Comprehensive Physiology Wiley Online Library

Triglyceride Metabolism in the Liver

Full Article on Wiley Online Library



ABSTRACT

Triglyceride molecules represent the major form of storage and transport of fatty acids within cells and in the plasma. The liver is the central organ for fatty acid metabolism. Fatty acids accrue in liver by hepatocellular uptake from the plasma and by de novo biosynthesis. Fatty acids are eliminated by oxidation within the cell or by secretion into the plasma within triglyceride‐rich very low‐density lipoproteins. Notwithstanding high fluxes through these pathways, under normal circumstances the liver stores only small amounts of fatty acids as triglycerides. In the setting of overnutrition and obesity, hepatic fatty acid metabolism is altered, commonly leading to the accumulation of triglycerides within hepatocytes, and to a clinical condition known as nonalcoholic fatty liver disease (NAFLD). In this review, we describe the current understanding of fatty acid and triglyceride metabolism in the liver and its regulation in health and disease, identifying potential directions for future research. Advances in understanding the molecular mechanisms underlying the hepatic fat accumulation are critical to the development of targeted therapies for NAFLD. © 2018 American Physiological Society. Compr Physiol 8:1‐22, 2018.

Comprehensive Physiology offers downloadable PowerPoint presentations of figures for non-profit, educational use, provided the content is not modified and full credit is given to the author and publication.

Download a PowerPoint presentation of all images


Figure 1. Figure 1. Major sources for hepatic fatty acids. The three major sources for hepatic fatty acids (FAs) are dietary lipids, adipose tissue derived‐FA and de novo‐synthesized FA. After a meal, dietary lipids are hydrolyzed within the intestinal lumen. Upon intestinal uptake, FA are reesterified to form TG molecules, which are packaged into chylomicrons and delivered primarily to muscle and adipose tissue. The remaining TG present in chylomicron remnants is then transported to the liver and processed intracellularly, leading to FA release within hepatocytes. Carbohydrates, particularly glucose, are utilized in hepatic de novo lipogenesis (DNL) for the production of FA. To be metabolized, FAs are activated to form acyl‐CoA molecules, which can undergo oxidation or be incorporated into complex lipids. Locally synthesized TG can be stored in intracellular lipid droplets (LDs) or packed into VLDL and secreted into the plasma. Upon fasting, intracellular TG stores are mobilized from adipocytes and hepatocytes to release FA products. Hepatic DNL may also contribute to form an acyl‐CoA pool available for energy production, undergoing oxidation by mitochondria, or for VLDL‐TG production. In the setting of overnutrition and insulin resistance, hepatic FA levels are increased due to enhanced lipolysis within adipocytes, which leads to increased circulating levels of FA in the bloodstream, and increased hepatic DNL. Excess FA cannot be consumed by oxidative pathways and FA are instead directed toward the synthesis of TG, leading to increased hepatic TG storage and VLDL overproduction. Arrow thickness denotes rates of metabolic activities.
Figure 2. Figure 2. Hepatic fatty acid transport and metabolism. Within the plasma membrane, FA translocase (FAT)/CD36, plasma membrane FA‐binding protein (FABPpm), and Caveolin‐1 mediate the uptake of fatty acids (FAs) that is bound to circulating albumin. Alternatively, hepatic FA can be obtained by the internalization of chylomicron remnants or by de novo lipogenesis. The latter occurs through the activity of three key enzymes: ATP‐citrate lyase (ACLY), acetyl‐CoA carboxylase (ACC), and fatty acid synthase (FAS). In the cytosol, FAs are bound to the fatty acid‐binding protein‐1 (FABP1) and sterol carrier protein‐2 (SCP2), which may control their cellular distribution. FA transport proteins (FATP2, 4, and 5) and long‐chain acyl‐CoA synthetases (ACSL1, 3 and 5) mediate the activation of long‐chain FA to acyl‐CoA molecules and their channeling to metabolic pathways. Although associated with mitochondria, ACSL5 may function to promote triglyceride biosynthesis. In the cytosol, acyl‐CoAs are bound to acyl‐CoA‐binding protein (ACBP) or SCP2. Acyl‐CoA thioesterases (ACOT)/thioesterase superfamily members (Them1, 2, and 5) appear to counteract ACSL activity by catalyzing the hydrolysis of acyl‐CoA molecules into FA and CoA. This may provide additional means of controlling the balance between FA and acyl‐CoA within hepatocytes.
Figure 3. Figure 3. Hepatic triglyceride metabolism. Acyl‐CoA molecules can be esterified to glycerol‐3‐phosphate (G3P) by isoforms of glycerol‐3‐phosphate acyltransferase (GPAT). In hepatocytes, the isoforms are predominantly GPATs 1 and 4. The resulting lysophosphatidic acid (LPA) is acylated by acylglycerol‐3‐phosphate acyltransferases (AGPATs) to form phosphatidic acid (PA), which can be dephosphorylated by phosphatidic acid phosphatase (PAP) to form diacylglycerol (DG). Both PA and DG can be directed toward phospholipid (PL) synthesis. Additionally, diacylglycerol acyltransferases (DGATs 1 and 2) synthesize triglyceride (TG) by acylation of DG. (A) Fatty acids (FAs) synthesized de novo are likely to be channeled to VLDL‐TG production through DGAT1 activity. (B) Exogenous FA appear to be directed toward TG synthesis for storage in lipid droplets by the activity of DGAT2. In addition, lipid droplet‐TG can undergo hydrolysis, with FA rerouted into VLDL by DGAT1.
Figure 4. Figure 4. Triglyceride storage and secretion in hepatocytes. Triglyceride (TG) can be synthesized from diacylglycerol (DG) by diacylglycerol acyltransferases (DGAT1 and 2). DGAT1 preferably provides TG to VLDL during lipidation in the lumen of the endoplasmic reticulum. This process is mediated by microsomal triglyceride transfer protein (MTP), which facilitates the association between TG and apoB100. Transmembrane 6 superfamily member 2 (TM6SF2) may also contribute to VLDL lipidation via yet unknown mechanisms. The nascent VLDL particle is then transferred to the Golgi apparatus through the VLDL transfer vesicle (VTV), followed by a second MTP‐mediated lipidation step. VLDL particles are secreted via a vesicle‐mediated mechanism. TG can also be formed by the activity of DGAT2, which mainly contributes to storage in lipid droplets (LDs). LDs are delimitated by proteins and a phosphatidylcholine (PC)‐enriched surfactant monolayer. Among the LD‐associated proteins, perilipins (PLIN2, 3, and 5), and comparative gene identification‐58 (CGI‐58) contribute to LD structure and/or the regulation of LD‐associated enzymes; CTP‐phosphocholine cytidylyltransferase (CCT) and acyl‐CoA synthetase 3 (ACSL3) may be required for the biosynthesis of lipids; DFF45‐like effector (CIDE) proteins, Cidea, Cideb, and Fsp27, and the microsomal fat‐inducing transmembrane protein 2 (FIT2) are required for LD formation, however their specific cellular roles are incompletely understood. Cideb also contributes to VLDL production and secretion via its interaction with Sar1 and Sec24, which are present in VTV.
Figure 5. Figure 5. Lipolysis and fatty acid oxidation in hepatocytes. The initiation of hepatic lipolysis depends on the activation of adipose triglyceride lipase (ATGL) through the binding to the comparative gene identification‐58 (CGI‐58). ATGL catalyzes the hydrolysis of triglyceride (TG), releasing diacylglycerol (DG). This lipid is further hydrolyzed by hormone sensitive lipase (HSL), releasing monoacylglycerol (MG). Monoacylglycerol lipase (MGL) mediates the breakdown of MG into fatty acid (FA) and glycerol. Alternatively, autophagic pathways, such as macroautophagy and chaperone‐mediated autophagy (CMA), promote the hydrolysis of LD. FA can also be generated from acyl‐CoA by the activity of acyl‐CoA thioesterase 13 (ACOT 13; synonym: thioesterase superfamily member 2, Them2). In the mitochondria outer membrane, long‐chain acyl‐CoA synthetase 1 (ACSL1) converts long‐chain FAs to acyl‐CoAs. ACSL1 interacts physically with carnitine palmitoyltransferase 1 (CPT1). It is likely that ACSL1 channels acyl‐CoA to CPT1 to control the availability of substrates for mitochondrial β‐oxidation. Additionally, acyl‐CoAs can be directed to β‐oxidation in the peroxisome, where fatty acyl‐CoA oxidase (AOX) represents a rate‐limiting step, or ω‐oxidation and α‐oxidation in the endoplasmic reticulum, mediated by P450 4A family members. In addition, part of the acyl‐CoA pool can be directed for TG synthesis and VLDL assembly, enabling the transfer of hepatic lipids to other organs.


Figure 1. Major sources for hepatic fatty acids. The three major sources for hepatic fatty acids (FAs) are dietary lipids, adipose tissue derived‐FA and de novo‐synthesized FA. After a meal, dietary lipids are hydrolyzed within the intestinal lumen. Upon intestinal uptake, FA are reesterified to form TG molecules, which are packaged into chylomicrons and delivered primarily to muscle and adipose tissue. The remaining TG present in chylomicron remnants is then transported to the liver and processed intracellularly, leading to FA release within hepatocytes. Carbohydrates, particularly glucose, are utilized in hepatic de novo lipogenesis (DNL) for the production of FA. To be metabolized, FAs are activated to form acyl‐CoA molecules, which can undergo oxidation or be incorporated into complex lipids. Locally synthesized TG can be stored in intracellular lipid droplets (LDs) or packed into VLDL and secreted into the plasma. Upon fasting, intracellular TG stores are mobilized from adipocytes and hepatocytes to release FA products. Hepatic DNL may also contribute to form an acyl‐CoA pool available for energy production, undergoing oxidation by mitochondria, or for VLDL‐TG production. In the setting of overnutrition and insulin resistance, hepatic FA levels are increased due to enhanced lipolysis within adipocytes, which leads to increased circulating levels of FA in the bloodstream, and increased hepatic DNL. Excess FA cannot be consumed by oxidative pathways and FA are instead directed toward the synthesis of TG, leading to increased hepatic TG storage and VLDL overproduction. Arrow thickness denotes rates of metabolic activities.


Figure 2. Hepatic fatty acid transport and metabolism. Within the plasma membrane, FA translocase (FAT)/CD36, plasma membrane FA‐binding protein (FABPpm), and Caveolin‐1 mediate the uptake of fatty acids (FAs) that is bound to circulating albumin. Alternatively, hepatic FA can be obtained by the internalization of chylomicron remnants or by de novo lipogenesis. The latter occurs through the activity of three key enzymes: ATP‐citrate lyase (ACLY), acetyl‐CoA carboxylase (ACC), and fatty acid synthase (FAS). In the cytosol, FAs are bound to the fatty acid‐binding protein‐1 (FABP1) and sterol carrier protein‐2 (SCP2), which may control their cellular distribution. FA transport proteins (FATP2, 4, and 5) and long‐chain acyl‐CoA synthetases (ACSL1, 3 and 5) mediate the activation of long‐chain FA to acyl‐CoA molecules and their channeling to metabolic pathways. Although associated with mitochondria, ACSL5 may function to promote triglyceride biosynthesis. In the cytosol, acyl‐CoAs are bound to acyl‐CoA‐binding protein (ACBP) or SCP2. Acyl‐CoA thioesterases (ACOT)/thioesterase superfamily members (Them1, 2, and 5) appear to counteract ACSL activity by catalyzing the hydrolysis of acyl‐CoA molecules into FA and CoA. This may provide additional means of controlling the balance between FA and acyl‐CoA within hepatocytes.


Figure 3. Hepatic triglyceride metabolism. Acyl‐CoA molecules can be esterified to glycerol‐3‐phosphate (G3P) by isoforms of glycerol‐3‐phosphate acyltransferase (GPAT). In hepatocytes, the isoforms are predominantly GPATs 1 and 4. The resulting lysophosphatidic acid (LPA) is acylated by acylglycerol‐3‐phosphate acyltransferases (AGPATs) to form phosphatidic acid (PA), which can be dephosphorylated by phosphatidic acid phosphatase (PAP) to form diacylglycerol (DG). Both PA and DG can be directed toward phospholipid (PL) synthesis. Additionally, diacylglycerol acyltransferases (DGATs 1 and 2) synthesize triglyceride (TG) by acylation of DG. (A) Fatty acids (FAs) synthesized de novo are likely to be channeled to VLDL‐TG production through DGAT1 activity. (B) Exogenous FA appear to be directed toward TG synthesis for storage in lipid droplets by the activity of DGAT2. In addition, lipid droplet‐TG can undergo hydrolysis, with FA rerouted into VLDL by DGAT1.


Figure 4. Triglyceride storage and secretion in hepatocytes. Triglyceride (TG) can be synthesized from diacylglycerol (DG) by diacylglycerol acyltransferases (DGAT1 and 2). DGAT1 preferably provides TG to VLDL during lipidation in the lumen of the endoplasmic reticulum. This process is mediated by microsomal triglyceride transfer protein (MTP), which facilitates the association between TG and apoB100. Transmembrane 6 superfamily member 2 (TM6SF2) may also contribute to VLDL lipidation via yet unknown mechanisms. The nascent VLDL particle is then transferred to the Golgi apparatus through the VLDL transfer vesicle (VTV), followed by a second MTP‐mediated lipidation step. VLDL particles are secreted via a vesicle‐mediated mechanism. TG can also be formed by the activity of DGAT2, which mainly contributes to storage in lipid droplets (LDs). LDs are delimitated by proteins and a phosphatidylcholine (PC)‐enriched surfactant monolayer. Among the LD‐associated proteins, perilipins (PLIN2, 3, and 5), and comparative gene identification‐58 (CGI‐58) contribute to LD structure and/or the regulation of LD‐associated enzymes; CTP‐phosphocholine cytidylyltransferase (CCT) and acyl‐CoA synthetase 3 (ACSL3) may be required for the biosynthesis of lipids; DFF45‐like effector (CIDE) proteins, Cidea, Cideb, and Fsp27, and the microsomal fat‐inducing transmembrane protein 2 (FIT2) are required for LD formation, however their specific cellular roles are incompletely understood. Cideb also contributes to VLDL production and secretion via its interaction with Sar1 and Sec24, which are present in VTV.


Figure 5. Lipolysis and fatty acid oxidation in hepatocytes. The initiation of hepatic lipolysis depends on the activation of adipose triglyceride lipase (ATGL) through the binding to the comparative gene identification‐58 (CGI‐58). ATGL catalyzes the hydrolysis of triglyceride (TG), releasing diacylglycerol (DG). This lipid is further hydrolyzed by hormone sensitive lipase (HSL), releasing monoacylglycerol (MG). Monoacylglycerol lipase (MGL) mediates the breakdown of MG into fatty acid (FA) and glycerol. Alternatively, autophagic pathways, such as macroautophagy and chaperone‐mediated autophagy (CMA), promote the hydrolysis of LD. FA can also be generated from acyl‐CoA by the activity of acyl‐CoA thioesterase 13 (ACOT 13; synonym: thioesterase superfamily member 2, Them2). In the mitochondria outer membrane, long‐chain acyl‐CoA synthetase 1 (ACSL1) converts long‐chain FAs to acyl‐CoAs. ACSL1 interacts physically with carnitine palmitoyltransferase 1 (CPT1). It is likely that ACSL1 channels acyl‐CoA to CPT1 to control the availability of substrates for mitochondrial β‐oxidation. Additionally, acyl‐CoAs can be directed to β‐oxidation in the peroxisome, where fatty acyl‐CoA oxidase (AOX) represents a rate‐limiting step, or ω‐oxidation and α‐oxidation in the endoplasmic reticulum, mediated by P450 4A family members. In addition, part of the acyl‐CoA pool can be directed for TG synthesis and VLDL assembly, enabling the transfer of hepatic lipids to other organs.
References
 1. Abo‐Hashema KAH , Cake MH , Power GW , Clarke D . Evidence for triacylglycerol synthesis in the lumen of microsomes via a lipolysis‐esterification pathway involving carnitine acyltransferases. J Biol Chem 274: 35577‐35582, 1999.
 2. Abu‐Elheiga L , Matzuk MM , Abo‐Hashema KA , Wakil SJ . Continuous fatty acid oxidation and reduced fat storage in mice lacking acetyl‐CoA carboxylase 2. Science 291: 2613‐2616, 2001.
 3. Abu‐Elheiga L , Oh WK , Kordari P , Wakil SJ . Acetyl‐CoA carboxylase 2 mutant mice are protected against obesity and diabetes induced by high‐fat/high‐carbohydrate diets. Proc Natl Acad Sci U S A 100: 10207‐10212, 2003. 10.1073/pnas.1733877100
 4. Achouri Y , Hegarty BD , Allanic D , Becard D , Hainault I , Ferre P , Foufelle F . Long chain fatty acyl‐CoA synthetase 5 expression is induced by insulin and glucose: Involvement of sterol regulatory element‐binding protein‐1c. Biochimie 87: 1149‐1155, 2005.
 5. Ahmed A , Wong RJ , Harrison SA . Nonalcoholic fatty liver disease review: Diagnosis, treatment, and outcomes. Clin Gastroenterol Hepatol 13: 2062‐2070, 2015. 10.1016/j.cgh.2015.07.029
 6. Anderson RGW. The caveolae membrane system. Annu Rev Biochem 67: 199‐225, 1998.
 7. Aoyama T , Peters JM , Iritani N , Nakajima T , Furihata K , Hashimoto T , Gonzalez FJ . Altered constitutive expression of fatty acid‐metabolizing enzymes in mice lacking the peroxisome proliferator‐activated receptor alpha (PPAR alpha). J Biol Chem 273: 5678‐5684, 1998.
 8. Atshaves BP , Martin GG , Hostetler HA , McIntosh AL , Kier AB , Schroeder F . Liver fatty acid‐binding protein and obesity. J Nutr Biochem 21: 1015‐1032, 2010.
 9. Atshaves BP , McIntosh AL , Payne HR , Gallegos AM , Landrock K , Maeda N , Kier AB , Schroeder F . SCP‐2/SCP‐x gene ablation alters lipid raft domains in primary cultured mouse hepatocytes. J Lipid Res 48: 2193‐21211, 2007.
 10. Avramoglu RK , Basciano H , Adeli K . Lipid and lipoprotein dysregulation in insulin resistant states. Clin Chim Acta 368: 1‐19, 2006.
 11. Baiceanu A , Mesdom P , Lagouge M , Foufelle F . Endoplasmic reticulum proteostasis in hepatic steatosis. Nat Rev Endocrinol 12: 710‐722, 2016. 10.1038/nrendo.2016.124
 12. Barrows BR , Parks EJ . Contributions of different fatty acid sources to very low‐density lipoprotein‐triacylglycerol in the fasted and fed states. J Clin Endocrinol Metab 91: 1446‐1452, 2006.
 13. Bartz R , Li WH , Venables B , Zehmer JK , Roth MR , Welti R , Anderson RGW , Liu PS , Chapman KD . Lipidomics reveals that adiposomes store ether lipids and mediate phospholipid traffic. J Lipid Res 48: 837‐847, 2007.
 14. Bass NM. Function and regulation of hepatic and intestinal fatty acid binding proteins. Chem Phys Lipids 38: 95‐114, 1985.
 15. Baum CL , Kansal S , Davidson NO . Regulation of sterol carrier protein‐2 gene expression in rat liver and small intestine. J Lipid Res 34: 729‐739, 1993.
 16. Begriche K , Massart J , Robin MA , Bonnet F , Fromenty B . Mitochondrial adaptations and dysfunctions in nonalcoholic fatty liver disease. Hepatology 58: 1497‐1507, 2013.
 17. Bell M , Wang H , Chen H , McLenithan JC , Gong DW , Yang RZ , Yu D , Fried SK , Quon MJ , Londos C , Sztalryd C . Consequences of lipid droplet coat protein downregulation in liver cells: abnormal lipid droplet metabolism and induction of insulin resistance. Diabetes 57: 2037‐2045, 2008.
 18. Bellafante E , Murzilli S , Salvatore L , Latorre D , Villani G , Moschetta A . Hepatic‐specific activation of peroxisome proliferator‐activated receptor γ coactivator‐1β protects against steatohepatitis. Hepatology 57: 1343‐1356, 2013.
 19. Benhamed F , Denechaud PD , Lemoine M , Robichon C , Moldes M , Bertrand‐Michel J , Ratziu V , Serfaty L , Housset C , Capeau J , Girard J , Guillou H , Postic C . The lipogenic transcription factor ChREBP dissociates hepatic steatosis from insulin resistance in mice and humans. J Clin Invest 122: 2176‐2194, 2012. 10.1172/JCI41636
 20. Berk PD , Wada H , Horio Y , Potter BJ , Sorrentino D , Zhou SL , Isola LM , Stump D , Kiang CL , Thung S . Plasma membrane fatty acid‐binding protein and mitochondrial glutamic‐oxaloacetic transaminase of rat liver are related. Proc Natl Acad Sci U S A 87: 3484‐3488, 1990.
 21. Bhuiyan J , Pritchard PH , Pande SV , Seccombe DW . Effects of high‐fat diet and fasting on levels of acyl‐CoenzymeA binding‐protein in liver, kidney, and heart of rat. Metabolism 44: 1185‐1189, 1995.
 22. Birkenfeld AL , Shulman GI . Nonalcoholic fatty liver disease, hepatic insulin resistance, and type 2 diabetes. Hepatology 59: 713‐723, 2014. 10.1002/hep.26672
 23. Blaner WS , O'Byrne SM , Wongsiriroj N , Kluwe J , D'Ambrosio DM , Jiang H , Schwabe RF , Hillman EM , Piantedosi R , Libien J . Hepatic stellate cell lipid droplets: A specialized lipid droplet for retinoid storage. Biochim Biophys Acta 1791: 467‐473, 2009.
 24. Borgese N , Francolini M , Snapp E . Endoplasmic reticulum architecture: Structures in flux. Curr Opin Cell Biol 18: 358‐364, 2006. 10.1016/j.ceb.2006.06.008
 25. Borradaile NM , Han X , Harp JD , Gale SE , Ory DS , Schaffer JE . Disruption of endoplasmic reticulum structure and integrity in lipotoxic cell death. J Lipid Res 47: 2726‐2737, 2006. 10.1194/jlr.M600299‐JLR200
 26. Bovolin P , Schlichting J , Miyata M , Ferrarese C , Guidotti A , Alho H . Distribution and characterization of diazepam binding inhibitor (DBI) in peripheral tissues of rat. Regul Pept 29: 267‐281, 1990.
 27. Bradbury MW. Lipid metabolism and liver inflammation. I. Hepatic fatty acid uptake: Possible role in steatosis. Am J Physiol Gastrointest Liver Physiol 290: G194‐G198, 2006.
 28. Bradbury MW , Stump D , Guarnieri F , Berk PD . Molecular modeling and functional confirmation of a predicted fatty acid binding site of mitochondrial aspartate aminotransferase. J Mol Biol 412: 412‐422, 2011.
 29. Brady LJ , Brady PS , Romsos DR , Hoppel CL . Elevated hepatic mitochondrial and peroxisomal oxidative capacities in fed and starved adult obese (ob/ob) mice. Biochem J 231: 439‐444, 1985.
 30. Brasaemle DL , Dolios G , Shapiro L , Wang R . Proteomic analysis of proteins associated with lipid droplets of basal and lipolytically stimulated 3T3‐L1 adipocytes. J Biol Chem 279: 46835‐46842, 2004.
 31. Brindley DN. Intracellular translocation of phosphatidate phosphohydrolase and its possible role in the control of glycerolipid synthesis. Prog Lipid Res 23: 115‐133, 1984.
 32. Browning JD , Szczepaniak LS , Dobbins R , Nuremberg P , Horton JD , Cohen JC , Grundy SM , Hobbs HH . Prevalence of hepatic steatosis in an urban population in the United States: Impact of ethnicity. Hepatology 40: 1387‐1395, 2004. 10.1002/hep.20466
 33. Bu SY , Mashek DG . Hepatic long‐chain acyl‐CoA synthetase 5 mediates fatty acid channeling between anabolic and catabolic pathways. J Lipid Res 51: 3270‐3280, 2010.
 34. Bu SY , Mashek MT , Mashek DG . Suppression of long chain acyl‐CoA synthetase 3 decreases hepatic de novo fatty acid synthesis through decreased transcriptional activity. J Biol Chem 284: 30474‐30483, 2009.
 35. Buqué X , Martínez MJ , Cano A , Miquilena‐Colina ME , García‐Monzón C , Aspichueta P , Ochoa B . A subset of dysregulated metabolic and survival genes is associated with severity of hepatic steatosis in obese Zucker rats. J Lipid Res 51: 500‐513, 2010.
 36. Burrier RE , Manson CR , Brecher P . Binding of acyl‐CoA to liver fatty acid binding protein: effect on acyl‐CoA synthesis. Biochim Biophys Acta 919: 221‐230, 1987.
 37. Cao G , Konrad RJ , Li SD , Hammond C . Glycerolipid acyltransferases in triglyceride metabolism and energy homeostasis‐potential as drug targets. Endocr Metab Immune Disord Drug Targets 12: 197‐206, 2012.
 38. Cao JS , Li JL , Li DM , Tobin JF , Gimeno RE . Molecular identification of microsomal acyl‐CoA: Glycerol‐3‐phosphate acyltransferase, a key enzyme in de novo triacylglycerol synthesis. Proc Natl Acad Sci U S A 103: 19695‐19700, 2006.
 39. Carr RM , Patel RT , Rao V , Dhir R , Graham MJ , Crooke RM , Ahima RS . Reduction of TIP47 improves hepatic steatosis and glucose homeostasis in mice. Am J Physiol Regul Integr Comp Physiol 302: R996‐R1003, 2012.
 40. Carr RM , Ahima RS . Pathophysiology of lipid droplet proteins in liver diseases. Exp Cell Res 340: 187‐192, 2016.
 41. Cases S , Smith SJ , Zheng YW , Myers HM , Lear SR , Sande E , Novak S , Collins C , Welch CB , Lusis AJ , Erickson SK , Farese RV . Identification of a gene encoding an acyl CoA: diacylglycerol acyltransferase, a key enzyme in triacylglycerol synthesis. Proc Natl Acad Sci U S A 95: 13018‐13023, 1998.
 42. Cases S , Stone SJ , Zhou P , Yen E , Tow B , Lardizabal KD , Voelker T , Farese RV . Cloning of DGAT2, a second mammalian diacylglycerol acyltransferase, and related family members. J Biol Chem 276: 38870‐38876, 2001.
 43. Caviglia JM , Gayet C , Ota T , Hernandez‐Ono A , Conlon DM , Jiang H , Fisher EA , Ginsberg HN . Different fatty acids inhibit apoB100 secretion by different pathways: Unique roles for ER stress, ceramide, and autophagy. J Lipid Res 52: 1636‐1651, 2011. 10.1194/jlr.M016931
 44. Chakravarthy MV , Lodhi IJ , Yin L , Malapaka RR , Xu HE , Turk J , Semenkovich CF . Identification of a physiologically relevant endogenous ligand for PPARalpha in liver. Cell 138: 476‐488, 2009. 10.1016/j.cell.2009.05.036
 45. Chakravarthy MV , Pan Z , Zhu Y , Tordjman K , Schneider JG , Coleman T , Turk J , Semenkovich CF . “New” hepatic fat activates PPARalpha to maintain glucose, lipid, and cholesterol homeostasis. Cell Metab 1: 309‐322, 2005.
 46. Chang BH , Li L , Paul A , Taniguchi S , Nannegari V , Heird WC , Chan L . Protection against fatty liver but normal adipogenesis in mice lacking adipose differentiation‐related protein. Mol Cell Biol 26: 1063‐1076, 2006.
 47. Chen HC , Smith SJ , Ladha Z , Jensen DR , Ferreira LD , Pulawa LK , McGuire JG , Pitas RE , Eckel RH , Farese RV . Increased insulin and leptin sensitivity in mice lacking acyl CoA: Diacylglycerol acyltransferase 1. J Clin Investig 109: 1049‐1055, 2002.
 48. Chen MT , Kaufman LN , Spennetta T , Shrago E . Effects of high fat‐feeding to rats on the interrelationship of body weight, plasma insulin, and fatty acyl‐coenzyme A esters in liver and skeletal muscle. Metabolism 41: 564‐569, 1992.
 49. Chen YQ , Kuo MS , Li SY , Bui HH , Peake DA , Sanders PE , Thibodeaux SJ , Chu SY , Qian YW , Zhao Y , Bredt DS , Moller DE , Konrad RJ , Beigneux AP , Young SG , Cao GQ . AGPAT6 is a novel microsomal glycerol‐3‐phosphate acyltransferase. J Biol Chem 283: 10048‐10057, 2008.
 50. Chen ZJ , Gropler MC , Norris J , Lawrence JC , Harris TE , Finck BN . Alterations in hepatic metabolism in fld mice reveal a role for lipin 1 in regulating VLDL‐triacylglyceride secretion. Arterioscler Thromb Vasc Biol 28: 1738‐1744, 2008.
 51. Chirala SS , Chang H , Matzuk M , Abu‐Elheiga L , Mao J , Mahon K , Finegold M , Wakil SJ . Fatty acid synthesis is essential in embryonic development: Fatty acid synthase null mutants and most of the heterozygotes die in utero . Proc Natl Acad Sci U S A 100: 6358‐6363, 2003.
 52. Coburn CT , Knapp FF , Febbraio M , Beets AL , Silverstein RL , Abumrad NA . Defective uptake and utilization of long chain fatty acids in muscle and adipose tissues of CD36 knockout mice. J Biol Chem 275: 32523‐32529, 2000.
 53. Cohen DE. New players on the metabolic stage: How do you like Them Acots? Adipocyte 2: 3‐6, 2013.
 54. Cohen DE , Fisher EA . Lipoprotein metabolism, dyslipidemia, and nonalcoholic fatty liver disease. Semin Liver Dis 33: 380‐388, 2013. 10.1055/s‐0033‐1358519
 55. Coleman RA , Lee DP . Enzymes of triacylglycerol synthesis and their regulation. Prog Lipid Res 43: 134‐176, 2004.
 56. Coleman RA , Lewin TM , Muoio DM . Physiological and nutritional regulation of enzymes of triacylglycerol synthesis. Annu Rev Nutr 20: 77‐103, 2000.
 57. Cooper DE , Young PA , Klett EL , Coleman RA . Physiological consequences of compartmentalized acyl‐CoA metabolism. J Biol Chem 290: 20023‐20031, 2015.
 58. Cuchel M , Rader DJ . Microsomal transfer protein inhibition in humans. Curr Opin Lipidol 24: 246‐250, 2013. 10.1097/MOL.0b013e32836139df
 59. Czaja MJ , Ding WX , Donohue TM, Jr. , Friedman SL , Kim JS , Komatsu M , Lemasters JJ , Lemoine A , Lin JD , Ou JH , Perlmutter DH , Randall G , Ray RB , Tsung A , Yin XM . Functions of autophagy in normal and diseased liver. Autophagy 9: 1131‐1158, 2013. 10.4161/auto.25063
 60. Dahlman I , Kaaman M , Jiao H , Kere J , Laakso M , Arner P . The CIDEA gene V115F polymorphism is associated with obesity in Swedish subjects. Diabetes 54: 3032‐3034, 2005.
 61. Day CP , James OF . Steatohepatitis: A tale of two ‘‘hits’’? Gastroenterology 114: 842‐845, 1998.
 62. Declercq PE , Haagsman HP , Van Veldhoven P , Debeer LJ , Van Golde LM , Mannaerts GP . Rat liver dihydroxyacetone‐phosphate acyltransferases and their contribution to glycerolipid synthesis. J Biol Chem 259: 9064‐9075, 1984.
 63. den Boer M , Voshol PJ , Kuipers F , Havekes LM , Romijn JA . Hepatic steatosis: A mediator of the metabolic syndrome. Lessons from animal models. Arterioscler Thromb Vasc Biol 24: 644‐649, 2004.
 64. Denechaud PD , Dentin R , Girard J , Postic C . Role of ChREBP in hepatic steatosis and insulin resistance. FEBS J 582: 68‐73, 2008.
 65. Dentin R , Girard J , Postic C . Carbohydrate responsive element binding protein (ChREBP) and sterol regulatory element binding protein‐1c (SREBP‐1c): Two key regulators of glucose metabolism and lipid synthesis in liver. Biochimie 87: 81‐86, 2005.
 66. Ding Y , Wu Y , Zeng R , Liao K . Proteomic profiling of lipid droplet‐associated proteins in primary adipocytes of normal and obese mouse. Acta Biochim Biophys Sin 44: 394‐406, 2012.
 67. Diraison F , Dusserre E , Vidal H , Sothier M , Beylot M . Increased hepatic lipogenesis but decreased expression of lipogenic gene in adipose tissue in human obesity. Am J Physiol Endocrinol Metab 282: E46‐E51, 2002.
 68. Diraison F , Moulin P , Beylot M . Contribution of hepatic de novo lipogenesis and reesterification of plasma non‐esterified fatty acids to plasma triglyceride synthesis during non‐alcoholic fatty liver disease. Diabetes Metab 29: 478‐485, 2003.
 69. DiRusso CC , Li H , Darwis D , Watkins PA , Berger J , Black PN . Comparative biochemical studies of the murine fatty acid transport proteins (FATP) expressed in yeast. J Biol Chem 280: 16829‐16837, 2005.
 70. Doege H , Baillie RA , Ortegon AM , Tsang B , Wu QW , Punreddy S , Hirsch D , Watson N , Gimeno RE , Stahl A . Targeted deletion of FATP5 reveals multiple functions in liver metabolism: Alterations in hepatic lipid Homeostasis. Gastroenterology 130: 1245‐1258, 2006.
 71. Donkor J , Sariahmetoglu M , Dewald J , Brindley DN , Reue K . Three mammalian lipins act as phosphatidate phosphatases with distinct tissue expression patterns. J Biol Chem 282: 3450‐3457, 2007.
 72. Donnelly KL , Smith CI , Schwarzenberg SJ , Jessurun J , Boldt MD , Parks EJ . Sources of fatty acids stored in liver and secreted via lipoproteins in patients with nonalcoholic fatty liver disease. J Clin Investig 115: 1343‐1351, 2005.
 73. Dowhan W. Molecular basis for membrane phospholipid diversity: Why are there so many lipids? Annu Rev Biochem 66: 199‐232, 1997.
 74. Eberhardt C , Gray PW , Tjoelker LW . cDNA cloning, expression and chromosomal localization of two human lysophosphatidic acid acyltransferases. In: Eicosanoids and Other Bioactive Lipids in Cancer, Inflammation, and Radiation Injury, 4. New York: Springer US, 1999, pp. 351‐356.
 75. Eberhardt C , Gray PW , Tjoelker LW . Human lysophosphatidic acid acyltransferase—cDNA cloning, expression, and localization to chromosome 9q34.3. J Biol Chem 272: 20299‐20305, 1997.
 76. Eberlé D , Hegarty B , Bossard P , Ferré P , Foufelle F . SREBP transcription factors: Master regulators of lipid homeostasis. Biochimie 86: 839‐848, 2004.
 77. Ehehalt R , Fullekrug J , Pohl J , Ring A , Herrmann T , Stremmel W . Translocation of long chain fatty acids across the plasma membrane—lipid rafts and fatty acid transport proteins. Mol Cell Biochem 284: 135‐140, 2006.
 78. Eisinger K , Liebisch G , Schmitz G , Aslanidis C , Krautbauer S , Buechler C . Lipidomic analysis of serum from high fat diet induced obese mice. Int J Mol Sci 15: 2991‐3002, 2014. 10.3390/ijms15022991
 79. Ellis JM , Bowman CE , Wolfgang MJ . Metabolic and tissue‐specific regulation of acyl‐CoA metabolism. PLos One 10: e0116587, 2015.
 80. Ersoy BA , Tarun A , D'Aquino K , Hancer NJ , Ukomadu C , White MF , Michel T , Manning BD , Cohen DE . Phosphatidylcholine transfer protein interacts with thioesterase superfamily member 2 to attenuate insulin signaling. Sci Signal 6: ra64, 2013.
 81. Fabbrini E , Mohammed BS , Magkos F , Korenblat KM , Patterson BW , Klein S . Alterations in adipose tissue and hepatic lipid kinetics in obese men and women with nonalcoholic fatty liver disease. Gastroenterology 134: 424‐431, 2008.
 82. Fabbrini E , Sullivan S , Klein S . Obesity and nonalcoholic fatty liver disease: Biochemical, metabolic, and clinical implications. Hepatology 51: 679‐689, 2010. 10.1002/hep.23280
 83. Faergeman NJ , Knudsen J . Role of long‐chain fatty acyl‐CoA esters in the regulation of metabolism and in cell signalling. Biochem J 323: 1‐12, 1997.
 84. Faergeman NJ , Sigurskjold BW , Kragelund BB , Andersen KV , Knudsen J . Thermodynamics of ligand binding to acyl‐coenzyme a binding protein studied by titration calorimetry. Biochemistry 35: 14118‐14126, 1996.
 85. Falcon A , Doege H , Fluitt A , Tsang B , Watson N , Kay MA , Stahl A . FATP2 is a hepatic fatty acid transporter and peroxisomal very long‐chain acyl‐CoA synthetase. Am J Physiol Endocrinol Metab 299: E384‐E393, 2010.
 86. Fan CY , Pan J , Usuda N , Yeldandi AV , Rao MS , Reddy JK . Steatohepatitis, spontaneous peroxisome proliferation and liver tumors in mice lacking peroxisomal fatty acyl‐CoA oxidase. Implications for peroxisome proliferator‐activated receptor alpha natural ligand metabolism. J Biol Chem 273: 15639‐15645, 1998.
 87. Fernández MA , Albor C , Ingelmo‐Torres M , Nixon SJ , Ferguson C , Kurzchalia T , Tebar F , Enrich C , Parton RG , Pol A . Caveolin‐1 is essential for liver regeneration. Science 313: 1628‐1132, 2006.
 88. Ferré P , Foufelle F . Hepatic steatosis: A role for de novo lipogenesis and the transcription factor SREBP‐1c. Diabetes Obes Metab 12: 83‐92, 2010.
 89. Filhoulaud G , Guilmeau S , Dentin R , Girard J , Postic C . Novel insights into ChREBP regulation and function. Trends Endocrinol Metab 24: 257‐268, 2013. 10.1016/j.tem.2013.01.003
 90. Finck BN , Gropler MC , Chen Z , Leone TC , Croce MA , Harris TE , Lawrence JCJ , Kelly DP . Lipin 1 is an inducible amplifier of the hepatic PGC‐1alpha/PPARalpha regulatory pathway. Cell Metab 4: 199‐210, 2006.
 91. Fu S , Yang L , Li P , Hofmann O , Dicker L , Hide W , Lin X , Watkins SM , Ivanov AR , Hotamisligil GS . Aberrant lipid metabolism disrupts calcium homeostasis causing liver endoplasmic reticulum stress in obesity. Nature 473: 528‐531, 2011.
 92. Fuchs M , Lammert F , Wang DQ , Paigen B , Carey MC , Cohen DE . Sterol carrier protein 2 participates in hypersecretion of biliary cholesterol during gallstone formation in genetically gallstone‐susceptible mice. Biochem J 336(Pt 1): 33‐37, 1998.
 93. Fujii H , Ikura Y , Arimoto J , Sugioka K , Iezzoni JC , Park SH , Naruko T , Itabe H , Kawada N , Caldwell SH , Ueda M . Expression of perilipin and adipophilin in nonalcoholic fatty liver disease; relevance to oxidative injury and hepatocyte ballooning. J Atheroscler Thromb 16: 893‐901, 2009.
 94. Fujimoto Y , Itabe H , Sakai J , Makita M , Noda J , Mori M , Higashi Y , Kojima S , Takano T . Identification of major proteins in the lipid droplet‐enriched fraction isolated from the human hepatocyte cell line HuH7. Biochim Biophys Acta 1644: 47‐59, 2004.
 95. Fukuda N , Ontko JA . Interactions between fatty acid synthesis, oxidation, and esterification in the production of triglyceride‐rich lipoproteins by the liver. J Lipid Res 25: 831‐842, 1984.
 96. Fukushima M , Enjoji M , Kohjima M , Sugimoto R , Ohta S , Kotoh K , Kuniyoshi M , Kobayashi K , Imamura M , Inoguchi T , Nakamuta M , Nawata H . Adipose differentiation related protein induces lipid accumulation and lipid droplet formation in hepatic stellate cells. In Vitro Cell Dev Biol Anim 41: 321‐324, 2005.
 97. Gale SE , Frolov A , Han X , Bickel PE , Cao L , Bowcock A , Schaffer JE , Ory DS . A regulatory role for 1‐acylglycerol‐3‐phosphate‐O‐acyltransferase 2 in adipocyte differentiation. J Biol Chem 281: 11082‐11089, 2006.
 98. Ganji SH , Tavintharan S , Zhu DM , Xing YD , Kamanna VS , Kashyap ML . Niacin noncompetitively inhibits DGAT2 but not DGAT1 activity in HepG2 cells. J Lipid Res 45: 1835‐1845, 2004.
 99. Goh VJ , Silver DL . The lipid droplet as a potential therapeutic target in NAFLD. Semin Liver Dis 33: 312‐320, 2013.
 100. Gong J , Sun Z , Li P . CIDE proteins and metabolic disorders. Curr Opin Lipidol 20: 121‐126, 2009.
 101. Gordon DA , Wetterau JR , Gregg RE . Microsomal triglyceride transfer protein: A protein complex required for the assembly of lipoprotein particles. Trends Cell Biol 5: 317‐321, 1995.
 102. Gordon GB. Saturated free fatty acid toxicity. II. Lipid accumulation, ultrastructural alterations, and toxicity in mammalian cells in culture. Exp Mol Pathol 27: 262‐276, 1977.
 103. Gossett RE , Frolov AA , Roths JB , Behnke WD , Kier AB , Schroeder F . Acyl‐CoA binding proteins: Multiplicity and function. Lipids 31: 895‐918, 1996.
 104. Greco D , Kotronen A , Westerbacka J , Puig O , Arkkila P , Kiviluoto T , Laitinen S , Kolak M , Fisher RM , Hamsten A , Auvinen P , Yki‐Järvinen H . Gene expression in human NAFLD. Am J Physiol Gastrointest Liver Physiol 294: G1281‐G1287, 2008.
 105. Greenberg AS , Coleman RA , Kraemer FB , McManaman JL , Obin MS , Puri V , Yan QW , Miyoshi H , Mashek DG . The role of lipid droplets in metabolic disease in rodents and humans. J Clin Investig 121: 2102‐2110, 2011.
 106. Grevengoed TJ , Klett EL , Coleman RA . Acyl‐CoA metabolism and partitioning. Annu Rev Nutr 34: 1‐30, 2014.
 107. Gropler MC , Harris TE , Hall AM , Wolins NE , Gross RW , Han XL , Chen ZJ , Finck BN . Lipin 2 Is a liver‐enriched phosphatidate phosphohydrolase enzyme that is dynamically regulated by fasting and obesity in Mice. J Biol Chem 284: 6763‐6772, 2009.
 108. Gross DA , Zhan C , Silver DL . Direct binding of triglyceride to fat storage‐inducing transmembrane proteins 1 and 2 is important for lipid droplet formation. Proc Natl Acad Sci U S A 108: 19581‐19586, 2011. 10.1073/pnas.1110817108
 109. Guo F , Ma Y , Kadegowda AK , Betters JL , Xie P , Liu G , Liu X , Miao H , Ou J , Su X , Zheng Z , Xue B , Shi H , Yu L . Deficiency of liver comparative gene identification‐58 causes steatohepatitis and fibrosis in mice. J Lipid Res 54: 2109‐2120, 2013.
 110. Hammond LE , Neschen S , Romanelli AJ , Cline GW , Ilkayeva OR , Shulman GI , Muoio DM , Coleman RA . Mitochondrial glycerol‐3‐phosphate acyltransferase‐1 is essential in liver for the metabolism of excess acyl‐CoAs. J Biol Chem 280: 25629‐25636, 2005. 10.1074/jbc.M503181200
 111. Hashimoto T , Cook WS , Qi C , Yeldandi AV , Reddy JK , Rao MS . Defect in peroxisome proliferator‐activated receptor alpha‐inducible fatty acid oxidation determines the severity of hepatic steatosis in response to fasting. J Biol Chem 275: 28918‐28928, 2000.
 112. Havel RJ. Postprandial hyperlipidemia and remnant lipoproteins. Curr Opin Lipidol 5: 102‐109, 1994.
 113. Heacock AM , Agranoff BW . CDP‐diacylglycerol synthase from mammalian tissues. Biochim Biophys Acta 1348: 166‐172, 1997.
 114. Hellerstein MK , Schwarz JM , Neese RA . Regulation of hepatic de novo lipogenesis in humans. Annu Rev Nutr 16: 523‐557, 1996.
 115. Higuchi N , Kato M , Shundo Y , Tajiri H , Tanaka M , Yamashita N , Kohjima M , Kotoh K , Nakamuta M , Takayanagi R , Enjoji M . Liver X receptor in cooperation with SREBP‐1c is a major lipid synthesis regulator in nonalcoholic fatty liver disease. Hepatol Res 38: 1122‐1129, 2008. 10.1111/j.1872‐034X.2008.00382.x
 116. Horton JD , Goldstein JL , Brown MS . SREBPs: Activators of the complete program of cholesterol and fatty acid synthesis in the liver. J Clin Investig 109: 1125‐1131, 2002.
 117. Hostetler HA , McIntosh AL , Atshaves BP , Storey SM , Payne HR , Kier AB , Schroeder F . L‐FABP directly interacts with PPAR alpha in cultured primary hepatocytes. J Lipid Res 50: 1663‐1675, 2009.
 118. Huang H , Atshaves BP , Frolov A , Kier AB , Schroeder F . Acyl‐coenzyme A binding protein expression alters liver fatty acyl‐coenzyme A metabolism. Biochemistry 44: 10282‐10297, 2005.
 119. Huang H , Starodub O , McIntosh A , Kier AB , Schroeder F . Liver fatty acid‐binding protein targets fatty acids to the nucleus. Real time confocal and multiphoton fluorescence imaging in living cells. J Biol Chem 277: 29139‐29151, 2002.
 120. Hudgins LC , Hellerstein M , Seidman C , Neese R , Diakun J , Hirsch J . Human fatty acid synthesis is stimulated by a eucaloric low fat, high carbohydrate diet. J Clin Investig 97: 2081‐2091, 1996.
 121. Hyslop PA , York DA , Corina DL . Changes in the composition and fluidity of membranes in obese (ob/ob) mice: a study of hepatic microsomal NADPH‐cytochrome P450 oxidoreductase activity. Int J Obes 6: 279‐289, 1982.
 122. Iqbal J , Hussain MM . Intestinal lipid absorption. Am J Physiol Endocrinol Metab 296: E1183‐E1194, 2009.
 123. James O , Day C . Non‐alcoholic steatohepatitis: Another disease of affluence. Lancet 353: 1634‐1636, 1999.
 124. Jenkins CM , Mancuso DJ , Yan W , Sims HF , Gibson B , Gross RW . Identification, cloning, expression, and purification of three novel human calcium‐independent phospholipase A2 family members possessing triacylglycerol lipase and acylglycerol transacylase activities. J Biol Chem 279: 48968‐48975, 2004.
 125. Jensen‐Urstad AP , Semenkovich CF . Fatty acid synthase and liver triglyceride metabolism: Housekeeper or messenger? Biochim Biophys Acta 1821: 747‐753, 2012. 10.1016/j.bbalip.2011.09.017
 126. Jo H , Choe SS , Shin KC , Jang H , Lee JH , Seong JK , Back SH , Kim JB . Endoplasmic reticulum stress induces hepatic steatosis via increased expression of the hepatic very low‐density lipoprotein receptor. Hepatology 57: 1366‐1377, 2013. 10.1002/hep.26126
 127. Jornayvaz FR , Shulman GI . Diacylglycerol activation of protein kinase Cepsilon and hepatic insulin resistance. Cell Metab 15: 574‐584, 2012. 10.1016/j.cmet.2012.03.005
 128. Kadereit B , Kumar P , Wang WJ , Miranda D , Snapp EL , Severina N , Torregroza I , Evans T , Silver DL . Evolutionarily conserved gene family important for fat storage. Proc Natl Acad Sci U S A 105: 94‐99, 2008. 10.1073/pnas.0708579105
 129. Kammoun HL , Chabanon H , Hainault I , Luquet S , Magnan C , Koike T , Ferre P , Foufelle F . GRP78 expression inhibits insulin and ER stress‐induced SREBP‐1c activation and reduces hepatic steatosis in mice. J Clin Investig 119: 1201‐1215, 2009. 10.1172/JCI37007
 130. Kang HW , Niepel MW , Han S , Kawano Y , Cohen DE . Thioesterase superfamily member 2/acyl‐CoA thioesterase 13 (Them2/Acot13) regulates hepatic lipid and glucose metabolism. FASEB J 26: 2209‐2221, 2012.
 131. Kantartzis K , Machicao F , Machann J , Schick F , Fritsche A , Haring HU , Stefan N . The DGAT2 gene is a candidate for the dissociation between fatty liver and insulin resistance in humans. Clin Sci 116: 531‐537, 2009.
 132. Kato M , Higuchi N , Enjoji M . Reduced hepatic expression of adipose tissue triglyceride lipase and CGI‐58 may contribute to the development of non‐alcoholic fatty liver disease in patients with insulin resistance. Scand J Gastroenterol 43: 1018‐1019, 2008.
 133. Kaushik S , Cuervo AM . Chaperone‐mediated autophagy: A unique way to enter the lysosome world. Trends Cell Biol 22: 407‐417, 2012. 10.1016/j.tcb.2012.05.006
 134. Kaushik S , Cuervo AM . Degradation of lipid droplet‐associated proteins by chaperone‐mediated autophagy facilitates lipolysis. Nat Cell Biol 17: 759‐770, 2015. 10.1038/ncb3166
 135. Kawano Y , Cohen DE . Mechanisms of hepatic triglyceride accumulation in non‐alcoholic fatty liver disease. J Gastroenterol 48: 434‐441, 2013.
 136. Kawano Y , Nishiumi S , Saito M , Yano Y , Azuma T , Yoshida M . Identification of lipid species linked to the progression of non‐alcoholic fatty liver disease. Curr Drug Targets 16: 1293‐1300, 2015.
 137. Kelder B , Boyce K , Kriete A , Clark R , Berryman DE , Nagatomi S , List EO , Braughler M , Kopchick JJ . CIDE‐A is expressed in liver of old mice and in type 2 diabetic mouse liver exhibiting steatosis. Comp Hepatol 6: 4, 2007.
 138. Khan SA , Wollaston‐Hayden EE , Markowski TW , Higgins L , Mashek DG . Quantitative analysis of the murine lipid droplet‐associated proteome during diet‐induced hepatic steatosis. J Lipid Res 56: 2260‐2272, 2015. 10.1194/jlr.M056812
 139. Kim KH. Regulation of mammalian acetyl‐coenzyme A carboxylase. Annu Rev Nutr 17: 77‐99, 1997.
 140. Kimmel AR , Sztalryd C . Perilipin 5, a lipid droplet protein adapted to mitochondrial energy utilization. Curr Opin Lipidol 25: 110‐117, 2014.
 141. Kimmel AR , Sztalryd C . The perilipins: Major cytosolic lipid droplet‐associated proteins and their roles in cellular lipid storage, mobilization, and systemic homeostasis. Annu Rev Nutr 36: 471‐509, 2016.
 142. Kirkby B , Roman N , Kobe B , Kellie S , Forwood JK . Functional and structural properties of mammalian acyl‐coenzyme A thioesterases. Prog Lipid Res 49: 366‐377, 2010.
 143. Knight BL , Hebbachi A , Hauton D , Brown AM , Wiggins D , Patel DD , Gibbons GF . A role for PPARalpha in the control of SREBP activity and lipid synthesis in the liver. Biochem J 389: 413‐421, 2005.
 144. Knudsen J. Acyl‐Coa‐binding protein (ACBP) and its relation to fatty acid‐Binding protein (FABP)—an overview. Mol Cell Biochem 98: 217‐223, 1990.
 145. Koga H , Kaushik S , Cuervo AM . Altered lipid content inhibits autophagic vesicular fusion. FASEB J 24: 3052‐3065, 2010. 10.1096/fj.09‐144519
 146. Kohjima M , Enjoji M , Higuchi N , Kato M , Kotoh K , Yoshimo T , Fujino T , Yada M , Yada R , Harada N , Takayanagi R , Nakamuta M . Re‐evaluation of fatty acid metabolism‐related gene expression in nonalcoholic fatty liver disease. Int J Mol Med 20: 351‐358, 2007.
 147. Kozlitina J , Smagris E , Stender S , Nordestgaard BG , Zhou HH , Tybjærg‐Hansen A , Vogt TF , Hobbs HH , Cohen JC . Exome‐wide association study identifies a TM6SF2 variant that confers susceptibility to nonalcoholic fatty liver disease. Nat Genet 46: 352‐356, 2014.
 148. Krammer J , Digel M , Ehehalt F , Stremmel W , Füllekrug J , Ehehalt R . Overexpression of CD36 and acyl‐CoA synthetases FATP2, FATP4 and ACSL1 increases fatty acid uptake in human hepatoma cells. Int J Med Sci 8: 599‐614, 2011.
 149. Kreuz S , Schoelch C , Thomas L , Rist W , Rippmann JF , Neubauer H . Acetyl‐CoA carboxylases 1 and 2 show distinct expression patterns in rats and humans and alterations in obesity and diabetes. Diabetes Metab Res Rev 25: 577‐586, 2009. 10.1002/dmrr.997
 150. Kume K , Shimizu T . cDNA cloning and expression of murine 1‐acyl‐sn‐glycerol‐3‐phosphate acyltransferase. Biochem Biophys Res Commun 237: 663‐666, 1997.
 151. Lafontan M , Langin D . Lipolysis and lipid mobilization in human adipose tissue. Prog Lipid Res 48: 275‐297, 2009.
 152. Lass A , Zimmermann R , Haemmerle G , Riederer M , Schoiswohl G , Schweiger M , Kienesberger P , Strauss JG , Gorkiewicz G , Zechner R . Adipose triglyceride lipase‐mediated lipolysis of cellular fat stores is activated by CGI‐58 and defective in Chanarin‐Dorfman syndrome. Cell Metab 3: 309‐319, 2006.
 153. Lavoie JM , Gauthier MS . Regulation of fat metabolism in the liver: Link to non‐alcoholic hepatic steatosis and impact of physical exercise. Cell Mol Life Sci 63: 1393‐1409, 2006.
 154. Lee JH , Wada T , Febbraio M , He J , Matsubara T , Lee MJ , Gonzalez FJ , Xie W . A novel role for the dioxin receptor in fatty acid metabolism and hepatic steatosis. Gastroenterology 139: 653‐663, 2010.
 155. Lee K , Kerner J , Hoppel CL . Mitochondrial carnitine palmitoyltransferase 1a (CPT1a) is part of an outer membrane fatty acid transfer complex. J Biol Chem 286: 25655‐25662, 2011.
 156. Lee SS , Pineau T , Drago J , Lee EJ , Owens JW , Kroetz DL , Fernandez‐Salguero PM , Westphal H , Gonzalez FJ . Targeted disruption of the alpha isoform of the peroxisome proliferator‐activated receptor gene in mice results in abolishment of the pleiotropic effects of peroxisome proliferators. Mol Cell Biol 15: 3012‐3022, 1995.
 157. Lewin TM , Granger DA , Kim JH , Coleman RA . Regulation of mitochondrial sn‐glycerol‐3‐phosphate acyltransferase activity: Response to feeding status is unique in various rat tissues and is discordant with protein expression. Arch Biochem Biophys 396: 119‐127, 2001.
 158. Lewin TM , Wang SL , Nagle CA , Van Horn CG , Coleman RA . Mitochondrial glycerol‐3‐phosphate acyltransferase‐1 directs the metabolic fate of exogenous fatty acids in hepatocytes. Am J Physiol Endocrinol Metab 288: E835‐E844, 2005.
 159. Lewis GF , Carpentier A , Adeli K , Giacca A . Disordered fat storage and mobilization in the pathogenesis of insulin resistance and type 2 diabetes. Endocr Rev 23: 201‐229, 2002.
 160. Li JZ , Ye J , Xue B , Qi J , Zhang J , Zhou Z , Li Q , Wen Z , Li P . Cideb regulates diet‐induced obesity, liver steatosis, and insulin sensitivity by controlling lipogenesis and fatty acid oxidation. Diabetes 56: 2523‐2532, 2007.
 161. Li LO , Ellis JM , Paich HA , Wang SL , Gong N , Altshuller G , Thresher RJ , Koves TR , Watkins SM , Muoio DM , Cline GW , Shulman GI , Coleman RA . Liver‐specific loss of long chain acyl‐CoA synthetase‐1 decreases triacylglycerol synthesis and beta‐oxidation and alters phospholipid fatty acid composition. J Biol Chem 284: 27816‐27826, 2009.
 162. Li S , Liu C , Li N , Hao T , Han T , Hill DE , Vidal M , Lin JD . Genome‐wide coactivation analysis of PGC‐1α identifies BAF60a as a regulator of hepatic lipid metabolism. Cell Metab 8: 105‐117, 2008.
 163. Li X , Grundy SM , Patel SB . Obesity in db and ob animals leads to impaired hepatic very low density lipoprotein secretion and differential secretion of apolipoprotein B‐48 and B‐100. J Lipid Res 38: 1277‐1288, 1997.
 164. Liang JJ , Oelkers P , Guo CY , Chu PC , Dixon JL , Ginsberg HN , Sturley SL . Overexpression of human diacylglycerol acyltransferase 1, Acyl‐CoA: Cholesterol acyltransferase 1, or Acyl‐CoA: Cholesterol acyltransferase 2 stimulates secretion of apolipoprotein B‐containing lipoproteins in McA‐RH7777 cells. J Biol Chem 279: 44938‐44944, 2004.
 165. Linden D , William‐Olsson L , Rhedin M , Asztely AK , Clapham JC , Schreyer S . Overexpression of mitochondrial GPAT in rat hepatocytes leads to decreased fatty acid oxidation and increased glycerolipid biosynthesis. J Lipid Res 45: 1279‐1288, 2004.
 166. Lowe ME. The triglyceride lipases of the pancreas. J Lipid Res 43: 2007‐2016, 2002.
 167. Madrigal‐Matute J , Cuervo AM . Regulation of liver metabolism by autophagy. Gastroenterology 150: 328‐339, 2016. 10.1053/j.gastro.2015.09.042
 168. Magkos F , Su X , Bradley D , Fabbrini E , Conte C , Eagon JC , Varela JE , Brunt EM , Patterson BW , Klein S . Intrahepatic diacylglycerol content is associated with hepatic insulin resistance in obese subjects. Gastroenterology 142: 1444‐1446 e1442, 2012. 10.1053/j.gastro.2012.03.003
 169. Manmontri B , Sariahmetoglu M , Donkor J , Khalil MB , Sundaram M , Yao Z , Reue K , Lehner R , Brindley DN . Glucocorticoids and cyclic AMP selectively increase hepatic lipin‐1 expression, and insulin acts antagonistically. J Lipid Res 49: 1056‐1067, 2008.
 170. Mao J , DeMayo FJ , Li H , Abu‐Elheiga L , Gu Z , Shaikenov TE , Kordari P , Chirala SS , Heird WC , Wakil SJ . Liver‐specific deletion of acetyl‐CoA carboxylase 1 reduces hepatic triglyceride accumulation without affecting glucose homeostasis. Proc Natl Acad Sci U S A 103: 8552‐8557, 2006.
 171. Marchesini G , Brizi M , Bianchi G , Tomassetti S , Bugianesi E , Lenzi M , McCullough AJ , Natale S , Forlani G , Melchionda N . Nonalcoholic fatty liver disease: A feature of the metabolic syndrome. Diabetes 150: 1844‐1850, 2001.
 172. Martin GG , Huang H , Atshaves BP , Binas B , Schroeder F . Ablation of the liver fatty acid binding protein gene decreases fatty acyl CoA binding capacity and alters fatty acyl CoA pool distribution in mouse liver. Biochemistry 42: 11520‐11532, 2003.
 173. Martin‐Sanz P , Hopewell R , Brindley DN . Long‐chain fatty acids and their acyl‐CoA esters cause the translocation of phosphatidate phosphohydrolase from the cytosolic to the microsomal fraction of rat liver. FEBS Lett 175: 284‐288, 1984.
 174. Mashek DG , McKenzie MA , Van Horn CG , Coleman RA . Rat long chain acyl‐CoA synthetase 5 increases fatty acid uptake and partitioning to cellular triacylglycerol in McArdle‐RH7777 cells. J Biol Chem 281: 945‐950, 2006.
 175. Matsusue K , Haluzik M , Lambert G , Yim SH , Gavrilova O , Ward JM , Brewer BJ , Reitman ML , Gonzalez FJ . Liver‐specific disruption of PPARgamma in leptin‐deficient mice improves fatty liver but aggravates diabetic phenotypes. J Clin Investig 111: 737‐747, 2003.
 176. Matsusue K , Kusakabe T , Noguchi T , Takiguchi S , Suzuki T , Yamano S , Gonzalez FJ . Hepatic steatosis in leptin‐deficient mice is promoted by the PPARgamma target gene Fsp27. Cell Metab 7: 302‐311, 2008.
 177. McArthur MJ , Atshaves BP , Frolov A , Foxworth WD , Kier AB , Schroeder F . Cellular uptake and intracellular trafficking of long chain fatty acids. J Lipid Res 40: 1371‐1383, 1999.
 178. McFie PJ , Banman SL , Kary S , Stone SJ . Murine diacylglycerol acyltransferase‐2 (DGAT2) can catalyse triacylglycerol synthesis and promote lipid droplet formation independent of its localization to the endoplasmic reticulum. J Biol Chem 286: 28235‐28246, 2011.
 179. Meegalla RL , Billheimer JT , Cheng D . Concerted elevation of acyl‐coenzyme A: Diacylglycerol acyltransferase (DGAT) activity through independent stimulation of mRNA expression of DGAT1 and DGAT2 by carbohydrate and insulin. Biochem Biophys Res Commun 298: 317‐323, 2002.
 180. Memon RA , Fuller J , Moser AH , Smith PJ , Grunfeld C , Feingold KR . Regulation of putative fatty acid transporters and acyl‐CoA synthetase in liver and adipose tissue in ob/ob mice. Diabetes 48: 121‐127, 1999.
 181. Miquilena‐Colina ME , Lima‐Cabello E , Sánchez‐Campos S , García‐Mediavilla MV , Fernández‐Bermejo M , Lozano‐Rodríguez T , Vargas‐Castrillón J , Buqué X , Ochoa B , Aspichueta P , González‐Gallego J , García‐Monzón C . Hepatic fatty acid translocase CD36 upregulation is associated with insulin resistance, hyperinsulinaemia and increased steatosis in non‐alcoholic steatohepatitis and chronic hepatitis C. Gut 60: 1394‐1402, 2011.
 182. Moffat C , Bhatia L , Nguyen T , Lynch P , Wang M , Wang D , Ilkayeva OR , Han X , Hirschey MD , Claypool SM , Seifert EL . Acyl‐CoA thioesterase‐2 facilitates mitochondrial fatty acid oxidation in the liver. J Lipid Res 55: 2458‐2470, 2014.
 183. Monetti M , Levin MC , Watt MJ , Sajan MP , Marmor S , Hubbard BK , Stevens RD , Bain JR , Newgard CB , Farese RV , Hevener AL , Farese RV . Dissociation of hepatic steatosis and insulin resistance in mice overexpressing DGAT in the liver. Cell Metab 6: 69‐78, 2007.
 184. Montagner A , Polizzi A , Fouche E , Ducheix S , Lippi Y , Lasserre F , Barquissau V , Regnier M , Lukowicz C , Benhamed F , Iroz A , Bertrand‐Michel J , Al Saati T , Cano P , Mselli‐Lakhal L , Mithieux G , Rajas F , Lagarrigue S , Pineau T , Loiseau N , Postic C , Langin D , Wahli W , Guillou H . Liver PPARalpha is crucial for whole‐body fatty acid homeostasis and is protective against NAFLD. Gut 65: 1202‐1214, 2016. 10.1136/gutjnl‐2015‐310798
 185. Motomura W , Inoue M , Ohtake T , Takahashi N , Nagamine M , Tanno S , Kohgo Y , Okumura T . Up‐regulation of ADRP in fatty liver in human and liver steatosis in mice fed with high fat diet. Biochem Biophys Res Commun 340: 1111‐1118, 2006.
 186. Muoio DM , Seefeld K , Witters LA , Coleman RA . AMP‐activated kinase reciprocally regulates triacylglycerol synthesis and fatty acid oxidation in liver and muscle: Evidence that sn‐glycerol‐3‐phosphate acyltransferase is a novel target. Biochem J 338: 783‐791, 1999.
 187. Musso G , Gambino R , Cassader M . Recent insights into hepatic lipid metabolism in non‐alcoholic fatty liver disease (NAFLD). Prog Lipid Res 48: 1‐26, 2009
 188. Nagle CA , An J , Shiota M , Torres TP , Cline GW , Liu ZX , Wang S , Catlin RL , Shulman GI , Newgard CB , Coleman RA . Hepatic overexpression of glycerol‐sn‐3‐phosphate acyltransferase‐1 causes insulin resistance. FASEB J 21: A699‐A699, 2007.
 189. Nagle CA , Vergnes L , Dejong H , Wang SL , Lewin TM , Reue K , Coleman RA . Identification of a novel sn‐glycerol‐3‐phosphate acyltransferase isoform, GPAT4, as the enzyme deficient in Agpat6(‐/‐) mice. J Lipid Res 49: 823‐831, 2008.
 190. Najt CP , Senthivinayagam S , Aljazi MB , Fader KA , Olenic SD , Brock JR , Lydic TA , Jones AD , Atshaves BP . Liver‐specific loss of Perilipin 2 alleviates diet‐induced hepatic steatosis, inflammation, and fibrosis. Am J Physiol Gastrointest Liver Physiol 310: G726‐G738, 2016. 10.1152/ajpgi.00436.2015
 191. Neschen S , Morino K , Hammond LE , Zhang DY , Liu ZX , Romanelli AJ , Cline GW , Pongratz RL , Zhang XM , Choi CS , Coleman RA , Shulman GI . Prevention of hepatic steatosis and hepatic insulin resistance in mitochondrial acyl‐CoA: glycerol‐sn‐3‐phosphate acyltransferase 1 knockout mice. Cell Metab 2: 55‐65, 2005.
 192. Newberry EP , Xie Y , Kennedy S , Han X , Buhman KK , Luo J , Gross RW , Davidson NO . Decreased hepatic triglyceride accumulation and altered fatty acid uptake in mice with deletion of the liver fatty acid‐binding protein gene. J Biol Chem 278: 51664‐51672, 2003.
 193. Newberry EP , Xie Y , Kennedy SM , Luo J , Davidson NO . Protection against Western diet‐induced obesity and hepatic steatosis in liver fatty acid‐binding protein knockout mice. Hepatology 44: 1191‐1205, 2006.
 194. Ohsaki Y , Cheng J , Suzuki M , Fujita A , Fujimoto T . Lipid droplets are arrested in the ER membrane by tight binding of lipidated apolipoprotein B‐100. J Cell Sci 121: 2415‐2422, 2008.
 195. Oishi K , Amagai N , Shirai H , Kadota K , Ohkura N , Ishida N . Genome‐wide expression analysis reveals 100 adrenal gland‐dependent circadian genes in the mouse liver. DNA Research 12: 191‐202, 2005.
 196. Okada K , LeClair KB , Zhang Y , Li Y , Ozdemir C , Krisko TI , Hagen SJ , Betensky RA , Banks AS , Cohen DE . Thioesterase superfamily member 1 suppresses cold thermogenesis by limiting the oxidation of lipid droplet‐derived fatty acids in brown adipose tissue. Mol Metab 5: 340‐351, 2016. 10.1016/j.molmet.2016.02.002
 197. Okumura T. Role of lipid droplet proteins in liver steatosis. J Physiol Biochem 67: 629‐636, 2011.
 198. Ong KT , Mashek MT , Bu SY , Greenberg AS , Mashek DG . Adipose triglyceride lipase is a major hepatic lipase that regulates triacylglycerol turnover and fatty acid signaling and partitioning. Hepatology 53: 116‐126, 2011.
 199. Ota T , Gayet C , Ginsberg HN . Inhibition of apolipoprotein B100 secretion by lipid‐induced hepatic endoplasmic reticulum stress in rodents. J Clin Investig 118: 316‐332, 2008. 10.1172/JCI32752
 200. Owen MR , Corstorphine CC , Zammit VA . Overt and latent activities of diacylglycerol acyltransferase in rat liver microsomes: Possible roles in very‐low‐density lipoprotein triacylglycerol secretion. Biochem J 323: 17‐21, 1997.
 201. Park C , Cuervo AM . Selective autophagy: Talking with the UPS. Cell Biochem Biophys 67: 3‐13, 2013. 10.1007/s12013‐013‐9623‐7
 202. Pessayre B , Fromenty B . NASH: A mitochondrial disease. J Hepatol 42: 928‐940, 2005.
 203. Pohl J , Ring A , Stremmel W . Uptake of long‐chain fatty acids in HepG2 cells involves caveolae: Analysis of a novel pathway. J Lipid Res 43: 1390‐1399, 2002.
 204. Pol A , Luetterforst R , Lindsay M , Heino S , Ikonen E , Parton RG . A caveolin dominant negative mutant associates with lipid bodies and induces intracellular cholesterol imbalance. J Cell Biol 152: 1057‐1070, 2001.
 205. Postic C , Dentin R , Denechaud PD , Girard J . ChREBP, a transcriptional regulator of glucose and lipid metabolism. Annu Rev Nutr 27: 179‐192, 2007. 10.1146/annurev.nutr.27.061406.093618
 206. Rao MS , Reddy JK . Peroxisomal β‐oxidation and steatohepatitis. Semin Liver Dis 21: 43‐55, 2001.
 207. Rasmussen JT , Faergeman NJ , Kristiansen K , Knudsen J . Acyl‐CoA‐binding protein (ACBP) can mediate intermembrane acyl‐CoA transport and donate acyl‐CoA for b‐oxidation and glycerolipid synthesis. Biochem J 299: 165‐170, 1994.
 208. Reid BN , Ables GP , Otlivanchik OA , Schoiswohl G , Zechner R , Blaner WS , Goldberg IJ , Schwabe RF , Chua SC, Jr. , Huang LS . Hepatic overexpression of hormone‐sensitive lipase and adipose triglyceride lipase promotes fatty acid oxidation, stimulates direct release of free fatty acids, and ameliorates steatosis. J Biol Chem 283: 13087‐13099, 2008. 10.1074/jbc.M800533200
 209. Rodriguez‐Navarro JA , Kaushik S , Koga H , Dall'Armi C , Shui G , Wenk MR , Di Paolo G , Cuervo AM . Inhibitory effect of dietary lipids on chaperone‐mediated autophagy. Proc Natl Acad Sci U S A 109: E705‐E714, 2012. 10.1073/pnas.1113036109
 210. Romeo S , Kozlitina J , Xing C , Pertsemlidis A , Cox D , Pennacchio LA , Boerwinkle E , Cohen JC , Hobbs HH . Genetic variation in PNPLA3 confers susceptibility to nonalcoholic fatty liver disease. Nat Genet 40: 1461‐1465, 2008.
 211. Rosendal J , Ertbjerg P , Knudsen J . Characterization of ligand binding to acyl‐CoA‐binding protein. Biochem J 290: 321‐326, 1993.
 212. Ruhanen H , Perttilä J , Hölttä‐Vuori M , Zhou Y , Yki‐Järvinen H , Ikonen E , Käkelä R , Olkkonen VM . PNPLA3 mediates hepatocyte triacylglycerol remodeling. J Lipid Res 55: 739‐746, 2014.
 213. Saltiel AR , Kahn CR . Insulin signalling and the regulation of glucose and lipid metabolism. Nature 414: 799‐806, 2001.
 214. Samuel VT , Shulman GI . The pathogenesis of insulin resistance: Integrating signaling pathways and substrate flux. J Clin Invest 126: 12‐22, 2016. 10.1172/JCI77812
 215. Sanyal AJ , Campbell‐Sargent C , Mirshahi F , Rizzo WB , Contos MJ , Sterling RK , Luketic VA , Shiffman ML , Clore JN . Nonalcoholic steatohepatitis: Association of insulin resistance and mitochondrial abnormalities. Gastroenterology 120: 1183‐1192, 2001.
 216. Sanyal AJ , Pacana T . A lipidomic readout of disease progression in a diet‐induced mouse model of nonalcoholic fatty liver disease. Trans Am Clin Climatol Assoc 126: 271‐288, 2015.
 217. Savage DB , Choi CS , Samuel VT , Liu ZX , Zhang D , Wang A , Zhang XM , Cline GW , Yu XX , Geisler JG , Bhanot S , Monia BP , Shulman GI . Reversal of diet‐induced hepatic steatosis and hepatic insulin resistance by antisense oligonucleotide inhibitors of acetyl‐CoA carboxylases 1 and 2. J Clin Investig 116: 817‐824, 2006.
 218. Schadinger SE , Bucher NL , Schreiber BM , Farmer SR . PPARgamma2 regulates lipogenesis and lipid accumulation in steatotic hepatocytes. Am J Physiol Endocrinol Metab 288: E1195‐E1205, 2005.
 219. Schneider JL , Suh Y , Cuervo AM . Deficient chaperone‐mediated autophagy in liver leads to metabolic dysregulation. Cell Metab 20: 417‐432, 2014. 10.1016/j.cmet.2014.06.009
 220. Schoonjans K , Watanabe M , Suzuki H , Mahfoudi A , Krey G , Wahli W , Grimaldi P , Staels B , Yamamoto T , Auwerx J . Induction of the acyl‐Coenzyme‐A synthetase gene by fibrates and fatty‐acids is mediated by a peroxisome proliferator response element in the C‐promoter. J Biol Chem 270: 19269‐19276, 1995.
 221. Schroeder B , Schulze RJ , Weller SG , Sletten AC , Casey CA , McNiven MA . The small GTPase Rab7 as a central regulator of hepatocellular lipophagy. Hepatology 61: 1896‐1907, 2015. 10.1002/hep.27667
 222. Schroeder F , Petrescu AD , Huang H , Atshaves BP , McIntosh AL , Martin GG , Hostetler HA , Vespa A , Landrock D , Landrock KK , Payne HR , Kier AB . Role of fatty acid binding proteins and long chain fatty acids in modulating nuclear receptors and gene transcription. Lipids 43: 1‐17, 2008.
 223. Schwarz JM , Linfoot P , Dare D , Aghajanian K . Hepatic de novo lipogenesis in normoinsulinemic and hyperinsulinemic subjects consuming high‐fat, low‐carbohydrate and low‐fat, high‐carbohydrate isoenergetic diets. Am J Clin Nutr 77: 43‐50, 2003.
 224. Schwarz JM , Neese RA , Turner S , Dare D , Hellerstein MK . Short‐term alterations in carbohydrate energy intake in humans. Striking effects on hepatic glucose production, de novo lipogenesis, lipolysis, and whole‐body fuel selection. J Clin Investig 96: 2735‐2743, 1995.
 225. Seedorf U , Raabe M , Ellinghaus P , Kannenberg F , Fobker M , Engel T , Denis S , Wouters F , Wirtz KWA , Wanders RJ , Maeda N , Assmann G . Defective peroxisomal catabolism of branched fatty acyl coenzyme A in mice lacking the sterol carrier protein‐2/sterol carrier protein‐x gene function. Genes Dev 12: 1189‐1201, 1998.
 226. Seessle J , Liebisch G , Schmitz G , Stremmel W , Chamulitrat W . Palmitate activation by fatty acid transport protein 4 as a model system for hepatocellular apoptosis and steatosis. Biochim Biophys Acta 1851: 549‐565, 2015. 10.1016/j.bbalip.2015.01.004
 227. Semenkovich CF. Regulation of fatty acid synthase (FAS). Prog Lipid Res 36: 43‐53, 1997.
 228. Shen LL , Liu H , Peng J , Gan L , Lu L , Zhang Q , Li L , He F , Jiang Y . Effects of farnesoid X receptor on the expression of the fatty acid synthetase and hepatic lipase. Mol Biol Rep 38: 553‐559, 2011.
 229. Shen X , Zhang K , Kaufman RJ . The unfolded protein response–‐a stress signaling pathway of the endoplasmic reticulum. J Chem Neuroanat 28: 79‐92, 2004. 10.1016/j.jchemneu.2004.02.006
 230. Shin DH , Paulauskis JD , Moustaïd N , Sul HS . Transcriptional regulation of p90 with sequence homology to Escherichia coli glycerol‐3‐phosphate acyltransferase. J Biol Chem 266: 23834‐23839, 1991.
 231. Shindou H , Hishikawa D , Harayama T , Yuki K , Shimizu T . Recent progress on acyl CoA: Lysophospholipid acyltransferase research. J Lipid Res 50: S46‐S51, 2009.
 232. Simard JR , Kamp F , Hamilton JA . Measuring the adsorption of Fatty acids to phospholipid vesicles by multiple fluorescence probes. Biophys J 94: 4493‐4503, 2008.
 233. Singh R , Kaushik S , Wang Y , Xiang Y , Novak I , Komatsu M , Tanaka K , Cuervo AM , Czaja MJ . Autophagy regulates lipid metabolism. Nature 458: 1131‐1135, 2009. 10.1038/nature07976
 234. Siniossoglou S. Phospholipid metabolism and nuclear function: roles of the lipin family of phosphatidic acid phosphatases. Biochim Biophys Acta 1831: 575‐581, 2013.
 235. Smagris E , BasuRay S , Li J , Huang Y , Lai KM , Gromada J , Cohen JC , Hobbs HH . Pnpla3I148M knockin mice accumulate PNPLA3 on lipid droplets and develop hepatic steatosis. Hepatology 61: 108‐118, 2015.
 236. Smagris E , Gilyard S , BasuRay S , Cohen JC , Hobbs HH . Inactivation of Tm6sf2, a gene defective in fatty liver disease, impairs lipidation but not secretion of very low density lipoproteins. J Biol Chem 291: 10659‐10676, 2016.
 237. Smathers RL , Petersen DR . The human fatty acid‐binding protein family: Evolutionary divergences and functions. Hum Genomics 5: 170‐191, 2011.
 238. Smith SJ , Cases S , Jensen DR , Chen HC , Sande E , Tow B , Sanan DA , Raber J , Eckel RH , Farese RV . Obesity resistance and multiple mechanisms of triglyceride synthesis in mice lacking Dgat. Nat Genet 25: 87‐90, 2000.
 239. Stahl A , Gimeno RE , Tartaglia LA , Lodish HF . Fatty acid transport proteins: A current view of a growing family. Trends Endocrinol Metab 12: 266‐273, 2001.
 240. Stamps AC , Elmore MA , Hill ME , Kelly K , Makda AA , Finnen MJ . A human cDNA sequence with homology to non‐mammalian lysophosphatidic acid acyltransferases. Biochem J 326: 455‐461, 1997.
 241. Stolz A , Ernst A , Dikic I . Cargo recognition and trafficking in selective autophagy. Nat Cell Biol 16: 495‐501, 2014. 10.1038/ncb2979
 242. Stone SJ , Levin MC , Zhou P , Han J , Walther TC , Farese RVJ . The endoplasmic reticulum enzyme DGAT2 is found in mitochondria‐associated membranes and has a mitochondrial targeting signal that promotes its association with mitochondria. J Biol Chem 284: 5352‐5361, 2009.
 243. Stone SJ , Myers HM , Watkins SM , Brown BE , Feingold KR , Elias PM , Farese RV . Lipopenia and skin barrier abnormalities in DGAT2‐deficient mice. J Biol Chem 279: 11767‐11776, 2004.
 244. Strable MS , Ntambi JM . Genetic control of de novo lipogenesis: Role in diet‐induced obesity. Crit Rev Biochem Mol Biol 45: 199‐214, 2010.
 245. Straub BK , Stoeffel P , Heid H , Zimbelmann R , Schirmacher P . Differential pattern of lipid droplet‐associated proteins and de novo perilipin expression in hepatocyte steatogenesis. Hepatology 47: 1936‐1946, 2008.
 246. Stremmel W , Diede HE , Rodilla‐Sala E , Vyska K , Schrader M , Fitscher B , Passarella S . The membrane fatty acid‐binding protein is not identical to mitochondrial glutamic oxaloacetic transaminase (mGOT). Mol Cell Biochem 98: 191‐199, 1990.
 247. Stremmel W , Pohl J , Ring A , Herrmann T . A new concept of cellular uptake and intracellular trafficking of long‐chain fatty acids. Lipids 36: 981‐989, 2001.
 248. Stremmel W , Staffer S , Wannhoff A , Pathil A , Chamulitrat W . Plasma membrane phospholipase A2 controls hepatocellular fatty acid uptake and is responsive to pharmacological modulation: Implications for nonalcoholic steatohepatitis. FASEB J 28: 159‐170, 2014.
 249. Stremmel W , Strohmeyer G , Borchard F , Kochwa S , Berk PD . Isolation and partial characterization of a fatty acid binding protein in rat liver plasma membranes. Proc Natl Acad Sci U S A 82: 4‐8, 1985.
 250. Su W , Wang Y , Jia X , Wu W , Li L , Tian X , Li S , Wang C , Xu H , Cao J , Han Q , Xu S , Chen Y , Zhong Y , Zhang X , Liu P , Gustafsson JA , Guan Y . Comparative proteomic study reveals 17beta‐HSD13 as a pathogenic protein in nonalcoholic fatty liver disease. Proc Natl Acad Sci U S A 111: 11437‐11442, 2014. 10.1073/pnas.1410741111
 251. Subramanian S , Chait A . Hypertriglyceridemia secondary to obesity and diabetes. Biochim Biophys Acta 1821: 819‐825, 2012.
 252. Takeuchi K , Reue K . Biochemistry, physiology, and genetics of GPAT, AGPAT, and lipin enzymes in triglyceride synthesis. Am J Physiol Endocrinol Metab 296: E1195‐E1209, 2009.
 253. Thompson BR , Lobo S , Bernlohr DA . Fatty acid flux in adipocytes: The in's and out's of fat cell lipid trafficking. Mol Cell Endocrinol 318: 24‐33, 2010.
 254. Thumser AE , Wilton DC . The binding of cholesterol and bile salts to recombinant rat liver fatty acid‐binding protein. Biochem J 320 (Pt 3): 729‐733, 1996.
 255. Thumser AE , Wilton DC . The binding of natural and fluorescent lysophospholipids to wild‐type and mutant rat liver fatty acid‐binding protein and albumin. Biochem J 307 (Pt 1): 305‐311, 1995.
 256. Tillander VE , Alexson SE , Cohen DE . Deactivating fatty acids: Acyl‐CoA thioesterase‐mediated control of lipid metabolism. Trends Endocrinol Metab 28: 473‐484, 2017. 10.1016/j.tem.2017.03.001
 257. Tiwari S , Siddiqi S , Siddiqi SA . CideB protein is required for the biogenesis of very low density lipoprotein (VLDL) transport vesicle. J Biol Chem 288: 5157‐5165, 2013.
 258. Tong FM , Black PN , Coleman RA , DiRusso CC . Fatty acid transport by vectorial acylation in mammals: Roles played by different isoforms of rat long‐chain acyl‐CoA synthetases. Arch Biochem Biophys 447: 46‐52, 2006.
 259. Tontonoz P , Nagy L , Alvarez JG , Thomazy VA , Evans RM . PPARgamma promotes monocyte/macrophage differentiation and uptake of oxidized LDL. Cell 93: 241‐252, 1998.
 260. Turpin SM , Nicholls HT , Willmes DM , Mourier A , Brodesser S , Wunderlich CM , Mauer J , Xu E , Hammerschmidt P , Bronneke HS , Trifunovic A , LoSasso G , Wunderlich FT , Kornfeld JW , Bluher M , Kronke M , Bruning JC . Obesity‐induced CerS6‐dependent C16:0 ceramide production promotes weight gain and glucose intolerance. Cell Metab 20: 678‐686, 2014. 10.1016/j.cmet.2014.08.002
 261. Vasconcellos R , Alvarenga EC , Parreira RC , Lima SS , Resende RR . Exploring the cell signalling in hepatocyte differentiation. Cell Signal 28: 1773‐1788, 2016. 10.1016/j.cellsig.2016.08.011
 262. Vergnes L , Beigneux AP , Davis R , Watkins SM , Young SG , Reue K . Agpat6 deficiency causes subdermal lipodystrophy and resistance to obesity. J Lipid Res 47: 745‐754, 2006.
 263. Visser ME , Kastelein JJ , Stroes ES . Apolipoprotein B synthesis inhibition: Results from clinical trials. Curr Opin Lipidol 21: 319‐323, 2010. 10.1097/MOL.0b013e32833af4c1
 264. Viswakarma N , Yu S , Naik S , Kashireddy P , Matsumoto K , Sarkar J , Surapureddi S , Jia Y , Rao MS , Reddy JK . Transcriptional regulation of Cidea, mitochondrial cell death‐inducing DNA fragmentation factor alpha‐like effector A, in mouse liver by peroxisome proliferator‐activated receptor alpha and gamma. J Biol Chem 282: 18613‐18624, 2007.
 265. Volmer R , van der Ploeg K , Ron D . Membrane lipid saturation activates endoplasmic reticulum unfolded protein response transducers through their transmembrane domains. Proc Natl Acad Sci U S A 110: 4628‐4633, 2013. 10.1073/pnas.1217611110
 266. Wakil SJ , Abu‐Elheiga LA . Fatty acid metabolism: Target for metabolic syndrome. J Lipid Res 50: S138‐S143, 2009.
 267. Walther TC , Farese RVJ . Lipid droplets and cellular lipid metabolism. Annu Rev Biochem 81: 687‐714, 2012.
 268. Wang C , Zhao Y , Gao X , Li L , Yuan Y , Liu F , Zhang L , Wu J , Hu P , Zhang X , Gu Y , Xu Y , Wang Z , Li Z , Zhang H , Ye J . Perilipin 5 improves hepatic lipotoxicity by inhibiting lipolysis. Hepatology 61: 870‐882, 2015.
 269. Wang H , Bell M , Sreenivasan U , Hu H , Liu J , Dalen K , Londos C , Yamaguchi T , Rizzo MA , Coleman R , Gong D , Brasaemle D , Sztalryd C . Unique regulation of adipose triglyceride lipase (ATGL) by perilipin 5, a lipid droplet‐associated protein. J Biol Chem 286: 15707‐15715, 2011.
 270. Wang J , Bie J , Ghosh S . Intracellular cholesterol transport proteins enhance hydrolysis of HDL‐delivered cholesteryl esters and facilitate preferential elimination of resulting cholesterol into bile. J Lipid Res 56: 1712‐1719, 2016.10.1194/jlr.M069682
 271. Wang S , Lee DP , Gong N , Schwerbrock NMJ , Mashek DG , Gonzalez‐Baro MR , Stapleton C , Li LO , Lewin TM , Coleman RA . Cloning and functional characterization of a novel mitochondrial N‐ethylmaleimide‐sensitive glycerol‐3‐phosphate acyltransferase (GPAT2). Arch Biochem Biophys 465: 347‐358, 2007.
 272. Waterman IJ , Zammit VA . Activities of overt and latent diacylglycerol acyltransferases (DGATs I and II) in liver microsomes of ob/ob mice. Int J Obes 26: 742‐743, 2002.
 273. Watkins PA. Very‐long‐chain acyl‐CoA synthetases. J Biol Chem 283: 1773‐1777, 2008. 10.1074/jbc.R700037200
 274. Welty FK. Hypobetalipoproteinemia and abetalipoproteinemia. Curr Opin Lipidol 25: 161‐168, 2014. 10.1097/MOL.0000000000000072
 275. Wendel AA , Cooper DE , Ilkayeva OR , Muoio DM , Coleman RA . Glycerol‐3‐phosphate acyltransferase (GPAT)‐1, but not GPAT4, incorporates newly synthesized fatty acids into triacylglycerol and diminishes fatty acid oxidation. J Biol Chem 288: 27299‐27306, 2013.
 276. Wendel AA , Lewin TM , Coleman RA . Glycerol‐3‐phosphate acyltransferases: Rate limiting enzymes of triacylglycerol biosynthesis. Biochim Biophys Acta 1791: 501‐506, 2009.
 277. West J , Tompkins CK , Balantac N , Nudelman E , Meengs B , White T , Bursten S , Coleman J , Kumar A , Singer JW , Leung DW . Cloning and expression of two human lysophosphatidic acid acyltransferase cDNAs that enhance cytokine‐induced signaling responses in cells. DNA Cell Biol 16: 691‐701, 1997.
 278. Wilfling F , Haas JT , Walther TC , Farese RVJ . Lipid droplet biogenesis. Curr Opin Cell Biol 29: 39‐45, 2014.
 279. Wilson CG , Tran JL , Erion DM , Vera NB , Febbraio M , Weiss EJ . Hepatocyte‐specific disruption of CD36 attenuates fatty liver and improves insulin sensitivity in HFD‐fed mice. Endocrinology 157: 570‐585, 2016.
 280. Wu JW , Wang SP , Alvarez F , Casavant S , Gauthier N , Abed L , Soni KG , Yang G , Mitchell GA . Deficiency of liver adipose triglyceride lipase in mice causes progressive hepatic steatosis. Hepatology 54: 122‐132, 2011.
 281. Wurie HR , Buckett L , Zammit VA . Diacylglycerol acyltransferase 2 acts upstream of diacylglycerol acyltransferase 1 and utilizes nascent diglycerides and de novo synthesized fatty acids in HepG2 cells. FEBS J 279: 3033‐3047, 2012.
 282. Xu W , Wu L , Yu M , Chen FJ , Arshad M , Xia X , Ren H , Yu J , Xu L , Xu D , Li JZ , Li P , Zhou L . Differential roles of cell death‐inducing DNA fragmentation factor‐alpha‐like effector (CIDE) proteins in promoting lipid droplet fusion and growth in subpopulations of hepatocytes. J Biol Chem 291: 4282‐4293, 2016. 10.1074/jbc.M115.701094
 283. Yang YY , Pritchard PH , Bhuiyan J , Seccombe DW , Moghadasian MH . Overexpression of Acyl‐CoA binding protein and its effects on the flux of free fatty acids in McA‐RH 7777 cells. Lipids 36: 595‐600, 2001.
 284. Ye J , Li JZ , Liu Y , Li X , Yang T , Ma X , Li Q , Yao Z , Li P . Cideb, an ER‐ and lipid droplet‐associated protein, mediates VLDL lipidation and maturation by interacting with apolipoprotein B. Cell Metab 9: 177‐190, 2009.
 285. Yen CLE , Monetti M , Burri BJ , Farese RV . The triacylglycerol synthesis enzyme DGAT1 also catalyzes the synthesis of diacylglycerols, waxes, and retinyl esters. J Lipid Res 46: 1502‐1511, 2005.
 286. Yen CLE , Stone SJ , Koliwad S , Harris C , Farese RV . DGAT enzymes and triacylglycerol biosynthesis. J Lipid Res 49: 2283‐2301, 2008.
 287. Yeon JE , Choi KM , Baik SH , Kim KO , Lim HJ , Park KH , Kim JY , Park JJ , Kim JS , Bak YT , Byun KS , Lee CH . Reduced expression of peroxisome proliferator‐activated receptor‐alpha may have an important role in the development of non‐alcoholic fatty liver disease. J Gastroenterol Hepatol 19: 799‐804, 2004.
 288. Yu S , Matsusue K , Kashireddy P , Cao WQ , Yeldandi V , Yeldandi AV , Rao MS , Gonzalez FJ , Reddy JK . Adipocyte‐specific gene expression and adipogenic steatosis in the mouse liver due to peroxisome proliferator‐activated receptor gamma1 (PPARgamma1) overexpression. J Biol Chem 278: 498‐505, 2003.
 289. Zammit VA. Hepatic triacylglycerol synthesis and secretion: DGAT2 as the link between glycaemia and triglyceridaemia. Biochem J 451: 1‐12, 2013.
 290. Zhang L , Miyaki K , Nakayama T , Muramatsu M . Cell death‐inducing DNA fragmentation factor alpha‐like effector A (CIDEA) gene V115F (G–>T) polymorphism is associated with phenotypes of metabolic syndrome in Japanese men. Metabolism 57: 502‐505, 2008.
 291. Zhang L , Wang HH . The essential functions of endoplasmic reticulum chaperones in hepatic lipid metabolism. Dig Liver Dis 48: 709‐716, 2016. 10.1016/j.dld.2016.03.016
 292. Zhang Y , Li Y , Niepel MW , Kawano Y , Han S , Liu S , Marsili A , Larsen PR , Lee CH , Cohen DE . Targeted deletion of thioesterase superfamily member 1 promotes energy expenditure and protects against obesity and insulin resistance. Proc Natl Acad Sci U S A 109: 5417‐5422, 2012.
 293. Zhou H , Liu R . ER stress and hepatic lipid metabolism. Front Genet 5: 112, 2014. 10.3389/fgene.2014.00112
 294. Zhou J , Zhai Y , Mu Y , Gong H , Uppal H , Toma D , Ren S , Evans RM , Xie W . A novel pregnane X receptor‐mediated and sterol regulatory element‐binding protein‐independent lipogenic pathway. J Biol Chem 281: 15013‐15020, 2006.
 295. Zhou SL , Gordon RE , Bradbury M , Stump D , Kiang CL , Berk PD . Ethanol up‐regulates fatty acid uptake and plasma membrane expression and export of mitochondrial aspartate aminotransferase in HepG2 cells. Hepatology 27: 1064‐1074, 1998.
 296. Zhuravleva E , Gut H , Hynx D , Marcellin D , Bleck CK , Genoud C , Cron P , Keusch JJ , Dummler B , Esposti MD , Hemmings BA . Acyl coenzyme A thioesterase Them5/Acot15 is involved in cardiolipin remodeling and fatty liver development. Mol Cell Biol 32: 2685‐2697, 2012.
 297. Zoltowska M , Ziv E , Delvin E , Lambert M , Seidman E , Levy E . Both insulin resistance and diabetes in Psammomys obesus upregulate the hepatic machinery involved in intracellular VLDL assembly. Arterioscler Thromb Vasc Biol 24: 118‐123, 2004.

 

Teaching Material

M. Alves-Bezerra, D. E. Cohen. Triglyceride Metabolism in the Liver. Compr Physiol. 8: 2018, 1-22.

Didactic Synopsis

Major Teaching Points:

  • A variety of endogenous and exogenous sources provide fatty acids that can be assembled into to triglycerides within the liver in health and disease;
  • Multiple hepatocellular mechanisms regulate fatty acid uptake, synthesis, transport, and oxidation;
  • Triglycerides can be stored within hepatocytes, undergo lipolysis, or be exported into the bloodstream depending upon physiological and pathological conditions;
  • Mitochondria, endoplasmic reticulum, Golgi apparatus, peroxisomes, and lipid droplets are examples of organelles that participate in fatty acid and triglyceride metabolism;
  • The metabolism of fatty acids and triglyceride is regulated by transcriptional and post-transcriptional mechanisms; and
  • Alterations in fatty acid and triglyceride metabolism lead to non-alcoholic fatty liver disease (NAFLD), which is a common consequence of overnutrition.

Didactic Legends

The figures—in a freely downloadable PowerPoint format—can be found on the Images tab along with the formal legends published in the article. The following legends to the same figures are written to be useful for teaching.

Figure 1. Major sources for hepatic lipids. This figure illustrates the origin of the triglyceride (a common form of fat) that is found in the liver in different physiological states. After a meal, the triglycerides obtained from the diet are modified in the intestine and exported to the bloodstream. Muscle and fat tissue can import and process the triglyceride molecules, modifying them according to their specific needs. The liver can also produce its own triglycerides from sugars and amino acids, in a process called de novo lipogenesis (DNL). Within liver cells, the fat is metabolized in order to be stored in structures called lipid droplets (LDs) or to be exported to other organs via the bloodstream in association with particles called lipoproteins (in this case, very low density lipoprotein, VLDL). During fasting, the breakdown of triglyceride storage depots occurs, releasing fatty acids (the main breakdown products of triglycerides into the blood. When it reaches the liver, it can be used to provide energy through a process called fatty acid oxidation, or can be modified to produce VLDL. In the setting gf obesity or diabetes, the breakdown of triglyceride storage depots is stimulated and the synthesis of triglyceride in the liver increases. It results in the accumulation of triglyceride in the liver and increased levels in the blood, both of which are commonly observed in patients with a common condition known as nonalcoholic fatty liver disease.

Figure 2. Hepatic fatty acid transport and metabolism. Teaching points: many proteins are required in the liver for the import, transport and consumption of fatty acids (FA), the main component of triglycerides. Proteins located in the plasma membrane (FAT/CD36, FABPpm, and Caveolin-1) facilitate the transport FA from the bloodstream into the liver cells. FA imported or produced locally are modified by FATP or ACSL proteins to generate another lipid named acyl-CoA. Acyl-CoA is important because it is the form that is metabolized by enzymes within the liver cells. Acyl-CoA molecules can be converted back to FA by the activities of ACOT/Them proteins. In addition, FA and acyl-CoA interact with proteins (FABP, SCP2, and ACBP) that mediate their transport within liver cells.

Figure 3. Hepatic triglyceride metabolism. This figure summarizes the cellular routes by FA are converted into more complex lipid forms, including triglycerides (TG). Mitochondrial proteins and those within the endoplasmic reticulum (GPAT, AGPAT, PAP, and DGAT) mediate a series of enzymatic reactions including addition of FA-derived intermediates and removal of a phosphate group, which culminates in the formation of TG. TG formed from FA that are synthesized within the liver cells are most likely exported to the bloodstream in VLDL for delivery to other organs. On the other hand, TG produced from FA that are delivered to the liver from the blood are destined for storage in the liver. Other enzymes (DGAT1 and DGAT2) may also regulate the differential usage of FAs.

Figure 4. Triglyceride storage and secretion in hepatocytes. This figure provides detailed information about the variety of proteins that contribute to the formation of triglycerides (TG) that are exported from the liver to the bloodstream within VLDL particles. These proteins are located in three organelles: lipid droplet, endoplasmic reticulum and the Golgi apparatus. The TG produced in the liver can be stored in the LD or directed to the endoplasmic reticulum, where it is used to build pre-VLDL particles. VLDL that are fully matured in the Golgi apparatus by a process that depends microsomal triglyceride transfer protein (MTP). After they are fully formed, VLDL particles are secreted to the bloodstream.

Figure 5. Lipolysis and fatty acid oxidation in hepatocytes. Teaching points: triglycerides (TG) stored in the liver can be metabolized to provide energy to the liver cell itself. This process is initiated by enzymes know as lipases (ATGL, HSL, and MGL) and culminates in the release of fatty acid (FA), the main constituent of TG. Autophagy, a lysosome-dependent pathway to recover and recycle cellular constituents, also mediates the breakdown of TG into FA. FA can also be produced from acyl-CoA lipids by enzymes referred to as ACOT/Them. In order to enter cellular metabolic pathways, FA must be converted to acyl-CoA by ACSL enzymes. They can then be used as a fuel when oxidized in the mitochondria, peroxisome, or endoplasmic reticulum, or can be used to build TG that will be exported to the bloodstream in VLDL particles.

 


Related Articles:

Metabolism of lipids in chylomicrons and very low‐density lipoproteins
Obesity
Steatosis in the Liver
Energy Metabolism in the Liver
Triglyceride metabolism

Contact Editor

Submit a note to the editor about this article by filling in the form below.

* Required Field

How to Cite

Michele Alves‐Bezerra, David E. Cohen. Triglyceride Metabolism in the Liver. Compr Physiol 2017, 8: 1-22. doi: 10.1002/cphy.c170012