Comprehensive Physiology Wiley Online Library

Structure and Function of Bone Marrow Adipocytes

Full Article on Wiley Online Library



ABSTRACT

Adipocytes are heterogeneous cells strongly linked to energy storage and disposal. In parallel, adipocytes are endowed with an extensive portfolio of endocrine molecules, whose secretion varies depending on nutritional status. Marrow adipose tissue (MAT) has specific characteristics that are not shared by white (WAT) or brown (BAT) adipose tissue. First, marrow adipocytes and osteoblasts are terminally differentiated cells that originate from the same bone marrow mesenchymal stromal cell. Differently from WAT adipocytes, marrow adipocytes expand under conditions of energy restriction and seem to be not influenced by energy surplus, at least in humans. Over the last few years, several lines of evidence have suggested that bone cells and MAT are mutually connected regarding the modulation of both energy metabolism and bone remodeling. Adipokines (e.g., adiponectin, leptin, and chemerin), incretins (GLP1 and GIP), and several classical hormones (e.g., GH and insulin) are biochemical components involved in the modulation of bone remodeling, marrow adipogenesis, and energy metabolism. As expected, metabolic and nutritional diseases such as diabetes mellitus and anorexia nervosa (AN) greatly affect MAT quantity and quality as well as bone strength. Although the interest in MAT started recently, the rapid advances in current technology have expedited unprecedented growth of knowledge in this area. The present review intends to give to the reader an up‐to‐date perspective about MAT structure and physiology as well as its involvement in metabolic and nutritional diseases such as diabetes mellitus and ano‐rexia. © 2018 American Physiological Society. Compr Physiol 8:315‐349, 2018.

Comprehensive Physiology offers downloadable PowerPoint presentations of figures for non-profit, educational use, provided the content is not modified and full credit is given to the author and publication.

Download a PowerPoint presentation of all images


Figure 1. Figure 1. Bone‐derived hormones involved in the modulation of energy and osteomineral metabolism. Osteocalcin (OCN) originated in osteoblasts, after posttranslational modification acquires the capacity to modulate glucose metabolism. The synthesis of undercarboxylated Glu17‐OCN (ucOCN) requires the intermediation of osteoclasts that generate an acidic environment necessary to break the γ‐carboxylation on the first Glu residue. After released in blood circulation ucOCN acts on insulin sensitive tissues (adipose, liver, and muscle) improving insulin sensitivity (102,179,208,342). In addition, ucOCN promotes insulin secretion and β‐cell proliferaion. Osteocyte, the predominant cell in bone has relevant endocrine and paracrine function: (a) FGF‐23 as a major regulator of phosphate and of the synthesis of 1,25(OH)2D. Actually, FGF‐23 is produced not only by osteocytes but also by osteoblast. FGF‐23 increases fractional phosphate excretion, reduce serum phosphate levels, and reduces 1α‐hydroxylase activity, which decreases 1,25(OH)2D3 synthesis (54,56). Sclerostin binds Wnt coreceptors LRP5/6 to inhibit Wnt signaling to decrease bone formation (19).
Figure 2. Figure 2. Regulated and constitutive marrow adipose tissue (MAT) in the mouse. Proposed distribution of regulated MAT (rMAT) and constitutive MAT (cMAT) in the mouse skeleton when marrow is present. Regulated MAT is found in the more proximal regions including the mid‐ to proximal‐tibia, femur, and lumbar vertebrae. Constitutive MAT is found in the most distal portion of the tibia and tail vertebrae. Representative histology of rMAT and cMAT adipocytes within the bone marrow. Figure adapted, with permission, from Scheller et al. (2016) (281).
Figure 3. Figure 3. Age‐related increase in marrow adipose tissue in a group of healthy controls, 53 individuals (28 females and 25 males); age (female: 38.8 ± 13.2 and male: 39.7 ± 15.6 years); weight (female: 60.4 ± 6.4 and male: 66.0 ± 8.0); height (female: 1.65 ± 0.08 and male: 1.71 ± 0.06 m); and IMC (female: 22.1 ± 1.8 and male: 22.3 ± 1.9 kg/m2). MAT was assessed by 1.5 T 1H magnetic resonance spectroscopy of the lumbar spine (L3) (Philips Achieva, Philips Medical Systems, Best, The Netherlands).
Figure 4. Figure 4. Age‐related decrease in bone mineral density in a group of healthy controls, 53 individuals (28 females and 25 males); age (female: 38.8 ± 13.2 and male: 39.7 ± 15.6 years); weight (female: 60.4 ± 6.4 and male: 66.0 ± 8.0); height (female: 1.65 ± 0.08 and male: 1.71 ± 0.06 m) and IMC (female: 22.1 ± 1.8 and male: 22.3 ± 1.9 kg/m2). BMD was measured by dual‐energy X‐ray absorptiometry of the lumbar spine (L1‐L4) (Hologic Discovery Wi QDR series, Waltham, MA).
Figure 5. Figure 5. These results depict the negative relationship between bone mass and MAT in a group of healthy controls, 53 individuals (28 females and 25 males); age (female: 38.8 ± 13.2 and male: 39.7 ± 15.6 years); weight (female: 60.4 ± 6.4 and male: 66.0 ± 8.0); height (female: 1.65 ± 0.08 and male: 1.71 ± 0.06 m); and IMC (female: 22.1 ± 1.8 and male: 22.3 ± 1.9 kg/m2).
Figure 6. Figure 6. The mesenchymal stromal cell differentiation to osteoblast needs activation of key factors such as runt‐related transcription factor 2 (RUNX2), bone morphogenetic protein 2 (BMP2), transforming growth factor‐beta (TGFβ), and transcription factor Sp7 (osterix). In contraposition, the differentiation toward adipocyte requires groups of critical factors already present in mesenchymal stromal cells that need to be activated: CCAAT/enhancer binding proteins (C/EBP) family: C/EBPα, C/EBPβ, C/EBPγ, and C/EBPδ, and peroxisome proliferative activated receptors α, γ2, and δ. Molecules produced in adipocytes (PREF1 and chemerin) as well incretin (GLP1) affect BMMSC differentiation. PREF1 affects negatively both adipogenesis and osteoblastogenesis; chemerin exerts a positive stimulus to adipogenesis whereas it inhibits osteoblastogenesis. Conversely, GLP1 stimulates osteoblast differentiation and inhibits adipogenesis.
Figure 7. Figure 7. Vertebral body 1H MRS data were acquired using a point resolve 40/60/80 ms, repetition time (TR) = 2000 ms, eight averages, without fat suppression. Spectroscopy (PRESS) sequence with the following parameters: echo time (TE) = 1 min duration. A customized fitting algorithm for bone marrow analysis provided estimates for four lipid peaks: olefinic protons at 5.3 ppm (CHCH) were used to estimate unsaturated lipids (UL); methylene protons at 1.3 ppm [(CH2)n] provided estimates of saturated lipids (SL); residual lipids (RL) were estimated by allylic methylene protons at 2.3 ppm (CHCHCH2) and methyl protons at 0.9 ppm (CH3). Water (W) estimates were determined by a peak at 4.7 ppm.
Figure 8. Figure 8. 1H magnetic resonance spectroscopy allows the estimation of lipids composition in MAT. Recent studies called attention for the clinical relevance of this parameter, such as the association of saturated lipids with fracture in diabetic individuals. The above figure exhibits differences in unsaturated fat between male and female (female > male).
Figure 9. Figure 9. Leptin receptor in hypothalamic ventromedial neurons is not necessary for triggering leptin action. Leptin regulates bone mass accrual and appetite by inhibiting serotonin synthesis and release by the raphe nuclei neurons of the brainstem. Leptin acts through its binding to its receptor ObRb in the serotonergic neurons of the raphe nuclei. Figure adapted, with permission, from Karsenty and Oury (2010) (162).
Figure 10. Figure 10. Model representing the GLP1R Role on promoting BMMSCs osteoblast differentiation and suppressing their differentiation into adipocytes through crosstalk with β‐catenin signaling pathway. GLP1 agonist, GLP1, or Ex4 bound to GLP1R activates the adenylyl cyclase with a consequent production of cyclic AMP and subsequent activation of PKA. GLP1‐mediated activation of PKA results in β‐catenin phosphorylation on Ser675, leading to its nuclear translocation and initiation of the osteogenic gene expression. The activated PKA also phosphorylates PI3K, leading to the activation of AKT. Phosphorylated PKA subsequently phosphorylates GSK3β, resulting in the inhibition of GSK3β activity. β‐Catenin degradation mediated by GSK3β is thus inhibited and nuclear accumulation of β‐catenin is potentiated. Finally, BMMSC osteoblast differentiation takes place and anabolic bone formation is promoted. Figure adapted, with permission, from Meng et al. (2016) (207).
Figure 11. Figure 11. Calorie restriction deeply affects the GH/IGF1 axis. Usually, there is increased levels of GH secretion combined with low levels of IGF1. The mechanisms involved are not completely delineated but there are studies indicating reduction in GH receptor as well as postreceptor defects.
Figure 12. Figure 12. Bone marrow adipose tissue is paradoxically elevated in anorexia nervosa despite reduced total body fat. Elevated levels of preadipocyte factor 1 (PREF1), which are an important regulator of mesenchymal stromal cell differentiation, might be one of the mechanisms underlying the increase in bone marrow adipose tissue. Overall, a decrease in osteoblast differentiation, proliferation, and activity with a concomitant increase in osteoblast apoptosis is seen, in addition to an increase in osteoclast differentiation, proliferation, and activity with a concomitant decrease in osteoclast apoptosis. Growth hormone (GH) and insulin‐like growth factor 1 (IGF1) stimulate osteoblast differentiation while inhibiting osteoclast differentiation, and GH independently stimulates osteoblast proliferation. By contrast, cortisol decreases bone formation and increases bone resorption. Alterations in adipokines, such as leptin, and appetite‐regulating hormones, such as peptide YY (PYY), might also contribute to impaired bone microarchitecture in anorexia nervosa but are not well understood. *Hormone effect for which there are limited data. +, positive effect; −, negative effect. Figure adapted, with permission, from Schorr and Miller (2017) (286).
Figure 13. Figure 13. The complex relationship between BMI, BMD, and fracture risk is illustrated in the schematic. Compared with an underweight individual, an overweight individual experiencing a fall from the same height would generate a proportionately greater load on a limb (ground reaction force). However, the presence of greater amount of soft tissue in the heavier individual should attenuate more of the load and distribute the remaining load over a larger bone surface, reducing peak strain such that the effective load could be greater in the lighter individual. Assuming equivalent bone quality, the higher BMD typical in the heavier individual would be a further advantage in reducing strain below that required for a fracture. However, based on epidemiological studies, further increases in weight may provide a diminishing return because the reductions in load during a fall related to soft tissue and higher BMD may not fully compensate for increased weight. Type 2 diabetes mellitus adds ingredients that impair bone quality and increase fracture risk. Figure adapted, with permission, from Iwaniec and Turner (2016) (148).


Figure 1. Bone‐derived hormones involved in the modulation of energy and osteomineral metabolism. Osteocalcin (OCN) originated in osteoblasts, after posttranslational modification acquires the capacity to modulate glucose metabolism. The synthesis of undercarboxylated Glu17‐OCN (ucOCN) requires the intermediation of osteoclasts that generate an acidic environment necessary to break the γ‐carboxylation on the first Glu residue. After released in blood circulation ucOCN acts on insulin sensitive tissues (adipose, liver, and muscle) improving insulin sensitivity (102,179,208,342). In addition, ucOCN promotes insulin secretion and β‐cell proliferaion. Osteocyte, the predominant cell in bone has relevant endocrine and paracrine function: (a) FGF‐23 as a major regulator of phosphate and of the synthesis of 1,25(OH)2D. Actually, FGF‐23 is produced not only by osteocytes but also by osteoblast. FGF‐23 increases fractional phosphate excretion, reduce serum phosphate levels, and reduces 1α‐hydroxylase activity, which decreases 1,25(OH)2D3 synthesis (54,56). Sclerostin binds Wnt coreceptors LRP5/6 to inhibit Wnt signaling to decrease bone formation (19).


Figure 2. Regulated and constitutive marrow adipose tissue (MAT) in the mouse. Proposed distribution of regulated MAT (rMAT) and constitutive MAT (cMAT) in the mouse skeleton when marrow is present. Regulated MAT is found in the more proximal regions including the mid‐ to proximal‐tibia, femur, and lumbar vertebrae. Constitutive MAT is found in the most distal portion of the tibia and tail vertebrae. Representative histology of rMAT and cMAT adipocytes within the bone marrow. Figure adapted, with permission, from Scheller et al. (2016) (281).


Figure 3. Age‐related increase in marrow adipose tissue in a group of healthy controls, 53 individuals (28 females and 25 males); age (female: 38.8 ± 13.2 and male: 39.7 ± 15.6 years); weight (female: 60.4 ± 6.4 and male: 66.0 ± 8.0); height (female: 1.65 ± 0.08 and male: 1.71 ± 0.06 m); and IMC (female: 22.1 ± 1.8 and male: 22.3 ± 1.9 kg/m2). MAT was assessed by 1.5 T 1H magnetic resonance spectroscopy of the lumbar spine (L3) (Philips Achieva, Philips Medical Systems, Best, The Netherlands).


Figure 4. Age‐related decrease in bone mineral density in a group of healthy controls, 53 individuals (28 females and 25 males); age (female: 38.8 ± 13.2 and male: 39.7 ± 15.6 years); weight (female: 60.4 ± 6.4 and male: 66.0 ± 8.0); height (female: 1.65 ± 0.08 and male: 1.71 ± 0.06 m) and IMC (female: 22.1 ± 1.8 and male: 22.3 ± 1.9 kg/m2). BMD was measured by dual‐energy X‐ray absorptiometry of the lumbar spine (L1‐L4) (Hologic Discovery Wi QDR series, Waltham, MA).


Figure 5. These results depict the negative relationship between bone mass and MAT in a group of healthy controls, 53 individuals (28 females and 25 males); age (female: 38.8 ± 13.2 and male: 39.7 ± 15.6 years); weight (female: 60.4 ± 6.4 and male: 66.0 ± 8.0); height (female: 1.65 ± 0.08 and male: 1.71 ± 0.06 m); and IMC (female: 22.1 ± 1.8 and male: 22.3 ± 1.9 kg/m2).


Figure 6. The mesenchymal stromal cell differentiation to osteoblast needs activation of key factors such as runt‐related transcription factor 2 (RUNX2), bone morphogenetic protein 2 (BMP2), transforming growth factor‐beta (TGFβ), and transcription factor Sp7 (osterix). In contraposition, the differentiation toward adipocyte requires groups of critical factors already present in mesenchymal stromal cells that need to be activated: CCAAT/enhancer binding proteins (C/EBP) family: C/EBPα, C/EBPβ, C/EBPγ, and C/EBPδ, and peroxisome proliferative activated receptors α, γ2, and δ. Molecules produced in adipocytes (PREF1 and chemerin) as well incretin (GLP1) affect BMMSC differentiation. PREF1 affects negatively both adipogenesis and osteoblastogenesis; chemerin exerts a positive stimulus to adipogenesis whereas it inhibits osteoblastogenesis. Conversely, GLP1 stimulates osteoblast differentiation and inhibits adipogenesis.


Figure 7. Vertebral body 1H MRS data were acquired using a point resolve 40/60/80 ms, repetition time (TR) = 2000 ms, eight averages, without fat suppression. Spectroscopy (PRESS) sequence with the following parameters: echo time (TE) = 1 min duration. A customized fitting algorithm for bone marrow analysis provided estimates for four lipid peaks: olefinic protons at 5.3 ppm (CHCH) were used to estimate unsaturated lipids (UL); methylene protons at 1.3 ppm [(CH2)n] provided estimates of saturated lipids (SL); residual lipids (RL) were estimated by allylic methylene protons at 2.3 ppm (CHCHCH2) and methyl protons at 0.9 ppm (CH3). Water (W) estimates were determined by a peak at 4.7 ppm.


Figure 8. 1H magnetic resonance spectroscopy allows the estimation of lipids composition in MAT. Recent studies called attention for the clinical relevance of this parameter, such as the association of saturated lipids with fracture in diabetic individuals. The above figure exhibits differences in unsaturated fat between male and female (female > male).


Figure 9. Leptin receptor in hypothalamic ventromedial neurons is not necessary for triggering leptin action. Leptin regulates bone mass accrual and appetite by inhibiting serotonin synthesis and release by the raphe nuclei neurons of the brainstem. Leptin acts through its binding to its receptor ObRb in the serotonergic neurons of the raphe nuclei. Figure adapted, with permission, from Karsenty and Oury (2010) (162).


Figure 10. Model representing the GLP1R Role on promoting BMMSCs osteoblast differentiation and suppressing their differentiation into adipocytes through crosstalk with β‐catenin signaling pathway. GLP1 agonist, GLP1, or Ex4 bound to GLP1R activates the adenylyl cyclase with a consequent production of cyclic AMP and subsequent activation of PKA. GLP1‐mediated activation of PKA results in β‐catenin phosphorylation on Ser675, leading to its nuclear translocation and initiation of the osteogenic gene expression. The activated PKA also phosphorylates PI3K, leading to the activation of AKT. Phosphorylated PKA subsequently phosphorylates GSK3β, resulting in the inhibition of GSK3β activity. β‐Catenin degradation mediated by GSK3β is thus inhibited and nuclear accumulation of β‐catenin is potentiated. Finally, BMMSC osteoblast differentiation takes place and anabolic bone formation is promoted. Figure adapted, with permission, from Meng et al. (2016) (207).


Figure 11. Calorie restriction deeply affects the GH/IGF1 axis. Usually, there is increased levels of GH secretion combined with low levels of IGF1. The mechanisms involved are not completely delineated but there are studies indicating reduction in GH receptor as well as postreceptor defects.


Figure 12. Bone marrow adipose tissue is paradoxically elevated in anorexia nervosa despite reduced total body fat. Elevated levels of preadipocyte factor 1 (PREF1), which are an important regulator of mesenchymal stromal cell differentiation, might be one of the mechanisms underlying the increase in bone marrow adipose tissue. Overall, a decrease in osteoblast differentiation, proliferation, and activity with a concomitant increase in osteoblast apoptosis is seen, in addition to an increase in osteoclast differentiation, proliferation, and activity with a concomitant decrease in osteoclast apoptosis. Growth hormone (GH) and insulin‐like growth factor 1 (IGF1) stimulate osteoblast differentiation while inhibiting osteoclast differentiation, and GH independently stimulates osteoblast proliferation. By contrast, cortisol decreases bone formation and increases bone resorption. Alterations in adipokines, such as leptin, and appetite‐regulating hormones, such as peptide YY (PYY), might also contribute to impaired bone microarchitecture in anorexia nervosa but are not well understood. *Hormone effect for which there are limited data. +, positive effect; −, negative effect. Figure adapted, with permission, from Schorr and Miller (2017) (286).


Figure 13. The complex relationship between BMI, BMD, and fracture risk is illustrated in the schematic. Compared with an underweight individual, an overweight individual experiencing a fall from the same height would generate a proportionately greater load on a limb (ground reaction force). However, the presence of greater amount of soft tissue in the heavier individual should attenuate more of the load and distribute the remaining load over a larger bone surface, reducing peak strain such that the effective load could be greater in the lighter individual. Assuming equivalent bone quality, the higher BMD typical in the heavier individual would be a further advantage in reducing strain below that required for a fracture. However, based on epidemiological studies, further increases in weight may provide a diminishing return because the reductions in load during a fall related to soft tissue and higher BMD may not fully compensate for increased weight. Type 2 diabetes mellitus adds ingredients that impair bone quality and increase fracture risk. Figure adapted, with permission, from Iwaniec and Turner (2016) (148).
References
 1. 1983 metropolitan height and weight tables. Statistical Bulletin 64: 3‐9, 1983.
 2. Abdallah BM , Jensen CH , Gutierrez G , Leslie RG , Jensen TG , Kassem M . Regulation of human skeletal stem cells differentiation by Dlk1/Pref‐1. J Bone Miner Res 19: 841‐852, 2004.
 3. Abdallah BM , Kassem M . New factors controlling the balance between osteoblastogenesis and adipogenesis. Bone 50: 540‐545, 2012.
 4. Agarwal AK , Arioglu E , De Almeida S, Akkoc N , Taylor SI , Bowcock AM , Barnes RI , Garg A . AGPAT2 is mutated in congenital generalized lipodystrophy linked to chromosome 9q34. Nat Genet 31: 21‐23, 2002.
 5. Agool A , Glaudemans AW , Boersma HH , Dierckx RA , Vellenga E , Slart RH . Radionuclide imaging of bone marrow disorders. Eur J Nucl Med Mol Imaging 38: 166‐178, 2011.
 6. Ahmadian M , Suh JM , Hah N , Liddle C , Atkins AR , Downes M , Evans RM . PPARgamma signaling and metabolism: The good, the bad and the future. Nat Med 19: 557‐566, 2013.
 7. Akinci B , Onay H , Demir T , Ozen S , Kayserili H , Akinci G , Nur B , Tuysuz B , Nuri Ozbek M , Gungor A , Yildirim Simsir I , Altay C , Demir L , Simsek E , Atmaca M , Topaloglu H , Bilen H , Atmaca H , Atik T , Cavdar U , Altunoglu U , Aslanger A , Mihci E , Secil M , Saygili F , Comlekci A , Garg A . Natural history of congenital generalized lipodystrophy: A nationwide study from Turkey. J Clin Endocrinol Metab 101: 2759‐2767, 2016.
 8. Akune T , Ohba S , Kamekura S , Yamaguchi M , Chung UI , Kubota N , Terauchi Y , Harada Y , Azuma Y , Nakamura K , Kadowaki T , Kawaguchi H . PPARgamma insufficiency enhances osteogenesis through osteoblast formation from bone marrow progenitors. J Clin Invest 113: 846‐855, 2004.
 9. Ali AA , Weinstein RS , Stewart SA , Parfitt AM , Manolagas SC , Jilka RL . Rosiglitazone causes bone loss in mice by suppressing osteoblast differentiation and bone formation. Endocrinology 146: 1226‐1235, 2005.
 10. Almeida M , Laurent MR , Dubois V , Claessens F , O'Brien CA , Bouillon R , Vanderschueren D , Manolagas SC . Estrogens and androgens in skeletal physiology and pathophysiology. Physiol Rev 97: 135‐187, 2017.
 11. Ambati S , Li Q , Rayalam S , Hartzell DL , Della‐Fera MA , Hamrick MW , Baile CA . Central leptin versus ghrelin: Effects on bone marrow adiposity and gene expression. Endocrine 37: 115‐123, 2010.
 12. Ambrosi TH , Scialdone A , Graja A , Gohlke S , Jank AM , Bocian C , Woelk L , Fan H , Logan DW , Schurmann A , Saraiva LR , Schulz TJ . Adipocyte accumulation in the bone marrow during obesity and aging impairs stem cell‐based hematopoietic and bone regeneration. Cell Stem Cell 20(6): 771‐784, 2017.
 13. Arentsen L , Hansen KE , Yagi M , Takahashi Y , Shanley R , McArthur A , Bolan P , Magome T , Yee D , Froelich J , Hui SK . Use of dual‐energy computed tomography to measure skeletal‐wide marrow composition and cancellous bone mineral density. J Bone Miner Metab 35(4): 428‐436, 2017.
 14. Argente J , Caballo N , Barrios V , Munoz MT , Pozo J , Chowen JA , Morande G , Hernandez M . Multiple endocrine abnormalities of the growth hormone and insulin‐like growth factor axis in patients with anorexia nervosa: Effect of short‐ and long‐term weight recuperation. J Clin Endocrinol Metab 82: 2084‐2092, 1997.
 15. Aronis KN , Kilim H , Chamberland JP , Breggia A , Rosen C , Mantzoros CS . Preadipocyte factor‐1 levels are higher in women with hypothalamic amenorrhea and are associated with bone mineral content and bone mineral density through a mechanism independent of leptin. J Clin Endocrinol Metab 96: E1634‐E1639, 2011.
 16. Aston JA , Cunningham VJ , Asselin MC , Hammers A , Evans AC , Gunn RN . Positron emission tomography partial volume correction: Estimation and algorithms. J Cereb Blood Flow Metab 22: 1019‐1034, 2002.
 17. Bachmann KN , Schorr M , Bruno AG , Bredella MA , Lawson EA , Gill CM , Singhal V , Meenaghan E , Gerweck AV , Slattery M , Eddy KT , Ebrahimi S , Koman SL , Greenblatt JM , Keane RJ , Weigel T , Misra M , Bouxsein ML , Klibanski A , Miller KK . Vertebral volumetric bone density and strength are impaired in women with low‐weight and atypical anorexia nervosa. J Clin Endocrinol Metab 102(1): 57‐68, 2017.
 18. Barnard K , Lakey WC , Batch BC , Chiswell K , Tasneem A , Green JB . Recent clinical trials in osteoporosis: A firm foundation or falling short? PloS One 11: e0156068, 2016.
 19. Baron R , Kneissel M . WNT signaling in bone homeostasis and disease: From human mutations to treatments. Nat Med 19: 179‐192, 2013.
 20. Bartell SM , Rayalam S , Ambati S , Gaddam DR , Hartzell DL , Hamrick M , She JX , Della‐Fera MA , Baile CA . Central (ICV) leptin injection increases bone formation, bone mineral density, muscle mass, serum IGF‐1, and the expression of osteogenic genes in leptin‐deficient ob/ob mice. J Bone Miner Res 26: 1710‐1720, 2011.
 21. Baskaran C , Eddy KT , Miller KK , Meenaghan E , Misra M , Lawson EA . Leptin secretory dynamics and associated disordered eating psychopathology across the weight spectrum. Eur J Endocrinol 174: 503‐512, 2016.
 22. Bates SH , Stearns WH , Dundon TA , Schubert M , Tso AW , Wang Y , Banks AS , Lavery HJ , Haq AK , Maratos‐Flier E , Neel BG , Schwartz MW , Myers MG, Jr. STAT3 signalling is required for leptin regulation of energy balance but not reproduction. Nature 421: 856‐859, 2003.
 23. Baumeister FA , Engelsberger I , Schulze A . Pancreatic agenesis as cause for neonatal diabetes mellitus. Klin Padiatr 217: 76‐81, 2005.
 24. Behre CJ , Gummesson A , Jernas M , Lystig TC , Fagerberg B , Carlsson B , Carlsson LM . Dissociation between adipose tissue expression and serum levels of adiponectin during and after diet‐induced weight loss in obese subjects with and without the metabolic syndrome. Metabolism 56: 1022‐1028, 2007.
 25. Bennett CN , Ouyang H , Ma YL , Zeng Q , Gerin I , Sousa KM , Lane TF , Krishnan V , Hankenson KD , MacDougald OA . Wnt10b increases postnatal bone formation by enhancing osteoblast differentiation. J Bone Miner Res 22: 1924‐1932, 2007.
 26. Berner HS , Lyngstadaas SP , Spahr A , Monjo M , Thommesen L , Drevon CA , Syversen U , Reseland JE . Adiponectin and its receptors are expressed in bone‐forming cells. Bone 35: 842‐849, 2004.
 27. Bianco P , Robey PG , Saggio I , Riminucci M . “Mesenchymal” stem cells in human bone marrow (skeletal stem cells): A critical discussion of their nature, identity, and significance in incurable skeletal disease. Hum Gene Ther 21: 1057‐1066, 2010.
 28. Bjerre Knudsen L , Madsen LW , Andersen S , Almholt K , de Boer AS , Drucker DJ , Gotfredsen C , Egerod FL , Hegelund AC , Jacobsen H , Jacobsen SD , Moses AC , Molck AM , Nielsen HS , Nowak J , Solberg H , Thi TD , Zdravkovic M , Moerch U . Glucagon‐like peptide‐1 receptor agonists activate rodent thyroid C‐cells causing calcitonin release and C‐cell proliferation. Endocrinology 151: 1473‐1486, 2010.
 29. Black DM , Rosen CJ . Postmenopausal Osteoporosis. N Engl J Med 374: 2096‐2097, 2016.
 30. Blebea JS , Houseni M , Torigian DA , Fan C , Mavi A , Zhuge Y , Iwanaga T , Mishra S , Udupa J , Zhuang J , Gopal R , Alavi A . Structural and functional imaging of normal bone marrow and evaluation of its age‐related changes. Semin Nucl Med 37: 185‐194, 2007.
 31. Boess F , Bertinetti‐Lapatki C , Zoffmann S , George C , Pfister T , Roth A , Lee SM , Thasler WE , Singer T , Suter L . Effect of GLP1R agonists taspoglutide and liraglutide on primary thyroid C‐cells from rodent and man. J Mol Endocrinol 50: 325‐336, 2013.
 32. Bonds DE , Larson JC , Schwartz AV , Strotmeyer ES , Robbins J , Rodriguez BL , Johnson KC , Margolis KL . Risk of fracture in women with type 2 diabetes: The Women's Health Initiative Observational Study. J Clin Endocrinol Metab 91: 3404‐3410, 2006.
 33. Bonewald LF . The role of the osteocyte in bone and nonbone disease. Endocrinol Metab Clin North Am 46: 1‐18, 2017.
 34. Bonnet N. Bone‐derived factors: A new gateway to regulate glycemia. Calcif Tissue Int 100: 174‐183, 2017.
 35. Borges BC , Rorato R , Avraham Y , da Silva LE , Castro M , Vorobiav L , Berry E , Antunes‐Rodrigues J , Elias LL . Leptin resistance and desensitization of hypophagia during prolonged inflammatory challenge. Am J Physiol Endocrinol Metab 300: E858‐E869, 2011.
 36. Botolin S , Faugere MC , Malluche H , Orth M , Meyer R , McCabe LR . Increased bone adiposity and peroxisomal proliferator‐activated receptor‐gamma2 expression in type I diabetic mice. Endocrinology 146: 3622‐3631, 2005.
 37. Botolin S , McCabe LR . Bone loss and increased bone adiposity in spontaneous and pharmacologically induced diabetic mice. Endocrinology 148: 198‐205, 2007.
 38. Bozaoglu K , Bolton K , McMillan J , Zimmet P , Jowett J , Collier G , Walder K , Segal D . Chemerin is a novel adipokine associated with obesity and metabolic syndrome. Endocrinology 148: 4687‐4694, 2007.
 39. Bredella MA , Fazeli PK , Daley SM , Miller KK , Rosen CJ , Klibanski A , Torriani M . Marrow fat composition in anorexia nervosa. Bone 66: 199‐204, 2014.
 40. Bredella MA , Fazeli PK , Miller KK , Misra M , Torriani M , Thomas BJ , Ghomi RH , Rosen CJ , Klibanski A . Increased bone marrow fat in anorexia nervosa. J Clin Endocrinol Metab 94: 2129‐2136, 2009.
 41. Breen KM , Karsch FJ . New insights regarding glucocorticoids, stress and gonadotropin suppression. Front Neuroendocrinol 27: 233‐245, 2006.
 42. Brick DJ , Gerweck AV , Meenaghan E , Lawson EA , Misra M , Fazeli P , Johnson W , Klibanski A , Miller KK . Determinants of IGF1 and GH across the weight spectrum: From anorexia nervosa to obesity. Eur J Endocrinol 163: 185‐191, 2010.
 43. Bruning JC , Michael MD , Winnay JN , Hayashi T , Horsch D , Accili D , Goodyear LJ , Kahn CR . A muscle‐specific insulin receptor knockout exhibits features of the metabolic syndrome of NIDDM without altering glucose tolerance. Mol Cell 2: 559‐569, 1998.
 44. Campfield LA , Smith FJ , Guisez Y , Devos R , Burn P . Recombinant mouse OB protein: Evidence for a peripheral signal linking adiposity and central neural networks. Science 269: 546‐549, 1995.
 45. Carlsson C , Tornehave D , Lindberg K , Galante P , Billestrup N , Michelsen B , Larsson LI , Nielsen JH . Growth hormone and prolactin stimulate the expression of rat preadipocyte factor‐1/delta‐like protein in pancreatic islets: Molecular cloning and expression pattern during development and growth of the endocrine pancreas. Endocrinology 138: 3940‐3948, 1997.
 46. Carmody D , Ladsaria SS , Buikema RK , Semple RK , Greeley SA . Successful rhIGF1 treatment for over 5 years in a patient with severe insulin resistance due to homozygous insulin receptor mutation. Diabet Med 33: e8‐e12, 2016.
 47. Cartwright BR , Goodman JM . Seipin: From human disease to molecular mechanism. J Lipid Res 53: 1042‐1055, 2012.
 48. Cawthorn WP , Scheller EL , Learman BS , Parlee SD , Simon BR , Mori H , Ning X , Bree AJ , Schell B , Broome DT , Soliman SS , DelProposto JL , Lumeng CN , Mitra A , Pandit SV , Gallagher KA , Miller JD , Krishnan V , Hui SK , Bredella MA , Fazeli PK , Klibanski A , Horowitz MC , Rosen CJ , MacDougald OA . Bone marrow adipose tissue is an endocrine organ that contributes to increased circulating adiponectin during caloric restriction. Cell Metab 20: 368‐375, 2014.
 49. Cawthorn WP , Scheller EL , Parlee SD , Pham HA , Learman BS , Redshaw CM , Sulston RJ , Burr AA , Das AK , Simon BR , Mori H , Bree AJ , Schell B , Krishnan V , MacDougald OA . Expansion of bone marrow adipose tissue during caloric restriction is associated with increased circulating glucocorticoids and not with hypoleptinemia. Endocrinology 157: 508‐521, 2016.
 50. Chen T , Wu YW , Lu H , Guo Y , Tang ZH . Adiponectin enhances osteogenic differentiation in human adipose‐derived stem cells by activating the APPL1‐AMPK signaling pathway. Biochem Biophys Res Commun 461: 237‐242, 2015.
 51. Cheng H , Gary LC , Curtis JR , Saag KG , Kilgore ML , Morrisey MA , Matthews R , Smith W , Yun H , Delzell E . Estimated prevalence and patterns of presumed osteoporosis among older Americans based on Medicare data. Osteoporos Int 20: 1507‐1515, 2009.
 52. Cho ES , Kim MK , Son YO , Lee KS , Park SM , Lee JC . The effects of rosiglitazone on osteoblastic differentiation, osteoclast formation and bone resorption. Mol Cells 33: 173‐181, 2012.
 53. Choi KM , Cho HJ , Choi HY , Yang SJ , Yoo HJ , Seo JA , Kim SG , Baik SH , Choi DS , Kim NH . Higher mortality in metabolically obese normal‐weight people than in metabolically healthy obese subjects in elderly Koreans. Clin Endocrinol 79: 364‐370, 2013.
 54. Christov M , Juppner H . Insights from genetic disorders of phosphate homeostasis. Semin Nephrol 33: 143‐157, 2013.
 55. Clark EM , Ness AR , Tobias JH . Adipose tissue stimulates bone growth in prepubertal children. J Clin Endocrinol Metab 91: 2534‐2541, 2006.
 56. Clinkenbeard EL , White KE . Heritable and acquired disorders of phosphate metabolism: Etiologies involving FGF23 and current therapeutics. Bone 102: 31‐39, 2017.
 57. Cohen A , Dempster DW , Stein EM , Nickolas TL , Zhou H , McMahon DJ , Muller R , Kohler T , Zwahlen A , Lappe JM , Young P , Recker RR , Shane E . Increased marrow adiposity in premenopausal women with idiopathic osteoporosis. J Clin Endocrinol Metab 97: 2782‐2791, 2012.
 58. Cohen A , Shen W , Dempster DW , Zhou H , Recker RR , Lappe JM , Kepley A , Kamanda‐Kosseh M , Bucovsky M , Stein EM , Nickolas TL , Shane E . Marrow adiposity assessed on transiliac crest biopsy samples correlates with noninvasive measurement of marrow adiposity by proton magnetic resonance spectroscopy ((1)H‐MRS) at the spine but not the femur. Osteoporos Int 26: 2471‐2478, 2015.
 59. Colhoun HM , Livingstone SJ , Looker HC , Morris AD , Wild SH , Lindsay RS , Reed C , Donnan PT , Guthrie B , Leese GP , McKnight J , Pearson DW , Pearson E , Petrie JR , Philip S , Sattar N , Sullivan FM , McKeigue P , Scottish Diabetes Research Network Epidemiology G. Hospitalised hip fracture risk with rosiglitazone and pioglitazone use compared with other glucose‐lowering drugs. Diabetologia 55: 2929‐2937, 2012.
 60. Collaboration NCDRF. Worldwide trends in diabetes since 1980: A pooled analysis of 751 population‐based studies with 4.4 million participants. Lancet 387: 1513‐1530, 2016.
 61. Considine RV , Sinha MK , Heiman ML , Kriauciunas A , Stephens TW , Nyce MR , Ohannesian JP , Marco CC , McKee LJ , Bauer TL , et al. Serum immunoreactive‐leptin concentrations in normal‐weight and obese humans. N Engl J Med 334: 292‐295, 1996.
 62. Cortizo AM , Sedlinsky C , McCarthy AD , Blanco A , Schurman L . Osteogenic actions of the anti‐diabetic drug metformin on osteoblasts in culture. Eur J Pharmacol 536: 38‐46, 2006.
 63. Cristy M. Active bone marrow distribution as a function of age in humans. Phys Med Biol 26: 389‐400, 1981.
 64. Cui Q , Wang GJ , Balian G . Pluripotential marrow cells produce adipocytes when transplanted into steroid‐treated mice. Connect Tissue Res 41: 45‐56, 2000.
 65. Cunningham TD , Martin BC , DeShields SC , Romero CC . The impact of osteoporotic fractures compared with other health conditions in older adults living in Virginia, United States. Osteoporos Int 27: 2979‐2988, 2016.
 66. Curtis EM , Moon RJ , Harvey NC , Cooper C . The impact of fragility fracture and approaches to osteoporosis risk assessment worldwide. Bone, doi: 10.1016/j.bone.2017.01.024. [Epub ahead of print] 2017.
 67. Cutrim DM , Pereira FA , de Paula FJ , Foss MC . Lack of relationship between glycemic control and bone mineral density in type 2 diabetes mellitus. Braz J Med Biol Res 40: 221‐227, 2007.
 68. D'Amelio P , Sassi F . Osteoimmunology: from mice to humans. Bonekey Rep 5: 802, 2016.
 69. D'Ercole AJ , Calikoglu AS . Editorial review: The case of local versus endocrine IGF‐I actions: The jury is still out. Growth Horm IGF Res 11: 261‐265, 2001.
 70. Datz FL , Taylor A, Jr. The clinical use of radionuclide bone marrow imaging. Semin Nucl Med 15: 239‐259, 1985.
 71. de Araujo IM , Salmon CE , Nahas AK , Nogueira‐Barbosa MH , Elias J, Jr. , de Paula FJ . Marrow adipose tissue spectrum in obesity and type 2 diabetes mellitus. Eur J Endocrinol 176: 21‐30, 2017.
 72. de Paula FJ , de Araujo IM , Carvalho AL , Elias J, Jr. , Salmon CE , Nogueira‐Barbosa MH . The relationship of fat distribution and insulin resistance with lumbar spine bone mass in women. PloS One 10: e0129764, 2015.
 73. de Paula FJ , Gois‐Junior MB , Aguiar‐Oliveira MH , Pereira Fde A , Oliveira CR , Pereira RM , Farias CT , Vicente TA , Salvatori R . Consequences of lifetime isolated growth hormone (GH) deficiency and effects of short‐term GH treatment on bone in adults with a mutation in the GHRH‐receptor gene. Clin Endocrinol 70: 35‐40, 2009.
 74. de Paula FJ , Horowitz MC , Rosen CJ . Novel insights into the relationship between diabetes and osteoporosis. Diabetes Metab Res Rev 26: 622‐630, 2010.
 75. de Paula FJ , Rosen CJ . Bone remodeling and energy metabolism: New perspectives. Bone Res 1: 72‐84, 2013.
 76. Defronzo RA . Banting Lecture. From the triumvirate to the ominous octet: A new paradigm for the treatment of type 2 diabetes mellitus. Diabetes 58: 773‐795, 2009.
 77. DeFronzo RA. Lilly lecture 1987. The triumvirate: Beta‐cell, muscle, liver. A collusion responsible for NIDDM. Diabetes 37: 667‐687, 1988.
 78. Devlin MJ , Brooks DJ , Conlon C , Vliet M , Louis L , Rosen CJ , Bouxsein ML . Daily leptin blunts marrow fat but does not impact bone mass in calorie‐restricted mice. J Endocrinol 229: 295‐306, 2016.
 79. Devlin MJ , Cloutier AM , Thomas NA , Panus DA , Lotinun S , Pinz I , Baron R , Rosen CJ , Bouxsein ML . Caloric restriction leads to high marrow adiposity and low bone mass in growing mice. J Bone Miner Res 25: 2078‐2088, 2010.
 80. Devlin MJ , Rosen CJ . The bone‐fat interface: Basic and clinical implications of marrow adiposity. Lancet Diabetes Endocrinol 3: 141‐147, 2015.
 81. Dhaliwal R , Rosen CJ . Type 2 diabetes and aging: A not so sweet scenario for bone. Horm Metab Res 48: 771‐778, 2016.
 82. Dimitri P , Bishop N , Walsh JS , Eastell R . Obesity is a risk factor for fracture in children but is protective against fracture in adults: A paradox. Bone 50: 457‐466, 2012.
 83. DiVasta AD , Feldman HA , Rubin CT , Gallagher JS , Stokes N , Kiel DP , Snyder BD , Gordon CM . The ability of low‐magnitude mechanical signals to normalize bone turnover in adolescents hospitalized for anorexia nervosa. Osteoporos Int 28(4): 1255‐1263, 2016.
 84. Dolezalova R , Lacinova Z , Dolinkova M , Kleiblova P , Haluzikova D , Housa D , Papezova H , Haluzik M . Changes of endocrine function of adipose tissue in anorexia nervosa: Comparison of circulating levels versus subcutaneous mRNA expression. Clin Endocrinol 67: 674‐678, 2007.
 85. dos Santos E , dos Santos JE , Ribeiro RP , Rosa ESAC , Moreira AC , Silva de Sa MF . Absence of circadian salivary cortisol rhythm in women with anorexia nervosa. J Pediatr Adolesc Gynecol 20: 13‐18, 2007.
 86. Doucette CR , Horowitz MC , Berry R , MacDougald OA , Anunciado‐Koza R , Koza RA , Rosen CJ . A high fat diet increases bone marrow adipose tissue (MAT) but does not alter trabecular or cortical bone mass in C57BL/6J mice. J Cell Physiol 230: 2032‐2037, 2015.
 87. Draghi F , Ferrozzi G , Urciuoli L , Bortolotto C , Bianchi S . Hoffa's fat pad abnormalities, knee pain and magnetic resonance imaging in daily practice. Insights Imaging 7: 373‐383, 2016.
 88. Drake MT , Khosla S . Hormonal and systemic regulation of sclerostin. Bone 96: 8‐17, 2017.
 89. Drucker DJ , Nauck MA . The incretin system: Glucagon‐like peptide‐1 receptor agonists and dipeptidyl peptidase‐4 inhibitors in type 2 diabetes. Lancet 368: 1696‐1705, 2006.
 90. Ducy P , Amling M , Takeda S , Priemel M , Schilling AF , Beil FT , Shen J , Vinson C , Rueger JM , Karsenty G . Leptin inhibits bone formation through a hypothalamic relay: A central control of bone mass. Cell 100: 197‐207, 2000.
 91. Ecklund K , Vajapeyam S , Feldman HA , Buzney CD , Mulkern RV , Kleinman PK , Rosen CJ , Gordon CM . Bone marrow changes in adolescent girls with anorexia nervosa. J Bone Miner Res 25: 298‐304, 2010.
 92. Elefteriou F , Ahn JD , Takeda S , Starbuck M , Yang X , Liu X , Kondo H , Richards WG , Bannon TW , Noda M , Clement K , Vaisse C , Karsenty G . Leptin regulation of bone resorption by the sympathetic nervous system and CART. Nature 434: 514‐520, 2005.
 93. Emery JL , Follett GF . Regression of bone‐marrow haemopoiesis from the terminal digits in the foetus and infant. Br J Haematol 10: 485‐489, 1964.
 94. Epitacio‐Pereira CC , Silva GM , Salvatori R , Santana JA , Pereira FA , Gois‐Junior MB , Britto AV , Oliveira CR , Souza AH , Santos EG , Campos VC , Pereira RM , Valenca EH , Barbosa RA , Farias MI , de Paula FJ , Ribeiro TV , Oliveira MC , Aguiar‐Oliveira MH . Isolated GH deficiency due to a GHRH receptor mutation causes hip joint problems and genu valgum, and reduces size but not density of trabecular and mixed bone. J Clin Endocrinol Metab 98: E1710‐E1715, 2013.
 95. Evans MC , Anderson GM . Neuroendocrine integration of nutritional signals on reproduction. J Mol Endocrinol 58: R107‐R128, 2017.
 96. Faje AT , Fazeli PK , Katzman D , Miller KK , Breggia A , Rosen CJ , Mendes N , Misra M , Klibanski A . Inhibition of Pref‐1 (preadipocyte factor 1) by oestradiol in adolescent girls with anorexia nervosa is associated with improvement in lumbar bone mineral density. Clin Endocrinol 79: 326‐332, 2013.
 97. Falank C , Fairfield H , Reagan MR . Signaling interplay between bone marrow adipose tissue and multiple myeloma cells. Front Endocrinol 7: 67, 2016.
 98. Faucher P , Poitou C , Carette C , Tezenas du Montcel S , Barsamian C , Touati E , Bouillot JL , Torcivia A , Czernichow S , Oppert JM , Ciangura C . Bariatric surgery in obese patients with type 1 diabetes: Effects on weight loss and metabolic control. Obes Surg 26: 2370‐2378, 2016.
 99. Fazeli PK , Bredella MA , Freedman L , Thomas BJ , Breggia A , Meenaghan E , Rosen CJ , Klibanski A . Marrow fat and preadipocyte factor‐1 levels decrease with recovery in women with anorexia nervosa. J Bone Miner Res 27: 1864‐1871, 2012.
 100. Fazeli PK , Bredella MA , Misra M , Meenaghan E , Rosen CJ , Clemmons DR , Breggia A , Miller KK , Klibanski A . Preadipocyte factor‐1 is associated with marrow adiposity and bone mineral density in women with anorexia nervosa. J Clin Endocrinol Metab 95: 407‐413, 2010.
 101. Fazeli PK , Lawson EA , Prabhakaran R , Miller KK , Donoho DA , Clemmons DR , Herzog DB , Misra M , Klibanski A . Effects of recombinant human growth hormone in anorexia nervosa: A randomized, placebo‐controlled study. J Clin Endocrinol Metab 95: 4889‐4897, 2010.
 102. Ferron M , Hinoi E , Karsenty G , Ducy P . Osteocalcin differentially regulates beta cell and adipocyte gene expression and affects the development of metabolic diseases in wild‐type mice. Proc Nat Acad Sci U S A 105: 5266‐5270, 2008.
 103. Ferron M , McKee MD , Levine RL , Ducy P , Karsenty G . Intermittent injections of osteocalcin improve glucose metabolism and prevent type 2 diabetes in mice. Bone 50: 568‐575, 2012.
 104. Ferron M , Wei J , Yoshizawa T , Del Fattore A , DePinho RA , Teti A , Ducy P , Karsenty G . Insulin signaling in osteoblasts integrates bone remodeling and energy metabolism. Cell 142: 296‐308, 2010.
 105. Fitzgerald R , Rubin AG . Filler placement and the fat compartments. Dermatol Clin 32: 37‐50, 2014.
 106. Foley S , Quinn S , Jones G . Tracking of bone mass from childhood to adolescence and factors that predict deviation from tracking. Bone 44: 752‐757, 2009.
 107. Frenkel B , White W , Tuckermann J . Glucocorticoid‐induced osteoporosis. Adv Exp Med Biol 872: 179‐215, 2015.
 108. Fulzele K , Riddle RC , DiGirolamo DJ , Cao X , Wan C , Chen D , Faugere MC , Aja S , Hussain MA , Bruning JC , Clemens TL . Insulin receptor signaling in osteoblasts regulates postnatal bone acquisition and body composition. Cell 142: 309‐319, 2010.
 109. Galic S , Oakhill JS , Steinberg GR . Adipose tissue as an endocrine organ. Mol Cell Endocrinol 316: 129‐139, 2010.
 110. Galton DJ , Bray GA . Studies on lipolysis in human adipose cells. J Clin Invest 46: 621‐629, 1967.
 111. Gao Y , Zong K , Gao Z , Rubin MR , Chen J , Heymsfield SB , Gallagher D , Shen W . Magnetic resonance imaging‐measured bone marrow adipose tissue area is inversely related to cortical bone area in children and adolescents aged 5‐18 years. J Clin Densitom 18: 203‐208, 2015.
 112. Gat‐Yablonski G , Ben‐Ari T , Shtaif B , Potievsky O , Moran O , Eshet R , Maor G , Segev Y , Phillip M . Leptin reverses the inhibitory effect of caloric restriction on longitudinal growth. Endocrinology 145: 343‐350, 2004.
 113. Geiss LS , Wang J , Cheng YJ , Thompson TJ , Barker L , Li Y , Albright AL , Gregg EW . Prevalence and incidence trends for diagnosed diabetes among adults aged 20 to 79 years, the United States, 1980‐2012. JAMA 312: 1218‐1226, 2014.
 114. Georgiou KR , Hui SK , Xian CJ . Regulatory pathways associated with bone loss and bone marrow adiposity caused by aging, chemotherapy, glucocorticoid therapy and radiotherapy. Am J Stem Cells 1: 205‐224, 2012.
 115. Gevers EF , Loveridge N , Robinson IC . Bone marrow adipocytes: A neglected target tissue for growth hormone. Endocrinology 143: 4065‐4073, 2002.
 116. Giangregorio LM , Leslie WD , Manitoba Bone Density P. Time since prior fracture is a risk modifier for 10‐year osteoporotic fractures. J Bone Miner Res 25: 1400‐1405, 2010.
 117. Gilbert MP , Marre M , Holst JJ , Garber A , Baeres FM , Thomsen H , Pratley RE . Comparison of the long‐term effects of liraglutide and glimepiride monotherapy on bone mineral density in patients with type 2 diabetes. Endocr Pract 22: 406‐411, 2016.
 118. Gimble JM , Nuttall ME . Bone and fat: Old questions, new insights. Endocrine 23: 183‐188, 2004.
 119. Glintborg D , Andersen M . Management of endocrine disease: Morbidity in polycystic ovary syndrome. Eur J Endocrinol 176: R53‐R65, 2017.
 120. Goossens GH. The role of adipose tissue dysfunction in the pathogenesis of obesity‐related insulin resistance. Physiol & Behav 94: 206‐218, 2008.
 121. Goralski KB , McCarthy TC , Hanniman EA , Zabel BA , Butcher EC , Parlee SD , Muruganandan S , Sinal CJ . Chemerin, a novel adipokine that regulates adipogenesis and adipocyte metabolism. J Biol Chem 282: 28175‐28188, 2007.
 122. Gorwood P , Blanchet‐Collet C , Chartrel N , Duclos J , Dechelotte P , Hanachi M , Fetissov S , Godart N , Melchior JC , Ramoz N , Rovere‐Jovene C , Tolle V , Viltart O , Epelbaum J . New insights in anorexia nervosa. Frontier Neurosci 10: 256, 2016.
 123. Gotherstrom G , Bengtsson BA , Bosaeus I , Johannsson G , Svensson J . Ten‐year GH replacement increases bone mineral density in hypopituitary patients with adult onset GH deficiency. Eur J Endocrinol 156: 55‐64, 2007.
 124. Grey A , Beckley V , Doyle A , Fenwick S , Horne A , Gamble G , Bolland M . Pioglitazone increases bone marrow fat in type 2 diabetes: Results from a randomized controlled trial. Eur J Endocrinol 166: 1087‐1091, 2012.
 125. Grgurevic L , Christensen GL , Schulz TJ , Vukicevic S . Bone morphogenetic proteins in inflammation, glucose homeostasis and adipose tissue energy metabolism. Cytokine Growth Factor Rev 27: 105‐118, 2016.
 126. Griffith JF , Yeung DK , Ahuja AT , Choy CW , Mei WY , Lam SS , Lam TP , Chen ZY , Leung PC . A study of bone marrow and subcutaneous fatty acid composition in subjects of varying bone mineral density. Bone 44: 1092‐1096, 2009.
 127. Griffith JF , Yeung DK , Chow SK , Leung JC , Leung PC . Reproducibility of MR perfusion and (1)H spectroscopy of bone marrow. J Magn Reson Imaging 29: 1438‐1442, 2009.
 128. Guo S. Insulin signaling, resistance, and the metabolic syndrome: Insights from mouse models into disease mechanisms. J Endocrinol 220: T1‐T23, 2014.
 129. Halaas JL , Gajiwala KS , Maffei M , Cohen SL , Chait BT , Rabinowitz D , Lallone RL , Burley SK , Friedman JM . Weight‐reducing effects of the plasma protein encoded by the obese gene. Science 269: 543‐546, 1995.
 130. Hamrick MW , Pennington C , Newton D , Xie D , Isales C . Leptin deficiency produces contrasting phenotypes in bones of the limb and spine. Bone 34: 376‐383, 2004.
 131. Hansen LH , Madsen B , Teisner B , Nielsen JH , Billestrup N . Characterization of the inhibitory effect of growth hormone on primary preadipocyte differentiation. Mol Endocrinol 12: 1140‐1149, 1998.
 132. Hansotia T , Baggio LL , Delmeire D , Hinke SA , Yamada Y , Tsukiyama K , Seino Y , Holst JJ , Schuit F , Drucker DJ . Double incretin receptor knockout (DIRKO) mice reveal an essential role for the enteroinsular axis in transducing the glucoregulatory actions of DPP‐IV inhibitors. Diabetes 53: 1326‐1335, 2004.
 133. Hansotia T , Maida A , Flock G , Yamada Y , Tsukiyama K , Seino Y , Drucker DJ . Extrapancreatic incretin receptors modulate glucose homeostasis, body weight, and energy expenditure. J Clin Invest 117: 143‐152, 2007.
 134. Hardouin P , Rharass T , Lucas S . Bone marrow adipose tissue: To be or not to be a typical adipose tissue? Front Endocrinol 7: 85, 2016.
 135. Hartsock RJ , Smith EB , Petty CS . Normal variations with aging of the amount of hematopoietic tissue in bone marrow from the anterior iliac crest. A study made from 177 cases of sudden death examined by necropsy. Am J Clin Pathol 43: 326‐331, 1965.
 136. Heath H, 3rd , Melton LJ, 3rd , Chu CP . Diabetes mellitus and risk of skeletal fracture. N Engl J Med 303: 567‐570, 1980.
 137. Heideveld E , van den Akker E . Digesting the role of bone marrow mac‐rophages on hematopoiesis. Immunobiology 222(6): 814‐822, 2016.
 138. Heilmeier U , Cheng K , Pasco C , Parrish R , Nirody J , Patsch JM , Zhang CA , Joseph GB , Burghardt AJ , Schwartz AV , Link TM , Kazakia G . Cortical bone laminar analysis reveals increased midcortical and periosteal porosity in type 2 diabetic postmenopausal women with history of fragility fractures compared to fracture‐free diabetics. Osteoporos Int 27: 2791‐2802, 2016.
 139. Herpertz‐Dahlmann B , Seitz J , Baines J . Food matters: How the microbiome and gut‐brain interaction might impact the development and course of anorexia nervosa. Eur Child Adolesc Psychiatry 26: 1031‐1041, 2017.
 140. Hopkins RB , Burke N , Von Keyserlingk C, Leslie WD , Morin SN , Adachi JD , Papaioannou A , Bessette L , Brown JP , Pericleous L , Tarride J . The current economic burden of illness of osteoporosis in Canada. Osteoporos Int 27: 3023‐3032, 2016.
 141. Hough FS , Pierroz DD , Cooper C , Ferrari SL , Bone IC , Diabetes Working G. Mechanisms in endocrinology: Mechanisms and evaluation of bone fragility in type 1 diabetes mellitus. Eur J Endocrinol 174: R127‐R138, 2016.
 142. Hudson JI , Hiripi E , Pope HG, Jr. , Kessler RC . The prevalence and correlates of eating disorders in the National Comorbidity Survey Replication. Biol Psychiatry 61: 348‐358, 2007.
 143. Hui SK , Arentsen L , Sueblinvong T , Brown K , Bolan P , Ghebre RG , Downs L , Shanley R , Hansen KE , Minenko AG , Takhashi Y , Yagi M , Zhang Y , Geller M , Reynolds M , Lee CK , Blaes AH , Allen S , Zobel BB , Le C, Froelich J , Rosen C , Yee D . A phase I feasibility study of multi‐modality imaging assessing rapid expansion of marrow fat and de‐creased bone mineral density in cancer patients. Bone 73: 90‐97, 2015.
 144. Idelevich A , Sato K , Baron R . What are the effects of leptin on bone and where are they exerted? J Bone Miner Res 28: 18‐21, 2013.
 145. Iepsen EW , Lundgren JR , Hartmann B , Pedersen O , Hansen T , Jorgensen NR , Jensen JE , Holst JJ , Madsbad S , Torekov SS . GLP‐1 receptor agonist treatment increases bone formation and prevents bone loss in weight‐reduced obese women. J Clin Endocrinol Metab 100: 2909‐2917, 2015.
 146. Iida M , Murakami T , Ishida K , Mizuno A , Kuwajima M , Shima K . Phenotype‐linked amino acid alteration in leptin receptor cDNA from Zucker fatty (fa/fa) rat. Biochem Biophys Res Commun 222: 19‐26, 1996.
 147. Irwin R , Lin HV , Motyl KJ , McCabe LR . Normal bone density obtained in the absence of insulin receptor expression in bone. Endocrinology 147: 5760‐5767, 2006.
 148. Iwaniec UT , Turner RT . Influence of body weight on bone mass, architecture and turnover. J Endocrinol 230: R115‐R130, 2016.
 149. Janghorbani M , Van Dam RM , Willett WC , Hu FB . Systematic review of type 1 and type 2 diabetes mellitus and risk of fracture. Am J Epidemiol 166: 495‐505, 2007.
 150. Jia G , Jia Y , Sowers JR . Contribution of maladaptive adipose tissue expansion to development of cardiovascular disease. Compr Physiol 7: 253‐262, 2016.
 151. Jonsson E , Eriksson D , Akesson K , Ljunggren O , Salomonsson S , Borgstrom F , Strom O . Swedish osteoporosis care. Arch Osteoporos 10: 222, 2015.
 152. Josse RG , Majumdar SR , Zheng Y , Adler A , Bethel MA , Buse JB , Green JB , Kaufman KD , Rodbard HW , Tankova T , Westerhout CM , Peterson ED , Holman RR , Armstrong PW , Group TS . Sitagliptin and risk of fractures in type 2 diabetes: Results from the TECOS trial. Diabetes Obes Metab 19: 78‐86, 2017.
 153. Jurimae J , Jurimae T . Plasma adiponectin concentration in healthy pre‐ and postmenopausal women: Relationship with body composition, bone mineral, and metabolic variables. Am J Physiol Endocrinol Metab 293: E42‐E47, 2007.
 154. Jurimae J , Jurimae T , Leppik A , Kums T . The influence of ghrelin, adiponectin, and leptin on bone mineral density in healthy postmenopausal women. J Bone Miner Metab 26: 618‐623, 2008.
 155. Jurimae J , Rembel K , Jurimae T , Rehand M . Adiponectin is associated with bone mineral density in perimenopausal women. Horm Metab Res 37: 297‐302, 2005.
 156. Justesen J , Stenderup K , Ebbesen EN , Mosekilde L , Steiniche T , Kassem M . Adipocyte tissue volume in bone marrow is increased with aging and in patients with osteoporosis. Biogerontology 2: 165‐171, 2001.
 157. Kahn SE , Zinman B , Lachin JM , Haffner SM , Herman WH , Holman RR , Kravitz BG , Yu D , Heise MA , Aftring RP , Viberti G , Diabetes Outcome Progression Trial Study G. Rosiglitazone‐associated fractures in type 2 diabetes: An analysis from A Diabetes Outcome Progression Trial (ADOPT). Diabetes Care 31: 845‐851, 2008.
 158. Kanazawa I , Yamaguchi T , Yano S , Yamauchi M , Sugimoto T . Metformin enhances the differentiation and mineralization of osteoblastic MC3T3‐E1 cells via AMP kinase activation as well as eNOS and BMP‐2 expression. Biochem Biophys Res Commun 375: 414‐419, 2008.
 159. Kaneta M , Osawa M , Sudo K , Nakauchi H , Farr AG , Takahama Y . A role for pref‐1 and HES‐1 in thymocyte development. J Immunol 164: 256‐264, 2000.
 160. Kanis JA , Oden A , Johnell O , Johansson H , De Laet C , Brown J , Burckhardt P , Cooper C , Christiansen C , Cummings S , Eisman JA , Fujiwara S , Gluer C , Goltzman D , Hans D , Krieg MA , La Croix A , McCloskey E , Mellstrom D , Melton LJ, 3rd , Pols H , Reeve J , Sanders K , Schott AM , Silman A , Torgerson D , van Staa T , Watts NB , Yoshimura N . The use of clinical risk factors enhances the performance of BMD in the prediction of hip and osteoporotic fractures in men and women. Osteoporos Int 18: 1033‐1046, 2007.
 161. Karsenty G. The central regulation of bone remodeling. Trends Endocrinol Metab 11: 437‐439, 2000.
 162. Karsenty G , Oury F . The central regulation of bone mass, the first link between bone remodeling and energy metabolism. J Clin Endocrinol Metab 95: 4795‐4801, 2010.
 163. Kask J , Ekselius L , Brandt L , Kollia N , Ekbom A , Papadopoulos FC . Mortality in women with anorexia nervosa: The role of comorbid psychiatric disorders. Psychosom Med 78: 910‐919, 2016.
 164. Kask J , Ramklint M , Kolia N , Panagiotakos D , Ekbom A , Ekselius L , Papadopoulos FC . Anorexia nervosa in males: Excess mortality and psychiatric co‐morbidity in 609 Swedish in‐patients. Psychol Med 47(8): 1489‐1499, 2017.
 165. Kawai M , de Paula FJ , Rosen CJ . New insights into osteoporosis: The bone‐fat connection. J Intern Med 272: 317‐329, 2012.
 166. Kemink SA , Hermus AR , Swinkels LM , Lutterman JA , Smals AG . Osteopenia in insulin‐dependent diabetes mellitus; prevalence and aspects of pathophysiology. J Endocrinol Invest 23: 295‐303, 2000.
 167. Kim JY , Lee SK , Jo KJ , Song DY , Lim DM , Park KY , Bonewald LF , Kim BJ . Exendin‐4 increases bone mineral density in type 2 diabetic OLETF rats potentially through the down‐regulation of SOST/sclerostin in osteocytes. Life Sci 92: 533‐540, 2013.
 168. Kim MS , Quintos JB . Mauriac syndrome: Growth failure and type 1 diabetes mellitus. Pediatr Endocrinoly Rev 5(Suppl 4): 989‐993, 2008.
 169. Kobayashi S , Wagatsuma H , Ono R , Ichikawa H , Yamazaki M , Tashiro H , Aisaka K , Miyoshi N , Kohda T , Ogura A , Ohki M , Kaneko‐Ishino T , Ishino F . Mouse Peg9/Dlk1 and human PEG9/DLK1 are paternally expressed imprinted genes closely located to the maternally expressed imprinted genes: Mouse Meg3/Gtl2 and human MEG3. Genes Cells 5: 1029‐1037, 2000.
 170. Kovacova Z , Vitkova M , Kovacikova M , Klimcakova E , Bajzova M , Hnevkovska Z , Rossmeislova L , Stich V , Langin D , Polak J . Secretion of adiponectin multimeric complexes from adipose tissue explants is not modified by very low calorie diet. Eur J Endocrinol 160: 585‐592, 2009.
 171. Krakauer JC , McKenna MJ , Buderer NF , Rao DS , Whitehouse FW , Parfitt AM . Bone loss and bone turnover in diabetes. Diabetes 44: 775‐782, 1995.
 172. Krings A , Rahman S , Huang S , Lu Y , Czernik PJ , Lecka‐Czernik B . Bone marrow fat has brown adipose tissue characteristics, which are attenuated with aging and diabetes. Bone 50: 546‐552, 2012.
 173. Kugel H , Jung C , Schulte O , Heindel W . Age‐ and sex‐specific differences in the 1H‐spectrum of vertebral bone marrow. J Magn Reson Imaging 13: 263‐268, 2001.
 174. Lacombe J , Karsenty G , Ferron M . In vivo analysis of the contribution of bone resorption to the control of glucose metabolism in mice. Mol Metab 2: 498‐504, 2013.
 175. Lanna CM , Paula FJ , Montenegro RM, Jr. , Moreira AC , Foss MC . Parathyroid hormone secretion in chronic human endogenous hypercortisolism. Braz J Med Biol Res 35: 229‐236, 2002.
 176. Lazarenko OP , Rzonca SO , Hogue WR , Swain FL , Suva LJ , Lecka‐Czernik B . Rosiglitazone induces decreases in bone mass and strength that are reminiscent of aged bone. Endocrinology 148: 2669‐2680, 2007.
 177. Lecka‐Czernik B. Marrow fat metabolism is linked to the systemic energy metabolism. Bone 50: 534‐539, 2012.
 178. Lee K , Villena JA , Moon YS , Kim KH , Lee S , Kang C , Sul HS . Inhibition of adipogenesis and development of glucose intolerance by soluble preadipocyte factor‐1 (Pref‐1). J Clin Invest 111: 453‐461, 2003.
 179. Lee NK , Sowa H , Hinoi E , Ferron M , Ahn JD , Confavreux C , Dacquin R , Mee PJ , McKee MD , Jung DY , Zhang Z , Kim JK , Mauvais‐Jarvis F , Ducy P , Karsenty G . Endocrine regulation of energy metabolism by the skeleton. Cell 130: 456‐469, 2007.
 180. Lehr S , Hartwig S , Lamers D , Famulla S , Muller S , Hanisch FG , Cuvelier C , Ruige J , Eckardt K , Ouwens DM , Sell H , Eckel J . Identification and validation of novel adipokines released from primary human adipocytes. Mol Cell Proteomics 11: M111 010504, 2012.
 181. Lemma S , Sboarina M , Porporato PE , Zini N , Sonveaux P , Di Pompo G , Baldini N , Avnet S . Energy metabolism in osteoclast formation and activity. Int J Biochem Cell Biol 79: 168‐180, 2016.
 182. Leslie RD , Lo S , Millward BA , Honour J , Pyke DA . Decreased growth velocity before IDDM onset. Diabetes 40: 211‐216, 1991.
 183. Li J , Zhang H , Yang C , Li Y , Dai Z . An overview of osteocalcin progress. J Bone Miner Metab 34: 367‐379, 2016.
 184. Li M , Pan LC , Simmons HA , Li Y , Healy DR , Robinson BS , Ke HZ , Brown TA . Surface‐specific effects of a PPARgamma agonist, darglitazone, on bone in mice. Bone 39: 796‐806, 2006.
 185. Li X , Kuo D , Schafer AL , Porzig A , Link TM , Black D , Schwartz AV . Quantification of vertebral bone marrow fat content using 3 Tesla MR spectroscopy: Reproducibility, vertebral variation, and applications in osteoporosis. J Magn Reson Imaging 33: 974‐979, 2011.
 186. Li Z , Frey JL , Wong GW , Faugere MC , Wolfgang MJ , Kim JK , Riddle RC , Clemens TL . Glucose transporter‐4 facilitates insulin‐stimulated glucose uptake in osteoblasts. Endocrinology 157: 4094‐4103, 2016.
 187. Lima JG , Nobrega LH , Lima NN , Dos Santos MC , Baracho MF , Bandeira F , Capistrano L , Freire Neto FP , Jeronimo SM . Bone density in patients with Berardinelli‐Seip congenital lipodystrophy is higher in trabecular sites and in type 2 patients. J Clin Densitom, doi: 10.1016/j.jocd.2016.10.002. [Epub ahead of print] 2016.
 188. Lindenmaier LB , Philbrick KA , Branscum AJ , Kalra SP , Turner RT , Iwaniec UT . Hypothalamic leptin gene therapy reduces bone marrow adiposity in ob/ob mice fed regular and high‐fat diets. Front Endocrinol 7: 110, 2016.
 189. Lipscombe LL , Jamal SA , Booth GL , Hawker GA . The risk of hip fractures in older individuals with diabetes: A population‐based study. Diabetes Care 30: 835‐841, 2007.
 190. Liu LF , Shen WJ , Ueno M , Patel S , Kraemer FB . Characterization of age‐related gene expression profiling in bone marrow and epididymal adipocytes. BMC Genomics 12: 212, 2011.
 191. Liu X , Chen T , Wu Y , Tang Z . Role and mechanism of PTEN in adiponectin‐induced osteogenesis in human bone marrow mesenchymal stem cells. Biochem Biophys Res Commun 483: 712‐717, 2017.
 192. Lu N , Sun H , Yu J , Wang X , Liu D , Zhao L , Sun L , Zhao H , Tao B , Liu J . Glucagon‐like peptide‐1 receptor agonist liraglutide has anabolic bone effects in ovariectomized rats without diabetes. PloS One 10: e0132744, 2015.
 193. Luo G , Liu H , Lu H . Glucagon‐like peptide‐1(GLP‐1) receptor agonists: Potential to reduce fracture risk in diabetic patients? Br J Clin Pharmacol 81: 78‐88, 2016.
 194. Mabilleau G , Mieczkowska A , Irwin N , Flatt PR , Chappard D . Optimal bone mechanical and material properties require a functional glucagon‐like peptide‐1 receptor. J Endocrinol 219: 59‐68, 2013.
 195. Mabilleau G , Perrot R , Mieczkowska A , Boni S , Flatt PR , Irwin N , Chappard D . Glucose‐dependent insulinotropic polypeptide (GIP) dose‐dependently reduces osteoclast differentiation and resorption. Bone 91: 102‐112, 2016.
 196. MacDonald MJ , Hasan NM , Ansari IU , Longacre MJ , Kendrick MA , Stoker SW . Discovery of a genetic metabolic cause for Mauriac syndrome in type 1 diabetes. Diabetes 65: 2051‐2059, 2016.
 197. Maciel JG , de Araujo IM , Carvalho AL , Simao MN , Bastos CM , Troncon LE , Salmon CE , de Paula FJ , Nogueira‐Barbosa MH . Marrow fat quality differences by sex in healthy adults. J Clin Densitom 20(1): 106‐113, 2017.
 198. Maimoun L , Guillaume S , Lefebvre P , Philibert P , Bertet H , Picot MC , Courtet P , Mariano‐Goulart D , Renard E , Sultan C . Is serum serotonin involved in the bone loss of young females with anorexia nervosa? Horm Metab Res 48: 174‐177, 2016.
 199. Maimoun L , Guillaume S , Lefebvre P , Philibert P , Bertet H , Picot MC , Gaspari L , Paris F , Seneque M , Dupuys AM , Courtet P , Thomas E , Mariano‐Goulart D , Bringer J , Renard E , Sultan C . Evidence of a link between resting energy expenditure and bone remodelling, glucose homeostasis and adipokine variations in adolescent girls with anorexia nervosa. Osteoporos Int 27: 135‐146, 2016.
 200. Makarovsky I , Markel G , Hoffman A , Schein O , Finkelstien A , Brosh‐Nissimov T , Tashma Z , Dushnitsky T , Eisenkraft A . Osmium tetroxide: A new kind of weapon. Isr Med Assoc J 9: 750‐752, 2007.
 201. Manyanga T , Sellers EA , Wicklow BA , Doupe M , Fransoo R . Not as skinny as we used to think: Body mass index in children and adolescents at diagnosis of type 1 diabetes mellitus. J Diabetes Complications 30: 292‐294, 2016.
 202. Mariani F , Roncucci L . Chemerin/chemR23 axis in inflammation onset and resolution. Inflamm Res 64: 85‐95, 2015.
 203. Martin A , David V , Malaval L , Lafage‐Proust MH , Vico L , Thomas T . Opposite effects of leptin on bone metabolism: A dose‐dependent balance related to energy intake and insulin‐like growth factor‐I pathway. Endocrinology 148: 3419‐3425, 2007.
 204. Martin J , Nicholson G , Cowin G , Ilente C , Wong W , Kennedy D . Rapid determination of vertebral fat fraction over a large range of vertebral bodies. J Med Imaging Radiat Oncol 58: 155‐163, 2014.
 205. Mauriac P. Hepatomegaly, dwarfism, obesity and diabetes in children: Mauriac's syndrome. Vida nueva 67: 57‐65, 1951.
 206. Mendonca ML , Batista SL , Nogueira‐Barbosa MH , Salmon CE , Paula FJ . Primary hyperparathyroidism: The influence of bone marrow adipose tissue on bone loss and of osteocalcin on insulin resistance. Clinics 71: 464‐469, 2016.
 207. Meng J , Ma X , Wang N , Jia M , Bi L , Wang Y , Li M , Zhang H , Xue X , Hou Z , Zhou Y , Yu Z , He G , Luo X . Activation of GLP‐1 receptor promotes bone marrow stromal cell osteogenic differentiation through beta‐catenin. Stem Cell Reports 6: 579‐591, 2016.
 208. Mera P , Laue K , Ferron M , Confavreux C , Wei J , Galan‐Diez M , Lacampagne A , Mitchell SJ , Mattison JA , Chen Y , Bacchetta J , Szulc P , Kitsis RN , de Cabo R , Friedman RA , Torsitano C , McGraw TE , Puchowicz M , Kurland I , Karsenty G . Osteocalcin signaling in myofibers is necessary and sufficient for optimum adaptation to exercise. Cell Metab 23: 1078‐1092, 2016.
 209. Meunier P , Aaron J , Edouard C , Vignon G . Osteoporosis and the replacement of cell populations of the marrow by adipose tissue. A quantitative study of 84 iliac bone biopsies. Clin Orthop Relat Res 80: 147‐154, 1971.
 210. Miedlich SU , Karamooz N , Hammes SR . Aromatase deficiency in a male patient–Case report and review of the literature. Bone 93: 181‐186, 2016.
 211. Miller‐Young JE , Duncan NA , Baroud G . Material properties of the human calcaneal fat pad in compression: Experiment and theory. J Biomech 35: 1523‐1531, 2002.
 212. Minges KE , Whittemore R , Grey M . Overweight and obesity in youth with type 1 diabetes. Annu Rev Nurs Res 31: 47‐69, 2013.
 213. Minges KE , Whittemore R , Weinzimer SA , Irwin ML , Redeker NS , Grey M . Correlates of overweight and obesity in 5529 adolescents with type 1 diabetes: The T1D Exchange Clinic Registry. Diabetes Res Clin Pract 126: 68‐78, 2017.
 214. Misra M , Miller KK , Almazan C , Ramaswamy K , Lapcharoensap W , Worley M , Neubauer G , Herzog DB , Klibanski A . Alterations in cortisol secretory dynamics in adolescent girls with anorexia nervosa and effects on bone metabolism. J Clin Endocrinol Metab 89: 4972‐4980, 2004.
 215. Misra M , Miller KK , Bjornson J , Hackman A , Aggarwal A , Chung J , Ott M , Herzog DB , Johnson ML , Klibanski A . Alterations in growth hormone secretory dynamics in adolescent girls with anorexia nervosa and effects on bone metabolism. J Clin Endocrinol Metab 88: 5615‐5623, 2003.
 216. Mitchell DG , Burk DL, Jr., Vinitski S , Rifkin MD . The biophysical basis of tissue contrast in extracranial MR imaging. AJR Am J Roentgenol 149: 831‐837, 1987.
 217. Mitchell DM. Growth in patients with type 1 diabetes. Curr Opin Endocrinol Diabetes Obes 24: 67‐72, 2017.
 218. Miyawaki K , Yamada Y , Yano H , Niwa H , Ban N , Ihara Y , Kubota A , Fujimoto S , Kajikawa M , Kuroe A , Tsuda K , Hashimoto H , Yamashita T , Jomori T , Tashiro F , Miyazaki J , Seino Y . Glucose intolerance caused by a defect in the entero‐insular axis: A study in gastric inhibitory polypeptide receptor knockout mice. Proc Nat Acad Sci U S A 96: 14843‐14847, 1999.
 219. Moon YS , Smas CM , Lee K , Villena JA , Kim KH , Yun EJ , Sul HS . Mice lacking paternally expressed Pref‐1/Dlk1 display growth retardation and accelerated adiposity. Mol Cell Biol 22: 5585‐5592, 2002.
 220. Morin SN , Lix LM , Leslie WD . The importance of previous fracture site on osteoporosis diagnosis and incident fractures in women. J Bone Miner Res 29: 1675‐1680, 2014.
 221. Morris EV , Edwards CM . Bone marrow adipose tissue: A new player in cancer metastasis to bone. Front Endocrinol 7: 90, 2016.
 222. Morris EV , Edwards CM . The role of bone marrow adipocytes in bone metastasis. J Bone Oncol 5: 121‐123, 2016.
 223. Motyl K , McCabe LR . Streptozotocin, type I diabetes severity and bone. Biol Proced Online 11: 296‐315, 2009.
 224. Motyl KJ , McCabe LR . Leptin treatment prevents type I diabetic marrow adiposity but not bone loss in mice. J Cell Physiol 218: 376‐384, 2009.
 225. Motyl KJ , Raetz M , Tekalur SA , Schwartz RC , McCabe LR . CCAAT/enhancer binding protein beta‐deficiency enhances type 1 diabetic bone phenotype by increasing marrow adiposity and bone resorption. Am J Physiol Regul Integr Comp Physiol 300: R1250‐R1260, 2011.
 226. Mukherjee A , Murray RD , Shalet SM . Impact of growth hormone status on body composition and the skeleton. Horm Res 62 (Suppl 3): 35‐41, 2004.
 227. Munoz‐Torres M , Jodar E , Escobar‐Jimenez F , Lopez‐Ibarra PJ , Luna JD . Bone mineral density measured by dual X‐ray absorptiometry in Spanish patients with insulin‐dependent diabetes mellitus. Calcif Tissue Int 58: 316‐319, 1996.
 228. Muruganandan S , Parlee SD , Rourke JL , Ernst MC , Goralski KB , Sinal CJ . Chemerin, a novel peroxisome proliferator‐activated receptor gamma (PPARgamma) target gene that promotes mesenchymal stem cell adipogenesis. J Biol Chem 286: 23982‐23995, 2011.
 229. Muruganandan S , Roman AA , Sinal CJ . Role of chemerin/CMKLR1 signaling in adipogenesis and osteoblastogenesis of bone marrow stem cells. J Bone Miner Res 25: 222‐234, 2010.
 230. Nagasaki K , Kikuchi T , Hiura M , Uchiyama M . Obese Japanese children have low bone mineral density after puberty. J Bone Miner Metab 22: 376‐381, 2004.
 231. Nagata JM , Golden NH , Leonard MB , Copelovitch L , Denburg MR . Assessment of sex differences in fracture risk among patients with anorexia nervosa: A population‐based cohort study using the Health Improvement Network. J Bone Miner Res 32(5): 1082‐1089, 2017.
 232. Nagpal S , Patel S , Jacobe H , DiSepio D , Ghosn C , Malhotra M , Teng M , Duvic M , Chandraratna RA . Tazarotene‐induced gene 2 (TIG2), a novel retinoid‐responsive gene in skin. J Invest Dermatol 109: 91‐95, 1997.
 233. Nakakoshi M , Nishioka H , Katayama E . New versatile staining reagents for biological transmission electron microscopy that substitute for uranyl acetate. J Electron Microsc (Tokyo) 60: 401‐407, 2011.
 234. Naot D , Musson DS , Cornish J . The activity of adiponectin in bone. Calcif Tissue Int 100(5): 486‐499, 2017.
 235. Napoli N , Chandran M , Pierroz DD , Abrahamsen B , Schwartz AV , Ferrari SL , Bone IOF , Diabetes Working G. Mechanisms of diabetes mellitus‐induced bone fragility. Nat Rev Endocrinol 13(4): 208‐219, 2016.
 236. Napoli N , Strotmeyer ES , Ensrud KE , Sellmeyer DE , Bauer DC , Hoffman AR , Dam TT , Barrett‐Connor E , Palermo L , Orwoll ES , Cummings SR , Black DM , Schwartz AV . Fracture risk in diabetic elderly men: The MrOS study. Diabetologia 57: 2057‐2065, 2014.
 237. Newton AL , L JH , Davis M , Casazza K . The relationships among total body fat, bone mineral content and bone marrow adipose tissue in early‐pubertal girls. Bonekey Rep 2: 315, 2013.
 238. Ng KW . Regulation of glucose metabolism and the skeleton. Clin Endocrinol 75: 147‐155, 2011.
 239. Noctor E , Crowe C , Carmody LA , Avalos GM , Kirwan B , Infanti JJ , O'Dea A , Gillespie P , Newell J , McGuire B , O'Neill C , O'Shea PM , Dunne FP , investigators AD. ATLANTIC DIP: Simplifying the follow‐up of women with previous gestational diabetes. Eur J Endocrinol 169: 681‐687, 2013.
 240. Ohlsson C , Bengtsson BA , Isaksson OG , Andreassen TT , Slootweg MC . Growth hormone and bone. Endocr Rev 19: 55‐79, 1998.
 241. Ohno N , Izawa A , Hattori M , Kageyama R , Sudo T . dlk inhibits stem cell factor‐induced colony formation of murine hematopoietic progenitors: Hes‐1‐independent effect. Stem Cells 19: 71‐79, 2001.
 242. Omodei D , Pucino V , Labruna G , Procaccini C , Galgani M , Perna F , Pirozzi D , De Caprio C, Marone G , Fontana L , Contaldo F , Pasanisi F , Matarese G , Sacchetti L . Immune‐metabolic profiling of anorexic patients reveals an anti‐oxidant and anti‐inflammatory phenotype. Metabolism 64: 396‐405, 2015.
 243. Oswiecimska J , Suwala A , Swietochowska E , Ostrowska Z , Gorczyca P , Ziora‐Jakutowicz K , Machura E , Szczepanska M , Kukla M , Stojewska M , Ziora D , Ziora K . Serum omentin levels in adolescent girls with anorexia nervosa and obesity. Physiol Res 64: 701‐709, 2015.
 244. Paccou J , Hardouin P , Cotten A , Penel G , Cortet B . The role of bone marrow fat in skeletal health: Usefulness and perspectives for clinicians. J Clin Endocrinol Metab 100: 3613‐3621, 2015.
 245. Packard AE , Egan AE , Ulrich‐Lai YM . HPA axis interactions with behavioral systems. Compr Physiol 6: 1897‐1934, 2016.
 246. Palermo A , D'Onofrio L , Buzzetti R , Manfrini S , Napoli N . Pathophysiology of bone fragility in patients with diabetes. Calcif Tissue Int 100: 122‐132, 2017.
 247. Pando R , Shtaif B , Phillip M , Gat‐Yablonski G . A serum component mediates food restriction‐induced growth attenuation. Endocrinology 155: 932‐940, 2014.
 248. Patsch JM , Li X , Baum T , Yap SP , Karampinos DC , Schwartz AV , Link TM . Bone marrow fat composition as a novel imaging biomarker in postmenopausal women with prevalent fragility fractures. J Bone Miner Res 28: 1721‐1728, 2013.
 249. Paula FJ , Rosen CJ . Obesity, diabetes mellitus and last but not least, osteoporosis. Arq Bras Endocrinol Metabol 54: 150‐157, 2010.
 250. Pereira FA , Facincani I , Jorgetti V , Ramalho LN , Volpon JB , Dos Reis LM , de Paula FJ . Etiopathogenesis of hepatic osteodystrophy in Wistar rats with cholestatic liver disease. Calcif Tissue Int 85: 75‐83, 2009.
 251. Pino AM , Miranda M , Figueroa C , Rodriguez JP , Rosen CJ . Qualitative aspects of bone marrow adiposity in osteoporosis. Front Endocrinol 7: 139, 2016.
 252. Piper ML , Unger EK , Myers MG, Jr. , Xu AW . Specific physiological roles for signal transducer and activator of transcription 3 in leptin receptor‐expressing neurons. Mol Endocrinol 22: 751‐759, 2008.
 253. Poloni A , Maurizi G , Anastasi S , Mondini E , Mattiucci D , Discepoli G , Tiberi F , Mancini S , Partelli S , Maurizi A , Cinti S , Olivieri A , Leoni P . Plasticity of human dedifferentiated adipocytes toward endothelial cells. Exp Hematol 43: 137‐146, 2015.
 254. Polyzos SA , Kountouras J , Mantzoros CS . Adipokines in nonalcoholic fatty liver disease. Metabolism 65: 1062‐1079, 2016.
 255. Polyzos SA , Kountouras J , Zavos C . The multi‐hit process and the antagonistic roles of tumor necrosis factor‐alpha and adiponectin in non alcoholic fatty liver disease. Hippokratia 13: 127; author reply 128, 2009.
 256. Prioletta A , Muscogiuri G , Sorice GP , Lassandro AP , Mezza T , Policola C , Salomone E , Cipolla C , Della Casa S , Pontecorvi A , Giaccari A . In anorexia nervosa, even a small increase in abdominal fat is responsible for the appearance of insulin resistance. Clin Endocrinol 75: 202‐206, 2011.
 257. Pritchard JJ. A cytological and histochemical study of bone and cartilage formation in the rat. J Anat 86: 259‐277, 1952.
 258. Pu Y , Wu H , Lu S , Hu H , Li D , Wu Y , Tang Z . Adiponectin promotes human jaw bone marrow stem cell osteogenesis. J Dent Res 95: 769‐775, 2016.
 259. Qiao L , Lee B , Kinney B , Yoo HS , Shao J . Energy intake and adiponectin gene expression. Am J Physiol Endocrinol Metab 300: E809‐E816, 2011.
 260. Quennell JH , Howell CS , Roa J , Augustine RA , Grattan DR , Anderson GM . Leptin deficiency and diet‐induced obesity reduce hypothalamic kisspeptin expression in mice. Endocrinology 152: 1541‐1550, 2011.
 261. Ramos‐Junior ES , Leite GA , Carmo‐Silva CC , Taira TM , Neves KB , Colon DF , da Silva LA , Salvador SL , Tostes RC , Cunha FQ , Fukada SY . Adipokine chemerin bridges metabolic dyslipidemia and alveolar bone loss in mice. J Bone Miner Res 32(5): 974‐984, 2017.
 262. Rask‐Madsen C , Kahn CR . Tissue‐specific insulin signaling, metabolic syndrome, and cardiovascular disease. Arterioscler Thromb Vasc Biol 32: 2052‐2059, 2012.
 263. Reaven GM. Banting lecture 1988. Role of insulin resistance in human disease. Diabetes 37: 1595‐1607, 1988.
 264. Reaven GM . The fourth musketeer‐‐‐From Alexandre Dumas to Claude Bernard. Diabetologia 38: 3‐13, 1995.
 265. Reaven GM , Chen YD . Role of abnormal free fatty acid metabolism in the development of non‐insulin‐dependent diabetes mellitus. Am J Med 85: 106‐112, 1988.
 266. Reid IR. Fat and bone. Arch Biochem Biophys 503: 20‐27, 2010.
 267. Rendina‐Ruedy E , Rosen CJ . Bone‐fat interaction. Endocrinol Metab Clin North Am 46: 41‐50, 2017.
 268. Robinson L , Aldridge V , Clark EM , Misra M , Micali N . A systematic review and meta‐analysis of the association between eating disorders and bone density. Osteoporos Int 27: 1953‐1966, 2016.
 269. Robinson L , Micali N , Misra M . Eating disorders and bone metabolism in women. Curr Opin Pediatr 29(4): 488‐496, 2017.
 270. Romacho T , Elsen M , Rohrborn D , Eckel J . Adipose tissue and its role in organ crosstalk. Acta Physiol (Oxf) 210: 733‐753, 2014.
 271. Rosen CJ , Bouxsein ML . Mechanisms of disease: Is osteoporosis the obesity of bone? Nat Clin Pract Rheumatol 2: 35‐43, 2006.
 272. Rubin MR , Patsch JM . Assessment of bone turnover and bone quality in type 2 diabetic bone disease: Current concepts and future directions. Bone Res 4: 16001, 2016.
 273. Russell M , Mendes N , Miller KK , Rosen CJ , Lee H , Klibanski A , Misra M . Visceral fat is a negative predictor of bone density measures in obese adolescent girls. J Clin Endocrinol Metab 95: 1247‐1255, 2010.
 274. Ryan PJ , Blake GM , Herd R , Parker J , Fogelman I . Distribution of bone mineral density in the lumbar spine in health and osteoporosis. Osteoporos Int 4: 67‐71, 1994.
 275. Rzonca SO , Suva LJ , Gaddy D , Montague DC , Lecka‐Czernik B . Bone is a target for the antidiabetic compound rosiglitazone. Endocrinology 145: 401‐406, 2004.
 276. Sadick NS , Dorizas AS , Krueger N , Nassar AH . The facial adipose system: Its role in facial aging and approaches to volume restoration. Dermatol Surg 41 (Suppl 1): S333‐339, 2015.
 277. Sahu A. Leptin signaling in the hypothalamus: Emphasis on energy homeostasis and leptin resistance. Front Neuroendocrinol 24: 225‐253, 2003.
 278. Sambuceti G , Brignone M , Marini C , Massollo M , Fiz F , Morbelli S , Buschiazzo A , Campi C , Piva R , Massone AM , Piana M , Frassoni F . Estimating the whole bone‐marrow asset in humans by a computational approach to integrated PET/CT imaging. Eur J Nucl Med Mol Imaging 39: 1326‐1338, 2012.
 279. Samuel VT , Shulman GI . The pathogenesis of insulin resistance: Integrating signaling pathways and substrate flux. J Clin Invest 126: 12‐22, 2016.
 280. Scheller EL , Burr AA , MacDougald OA , Cawthorn WP . Inside out: Bone marrow adipose tissue as a source of circulating adiponectin. Adipocyte 5: 251‐269, 2016.
 281. Scheller EL , Cawthorn WP , Burr AA , Horowitz MC , MacDougald OA . Marrow adipose tissue: Trimming the fat. Trends Endocrinol Metab 27: 392‐403, 2016.
 282. Scheller EL , Doucette CR , Learman BS , Cawthorn WP , Khandaker S , Schell B , Wu B , Ding SY , Bredella MA , Fazeli PK , Khoury B , Jepsen KJ , Pilch PF , Klibanski A , Rosen CJ , MacDougald OA . Region‐specific variation in the properties of skeletal adipocytes reveals regulated and constitutive marrow adipose tissues. Nat Commun 6: 7808, 2015.
 283. Scheller EL , Rosen CJ . What's the matter with MAT? Marrow adipose tissue, metabolism, and skeletal health. Ann N Y Acad Sci 1311: 14‐30, 2014.
 284. Scheller EL , Troiano N , Vanhoutan JN , Bouxsein MA , Fretz JA , Xi Y , Nelson T , Katz G , Berry R , Church CD , Doucette CR , Rodeheffer MS , Macdougald OA , Rosen CJ , Horowitz MC . Use of osmium tetroxide staining with microcomputerized tomography to visualize and quantify bone marrow adipose tissue in vivo. Methods Enzymol 537: 123‐139, 2014.
 285. Schellinger D , Lin CS , Hatipoglu HG , Fertikh D . Potential value of vertebral proton MR spectroscopy in determining bone weakness. Ajnr 22: 1620‐1627, 2001.
 286. Schorr M , Miller KK . The endocrine manifestations of anorexia nervosa: Mechanisms and management. Nat Rev Endocrinol 13: 174‐186, 2017.
 287. Schorr M , Thomas JJ , Eddy KT , Dichtel LE , Lawson EA , Meenaghan E , Lederfine Paskal M , Fazeli PK , Faje AT , Misra M , Klibanski A , Miller KK . Bone density, body composition, and psychopathology of anorexia nervosa spectrum disorders in DSM‐IV vs DSM‐5. Int J Eat Disord 50(4): 343‐351, 2017.
 288. Schraml C , Schmid M , Gatidis S , Schmidt H , la Fougere C , Nikolaou K , Schwenzer NF . Multiparametric analysis of bone marrow in cancer patients using simultaneous PET/MR imaging: Correlation of fat fraction, diffusivity, metabolic activity, and anthropometric data. J Magn Reson Imaging 42: 1048‐1056, 2015.
 289. Schwartz AV. Marrow fat and bone: Review of clinical findings. Front Endocrinol 6: 40, 2015.
 290. Scrocchi LA , Brown TJ , MaClusky N , Brubaker PL , Auerbach AB , Joyner AL , Drucker DJ . Glucose intolerance but normal satiety in mice with a null mutation in the glucagon‐like peptide 1 receptor gene. Nat Med 2: 1254‐1258, 1996.
 291. Secor SM , Carey HV . Integrative physiology of fasting. Compr Physiol 6: 773‐825, 2016.
 292. Seeman E. Estrogen, androgen, and the pathogenesis of bone fragility in women and men. Curr Osteoporos Rep 2: 90‐96, 2004.
 293. Sellmeyer DE , Civitelli R , Hofbauer LC , Khosla S , Lecka‐Czernik B , Schwartz AV . Skeletal metabolism, fracture risk, and fracture outcomes in type 1 and type 2 diabetes. Diabetes 65: 1757‐1766, 2016.
 294. Semple RK . EJE PRIZE 2015: How does insulin resistance arise, and how does it cause disease? Human genetic lessons. Eur J Endocrinol 174: R209‐R223, 2016.
 295. Seo YG , Choi HC , Cho B . The relationship between metabolically obese non‐obese weight and stroke: The Korea National Health and Nutrition Examination Survey. PloS One 11: e0160846, 2016.
 296. Sharma AM , Staels B . Review: Peroxisome proliferator‐activated receptor gamma and adipose tissue‐‐‐Understanding obesity‐related changes in regulation of lipid and glucose metabolism. J Clin Endocrinol Metab 92: 386‐395, 2007.
 297. Shen W , Chen J , Punyanitya M , Shapses S , Heshka S , Heymsfield SB . MRI‐measured bone marrow adipose tissue is inversely related to DXA‐measured bone mineral in Caucasian women. Osteoporos Int 18: 641‐647, 2007.
 298. Shi Y , Yadav VK , Suda N , Liu XS , Guo XE , Myers MG, Jr. , Karsenty G . Dissociation of the neuronal regulation of bone mass and energy metabolism by leptin in vivo. Proc Nat Acad Sci U S A 105: 20529‐20533, 2008.
 299. Simha V , Garg A . Phenotypic heterogeneity in body fat distribution in patients with congenital generalized lipodystrophy caused by mutations in the AGPAT2 or seipin genes. J Clin Endocrinol Metab 88: 5433‐5437, 2003.
 300. Singhal V , Miller KK , Torriani M , Bredella MA . Short‐ and long‐term reproducibility of marrow adipose tissue quantification by 1H‐MR spectroscopy. Skeletal Radiol 45: 221‐225, 2016.
 301. Sjogren K , Liu JL , Blad K , Skrtic S , Vidal O , Wallenius V , LeRoith D , Tornell J , Isaksson OG , Jansson JO , Ohlsson C . Liver‐derived insulin‐like growth factor I (IGF‐I) is the principal source of IGF‐I in blood but is not required for postnatal body growth in mice. Proc Nat Acad Sci U S A 96: 7088‐7092, 1999.
 302. Slade JM , Coe LM , Meyer RA , McCabe LR . Human bone marrow adiposity is linked with serum lipid levels not T1‐diabetes. J Diabetes Complications 26: 1‐9, 2012.
 303. Smas CM , Sul HS . Pref‐1, a protein containing EGF‐like repeats, inhibits adipocyte differentiation. Cell 73: 725‐734, 1993.
 304. Snel YE , Brummer RJ , Doerga ME , Zelissen PM , Bakker CJ , Hendriks MJ , Koppeschaar HP . Adipose tissue assessed by magnetic resonance imaging in growth hormone‐deficient adults: The effect of growth hormone replacement and a comparison with control subjects. Am J Clin Nutr 61: 1290‐1294, 1995.
 305. Soley L , Falank C , Reagan MR . MicroRNA transfer between bone marrow adipose and multiple myeloma cells. Curr Osteoporos Rep 15: 162‐170, 2017.
 306. Souza AH , Farias MI , Salvatori R , Silva GM , Santana JA , Pereira FA , de Paula FJ , Valenca EH , Melo EV , Barbosa RA , Pereira RM , Gois‐Junior MB , Aguiar‐Oliveira MH . Lifetime, untreated isolated GH deficiency due to a GH‐releasing hormone receptor mutation has beneficial consequences on bone status in older individuals, and does not influence their abdominal aorta calcification. Endocrine 47: 191‐197, 2014.
 307. Starup‐Linde J , Gregersen S , Frost M , Vestergaard P . Use of glucose‐lowering drugs and risk of fracture in patients with type 2 diabetes. Bone 95: 136‐142, 2017.
 308. Steegmann AT, Jr . Human cold adaptation: An unfinished agenda. Am J Hum Biol 19: 218‐227, 2007.
 309. Steer K , Stavnichuk M , Morris M , Komarova SV . Bone health in patients with hematopoietic disorders of bone marrow origin: Systematic review and meta‐analysis. J Bone Miner Res 32(4): 731‐742, 2016.
 310. Steppan CM , Crawford DT , Chidsey‐Frink KL , Ke H , Swick AG . Leptin is a potent stimulator of bone growth in ob/ob mice. Regul Pept 92: 73‐78, 2000.
 311. Stoving RK , Veldhuis JD , Flyvbjerg A , Vinten J , Hangaard J , Koldkjaer OG , Kristiansen J , Hagen C . Jointly amplified basal and pulsatile growth hormone (GH) secretion and increased process irregularity in women with anorexia nervosa: Indirect evidence for disruption of feedback regulation within the GH‐insulin‐like growth factor I axis. J Clin Endocrinol Metab 84: 2056‐2063, 1999.
 312. Styner M , Pagnotti GM , Galior K , Wu X , Thompson WR , Uzer G , Sen B , Xie Z , Horowitz MC , Styner MA , Rubin C , Rubin J . Exercise regulation of marrow fat in the setting of PPARgamma agonist treatment in female C57BL/6 mice. Endocrinology 156: 2753‐2761, 2015.
 313. Styner M , Thompson WR , Galior K , Uzer G , Wu X , Kadari S , Case N , Xie Z , Sen B , Romaine A , Pagnotti GM , Rubin CT , Styner MA , Horowitz MC , Rubin J . Bone marrow fat accumulation accelerated by high fat diet is suppressed by exercise. Bone 64: 39‐46, 2014.
 314. Suchacki KJ , Cawthorn WP , Rosen CJ . Bone marrow adipose tissue: Formation, function and regulation. Curr Opin Pharmacol 28: 50‐56, 2016.
 315. Sulston RJ , Learman BS , Zhang B , Scheller EL , Parlee SD , Simon BR , Mori H , Bree AJ , Wallace RJ , Krishnan V , MacDougald OA , Cawthorn WP . Increased circulating adiponectin in response to thiazolidinediones: Investigating the role of bone marrow adipose tissue. Front Endocrinol 7: 128, 2016.
 316. Sun HX , Lu N , Liu DM , Zhao L , Sun LH , Zhao HY , Liu JM , Tao B . The bone‐preserving effects of exendin‐4 in ovariectomized rats. Endocrine 51: 323‐332, 2016.
 317. Sun K , Kusminski CM , Scherer PE . Adipose tissue remodeling and obesity. J Clin Invest 121: 2094‐2101, 2011.
 318. Svedbom A , Hernlund E , Ivergard M , Compston J , Cooper C , Stenmark J , McCloskey EV , Jonsson B , Kanis JA , IOF EURPo. Osteoporosis in the European Union: A compendium of country‐specific reports. Arch Osteoporos 8: 137, 2013.
 319. Swanson SA , Crow SJ , Le Grange D , Swendsen J , Merikangas KR . Prevalence and correlates of eating disorders in adolescents. Results from the national comorbidity survey replication adolescent supplement. Arch Gen Psychiatry 68: 714‐723, 2011.
 320. Syed FA , Oursler MJ , Hefferanm TE , Peterson JM , Riggs BL , Khosla S . Effects of estrogen therapy on bone marrow adipocytes in postmenopausal osteoporotic women. Osteoporos Int 19: 1323‐1330, 2008.
 321. Takeda S , Elefteriou F , Levasseur R , Liu X , Zhao L , Parker KL , Armstrong D , Ducy P , Karsenty G . Leptin regulates bone formation via the sympathetic nervous system. Cell 111: 305‐317, 2002.
 322. Tavakoli MB , Salamat MR , Tavakoli M . Comparative study of the density of L2, L3, and L4 vertebrae in menopausal women aged over 50 years with osteoporosis. J Educ Health Promot 4: 43, 2015.
 323. Tavassoli M. Marrow adipose cells. Histochemical identification of labile and stable components. Arch Pathol Lab Med 100: 16‐18, 1976.
 324. Tavassoli M. Ultrastructural development of bone marrow adipose cell. Acta Anat (Basel) 94: 65‐77, 1976.
 325. Taylor SI . Lilly Lecture: Molecular mechanisms of insulin resistance. Lessons from patients with mutations in the insulin‐receptor gene. Diabetes 41: 1473‐1490, 1992.
 326. Terzoudis S , Malliaraki N , Damilakis J , Dimitriadou DA , Zavos C , Koutroubakis IE . Chemerin, visfatin, and vaspin serum levels in relation to bone mineral density in patients with inflammatory bowel disease. Eur J Gastroenterol Hepatol 28: 814‐819, 2016.
 327. Thomas T , Gori F , Khosla S , Jensen MD , Burguera B , Riggs BL . Leptin acts on human marrow stromal cells to enhance differentiation to osteoblasts and to inhibit differentiation to adipocytes. Endocrinology 140: 1630‐1638, 1999.
 328. Thon M , Hosoi T , Ozawa K . Possible integrative actions of leptin and insulin signaling in the hypothalamus targeting energy homeostasis. Front Endocrinol 7: 138, 2016.
 329. Tilg H , Hotamisligil GS . Nonalcoholic fatty liver disease: Cytokine‐adipokine interplay and regulation of insulin resistance. Gastroenterology 131: 934‐945, 2006.
 330. Tran TT , Kahn CR . Transplantation of adipose tissue and stem cells: Role in metabolism and disease. Nat Rev 6: 195‐213, 2010.
 331. Tsatsoulis A , Mantzaris MD , Bellou S , Andrikoula M . Insulin resistance: An adaptive mechanism becomes maladaptive in the current environment‐‐‐An evolutionary perspective. Metabolism 62: 622‐633, 2013.
 332. Tsukiyama K , Yamada Y , Yamada C , Harada N , Kawasaki Y , Ogura M , Bessho K , Li M , Amizuka N , Sato M , Udagawa N , Takahashi N , Tanaka K , Oiso Y , Seino Y . Gastric inhibitory polypeptide as an endogenous factor promoting new bone formation after food ingestion. Mol Endocrinol 20: 1644‐1651, 2006.
 333. Tuominen JT , Impivaara O , Puukka P , Ronnemaa T . Bone mineral density in patients with type 1 and type 2 diabetes. Diabetes Care 22: 1196‐1200, 1999.
 334. Turner RT , Kalra SP , Wong CP , Philbrick KA , Lindenmaier LB , Boghossian S , Iwaniec UT . Peripheral leptin regulates bone formation. J Bone Miner Res 28: 22‐34, 2013.
 335. Vande Berg BC , Malghem J , Lecouvet FE , Maldague B . Magnetic resonance imaging of normal bone marrow. Eur Radiol 8: 1327‐1334, 1998.
 336. Vestergaard P. Discrepancies in bone mineral density and fracture risk in patients with type 1 and type 2 diabetes‐‐‐A meta‐analysis. Osteoporos Int 18: 427‐444, 2007.
 337. Wahren B , Gahrton G , Hammarstrom S . Nonspecific cross‐reacting antigen in normal and leukemic myeloid cells and serum of leukemic patients. Cancer Res 40: 2039‐2044, 1980.
 338. Walji TA , Turecamo SE , Sanchez AC , Anthony BA , Abou‐Ezzi G , Scheller EL , Link DC , Mecham RP , Craft CS . Marrow adipose tissue expansion coincides with insulin resistance in MAGP1‐deficient mice. Front Endocrinol 7: 87, 2016.
 339. Wan Y , Chong LW , Evans RM . PPAR‐gamma regulates osteoclastogenesis in mice. Nat Med 13: 1496‐1503, 2007.
 340. Wang F , Wang PX , Wu XL , Dang SY , Chen Y , Ni YY , Gao LH , Lu SY , Kuang Y , Huang L , Fei J , Wang ZG , Pang XF . Deficiency of adiponectin protects against ovariectomy‐induced osteoporosis in mice. PloS One 8: e68497, 2013.
 341. Wang Y , Sul HS . Pref‐1 regulates mesenchymal cell commitment and differentiation through Sox9. Cell Metab 9: 287‐302, 2009.
 342. Wei J , Ferron M , Clarke CJ , Hannun YA , Jiang H , Blaner WS , Karsenty G . Bone‐specific insulin resistance disrupts whole‐body glucose homeostasis via decreased osteocalcin activation. J Clin Invest 124: 1‐13, 2014.
 343. Wei J , Hanna T , Suda N , Karsenty G , Ducy P . Osteocalcin promotes beta‐cell proliferation during development and adulthood through Gprc6a. Diabetes 63: 1021‐1031, 2014.
 344. Wertheimer HE. Introduction—A perspective. Comprehensive Physiology. Maryland, USA: The Williams & Wilkins Company, Baltimore, 1965.
 345. Whitney DG , Singh H , Miller F , Barbe MF , Slade JM , Pohlig RT , Modlesky CM . Cortical bone deficit and fat infiltration of bone marrow and skeletal muscle in ambulatory children with mild spastic cerebral palsy. Bone 94: 90‐97, 2017.
 346. Wiedemann K , von Bardeleben U , Holsboer F . Influence of human corticotropin‐releasing hormone and adrenocorticotropin upon spontaneous growth hormone secretion. Neuroendocrinology 54: 462‐468, 1991.
 347. Wilhelm B , Kann PH . [Long‐term effects of 7‐year growth hormone substitution on bone metabolism, bone density, and bone quality in growth hormone‐deficient adults]. Med Klin (Munich) 99: 569‐577, 2004.
 348. Wittamer V , Franssen JD , Vulcano M , Mirjolet JF , Le Poul E, Migeotte I , Brezillon S , Tyldesley R , Blanpain C , Detheux M , Mantovani A , Sozzani S , Vassart G , Parmentier M , Communi D . Specific recruitment of antigen‐presenting cells by chemerin, a novel processed ligand from human inflammatory fluids. J Exp Med 198: 977‐985, 2003.
 349. Yakar S , Isaksson O . Regulation of skeletal growth and mineral acquisition by the GH/IGF‐1 axis: Lessons from mouse models. Growth Horm IGF Res 28: 26‐42, 2016.
 350. Yamada C , Yamada Y , Tsukiyama K , Yamada K , Udagawa N , Takahashi N , Tanaka K , Drucker DJ , Seino Y , Inagaki N . The murine glucagon‐like peptide‐1 receptor is essential for control of bone resorption. Endocrinology 149: 574‐579, 2008.
 351. Yang W , Thein S , Guo X , Xu F , Venkatesh B , Sugii S , Radda GK , Han W . Seipin differentially regulates lipogenesis and adipogenesis through a conserved core sequence and an evolutionarily acquired C‐terminus. Biochem J 452: 37‐44, 2013.
 352. Yankelevitz DF , Henschke CI , Davis SD . Percutaneous CT biopsy of chest lesions: An in vitro analysis of the effect of partial volume averaging on needle positioning. AJR Am J Roentgenol 161: 273‐278, 1993.
 353. Yeung DK , Griffith JF , Antonio GE , Lee FK , Woo J , Leung PC . Osteoporosis is associated with increased marrow fat content and decreased marrow fat unsaturation: A proton MR spectroscopy study. J Magn Reson Imaging 22: 279‐285, 2005.
 354. Yu EW , Greenblatt L , Eajazi A , Torriani M , Bredella MA . Marrow adipose tissue composition in adults with morbid obesity. Bone 97: 38‐42, 2016.
 355. Yue R , Zhou BO , Shimada IS , Zhao Z , Morrison SJ . Leptin receptor promotes adipogenesis and reduces osteogenesis by regulating mesenchymal stromal cells in adult bone marrow. Cell Stem Cell 18: 782‐796, 2016.
 356. Zabel BA , Allen SJ , Kulig P , Allen JA , Cichy J , Handel TM , Butcher EC . Chemerin activation by serine proteases of the coagulation, fibrinolytic, and inflammatory cascades. J Biol Chem 280: 34661‐34666, 2005.
 357. Zabel BA , Nakae S , Zuniga L , Kim JY , Ohyama T , Alt C , Pan J , Suto H , Soler D , Allen SJ , Handel TM , Song CH , Galli SJ , Butcher EC . Mast cell‐expressed orphan receptor CCRL2 binds chemerin and is required for optimal induction of IgE‐mediated passive cutaneous anaphylaxis. J Exp Med 205: 2207‐2220, 2008.
 358. Zhang J , Motyl KJ , Irwin R , MacDougald OA , Britton RA , McCabe LR . Loss of Bone and Wnt10b expression in male type 1 diabetic mice is blocked by the probiotic Lactobacillus reuteri. Endocrinology 156: 3169‐3182, 2015.
 359. Zhen D , Chen Y , Tang X . Metformin reverses the deleterious effects of high glucose on osteoblast function. J Diabetes Complications 24: 334‐344, 2010.
 360. Zoch ML , Clemens TL , Riddle RC . New insights into the biology of osteocalcin. Bone 82: 42‐49, 2016.
 361. Zylla S , Pietzner M , Kuhn JP , Volzke H , Dorr M , Nauck M , Friedrich N . Serum chemerin is associated with inflammatory and metabolic parameters‐results of a population‐based study. Obesity (Silver Spring) 25(2): 468‐475, 2017.

 

Teaching Material

F. J. A. de Paula, C. J. Rosen. Structure and Function of Bone Marrow Adipocytes. Compr Physiol. 8: 2018, 315-349.

Didactic Synopsis

Major Teaching Points:

  • Several lines of evidence indicate that marrow adipose tissue (MAT) participates in the regulation of bone remodeling and energy metabolism, but the mechanisms involved are still to be delineated.
  • The recognition of morphological and physiological differences between two types of MAT led to its classification as constitutive (c) and regulated (r) MAT.
  • rMAT has exquisite sensitivity to calorie restriction, which is a positive stimulus of MAT expansion.
  • The role of adipokines such as PREF1 and chemerin may be a link between marrow adipocytes and osteoblasts for the control of bone remodeling.
  • In human beings, MAT seems not to be a niche for fuel storage under conditions of energy surplus.
  • In the presence of calorie restriction, MAT may be a relevant source of endocrine adiponectin.
  • Insulin resistance is not associated with MAT in obesity or type 2 diabetes mellitus.

Didactic Legends

The figures—in a freely downloadable PowerPoint format—can be found on the Images tab along with the formal legends published in the article. The following legends to the same figures are written to be useful for teaching.

Figure 1. Teaching points: Bone-derived hormones involved in the modulation of energy and osteomineral metabolism. Osteocalcin (OCN) originated in osteoblasts, after posttranslational modification acquires the capacity to modulate glucose metabolism. The synthesis of undercarboxylated Glu17-OCN (ucOCN) requires the intermediation of osteoclasts that generate an acidic environment necessary to break the γ-carboxylation on the first Glu residue. After released in blood circulation ucOCN acts on insulin sensitive tissues (adipose, liver, and muscle) improving insulin sensitivity (102, 179, 208, 342). In addition, ucOCN promotes insulin secretion and β-cell proliferaion. Osteocyte, the predominant cell in bone has relevant endocrine and paracrine function: (a) FGF-23 as a major regulator of phosphate and of the synthesis of 1,25(OH)2D. Actually, FGF-23 is produced not only by osteocytes but also by osteoblast. FGF-23 increases fractional phosphate excretion, reduce serum phosphate levels, and reduces 1α-hydroxylase activity, which decreases 1,25(OH)₂D₃ synthesis (54, 56). Sclerostin binds Wnt coreceptors LRP5/6 to inhibit Wnt signaling to decrease bone formation (19).

Figure 2. Teaching points: Regulated and constitutive marrow adipose tissue (MAT) in the mouse. (A) Proposed distribution of regulated MAT (rMAT) and constitutive MAT (cMAT) in the mouse skeleton when marrow is present. Regulated MAT is found in the more proximal regions including the mid- to proximal-tibia, femur, and lumbar vertebrae. Constitutive MAT is found in the most distal portion of the tibia and tail vertebrae. (C) Representative histology of rMAT and cMAT adipocytes within the bone marrow. Figure adapted, with permission, from Scheller et al. (2016) (281).

Figure 3. Teaching points: Age-related increase in marrow adipose tissue in a group of healthy controls, 53 individuals (28 females and 25 males); age (female: 38.8 ± 13.2 and male: 39.7 ± 15.6 years); weight (female: 60.4 ± 6.4 and male: 66.0 ± 8.0); height (female: 1.65 ± 0.08 and male: 1.71 ± 0.06 m); and IMC (female: 22.1 ± 1.8 and male: 22.3 ± 1.9 kg/m2). MAT was assessed by 1.5 T 1H magnetic resonance spectroscopy of the lumbar spine (L3) (Philips Achieva, Philips Medical Systems, Best, The Netherlands).

Figure 4. Teaching points: Age-related decrease in bone mineral density in a group of healthy controls, 53 individuals (28 females and 25 males); age (female: 38.8 ± 13.2 and male: 39.7 ± 15.6 years); weight (female: 60.4 ± 6.4 and male: 66.0 ± 8.0); height (female: 1.65 ± 0.08 and male: 1.71 ± 0.06 m); and IMC (female: 22.1 ± 1.8 and male: 22.3 ± 1.9 kg/m2). BMD was measured by dual-energy X-ray absorptiometry of the lumbar spine (L1-L4) (Hologic Discovery Wi QDR series, Waltham, MA).

Figure 5. Teaching points: These results depict the negative relationship between bone mass and MAT in a group of healthy controls, 53 individuals (28 females and 25 males); age (female: 38.8 ± 13.2 and male: 39.7 ± 15.6 years); weight (female: 60.4 ± 6.4 and male: 66.0 ± 8.0); height (female: 1.65 ± 0.08 and male: 1.71 ± 0.06 m); and IMC (female: 22.1 ± 1.8 and male: 22.3 ± 1.9 kg/m2).

Figure 6. Teaching points: The mesenchymal stromal cell differentiation to osteoblast needs activation of key factors such as runt-related transcription factor 2 (RUNX2), bone morphogenetic protein 2 (BMP2), transforming growth factor-beta (TGFβ), and transcription factor Sp7 (osterix). In contraposition, the differentiation toward adipocyte requires groups of critical factors already present in mesenchymal stromal cells that need to be activated: CCAAT/enhancer binding proteins (C/EBP) family: C/EBPα, C/EBPβ, C/EBPγ, and C/EBPδ, and peroxisome proliferative activated receptors α, γ2, and δ. Molecules produced in adipocytes (PREF1 and chemerin) as well incretin (GLP1) affect BMMSC differentiation. PREF1 affects negatively both adipogenesis and osteoblastogenesis; chemerin exerts a positive stimulus to adipogenesis whereas it inhibits osteoblastogenesis. Conversely, GLP1 stimulates osteoblast differentiation and inhibits adipogenesis.

Figure 7. Teaching points: Vertebral body 1H MRS data were acquired using a Point Resolve 40/60/80 ms, repetition time (TR) = 2000 ms, eight averages, without fat suppression. Spectroscopy (PRESS) sequence with the following parameters: echo time (TE) = 1 min duration. A customized fitting algorithm for bone marrow analysis provided estimates for four lipid peaks: olefinic protons at 5.3 ppm (-CH = CH-) were used to estimate unsaturated lipids (UL); methylene protons at 1.3 ppm [(–CH2–)n] provided estimates of saturated lipids (SL); residual lipids (RL) were estimated by allylic methylene protons at 2.3 ppm (-CH = CHCH2) and methyl protons at 0.9 ppm (-CH3). Water (W) estimates were determined by a peak at 4.7 ppm.

Figure 8. Teaching points: 1H magnetic resonance spectroscopy allows the estimation of lipids composition in MAT. Recent studies called attention for the clinical relevance of this parameter, such as the association of saturated lipids with fracture in diabetic individuals. The above figure exhibits differences in unsaturated fat between male and female (female > male).

Figure 9. Teaching points: Leptin receptor in hypothalamic ventromedial neurons is not necessary for triggering leptin action. Leptin regulates bone mass accrual and appetite by inhibiting serotonin synthesis and release by the raphe nuclei neurons of the brainstem. Leptin acts through its binding to its receptor ObRb in the serotonergic neurons of the raphe nuclei. Figure adapted, with permission, from Karsenty and Oury (2010) (162).

Figure 10. Teaching points: Model representing the GLP1R role on promoting BMSCs osteoblast differentiation and suppressing their differentiation into adipocytes through crosstalk with β-catenin signaling pathway. GLP1 agonist, GLP1, or Ex4 bound to GLP1R activates the adenylyl cyclase with a consequent production of cyclic AMP and subsequent activation of PKA. GLP1-mediated activation of PKA results in β-catenin phosphorylation on Ser675, leading to its nuclear translocation and initiation of the osteogenic gene expression. The activated PKA also phosphorylates PI3K, leading to the activation of AKT. Phosphorylated PKA subsequently phosphorylates GSK3β, resulting in the inhibition of GSK3β activity. β-Catenin degradation mediated by GSK3β is thus inhibited and nuclear accumulation of β-catenin is potentiated. Finally, BMSC osteoblast differentiation takes place and anabolic bone formation is promoted. Figure adapted, with permission, from Meng et al. (2016) (207).

Figure 11. Teaching points: Calorie restriction deeply affects the GH/IGF1 axis. Usually, there is increased levels of GH secretion combined with low levels of IGF1. The mechanisms involved are not completely delineated but there are studies indicating reduction in GH receptor as well as postreceptor defects.

Figure 12. Teaching points: Bone marrow adipose tissue is paradoxically elevated in anorexia nervosa despite reduced total body fat. Elevated levels of preadipocyte factor 1 (PREF1), which are an important regulator of mesenchymal stromal cell differentiation, might be one of the mechanisms underlying the increase in bone marrow adipose tissue. Overall, a decrease in osteoblast differentiation, proliferation, and activity with a concomitant increase in osteoblast apoptosis is seen, in addition to an increase in osteoclast differentiation, proliferation, and activity with a concomitant decrease in osteoclast apoptosis. Growth hormone (GH) and insulin-like growth factor 1 (IGF1) stimulate osteoblast differentiation while inhibiting osteoclast differentiation, and GH independently stimulates osteoblast proliferation. By contrast, cortisol decreases bone formation and increases bone resorption. Alterations in adipokines, such as leptin, and appetite-regulating hormones, such as peptide YY (PYY), might also contribute to impaired bone microarchitecture in anorexia nervosa but are not well understood. *Hormone effect for which there are limited data. + , positive effect; − , negative effect. Figure adapted, with permission, from Schorr and Miller (2017) (286).

Figure 13. Teaching points: The complex relationship between BMI, BMD, and fracture risk is illustrated in the schematic. Compared with an underweight individual, an overweight individual experiencing a fall from the same height would generate a proportionately greater load on a limb (ground reaction force). However, the presence of greater amount of soft tissue in the heavier individual should attenuate more of the load and distribute the remaining load over a larger bone surface, reducing peak strain such that the effective load could be greater in the lighter individual. Assuming equivalent bone quality, the higher BMD typical in the heavier individual would be a further advantage in reducing strain below that required for a fracture. However, based on epidemiological studies, further increases in weight may provide a diminishing return because the reductions in load during a fall related to soft tissue and higher BMD may not fully compensate for increased weight. Type 2 diabetes mellitus adds ingredients that impair bone quality and increase fracture risk. Figure adapted, with permission, from Iwaniec and Turner (2016) (148).

 


Contact Editor

Submit a note to the editor about this article by filling in the form below.

* Required Field

How to Cite

Francisco José Albuquerque de Paula, Clifford J. Rosen. Structure and Function of Bone Marrow Adipocytes. Compr Physiol 2017, 8: 315-349. doi: 10.1002/cphy.c170010