitter release at the hair cell ribbon synapse. Nat Neurosci 5: 147‐154, 2002. |
100. | Goodyear RJ, Marcotti W, Kros CJ, Richardson GP. Development and properties of stereociliary link types in hair cells of the mouse cochlea. J Comp Neurol 485: 75‐85, 2005. |
101. | Gorbunov D, Sturlese M, Nies F, Kluge M, Bellanda M, Battistutta R, Oliver D. Molecular architecture and the structural basis for anion interaction in prestin and SLC26 transporters. Nat Commun 5: 3622, 2014. |
102. | Goutman JD. Transmitter release from cochlear hair cells is phase locked to cyclic stimuli of different intensities and frequencies. J Neurosci 32: 17025‐17035a, 2012. |
103. | Goutman JD, Glowatzki E. Time course and calcium dependence of transmitter release at a single ribbon synapse. Proc Natl Acad Sci U S A 104: 16341‐16346, 2007. |
104. | Gow A, Davies C, Southwood CM, Frolenkov G, Chrustowski M, Ng L, Yamauchi D, Marcus DC, Kachar B. Deafness in Claudin 11‐null mice reveals the critical contribution of basal cell tight junctions to stria vascularis function. J Neurosci 24: 7051‐7062, 2004. |
105. | Grati M, Kachar B. Myosin VIIa and sans localization at stereocilia upper tip‐link density implicates these Usher syndrome proteins in mechanotransduction. Proc Natl Acad Sci U S A 108: 11476‐11481, 2011. |
106. | Graydon CW, Cho S, Li GL, Kachar B, von Gersdorff H. Sharp Ca(2)(+) nanodomains beneath the ribbon promote highly synchronous multivesicular release at hair cell synapses. J Neurosci 31: 16637‐16650, 2011. |
107. | Guinan JJ. Efferent Physiology. In: The Cochlea, edited by Dallos P, Popper AN and Fay RR. New York: Springer Verlag, pp. 435‐502, 1996. |
108. | Gummer AW, Hemmert W, Zenner HP. Resonant tectorial membrane motion in the inner ear: Its crucial role in frequency tuning. Proc Natl Acad Sci U S A 93: 8727‐8732, 1996. |
109. | Guo Y, Wang Y, Zhang W, Meltzer S, Zanini D, Yu Y, Li J, Cheng T, Guo Z, Wang Q, Jacobs JS, Sharma Y, Eberl DF, Gopfert MC, Jan LY, Jan YN, Wang Z. Transmembrane channel‐like (tmc) gene regulates Drosophila larval locomotion. Proc Natl Acad Sci U S A 113: 7243‐7248, 2016. |
110. | Hackney CM, Mahendrasingam S, Penn A, Fettiplace R. The concentrations of calcium buffering proteins in mammalian cochlear hair cells. J Neurosci 25: 7867‐7875, 2005. |
111. | Hacohen N, Assad JA, Smith WJ, Corey DP. Regulation of tension on hair‐cell transduction channels: Displacement and calcium dependence. J Neurosci 9: 3988‐3997, 1989. |
112. | He DZ, Jia S, Dallos P. Mechanoelectrical transduction of adult outer hair cells studied in a gerbil hemicochlea. Nature 429: 766‐770, 2004. |
113. | He DZ, Jia S, Sato T, Zuo J, Andrade LR, Riordan GP, Kachar B. Changes in plasma membrane structure and electromotile properties in prestin deficient outer hair cells. Cytoskeleton (Hoboken) 67: 43‐55, 2010. |
114. | Hille B. Ion Channels of Excitable Membranes (3rd ed.). Sunderland, MA: Sinauer, 2001. |
115. | Holley MC, Ashmore JF. On the mechanism of a high‐frequency force generator in outer hair cells isolated from the guinea pig cochlea. Proc R Soc Lond B Biol Sci 232: 413‐429, 1988. |
116. | Holton T, Hudspeth AJ. The transduction channel of hair cells from the bull‐frog characterized by noise analysis. J Physiol 375: 195‐227, 1986. |
117. | Housley GD, Ashmore JF. Ionic currents of outer hair cells isolated from the guinea‐pig cochlea. J Physiol 448: 73‐98, 1992. |
118. | Howard J, Hudspeth AJ. Mechanical relaxation of the hair bundle mediates adaptation in mechanoelectrical transduction by the bullfrog's saccular hair cell. Proc Natl Acad Sci U S A 84: 3064‐3068, 1987. |
119. | Howard J, Hudspeth AJ. Compliance of the hair bundle associated with gating of mechanoelectrical transduction channels in the bullfrog's saccular hair cell. Neuron 1: 189‐199, 1988. |
120. | Hudspeth AJ. Integrating the active process of hair cells with cochlear function. Nat Rev Neurosci 15: 600‐614, 2014. |
121. | Hudspeth AJ, Lewis RS. A model for electrical resonance and frequency tuning in saccular hair cells of the bull‐frog, Rana catesbeiana. J Physiol 400: 275‐297, 1988. |
122. | Huth ME, Ricci AJ, Cheng AG. Mechanisms of aminoglycoside ototoxicity and targets of hair cell protection. Int J Otolaryngol 2011: 937861, 2011. |
123. | Ikeda K, Kusakari J, Takasaka T, Saito Y. The Ca2+ activity of cochlear endolymph of the guinea pig and the effect of inhibitors. Hear Res 26: 117‐125, 1987. |
124. | Iwasa KH, Adachi M. Force generation in the outer hair cell of the cochlea. Biophys J 73: 546‐555, 1997. |
125. | Javel E. Shapes of cat auditory nerve fiber tuning curves. Hear Res 81: 167‐188, 1994. |
126. | Jentsch TJ. Neuronal KCNQ potassium channels: Physiology and role in disease. Nat Rev Neurosci 1: 21‐30, 2000. |
127. | Jia S, Dallos P, He DZ. Mechanoelectric transduction of adult inner hair cells. J Neurosci 27: 1006‐1014, 2007. |
128. | Johnson CP, Chapman ER. Otoferlin is a calcium sensor that directly regulates SNARE‐mediated membrane fusion. J Cell Biol 191: 187‐197, 2010. |
129. | Johnson SL, Beurg M, Marcotti W, Fettiplace R. Prestin‐driven cochlear amplification is not limited by the outer hair cell membrane time constant. Neuron 70: 1143‐1154, 2011. |
130. | Johnson SL, Kennedy HJ, Holley MC, Fettiplace R, Marcotti W. The resting transducer current drives spontaneous activity in prehearing mammalian cochlear inner hair cells. J Neurosci 32: 10479‐10483, 2012. |
131. | Johnson SL, Marcotti W, Kros CJ. Increase in efficiency and reduction in Ca2 +dependence of exocytosis during development of mouse inner hair cells. J Physiol 563: 177‐191, 2005. |
132. | Jones GP, Elliott SJ, Russell IJ, Lukashkin AN. Modified protein expression in the tectorial membrane of the cochlea reveals roles for the striated sheet matrix. Biophys J 108: 203‐210, 2015. |
133. | Joris P, Yin TC. A matter of time: Internal delays in binaural processing. Trends Neurosci 30: 70‐78, 2007. |
134. | Karavitaki KD, Mountain DC. Imaging electrically evoked micromechanical motion within the organ of corti of the excised gerbil cochlea. Biophys J 92: 3294‐3316, 2007. |
135. | Kawashima Y, Geleoc GS, Kurima K, Labay V, Lelli A, Asai Y, Makishima T, Wu DK, Della Santina CC, Holt JR, Griffith AJ. Mechanotransduction in mouse inner ear hair cells requires transmembrane channel‐like genes. J Clin Invest 121: 4796‐4809, 2011. |
136. | Kazmierczak P, Sakaguchi H, Tokita J, Wilson‐Kubalek EM, Milligan RA, Muller U, Kachar B. Cadherin 23 and protocadherin 15 interact to form tip‐link filaments in sensory hair cells. Nature 449: 87‐91, 2007. |
137. | Keen EC, Hudspeth AJ. Transfer characteristics of the hair cell's afferent synapse. Proc Natl Acad Sci U S A 103: 5537‐5542, 2006. |
138. | Kemp DT. Otoacoustic emissions, their origin in cochlear function, and use. Br Med Bull 63: 223‐241, 2002. |
139. | Kennedy HJ, Crawford AC, Fettiplace R. Force generation by mammalian hair bundles supports a role in cochlear amplification. Nature 433: 880‐883, 2005. |
140. | Kennedy HJ, Evans MG, Crawford AC, Fettiplace R. Fast adaptation of mechanoelectrical transducer channels in mammalian cochlear hair cells. Nat Neurosci 6: 832‐836, 2003. |
141. | Kennedy HJ, Evans MG, Crawford AC, Fettiplace R. Depolarization of cochlear outer hair cells evokes active hair bundle motion by two mechanisms. J Neurosci 26: 2757‐2766, 2006. |
142. | Kharkovets T, Dedek K, Maier H, Schweizer M, Khimich D, Nouvian R, Vardanyan V, Leuwer R, Moser T, Jentsch TJ. Mice with altered KCNQ4 K+ channels implicate sensory outer hair cells in human progressive deafness. Embo j 25: 642‐652, 2006. |
143. | Khimich D, Nouvian R, Pujol R, Tom Dieck S, Egner A, Gundelfinger ED, Moser T. Hair cell synaptic ribbons are essential for synchronous auditory signalling. Nature 434: 889‐894, 2005. |
144. | Kiang NYS. Peripheral neural processing of auditory information. In: Handbook of Physiology, The Nervous System, Sensory Processes: American Physiological Society, pp. 639‐674, 1984. |
145. | Kim KX, Beurg M, Hackney CM, Furness DN, Mahendrasingam S, Fettiplace R. The role of transmembrane channel‐like proteins in the operation of hair cell mechanotransducer channels. J Gen Physiol 142: 493‐505, 2013. |
146. | Kim KX, Fettiplace R. Developmental changes in the cochlear hair cell mechanotransducer channel and their regulation by transmembrane channel‐like proteins. J Gen Physiol 141: 141‐148, 2013. |
147. | Kitajiri S, Miyamoto T, Mineharu A, Sonoda N, Furuse K, Hata M, Sasaki H, Mori Y, Kubota T, Ito J, Furuse M, Tsukita S. Compartmentalization established by claudin‐11‐based tight junctions in stria vascularis is required for hearing through generation of endocochlear potential. J Cell Sci 117: 5087‐5096, 2004. |
148. | Kitajiri S, Sakamoto T, Belyantseva IA, Goodyear RJ, Stepanyan R, Fujiwara I, Bird JE, Riazuddin S, Riazuddin S, Ahmed ZM, Hinshaw JE, Sellers J, Bartles JR, Hammer JA, III, Richardson GP, Griffith AJ, Frolenkov GI, Friedman TB. Actin‐bundling protein TRIOBP forms resilient rootlets of hair cell stereocilia essential for hearing. Cell 141: 786‐798, 2010. |
149. | Kong JH, Adelman JP, Fuchs PA. Expression of the SK2 calcium‐activated potassium channel is required for cholinergic function in mouse cochlear hair cells. J Physiol 586: 5471‐5485, 2008. |
150. | Kozel PJ, Friedman RA, Erway LC, Yamoah EN, Liu LH, Riddle T, Duffy JJ, Doetschman T, Miller ML, Cardell EL, Shull GE. Balance and hearing deficits in mice with a null mutation in the gene encoding plasma membrane Ca2+‐ATPase isoform 2. J Biol Chem 273: 18693‐18696, 1998. |
151. | Kozlov AS, Risler T, Hudspeth AJ. Coherent motion of stereocilia assures the concerted gating of hair‐cell transduction channels. Nat Neurosci 10: 87‐92, 2007. |
152. | Kros CJ. How to build an inner hair cell: Challenges for regeneration. Hear Res 227: 3‐10, 2007. |
153. | Kros CJ, Crawford AC. Potassium currents in inner hair cells isolated from the guinea‐pig cochlea. J Physiol 421: 263‐291, 1990. |
154. | Kros CJ, Marcotti W, van Netten SM, Self TJ, Libby RT, Brown SD, Richardson GP, Steel KP. Reduced climbing and increased slipping adaptation in cochlear hair cells of mice with Myo7a mutations. Nat Neurosci 5: 41‐47, 2002. |
155. | Kros CJ, Rusch A, Richardson GP. Mechano‐electrical transducer currents in hair cells of the cultured neonatal mouse cochlea. Proc Biol Sci 249: 185‐193, 1992. |
156. | Kujawa SG, Liberman MC. Adding insult to injury: Cochlear nerve degeneration after “temporary” noise‐induced hearing loss. J Neurosci 29: 14077‐14085, 2009. |
157. | Kurima K, Ebrahim S, Pan B, Sedlacek M, Sengupta P, Millis BA, Cui R, Nakanishi H, Fujikawa T, Kawashima Y, Choi BY, Monahan K, Holt JR, Griffith AJ, Kachar B. TMC1 and TMC2 localize at the site of mechanotransduction in mammalian inner ear hair cell stereocilia. Cell Rep 12: 1606‐1617, 2015. |
158. | Kurima K, Peters LM, Yang Y, Riazuddin S, Ahmed ZM, Naz S, Arnaud D, Drury S, Mo J, Makishima T, Ghosh M, Menon PS, Deshmukh D, Oddoux C, Ostrer H, Khan S, Riazuddin S, Deininger PL, Hampton LL, Sullivan SL, Battey JF, Jr., Keats BJ, Wilcox ER, Friedman TB, Griffith AJ. Dominant and recessive deafness caused by mutations of a novel gene, TMC1, required for cochlear hair‐cell function. Nat Genet 30: 277‐284, 2002. |
159. | Labay V, Weichert RM, Makishima T, Griffith AJ. Topology of transmembrane channel‐like gene 1 protein. Biochemistry 49: 8592‐8598, 2010. |
160. | Lee HY, Raphael PD, Park J, Ellerbee AK, Applegate BE, Oghalai JS. Noninvasive in vivo imaging reveals differences between tectorial membrane and basilar membrane traveling waves in the mouse cochlea. Proc Natl Acad Sci U S A 112: 3128‐3133, 2015. |
161. | Legan PK, Lukashkina VA, Goodyear RJ, Kossi M, Russell IJ, Richardson GP. A targeted deletion in alpha‐tectorin reveals that the tectorial membrane is required for the gain and timing of cochlear feedback. Neuron 28: 273‐285, 2000. |
162. | Li GL, Keen E, Andor‐Ardo D, Hudspeth AJ, von Gersdorff H. The unitary event underlying multiquantal EPSCs at a hair cell's ribbon synapse. J Neurosci 29: 7558‐7568, 2009. |
163. | Liberman LD, Wang H, Liberman MC. Opposing gradients of ribbon size and AMPA receptor expression underlie sensitivity differences among cochlear‐nerve/hair‐cell synapses. J Neurosci 31: 801‐808, 2011. |
164. | Liberman MC. Noise‐induced hearing loss: Permanent versus temporary threshold shifts and the effects of hair cell versus neuronal degeneration. Adv Exp Med Biol 875: 1‐7, 2016. |
165. | Liberman MC. Auditory‐nerve response from cats raised in a low‐noise chamber. J Acoust Soc Am 63: 442‐455, 1978. |
166. | Liberman MC. Morphological differences among radial afferent fibers in the cat cochlea: An electron‐microscopic study of serial sections. Hear Res 3: 45‐63, 1980. |
167. | Liberman MC. The cochlear frequency map for the cat: Labeling auditory‐nerve fibers of known characteristic frequency. J Acoust Soc Am 72: 1441‐1449, 1982. |
168. | Liberman MC, Dodds LW. Single‐neuron labeling and chronic cochlear pathology. III. Stereocilia damage and alterations of threshold tuning curves. Hear Res 16: 55‐74, 1984. |
169. | Liberman MC, Gao J, He DZ, Wu X, Jia S, Zuo J. Prestin is required for electromotility of the outer hair cell and for the cochlear amplifier. Nature 419: 300‐304, 2002. |
170. | Lim DJ. Functional structure of the organ of Corti: A review. Hear Res 22: 117‐146, 1986. |
171. | Liu Y, Gracewski SM, Nam JH. Consequences of location‐dependent organ of corti micro‐mechanics. PLoS One 10: e0133284, 2015. |
172. | Liu YP, Zhao HB. Cellular characterization of Connexin26 and Connnexin30 expression in the cochlear lateral wall. Cell Tissue Res 333: 395‐403, 2008. |
173. | Longo‐Guess CM, Gagnon LH, Cook SA, Wu J, Zheng QY, Johnson KR. A missense mutation in the previously undescribed gene Tmhs underlies deafness in hurry‐scurry (hscy) mice. Proc Natl Acad Sci U S A 102: 7894‐7899, 2005. |
174. | Lv C, Stewart WJ, Akanyeti O, Frederick C, Zhu J, Santos‐Sacchi J, Sheets L, Liao JC, Zenisek D. Synaptic ribbons require ribeye for electron density, proper synaptic localization, and recruitment of calcium channels. Cell Rep 15: 2784‐2795, 2016. |
175. | Maeda R, Kindt KS, Mo W, Morgan CP, Erickson T, Zhao H, Clemens‐Grisham R, Barr‐Gillespie PG, Nicolson T. Tip‐link protein protocadherin 15 interacts with transmembrane channel‐like proteins TMC1 and TMC2. Proc Natl Acad Sci U S A 111: 12907‐12912, 2014. |
176. | Mahendrasingam S, Beurg M, Fettiplace R, Hackney CM. The ultrastructural distribution of prestin in outer hair cells: A post‐embedding immunogold investigation of low‐frequency and high‐frequency regions of the rat cochlea. Eur J Neurosci 31: 1595‐1605, 2010. |
177. | Maison SF, Pyott SJ, Meredith AL, Liberman MC. Olivocochlear suppression of outer hair cells in vivo: Evidence for combined action of BK and SK2 channels throughout the cochlea. J Neurophysiol 109: 1525‐1534, 2013. |
178. | Maison SF, Usubuchi H, Liberman MC. Efferent feedback minimizes cochlear neuropathy from moderate noise exposure. J Neurosci 33: 5542‐5552, 2013. |
179. | Mammano F. Ca2+ homeostasis defects and hereditary hearing loss. Biofactors 37: 182‐188, 2011. |
180. | Mammano F, Ashmore JF. Differential expression of outer hair cell potassium currents in the isolated cochlea of the guinea‐pig. J Physiol 496(Pt 3): 639‐646, 1996. |
181. | Mammano F, Ashmore JF. Reverse transduction measured in the isolated cochlea by laser Michelson interferometry. Nature 365: 838‐841, 1993. |
182. | Manor U, Disanza A, Grati M, Andrade L, Lin H, Di Fiore PP, Scita G, Kachar B. Regulation of stereocilia length by myosin XVa and whirlin depends on the actin‐regulatory protein Eps8. Curr Biol 21: 167‐172, 2011. |
183. | Marcotti W, Corns LF, Goodyear RJ, Rzadzinska AK, Avraham KB, Steel KP, Richardson GP, Kros CJ. The acquisition of mechano‐electrical transducer current adaptation in auditory hair cells requires myosin VI. J Physiol 594: 3667‐3681, 2016. |
184. | Marcotti W, Johnson SL, Holley MC, Kros CJ. Developmental changes in the expression of potassium currents of embryonic, neonatal and mature mouse inner hair cells. J Physiol 548: 383‐400, 2003. |
185. | Marcotti W, Johnson SL, Kros CJ. Effects of intracellular stores and extracellular Ca(2+) on Ca(2+)‐activated K(+) currents in mature mouse inner hair cells. J Physiol 557: 613‐633, 2004. |
186. | Marcotti W, Johnson SL, Rusch A, Kros CJ. Sodium and calcium currents shape action potentials in immature mouse inner hair cells. J Physiol 552: 743‐761, 2003. |
187. | Marcotti W, Kros CJ. Developmental expression of the potassium current IK,n contributes to maturation of mouse outer hair cells. J Physiol 520(Pt 3): 653‐660, 1999. |
188. | Marcotti W, van Netten SM, Kros CJ. The aminoglycoside antibiotic dihydrostreptomycin rapidly enters mouse outer hair cells through the mechano‐electrical transducer channels. J Physiol 567: 505‐521, 2005. |
189. | Marcus DC, Wu T, Wangemann P, Kofuji P. KCNJ10 (Kir4.1) potassium channel knockout abolishes endocochlear potential. Am J Physiol Cell Physiol 282: C403‐407, 2002. |
190. | Markin VS, Hudspeth AJ. Gating‐spring models of mechanoelectrical transduction by hair cells of the internal ear. Annu Rev Biophys Biomol Struct 24: 59‐83, 1995. |
191. | Martin P, Bozovic D, Choe Y, Hudspeth AJ. Spontaneous oscillation by hair bundles of the bullfrog's sacculus. J Neurosci 23: 4533‐4548, 2003. |
192. | Martin P, Hudspeth AJ. Active hair‐bundle movements can amplify a hair cell's response to oscillatory mechanical stimuli. Proc Natl Acad Sci U S A 96: 14306‐14311, 1999. |
193. | Matthews G, Fuchs P. The diverse roles of ribbon synapses in sensory neurotransmission. Nat Rev Neurosci 11: 812‐822, 2010. |
194. | Mburu P, Mustapha M, Varela A, Weil D, El‐Amraoui A, Holme RH, Rump A, Hardisty RE, Blanchard S, Coimbra RS, Perfettini I, Parkinson N, Mallon AM, Glenister P, Rogers MJ, Paige AJ, Moir L, Clay J, Rosenthal A, Liu XZ, Blanco G, Steel KP, Petit C, Brown SD. Defects in whirlin, a PDZ domain molecule involved in stereocilia elongation, cause deafness in the whirler mouse and families with DFNB31. Nat Genet 34: 421‐428, 2003. |
195. | Meaud J, Grosh K. The effect of tectorial membrane and basilar membrane longitudinal coupling in cochlear mechanics. J Acoust Soc Am 127: 1411‐1421, 2010. |
196. | Meaud J, Grosh K. Coupling active hair bundle mechanics, fast adaptation, and somatic motility in a cochlear model. Biophys J 100: 2576‐2585, 2011. |
197. | Meyers JR, MacDonald RB, Duggan A, Lenzi D, Standaert DG, Corwin JT, Corey DP. Lighting up the senses: FM1‐43 loading of sensory cells through nonselective ion channels. J Neurosci 23: 4054‐4065, 2003. |
198. | Mistrik P, Mullaley C, Mammano F, Ashmore J. Three‐dimensional current flow in a large‐scale model of the cochlea and the mechanism of amplification of sound. J R Soc Interface 6: 279‐291, 2009. |
199. | Mohrmann R, de Wit H, Connell E, Pinheiro PS, Leese C, Bruns D, Davletov B, Verhage M, Sorensen JB. Synaptotagmin interaction with SNAP‐25 governs vesicle docking, priming, and fusion triggering. J Neurosci 33: 14417‐14430, 2013. |
200. | Muller M. Developmental changes of frequency representation in the rat cochlea. Hear Res 56: 1‐7, 1991. |
201. | Muller M. The cochlear place‐frequency map of the adult and developing Mongolian gerbil. Hear Res 94: 148‐156, 1996. |
202. | Muller M, von Hunerbein K, Hoidis S, Smolders JW. A physiological place‐frequency map of the cochlea in the CBA/J mouse. Hear Res 202: 63‐73, 2005. |
203. | Naidu RC, Mountain DC. Measurements of the stiffness map challenge a basic tenet of cochlear theories. Hear Res 124: 124‐131, 1998. |
204. | Nam JH, Fettiplace R. Force transmission in the organ of Corti micromachine. Biophys J 98: 2813‐2821, 2010. |
205. | Nam JH, Fettiplace R. Optimal electrical properties of outer hair cells ensure cochlear amplification. PLoS One 7: e50572, 2012. |
206. | Nam JH, Peng AW, Ricci AJ. Underestimated sensitivity of mammalian cochlear hair cells due to splay between stereociliary columns. Biophys J 108: 2633‐2647, 2015. |
207. | Naraghi M, Neher E. Linearized buffered Ca2+ diffusion in microdomains and its implications for calculation of [Ca2+] at the mouth of a calcium channel. J Neurosci 17: 6961‐6973, 1997. |
208. | Narayan SS, Temchin AN, Recio A, Ruggero MA. Frequency tuning of basilar membrane and auditory nerve fibers in the same cochleae. Science 282: 1882‐1884, 1998. |
209. | Neef J, Gehrt A, Bulankina AV, Meyer AC, Riedel D, Gregg RG, Strenzke N, Moser T. The Ca2+ channel subunit beta2 regulates Ca2+ channel abundance and function in inner hair cells and is required for hearing. J Neurosci 29: 10730‐10740, 2009. |
210. | Neyroud N, Tesson F, Denjoy I, Leibovici M, Donger C, Barhanin J, Faure S, Gary F, Coumel P, Petit C, Schwartz K, Guicheney P. A novel mutation in the potassium channel gene KVLQT1 causes the Jervell and Lange‐Nielsen cardioauditory syndrome. Nat Genet 15: 186‐189, 1997. |
211. | Nie L. KCNQ4 mutations associated with nonsyndromic progressive sensorineural hearing loss. Curr Opin Otolaryngol Head Neck Surg 16: 441‐444, 2008. |
212. | Nin F, Hibino H, Doi K, Suzuki T, Hisa Y, Kurachi Y. The endocochlear potential depends on two K+ diffusion potentials and an electrical barrier in the stria vascularis of the inner ear. Proc Natl Acad Sci U S A 105: 1751‐1756, 2008. |
213. | Nouvian R, Neef J, Bulankina AV, Reisinger E, Pangrsic T, Frank T, Sikorra S, Brose N, Binz T, Moser T. Exocytosis at the hair cell ribbon synapse apparently operates without neuronal SNARE proteins. Nat Neurosci 14: 411‐413, 2011. |
214. | Nowotny M, Gummer AW. Nanomechanics of the subtectorial space caused by electromechanics of cochlear outer hair cells. Proc Natl Acad Sci U S A 103: 2120‐2125, 2006. |
215. | Ohlemiller KK, Echteler SM. Functional correlates of characteristic frequency in single cochlear nerve fibers of the Mongolian gerbil. J Comp Physiol A 167: 329‐338, 1990. |
216. | Ohmori H. Mechano‐electrical transduction currents in isolated vestibular hair cells of the chick. J Physiol 359: 189‐217, 1985. |
217. | Ohn TL, Rutherford MA, Jing Z, Jung S, Duque‐Afonso CJ, Hoch G, Picher MM, Scharinger A, Strenzke N, Moser T. Hair cells use active zones with different voltage dependence of Ca2+ influx to decompose sounds into complementary neural codes. Proc Natl Acad Sci U S A 113: E4716‐4725, 2016. |
218. | Oliver D, He DZ, Klocker N, Ludwig J, Schulte U, Waldegger S, Ruppersberg JP, Dallos P, Fakler B. Intracellular anions as the voltage sensor of prestin, the outer hair cell motor protein. Science 292: 2340‐2343, 2001. |
219. | Oliver D, Taberner AM, Thurm H, Sausbier M, Arntz C, Ruth P, Fakler B, Liberman MC. The role of BKCa channels in electrical signal encoding in the mammalian auditory periphery. J Neurosci 26: 6181‐6189, 2006. |
220. | Overstreet EH, III, Temchin AN, Ruggero MA. Basilar membrane vibrations near the round window of the gerbil cochlea. J Assoc Res Otolaryngol 3: 351‐361, 2002. |
221. | Padmanarayana M, Hams N, Speight LC, Petersson EJ, Mehl RA, Johnson CP. Characterization of the lipid binding properties of Otoferlin reveals specific interactions between PI(4,5)P2 and the #c2C and #c2F domains. Biochemistry 53: 5023‐5033, 2014. |
222. | Palmer AR, Russell IJ. Phase‐locking in the cochlear nerve of the guinea‐pig and its relation to the receptor potential of inner hair‐cells. Hear Res 24: 1‐15, 1986. |
223. | Pan B, Geleoc GS, Asai Y, Horwitz GC, Kurima K, Ishikawa K, Kawashima Y, Griffith AJ, Holt JR. TMC1 and TMC2 are components of the mechanotransduction channel in hair cells of the mammalian inner ear. Neuron 79: 504‐515, 2013. |
224. | Pangrsic T, Gabrielaitis M, Michanski S, Schwaller B, Wolf F, Strenzke N, Moser T. EF‐hand protein Ca2+ buffers regulate Ca2+ influx and exocytosis in sensory hair cells. Proc Natl Acad Sci U S A 112: E1028‐1037, 2015. |
225. | Pangrsic T, Lasarow L, Reuter K, Takago H, Schwander M, Riedel D, Frank T, Tarantino LM, Bailey JS, Strenzke N, Brose N, Muller U, Reisinger E, Moser T. Hearing requires otoferlin‐dependent efficient replenishment of synaptic vesicles in hair cells. Nat Neurosci 13: 869‐876, 2010. |
226. | Pangrsic T, Reisinger E, Moser T. Otoferlin: A multi‐C2 domain protein essential for hearing. Trends Neurosci 35: 671‐680, 2012. |
227. | Peng AW, Effertz T, Ricci AJ. Adaptation of mammalian auditory hair cell mechanotransduction is independent of calcium entry. Neuron 80: 960‐972, 2013. |
228. | Peng AW, Gnanasambandam R, Sachs F, Ricci AJ. Adaptation independent modulation of auditory hair cell mechanotransduction channel open probability implicates a role for the lipid bilayer. J Neurosci 36: 2945‐2956, 2016. |
229. | Peng AW, Salles FT, Pan B, Ricci AJ. Integrating the biophysical and molecular mechanisms of auditory hair cell mechanotransduction. Nat Commun 2: 523, 2011. |
230. | Pepermans E, Michel V, Goodyear R, Bonnet C, Abdi S, Dupont T, Gherbi S, Holder M, Makrelouf M, Hardelin JP, Marlin S, Zenati A, Richardson G, Avan P, Bahloul A, Petit C. The CD2 isoform of protocadherin‐15 is an essential component of the tip‐link complex in mature auditory hair cells. EMBO Mol Med 6: 984‐992, 2014. |
231. | Petit C, Richardson GP. Linking genes underlying deafness to hair‐bundle development and function. Nat Neurosci 12: 703‐710, 2009. |
232. | Pickles JO, Comis SD, Osborne MP. Cross‐links between stereocilia in the guinea pig organ of Corti, and their possible relation to sensory transduction. Hear Res 15: 103‐112, 1984. |
233. | Platzer J, Engel J, Schrott‐Fischer A, Stephan K, Bova S, Chen H, Zheng H, Striessnig J. Congenital deafness and sinoatrial node dysfunction in mice lacking class D L‐type Ca2+ channels. Cell 102: 89‐97, 2000. |
234. | Pollock LM, McDermott BM, Jr. The cuticular plate: A riddle, wrapped in a mystery, inside a hair cell. Birth Defects Res C Embryo Today 105: 126‐139, 2015. |
235. | Pujol R L‐RM, Lenoir M. Development of sensory and neural structures in the mammalian cochlea In: Development of the Auditory System, edited by Rubel EW PA, Fay RR. New York: Springer pp. 146‐192, 1998. |
236. | Pyott SJ, Glowatzki E, Trimmer JS, Aldrich RW. Extrasynaptic localization of inactivating calcium‐activated potassium channels in mouse inner hair cells. J Neurosci 24: 9469‐9474, 2004. |
237. | Pyott SJ, Meredith AL, Fodor AA, Vazquez AE, Yamoah EN, Aldrich RW. Cochlear function in mice lacking the BK channel alpha, beta1, or beta4 subunits. J Biol Chem 282: 3312‐3324, 2007. |
238. | Rabbitt RD, Clifford S, Breneman KD, Farrell B, Brownell WE. Power efficiency of outer hair cell somatic electromotility. PLoS Comput Biol 5: e1000444, 2009. |
239. | Rask‐Andersen H, Erixon E, Kinnefors A, Lowenheim H, Schrott‐Fischer A, Liu W. Anatomy of the human cochlea—implications for cochlear implantation. Cochlear Implants Int 12(Suppl 1): S8‐S13, 2011. |
240. | Reichenbach T, Hudspeth AJ. A ratchet mechanism for amplification in low‐frequency mammalian hearing. Proc Natl Acad Sci U S A 107: 4973‐4978, 2010. |
241. | Ren T, He W, Kemp D. Reticular lamina and basilar membrane vibrations in living mouse cochleae. Proc Natl Acad Sci U S A 113: 9910‐9915, 2016. |
242. | Rhode W, Cooper NP. Nonlinear mechanics in the apical turn of the chinchilla cochlea in vivo. Auditory Neurosci 3: 101‐121, 1996. |
243. | Ricci AJ, Crawford AC, Fettiplace R. Active hair bundle motion linked to fast transducer adaptation in auditory hair cells. J Neurosci 20: 7131‐7142, 2000. |
244. | Ricci AJ, Crawford AC, Fettiplace R. Tonotopic variation in the conductance of the hair cell mechanotransducer channel. Neuron 40: 983‐990, 2003. |
245. | Ricci AJ, Fettiplace R. Calcium permeation of the turtle hair cell mechanotransducer channel and its relation to the composition of endolymph. J Physiol 506(Pt 1): 159‐173, 1998. |
246. | Ricci AJ, Gray‐Keller M, Fettiplace R. Tonotopic variations of calcium signalling in turtle auditory hair cells. J Physiol 524(Pt 2): 423‐436, 2000. |
247. | Ricci AJ, Kennedy HJ, Crawford AC, Fettiplace R. The transduction channel filter in auditory hair cells. J Neurosci 25: 7831‐7839, 2005. |
248. | Ricci AJ, Wu YC, Fettiplace R. The endogenous calcium buffer and the time course of transducer adaptation in auditory hair cells. J Neurosci 18: 8261‐8277, 1998. |
249. | Richardson GP, de Monvel JB, Petit C. How the genetics of deafness illuminates auditory physiology. Annu Rev Physiol 73: 311‐334, 2011. |
250. | Richardson GP, Lukashkin AN, Russell IJ. The tectorial membrane: One slice of a complex cochlear sandwich. Curr Opin Otolaryngol Head Neck Surg 16: 458‐464, 2008. |
251. | Richter CP, Emadi G, Getnick G, Quesnel A, Dallos P. Tectorial membrane stiffness gradients. Biophys J 93: 2265‐2276, 2007. |
252. | Roberts WM. Localization of calcium signals by a mobile calcium buffer in frog saccular hair cells. J Neurosci 14: 3246‐3262, 1994. |
253. | Roberts WM, Jacobs RA, Hudspeth AJ. Colocalization of ion channels involved in frequency selectivity and synaptic transmission at presynaptic active zones of hair cells. J Neurosci 10: 3664‐3684, 1990. |
254. | Robles L, Ruggero MA. Mechanics of the mammalian cochlea. Physiol Rev 81: 1305‐1352, 2001. |
255. | Rose JE, Brugge JF, Anderson DJ, Hind JE. Phase‐locked response to low‐frequency tones in single auditory nerve fibers of the squirrel monkey. J Neurophysiol 30: 769‐793, 1967. |
256. | Roth B, Bruns V. Postnatal development of the rat organ of Corti. II. Hair cell receptors and their supporting elements. Anat Embryol (Berl) 185: 571‐581, 1992. |
257. | Roux I, Safieddine S, Nouvian R, Grati M, Simmler MC, Bahloul A, Perfettini I, Le Gall M, Rostaing P, Hamard G, Triller A, Avan P, Moser T, Petit C. Otoferlin, defective in a human deafness form, is essential for exocytosis at the auditory ribbon synapse. Cell 127: 277‐289, 2006. |
258. | Ruel J, Emery S, Nouvian R, Bersot T, Amilhon B, Van Rybroek JM, Rebillard G, Lenoir M, Eybalin M, Delprat B, Sivakumaran TA, Giros B, El Mestikawy S, Moser T, Smith RJ, Lesperance MM, Puel JL. Impairment of SLC17A8 encoding vesicular glutamate transporter‐3, VGLUT3, underlies nonsyndromic deafness DFNA25 and inner hair cell dysfunction in null mice. Am J Hum Genet 83: 278‐292, 2008. |
259. | Ruggero MA, Rich NC. Furosemide alters organ of corti mechanics: Evidence for feedback of outer hair cells upon the basilar membrane. J Neurosci 11: 1057‐1067, 1991. |
260. | Ruggero MA, Rich NC, Recio A, Narayan SS, Robles L. Basilar‐membrane responses to tones at the base of the chinchilla cochlea. J Acoust Soc Am 101: 2151‐2163, 1997. |
261. | Russell IJ, Drexl M, Foeller E, Vater M, Kossl M. Synchronization of a nonlinear oscillator: Processing the cf component of the echo‐response signal in the cochlea of the mustached bat. J Neurosci 23: 9508‐9518, 2003. |
262. | Russell IJ, Legan PK, Lukashkina VA, Lukashkin AN, Goodyear RJ, Richardson GP. Sharpened cochlear tuning in a mouse with a genetically modified tectorial membrane. Nat Neurosci 10: 215‐223, 2007. |
263. | Safieddine S, El‐Amraoui A, Petit C. The auditory hair cell ribbon synapse: From assembly to function. Annu Rev Neurosci 35: 509‐528, 2012. |
264. | Safieddine S, Wenthold RJ. SNARE complex at the ribbon synapses of cochlear hair cells: Analysis of synaptic vesicle‐ and synaptic membrane‐associated proteins. Eur J Neurosci 11: 803‐812, 1999. |
265. | Salt AN, Inamura N, Thalmann R, Vora A. Calcium gradients in inner ear endolymph. Am J Otolaryngol 10: 371‐375, 1989. |
266. | Salt AN, Melichar I, Thalmann R. Mechanisms of endocochlear potential generation by stria vascularis. Laryngoscope 97: 984‐991, 1987. |
267. | Santos‐Sacchi J, Song L, Zheng J, Nuttall AL. Control of mammalian cochlear amplification by chloride anions. J Neurosci 26: 3992‐3998, 2006. |
268. | Schaechinger TJ, Oliver D. Nonmammalian orthologs of prestin (SLC26A5) are electrogenic divalent/chloride anion exchangers. Proc Natl Acad Sci U S A 104: 7693‐7698, 2007. |
269. | Schmitz F, Konigstorfer A, Sudhof TC. RIBEYE, a component of synaptic ribbons: A protein's journey through evolution provides insight into synaptic ribbon function. Neuron 28: 857‐872, 2000. |
270. | Schnee ME, Lawton DM, Furness DN, Benke TA, Ricci AJ. Auditory hair cell‐afferent fiber synapses are specialized to operate at their best frequencies. Neuron 47: 243‐254, 2005. |
271. | Schnee ME, Santos‐Sacchi J, Castellano‐Munoz M, Kong JH, Ricci AJ. Calcium‐dependent synaptic vesicle trafficking underlies indefatigable release at the hair cell afferent fiber synapse. Neuron 70: 326‐338, 2011. |
272. | Schneider ME, Dose AC, Salles FT, Chang W, Erickson FL, Burnside B, Kachar B. A new compartment at stereocilia tips defined by spatial and temporal patterns of myosin IIIa expression. J Neurosci 26: 10243‐10252, 2006. |
273. | Seal RP, Akil O, Yi E, Weber CM, Grant L, Yoo J, Clause A, Kandler K, Noebels JL, Glowatzki E, Lustig LR, Edwards RH. Sensorineural deafness and seizures in mice lacking vesicular glutamate transporter 3. Neuron 57: 263‐275, 2008. |
274. | Sellick PM, Patuzzi R, Johnstone BM. Measurement of basilar membrane motion in the guinea pig using the Mossbauer technique. J Acoust Soc Am 72: 131‐141, 1982. |
275. | Sellick PM, Patuzzi R, Johnstone BM. Modulation of responses of spiral ganglion cells in the guinea pig cochlea by low frequency sound. Hear Res 7: 199‐221, 1982. |
276. | Sewell WF. The effects of furosemide on the endocochlear potential and auditory‐nerve fiber tuning curves in cats. Hear Res 14: 305‐314, 1984. |
277. | Shera CA. Laser amplification with a twist: Traveling‐wave propagation and gain functions from throughout the cochlea. J Acoust Soc Am 122: 2738‐2758, 2007. |
278. | Spiden SL, Bortolozzi M, Di Leva F, de Angelis MH, Fuchs H, Lim D, Ortolano S, Ingham NJ, Brini M, Carafoli E, Mammano F, Steel KP. The novel mouse mutation Oblivion inactivates the PMCA2 pump and causes progressive hearing loss. PLoS Genet 4: e1000238, 2008. |
279. | Steel KP, Barkway C. Another role for melanocytes: Their importance for normal stria vascularis development in the mammalian inner ear. Development 107: 453‐463, 1989. |
280. | Street VA, McKee‐Johnson JW, Fonseca RC, Tempel BL, Noben‐Trauth K. Mutations in a plasma membrane Ca2+‐ATPase gene cause deafness in deafwaddler mice. Nat Genet 19: 390‐394, 1998. |
281. | Strenzke N, Chakrabarti R, Al‐Moyed H, Muller A, Hoch G, Pangrsic T, Yamanbaeva G, Lenz C, Pan KT, Auge E, Geiss‐Friedlander R, Urlaub H, Brose N, Wichmann C, Reisinger E. Hair cell synaptic dysfunction, auditory fatigue and thermal sensitivity in otoferlin Ile515Thr mutants. Embo j, 2016. |
282. | Suchyna TM, Johnson JH, Hamer K, Leykam JF, Gage DA, Clemo HF, Baumgarten CM, Sachs F. Identification of a peptide toxin from Grammostola spatulata spider venom that blocks cation‐selective stretch‐activated channels. J Gen Physiol 115: 583‐598, 2000. |
283. | Taberner AM, Liberman MC. Response properties of single auditory nerve fibers in the mouse. J Neurophysiol 93: 557‐569, 2005. |
284. | Tan X, Beurg M, Hackney C, Mahendrasingam S, Fettiplace R. Electrical tuning and transduction in short hair cells of the chicken auditory papilla. J Neurophysiol 109: 2007‐2020, 2013. |
285. | Temchin AN, Rich NC, Ruggero MA. Threshold tuning curves of chinchilla auditory‐nerve fibers. I. Dependence on characteristic frequency and relation to the magnitudes of cochlear vibrations. J Neurophysiol 100: 2889‐2898, 2008. |
286. | Temchin AN, Ruggero MA. Phase‐locked responses to tones of chinchilla auditory nerve fibers: Implications for apical cochlear mechanics. J Assoc Res Otolaryngol 11: 297‐318, 2010. |
287. | Teudt IU, Richter CP. Basilar membrane and tectorial membrane stiffness in the CBA/CaJ mouse. J Assoc Res Otolaryngol 15: 675‐694, 2014. |
288. | Tritsch NX, Yi E, Gale JE, Glowatzki E, Bergles DE. The origin of spontaneous activity in the developing auditory system. Nature 450: 50‐55, 2007. |
289. | Tucker T, Fettiplace R. Confocal imaging of calcium microdomains and calcium extrusion in turtle hair cells. Neuron 15: 1323‐1335, 1995. |
290. | van der Heijden M, Versteegh CP. Energy flux in the cochlea: Evidence against power amplification of the traveling wave. J Assoc Res Otolaryngol 16: 581‐597, 2015. |
291. | Verpy E, Leibovici M, Michalski N, Goodyear RJ, Houdon C, Weil D, Richardson GP, Petit C. Stereocilin connects outer hair cell stereocilia to one another and to the tectorial membrane. J Comp Neurol 519: 194‐210, 2011. |
292. | Versteegh CP, Meenderink SW, van der Heijden M. Response characteristics in the apex of the gerbil cochlea studied through auditory nerve recordings. J Assoc Res Otolaryngol 12: 301‐316, 2011. |
293. | Vogl C, Cooper BH, Neef J, Wojcik SM, Reim K, Reisinger E, Brose N, Rhee JS, Moser T, Wichmann C. Unconventional molecular regulation of synaptic vesicle replenishment in cochlear inner hair cells. J Cell Sci 128: 638‐644, 2015. |
294. | Vollrath MA, Eatock RA. Time course and extent of mechanotransducer adaptation in mouse utricular hair cells: Comparison with frog saccular hair cells. J Neurophysiol 90: 2676‐2689, 2003. |
295. | Vu AA, Nadaraja GS, Huth ME, Luk L, Kim J, Chai R, Ricci AJ, Cheng AG. Integrity and regeneration of mechanotransduction machinery regulate aminoglycoside entry and sensory cell death. PLoS One 8: e54794, 2013. |
296. | Wang HC, Bergles DE. Spontaneous activity in the developing auditory system. Cell Tissue Res 361: 65‐75, 2015. |
297. | Wangemann P. Supporting sensory transduction: Cochlear fluid homeostasis and the endocochlear potential. J Physiol 576: 11‐21, 2006. |
298. | Wangemann P. The role of pendrin in the development of the murine inner ear. Cell Physiol Biochem 28: 527‐534, 2011. |
299. | Wangemann P, Itza EM, Albrecht B, Wu T, Jabba SV, Maganti RJ, Lee JH, Everett LA, Wall SM, Royaux IE, Green ED, Marcus DC. Loss of KCNJ10 protein expression abolishes endocochlear potential and causes deafness in Pendred syndrome mouse model. BMC Med 2: 30, 2004. |
300. | Wangemann P, Liu J, Marcus DC. Ion transport mechanisms responsible for K+ secretion and the transepithelial voltage across marginal cells of stria vascularis in vitro. Hear Res 84: 19‐29, 1995. |
301. | Wangemann P, Nakaya K, Wu T, Maganti RJ, Itza EM, Sanneman JD, Harbidge DG, Billings S, Marcus DC. Loss of cochlear HCO3‐ secretion causes deafness via endolymphatic acidification and inhibition of Ca2+ reabsorption in a Pendred syndrome mouse model. Am J Physiol Renal Physiol 292: F1345‐1353, 2007. |
302. | Webb SW, Grillet N, Andrade LR, Xiong W, Swarthout L, Della Santina CC, Kachar B, Muller U. Regulation of PCDH15 function in mechanosensory hair cells by alternative splicing of the cytoplasmic domain. Development 138: 1607‐1617, 2011. |
303. | Wersinger E, McLean WJ, Fuchs PA, Pyott SJ. BK channels mediate cholinergic inhibition of high frequency cochlear hair cells. PLoS One 5: e13836, 2010. |
304. | Wiederhold ML. Variations in the effects of electric stimulation of the crossed olivocochlear bundle on cat single auditory‐nerve‐fiber responses to tone bursts. J Acoust Soc Am 48: 966‐977, 1970. |
305. | Willemin JF, Dandliker R, Khanna SM. Heterodyne interferometer for submicroscopic vibration measurements in the inner ear. J Acoust Soc Am 83: 787‐795, 1988. |
306. | Wingard JC, Zhao HB. Cellular and deafness mechanisms underlying connexin mutation‐induced hearing loss—a common hereditary deafness. Front Cell Neurosci 9: 202, 2015. |
307. | Wong AB, Rutherford MA, Gabrielaitis M, Pangrsic T, Gottfert F, Frank T, Michanski S, Hell S, Wolf F, Wichmann C, Moser T. Developmental refinement of hair cell synapses tightens the coupling of Ca2+ influx to exocytosis. Embo j 33: 247‐264, 2014. |
308. | Wood JD, Muchinsky SJ, Filoteo AG, Penniston JT, Tempel BL. Low endolymph calcium concentrations in deafwaddler2J mice suggest that PMCA2 contributes to endolymph calcium maintenance. J Assoc Res Otolaryngol 5: 99‐110, 2004. |
309. | Wu DK, Kelley MW. Molecular mechanisms of inner ear development. Cold Spring Harb Perspect Biol 4: a008409, 2012. |
310. | Wu YC, Art JJ, Goodman MB, Fettiplace R. A kinetic description of the calcium‐activated potassium channel and its application to electrical tuning of hair cells. Prog Biophys Mol Biol 63: 131‐158, 1995. |
311. | Wu YC, Ricci AJ, Fettiplace R. Two components of transducer adaptation in auditory hair cells. J Neurophysiol 82: 2171‐2181, 1999. |
312. | Xiong W, Grillet N, Elledge HM, Wagner TF, Zhao B, Johnson KR, Kazmierczak P, Muller U. TMHS is an integral component of the mechanotransduction machinery of cochlear hair cells. Cell 151: 1283‐1295, 2012. |
313. | Yamoah EN, Lumpkin EA, Dumont RA, Smith PJ, Hudspeth AJ, Gillespie PG. Plasma membrane Ca2+‐ATPase extrudes Ca2+ from hair cell stereocilia. J Neurosci 18: 610‐624, 1998. |
314. | Yan Z, Zhang W, He Y, Gorczyca D, Xiang Y, Cheng LE, Meltzer S, Jan LY, Jan YN. Drosophila NOMPC is a mechanotransduction channel subunit for gentle‐touch sensation. Nature 493: 221‐225, 2013. |
315. | Yasunaga S, Grati M, Cohen‐Salmon M, El‐Amraoui A, Mustapha M, Salem N, El‐Zir E, Loiselet J, Petit C. A mutation in OTOF, encoding otoferlin, a FER‐1‐like protein, causes DFNB9, a nonsyndromic form of deafness. Nat Genet 21: 363‐369, 1999. |
316. | Yoon YJ, Steele CR, Puria S. Feed‐forward and feed‐backward amplification model from cochlear cytoarchitecture: An interspecies comparison. Biophys J 100: 1‐10, 2011. |
317. | Zhang L, Gualberto DG, Guo X, Correa P, Jee C, Garcia LR. TMC-1 attenuates C. elegans development and sexual behavior in a chemically defined food environment. Nature Comm 6: 6345, 2015. |
318. | Zhao B, Muller U. The elusive mechanotransduction machinery of hair cells. Curr Opin Neurobiol 34: 172‐179, 2015. |
319. | Zhao B, Wu Z, Grillet N, Yan L, Xiong W, Harkins‐Perry S, Muller U. TMIE is an essential component of the mechanotransduction machinery of cochlear hair cells. Neuron 84: 954‐967, 2014. |
320. | Zheng J, Shen W, He DZ, Long KB, Madison LD, Dallos P. Prestin is the motor protein of cochlear outer hair cells. Nature 405: 149‐155, 2000. |
321. | Zheng L, Sekerkova G, Vranich K, Tilney LG, Mugnaini E, Bartles JR. The deaf jerker mouse has a mutation in the gene encoding the espin actin‐bundling proteins of hair cell stereocilia and lacks espins. Cell 102: 377‐385, 2000. |
322. | Zidanic M, Brownell WE. Fine structure of the intracochlear potential field. I. The silent current. Biophys J 57: 1253‐1268, 1990. |
323. | Zwislocki JJ, Kletsky EJ. Tectorial membrane: A possible effect on frequency analysis in the cochlea. Science 204: 639‐641, 1979. |